WO2019225668A1 - Imaging element and imaging device - Google Patents

Imaging element and imaging device Download PDF

Info

Publication number
WO2019225668A1
WO2019225668A1 PCT/JP2019/020350 JP2019020350W WO2019225668A1 WO 2019225668 A1 WO2019225668 A1 WO 2019225668A1 JP 2019020350 W JP2019020350 W JP 2019020350W WO 2019225668 A1 WO2019225668 A1 WO 2019225668A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
signal
unit
pixel
line
Prior art date
Application number
PCT/JP2019/020350
Other languages
French (fr)
Japanese (ja)
Inventor
良次 安藤
高木 徹
周太郎 加藤
佳之 渡邉
崇志 瀬尾
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2020520346A priority Critical patent/JP7047907B2/en
Priority to US17/056,064 priority patent/US11910113B2/en
Priority to CN202310486240.6A priority patent/CN116528070A/en
Priority to CN201980044048.3A priority patent/CN112352420B/en
Publication of WO2019225668A1 publication Critical patent/WO2019225668A1/en
Priority to JP2022043916A priority patent/JP7363947B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/766Addressed sensors, e.g. MOS or CMOS sensors comprising control or output lines used for a plurality of functions, e.g. for pixel output, driving, reset or power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present invention relates to an imaging element and an imaging apparatus.
  • Patent Document 1 an image sensor that adds and reads signals from a plurality of pixels.
  • Patent Document 1 an image sensor that adds and reads signals from a plurality of pixels.
  • Patent Document 1 the conventional image sensor cannot obtain a signal obtained by adding signals of arbitrary plural pixels.
  • the image sensor photoelectrically converts light to generate a charge, and a first output that outputs a first signal based on the charge generated by the first photoelectric converter.
  • a plurality of second photoelectric conversion units that photoelectrically convert light to generate charges, a plurality of second output units that output second signals based on the charges generated by the second photoelectric conversion units,
  • An output line connected to the first output unit and a plurality of the second output units to output at least one of the first signal and the second signal; and the first output unit to the output line.
  • the imaging apparatus includes the imaging element according to the first aspect and a generation unit that generates image data based on the second signal.
  • FIG. 2A is an overall view of the image sensor
  • FIG. 2B is an enlarged view of a part thereof.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an imaging apparatus using the imaging device according to the first embodiment.
  • the imaging device 1 includes an imaging optical system 2, an imaging element 3, a control unit 4, a lens driving unit 5, and a display unit 6.
  • the imaging optical system 2 forms a subject image on the imaging surface of the image sensor 3.
  • the imaging optical system 2 includes a lens 2a, a focusing lens 2b, and a lens 2c.
  • the focusing lens 2b is a lens for adjusting the focus of the imaging optical system 2.
  • the focusing lens 2b is configured to be movable in the optical axis Z direction.
  • the lens driving unit 5 has an actuator (not shown).
  • the lens moving unit 5 moves the focusing lens 2b in the optical axis Z direction by this actuator.
  • the image sensor 3 captures a subject image and outputs a signal.
  • the imaging element 3 has an imaging pixel and an AF pixel (focus detection pixel).
  • the imaging pixel outputs a signal (image signal) used for image generation.
  • the AF pixel outputs a signal (focus detection signal) used for focus detection.
  • the control unit 4 controls each unit such as the image sensor 3.
  • the control unit 4 performs image processing or the like on the image signal output from the imaging device 3 to generate image data.
  • the control unit 4 records image data on a recording medium (not shown), and displays an image based on the image data on the display unit 6.
  • the control unit 4 can also be interpreted as a generation unit that generates an image based on the image signal.
  • the display unit 6 is a display device having a display member such as a liquid crystal panel.
  • control unit 4 performs a focus detection process necessary for automatic focus adjustment (AF) of the imaging optical system 2 by a known phase difference detection method. Specifically, the control unit 4 detects the in-focus position of the focusing lens 2 b for forming an image by the imaging optical system 2 on the imaging surface of the imaging element 3. The control unit 4 detects the image shift amount between the first and second images based on the pair of focus detection signals output from the image sensor 3. The control unit 4 calculates a deviation amount (defocus amount) between the current position of the focusing lens 2b and the in-focus position based on the detected image shift amount. Focusing adjustment is automatically performed by driving the focusing lens 2b in accordance with the defocus amount.
  • AF automatic focus adjustment
  • FIG. 2A is a diagram of the image sensor 3 according to the embodiment of the present invention as viewed from the imaging surface side, that is, from the ⁇ Z side in FIG.
  • the imaging element 3 has a plurality of pixels 30 arranged in the x direction and the y direction in FIG. Although a part of the pixel 30 is omitted in FIG. 2, a large number of pixels 30 may be arranged in the x direction and the y direction, for example, 1000 or more.
  • a horizontal control unit HC is provided at the left end in the figure, and a vertical control unit VC is provided at the upper end in the figure in an area (imaging area) in which a plurality of pixels 30 are arranged.
  • the image sensor 3 has a plurality of pixel blocks BC.
  • one pixel block BC has a plurality of pixels 30 arranged in the x direction and the y direction, which are surrounded by a boundary line BB indicated by a broken line.
  • the output units of the plurality of pixels 30 in each of the pixel blocks BC are connected to one output line and connected to one readout unit.
  • the plurality of pixels 30 in each of the pixel blocks BC may be connected to a plurality of output lines and connected to a plurality of readout units.
  • a portion corresponding to one pixel block BC is hatched for easy explanation.
  • each area surrounded by each boundary line BB indicated by a broken line is a pixel block BC.
  • the plurality of pixels 30 are divided and arranged in a plurality of pixel blocks BC.
  • a total of 16 pixels 30 arranged in the x direction and 4 in the y direction constitute one pixel block BC.
  • the number of pixels arranged in the x direction and y direction in one pixel block BC is not limited to four, and may be other numbers such as six or eight.
  • the number of arrays may be different between the x direction and the y direction.
  • the outline shape of the pixel block BC is not limited to the rectangle illustrated in FIG. 2, and may be an arbitrary shape including a plurality of pixels 30.
  • the shape of the boundary line BB is not a simple straight line but a shape in which a plurality of straight lines are bent and connected.
  • FIG. 2B is an enlarged view showing two pixel blocks BC1 and BC2 adjacent in the x direction among the pixel blocks BC shown in FIG.
  • each of the plurality of pixels 30 includes any one of three color filters (color filters) having different spectral characteristics of R (red), G (green), and B (blue), for example.
  • the R color filter mainly transmits light in the red wavelength region
  • the G color filter mainly transmits light in the green wavelength region
  • the B color filter mainly transmits light in the blue wavelength region.
  • the pixel has different spectral characteristics depending on the arranged color filter.
  • the pixel 30 includes a pixel having sensitivity to red (R) light (hereinafter referred to as R pixel R), a pixel having sensitivity to green (G) light (hereinafter referred to as G pixel G), and blue. Some pixels (B) have sensitivity to light (hereinafter referred to as B pixels B). These pixels 30 are arranged in a so-called Bayer array.
  • the G pixel Gb is a G pixel arranged in the same x direction as the B pixel B
  • the G pixel Gr is a G pixel arranged in the same x direction as the R pixel R.
  • the pixel block BC1 has four G pixels Gb, G pixels Gr, R pixels R, and B pixels B arranged in a Bayer array. These pixels 30 are imaging pixels Gb, Gr, R, and B (hereinafter collectively referred to as imaging pixels 30c) that are used for imaging an optical image formed on the imaging surface of the imaging device 3. is there.
  • the arrangement of the pixels 30 in the pixel block BC2 is substantially the same as that of the pixel block BC1, but in the pixel block BC1, some of the pixels where the B pixel B is arranged are different from the above-described imaging pixel 30c. They are replaced with different special pixels Z1 and Z2 (also collectively referred to as special pixels ZZ).
  • the special pixel ZZ is, for example, an AF pixel, and the configuration thereof will be described later.
  • the special pixel ZZ is not limited to the AF pixel, and may be a pixel whose sensitivity is different from any of the imaging pixels 30c described above. Moreover, the pixel which has a color filter in which spectral characteristics differ from any of the above-mentioned imaging pixels 30c may be sufficient.
  • the special pixel ZZ can also be interpreted as the first pixel.
  • the imaging pixel 30c can also be interpreted as a second pixel.
  • the pixel block BC2 includes at least one special pixel ZZ as a plurality of pixels 30, and includes a plurality of imaging pixels 30c. At least one pixel block BC among the plurality of pixel blocks BC is configured by at least one special pixel ZZ and a plurality of imaging pixels 30c as in the pixel block BC2. At least one pixel block BC among the plurality of pixel blocks BC may be entirely configured by the imaging pixels 30c like the pixel block BC1.
  • vertical selection lines VS1 to VS8 (collectively referred to as vertical selection lines VS) connected to a selection unit TV described later of each pixel 30 are in the y direction. It extends to.
  • horizontal selection lines HS1 to HS4 (collectively referred to as horizontal selection lines HS) connected to a selection unit TH2 described later of each imaging pixel 30c extend in the x direction.
  • horizontal selection line ZS connected to a selection unit to be described later of each special pixel Z1 and Z2 extends in the x direction.
  • each of the vertical selection lines VS1 to VS8 is shared by a plurality of pixels 30 arranged in the y direction
  • each of the horizontal selection lines HS1 to HS4 is a plurality of pixels arranged in the x direction. It is shared by the imaging pixel 30c.
  • the special horizontal selection line ZZ is shared by a plurality of special pixels ZZ arranged in the x direction.
  • FIG. 3 shows four pixels 30 (two in the vertical direction and two in the horizontal direction) surrounded by a two-dot chain line PB in the lower right in the pixel block BC2 shown in FIG. It is an enlarged view which shows the outline
  • the four pixels 30 are the G pixel Gb in the upper left, the special pixel Z2 in the upper right, the R pixel R in the lower left, and the G pixel Gr in the lower right.
  • Each of the four pixels is basically a so-called four-transistor type CMOS image sensor, but, as will be described later, the so-called selection transistor configuration is a normal four-transistor type CMOS. This is different from the type image sensor.
  • the photodiode PD as a photoelectric conversion unit photoelectrically converts incident light to generate charges, and temporarily stores the generated charges.
  • the transfer transistor TX transfers the charge accumulated in the photodiode PD to the floating diffusion (FD) region FD in which the capacitor CC is formed based on a transfer signal sent to the gate from a transfer control line (not shown). .
  • the amplification transistor TA outputs a signal corresponding to the electric charge generated by the photodiode PD when a voltage generated in the FD region FD by the transferred electric charge is applied to the gate thereof.
  • the power supply voltage VDD is applied to the input side (drain) of the amplification transistor TA.
  • the reset transistor TR resets the voltage of the FD region FD to the power supply voltage VDD by discharging the charge of the FD region FD to the power supply voltage VDD side.
  • the output side (source side) of the amplification transistor TA of each pixel (Gb, Z2, R, Gr) is connected to the input side of the vertical selection transistor TV.
  • the gate of the vertical selection transistor TV is connected to the vertical selection line VS7 or VS8, and the vertical selection transistor TV is turned on or off according to a control signal sent from the vertical control unit VC shown in FIG. It becomes.
  • the output side of the vertical selection transistor TV of the imaging pixel (Gb, R, Gr) is connected to the input side of the horizontal selection transistor TH2.
  • the gate of the horizontal selection transistor TH2 is connected to the horizontal selection line HS3 or HS4, and the horizontal selection transistor TH2 is turned on or off by a control signal sent from the horizontal control unit HC shown in FIG. It becomes.
  • one or both of the horizontal selection transistor TH2 and the vertical transistor TV are output from the imaging pixel (Gb, R, Gr) (second pixel).
  • the output unit can be interpreted as a second output unit).
  • the amplification transistor TA can be interpreted as an output unit (second output unit).
  • the second output unit may include the amplification transistor TA and one or both of the horizontal selection transistor TH2 and the vertical transistor TV.
  • the output side of the vertical selection transistor TV of the special pixel Z2 is connected to the input side of the special horizontal selection transistor TH1.
  • the gate of the special horizontal selection transistor TH1 is connected to the special horizontal selection line ZS, and the special horizontal selection transistor TH1 is turned on or off by a control signal sent from the horizontal control unit HC shown in FIG. It becomes conduction.
  • one or both of the special horizontal selection transistor TH1 and the vertical transistor TV can be interpreted as an output unit (the first output unit as the output unit of the first pixel).
  • the amplification transistor TA can be interpreted as an output unit (first output unit).
  • the second output unit may include the amplification transistor TA and one or both of the horizontal selection transistor TH1 and the vertical transistor TV.
  • the special horizontal selection line ZS controls the first output unit (selection transistor TH1) that is the output unit of the first pixel (special pixel ZZ), and therefore can be interpreted as a first control line. Further, since the horizontal selection line HS controls the second output unit (selection transistor TH2) that is the output unit of the second pixel (imaging pixel 30c), it can also be interpreted as a second control line. Further, the vertical selection line VS can be interpreted as a third control line.
  • the output part of the horizontal selection transistor TH2 of the imaging pixel (Gb, R, Gr) in the pixel block BC2 and the output part of the special horizontal selection transistor TH1 in the special pixel Z2 in the pixel block BC2 are all one output line. Connected to RW.
  • the output line RW is connected to a reading unit that reads a signal from the pixel 30.
  • the reading unit includes, for example, an AD conversion unit that converts an analog signal output from the pixel 30 into a digital signal.
  • the output line RW is connected to a current source CS that supplies current to the amplification transistor TA and the like in the pixel 30.
  • the vertical control unit VC and the horizontal control unit HC control the voltage of the control signal to the vertical selection line VS and the horizontal selection line HS to thereby control any one or more pixels in the pixel block BC2.
  • a signal (Gb, Z2, R, Gr) (output of the amplification transistor TA) is output to the output line RW.
  • the reading unit reads signals from the pixels (Gb, Z2, R, Gr) in the pixel block BC2.
  • the image pickup operation including the reset operation of the pixels 30 of the image pickup device 3 of the present embodiment is almost the same as that of the conventional 4-transistor type CMOS image pickup device. That is, prior to the exposure operation for imaging or focus detection, the reset transistor TR and the transfer transistor TX are brought into conduction with the power supply voltage VDD, and the FD region FD and the photodiode PD are reset to the power supply voltage VDD. Thereafter, the transfer transistor TX is turned off, and exposure for imaging or focus detection is performed by the photodiode PD.
  • the reading unit of the image sensor 3 can read an addition signal obtained by adding (summing and binning) signals of an arbitrary number of pixels 30 in one pixel block BC.
  • an addition signal obtained by adding (summing and binning) signals of an arbitrary number of pixels 30 in one pixel block BC.
  • the control unit 4 when a through image (live view image) is displayed on the display unit 6 or when moving image shooting is performed, the control unit 4 generates image data based on an addition signal obtained by adding signals from a plurality of pixels 30.
  • the image data based on the addition signal is image data having a smaller number of pixels than the total number of pixels of the image sensor.
  • the control unit 4 can generate an image with less noise.
  • the vertical control unit VC and the horizontal control unit HC simultaneously output the signals of the arbitrary number of pixels 30 to the output line RW.
  • the reading unit reads signals of an arbitrary number of pixels 30 in the pixel block BC that are simultaneously output to the output line RW as an addition signal. Note that an arbitrary number of pixels 30 may not output signals to the output line RW at the same time. The arbitrary number of pixels 30 may output each other's signals while the signals are output to the output line RW.
  • the signals of the plurality of pixels 30 are so-called source follower addition. Therefore, the value of the signal read by the reading unit is not the sum of the signal values of each pixel 30, but is close to the average value of the signal values of each pixel 30.
  • the plurality of pixels 30 that output the addition signal are preferably pixels of the same color.
  • the vertical control unit VC and the horizontal control unit HC control the voltage of the control signal to the vertical selection line VS and the horizontal selection line HS to select a plurality of pixels 30 of the same color in one pixel block BC, and
  • the signal is output to the output line RW via the vertical selection transistor TV and the horizontal selection transistor TH.
  • the reading unit reads the signal of the selected pixel 30 of the same color output to the output line RW as an addition signal.
  • the vertical control unit VC applies the vertical selection lines VS5 and VS7 connected to the R pixels to Send a signal to turn on the vertical selection transistor TV.
  • the vertical control unit VC supplies a power supply voltage, for example.
  • the vertical control unit VC sends a signal that makes the vertical selection transistor TV non-conductive to the vertical selection lines VS6 and VS8 that are not connected to the R pixel.
  • the vertical control unit VC supplies a ground voltage, for example.
  • the horizontal control unit HC sends a signal for making the horizontal selection transistor TH2 conductive to the horizontal selection lines HS2 and HS4 connected to the R pixel, and horizontally to the horizontal selection lines HS1 and HS3 not connected to the R pixel.
  • a signal for turning off the selection transistor TH2 is sent.
  • the four R pixels R arranged at the positions where the vertical selection lines VS5 and VS7 and the horizontal selection lines HS2 and HS4 intersect with each other are connected to the vertical selection transistor TV. Both of the horizontal selection transistors TH2 become conductive. Accordingly, the signals of these four R pixels R are simultaneously output to the output line RW.
  • the signals of the four R pixels R are added by being simultaneously output to the output line RW.
  • the reading unit reads the signals of the four R pixels R output to the output line RW as addition signals.
  • the horizontal control unit HC sends a signal for turning on the horizontal selection transistor TH2 only to the horizontal selection line HS2, and sends a signal for turning off the horizontal selection transistor TH2 to the horizontal selection lines HS other than the horizontal selection line HS2.
  • the signals of the two R pixels R arranged at the position where the horizontal selection line HS2 and the vertical selection lines VS5 and VS7 intersect can be simultaneously output to the output line RW.
  • the signals of the two R pixels R described above are added by being simultaneously output to the output line RW. Thereby, the reading unit can read the addition signal of the two R pixels R.
  • the vertical control unit VC sends a signal for making the vertical selection transistor TV conductive only to the vertical selection line VS5, so that the vertical selection line VS5 and the horizontal selection lines HS2 and HS4 are arranged at positions where they intersect.
  • the signals of the two R pixels R can be simultaneously output to the output line RW.
  • the signals of the two R pixels R described above are added by being simultaneously output to the output line RW. Thereby, the reading unit can read the addition signal of the two R pixels R.
  • the vertical control unit VC and the horizontal control unit HC can output a signal of only one R pixel R in one pixel block BC2 to the output line RW.
  • the reading unit can read the signal of only one R pixel R.
  • the vertical control unit VC may send a signal for conducting the vertical selection transistor TV to the vertical selection line VS5 or VS7 and send a signal for conducting the horizontal selection transistor TH2 to the two horizontal lines HS2 or HS4.
  • the horizontal control unit HC sends a signal for making the horizontal selection transistor TH2 conductive to the horizontal selection line HS1. Further, the horizontal control unit HC sends a signal for turning off the horizontal selection transistor TH2 to the horizontal selection lines HS other than the horizontal selection line HS1, and a signal for turning off the special horizontal selection transistor TH1 to the special horizontal selection line ZS. Send.
  • the vertical control unit VC sends a signal for turning on the vertical selection transistor TV to the vertical selection lines VS6 and VS8, so that the signals of the two B pixels B are simultaneously output to the output line RW.
  • the signals of the two B pixels B are added to the output line RW at the same time.
  • the reading unit reads the addition signal of the two B pixels B.
  • the vertical control unit VC sends a signal for turning on the vertical selection transistor TV to the vertical selection line VS6 or VS8, so that the reading unit can read the signal of one B pixel B.
  • the horizontal control unit HC sends a signal for turning off the special horizontal selection transistor TH1 to the special horizontal selection line ZS, so that the signals of the special pixels Z1 and Z2 are not output to the output line RW. Therefore, the signals of the special pixels Z1 and Z2 are not mixed into the signal of the B pixel B.
  • the horizontal selection line HS3 arranged in parallel with the special horizontal selection line ZS is not connected to the special horizontal selection transistor TH1 in the special pixels Z1 and Z2. Therefore, no matter what signal the horizontal control unit HC sends to the horizontal selection line HS3, the signals of the special pixels Z1 and Z2 are not mixed into the signal of the B pixel B. However, since the horizontal selection line HS3 is shared with other pixel blocks BC such as the pixel block BC1 adjacent to the pixel block BC2 in the x direction, the signal sent from the horizontal control unit HC to the horizontal selection line HS3 It is preferable to send a signal suitable for reading in the pixel block BC.
  • Reading signals of the G pixel G (G pixel Gb and G pixel Gr) in the pixel block BC2 is the same as reading of the signals of the R pixel R and the B pixel B described above.
  • the vertical control unit VC and the horizontal control unit HC send a signal for controlling the vertical selection transistor TV and the horizontal selection transistor TH2 to a selection line connected to the G pixel G to be read out of the vertical selection line VS and the horizontal selection line HS.
  • the reading unit can read the signal of one G pixel G or the addition signal of a plurality of G pixels G.
  • the horizontal control unit HC makes the special horizontal selection transistor TH1 non-conductive to the special horizontal selection line ZS so that the signals of the special pixels Z1 and Z2 are not mixed into the signal of the G pixel G output to the output line RW. Send a signal.
  • the vertical control unit VC and the horizontal control unit HC apply the vertical selection transistor TV and the special horizontal selection transistor to the vertical selection line VS6 and the special horizontal selection line ZS connected to the special pixel Z1, respectively.
  • a signal for turning on TH1 is sent to output the signal of the special pixel Z1 to the output line RW.
  • the vertical control unit VC and the horizontal control unit HC are connected to the vertical selection line VS8 and the special horizontal selection line ZS connected to the special pixel Z2, respectively, with the vertical selection transistor TV and the special horizontal selection line.
  • a signal for turning on the selection transistor TH1 is sent to output the signal of the special pixel Z2 to the output line RW.
  • the reading unit reads the signal of the special pixel Z1 or Z2 output to the output line RW.
  • the vertical control unit VC and the horizontal control unit HC are connected to the vertical selection line VS and the horizontal selection line HS other than the vertical selection line VS6 and the vertical selection line VS8, respectively.
  • a signal for turning off the horizontal selection transistor TH2 is sent.
  • the vertical control unit VC and the horizontal control unit HC are connected to the vertical selection line VS6, the vertical selection line VS8, and the special horizontal selection line ZS, respectively.
  • a signal for turning on the horizontal selection transistor TH1 is sent, and the signals of the special pixels Z1 and Z2 are simultaneously output to the output line RW.
  • the signals of the special pixels Z1 and Z2 are added by being simultaneously output to the output line RW.
  • the reading unit reads the addition signal of the special pixels Z1 and Z2.
  • the reading of the signal of the pixel 30 in the pixel block BC2 has been described above. The same applies to the other pixel blocks BC.
  • the signal of each pixel 30 in each pixel block BC is output to an output line RW provided in each pixel block BC, and is read by the reading unit.
  • the vertical selection line VS, the horizontal selection line HS, and the special horizontal selection line ZS may be shared by a plurality of pixel blocks BC.
  • the horizontal selection lines HS1 to HS4 may be connected to each pixel 30 in another pixel block BC arranged in the x direction with respect to the pixel block BC2, like the pixel block BC1.
  • the vertical selection lines VS5 to VS8 may be connected to each pixel 30 in another pixel block BC arranged in the y direction with respect to the pixel block BC2.
  • a signal read by the reading unit of each pixel block BC is output from the image sensor 3 via an output circuit (not shown).
  • the order of reading out the signals from the special pixel ZZ and the imaging pixel 30c is arbitrary.
  • the vertical control unit VC and the horizontal control unit HC first select the special pixels Z1 and Z2 in order via the vertical selection line VS and the horizontal selection line HS, and the reading unit reads the signal. Thereafter, the vertical control unit VC and the horizontal control unit HC select the imaging pixel 30c via the vertical selection line VS and the horizontal selection line HS, and the reading unit reads the signal.
  • the signal of the special pixel ZZ Since the number of special pixels ZZ (two of Z1 and Z2) in the pixel block BC2 is smaller than the number of pixels of the imaging pixel 30c (14 in total including Gb, Gr, R, and B), the signal of the special pixel ZZ The time required for reading is shorter than the time required for reading the signal of the imaging pixel. That is, the signal readout from the special pixel ZZ can be performed at a higher speed than the signal readout from the imaging pixel 30c. For example, when the special pixel ZZ is an AF pixel, the control unit 4 can perform focus detection at high speed by reading the signal of the special pixel ZZ before reading the signal of the imaging pixel 30c. . Further, two readout units may be provided in one pixel block BC.
  • each of the two readout units may read out the signal of the special pixel ZZ and the signal of the imaging pixel 30c.
  • the reading unit can read the signal of the special pixel ZZ and the signal of the imaging pixel 30c under respective reading conditions such as optimum gain.
  • FIG. 4 is a diagram showing a cross section of the pixel 30 portion of the image sensor 3 of the present embodiment. In FIG. 4, only a part of the cross section of the entire image sensor 3 is shown. The x direction and the z direction shown in FIG. 4 are the same as the directions shown in FIG.
  • the image sensor 3 is a so-called back-illuminated image sensor.
  • the image sensor 3 photoelectrically converts light incident from above in the drawing.
  • the image sensor 3 includes a first semiconductor substrate 7 and a second semiconductor substrate 8.
  • the image sensor 3 has a plurality of pixels 30.
  • One pixel 30 includes a pixel upper part 30 x provided on the first semiconductor substrate 7 and a pixel lower part 30 y provided on the second semiconductor substrate 8.
  • One pixel upper portion 30x includes one micro lens 74, one color filter 73, one light receiving portion 31 of a photodiode PD, and the like.
  • the first semiconductor substrate 7 includes a light receiving layer 71 including the light receiving portion 31 of the photodiode PD included in the pixel upper portion 30x, and a wiring layer 72 in which transistors such as the transfer transistor TX and the amplification transistor TA are formed.
  • the light receiving layer 71 is disposed on the opposite side (back side) of the wiring layer 72 of the first semiconductor substrate 7. In the light receiving layer 71, a plurality of light receiving portions 31 are two-dimensionally arranged.
  • the second semiconductor substrate 8 includes a vertical selection transistor TV, a horizontal selection transistor TH2, a special horizontal selection transistor TH1, a vertical selection line VS, a horizontal selection line HS, a special horizontal selection line ZS, a reading unit, A current source CS and the like are arranged.
  • a plurality of bumps 75 are arranged on the surface of the wiring layer 72.
  • a plurality of bumps 76 corresponding to the plurality of bumps 75 are arranged on the surface of the second semiconductor substrate 8 facing the wiring layer 72.
  • the plurality of bumps 75 and the plurality of bumps 76 are joined to each other.
  • the first semiconductor substrate 7 and the second semiconductor substrate 8 are electrically connected via the plurality of bumps 75 and the plurality of bumps 76.
  • the configuration of the circuit elements disposed on the first semiconductor substrate 7 and the second semiconductor substrate 8 described above is an example, and some of the components are the first semiconductor substrate 7 and the second semiconductor substrate 8. You may arrange in either.
  • the light receiving layer 71 including the light receiving unit 31 of the photodiode PD, the transfer transistor TX, the amplification transistor TA, and the vertical selection transistor TA are formed on the first semiconductor substrate 7, and the horizontal selection transistor TH2, the special horizontal selection transistor TH1,
  • the horizontal selection line HS, the special horizontal selection line ZS, the reading unit, and the current source CS may be arranged on the second semiconductor substrate 8.
  • the light receiving layer 71 including the light receiving unit 31 of the photodiode PD, the transfer transistor TX, the amplification transistor TA, the vertical selection transistor TA, the horizontal selection transistor TH2, the special horizontal selection transistor TH1, the horizontal selection line HS, and the special horizontal selection line ZS.
  • the read unit and the current source CS may be arranged on the second semiconductor substrate 8 formed on the first semiconductor substrate 7.
  • the vertical control unit VC and the horizontal control unit HC may be arranged on either the first semiconductor substrate 7 or the second semiconductor substrate 8.
  • each pixel 30 is provided with a color filter that matches the spectral sensitivity characteristics of each pixel.
  • the color filter 73 is also arranged in the special pixel ZZ among the pixels 30.
  • a G color filter is provided as the color filter 73.
  • the color filter 73 provided in the special pixel ZZ may be a filter that transmits the entire wavelength range of incident light.
  • the color filter 73 provided in the special pixel ZZ may be a color filter having a spectral characteristic different from any of the color filters 73 arranged in the imaging pixel 30c.
  • the color filter 73 When the special pixel ZZ is a pixel for receiving infrared light, the color filter 73 has high infrared light transmittance and low visible light transmittance. Further, when the special pixel ZZ is a pixel for receiving visible light, the color filter 73 has a high transmittance in the entire wavelength region of visible light.
  • the sensitivity of the special pixel ZZ is made different from the sensitivity of the imaging pixel 30c, for example, by making the average transmittance of the color filter 73 of the special pixel ZZ different from the average transmittance of the color filter 73 of the imaging pixel 30c.
  • the average transmittance refers to the average of the transmittance with respect to all wavelengths of light photoelectrically converted by the light receiving unit 31.
  • the sensitivity of the special pixel ZZ is such that the area of the light receiving unit 31 of the special pixel ZZ is different from the area of the light receiving unit 31 of the imaging pixel 30c, or the condition of ion implantation into the light receiving unit 31 is different. It may be different from the sensitivity.
  • the special pixel ZZ and the imaging pixel 30c output different signals.
  • the image quality (resolution, gradation, color) of the image can be improved.
  • FIG. 5 is a diagram illustrating an example when the special pixel ZZ is an AF pixel.
  • the second semiconductor substrate 8 is omitted from the cross-sectional view of the image sensor 3 illustrated in FIG. 4.
  • the special pixel Z ⁇ b> 1 is provided with a light shielding portion 75 ⁇ / b> R that shields the right side of the light receiving portion 31 at the boundary between the color filter 73 and the first semiconductor substrate 7.
  • the special pixel Z2 is provided with a light shielding portion 75L that shields the left side of the light receiving portion 31 at the boundary portion.
  • the special pixels Z1 and Z2 have lower sensitivity to light incident from different incident directions, and conversely, the sensitivity to light incident from different incident directions is relatively high.
  • the special pixels Z1 and Z2 are elements that have high sensitivity to light passing through different positions on the pupil plane of the imaging optical system 2, and therefore the image plane phase difference. It functions as a pixel for focus detection.
  • the position where the light shielding portions 75R and 75L are provided is not limited to the boundary portion between the color filter 73 and the first semiconductor substrate 7 described above, and is provided somewhere between the microlens 74 and the first semiconductor substrate 7. Just do it.
  • the arrangement of the pixels 30 is not necessarily limited to the Bayer arrangement.
  • the horizontal selection line HS and the special horizontal selection line ZS may extend in the short side direction instead of the long side direction of the image sensor 3, and the vertical selection line VS does not extend in the short side direction of the image sensor 3. It may extend in the direction.
  • the horizontal selection line HS, the special horizontal selection line ZS, and the vertical selection line VS that control the output of the signal of each pixel 30 do not extend in the horizontal direction (x direction) and the vertical direction (y direction). May be.
  • the horizontal selection line HS, special horizontal selection line ZS, and vertical selection line VS may not be shared by the plurality of pixels 30.
  • the imaging device 3 of the above embodiment is generated by the first photoelectric conversion unit (photodiode PD in the first pixel ZZ) that photoelectrically converts light to generate charges, and the first photoelectric conversion unit.
  • a first output unit TH1 that outputs a first signal based on charges, a plurality of second photoelectric conversion units (photodiodes PD in the imaging pixel 30c) that photoelectrically convert light to generate charges, and a second photoelectric conversion unit
  • a plurality of second output units TH2 for outputting a second signal based on the electric charge generated in step S1, a first output unit TH1 and a plurality of second output units TH2, and at least one of the first signal and the second signal is connected.
  • the first output unit TH1 is configured to output the first signal at a timing different from the output of the second signal by the second output unit TH2, thereby allowing the first signal based on the first photoelectric conversion unit to be output.
  • the reading of the second signal based on the second photoelectric conversion unit can be performed in an arbitrary order.
  • the second output unit TH2 is controlled via the second control line (horizontal selection line HS) so as not to output the second signal. By doing so, mixing of the second signal based on the second photoelectric conversion unit into the output of the first signal based on the first photoelectric conversion unit can be prevented, and a more accurate signal can be output.
  • the first output unit TH1 is controlled via the first control line (special horizontal selection line ZS) so as not to output the first signal. By doing so, mixing of the first signal based on the first photoelectric conversion unit into the output of the second signal based on the second photoelectric conversion unit can be prevented, and a more accurate signal can be output.
  • the plurality of second output units TH2 output the plurality of second signals simultaneously, the first output unit TH1 does not output the first signal via the first control line (special horizontal selection line ZS). By adopting such a configuration, it is possible to prevent mixing of the first signal based on the first photoelectric conversion unit into the output of the second signal based on the second photoelectric conversion unit, and to output a more accurate signal. .
  • Second control for controlling at least one of the output of the first signal from the first output unit TH1 to the output line RW and the output of the second signal from the second output unit TH2 to the output line RW.
  • Line (vertical selection line VS)
  • the first output unit TH1 is controlled via the first control line (special horizontal selection line ZS) and the third control line (vertical selection line VS)
  • the second output unit TH2 is configured to be controlled via the second control line (horizontal selection line HS) and the third control line (vertical selection line VS), so that the pixel 30 that reads the output from the output line RW is more arbitrary. Can be selected.
  • the first control line (special horizontal selection line ZS) and the second control line (horizontal selection line HS) are provided in the first direction
  • the third control line (vertical selection line VS) is the first control line.
  • the first output unit TH1 outputs a first signal used for focus detection
  • the second output unit TH2 outputs a second signal used for image generation, whereby the first pixel ZZ is configured. Can be used as pixels for detecting the in-plane phase difference focus.
  • the first photoelectric conversion unit is optimal for each of the first pixel ZZ and the second pixel (imaging pixel 30c) by adopting a configuration that is a photoelectric conversion unit having a sensitivity different from that of the second photoelectric conversion unit. Sensitivity can be given.
  • the second photoelectric conversion unit can have the image sensor 3 have a desired spectral sensitivity by performing a photoelectric conversion on the light transmitted through the first filter having the first spectral characteristic.
  • the first photoelectric conversion unit is configured to photoelectrically convert the light transmitted through the second filter having the second spectral characteristic different from the first spectral characteristic, and thereby to the first pixel (special pixel ZZ). Can have an optimum spectral sensitivity.
  • the first control line special horizontal selection line ZS
  • the second control line horizontal selection line HS
  • the output of the first signal from the first output unit TH1 to the output line RW By providing a control unit (selection transistors TV, TH1, TH2) for controlling the output of the second signal from the second output unit TH2 to the output line RW, the output from the first output unit TH1 to the output line RW And the control of the output from the second output part TH2 to the output line RW can be performed more simply.
  • control unit selection transistors TV, TH1, TH2
  • the control unit may be stacked with an imaging unit (pixel upper portion 30x) having a first photoelectric conversion unit and a plurality of second photoelectric conversion units. This eliminates the need to dispose the control unit (selection transistors TV, TH1, TH2) on the first semiconductor substrate 7 on which the image capturing unit (pixel upper portion 30x) is disposed, and the light receiving unit in the image capturing unit (pixel upper portion 30x).
  • the area and volume of 31 can be secured to a sufficient size, and the sensitivity of the image sensor 3 can be improved.
  • a readout unit that is stacked with an imaging unit (pixel upper portion 30x) having a first photoelectric conversion unit and a plurality of second photoelectric conversion units and reads at least one of the first signal and the second signal from the output line RW. It is good also as a structure provided with ADC.
  • the readout unit ADC is stacked on the second semiconductor substrate 8 or the like different from the first semiconductor substrate 7 having the imaging unit (pixel upper portion 30x), the readout unit ADC is disposed in the imaging unit (pixel upper portion 30x).
  • the area and volume of the light receiving unit 31 can be secured to a sufficient size, and the sensitivity of the image sensor 3 can be improved.
  • the reading unit ADC is a conversion unit that converts at least one of the first signal and the second signal from an analog signal to a digital signal, the reading unit ADC generates a digital signal. Thus, it becomes easy to design a signal processing system after the reading unit ADC.
  • a first readout unit that is stacked with an imaging unit (pixel upper portion 30x) having a first photoelectric conversion unit and a plurality of second photoelectric conversion units, and that reads a first signal from the output line RW, and an output line RW It can also be set as the structure provided with the 2nd reading part which reads a 2nd signal.
  • the first reading unit is a first conversion unit that converts the first signal from an analog signal to a digital signal
  • the second reading unit is a second conversion unit that converts the second signal from an analog signal to a digital signal. It can be set as the structure which is. With this configuration, the outputs of the first photoelectric conversion unit and the plurality of second photoelectric conversion units can be converted by separate analog-digital converters, and optimal readout can be performed for each pixel.
  • the first output part TH1 and the second output part TH2 are selection transistors, and the first control line (special horizontal selection line ZS) and the second control line (horizontal selection line HS) are selection transistors. It can be set as the structure which is a control line for controlling. With this configuration, the first output portion TH1 and the second output portion TH2 can be formed with a simple configuration.
  • the imaging device of the embodiment includes the imaging device 3 having any one of the above configurations (1) to (19) and the generation unit 4 that generates image data based on the second signal. With this configuration, the output of any one or a plurality of pixels 30 among the pixels 30 connected to the output line RW of the image sensor 3 can be selected, and the output can be output to the output line RW and read out. .

Abstract

This imaging element comprises: a first photoelectric conversion unit that photoelectrically converts light and generates a charge; a first output unit that outputs a first signal based on the charge generated by the first photoelectric conversion unit; a plurality of second photoelectric conversion units that photoelectrically convert light and generate a charge; a plurality of second output units that output second signals based on the charges generated by the second photoelectric conversion units; an output line by which the first output unit and the plurality of second output units are connected, and by which the first signal and/or the second signals are output; a first control line that is for controlling the output of the first signal from the first output unit to the output line; and a second control line that is for controlling the output of the second signals from the plurality of second output units to the output line.

Description

撮像素子および撮像装置Imaging device and imaging apparatus
 本発明は、撮像素子および撮像装置に関する。 The present invention relates to an imaging element and an imaging apparatus.
 従来、複数の画素の信号を加算して読み出す撮像素子が知られている(例えば特許文献1)。しかし、従来の撮像素子は、任意の複数の画素の信号を加算した信号が得られない。 2. Description of the Related Art Conventionally, there is known an image sensor that adds and reads signals from a plurality of pixels (for example, Patent Document 1). However, the conventional image sensor cannot obtain a signal obtained by adding signals of arbitrary plural pixels.
日本国特開2013-143730号公報Japanese Unexamined Patent Publication No. 2013-143730
 第1の態様によると、撮像素子は、光を光電変換して電荷を生成する第1光電変換部と、前記第1光電変換部で生成された電荷に基づく第1信号を出力する第1出力部と、光を光電変換して電荷を生成する複数の第2光電変換部と、前記第2光電変換部で生成された電荷に基づく第2信号を出力する複数の第2出力部と、前記第1出力部と複数の前記第2出力部とが接続され、前記第1信号および前記第2信号の少なくとも1つが出力される出力線と、前記第1出力部から前記出力線への前記第1信号の出力を制御するための第1制御線と、複数の前記第2出力部から前記出力線への前記第2信号の出力を制御するための第2制御線と、を備える。
 第2の態様によると、撮像装置は、第1の態様の撮像素子と、前記第2信号に基づいて画像データを生成する生成部と、を備える。
According to the first aspect, the image sensor photoelectrically converts light to generate a charge, and a first output that outputs a first signal based on the charge generated by the first photoelectric converter. A plurality of second photoelectric conversion units that photoelectrically convert light to generate charges, a plurality of second output units that output second signals based on the charges generated by the second photoelectric conversion units, An output line connected to the first output unit and a plurality of the second output units to output at least one of the first signal and the second signal; and the first output unit to the output line. A first control line for controlling the output of one signal, and a second control line for controlling the output of the second signal from the plurality of second output units to the output line.
According to the second aspect, the imaging apparatus includes the imaging element according to the first aspect and a generation unit that generates image data based on the second signal.
撮像装置の構成を模式的に示す断面図Sectional drawing which shows the structure of an imaging device typically 撮像素子を撮像面側から見た平面図。図2(a)は撮像素子の全体図であり、図2(b)はその一部を拡大した図。The top view which looked at the image sensor from the image pick-up side. FIG. 2A is an overall view of the image sensor, and FIG. 2B is an enlarged view of a part thereof. 撮像素子の画素および読み出し回路の回路図。The circuit diagram of the pixel of an image sensor, and a readout circuit. 撮像素子の断面図。Sectional drawing of an image pick-up element. 撮像画素および焦点検出用画素の断面図。Sectional drawing of an imaging pixel and a pixel for focus detection.
(撮像装置の実施形態)
 図1は、第1の実施の形態に係る撮像素子を用いた撮像装置の構成を模式的に示す断面図である。撮像装置1は、撮像光学系2、撮像素子3、制御部4、レンズ駆動部5、および表示部6を備える。
(Embodiment of Imaging Device)
FIG. 1 is a cross-sectional view schematically showing a configuration of an imaging apparatus using the imaging device according to the first embodiment. The imaging device 1 includes an imaging optical system 2, an imaging element 3, a control unit 4, a lens driving unit 5, and a display unit 6.
 撮像光学系2は、撮像素子3の撮像面に被写体像を結像させる。撮像光学系2は、レンズ2a、フォーカシングレンズ2b、およびレンズ2cから成る。フォーカシングレンズ2bは、撮像光学系2の焦点調節を行うためのレンズである。フォーカシングレンズ2bは、光軸Z方向に移動可能に構成されている。 The imaging optical system 2 forms a subject image on the imaging surface of the image sensor 3. The imaging optical system 2 includes a lens 2a, a focusing lens 2b, and a lens 2c. The focusing lens 2b is a lens for adjusting the focus of the imaging optical system 2. The focusing lens 2b is configured to be movable in the optical axis Z direction.
 レンズ駆動部5は、不図示のアクチュエータを有する。レンズ移動部5は、このアクチュエータにより、フォーカシングレンズ2bを光軸Z方向に移動させる。撮像素子3は、被写体像を撮像して信号を出力する。撮像素子3は、撮像画素とAF画素(焦点検出画素)とを有する。撮像画素は、画像生成に用いる信号(画像信号)を出力する。AF画素は、焦点検出に用いる信号(焦点検出信号)を出力する。制御部4は、撮像素子3等の各部を制御する。制御部4は、撮像素子3により出力された画像信号に画像処理等を施して画像データを生成する。制御部4は、不図示の記録媒体に画像データを記録したり、表示部6に画像データに基づく画像を表示したりする。制御部4は、画像信号に基づいて画像を生成する生成部と解釈することもできる。表示部6は、例えば液晶パネル等の表示部材を有する表示装置である。 The lens driving unit 5 has an actuator (not shown). The lens moving unit 5 moves the focusing lens 2b in the optical axis Z direction by this actuator. The image sensor 3 captures a subject image and outputs a signal. The imaging element 3 has an imaging pixel and an AF pixel (focus detection pixel). The imaging pixel outputs a signal (image signal) used for image generation. The AF pixel outputs a signal (focus detection signal) used for focus detection. The control unit 4 controls each unit such as the image sensor 3. The control unit 4 performs image processing or the like on the image signal output from the imaging device 3 to generate image data. The control unit 4 records image data on a recording medium (not shown), and displays an image based on the image data on the display unit 6. The control unit 4 can also be interpreted as a generation unit that generates an image based on the image signal. The display unit 6 is a display device having a display member such as a liquid crystal panel.
 また、制御部4は、公知の位相差検出方式により、撮像光学系2の自動焦点調節(AF)に必要な焦点検出処理を行う。具体的に、制御部4は、撮像光学系2による像が撮像素子3の撮像面上に結像するためのフォーカシングレンズ2bの合焦位置を検出する。制御部4は、撮像素子3から出力される一対の焦点検出信号に基づき、第1及び第2の像の像ズレ量を検出する。制御部4は、検出した像ズレ量に基づいて、フォーカシングレンズ2bの現在の位置と合焦位置とのずれ量(デフォーカス量)を算出する。フォーカシングレンズ2bがデフォーカス量に応じて駆動されることにより、焦点調節が自動で行われる。 Further, the control unit 4 performs a focus detection process necessary for automatic focus adjustment (AF) of the imaging optical system 2 by a known phase difference detection method. Specifically, the control unit 4 detects the in-focus position of the focusing lens 2 b for forming an image by the imaging optical system 2 on the imaging surface of the imaging element 3. The control unit 4 detects the image shift amount between the first and second images based on the pair of focus detection signals output from the image sensor 3. The control unit 4 calculates a deviation amount (defocus amount) between the current position of the focusing lens 2b and the in-focus position based on the detected image shift amount. Focusing adjustment is automatically performed by driving the focusing lens 2b in accordance with the defocus amount.
(撮像素子の実施形態)
 図2(a)は、本発明の実施形態の撮像素子3を撮像面側から、すなわち図1の-Z側から見た図である。撮像素子3は、図2のx方向およびy方向に配列される複数の画素30を有している。図2では一部を省略して描いているが、画素30は、x方向およびy方向にそれぞれ例えば1000個以上に渡って多数配列されていても良い。
 複数の画素30が配列された領域(撮像領域)の、図中の左端には水平制御部HCが設けられ、図中の上端には垂直制御部VCが設けられている。
(Embodiment of imaging device)
FIG. 2A is a diagram of the image sensor 3 according to the embodiment of the present invention as viewed from the imaging surface side, that is, from the −Z side in FIG. The imaging element 3 has a plurality of pixels 30 arranged in the x direction and the y direction in FIG. Although a part of the pixel 30 is omitted in FIG. 2, a large number of pixels 30 may be arranged in the x direction and the y direction, for example, 1000 or more.
A horizontal control unit HC is provided at the left end in the figure, and a vertical control unit VC is provided at the upper end in the figure in an area (imaging area) in which a plurality of pixels 30 are arranged.
 撮像素子3は、複数の画素ブロックBCを有する。図2では、1つの画素ブロックBCは、破線で示した境界線BBにより囲まれる、x方向およびy方向に配列されている複数の画素30を有する。画素ブロックBCのそれぞれの中の複数の画素30は、後述するようにそれぞれの出力部が、1つの出力線に接続され、1つの読出部に接続されている。なお、画素ブロックBCのそれぞれの中の複数の画素30は、複数の出力線に接続され、複数の読出部に接続されていてもよい。
 図2では、説明を容易にするために1つの画素ブロックBCに相当する部分にハッチング付している。ただし、破線で示した各境界線BBにより囲まれる各領域がそれぞれ画素ブロックBCである。複数の画素30は分割されて、複数の画素ブロックBCの中に配列されている。
The image sensor 3 has a plurality of pixel blocks BC. In FIG. 2, one pixel block BC has a plurality of pixels 30 arranged in the x direction and the y direction, which are surrounded by a boundary line BB indicated by a broken line. As will be described later, the output units of the plurality of pixels 30 in each of the pixel blocks BC are connected to one output line and connected to one readout unit. The plurality of pixels 30 in each of the pixel blocks BC may be connected to a plurality of output lines and connected to a plurality of readout units.
In FIG. 2, a portion corresponding to one pixel block BC is hatched for easy explanation. However, each area surrounded by each boundary line BB indicated by a broken line is a pixel block BC. The plurality of pixels 30 are divided and arranged in a plurality of pixel blocks BC.
 図2に示した例の場合には、x方向に4個およびy方向に4個配列される計16個の画素30が、1つの画素ブロックBCを構成している。
 1つの画素ブロックBC内のx方向およびy方向の画素の配列数は、4個に限られるものではなく、6個や8個等の他の数であってもよい。x方向とy方向で配列数が異なっていても良い。
 また、画素ブロックBCの外郭形状は図2に示した長方形に限られるものではなく、複数の画素30を包含する任意の形状であっても良い。この場合、境界線BBの形状は単純な直線ではなく、複数の直線が折れ曲がって接続された形状になる。
In the case of the example shown in FIG. 2, a total of 16 pixels 30 arranged in the x direction and 4 in the y direction constitute one pixel block BC.
The number of pixels arranged in the x direction and y direction in one pixel block BC is not limited to four, and may be other numbers such as six or eight. The number of arrays may be different between the x direction and the y direction.
In addition, the outline shape of the pixel block BC is not limited to the rectangle illustrated in FIG. 2, and may be an arbitrary shape including a plurality of pixels 30. In this case, the shape of the boundary line BB is not a simple straight line but a shape in which a plurality of straight lines are bent and connected.
 図2(b)は、図2(a)に示した画素ブロックBCのうち、x方向に隣接する2つの画素ブロックBC1および画素ブロックBC2を拡大して示す図である。
 図2(b)に示したとおり、複数の画素30には、例えばR(赤)、G(緑)、B(青)の異なる分光特性を有する3つのカラーフィルタ(色フィルタ)のいずれかが設けられる。Rのカラーフィルタは主に赤色の波長域の光を透過し、Gのカラーフィルタは主に緑色の波長域の光を透過し、Bのカラーフィルタは主に青色の波長域の光を透過する。画素は、配置されたカラーフィルタによって異なる分光特性を有する。画素30には、赤(R)の光に感度を有する画素(以下、R画素Rと称する)と、緑(G)の光に感度を有する画素(以下、G画素Gと称する)と、青(B)の光に感度を有す画素(以下、B画素Bと称する)とがある。これらの画素30は、いわゆるベイヤー配列で配列されている。G画素GbはB画素Bと同じx方向に配置されたG画素であり、G画素GrはR画素Rと同じx方向に配置されたG画素である。
FIG. 2B is an enlarged view showing two pixel blocks BC1 and BC2 adjacent in the x direction among the pixel blocks BC shown in FIG.
As shown in FIG. 2B, each of the plurality of pixels 30 includes any one of three color filters (color filters) having different spectral characteristics of R (red), G (green), and B (blue), for example. Provided. The R color filter mainly transmits light in the red wavelength region, the G color filter mainly transmits light in the green wavelength region, and the B color filter mainly transmits light in the blue wavelength region. . The pixel has different spectral characteristics depending on the arranged color filter. The pixel 30 includes a pixel having sensitivity to red (R) light (hereinafter referred to as R pixel R), a pixel having sensitivity to green (G) light (hereinafter referred to as G pixel G), and blue. Some pixels (B) have sensitivity to light (hereinafter referred to as B pixels B). These pixels 30 are arranged in a so-called Bayer array. The G pixel Gb is a G pixel arranged in the same x direction as the B pixel B, and the G pixel Gr is a G pixel arranged in the same x direction as the R pixel R.
 画素ブロックBC1は、ベイヤー配列で配列された、各4個のG画素Gb、G画素Gr、R画素R、B画素Bを有する。これらの画素30は、いずれも撮像素子3の撮像面に形成された光学像の撮像のために使用される撮像画素Gb、Gr、R、B(以下、総称して撮像画素30cとも呼ぶ)である。 The pixel block BC1 has four G pixels Gb, G pixels Gr, R pixels R, and B pixels B arranged in a Bayer array. These pixels 30 are imaging pixels Gb, Gr, R, and B (hereinafter collectively referred to as imaging pixels 30c) that are used for imaging an optical image formed on the imaging surface of the imaging device 3. is there.
 画素ブロックBC2は、その内部の画素30の配列は画素ブロックBC1とほぼ同様であるが、画素ブロックBC1ではB画素Bが配置されている箇所の一部の画素が、上述の撮像画素30cとは異なる特殊画素Z1およびZ2(総称して、特殊画素ZZとも呼ぶ)に置き換わっている。 The arrangement of the pixels 30 in the pixel block BC2 is substantially the same as that of the pixel block BC1, but in the pixel block BC1, some of the pixels where the B pixel B is arranged are different from the above-described imaging pixel 30c. They are replaced with different special pixels Z1 and Z2 (also collectively referred to as special pixels ZZ).
 特殊画素ZZは、例えば、AF画素であり、その構成については後述する。
 特殊画素ZZは、AF画素に限らず、感度が上述の撮像画素30cのいずれとも異なる画素であっても良い。また、分光特性が上述の撮像画素30cのいずれとも異なるカラーフィルタを有する画素であってもよい。
 特殊画素ZZは、第1画素と解釈することもできる。これに対し、撮像画素30cは、第2画素と解釈することもできる。
The special pixel ZZ is, for example, an AF pixel, and the configuration thereof will be described later.
The special pixel ZZ is not limited to the AF pixel, and may be a pixel whose sensitivity is different from any of the imaging pixels 30c described above. Moreover, the pixel which has a color filter in which spectral characteristics differ from any of the above-mentioned imaging pixels 30c may be sufficient.
The special pixel ZZ can also be interpreted as the first pixel. On the other hand, the imaging pixel 30c can also be interpreted as a second pixel.
 画素ブロックBC2は、複数の画素30として、特殊画素ZZを少なくとも1つ含み、撮像画素30cを複数有する。
 複数の画素ブロックBCのうち少なくとも1つの画素ブロックBCは、画素ブロックBC2のように少なくとも1つの特殊画素ZZと複数の撮像画素30cで構成される。複数の画素ブロックBCのうち少なくとも1つの画素ブロックBCは、画素ブロックBC1のように全てが撮像画素30cで構成されていても良い。
The pixel block BC2 includes at least one special pixel ZZ as a plurality of pixels 30, and includes a plurality of imaging pixels 30c.
At least one pixel block BC among the plurality of pixel blocks BC is configured by at least one special pixel ZZ and a plurality of imaging pixels 30c as in the pixel block BC2. At least one pixel block BC among the plurality of pixel blocks BC may be entirely configured by the imaging pixels 30c like the pixel block BC1.
 図2(a)に示した垂直制御部VCからは、各画素30の後述する選択部TVに接続されている垂直選択線VS1~VS8(総称して、垂直選択線VSとも呼ぶ)がy方向に延びている。水平制御部HCからは、各撮像画素30cの後述する選択部TH2に接続されている水平選択線HS1~HS4(総称して、水平選択線HSとも呼ぶ)がx方向に延びている。水平制御部HCからは、各特殊画素Z1およびZ2の後述する選択部に接続されている特殊水平選択線ZSがx方向に延びている。 From the vertical control unit VC shown in FIG. 2A, vertical selection lines VS1 to VS8 (collectively referred to as vertical selection lines VS) connected to a selection unit TV described later of each pixel 30 are in the y direction. It extends to. From the horizontal control unit HC, horizontal selection lines HS1 to HS4 (collectively referred to as horizontal selection lines HS) connected to a selection unit TH2 described later of each imaging pixel 30c extend in the x direction. From the horizontal control unit HC, a special horizontal selection line ZS connected to a selection unit to be described later of each special pixel Z1 and Z2 extends in the x direction.
 図2(b)に示したとおり、垂直選択線VS1~VS8のそれぞれは、y方向に並ぶ複数の画素30で共用されており、水平選択線HS1~HS4のそれぞれは、x方向に並ぶ複数の撮像画素30cで共用されている。特殊水平選択線ZSは、x方向に並ぶ複数の特殊画素ZZで共用されている。 As shown in FIG. 2B, each of the vertical selection lines VS1 to VS8 is shared by a plurality of pixels 30 arranged in the y direction, and each of the horizontal selection lines HS1 to HS4 is a plurality of pixels arranged in the x direction. It is shared by the imaging pixel 30c. The special horizontal selection line ZZ is shared by a plurality of special pixels ZZ arranged in the x direction.
 図3は、図2(b)に示した画素ブロックBC2内の右下にある、2点鎖線PBで囲った4つの画素30(縦方向に2個、横方向に2個配列)について、その電気回路の概要を示す拡大図である。この4つの画素30は、図2(b)の2点鎖線PB内に示したとおり、左上がG画素Gb、右上が特殊画素Z2、左下がR画素R、右下がG画素Grである。
 4つの画素(Gb,Z2,R,Gr)は、いずれも基本的にはいわゆる4トランジスタ型のCMOS型撮像素子であるが、後述するとおり、いわゆる選択トランジスタの構成が通常の4トランジスタ型のCMOS型撮像素子とは異なっている。
3 shows four pixels 30 (two in the vertical direction and two in the horizontal direction) surrounded by a two-dot chain line PB in the lower right in the pixel block BC2 shown in FIG. It is an enlarged view which shows the outline | summary of an electric circuit. As shown in the two-dot chain line PB in FIG. 2B, the four pixels 30 are the G pixel Gb in the upper left, the special pixel Z2 in the upper right, the R pixel R in the lower left, and the G pixel Gr in the lower right.
Each of the four pixels (Gb, Z2, R, Gr) is basically a so-called four-transistor type CMOS image sensor, but, as will be described later, the so-called selection transistor configuration is a normal four-transistor type CMOS. This is different from the type image sensor.
 各画素(Gb,Z2,R,Gr)において、光電変換部であるフォトダイオードPDは入射光を光電変換して電荷を生成し、生成した電荷を一時的に蓄積する。転送トランジスタTXは、不図示の転送制御線よりそのゲートに送られる転送信号に基づいて、フォトダイオードPDに蓄積された電荷を、容量CCが形成されるフローティングデフュージョン(FD)領域FDに転送する。増幅トランジスタTAは、転送された電荷によりFD領域FDに生じた電圧がそのゲートに印加されることにより、フォトダイオードPDで生成された電荷に応じた信号を出力する。 In each pixel (Gb, Z2, R, Gr), the photodiode PD as a photoelectric conversion unit photoelectrically converts incident light to generate charges, and temporarily stores the generated charges. The transfer transistor TX transfers the charge accumulated in the photodiode PD to the floating diffusion (FD) region FD in which the capacitor CC is formed based on a transfer signal sent to the gate from a transfer control line (not shown). . The amplification transistor TA outputs a signal corresponding to the electric charge generated by the photodiode PD when a voltage generated in the FD region FD by the transferred electric charge is applied to the gate thereof.
 増幅トランジスタTAの入力側(ドレイン)には、電源電圧VDDが印加されている。リセットトランジスタTRは、FD領域FDの電荷を電源電圧VDD側に排出することで、FD領域FDの電圧を電源電圧VDDにリセットする。 The power supply voltage VDD is applied to the input side (drain) of the amplification transistor TA. The reset transistor TR resets the voltage of the FD region FD to the power supply voltage VDD by discharging the charge of the FD region FD to the power supply voltage VDD side.
 各画素(Gb,Z2,R,Gr)の増幅トランジスタTAの出力側(ソース側)は、垂直選択トランジスタTVの入力側に接続されている。垂直選択トランジスタTVのゲートは、垂直選択線VS7またはVS8に接続されており、図2(a)に示した垂直制御部VCから送られてくる制御信号により、垂直選択トランジスタTVは導通または非導通となる。 The output side (source side) of the amplification transistor TA of each pixel (Gb, Z2, R, Gr) is connected to the input side of the vertical selection transistor TV. The gate of the vertical selection transistor TV is connected to the vertical selection line VS7 or VS8, and the vertical selection transistor TV is turned on or off according to a control signal sent from the vertical control unit VC shown in FIG. It becomes.
 撮像画素(Gb,R,Gr)の垂直選択トランジスタTVの出力側は、水平選択トランジスタTH2の入力側に接続されている。水平選択トランジスタTH2のゲートは、水平選択線HS3またはHS4に接続されており、図2(a)に示した水平制御部HCから送られてくる制御信号により、水平選択トランジスタTH2は導通または非導通となる。 The output side of the vertical selection transistor TV of the imaging pixel (Gb, R, Gr) is connected to the input side of the horizontal selection transistor TH2. The gate of the horizontal selection transistor TH2 is connected to the horizontal selection line HS3 or HS4, and the horizontal selection transistor TH2 is turned on or off by a control signal sent from the horizontal control unit HC shown in FIG. It becomes.
 実施形態の撮像素子3の撮像用画素(Gb,R,Gr)において、水平選択トランジスタTH2および垂直トランジスタTVの一方または両方は、撮像画素(Gb,R,Gr)の出力部(第2画素の出力部として、第2出力部)と解釈することができる。
 あるいは、増幅トランジスタTAを、出力部(第2出力部)と解釈することもできる。第2出力部は、増幅トランジスタTAと、水平選択トランジスタTH2および垂直トランジスタTVの一方または両方を含めてもよい。
In the imaging pixels (Gb, R, Gr) of the imaging device 3 of the embodiment, one or both of the horizontal selection transistor TH2 and the vertical transistor TV are output from the imaging pixel (Gb, R, Gr) (second pixel). The output unit can be interpreted as a second output unit).
Alternatively, the amplification transistor TA can be interpreted as an output unit (second output unit). The second output unit may include the amplification transistor TA and one or both of the horizontal selection transistor TH2 and the vertical transistor TV.
 一方、特殊画素Z2の垂直選択トランジスタTVの出力側は、特殊水平選択トランジスタTH1の入力側に接続されている。特殊水平選択トランジスタTH1のゲートは、特殊水平選択線ZSに接続されており、図2(a)に示した水平制御部HCから送られてくる制御信号により、特殊水平選択トランジスタTH1は導通または非導通となる。 On the other hand, the output side of the vertical selection transistor TV of the special pixel Z2 is connected to the input side of the special horizontal selection transistor TH1. The gate of the special horizontal selection transistor TH1 is connected to the special horizontal selection line ZS, and the special horizontal selection transistor TH1 is turned on or off by a control signal sent from the horizontal control unit HC shown in FIG. It becomes conduction.
 実施形態の撮像素子3の特殊画素Z2において、特殊水平選択トランジスタTH1および垂直トランジスタTVの一方または両方は、出力部(第1画素の出力部として、第1出力部)と解釈することもできる。
 あるいは、増幅トランジスタTAを、出力部(第1出力部)と解釈することもできる。第2出力部は、増幅トランジスタTAと、水平選択トランジスタTH1および垂直トランジスタTVの一方または両方を含めてもよい。
In the special pixel Z2 of the imaging device 3 of the embodiment, one or both of the special horizontal selection transistor TH1 and the vertical transistor TV can be interpreted as an output unit (the first output unit as the output unit of the first pixel).
Alternatively, the amplification transistor TA can be interpreted as an output unit (first output unit). The second output unit may include the amplification transistor TA and one or both of the horizontal selection transistor TH1 and the vertical transistor TV.
 特殊水平選択線ZSは、第1画素(特殊画素ZZ)の出力部である第1出力部(選択トランジスタTH1)を制御するので、第1制御線と解釈することもできる。
 また、水平選択線HSは、第2画素(撮像画素30c)の出力部である第2出力部(選択トランジスタTH2)を制御するので、第2制御線と解釈することもできる。
 さらに、垂直選択線VSは、第3制御線と解釈することもできる。
The special horizontal selection line ZS controls the first output unit (selection transistor TH1) that is the output unit of the first pixel (special pixel ZZ), and therefore can be interpreted as a first control line.
Further, since the horizontal selection line HS controls the second output unit (selection transistor TH2) that is the output unit of the second pixel (imaging pixel 30c), it can also be interpreted as a second control line.
Further, the vertical selection line VS can be interpreted as a third control line.
 画素ブロックBC2内の撮像画素(Gb,R,Gr)の水平選択トランジスタTH2の出力部、および画素ブロックBC2内の特殊画素Z2内の特殊水平選択トランジスタTH1の出力部は、いずれも1つの出力線RWに接続されている。出力線RWは、画素30の信号を読み出す読出部に接続されている。読出部は、例えば、画素30から出力されるアナログ信号をデジタル信号に変換するAD変換部を有する。また出力線RWは、画素30内の増幅トランジスタTA等に電流を供給する電流源CSと接続されている。 The output part of the horizontal selection transistor TH2 of the imaging pixel (Gb, R, Gr) in the pixel block BC2 and the output part of the special horizontal selection transistor TH1 in the special pixel Z2 in the pixel block BC2 are all one output line. Connected to RW. The output line RW is connected to a reading unit that reads a signal from the pixel 30. The reading unit includes, for example, an AD conversion unit that converts an analog signal output from the pixel 30 into a digital signal. The output line RW is connected to a current source CS that supplies current to the amplification transistor TA and the like in the pixel 30.
 以上述べたように、垂直制御部VCおよび水平制御部HCは、垂直選択線VSおよび水平選択線HSへの制御信号の電圧を制御することにより、画素ブロックBC2内の任意の1つ以上の画素(Gb,Z2,R,Gr)の信号(増幅トランジスタTAの出力)を出力線RWに出力させる。読出部は、画素ブロックBC2内の画素(Gb,Z2,R,Gr)の信号を読み出す。 As described above, the vertical control unit VC and the horizontal control unit HC control the voltage of the control signal to the vertical selection line VS and the horizontal selection line HS to thereby control any one or more pixels in the pixel block BC2. A signal (Gb, Z2, R, Gr) (output of the amplification transistor TA) is output to the output line RW. The reading unit reads signals from the pixels (Gb, Z2, R, Gr) in the pixel block BC2.
 本実施形態の撮像素子3の画素30のリセット動作を含む撮像動作は、従来の4トランジスタ型のCMOS型撮像素子とほぼ同様である。すなわち、撮像または焦点検出のための露光動作に先立って、リセットトランジスタTRおよび転送トランジスタTXが電源電圧VDDと導通して、FD領域FDおよびフォトダイオードPDが電源電圧VDDにリセットされる。その後、転送トランジスタTXが非導通とされ、フォトダイオードPDで撮像または焦点検出のための露光が行われる。 The image pickup operation including the reset operation of the pixels 30 of the image pickup device 3 of the present embodiment is almost the same as that of the conventional 4-transistor type CMOS image pickup device. That is, prior to the exposure operation for imaging or focus detection, the reset transistor TR and the transfer transistor TX are brought into conduction with the power supply voltage VDD, and the FD region FD and the photodiode PD are reset to the power supply voltage VDD. Thereafter, the transfer transistor TX is turned off, and exposure for imaging or focus detection is performed by the photodiode PD.
 本実施形態の撮像素子3の読出部は、1つの画素ブロックBC内の任意の数の画素30の信号を加算(合算、ビニング)した加算信号を読み出すことができる。
 例えば、表示部6にスルー画像(ライブビュー画像)を表示する場合や動画撮影を行う場合、制御部4は、複数の画素30の信号を加算した加算信号に基づいて画像データを生成する。加算信号に基づいた画像データは、撮像素子の総画素数よりも少ない画素数の画像データとなる。また、複数の画素30の信号を加算することにより各画素30の信号に混入するノイズが平滑化されるため、制御部4はよりノイズの少ない画像を生成することができる。画素ブロックBC内の任意の数の画素30の信号を加算するため、垂直制御部VCおよび水平制御部HCは、任意の数の画素30の信号を同時に出力線RWに出力させる。読出部は、同時に出力線RWに出力された、画素ブロックBC内の任意の数の画素30の信号を加算信号として読み出す。なお、任意の数の画素30は同時に出力線RWに信号を出力しなくともよい。任意の数の画素30は互いの信号が出力線RWに出力されている間に、互いの信号を出力すればよい。
The reading unit of the image sensor 3 according to the present embodiment can read an addition signal obtained by adding (summing and binning) signals of an arbitrary number of pixels 30 in one pixel block BC.
For example, when a through image (live view image) is displayed on the display unit 6 or when moving image shooting is performed, the control unit 4 generates image data based on an addition signal obtained by adding signals from a plurality of pixels 30. The image data based on the addition signal is image data having a smaller number of pixels than the total number of pixels of the image sensor. Moreover, since the noise mixed in the signal of each pixel 30 is smoothed by adding the signals of the plurality of pixels 30, the control unit 4 can generate an image with less noise. In order to add the signals of the arbitrary number of pixels 30 in the pixel block BC, the vertical control unit VC and the horizontal control unit HC simultaneously output the signals of the arbitrary number of pixels 30 to the output line RW. The reading unit reads signals of an arbitrary number of pixels 30 in the pixel block BC that are simultaneously output to the output line RW as an addition signal. Note that an arbitrary number of pixels 30 may not output signals to the output line RW at the same time. The arbitrary number of pixels 30 may output each other's signals while the signals are output to the output line RW.
 なお、本実施形態の撮像素子3において、複数の画素30の信号は、いわゆるソースフォロワ加算される。従って、読出部が読み出す信号の値は、各画素30の信号値の和ではなく、各画素30の信号値の平均値に近いものとなる。 Note that, in the image sensor 3 of the present embodiment, the signals of the plurality of pixels 30 are so-called source follower addition. Therefore, the value of the signal read by the reading unit is not the sum of the signal values of each pixel 30, but is close to the average value of the signal values of each pixel 30.
 加算信号を出力する複数の画素30は、同色の画素であることが好ましい。垂直制御部VCおよび水平制御部HCは、垂直選択線VSおよび水平選択線HSへの制御信号の電圧を制御して、1つの画素ブロックBC内の複数の同色の画素30を選択し、それらの信号を、垂直選択トランジスタTV,水平選択トランジスタTHを介して出力線RWに出力させる。読出部は、出力線RWに出力された、選択された同色の画素30の信号を加算信号として読み出す。 The plurality of pixels 30 that output the addition signal are preferably pixels of the same color. The vertical control unit VC and the horizontal control unit HC control the voltage of the control signal to the vertical selection line VS and the horizontal selection line HS to select a plurality of pixels 30 of the same color in one pixel block BC, and The signal is output to the output line RW via the vertical selection transistor TV and the horizontal selection transistor TH. The reading unit reads the signal of the selected pixel 30 of the same color output to the output line RW as an addition signal.
 図2(b)を参照して、垂直制御部VCおよび水平制御部HCによる制御と、読出部による信号の読み出しについて説明する。
 例えば、図2(b)に示す画素ブロックBC2内の全てのR画素Rの信号を加算して出力させる場合、垂直制御部VCは、R画素に接続されている垂直選択線VS5およびVS7に、垂直選択トランジスタTVを導通させる信号を送る。垂直制御部VCは、例えば、電源電圧を供給する。一方、垂直制御部VCは、R画素に接続されていない垂直選択線VS6およびVS8に、垂直選択トランジスタTVを非導通にさせる信号を送る。垂直制御部VCは、例えば、接地電圧を供給する。
With reference to FIG. 2B, control by the vertical control unit VC and the horizontal control unit HC and signal reading by the reading unit will be described.
For example, when the signals of all the R pixels R in the pixel block BC2 illustrated in FIG. 2B are added and output, the vertical control unit VC applies the vertical selection lines VS5 and VS7 connected to the R pixels to Send a signal to turn on the vertical selection transistor TV. The vertical control unit VC supplies a power supply voltage, for example. On the other hand, the vertical control unit VC sends a signal that makes the vertical selection transistor TV non-conductive to the vertical selection lines VS6 and VS8 that are not connected to the R pixel. The vertical control unit VC supplies a ground voltage, for example.
 そして、水平制御部HCは、R画素に接続されている水平選択線HS2およびHS4に、水平選択トランジスタTH2を導通させる信号を送り、R画素に接続されていない水平選択線HS1およびHS3に、水平選択トランジスタTH2を非導通にさせる信号を送る。
 以上の垂直制御部VCおよび水平制御部HCの制御により、垂直選択線VS5およびVS7と、水平選択線HS2およびHS4とが交差する位置に配置されている4つのR画素Rは、垂直選択トランジスタTVおよび水平選択トランジスタTH2が共に導通状態となる。従って、これらの4つのR画素Rの信号は同時に出力線RWに出力される。4つのR画素Rの信号は出力線RWに同時に出力されることで加算される。読出部は、出力線RWに出力された、4つのR画素Rの信号を加算信号として読み出す。
Then, the horizontal control unit HC sends a signal for making the horizontal selection transistor TH2 conductive to the horizontal selection lines HS2 and HS4 connected to the R pixel, and horizontally to the horizontal selection lines HS1 and HS3 not connected to the R pixel. A signal for turning off the selection transistor TH2 is sent.
Under the control of the vertical control unit VC and the horizontal control unit HC, the four R pixels R arranged at the positions where the vertical selection lines VS5 and VS7 and the horizontal selection lines HS2 and HS4 intersect with each other are connected to the vertical selection transistor TV. Both of the horizontal selection transistors TH2 become conductive. Accordingly, the signals of these four R pixels R are simultaneously output to the output line RW. The signals of the four R pixels R are added by being simultaneously output to the output line RW. The reading unit reads the signals of the four R pixels R output to the output line RW as addition signals.
 なお、水平制御部HCが、水平選択線HS2にのみ水平選択トランジスタTH2を導通させる信号を送り、水平選択線HS2以外の水平選択線HSに水平選択トランジスタTH2を非導通にさせる信号を送ることで、水平選択線HS2と、垂直選択線VS5およびVS7とが交差する位置に配置されている2つのR画素Rの信号を同時に出力線RWに出力させることができる。上述2つのR画素Rの信号は同時に出力線RWに出力されることで加算される。これにより、読出部は上述2つのR画素Rの加算信号を読み出すことができる。 The horizontal control unit HC sends a signal for turning on the horizontal selection transistor TH2 only to the horizontal selection line HS2, and sends a signal for turning off the horizontal selection transistor TH2 to the horizontal selection lines HS other than the horizontal selection line HS2. The signals of the two R pixels R arranged at the position where the horizontal selection line HS2 and the vertical selection lines VS5 and VS7 intersect can be simultaneously output to the output line RW. The signals of the two R pixels R described above are added by being simultaneously output to the output line RW. Thereby, the reading unit can read the addition signal of the two R pixels R.
 あるいは、垂直制御部VCが、垂直選択線VS5にのみ垂直選択トランジスタTVを導通させる信号を送ることで、垂直選択線VS5と、水平選択線HS2およびHS4とが交差する位置に配置されている2つのR画素Rの信号を同時に出力線RWに出力させることができる。上述2つのR画素Rの信号は同時に出力線RWに出力されることで加算される。これにより、読出部は上述2つのR画素Rの加算信号を読み出すことができる。 Alternatively, the vertical control unit VC sends a signal for making the vertical selection transistor TV conductive only to the vertical selection line VS5, so that the vertical selection line VS5 and the horizontal selection lines HS2 and HS4 are arranged at positions where they intersect. The signals of the two R pixels R can be simultaneously output to the output line RW. The signals of the two R pixels R described above are added by being simultaneously output to the output line RW. Thereby, the reading unit can read the addition signal of the two R pixels R.
 さらに、垂直制御部VCおよび水平制御部HCは、1つの画素ブロックBC2内の1つのR画素Rのみの信号を出力線RWに出力させることができる。これにより、読出部は1つのR画素Rのみの信号を読み出すことができる。この場合、垂直制御部VCは、垂直選択線VS5またはVS7に垂直選択トランジスタTVを導通させる信号を送ると共に、2本の水平線HS2またはHS4に水平選択トランジスタTH2を導通させる信号を送ればよい。 Further, the vertical control unit VC and the horizontal control unit HC can output a signal of only one R pixel R in one pixel block BC2 to the output line RW. Thereby, the reading unit can read the signal of only one R pixel R. In this case, the vertical control unit VC may send a signal for conducting the vertical selection transistor TV to the vertical selection line VS5 or VS7 and send a signal for conducting the horizontal selection transistor TH2 to the two horizontal lines HS2 or HS4.
 画素ブロックBC2において、4つのB画素Bのうち2つの画素が特殊画素Z1およびZ2に置き換わっているが、B画素Bの信号の読み出しは、上述のR画素Rの信号の読み出しとほぼ同様である。
 画素ブロックBC2内の全てのB画素Bの信号を加算して出力させる場合、水平制御部HCは、水平選択トランジスタTH2を導通させる信号を水平選択線HS1に送る。さらに、水平制御部HCは、水平選択線HS1以外の水平選択線HSに水平選択トランジスタTH2を非導通にする信号を送ると共に、特殊水平選択線ZSに特殊水平選択トランジスタTH1を非導通にする信号を送る。
In the pixel block BC2, two of the four B pixels B are replaced with the special pixels Z1 and Z2, but the readout of the signal of the B pixel B is substantially the same as the readout of the signal of the R pixel R described above. .
When adding and outputting the signals of all the B pixels B in the pixel block BC2, the horizontal control unit HC sends a signal for making the horizontal selection transistor TH2 conductive to the horizontal selection line HS1. Further, the horizontal control unit HC sends a signal for turning off the horizontal selection transistor TH2 to the horizontal selection lines HS other than the horizontal selection line HS1, and a signal for turning off the special horizontal selection transistor TH1 to the special horizontal selection line ZS. Send.
 そして、垂直制御部VCが、垂直選択トランジスタTVを導通させる信号を垂直選択線VS6およびVS8に送ることで、2つのB画素Bの信号は同時に出力線RWに出力される。2つのB画素Bの信号は同時に出力線RWに出力されることで加算される。読出部は2つのB画素Bの加算信号を読み出す。また、垂直制御部VCが、垂直選択トランジスタTVを導通させる信号を垂直選択線VS6またはVS8に送ることで、読出部は1つのB画素Bの信号を読み出すことができる。 Then, the vertical control unit VC sends a signal for turning on the vertical selection transistor TV to the vertical selection lines VS6 and VS8, so that the signals of the two B pixels B are simultaneously output to the output line RW. The signals of the two B pixels B are added to the output line RW at the same time. The reading unit reads the addition signal of the two B pixels B. Further, the vertical control unit VC sends a signal for turning on the vertical selection transistor TV to the vertical selection line VS6 or VS8, so that the reading unit can read the signal of one B pixel B.
 水平制御部HCが、特殊水平選択線ZSに特殊水平選択トランジスタTH1を非導通にする信号を送ることで、特殊画素Z1およびZ2の信号は、出力線RWには出力されない。従って、特殊画素Z1およびZ2の信号が、B画素Bの信号に混入することはない。 The horizontal control unit HC sends a signal for turning off the special horizontal selection transistor TH1 to the special horizontal selection line ZS, so that the signals of the special pixels Z1 and Z2 are not output to the output line RW. Therefore, the signals of the special pixels Z1 and Z2 are not mixed into the signal of the B pixel B.
 なお、特殊水平選択線ZSと並行して配置される水平選択線HS3は、特殊画素Z1およびZ2内の特殊水平選択トランジスタTH1と接続されていない。従って、水平制御部HCが、水平選択線HS3にどのような信号を送っても、B画素Bの信号に特殊画素Z1およびZ2の信号が混入することはない。
 ただし、水平選択線HS3は、画素ブロックBC2とx方向に隣接する画素ブロックBC1等の他の画素ブロックBCと共用されているので、水平制御部HCが水平選択線HS3に送る信号は、他の画素ブロックBCでの読み出しに適した信号を送ることが好ましい。
The horizontal selection line HS3 arranged in parallel with the special horizontal selection line ZS is not connected to the special horizontal selection transistor TH1 in the special pixels Z1 and Z2. Therefore, no matter what signal the horizontal control unit HC sends to the horizontal selection line HS3, the signals of the special pixels Z1 and Z2 are not mixed into the signal of the B pixel B.
However, since the horizontal selection line HS3 is shared with other pixel blocks BC such as the pixel block BC1 adjacent to the pixel block BC2 in the x direction, the signal sent from the horizontal control unit HC to the horizontal selection line HS3 It is preferable to send a signal suitable for reading in the pixel block BC.
 画素ブロックBC2内のG画素G(G画素GbおよびG画素Gr)の信号の読み出しも、上述のR画素RおよびB画素Bの信号の読み出しと同様である。垂直制御部VCおよび水平制御部HCが、垂直選択線VSおよび水平選択線HSのうち読み出すG画素Gに接続される選択線に、垂直選択トランジスタTVおよび水平選択トランジスタTH2を制御する信号を送る。これにより、読出部は、1つのG画素Gの信号、または複数のG画素Gの加算信号を読み出すことができる。
 このとき、出力線RWに出力されるG画素Gの信号に特殊画素Z1およびZ2の信号が混入しないように、水平制御部HCは特殊水平選択線ZSに特殊水平選択トランジスタTH1を非導通にする信号を送る。
Reading signals of the G pixel G (G pixel Gb and G pixel Gr) in the pixel block BC2 is the same as reading of the signals of the R pixel R and the B pixel B described above. The vertical control unit VC and the horizontal control unit HC send a signal for controlling the vertical selection transistor TV and the horizontal selection transistor TH2 to a selection line connected to the G pixel G to be read out of the vertical selection line VS and the horizontal selection line HS. Thereby, the reading unit can read the signal of one G pixel G or the addition signal of a plurality of G pixels G.
At this time, the horizontal control unit HC makes the special horizontal selection transistor TH1 non-conductive to the special horizontal selection line ZS so that the signals of the special pixels Z1 and Z2 are not mixed into the signal of the G pixel G output to the output line RW. Send a signal.
 特殊画素Z1の信号を読み出す場合、垂直制御部VCおよび水平制御部HCは、特殊画素Z1に接続されている垂直選択線VS6および特殊水平選択線ZSに、それぞれ垂直選択トランジスタTVおよび特殊水平選択トランジスタTH1を導通させる信号を送り、特殊画素Z1の信号を出力線RWに出力させる。また、特殊画素Z2の信号を読み出す場合、垂直制御部VCおよび水平制御部HCは、特殊画素Z2に接続されている垂直選択線VS8および特殊水平選択線ZSに、それぞれ垂直選択トランジスタTVおよび特殊水平選択トランジスタTH1を導通させる信号を送り、特殊画素Z2の信号を出力線RWに出力させる。読み出し部は、出力線RWに出力された特殊画素Z1またはZ2の信号を読み出す。特殊画素Z1またはZ2の信号を読み出す場合、垂直制御部VCおよび水平制御部HCは、垂直選択線VS6および垂直選択線VS8以外の垂直選択線VSおよび水平選択線HSに、それぞれ垂直選択トランジスタTVおよび水平選択トランジスタTH2を非導通にする信号を送る。 When the signal of the special pixel Z1 is read, the vertical control unit VC and the horizontal control unit HC apply the vertical selection transistor TV and the special horizontal selection transistor to the vertical selection line VS6 and the special horizontal selection line ZS connected to the special pixel Z1, respectively. A signal for turning on TH1 is sent to output the signal of the special pixel Z1 to the output line RW. When the signal of the special pixel Z2 is read, the vertical control unit VC and the horizontal control unit HC are connected to the vertical selection line VS8 and the special horizontal selection line ZS connected to the special pixel Z2, respectively, with the vertical selection transistor TV and the special horizontal selection line. A signal for turning on the selection transistor TH1 is sent to output the signal of the special pixel Z2 to the output line RW. The reading unit reads the signal of the special pixel Z1 or Z2 output to the output line RW. When reading the signal of the special pixel Z1 or Z2, the vertical control unit VC and the horizontal control unit HC are connected to the vertical selection line VS and the horizontal selection line HS other than the vertical selection line VS6 and the vertical selection line VS8, respectively. A signal for turning off the horizontal selection transistor TH2 is sent.
 特殊画素Z1およびZ2の信号を加算して読み出す場合、垂直制御部VCおよび水平制御部HCは、垂直選択線VS6および垂直選択線VS8と特殊水平選択線ZSとに、それぞれ垂直選択トランジスタTVおよび特殊水平選択トランジスタTH1を導通させる信号を送り、特殊画素Z1およびZ2の信号を同時に出力線RWに出力させる。特殊画素Z1およびZ2の信号は同時に出力線RWに出力されることで加算される。これにより、読出部は特殊画素Z1およびZ2の加算信号を読み出す。 When the signals of the special pixels Z1 and Z2 are added and read, the vertical control unit VC and the horizontal control unit HC are connected to the vertical selection line VS6, the vertical selection line VS8, and the special horizontal selection line ZS, respectively. A signal for turning on the horizontal selection transistor TH1 is sent, and the signals of the special pixels Z1 and Z2 are simultaneously output to the output line RW. The signals of the special pixels Z1 and Z2 are added by being simultaneously output to the output line RW. Thereby, the reading unit reads the addition signal of the special pixels Z1 and Z2.
 以上、画素ブロックBC2内の画素30の信号の読み出しについて説明したが、これは他の画素ブロックBCにおいても同様である。各画素ブロックBC内の各画素30の信号は、各画素ブロックBC内にそれぞれ設けられている出力線RWに出力され、読出部により読み出される。なお、垂直選択線VS、水平選択線HS、および特殊水平選択線ZSは、複数の画素ブロックBCで共有されていてよい。例えば、水平選択線HS1~HS4は、画素ブロックBC1の様に、画素ブロックBC2に対してx方向に並ぶ他の画素ブロックBC内の各画素30に接続されていてもよい。また、垂直選択線VS5~VS8は、画素ブロックBC2に対してy方向に並ぶ他の画素ブロックBC内の各画素30にh¥接続されていてもよい。
 各画素ブロックBCの読出部で読み出された信号は、不図示の出力回路を経て、撮像素子3から出力される。
The reading of the signal of the pixel 30 in the pixel block BC2 has been described above. The same applies to the other pixel blocks BC. The signal of each pixel 30 in each pixel block BC is output to an output line RW provided in each pixel block BC, and is read by the reading unit. Note that the vertical selection line VS, the horizontal selection line HS, and the special horizontal selection line ZS may be shared by a plurality of pixel blocks BC. For example, the horizontal selection lines HS1 to HS4 may be connected to each pixel 30 in another pixel block BC arranged in the x direction with respect to the pixel block BC2, like the pixel block BC1. Further, the vertical selection lines VS5 to VS8 may be connected to each pixel 30 in another pixel block BC arranged in the y direction with respect to the pixel block BC2.
A signal read by the reading unit of each pixel block BC is output from the image sensor 3 via an output circuit (not shown).
 なお、特殊画素ZZと撮像画素30cとの各信号を読み出す順序は、任意である。例えば、垂直制御部VCおよび水平制御部HCは、垂直選択線VSおよび水平選択線HSを介して、始めに特殊画素Z1およびZ2を順に選択し、読出部はその信号を読み出す。その後、垂直制御部VCおよび水平制御部HCは、垂直選択線VSおよび水平選択線HSを介して、撮像画素30cを選択し、読出部はその信号を読み出す。 Note that the order of reading out the signals from the special pixel ZZ and the imaging pixel 30c is arbitrary. For example, the vertical control unit VC and the horizontal control unit HC first select the special pixels Z1 and Z2 in order via the vertical selection line VS and the horizontal selection line HS, and the reading unit reads the signal. Thereafter, the vertical control unit VC and the horizontal control unit HC select the imaging pixel 30c via the vertical selection line VS and the horizontal selection line HS, and the reading unit reads the signal.
 画素ブロックBC2内の特殊画素ZZの画素数(Z1およびZ2の2個)は撮像画素30cの画素数(Gb、Gr、R、Bを合わせて14個)よりも少ないので、特殊画素ZZの信号の読み出しに要する時間は撮像画素の信号の読み出しに要する時間よりも短い。つまり、特殊画素ZZの信号の読み出しは、撮像画素30cの信号の読み出しよりも高速に行える。例えば、特殊画素ZZがAF画素である場合、特殊画素ZZの信号の読み出しが、撮像画素30cの信号の読み出しよりも先に行われることで、制御部4は焦点検出を高速に行うことができる。
 また、1つの画素ブロックBCに、2つの読出部を設けてもよい。1つの出力線RWに2つの読出部を接続させることで、2つの読出部それぞれが特殊画素ZZの信号と撮像画素30cの信号とを読み出すようにしてもよい。これにより、読出部は、特殊画素ZZの信号と撮像画素30cの信号とを、それぞれ最適のゲイン等の読出条件で読み出すことができる。
Since the number of special pixels ZZ (two of Z1 and Z2) in the pixel block BC2 is smaller than the number of pixels of the imaging pixel 30c (14 in total including Gb, Gr, R, and B), the signal of the special pixel ZZ The time required for reading is shorter than the time required for reading the signal of the imaging pixel. That is, the signal readout from the special pixel ZZ can be performed at a higher speed than the signal readout from the imaging pixel 30c. For example, when the special pixel ZZ is an AF pixel, the control unit 4 can perform focus detection at high speed by reading the signal of the special pixel ZZ before reading the signal of the imaging pixel 30c. .
Further, two readout units may be provided in one pixel block BC. By connecting two readout units to one output line RW, each of the two readout units may read out the signal of the special pixel ZZ and the signal of the imaging pixel 30c. Thereby, the reading unit can read the signal of the special pixel ZZ and the signal of the imaging pixel 30c under respective reading conditions such as optimum gain.
 図4は、本実施形態の撮像素子3の画素30部分の断面を示す図である。なお図4では、撮像素子3の全体のうち、一部の断面のみを示している。図4中に示したx方向およびz方向は、図1中に示した各方向と同じである。撮像素子3は、いわゆる裏面照射型の撮像素子である。撮像素子3は、紙面上方向から入射した光を光電変換する。撮像素子3は、第1半導体基板7と、第2半導体基板8とを備える。 FIG. 4 is a diagram showing a cross section of the pixel 30 portion of the image sensor 3 of the present embodiment. In FIG. 4, only a part of the cross section of the entire image sensor 3 is shown. The x direction and the z direction shown in FIG. 4 are the same as the directions shown in FIG. The image sensor 3 is a so-called back-illuminated image sensor. The image sensor 3 photoelectrically converts light incident from above in the drawing. The image sensor 3 includes a first semiconductor substrate 7 and a second semiconductor substrate 8.
 上述のとおり、撮像素子3は複数の画素30を有している。1つの画素30は、第1半導体基板7に設けられた画素上部30xと、第2半導体基板8に設けられた画素下部30yとを含む。1つの画素上部30xは、1つのマイクロレンズ74、1つのカラーフィルタ73、1つのフォトダイオードPDの受光部31等が含まれる。 As described above, the image sensor 3 has a plurality of pixels 30. One pixel 30 includes a pixel upper part 30 x provided on the first semiconductor substrate 7 and a pixel lower part 30 y provided on the second semiconductor substrate 8. One pixel upper portion 30x includes one micro lens 74, one color filter 73, one light receiving portion 31 of a photodiode PD, and the like.
 第1半導体基板7は、画素上部30xに含まれるフォトダイオードPDの受光部31を含む受光層71と、転送トランジスタTX、増幅トランジスタTA等のトランジスタが形成されている配線層72とを備える。受光層71は、第1半導体基板7の配線層72とは反対側(裏面側)に配置される。受光層71には、複数の受光部31が二次元状に配置されている。 The first semiconductor substrate 7 includes a light receiving layer 71 including the light receiving portion 31 of the photodiode PD included in the pixel upper portion 30x, and a wiring layer 72 in which transistors such as the transfer transistor TX and the amplification transistor TA are formed. The light receiving layer 71 is disposed on the opposite side (back side) of the wiring layer 72 of the first semiconductor substrate 7. In the light receiving layer 71, a plurality of light receiving portions 31 are two-dimensionally arranged.
 画素上部30xは、入射光を光電変換する部分である受光部31を含むので、撮像部と解釈することもできる。
 第2半導体基板8には、画素下部30yに含まれる垂直選択トランジスタTV、水平選択トランジスタTH2、特殊水平選択トランジスタTH1、垂直選択線VS、水平選択線HS、特殊水平選択線ZSと、読出部および電流源CSなどが配置されている。
Since the pixel upper portion 30x includes the light receiving portion 31 that is a portion that photoelectrically converts incident light, it can also be interpreted as an imaging portion.
The second semiconductor substrate 8 includes a vertical selection transistor TV, a horizontal selection transistor TH2, a special horizontal selection transistor TH1, a vertical selection line VS, a horizontal selection line HS, a special horizontal selection line ZS, a reading unit, A current source CS and the like are arranged.
 配線層72の表面には複数のバンプ75が配置される。第2半導体基板8の、配線層72に対向する面には、複数のバンプ75に対応する複数のバンプ76が配置される。複数のバンプ75と複数のバンプ76とは互いに接合されている。複数のバンプ75と複数のバンプ76とを介して、第1半導体基板7と第2半導体基板8とが電気的に接続されている。 A plurality of bumps 75 are arranged on the surface of the wiring layer 72. A plurality of bumps 76 corresponding to the plurality of bumps 75 are arranged on the surface of the second semiconductor substrate 8 facing the wiring layer 72. The plurality of bumps 75 and the plurality of bumps 76 are joined to each other. The first semiconductor substrate 7 and the second semiconductor substrate 8 are electrically connected via the plurality of bumps 75 and the plurality of bumps 76.
 なお、上述した第1半導体基板7および第2半導体基板8にそれぞれ配置される回路要素の構成は一例であって、そのうちのいくつかの構成物は、第1半導体基板7および第2半導体基板8のどちらに配置してもよい。例えば、フォトダイオードPDの受光部31を含む受光層71と、転送トランジスタTX、増幅トランジスタTA、および垂直選択トランジスタTAを第1半導体基板7に形成し、水平選択トランジスタTH2、特殊水平選択トランジスタTH1、水平選択線HS、特殊水平選択線ZSと、読出部および電流源CSを、第2半導体基板8に配置してもよい。 The configuration of the circuit elements disposed on the first semiconductor substrate 7 and the second semiconductor substrate 8 described above is an example, and some of the components are the first semiconductor substrate 7 and the second semiconductor substrate 8. You may arrange in either. For example, the light receiving layer 71 including the light receiving unit 31 of the photodiode PD, the transfer transistor TX, the amplification transistor TA, and the vertical selection transistor TA are formed on the first semiconductor substrate 7, and the horizontal selection transistor TH2, the special horizontal selection transistor TH1, The horizontal selection line HS, the special horizontal selection line ZS, the reading unit, and the current source CS may be arranged on the second semiconductor substrate 8.
 フォトダイオードPDの受光部31を含む受光層71と、転送トランジスタTX、増幅トランジスタTA、および垂直選択トランジスタTA、水平選択トランジスタTH2、特殊水平選択トランジスタTH1、水平選択線HS、特殊水平選択線ZSを第1半導体基板7に形成し、読出部および電流源CSを第2半導体基板8に配置してもよい。
 垂直制御部VCおよび水平制御部HCは、第1半導体基板7および第2半導体基板8のどちらに配置してもよい。
The light receiving layer 71 including the light receiving unit 31 of the photodiode PD, the transfer transistor TX, the amplification transistor TA, the vertical selection transistor TA, the horizontal selection transistor TH2, the special horizontal selection transistor TH1, the horizontal selection line HS, and the special horizontal selection line ZS. The read unit and the current source CS may be arranged on the second semiconductor substrate 8 formed on the first semiconductor substrate 7.
The vertical control unit VC and the horizontal control unit HC may be arranged on either the first semiconductor substrate 7 or the second semiconductor substrate 8.
 ただし、第1半導体基板7に多くの回路要素を配置すると、第1半導体基板7に受光部31を配置する面積または体積が十分に確保できなくなるので、読出部ADCおよび電流源CSは、第2半導体基板8に配置することが好ましい。
 各画素30のカラーフィルタ73には、各画素の分光感度特性に合わせたカラーフィルタが配置されている。
However, if many circuit elements are arranged on the first semiconductor substrate 7, the area or volume for arranging the light receiving unit 31 on the first semiconductor substrate 7 cannot be sufficiently secured. It is preferable to arrange on the semiconductor substrate 8.
The color filter 73 of each pixel 30 is provided with a color filter that matches the spectral sensitivity characteristics of each pixel.
 また、画素30のうち特殊画素ZZにも、カラーフィルタ73が配置される。特殊画素ZZがAF画素である場合、Gのカラーフィルタがカラーフィルタ73として設けられる。なお、特殊画素ZZに設けられるカラーフィルタ73は、入射光の全波長域を透過するフィルタであってもよい。また、特殊画素ZZに設けられるカラーフィルタ73は、撮像画素30cに配置されるカラーフィルタ73のいずれとも分光特性が異なるカラーフィルタであってもよい。 Further, the color filter 73 is also arranged in the special pixel ZZ among the pixels 30. When the special pixel ZZ is an AF pixel, a G color filter is provided as the color filter 73. Note that the color filter 73 provided in the special pixel ZZ may be a filter that transmits the entire wavelength range of incident light. Further, the color filter 73 provided in the special pixel ZZ may be a color filter having a spectral characteristic different from any of the color filters 73 arranged in the imaging pixel 30c.
 特殊画素ZZが、赤外光を受光するための画素である場合、カラーフィルタ73は、赤外光の透過率が高く可視光の透過率が低いものは。また、特殊画素ZZが、可視光を受光するための画素である場合、カラーフィルタ73は、可視光の全波長域について透過率の高いものとなる。 When the special pixel ZZ is a pixel for receiving infrared light, the color filter 73 has high infrared light transmittance and low visible light transmittance. Further, when the special pixel ZZ is a pixel for receiving visible light, the color filter 73 has a high transmittance in the entire wavelength region of visible light.
 なお、特殊画素ZZのカラーフィルタ73の平均透過率を、撮像画素30cのカラーフィルタ73の平均透過率と異ならせること等により、特殊画素ZZの感度を、撮像画素30cの感度と異ならせてもよい。ここで、平均透過率とは、受光部31が光電変換する光の全波長に対する透過率の平均をいう。
 特殊画素ZZの感度は、特殊画素ZZの受光部31の面積を撮像画素30cの受光部31の面積と異ならせる、または受光部31へのイオン注入の条件を異ならせることによって、撮像画素30cの感度と異ならせてもよい。
 特殊画素ZZと撮像画素30cとの感度を異ならせることにより、特殊画素ZZおよび撮像画素30cは互いに異なる信号を出力する。異なる信号に基づいて画像データを生成することで、画像の画質(解像度、諧調、色)を向上させることができる。
Even if the sensitivity of the special pixel ZZ is made different from the sensitivity of the imaging pixel 30c, for example, by making the average transmittance of the color filter 73 of the special pixel ZZ different from the average transmittance of the color filter 73 of the imaging pixel 30c. Good. Here, the average transmittance refers to the average of the transmittance with respect to all wavelengths of light photoelectrically converted by the light receiving unit 31.
The sensitivity of the special pixel ZZ is such that the area of the light receiving unit 31 of the special pixel ZZ is different from the area of the light receiving unit 31 of the imaging pixel 30c, or the condition of ion implantation into the light receiving unit 31 is different. It may be different from the sensitivity.
By making the sensitivity of the special pixel ZZ and the imaging pixel 30c different, the special pixel ZZ and the imaging pixel 30c output different signals. By generating image data based on different signals, the image quality (resolution, gradation, color) of the image can be improved.
 図5は、特殊画素ZZがAF画素である場合の一例を示す図である。図5では、図4に示した撮像素子3の断面図から第2半導体基板8を省略している。
 特殊画素Z1は、カラーフィルタ73と第1半導体基板7の境界部に、受光部31の右側を遮光する遮光部75Rが設けられる。一方、特殊画素Z2は、その境界部に、受光部31の左側を遮光する遮光部75Lが設けられる。
FIG. 5 is a diagram illustrating an example when the special pixel ZZ is an AF pixel. In FIG. 5, the second semiconductor substrate 8 is omitted from the cross-sectional view of the image sensor 3 illustrated in FIG. 4.
The special pixel Z <b> 1 is provided with a light shielding portion 75 </ b> R that shields the right side of the light receiving portion 31 at the boundary between the color filter 73 and the first semiconductor substrate 7. On the other hand, the special pixel Z2 is provided with a light shielding portion 75L that shields the left side of the light receiving portion 31 at the boundary portion.
 特殊画素Z1に入射する光のうち、撮像素子3の入射面に垂直な方向PLに対して-x方向に傾いて入射する光LLは、遮光部75Rに遮光される。一方、特殊画素Z2に入射する光のうち、撮像素子3の入射面に垂直な方向PLに対して+x方向に傾いて入射する光LRは、遮光部75Lに遮光される。
 この結果、特殊画素Z1およびZ2は、それぞれ異なる入射方向から入射する光に対する感度が低下し、逆に言えば、それぞれ異なる入射方向から入射する光に対する感度が相対的に高くなる。
Of the light incident on the special pixel Z1, the light LL that is inclined in the −x direction with respect to the direction PL perpendicular to the incident surface of the image sensor 3 is shielded by the light shielding portion 75R. On the other hand, of the light incident on the special pixel Z2, the light LR that is inclined in the + x direction with respect to the direction PL perpendicular to the incident surface of the image sensor 3 is shielded by the light shielding portion 75L.
As a result, the special pixels Z1 and Z2 have lower sensitivity to light incident from different incident directions, and conversely, the sensitivity to light incident from different incident directions is relatively high.
 この撮像素子3を、図1の撮像装置に適用すれば、特殊画素Z1およびZ2は、撮像光学系2の瞳面でそれぞれ異なる位置を通る光に対する感度が高い素子となるため、像面位相差合焦検出のための画素として機能する。
 なお、遮光部75R、75Lを設ける位置は、上述のカラーフィルタ73と第1半導体基板7の境界部に限られるわけではなく、マイクロレンズ74から第1半導体基板7までの間のどこかに設ければよい。
If this imaging element 3 is applied to the imaging apparatus of FIG. 1, the special pixels Z1 and Z2 are elements that have high sensitivity to light passing through different positions on the pupil plane of the imaging optical system 2, and therefore the image plane phase difference. It functions as a pixel for focus detection.
The position where the light shielding portions 75R and 75L are provided is not limited to the boundary portion between the color filter 73 and the first semiconductor substrate 7 described above, and is provided somewhere between the microlens 74 and the first semiconductor substrate 7. Just do it.
 以上の撮像素子の実施形態において、各画素30の配列は、必ずしもベイヤー配列に限られるものではない。また、水平選択線HS、特殊水平選択線ZSは、撮像素子3の長辺方向ではなく短辺方向に延びていてもよく、垂直選択線VSは、撮像素子3の短辺方向ではなく長辺方向に延びていてもよい。
 また、各画素30の信号の出力を制御する水平選択線HS、特殊水平選択線ZS、および垂直選択線VSは、水平方向(x方向)および垂直方向(y方向)に延在するものでなくてもよい。そして、水平選択線HS、特殊水平選択線ZS、および垂直選択線VSは、複数の画素30で共有されていなくもよい。
In the embodiments of the image sensor described above, the arrangement of the pixels 30 is not necessarily limited to the Bayer arrangement. Further, the horizontal selection line HS and the special horizontal selection line ZS may extend in the short side direction instead of the long side direction of the image sensor 3, and the vertical selection line VS does not extend in the short side direction of the image sensor 3. It may extend in the direction.
Further, the horizontal selection line HS, the special horizontal selection line ZS, and the vertical selection line VS that control the output of the signal of each pixel 30 do not extend in the horizontal direction (x direction) and the vertical direction (y direction). May be. The horizontal selection line HS, special horizontal selection line ZS, and vertical selection line VS may not be shared by the plurality of pixels 30.
 上述した実施の形態によれば、次の作用効果が得られる。
(1)以上の実施形態の撮像素子3は、光を光電変換して電荷を生成する第1光電変換部(第1画素ZZ中のフォトダイオードPD)と、第1光電変換部で生成された電荷に基づく第1信号を出力する第1出力部TH1と、光を光電変換して電荷を生成する複数の第2光電変換部(撮像画素30c中のフォトダイオードPD)と、第2光電変換部で生成された電荷に基づく第2信号を出力する複数の第2出力部TH2と、第1出力部TH1と複数の第2出力部TH2とが接続され、第1信号および第2信号の少なくとも1つが出力される出力線RWと、第1出力部TH1から出力線RWへの第1信号の出力を制御するための第1制御線(特殊水平選択線ZS)と、複数の第2出力部TH2から出力線RWへの第2信号の出力を制御するための第2制御線(水平選択線HS)と、を有している。
 このような構成としたので、出力線RWに接続された複数の画素のうち、任意の1つまたは複数の画素の30の出力を選択して、出力線RWに出力させることができる。
According to the embodiment described above, the following operational effects can be obtained.
(1) The imaging device 3 of the above embodiment is generated by the first photoelectric conversion unit (photodiode PD in the first pixel ZZ) that photoelectrically converts light to generate charges, and the first photoelectric conversion unit. A first output unit TH1 that outputs a first signal based on charges, a plurality of second photoelectric conversion units (photodiodes PD in the imaging pixel 30c) that photoelectrically convert light to generate charges, and a second photoelectric conversion unit A plurality of second output units TH2 for outputting a second signal based on the electric charge generated in step S1, a first output unit TH1 and a plurality of second output units TH2, and at least one of the first signal and the second signal is connected. One output line RW, a first control line (special horizontal selection line ZS) for controlling the output of the first signal from the first output unit TH1 to the output line RW, and a plurality of second output units TH2. For controlling the output of the second signal to the output line RW from It has 2 control lines (horizontal selection line HS), a.
With such a configuration, it is possible to select 30 outputs of any one or a plurality of pixels among a plurality of pixels connected to the output line RW and output them to the output line RW.
(2)さらに、第1出力部TH1は、第2出力部TH2による第2信号の出力と異なるタイミングで、第1信号を出力する構成とすることで、第1光電変換部に基づく第1信号または第2光電変換部に基づく第2信号の読み出しを、任意の順で行うことができる。
(3)さらに、第1出力部TH1が第1信号を出力する間、第2出力部TH2は第2信号を出力しないよう第2制御線(水平選択線HS)を介して制御される構成とすることで、第1光電変換部に基づく第1信号の出力への、第2光電変換部に基づく第2信号の混入を防ぎ、より正確な信号を出力することができる。
(2) Furthermore, the first output unit TH1 is configured to output the first signal at a timing different from the output of the second signal by the second output unit TH2, thereby allowing the first signal based on the first photoelectric conversion unit to be output. Alternatively, the reading of the second signal based on the second photoelectric conversion unit can be performed in an arbitrary order.
(3) Further, while the first output unit TH1 outputs the first signal, the second output unit TH2 is controlled via the second control line (horizontal selection line HS) so as not to output the second signal. By doing so, mixing of the second signal based on the second photoelectric conversion unit into the output of the first signal based on the first photoelectric conversion unit can be prevented, and a more accurate signal can be output.
(4)さらに、第2出力部TH2が第2信号を出力する間、第1出力部TH1は第1信号を出力しないよう第1制御線(特殊水平選択線ZS)を介して制御される構成とすることで、第2光電変換部に基づく第2信号の出力への、第1光電変換部に基づく第1信号の混入を防ぎ、より正確な信号を出力することができる。
(5)さらに、複数の第2出力部TH2が複数の第2信号を同時に出力する間、第1出力部TH1は第1信号を出力しないよう第1制御線(特殊水平選択線ZS)を介して制御される構成とすることで、第2光電変換部に基づく第2信号の出力への、第1光電変換部に基づく第1信号の混入を防ぎ、より正確な信号を出力することができる。
(4) Further, while the second output unit TH2 outputs the second signal, the first output unit TH1 is controlled via the first control line (special horizontal selection line ZS) so as not to output the first signal. By doing so, mixing of the first signal based on the first photoelectric conversion unit into the output of the second signal based on the second photoelectric conversion unit can be prevented, and a more accurate signal can be output.
(5) Furthermore, while the plurality of second output units TH2 output the plurality of second signals simultaneously, the first output unit TH1 does not output the first signal via the first control line (special horizontal selection line ZS). By adopting such a configuration, it is possible to prevent mixing of the first signal based on the first photoelectric conversion unit into the output of the second signal based on the second photoelectric conversion unit, and to output a more accurate signal. .
(6)さらに、第1出力部TH1から出力線RWへの第1信号の出力、および第2出力部TH2から出力線RWへの第2信号の出力の少なくとも一方を制御するための第3制御線(垂直選択線VS)を備え、第1出力部TH1は、第1制御線(特殊水平選択線ZS)と第3制御線(垂直選択線VS)とを介して制御され、第2出力部TH2は、第2制御線(水平選択線HS)と第3制御線(垂直選択線VS)とを介して制御される構成とすることで、出力線RWから出力を読み出す画素30を、より任意に選択することができる。
(7)さらに、第1制御線(特殊水平選択線ZS)と第2制御線(水平選択線HS)とは、第1方向に設けられ、第3制御線(垂直選択線VS)は、第1方向と交差する第2方向に設けられる構成とすることで、出力線RWから出力を読み出す画素30の選択を、簡便に行うことができる。
(6) Third control for controlling at least one of the output of the first signal from the first output unit TH1 to the output line RW and the output of the second signal from the second output unit TH2 to the output line RW. Line (vertical selection line VS), the first output unit TH1 is controlled via the first control line (special horizontal selection line ZS) and the third control line (vertical selection line VS), the second output unit TH2 is configured to be controlled via the second control line (horizontal selection line HS) and the third control line (vertical selection line VS), so that the pixel 30 that reads the output from the output line RW is more arbitrary. Can be selected.
(7) Furthermore, the first control line (special horizontal selection line ZS) and the second control line (horizontal selection line HS) are provided in the first direction, and the third control line (vertical selection line VS) is the first control line. With the configuration provided in the second direction intersecting with the one direction, selection of the pixel 30 that reads the output from the output line RW can be easily performed.
(8)さらに、第1光電変換部に入射する光の一部を遮光する遮光部を有する構成とすることで、入射光の第1光電変換部への入射角度と感度との関係を、入射光の第2光電変換部への入射角度と感度との関係とは異ならせることができる。
(9)さらに、第1出力部TH1は、焦点検出に用いる第1信号を出力し、第2出力部TH2は、画像生成に用いる第2信号を出力する構成とすることで、第1画素ZZを像面位相差合焦検出のための画素として使用することができる。
(8) Furthermore, by having a light-shielding part that shields a part of the light incident on the first photoelectric conversion part, the relationship between the incident angle of the incident light to the first photoelectric conversion part and the sensitivity is made incident. The relationship between the incident angle of light to the second photoelectric conversion unit and sensitivity can be made different.
(9) Further, the first output unit TH1 outputs a first signal used for focus detection, and the second output unit TH2 outputs a second signal used for image generation, whereby the first pixel ZZ is configured. Can be used as pixels for detecting the in-plane phase difference focus.
(10)さらに、第1光電変換部は、第2光電変換部と異なる感度を有する光電変換部である構成とすることで、第1画素ZZと第2画素(撮像画素30c)のそれぞれに最適な感度を持たせることができる。
(11)さらに、第2光電変換部は、第1分光特性を有する第1フィルタを透過した光を光電変換する構成とすることで、撮像素子3に所望の分光感度を持たせることができる。
(12)さらに、第1光電変換部は、第1分光特性と異なる第2分光特性を有する第2フィルタを透過した光を光電変換する構成とすることで、第1画素(特殊画素ZZ)には、それに最適な分光感度を持たせることができる。
(10) Furthermore, the first photoelectric conversion unit is optimal for each of the first pixel ZZ and the second pixel (imaging pixel 30c) by adopting a configuration that is a photoelectric conversion unit having a sensitivity different from that of the second photoelectric conversion unit. Sensitivity can be given.
(11) Furthermore, the second photoelectric conversion unit can have the image sensor 3 have a desired spectral sensitivity by performing a photoelectric conversion on the light transmitted through the first filter having the first spectral characteristic.
(12) Furthermore, the first photoelectric conversion unit is configured to photoelectrically convert the light transmitted through the second filter having the second spectral characteristic different from the first spectral characteristic, and thereby to the first pixel (special pixel ZZ). Can have an optimum spectral sensitivity.
(13)さらに、第1制御線(特殊水平選択線ZS)と第2制御線(水平選択線HS)とが接続され、第1出力部TH1から出力線RWへの第1信号の出力と、第2出力部TH2から出力線RWへの第2信号の出力を制御する制御部(選択トランジスタTV、TH1、TH2)を備える構成とすることで、第1出力部TH1から出力線RWへの出力の制御と、第2出力部TH2から出力線RWへの出力の制御とを、より簡便に行うことができる。
(14)さらに、制御部(選択トランジスタTV、TH1、TH2)は、第1光電変換部および複数の第2光電変換部を有する撮像部(画素上部30x)と積層されている構成としても良い。これにより、撮像部(画素上部30x)が配置される第1半導体基板7上に制御部(選択トランジスタTV、TH1、TH2)を配置する必要がなくなり、撮像部(画素上部30x)内の受光部31の面積および体積を十分な大きさに確保でき、撮像素子3の感度を向上することができる。
(13) Furthermore, the first control line (special horizontal selection line ZS) and the second control line (horizontal selection line HS) are connected, and the output of the first signal from the first output unit TH1 to the output line RW; By providing a control unit (selection transistors TV, TH1, TH2) for controlling the output of the second signal from the second output unit TH2 to the output line RW, the output from the first output unit TH1 to the output line RW And the control of the output from the second output part TH2 to the output line RW can be performed more simply.
(14) Further, the control unit (selection transistors TV, TH1, TH2) may be stacked with an imaging unit (pixel upper portion 30x) having a first photoelectric conversion unit and a plurality of second photoelectric conversion units. This eliminates the need to dispose the control unit (selection transistors TV, TH1, TH2) on the first semiconductor substrate 7 on which the image capturing unit (pixel upper portion 30x) is disposed, and the light receiving unit in the image capturing unit (pixel upper portion 30x). The area and volume of 31 can be secured to a sufficient size, and the sensitivity of the image sensor 3 can be improved.
(15)さらに、第1光電変換部および複数の第2光電変換部を有する撮像部(画素上部30x)と積層され、出力線RWから第1信号および第2信号の少なくとも1つを読み出す読出部ADCを備える構成としても良い。この構成では、読出部ADCが、撮像部(画素上部30x)を有する第1半導体基板7とは別の第2半導体基板8等に積層されて配置されるため、撮像部(画素上部30x)内の受光部31の面積および体積を十分な大きさに確保でき、撮像素子3の感度を向上することができる。
(16)さらに、読出部ADCは、第1信号および第2信号の少なくとも1つをアナログ信号からデジタル信号に変換する変換部である構成とすることにより、読出部ADCがデジタル信号を生成するため、読出部ADC以降の信号処理系の設計等が容易になる。
(15) Further, a readout unit that is stacked with an imaging unit (pixel upper portion 30x) having a first photoelectric conversion unit and a plurality of second photoelectric conversion units and reads at least one of the first signal and the second signal from the output line RW. It is good also as a structure provided with ADC. In this configuration, since the readout unit ADC is stacked on the second semiconductor substrate 8 or the like different from the first semiconductor substrate 7 having the imaging unit (pixel upper portion 30x), the readout unit ADC is disposed in the imaging unit (pixel upper portion 30x). The area and volume of the light receiving unit 31 can be secured to a sufficient size, and the sensitivity of the image sensor 3 can be improved.
(16) Furthermore, since the reading unit ADC is a conversion unit that converts at least one of the first signal and the second signal from an analog signal to a digital signal, the reading unit ADC generates a digital signal. Thus, it becomes easy to design a signal processing system after the reading unit ADC.
(17)さらに、第1光電変換部および複数の第2光電変換部を有する撮像部(画素上部30x)と積層され、出力線RWから第1信号を読み出す第1読出部と、出力線RWから第2信号を読み出す第2読出部とを備える構成とすることもできる。この構成により、第1光電変換部と複数の第2光電変換部とを別々の読出部で読み出すことができるため、それぞれの画素に対して最適な読み出しを行うことができる。
(18)さらに、第1読出部は第1信号をアナログ信号からデジタル信号に変換する第1変換部であり、第2読出部は第2信号をアナログ信号からデジタル信号に変換する第2変換部である構成とすることができる。この構成により、第1光電変換部と複数の第2光電変換部との出力を別々のアナログデジタルコンバータで変換することができ、それぞれの画素に対して最適な読み出しを行うことができる。
(17) Further, a first readout unit that is stacked with an imaging unit (pixel upper portion 30x) having a first photoelectric conversion unit and a plurality of second photoelectric conversion units, and that reads a first signal from the output line RW, and an output line RW It can also be set as the structure provided with the 2nd reading part which reads a 2nd signal. With this configuration, since the first photoelectric conversion unit and the plurality of second photoelectric conversion units can be read out by separate reading units, optimum reading can be performed for each pixel.
(18) Further, the first reading unit is a first conversion unit that converts the first signal from an analog signal to a digital signal, and the second reading unit is a second conversion unit that converts the second signal from an analog signal to a digital signal. It can be set as the structure which is. With this configuration, the outputs of the first photoelectric conversion unit and the plurality of second photoelectric conversion units can be converted by separate analog-digital converters, and optimal readout can be performed for each pixel.
(19)さらに、第1出力部TH1と第2出力部TH2とは、選択トランジスタであり、第1制御線(特殊水平選択線ZS)と第2制御線(水平選択線HS)は、選択トランジスタを制御するための制御線である構成とすることができる。この構成により、簡便な構成で第1出力部TH1と第2出力部TH2とを形成することができる。
(20)実施形態の撮像装置は、以上の(1)から(19)のいずれかの構成の撮像素子3と、第2信号に基づいて画像データを生成する生成部4とを備えている。
 この構成により、撮像素子3の出力線RWに接続された画素30のうち、任意の1つまたは複数の画素30の出力を選択して、その出力を出力線RWに出力させ、読み出すことができる。
(19) Further, the first output part TH1 and the second output part TH2 are selection transistors, and the first control line (special horizontal selection line ZS) and the second control line (horizontal selection line HS) are selection transistors. It can be set as the structure which is a control line for controlling. With this configuration, the first output portion TH1 and the second output portion TH2 can be formed with a simple configuration.
(20) The imaging device of the embodiment includes the imaging device 3 having any one of the above configurations (1) to (19) and the generation unit 4 that generates image data based on the second signal.
With this configuration, the output of any one or a plurality of pixels 30 among the pixels 30 connected to the output line RW of the image sensor 3 can be selected, and the output can be output to the output line RW and read out. .
 上述では、種々の実施形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。また、各実施形態および変形例は、それぞれ単独で適用しても良いし、組み合わせて用いても良い。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. In addition, each embodiment and modification may be applied alone or in combination. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2018年第99061号(2018年5月23日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application 2018-99061 (filed on May 23, 2018)
 1:撮像装置、2:撮像レンズ、3:撮像素子、4:生成部、5:レンズ駆動部、
7:第1半導体基板、8:第2半導体基板、BC,BC1,BC2:画素ブロック、HC:水平制御部、VC:垂直制御部、画素30、Gr,Gb:G画素、R:R画素、B:B画素、Z1,Z2:特殊画素、VS,VS1~HS8:垂直選択線、HS,HS1~HS4:水平選択線、ZS:特殊水平選択線、PD:フォトダイオード、TX:転送トランジスタ、TR:リセットトランジスタ、TA:増幅トランジスタ、TV:垂直選択トランジスタ、TH1:特殊水平選択トランジスタ、TH2:水平選択トランジスタ、RW:読み出し線、ADC:読出部、31:感光部、73:カラーフィルタ
1: imaging device, 2: imaging lens, 3: imaging element, 4: generation unit, 5: lens driving unit,
7: first semiconductor substrate, 8: second semiconductor substrate, BC, BC1, BC2: pixel block, HC: horizontal control unit, VC: vertical control unit, pixel 30, Gr, Gb: G pixel, R: R pixel, B: B pixel, Z1, Z2: Special pixel, VS, VS1 to HS8: Vertical selection line, HS, HS1 to HS4: Horizontal selection line, ZS: Special horizontal selection line, PD: Photodiode, TX: Transfer transistor, TR : Reset transistor, TA: amplification transistor, TV: vertical selection transistor, TH1: special horizontal selection transistor, TH2: horizontal selection transistor, RW: readout line, ADC: readout unit, 31: photosensitive unit, 73: color filter

Claims (20)

  1.  光を光電変換して電荷を生成する第1光電変換部と、
     前記第1光電変換部で生成された電荷に基づく第1信号を出力する第1出力部と、
     光を光電変換して電荷を生成する複数の第2光電変換部と、
     前記第2光電変換部で生成された電荷に基づく第2信号を出力する複数の第2出力部と、
     前記第1出力部と複数の前記第2出力部とが接続され、前記第1信号および前記第2信号の少なくとも1つが出力される出力線と、
     前記第1出力部から前記出力線への前記第1信号の出力を制御するための第1制御線と、
     複数の前記第2出力部から前記出力線への前記第2信号の出力を制御するための第2制御線と、
    を備える撮像素子。
    A first photoelectric conversion unit that photoelectrically converts light to generate charges;
    A first output unit that outputs a first signal based on the charge generated by the first photoelectric conversion unit;
    A plurality of second photoelectric conversion units that photoelectrically convert light to generate charges;
    A plurality of second output units for outputting a second signal based on the electric charge generated by the second photoelectric conversion unit;
    An output line that connects the first output unit and the plurality of second output units, and outputs at least one of the first signal and the second signal;
    A first control line for controlling the output of the first signal from the first output unit to the output line;
    A second control line for controlling the output of the second signal from the plurality of second output units to the output line;
    An imaging device comprising:
  2.  請求項1に記載の撮像素子において、
     前記第1出力部は、前記第2出力部による前記第2信号の出力と異なるタイミングで、前記第1信号を出力する撮像素子。
    The imaging device according to claim 1,
    The first output unit outputs the first signal at a timing different from the output of the second signal by the second output unit.
  3.  請求項1または請求項2に記載の撮像素子において、
     前記第1出力部が前記第1信号を出力する間、前記第2出力部は前記第2信号を出力しないよう前記第2制御線を介して制御される撮像素子。
    The imaging device according to claim 1 or 2,
    The imaging device controlled via the second control line so that the second output unit does not output the second signal while the first output unit outputs the first signal.
  4.  請求項1から請求項3までのいずれか一項に記載の撮像素子において、
     前記第2出力部が前記第2信号を出力する間、前記第1出力部は前記第1信号を出力しないよう前記第1制御線を介して制御される撮像素子。
    In the imaging device according to any one of claims 1 to 3,
    The imaging device controlled via the first control line so that the first output unit does not output the first signal while the second output unit outputs the second signal.
  5.  請求項1から請求項4までのいずれか一項に記載の撮像素子において、
     複数の前記第2出力部が複数の前記第2信号を同時に出力する間、前記第1出力部は前記第1信号を出力しないよう前記第1制御線を介して制御される撮像素子。
    In the imaging device according to any one of claims 1 to 4,
    An imaging device that is controlled via the first control line so that the first output unit does not output the first signal while the plurality of second output units simultaneously output the plurality of second signals.
  6.  請求項1から請求項5までのいずれか一項に記載の撮像素子において、
     前記第1出力部から前記出力線への前記第1信号の出力、および前記第2出力部から前記出力線への前記第2信号の出力の少なくとも一方を制御するための第3制御線を備え、
     前記第1出力部は、前記第1制御線と前記第3制御線とを介して制御され、
     前記第2出力部は、前記第2制御線と前記第3制御線とを介して制御される撮像素子。
    In the imaging device according to any one of claims 1 to 5,
    A third control line for controlling at least one of the output of the first signal from the first output unit to the output line and the output of the second signal from the second output unit to the output line; ,
    The first output unit is controlled via the first control line and the third control line,
    The second output unit is an imaging device controlled via the second control line and the third control line.
  7.  請求項6に記載の撮像素子において、
     前記第1制御線と前記第2制御線とは、第1方向に設けられ、
     前記第3制御線は、前記第1方向と交差する第2方向に設けられる撮像素子。
    The image sensor according to claim 6, wherein
    The first control line and the second control line are provided in a first direction,
    The third control line is an image sensor provided in a second direction intersecting the first direction.
  8.  請求項1から請求項7までのいずれか一項に記載の撮像素子において、
     前記第1光電変換部に入射する光の一部を遮光する遮光部を有する撮像素子。
    In the imaging device according to any one of claims 1 to 7,
    An imaging device having a light shielding portion that shields part of light incident on the first photoelectric conversion portion.
  9.  請求項1から請求項8までのいずれか一項に記載の撮像素子において、
     前記第1出力部は、焦点検出に用いる前記第1信号を出力し、
     前記第2出力部は、画像生成に用いる前記第2信号を出力する撮像素子。
    In the imaging device according to any one of claims 1 to 8,
    The first output unit outputs the first signal used for focus detection,
    The second output unit is an image sensor that outputs the second signal used for image generation.
  10.  請求項1から請求項9までのいずれか一項に記載の撮像素子において、
     前記第1光電変換部は、前記第2光電変換部と異なる感度を有する光電変換部である撮像素子。
    In the imaging device according to any one of claims 1 to 9,
    The imaging device, wherein the first photoelectric conversion unit is a photoelectric conversion unit having a sensitivity different from that of the second photoelectric conversion unit.
  11.  請求項1から請求項10までのいずれか一項に記載の撮像素子において、
     前記第2光電変換部は、第1分光特性を有する第1フィルタを透過した光を光電変換する撮像素子。
    In the imaging device according to any one of claims 1 to 10,
    The second photoelectric conversion unit is an image sensor that photoelectrically converts light transmitted through a first filter having a first spectral characteristic.
  12.  請求項1から請求項11までのいずれか一項に記載の撮像素子において、
     前記第1光電変換部は、第1分光特性と異なる第2分光特性を有する第2フィルタを透過した光を光電変換する撮像素子。
    In the imaging device according to any one of claims 1 to 11,
    The first photoelectric conversion unit is an imaging device that photoelectrically converts light transmitted through a second filter having a second spectral characteristic different from the first spectral characteristic.
  13.  請求項1から請求項12までのいずれか一項に記載の撮像素子において、
     前記第1制御線と前記第2制御線とが接続され、前記第1出力部から前記出力線への前記第1信号の出力と、前記第2出力部から前記出力線への前記第2信号の出力を制御する制御部を備える撮像素子。
    The imaging device according to any one of claims 1 to 12,
    The first control line and the second control line are connected, the output of the first signal from the first output unit to the output line, and the second signal from the second output unit to the output line An image sensor comprising a control unit for controlling the output of the image sensor.
  14.  請求項13に記載の撮像素子において、
     前記制御部は、前記第1光電変換部および複数の前記第2光電変換部を有する撮像部と積層されている撮像素子。
    The image sensor according to claim 13, wherein
    The said control part is an image pick-up element laminated | stacked with the imaging part which has a said 1st photoelectric conversion part and several said 2nd photoelectric conversion part.
  15.  請求項1から請求項14までのいずれか一項に記載の撮像素子において、
     前記第1光電変換部および複数の前記第2光電変換部を有する撮像部と積層され、前記出力線から前記第1信号および前記第2信号の少なくとも1つを読み出す読出部を備える撮像素子。
    In the image sensor according to any one of claims 1 to 14,
    An imaging device comprising: a readout unit that is stacked with an imaging unit having the first photoelectric conversion unit and a plurality of the second photoelectric conversion units, and reads at least one of the first signal and the second signal from the output line.
  16.  請求項15に記載の撮像素子において、
     前記読出部は、前記第1信号および前記第2信号の少なくとも1つをアナログ信号からデジタル信号に変換する変換部である撮像素子。
    The image sensor according to claim 15, wherein
    The imaging device, wherein the reading unit is a conversion unit that converts at least one of the first signal and the second signal from an analog signal to a digital signal.
  17.  請求項1から請求項14までのいずれか一項に記載の撮像素子において、
     前記第1光電変換部および複数の前記第2光電変換部を有する撮像部と積層され、前記出力線から前記第1信号を読み出す第1読出部と、前記出力線から前記第2信号を読み出す第2読出部とを備える撮像素子。
    In the image sensor according to any one of claims 1 to 14,
    A first readout unit that is stacked with an imaging unit including the first photoelectric conversion unit and a plurality of the second photoelectric conversion units, and that reads the first signal from the output line; and a second readout unit that reads the second signal from the output line. An image sensor comprising two reading units.
  18.  請求項17に記載の撮像素子において、
     前記第1読出部は、前記第1信号をアナログ信号からデジタル信号に変換する第1変換部であり、
     前記第2読出部は、前記第2信号をアナログ信号からデジタル信号に変換する第2変換部である撮像素子。
    The image sensor according to claim 17,
    The first reading unit is a first conversion unit that converts the first signal from an analog signal to a digital signal;
    The imaging device, wherein the second reading unit is a second conversion unit that converts the second signal from an analog signal to a digital signal.
  19.  請求項1から請求項18のいずれか一項に記載の撮像素子において、
     前記第1出力部と前記第2出力部とは、選択トランジスタであり、
     前記第1制御線と前記第2制御線は、前記選択トランジスタを制御するための制御線である撮像素子。
    In the imaging device according to any one of claims 1 to 18,
    The first output unit and the second output unit are selection transistors,
    The imaging device, wherein the first control line and the second control line are control lines for controlling the selection transistor.
  20.  請求項1から請求項19までのいずれか一項に記載の撮像素子と、
     前記第2信号に基づいて画像データを生成する生成部と、
    を備える撮像装置。
     
           
    The image sensor according to any one of claims 1 to 19,
    A generating unit that generates image data based on the second signal;
    An imaging apparatus comprising:

PCT/JP2019/020350 2018-05-23 2019-05-22 Imaging element and imaging device WO2019225668A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020520346A JP7047907B2 (en) 2018-05-23 2019-05-22 Image sensor and image sensor
US17/056,064 US11910113B2 (en) 2018-05-23 2019-05-22 Image sensor and image-capturing device having pixels for focus detection and pixels for image generation
CN202310486240.6A CN116528070A (en) 2018-05-23 2019-05-22 Image pickup element and image pickup device
CN201980044048.3A CN112352420B (en) 2018-05-23 2019-05-22 Image pickup element and image pickup device
JP2022043916A JP7363947B2 (en) 2018-05-23 2022-03-18 Image sensor and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018099061 2018-05-23
JP2018-099061 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019225668A1 true WO2019225668A1 (en) 2019-11-28

Family

ID=68615845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020350 WO2019225668A1 (en) 2018-05-23 2019-05-22 Imaging element and imaging device

Country Status (4)

Country Link
US (1) US11910113B2 (en)
JP (2) JP7047907B2 (en)
CN (2) CN116528070A (en)
WO (1) WO2019225668A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234025A (en) * 2010-04-26 2011-11-17 Nikon Corp Imaging apparatus and imaging device
JP2013090160A (en) * 2011-10-18 2013-05-13 Canon Inc Imaging device and imaging apparatus
JP2018056519A (en) * 2016-09-30 2018-04-05 株式会社ニコン Imaging element and focus adjustment device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662773B1 (en) * 1997-08-15 2014-01-22 Sony Corporation Solid-state image sensor and method of driving same
JP4807131B2 (en) * 2006-04-05 2011-11-02 株式会社ニコン Imaging device and imaging apparatus
JP4946313B2 (en) 2006-09-27 2012-06-06 株式会社ニコン Imaging device
EP2277072A4 (en) * 2008-04-30 2011-08-31 Canon Kk Image sensing apparatus
JP2013143730A (en) 2012-01-12 2013-07-22 Sony Corp Imaging element, imaging device, electronic apparatus, and imaging method
WO2014069228A1 (en) * 2012-11-05 2014-05-08 富士フイルム株式会社 Image processing device, imaging device, image processing method, and program
JP6274788B2 (en) * 2013-08-28 2018-02-07 キヤノン株式会社 Imaging apparatus, imaging system, and driving method of imaging apparatus
JP6171997B2 (en) * 2014-03-14 2017-08-02 ソニー株式会社 Solid-state imaging device, driving method thereof, and electronic apparatus
JP6354246B2 (en) * 2014-03-26 2018-07-11 株式会社ニコン IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, AND CONTROL PROGRAM
JP6355402B2 (en) * 2014-04-14 2018-07-11 キヤノン株式会社 Solid-state imaging device and camera
JPWO2017170717A1 (en) * 2016-03-31 2019-02-28 株式会社ニコン IMAGING DEVICE, FOCUS ADJUSTMENT DEVICE, AND ELECTRONIC DEVICE
JP2018093257A (en) * 2016-11-30 2018-06-14 オリンパス株式会社 Imaging apparatus
JP6242467B2 (en) * 2016-12-01 2017-12-06 キヤノン株式会社 Imaging apparatus and imaging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234025A (en) * 2010-04-26 2011-11-17 Nikon Corp Imaging apparatus and imaging device
JP2013090160A (en) * 2011-10-18 2013-05-13 Canon Inc Imaging device and imaging apparatus
JP2018056519A (en) * 2016-09-30 2018-04-05 株式会社ニコン Imaging element and focus adjustment device

Also Published As

Publication number Publication date
CN112352420B (en) 2023-05-30
US20210314512A1 (en) 2021-10-07
JP7047907B2 (en) 2022-04-05
CN116528070A (en) 2023-08-01
JP2022078348A (en) 2022-05-24
CN112352420A (en) 2021-02-09
JP7363947B2 (en) 2023-10-18
US11910113B2 (en) 2024-02-20
JPWO2019225668A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP7264187B2 (en) Solid-state imaging device, its driving method, and electronic equipment
KR102562402B1 (en) Backside illumination image sensor, manufacturing method thereof and image-capturing device
US7750278B2 (en) Solid-state imaging device, method for driving solid-state imaging device and camera
KR20180133549A (en) Solid-state imaging device and camera system
US8339488B2 (en) Solid-state image pickup device having laminated color filters, manufacturing method thereof, and electronic apparatus incorporating same
JP2011054911A (en) Solid-state imaging device and method of manufacturing the same, and electronic apparatus
JP2023067935A (en) Imaging device
KR20100039246A (en) Solid state imaging device
JP5434121B2 (en) Back-illuminated image sensor and imaging apparatus
WO2019225668A1 (en) Imaging element and imaging device
JP6970595B2 (en) Solid-state image sensor, manufacturing method of solid-state image sensor, and electronic equipment
WO2020067503A1 (en) Imaging element and imaging device
JP2005175893A (en) Two-plate type color solid-state image pickup device and digital camera
JP2018160912A (en) Imaging element and imaging device
JP7272423B2 (en) Imaging element and imaging device
JP4848349B2 (en) Imaging apparatus and solid-state imaging device driving method
WO2023195283A1 (en) Photodetector and electronic device
US20240089619A1 (en) Light detection device and electronic apparatus
WO2019224936A1 (en) Solid-state image capture device and image capture device
JP2015188228A (en) Image pickup element and image pickup device
JP2015057862A (en) Imaging device and imaging apparatus
JP5664742B2 (en) Imaging device and imaging apparatus
JP2017143517A (en) Image pick-up device and imaging device
WO2014203456A1 (en) Solid-state imaging device and method for driving same
JP2006323018A (en) Optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520346

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808287

Country of ref document: EP

Kind code of ref document: A1