WO2019225643A1 - Heat transfer suppression sheet for battery pack, and battery pack - Google Patents

Heat transfer suppression sheet for battery pack, and battery pack Download PDF

Info

Publication number
WO2019225643A1
WO2019225643A1 PCT/JP2019/020257 JP2019020257W WO2019225643A1 WO 2019225643 A1 WO2019225643 A1 WO 2019225643A1 JP 2019020257 W JP2019020257 W JP 2019020257W WO 2019225643 A1 WO2019225643 A1 WO 2019225643A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer suppression
inorganic
heat
layer
Prior art date
Application number
PCT/JP2019/020257
Other languages
French (fr)
Japanese (ja)
Inventor
直己 高橋
寿 安藤
清成 畑中
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2019225643A1 publication Critical patent/WO2019225643A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/6595Means for temperature control structurally associated with the cells by chemical reactions other than electrochemical reactions of the cells, e.g. catalytic heaters or burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an assembled battery heat transfer suppression sheet that is preferably used for an assembled battery that serves as a power source for an electric motor that drives an electric vehicle or a hybrid vehicle, for example.
  • this battery cell Compared to lead-acid batteries and nickel-metal hydride batteries, this battery cell mainly uses lithium-ion secondary batteries capable of high capacity and high output, but due to internal short circuit or overcharge of the batteries.
  • a thermal runaway occurs in one battery cell (that is, in an abnormal state)
  • heat may propagate to other adjacent battery cells, which may cause thermal runaway of other battery cells.
  • Patent Document 1 discloses a first plate member disposed on the side of a first power storage element that is one of one or more power storage elements, and a first plate material. A first plate member and a second plate member disposed so that the surfaces of the two plate members are opposed to each other, between the first plate member and the second plate member, more heat than the first plate member and the second plate member; It is disclosed that an effective heat insulation between a power storage element and another object can be realized by a power storage device in which a low thermal conductive layer (for example, an air layer) that is a layer of a material having low conductivity is formed. ing.
  • a low thermal conductive layer for example, an air layer
  • Patent Document 2 discloses that a heat insulating buffer member is disposed between stacked battery cells, so that one of a plurality of battery cells is disposed. Even when a thermal abnormality occurs in the battery cells, thermal insulation can be achieved between the battery cells, and the phenomenon that the thermal abnormality is chained to other battery cells can be suppressed. It is disclosed.
  • the temperature of the battery cell surface is a predetermined value or less (for example, it is necessary to maintain at 150 ° C. or lower.
  • Patent Document 1 since a heat insulating layer is simply provided between a plurality of battery cells in order to suppress heat propagation during thermal runaway, it is possible to effectively cool battery cells that generate heat during normal use. could not. Further, in Patent Document 2, by forming irregularities on the surface of the heat insulating buffer member, heat insulation can be achieved between the battery cells, and at the time of stacking the battery cells, there can be a ventilation effect by this groove, Since the heat insulating cushioning member is made of a sheet made of polycarbonate resin or polypropylene resin, when a groove is provided in this sheet, it cannot be said that it is sufficient to cool battery cells that generate heat during normal use, as will be described later. It was.
  • the present invention has been made paying attention to such a situation, and suppresses the propagation of heat between the battery cells at the time of abnormality in constituting an assembled battery in which a plurality of battery cells are connected in series or in parallel.
  • it aims at providing the heat transfer suppression sheet
  • the summary of the heat transfer suppression sheet for assembled batteries is that a plurality of battery cells are arranged via a heat transfer suppression sheet, and the plurality of battery cells are connected in series or in parallel.
  • a heat transfer suppression sheet used for a connected assembled battery having a heat transfer suppression layer containing inorganic particles and / or inorganic fibers, wherein the heat transfer suppression layer is in an in-plane direction of the heat transfer suppression layer It has the groove part connected to this end surface, The surface of the said groove part has uneven
  • the groove portion communicates one end surface with the other end surface.
  • the heat transfer suppressing layer has a quadrangular outer shape in plan view, and the groove portion communicates two adjacent end surfaces among the four end surfaces. To do.
  • the heat transfer suppressing layer contains the inorganic particles as an essential component, and the inorganic particles are made of a material that releases moisture by heating.
  • the material that releases moisture by heating can be dehydrated at an inorganic hydrate having a thermal decomposition starting temperature of 200 ° C. or higher and / or a temperature of 150 ° C. or lower.
  • a dehydrating agent in a preferred embodiment of the assembled battery heat transfer suppression sheet, the water-releasing material contains the inorganic hydrate as an essential component, and the inorganic hydrate includes aluminum hydroxide, magnesium hydroxide, hydroxide.
  • the moisture releasing material contains the dehydrating agent as an essential component, and the dehydrating agent includes silica gel, activated alumina, activated carbon, zeolite, ion exchange resin, sulfuric acid. It is at least one of the group consisting of salt hydrate, sulfite hydrate, phosphate hydrate, nitrate hydrate, acetate hydrate and metal hydrate.
  • the heat transfer suppressing layer contains the inorganic fiber as an essential component, and the inorganic fiber includes silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkali. It is at least one selected from the group consisting of earth silicate fibers and glass fibers.
  • the heat transfer suppression layer contains the inorganic particles as an essential component, and the inorganic particles are at least one of the group consisting of TiO 2 and SiO 2. .
  • the heat transfer suppressing layer is formed on both surfaces of the heat insulating layer containing the inorganic particles and / or the inorganic fibers and the heat insulating layer.
  • a heat-absorbing layer containing a material that emits heat.
  • the gist of the assembled battery according to one embodiment of the present invention is that a plurality of battery cells are arranged via the above-described assembled battery heat transfer suppression sheet, and the plurality of battery cells are connected in series or in parallel. It is characterized by.
  • the heat transfer suppression sheet for an assembled battery in configuring an assembled battery in which a plurality of battery cells are connected in series or in parallel, while suppressing the propagation of heat between the battery cells during an abnormality, It is possible to provide an assembled battery heat transfer suppressing sheet capable of effectively cooling battery cells during use.
  • FIG. 1 is a diagram schematically illustrating a configuration example of a heat transfer suppression sheet for an assembled battery according to the first embodiment of the present invention, and is an example in a case where the heat transfer suppression layer includes lattice-shaped grooves. .
  • FIG. 2 is an enlarged view of the uneven shape of the groove in FIG.
  • FIG. 3A is a diagram illustrating an example in which the heat transfer suppression layer has a lattice-shaped groove portion in which corner portions are R-processed.
  • FIG. 3B is a diagram illustrating an example in which the heat transfer suppression layer has a groove portion having a labyrinth structure.
  • FIG. 3C is a diagram illustrating an example in which the heat transfer suppressing layer has a groove portion having an embossed structure having a planar circular shape.
  • FIG. 3D is a diagram illustrating an example in which the heat transfer suppression layer has a groove portion having a honeycomb structure.
  • FIG. 3E is a diagram illustrating an example in the case where the heat transfer suppression layer includes a square-convex convex groove.
  • FIG. 3E is a diagram illustrating an example in which the heat transfer suppression layer has a rectangular concavity groove.
  • FIG. 3G is a diagram illustrating an example in which the heat transfer suppression layer has a corrugated groove.
  • FIG. 4 is a cross-sectional view schematically showing a configuration example of an assembled battery to which the assembled battery heat transfer suppression sheet according to the first embodiment of the present invention is applied.
  • FIG. 5 is a diagram schematically illustrating a configuration example of a heat transfer suppression sheet for an assembled battery according to the second embodiment of the present invention, in which a heat transfer suppression layer includes a heat insulating layer and an endothermic layer formed on both surfaces thereof. It is an example in the case of being configured.
  • FIG. 6A is a diagram illustrating a manufacturing example in the case where grooves are formed on the upper and lower surfaces of the heat transfer suppression layer by two embossing rollers.
  • FIG. 6B is a diagram illustrating a manufacturing example in the case where a groove portion is formed on one surface of a heat transfer suppression layer using an embossing roller and a flat roller.
  • FIG. 7 is a diagram illustrating a manufacturing example in the case where a groove is formed in the heat transfer suppression layer by press working.
  • FIG. 8 is a diagram illustrating a manufacturing example in the case where a groove is formed in the heat transfer suppression layer by end milling.
  • the present inventors have an assembled battery that can cool a battery cell during normal use in which heat at a relatively low temperature is generated while suppressing propagation of heat between the battery cells at an abnormal time in which high-temperature heat is generated.
  • heat transfer suppression sheets for automobiles we have conducted intensive studies.
  • the heat transfer suppression layer has a groove portion that communicates with the end surface in the in-plane direction of the heat transfer suppression layer, and the batteries stacked by the space formed between the groove portion and the adjacent battery cell. Since the heat staying between the cells (that is, the heat staying in the heat transfer suppression layer) easily escapes outside, the battery cell during normal use can be cooled.
  • the surface of the groove part has a concavo-convex shape
  • the surface area of the groove part increases as compared to the case where the surface of the groove part does not have a concavo-convex shape, so that the heat retained in the heat transfer suppression layer is further increased Easier to escape.
  • the battery cell during normal use can be more effectively cooled as compared to a heat insulating sheet having a groove portion that does not have an uneven shape on the surface as shown in Patent Document 2.
  • a space for releasing the generated heat to the outside is provided between the battery cells, and also for suppressing the propagation of heat between the battery cells at the time of abnormality. Since no space is provided between the battery cells, it is not necessary to make the distance between the battery cells extremely large. For this reason, it is also possible to reduce the thickness of the entire heat transfer suppressing sheet (for example, 5 mm or less). As a result, while ensuring the safety of the assembled battery and sufficient charge / discharge performance of the battery cell, It is also possible to improve the volume energy density.
  • the first embodiment is a case where the heat transfer suppression sheet is a single layer.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of the assembled battery heat transfer suppression sheet 10 according to the first embodiment.
  • the heat transfer suppression sheet 10 according to the present embodiment has a heat transfer suppression layer 20 containing inorganic particles and / or inorganic fibers.
  • the heat transfer suppression layer 20 includes a groove portion 22 that communicates with end surfaces 26 and 28 in the in-plane direction of the heat transfer suppression layer 20.
  • the groove 22 has a plurality of grooves formed in a lattice shape as shown in FIG.
  • the surface of the groove portion 22 has a fine uneven shape 24.
  • the heat transfer suppressing layer 20 constituting the heat transfer suppressing sheet 10 contains at least one of inorganic particles and inorganic fibers, it plays a role of an endothermic layer or a heat insulating layer as will be described later. And in the assembled battery 100 comprised by the some battery cell 50 laminated
  • the heat transfer suppression layer 20 has the groove portion 22 that communicates with the end surfaces 26 and 28 in the in-plane direction of the heat transfer suppression layer 20, the heat transfer suppression layer 20 is laminated by a space formed between the groove portion 22 and the adjacent battery cell 50. Since the heat staying between the battery cells 50 (that is, the heat staying in the heat transfer suppressing layer) easily escapes outside, the battery cells 50 can be cooled during normal use.
  • the groove part 22 connects the one end surface 26 and the other end surface 28. Since the groove portion 22 communicates with the at least two end surfaces 26 and 28, both the one end and the other end of the groove portion 22 face the end surfaces 26 and 28, so that the heat staying in the heat transfer suppression layer 20 is outside. Easier to escape. However, if at least one end of the groove portion 22 faces the end surfaces 26 and 28, heat can be released to the outside. Therefore, it is only necessary that at least one end of the groove portion 22 communicates with the end surfaces 26 and 28.
  • the heat transfer suppression layer 20 has a quadrangular outer shape in plan view, and the groove 22 communicates two adjacent end surfaces 26 and 28 among the four end surfaces. Is preferred.
  • the heat staying in the heat transfer suppression layer 20 can escape in the direction perpendicular to the end face 26 and in the direction perpendicular to the end face 28, compared with the case where heat is released only in one direction. , Can escape the heat more effectively.
  • the quadrangle that is the outer shape can include various quadrangles such as a square, a rectangle, and a trapezoid. The corners of the quadrangle may have an R shape.
  • the surface of the groove part 22 has the concavo-convex shape 24
  • the surface area of the groove part 22 is increased as compared with the case where the surface of the groove part 22 does not have the concavo-convex shape 24.
  • the heat staying inside becomes easier to escape to the outside. For this reason, compared with the heat insulation sheet in which the groove part 22 which does not have the uneven
  • FIG. 2 is an enlarged view of the uneven shape 24 of the groove 22 in FIG.
  • the surface of the groove portion 22 has the concavo-convex shape 24 because the heat transfer suppression layer 20 is composed of a large number of inorganic particles (or inorganic fibers) 30 and the surface of the heat transfer suppression layer 20 is concavo-convex. This is caused by forming 24.
  • the heat transfer suppression layer 20 formed of a large number of inorganic particles 30 of several ⁇ m level has a surface with a pitch and depth of several ⁇ m compared to a heat insulating sheet made of a resin such as polycarbonate or polypropylene.
  • a large number of concave and convex shapes 24 having a thickness are provided.
  • the groove part 22 is formed in the heat transfer suppression layer 20 by a predetermined groove forming means described later, a large number of inorganic particles 30 are also exposed on the surface of the groove part 22.
  • the surface of the groove portion 22 has a fine uneven shape 24 composed of the inorganic particles 30.
  • the lower limit of the pitch and depth of the unevenness is 0.5 ⁇ m, preferably 1.0 ⁇ m or more.
  • the upper limit of the pitch and depth of the irregularities is 100 ⁇ m, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, and further preferably 40 ⁇ m or less. If the pitch or depth of the unevenness is less than 0.5 ⁇ m, voids generated in the heat transfer suppression layer 20 become too small and convection is less likely to occur, making it difficult to come into contact with heat. There is a possibility that the heat staying in 20 cannot be effectively released to the outside.
  • the pitch or depth of the unevenness exceeds 100 ⁇ m, the average particle size of the inorganic particles 30 is too large and the specific surface area of the inorganic particles 30 is reduced, so that the heat staying in the heat transfer suppression layer 20 is effective. There is a risk that you cannot escape outside.
  • the pitch of unevenness means the distance between centers of adjacent recessed parts or convex parts
  • the depth of unevenness means the distance between the bottom part of a recessed part and the top part of a convex part.
  • a lattice-like shape is shown as the shape of the groove portion 22 when the heat transfer suppressing layer 20 is viewed in plan, but the shape of the groove portion 22 is not limited to this.
  • a grid-like groove 22 having corners R processed a groove 22 having a labyrinth structure as shown in FIG. 3B, or a groove 22 having a flat circular emboss structure as shown in FIG. 3C. 3D, a honeycomb-shaped groove 22 as shown in FIG. 3D, a square-concave convex groove 22 as shown in FIG. 3E, a square-concave groove 22 as shown in FIG. 3F, or as shown in FIG. 3G
  • It is possible to employ variously shaped groove portions 22 such as a corrugated groove portion 22.
  • the number of the groove portions 22 is not particularly limited. However, as the number of the groove portions 22 increases, the effect of releasing heat from the battery cell 50 during normal use is enhanced, while the heat transfer suppressing layer 20 other than the groove portions 22 is increased. The proportion of the portion may decrease, and the function of suppressing heat transfer between the battery cells 50 may be reduced. Therefore, it is preferable to determine the number of grooves 22 in view of the balance between cooling during normal use and heat transfer suppression during abnormal conditions.
  • the some battery cell 50 is arrange
  • the assembled battery 100 is configured by being stored in the battery case 60 in a state of being connected in parallel (the connected state is not shown).
  • the lithium ion secondary battery is used suitably, for example, the battery cell 50 is not specifically limited to this, It can apply also to another secondary battery.
  • the heat transfer suppression layer 20 constituting the assembled battery heat transfer suppression sheet 10 contains inorganic particles and / or inorganic fibers.
  • the inorganic particles and the inorganic fibers may contain only one of them or may contain both.
  • the inorganic particles 30 are preferably made of a material that releases moisture by heating.
  • the heat transfer suppression layer 20 can play a role as an endothermic layer by containing a material that releases moisture by heating.
  • the heat transfer suppression layer 20 serves as an endothermic layer, when the heat transfer suppression layer 20 is heated by heat generated in a certain battery cell 50 when the battery cell 50 is abnormal, the heat transfer suppression layer 20 is heated. Releases moisture while absorbing water. Due to this endothermic action, the amount of heat generated by the battery cell 50 can be reduced. Therefore, when a thermal runaway occurs in a certain battery cell 50, the propagation of heat to other adjacent battery cells 50 can be effectively suppressed.
  • the heat transfer suppression layer 20 plays a role as an endothermic layer
  • the heat transfer suppression layer 20 has the groove portion 22 and the surface of the groove portion 22 has the concavo-convex shape 24, thereby Since a large area capable of releasing moisture from the endothermic layer 44 during heat absorption can be ensured, the function as the endothermic layer 44 can be further exhibited, that is, the reaction rate of the endothermic reaction can be improved. That is, in addition to the improvement of the cooling effect of the battery cell 50 during normal use as described above, the effect of suppressing heat transfer between the battery cells 50 at the time of abnormality can also be improved.
  • the pitch or depth of the unevenness is less than 0.5 ⁇ m, voids generated in the heat transfer suppression layer 20 become too small, and convection is difficult to occur.
  • the reaction rate of the reaction may decrease.
  • the pitch or depth of the unevenness exceeds 100 ⁇ m, the average particle size of the inorganic particles 30 is too large and the specific surface area of the inorganic particles 30 is decreased, so that the reaction rate of the endothermic reaction may be decreased.
  • a specific material for obtaining the above effect is preferably an inorganic hydrate capable of releasing moisture at a relatively high temperature, and more specifically, an inorganic material having a thermal decomposition start temperature of 200 ° C. or higher.
  • a hydrate is preferred. Since the temperature range of the battery cell at the time of abnormality is generally 200 ° C. or higher, by using an inorganic hydrate having a thermal decomposition starting temperature of 200 ° C. or higher, moisture is effectively released at the time of abnormality and heat is released. Can be absorbed.
  • Examples of the inorganic hydrate include aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), calcium hydroxide (Ca (OH) 2 ), and zinc hydroxide (Zn (OH)). 2 ), iron hydroxide (Fe (OH) 2 ), manganese hydroxide (Mn (OH) 2 ), zirconium hydroxide (Zr (OH) 2 ), gallium hydroxide (Ga (OH) 3 ) and the like. . These inorganic hydrates may be used alone or in combination of two or more.
  • the thermal decomposition start temperature of aluminum hydroxide is about 200 ° C.
  • the thermal decomposition start temperature of magnesium hydroxide is about 330 ° C.
  • the thermal decomposition start temperature of calcium hydroxide is about 580 ° C.
  • zinc hydroxide The thermal decomposition start temperature of iron hydroxide is about 200 ° C.
  • the thermal decomposition start temperature of iron hydroxide is about 350 ° C.
  • the thermal decomposition start temperature of manganese hydroxide is about 300 ° C.
  • the thermal decomposition start temperature of zirconium hydroxide is about 300 ° C.
  • the battery cell 50 whose temperature has risen can be cooled in a wide temperature range, and the heat between the battery cells 50 during thermal runaway can be reduced. Propagation can be effectively suppressed, which is preferable.
  • the aluminum hydroxide has about 35% water of crystallization.
  • the water of crystallization is released at the time of thermal decomposition, thereby providing a flame extinguishing function (endothermic reaction). It can be demonstrated. 2Al (OH) 3 ⁇ Al 2 O 3 + 3H 2 O With this function, high-temperature heat generated in the battery cell 50 can be absorbed, and the amount of heat generated by the battery cell 50 can be reduced.
  • an inorganic hydrate having a thermal decomposition temperature of 200 ° C. or higher such as aluminum hydroxide
  • a dehydration reaction endothermic reaction
  • the thermal decomposition start temperature is lower (thermal decomposition start temperature: about 200 ° C.) among the inorganic hydrates, the initial stage at the time of abnormality (relatively lower temperature) Therefore, it is preferable because the battery cell 50 can be cooled.
  • a preferable upper limit is 90% by mass and a more preferable upper limit is 65% by mass with respect to the total mass of the materials constituting the heat transfer suppression layer 20.
  • this compounding quantity exceeds 90 mass%, there exists a possibility that sufficient intensity
  • a dehydrating agent that can be dehydrated at a temperature of 150 ° C. or lower is also preferable to use as a material that releases moisture by heating.
  • a dehydrating agent that can be dehydrated in a temperature range from normal temperature (about 20 ° C.) to a maximum of about 150 ° C., which is the temperature range of the battery cell 50 during normal use the temperature of the battery cell 50 is compared during normal use. When the temperature rises at a low temperature, the dehydrating agent releases moisture, so that the battery cell 50 can be effectively cooled during normal use.
  • Specific materials for obtaining the above-mentioned effects include, for example, a water adsorbent such as silica gel, activated alumina, activated carbon, zeolite, ion exchange resin, or sulfate hydrate, sulfite hydrate, phosphate water. Examples thereof include hydrates, nitrate hydrates, acetate hydrates, metal hydrates, and the like. These dehydrating agents may be used alone or in combination of two or more.
  • sulfate hydrate for example, ammonium aluminum sulfate 12 hydrate, sodium aluminum sulfate 12 hydrate, aluminum sulfate 27 hydrate, aluminum sulfate 18 hydrate, aluminum sulfate 16 hydrate, aluminum sulfate Decahydrate, aluminum sulfate hexahydrate, potassium aluminum sulfate 12 hydrate, iron sulfate heptahydrate, iron sulfate 9 hydrate, potassium iron sulfate 12 hydrate, magnesium sulfate heptahydrate, sulfuric acid
  • examples thereof include sodium decahydrate, nickel sulfate hexahydrate, zinc sulfate heptahydrate, beryllium sulfate tetrahydrate, zirconium sulfate tetrahydrate.
  • Examples of the sulfite hydrate include zinc sulfite dihydrate and sodium sulfite heptahydrate.
  • Examples of phosphate hydrates include aluminum phosphate dihydrate, cobalt phosphate octahydrate, magnesium phosphate octahydrate, magnesium ammonium phosphate hexahydrate, and magnesium hydrogen phosphate trihydrate. Products, magnesium hydrogen phosphate heptahydrate, zinc phosphate tetrahydrate, zinc dihydrogen phosphate dihydrate, and the like.
  • nitrate hydrates include aluminum nitrate nonahydrate, zinc nitrate hexahydrate, calcium nitrate tetrahydrate, cobalt nitrate hexahydrate, bismuth nitrate pentahydrate, zirconium nitrate pentahydrate. Cerium nitrate hexahydrate, iron nitrate hexahydrate, iron nitrate nonahydrate, nickel nitrate hexahydrate, magnesium nitrate hexahydrate and the like. Examples of acetate hydrates include zinc acetate dihydrate and cobalt acetate tetrahydrate.
  • metal hydrate salts include chloride salts such as cobalt chloride hexahydrate and iron chloride tetrahydrate, borax (sodium tetraborate pentahydrate, sodium tetraborate decahydrate), Examples thereof include borates such as disodium octaborate tetrahydrate and zinc borate 3.5 hydrate.
  • zeolite is not particularly limited, and examples thereof include ⁇ -type zeolite, Y-type zeolite, ferrierite, ZSM-5-type zeolite, mordenite, forgesite, zeolite A, and zeolite L.
  • Zeolite is an aluminosilicate having a three-dimensional network structure. Since zeolite that adsorbs moisture is stably present, moisture and the like are usually adsorbed in the gaps of the three-dimensional network structure under normal temperature conditions. However, when heat above a certain temperature is applied, the moisture adsorbed on the zeolite is desorbed from the zeolite. However, since the zeolite that does not adsorb moisture is unstable, the dehydrated zeolite has a high adsorption action, and therefore adsorbs moisture again after the temperature decreases.
  • a dehydrating agent that can be dehydrated at a temperature of 150 ° C. or less such as zeolite, greatly overlaps the temperature rise and temperature range of the surface of the battery cell 50 when performing a charge / discharge cycle. As the temperature rises by 50, the battery cell 50 can be effectively cooled by releasing moisture.
  • a preferable upper limit is 90 mass% with respect to the total mass of the material which comprises the heat transfer suppression layer 20, and a more preferable upper limit is 65 mass%.
  • the preferable minimum of the compounding quantity of a dehydrating agent is 10 mass%, and a more preferable minimum is 35 mass%. If the amount is less than 10% by mass, sufficient dehydration effect may not be obtained. Moreover, when this compounding quantity exceeds 90 mass%, there exists a possibility that sufficient intensity
  • the inorganic hydrate having a thermal decomposition starting temperature of 200 ° C. or higher and the dehydrating agent that can be dehydrated at a temperature of 150 ° C. or lower as described above may be used alone, but these may be used in combination. preferable.
  • the groove portion 22 having the concavo-convex shape 24 on the surface thereof is formed in the heat transfer suppression layer 20 to further exhibit the effect of achieving both heat transfer suppression during an abnormality and cooling during normal use.
  • Can do That is, in addition to coexistence of the above problems from the structural surface in the heat transfer suppression layer 20 having the groove portion 22, coexistence of the above problems from the material surface by using a material that exhibits endothermic action at the time of abnormality and normal use in combination. Can also be achieved.
  • the heat transfer suppression layer 20 may contain inorganic fibers or pulp fibers for the purpose of improving the strength at the time of molding.
  • the inorganic fiber examples include silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkaline earth silicate fiber, glass fiber, zirconia fiber, and potassium titanate whisker fiber. These inorganic fibers are preferable in terms of heat resistance, strength, availability, and the like. An inorganic fiber may be used independently and may be used in combination of 2 or more types. Of the inorganic fibers, silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkali earth silicate fiber, and glass fiber are particularly preferable from the viewpoint of handleability.
  • the cross-sectional shape of the inorganic fiber is not particularly limited, and examples thereof include a circular cross section, a flat cross section, a hollow cross section, a polygonal cross section, and a core-sheath cross section.
  • a modified cross-section fiber having a hollow cross section, a flat cross section or a polygonal cross section can be preferably used because the heat insulation is slightly improved.
  • the preferable lower limit of the average fiber length of the inorganic fibers is 0.1 mm, and the more preferable lower limit is 0.5 mm.
  • the preferable upper limit of the average fiber length of the inorganic fibers is 50 mm, and the more preferable upper limit is 10 mm. If the average fiber length of the inorganic fibers is less than 0.1 mm, the entanglement between the inorganic fibers is difficult to occur, and the mechanical strength of the obtained heat transfer suppression sheet 10 may be reduced.
  • the thickness exceeds 50 mm although the reinforcing effect is obtained, the inorganic fibers cannot be intertwined closely or rounded with only a single inorganic fiber. There is a risk of lowering.
  • the preferable lower limit of the average fiber diameter of the inorganic fibers is 1 ⁇ m, the more preferable lower limit is 2 ⁇ m, and the still more preferable lower limit is 3 ⁇ m.
  • the preferable upper limit of the average fiber diameter of the inorganic fibers is 10 ⁇ m, and the more preferable upper limit is 7 ⁇ m.
  • the mechanical strength of inorganic fiber itself may fall that the average fiber diameter of inorganic fiber is less than 1 micrometer.
  • the average fiber diameter of the inorganic fibers is preferably 3 ⁇ m or more.
  • the average fiber diameter of the inorganic fibers is larger than 10 ⁇ m, solid heat transfer using the inorganic fibers as a medium may increase, leading to a decrease in heat insulation, and the formability of the heat transfer suppressing sheet 10 may be deteriorated. There is a fear.
  • These inorganic fibers and pulp fibers can be used as necessary in the range of 10 to 70% by mass with respect to the total weight of the materials constituting the heat transfer suppressing layer 20.
  • An organic binder may be used as necessary as a material constituting the heat transfer suppression layer 20.
  • the organic binder is useful for the purpose of improving the strength at the time of molding, and for example, a polymer flocculant or an acrylic emulsion can be suitably used.
  • the organic binder can be used as necessary in the range of 0.5 to 5.0 mass% with respect to the total weight of the materials constituting the heat transfer suppressing layer 20.
  • the thickness of the heat transfer suppression sheet 10 is not particularly limited, but is preferably in the range of 0.05 to 5 mm. If the thickness of the heat transfer suppression sheet 10 is less than 0.05 mm, sufficient mechanical strength cannot be imparted to the heat transfer suppression sheet 10. On the other hand, if the thickness of the heat transfer suppression sheet 10 exceeds 5 mm, it may be difficult to form the heat transfer suppression sheet 10 itself.
  • the moisture adsorption amount is high even at a relatively high temperature (about 100 ° C. to 150 ° C.) among the above dehydrating agents.
  • a combination of zeolite and aluminum hydroxide having a lower thermal decomposition starting temperature (thermal decomposition starting temperature: about 200 ° C.) among the inorganic hydrates is preferable. This is preferable because the battery cell 50 can be effectively cooled even in a boundary temperature range (about 150 ° C. to 200 ° C.) between the temperature range during normal use and the temperature range during abnormal operation.
  • the heat transfer suppression layer 20 plays a role as a heat insulating layer
  • the heat transfer suppression layer 20 only needs to include at least one of inorganic particles and inorganic fibers. By including, the effect as a heat insulating material can be exhibited.
  • the inclusion of both inorganic particles and inorganic fibers enables the inorganic particles to divide continuous voids in the structure formed by the entanglement of the inorganic fibers, so that the convective heat transfer in the heat transfer suppression layer 20 is effectively performed. It becomes possible to reduce, and the heat insulation effect can be exhibited more effectively.
  • the inorganic fiber examples include silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkaline earth silicate fiber, glass fiber, zirconia fiber, and potassium titanate whisker fiber. These inorganic fibers are preferable in terms of heat resistance, strength, availability, and the like.
  • the said inorganic fiber may be used independently and may be used in combination of 2 or more types.
  • silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkali earth silicate fiber, and glass fiber are particularly preferable from the viewpoint of handleability.
  • the cross-sectional shape of the inorganic fiber is not particularly limited, and examples thereof include a circular cross section, a flat cross section, a hollow cross section, a polygonal cross section, and a core-sheath cross section.
  • a modified cross-section fiber having a hollow cross section, a flat cross section or a polygonal cross section can be preferably used because the heat insulation is slightly improved.
  • the preferable lower limit of the average fiber length of the inorganic fibers is 0.1 mm, and the more preferable lower limit is 0.5 mm.
  • the preferable upper limit of the average fiber length of the inorganic fibers is 50 mm, and the more preferable upper limit is 10 mm. If the average fiber length of the inorganic fibers is less than 0.1 mm, the entanglement between the inorganic fibers is difficult to occur, and the mechanical strength of the obtained heat transfer suppression sheet 10 may be reduced.
  • the thickness exceeds 50 mm although the reinforcing effect is obtained, the inorganic fibers cannot be intertwined closely or rounded with only a single inorganic fiber. There is a risk of lowering.
  • the preferable lower limit of the average fiber diameter of the inorganic fibers is 1 ⁇ m, the more preferable lower limit is 2 ⁇ m, and the still more preferable lower limit is 3 ⁇ m.
  • the preferable upper limit of the average fiber diameter of the inorganic fibers is 10 ⁇ m, and the more preferable upper limit is 7 ⁇ m.
  • the mechanical strength of inorganic fiber itself may fall that the average fiber diameter of inorganic fiber is less than 1 micrometer.
  • the average fiber diameter of the inorganic fibers is preferably 3 ⁇ m or more.
  • the average fiber diameter of the inorganic fibers is larger than 10 ⁇ m, solid heat transfer using the inorganic fibers as a medium may increase, leading to a decrease in heat insulation, and the formability of the heat transfer suppressing sheet 10 may be deteriorated. There is a fear.
  • examples of the inorganic particles include TiO 2 powder, SiO 2 powder, BaTiO 3 powder, PbS powder, ZrO 2 powder, SiC powder, NaF powder, and LiF powder. These inorganic particles may be used alone or in combination of two or more.
  • preferred combinations include a combination of TiO 2 powder and SiO 2 powder, a combination of TiO 2 powder and BaTiO 3 powder, a combination of SiO 2 powder and BaTiO 3 powder, or TiO combination of 2 powder and SiO 2 powder and BaTiO 3 powder.
  • TiO 2 powder has a high refractive index with respect to infrared rays, and has an effect of improving heat insulation in a high temperature range.
  • SiO 2 powder has a low solid thermal conductivity and is easy to form fine voids with fine particles, convection is suppressed and there is an effect of improving heat insulation in a low temperature region. Therefore, when TiO 2 powder and SiO 2 powder are used in combination, heat insulation in a wide temperature range from a low temperature range to a high temperature range can be expected, and these combinations are particularly preferable.
  • the preferred upper limit of the amount of inorganic fibers is 50 masses with respect to the total weight of the materials constituting the heat transfer suppression layer 20 %, And a more preferable upper limit is 40% by mass.
  • a preferable lower limit of the blending amount of the inorganic fibers is 5% by mass, and a more preferable lower limit is 10% by mass. If the blending amount is less than 5% by mass, the reinforcing effect by the inorganic fibers cannot be obtained, the handleability and mechanical strength of the heat transfer suppression layer 20 may be lowered, and good moldability may not be obtained. There is.
  • the blending amount exceeds 50% by mass, there are many continuous voids in the structure in which the inorganic fibers constituting the heat transfer suppression layer 20 are intertwined, and convection heat transfer, molecular heat transfer, radiation heat transfer. Increases the heat insulation properties.
  • the preferred upper limit of the amount of inorganic particles is 95 mass with respect to the total weight of the materials constituting the heat transfer suppression layer 20. %, And a more preferable upper limit is 90% by mass.
  • the preferable minimum of the compounding quantity of an inorganic particle is 50 mass%, and a more preferable minimum is 60 mass%.
  • the preferable lower limit of the average particle diameter of the inorganic particles is 0.5 ⁇ m, and the more preferable lower limit is 1 ⁇ m.
  • the preferable upper limit of the average particle size of the inorganic particles is 20 ⁇ m, and the more preferable upper limit is 10 ⁇ m. If the average particle size of the inorganic particles is less than 0.5 ⁇ m, not only the heat transfer suppression layer 20 is difficult to manufacture, but also the radiation heat scattering becomes insufficient, and the thermal conductivity of the heat transfer suppression layer 20 increases (ie, , There is a risk that the heat insulation will be reduced).
  • the shape of the inorganic particles is not particularly limited as long as the average particle diameter is in the above range, and examples thereof include spheres, ellipsoids, polyhedrons, shapes having irregularities and protrusions on the surface, and irregular shapes. Can be mentioned.
  • the ratio of the refractive index to light having a wavelength of 1 ⁇ m or more is preferably 1.25 or more.
  • the inorganic particles have a very important role as a radiant heat scattering material, and the larger the refractive index, the more effectively the radiant heat can be scattered.
  • the relative refractive index is extremely important for the suppression of phonon conduction, and the larger the value, the better the suppression effect.
  • a substance having a lattice defect in a crystal or a substance having a complicated structure is generally known. Since TiO 2 , SiO 2 , and BaTiO 3 described above are likely to have lattice defects and have a complicated structure, it is considered effective not only for radiant heat scattering but also for phonon scattering.
  • inorganic particles having a reflectance of 70% or more for light having a wavelength of 10 ⁇ m or more can be suitably used as the inorganic particles.
  • the light with a wavelength of 10 ⁇ m or more is light in the so-called infrared to far-infrared wavelength region, and the reflectance for light in this wavelength region is 70% or more, so that radiant heat transfer can be reduced more effectively.
  • the solid particles preferably have a solid thermal conductivity of 20 W / m ⁇ K or less at room temperature.
  • the solid heat transfer becomes dominant in the heat transfer suppression layer 20 and the thermal conductivity is increased (decreasing heat insulation). There is a risk of it.
  • the inorganic fiber refers to an inorganic material having an aspect ratio of 3 or more.
  • the inorganic particles refer to inorganic materials having an aspect ratio of less than 3.
  • the aspect ratio means the ratio (b / a) of the major axis b to the minor axis a of the substance.
  • the heat transfer suppression layer 20 may contain an inorganic binder for the purpose of maintaining strength at high temperatures.
  • examples of the inorganic binder include colloidal silica, synthetic mica, and montmorillonite.
  • An inorganic binder may be used independently and may be used in combination of 2 or more types.
  • This inorganic binder can be used as necessary in the range of 1 to 10% by mass with respect to the total weight of the constituent materials of the heat transfer suppressing layer 20.
  • As a usage mode of the inorganic binder for example, it can be used by mixing in a raw material or impregnating the obtained heat insulating material.
  • an organic elastic substance may be used as a constituent material of the heat transfer suppression layer 20 as necessary.
  • This organic elastic material is useful in the case where the heat transfer suppressing layer 20 is made flexible.
  • natural rubber emulsion, synthetic rubber latex binder such as acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), etc. It can be preferably used.
  • NBR acrylonitrile butadiene rubber
  • SBR styrene butadiene rubber
  • the flexibility can be improved by using the organic elastic material.
  • the blending amount of the organic elastic substance is preferably in the range of 0 to 5% by mass with respect to the total weight of the constituent materials of the heat transfer suppression layer 20.
  • the organic elastic material exceeds 5% by mass, the organic elastic material is burnt down when used in a high temperature range of 700 ° C. or more, and the voids are remarkably increased. is there.
  • the thickness of the heat transfer suppression layer 20 is not particularly limited, but is preferably in the range of 0.1 to 4.0 mm. If the thickness of the heat transfer suppression layer 20 is less than 0.1 mm, sufficient mechanical strength cannot be imparted to the heat transfer suppression layer 20. On the other hand, if the thickness of the heat transfer suppression layer 20 exceeds 4.0 mm, the volume energy density of the assembled battery may be reduced.
  • the inorganic particles constituting the heat transfer suppressing layer 20 do not easily escape to the outside of the heat transfer suppressing layer 20, but a part or all of the heat transfer suppressing layer 20 is necessary for the purpose of preventing the inorganic particles from escaping. May be densified.
  • the inorganic particles constituting the heat transfer suppression layer 20 are included in a structure in which inorganic fibers are entangled, they do not easily escape from between the inorganic fibers. However, depending on the usage environment, a strong impact or the like may be applied to the heat transfer suppression layer 20 and the inorganic particles may escape into the air. Therefore, the structure of the inorganic fibers in the portion including the inorganic particles is densified, The inorganic particles may be prevented from escaping.
  • Examples of a method for densifying the heat transfer suppression layer 20 include a method of heating so as to melt only the surface of the entangled structure of inorganic fibers, and a method of covering the surface of the heat transfer suppression layer 20 with a heat resistant film or the like.
  • a method for densifying the heat transfer suppression layer 20 includes a method of heating so as to melt only the surface of the entangled structure of inorganic fibers, and a method of covering the surface of the heat transfer suppression layer 20 with a heat resistant film or the like.
  • the bulk density of the heat transfer suppression layer 20 is not particularly limited, but is preferably in the range of 0.1 to 1.0 g / cm 3 .
  • the bulk density can be obtained as a value obtained by dividing the mass by the apparent volume (see JIS A0202_2213).
  • the bulk density is less than 0.1 g / cm 3 , convective heat transfer and molecular heat transfer increase, while when the bulk density exceeds 1.0 g / cm 3 , the solid heat transfer increases and the thermal conductivity increases. In either case, the heat insulating properties are reduced.
  • 2nd Embodiment is a case where a heat transfer suppression sheet
  • seat is a multilayer (laminated body).
  • FIG. 5 is a diagram schematically showing a configuration example of the assembled battery heat transfer suppression sheet 10 according to the second embodiment of the present invention.
  • the heat transfer suppression layer 20 includes a heat insulating layer 42 having inorganic particles and / or inorganic fibers, and an endothermic material containing a material that releases moisture by heating. It is composed of layer 44.
  • the material (specifically, the above-mentioned inorganic hydrate or dehydrating agent) that releases moisture in the heat absorbing layer 44 that is the outer layer is heated by the heat generated in a certain battery cell 50. Then, the material releases moisture while absorbing the heat. Due to this endothermic effect, the amount of heat generated by the battery cell 50 can be effectively reduced. And the propagation of the heat between the battery cells 50 can be effectively suppressed by the heat insulation layer 42 which is an intermediate
  • the groove portion 22 is provided in the heat absorption layer 44 which is the outer layer, and the surface of the groove portion 22 has an uneven shape 24 (not shown in FIG. 5). Therefore, the battery cell 50 can be cooled during normal use. Furthermore, as described above, since the endothermic layer 44 has the groove portion 22 having the concavo-convex shape 24 on the surface, it is possible to secure a large area from which moisture can be released from the endothermic layer 44 when the heat is absorbed. The function as the layer 44 can be further exhibited.
  • the same material as that described in the first embodiment can be applied.
  • the heat transfer suppression layer 20 constituting the heat transfer suppression sheet 10 is manufactured by molding a material composed of at least inorganic particles or inorganic fibers by a dry molding method or a wet molding method. Below, the manufacturing method in the case of obtaining the heat-transfer suppression layer 20 by each shaping
  • inorganic particles and / or inorganic fibers and, if necessary, inorganic binders, pulp fibers, organic binders and the like are charged into a mixer such as a V-type mixer in a predetermined ratio. After thoroughly mixing the materials charged in the mixer, the mixture is charged into a predetermined mold and pressed to obtain the heat transfer suppressing layer 20. You may heat as needed at the time of a press.
  • the press pressure is preferably in the range of 0.98 to 9.80 MPa. If the press pressure is less than 0.98 MPa, the resulting heat transfer suppression layer 20 may not be able to maintain strength and may collapse. On the other hand, when the press pressure exceeds 9.80 MPa, workability may be reduced due to excessive compression, and further, the bulk density may be increased, so that solid heat transfer may increase and heat insulation may be deteriorated.
  • inorganic particles and / or inorganic fibers, and if necessary, inorganic binders, pulp fibers, organic binders and the like are mixed and stirred in water to be sufficiently dispersed, and then a flocculant is added.
  • a flocculant is added.
  • an emulsion of an organic elastic substance or the like is added to the water within a predetermined range, and then a polymer flocculant is added to obtain a slurry containing aggregates.
  • a slurry containing the agglomerates is put into a predetermined mold to obtain a wet heat transfer suppressing layer 20.
  • the intended heat transfer suppression layer 20 is obtained by drying the obtained heat transfer suppression layer 20.
  • the heat transfer suppressing layer 20 can be obtained by either a dry molding method or a wet molding method, but it is preferable to use a wet molding method in terms of ease of integral molding and mechanical strength.
  • the heat insulating layer 42 and the heat absorbing layer 44 are respectively described above. Then, the heat insulating layer 42 and the endothermic layer 44 can be manufactured by a pressure press in a wet state, a method of bonding using an adhesive after drying these members, or the like.
  • ⁇ Groove formation in heat transfer suppression layer> A method for forming the groove 22 in the heat transfer suppression layer 20 obtained above will be described.
  • the groove portions 22 are formed on both surfaces by sandwiching two embossed rollers 72 having a desired emboss shape from above and below and forming the groove portions 22 on both surfaces of the heat transfer suppression layer 20.
  • the heat transfer suppressing sheet 10 can be obtained.
  • the embossing roller 72 and the flat roller 74 can be used.
  • the heat transfer in which the groove 22 is formed can also be performed by pressing the heat transfer suppressing layer 20 between the press working jig 82 having a desired shape and the pedestal 84.
  • the suppression sheet 10 can be obtained.
  • FIG. 8 by forming a desired groove 22 on the surface of the heat transfer suppression layer 20 by processing using an end mill 90, the heat transfer suppression sheet 10 in which the groove 22 is formed can be obtained. it can.
  • the heat transfer suppression layer 20 contains inorganic particles and / or inorganic fibers, the surface of the groove 22 has a fine uneven shape 24. The effects as described above can be obtained.
  • Heat Transfer Suppression Sheet for Battery Assembly 20 Heat Transfer Suppression Layer 22 Groove 24 Uneven Shape 26 End Face (One End Face) 28 End faces (other end faces) 30 Inorganic particles (or inorganic fibers) 42 heat insulation layer 44 endothermic layer 50 battery cell 60 battery case 72 emboss roller 74 flat roller 82 press jig 84 pedestal 90 end mill 100 assembled battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

A heat transfer suppression sheet for a battery pack is provided with which, when the battery pack is constituted from a plurality of battery cells connected in series or in parallel, it is possible to effectively cool the battery cells during normal use, while suppressing the propagation of heat among the battery cells during abnormal use. A heat transfer suppression sheet used in a battery pack in which a plurality of battery cells is disposed with the heat transfer suppression sheet interposed therebetween, the plurality of battery cells being connected in series or in parallel, wherein the heat transfer suppression sheet is characterized by having a heat transfer suppression layer containing inorganic particles and or inorganic fibers, and having a grooved section communicating with the end faces in the in-plane direction of the heat transfer suppression layer, the surface of the grooved section having a concave/convex shape.

Description

組電池用熱伝達抑制シートおよび組電池Heat transfer suppression sheet for assembled battery and assembled battery
 本発明は、例えば、電気自動車またはハイブリッド車などを駆動する電動モータの電源となる組電池に好適に用いられる組電池用熱伝達抑制シートに関する。 The present invention relates to an assembled battery heat transfer suppression sheet that is preferably used for an assembled battery that serves as a power source for an electric motor that drives an electric vehicle or a hybrid vehicle, for example.
 近年、環境保護の観点から電動モータで駆動する電気自動車またはハイブリッド車などの開発が盛んに進められている。この電気自動車またはハイブリッド車などには、駆動用電動モータの電源となるための、複数の電池セルが直列または並列に接続された組電池が搭載されている。 In recent years, development of electric vehicles or hybrid vehicles driven by electric motors has been actively promoted from the viewpoint of environmental protection. In this electric vehicle or hybrid vehicle, an assembled battery in which a plurality of battery cells are connected in series or in parallel to serve as a power source for a driving electric motor is mounted.
 この電池セルには、鉛蓄電池やニッケル水素電池などに比べて、高容量かつ高出力が可能なリチウムイオン二次電池が主に用いられているが、電池の内部短絡や過充電などが原因で1つの電池セルに熱暴走が生じた場合(すなわち、異常時)、隣接する他の電池セルへ熱の伝播が起こることで、他の電池セルの熱暴走を引き起こすおそれがある。 Compared to lead-acid batteries and nickel-metal hydride batteries, this battery cell mainly uses lithium-ion secondary batteries capable of high capacity and high output, but due to internal short circuit or overcharge of the batteries. When a thermal runaway occurs in one battery cell (that is, in an abnormal state), heat may propagate to other adjacent battery cells, which may cause thermal runaway of other battery cells.
 上記のような熱暴走の伝播を抑制するための技術として、特許文献1には、1以上の蓄電素子のうちの1つである第一蓄電素子の側方に配置された第一板材および第二板材であって、互いの面が対向するように配置された第一板材および第二板材を備え、第一板材と第二板材との間には、第一板材および第二板材よりも熱伝導率の低い物質の層である低熱伝導層(例えば、空気層)が形成された蓄電装置により、蓄電素子と他の物体との間の効果的な断熱を実現することができる旨が開示されている。 As a technique for suppressing the propagation of the thermal runaway as described above, Patent Document 1 discloses a first plate member disposed on the side of a first power storage element that is one of one or more power storage elements, and a first plate material. A first plate member and a second plate member disposed so that the surfaces of the two plate members are opposed to each other, between the first plate member and the second plate member, more heat than the first plate member and the second plate member; It is disclosed that an effective heat insulation between a power storage element and another object can be realized by a power storage device in which a low thermal conductive layer (for example, an air layer) that is a layer of a material having low conductivity is formed. ing.
 また、熱暴走の伝播を抑制するための他の技術として、特許文献2には、断熱緩衝部材が、積み重ねられた電池セルの間に配置されることで、複数個の電池セルのうち1つの電池セルに熱的な異常が発生した場合においても、電池セル間では熱的に絶縁を図ることができ、他の電池セルに熱的な異常が連鎖するという現象を抑制することができる旨が開示されている。 In addition, as another technique for suppressing the propagation of thermal runaway, Patent Document 2 discloses that a heat insulating buffer member is disposed between stacked battery cells, so that one of a plurality of battery cells is disposed. Even when a thermal abnormality occurs in the battery cells, thermal insulation can be achieved between the battery cells, and the phenomenon that the thermal abnormality is chained to other battery cells can be suppressed. It is disclosed.
日本国特開2015-211013号公報Japanese Unexamined Patent Publication No. 2015-211013 日本国特開2009-163932号公報Japanese Unexamined Patent Publication No. 2009-163932
 一方、組電池化した電池セルに対し充放電サイクルを行う場合(すなわち、通常使用時)において、電池セルの充放電性能を十分に発揮させるためには、電池セル表面の温度を所定値以下(例えば、150℃以下)に維持する必要がある。 On the other hand, in the case where a charge / discharge cycle is performed on an assembled battery cell (that is, during normal use), in order to fully demonstrate the charge / discharge performance of the battery cell, the temperature of the battery cell surface is a predetermined value or less ( For example, it is necessary to maintain at 150 ° C. or lower.
 しかしながら、特許文献1においては、熱暴走時の熱の伝播抑制のため、複数の電池セル間に単に断熱層を設けるものであるため、通常使用時に発熱する電池セルを効果的に冷却することができなかった。
 また、特許文献2においては、断熱緩衝部材の表面に凹凸を形成することで、電池セル間においては断熱が図れるとともに、電池セルの積層時にはこの溝により通風効果を図ることができるとあるものの、断熱緩衝部材はポリカーボネート樹脂製またはポリプロピレン樹脂製のシートからなるため、このシートに溝を設けた場合、後述するように、通常使用時に発熱する電池セルを冷却するには十分であるとは言えなかった。
However, in Patent Document 1, since a heat insulating layer is simply provided between a plurality of battery cells in order to suppress heat propagation during thermal runaway, it is possible to effectively cool battery cells that generate heat during normal use. could not.
Further, in Patent Document 2, by forming irregularities on the surface of the heat insulating buffer member, heat insulation can be achieved between the battery cells, and at the time of stacking the battery cells, there can be a ventilation effect by this groove, Since the heat insulating cushioning member is made of a sheet made of polycarbonate resin or polypropylene resin, when a groove is provided in this sheet, it cannot be said that it is sufficient to cool battery cells that generate heat during normal use, as will be described later. It was.
 本発明は、このような事情に着目してなされたものであり、複数の電池セルが直列または並列に接続された組電池を構成するに当たり、異常時における電池セル間の熱の伝播を抑制しつつ、通常使用時における電池セルを効果的に冷却することのできる、組電池用熱伝達抑制シートを提供することを目的とする。 The present invention has been made paying attention to such a situation, and suppresses the propagation of heat between the battery cells at the time of abnormality in constituting an assembled battery in which a plurality of battery cells are connected in series or in parallel. However, it aims at providing the heat transfer suppression sheet | seat for assembled batteries which can cool the battery cell at the time of normal use effectively.
 上記目的を達成するため、本発明の一態様に係る組電池用熱伝達抑制シートの要旨は、複数の電池セルが熱伝達抑制シートを介して配置され、該複数の電池セルが直列または並列に接続された組電池に用いられる熱伝達抑制シートであって、無機粒子及び/または無機繊維を含有する熱伝達抑制層を有するとともに、前記熱伝達抑制層は、該熱伝達抑制層における面内方向の端面まで連通する溝部を有しており、前記溝部の表面が凹凸形状を有することを特徴とする。 In order to achieve the above object, the summary of the heat transfer suppression sheet for assembled batteries according to one aspect of the present invention is that a plurality of battery cells are arranged via a heat transfer suppression sheet, and the plurality of battery cells are connected in series or in parallel. A heat transfer suppression sheet used for a connected assembled battery, having a heat transfer suppression layer containing inorganic particles and / or inorganic fibers, wherein the heat transfer suppression layer is in an in-plane direction of the heat transfer suppression layer It has the groove part connected to this end surface, The surface of the said groove part has uneven | corrugated shape, It is characterized by the above-mentioned.
 上記組電池用熱伝達抑制シートにおける好ましい実施形態において、前記溝部は、一の前記端面と他の前記端面を連通する。
 上記組電池用熱伝達抑制シートにおける好ましい実施形態において、前記熱伝達抑制層は、平面視における外形形状が四角形であり、前記溝部は、4つの前記端面のうち、隣接する2つの前記端面を連通する。
In a preferred embodiment of the assembled battery heat transfer suppression sheet, the groove portion communicates one end surface with the other end surface.
In a preferred embodiment of the assembled battery heat transfer suppressing sheet, the heat transfer suppressing layer has a quadrangular outer shape in plan view, and the groove portion communicates two adjacent end surfaces among the four end surfaces. To do.
 上記組電池用熱伝達抑制シートにおける好ましい実施形態において、前記熱伝達抑制層は、前記無機粒子を必須として含有し、前記無機粒子は、加熱により水分を放出する材料から構成される。
 上記組電池用熱伝達抑制シートにおける好ましい実施形態において、前記加熱により水分を放出する材料は、熱分解開始温度が200℃以上の無機水和物、及び/または、150℃以下の温度で脱水可能な脱水剤である。
 上記組電池用熱伝達抑制シートにおける好ましい実施形態において、前記水分を放出する材料は、前記無機水和物を必須として含有し、前記無機水和物は、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化亜鉛、水酸化鉄、水酸化マンガン、水酸化ジルコニウムおよび水酸化ガリウムからなる群のうち少なくとも1つである。
 上記組電池用熱伝達抑制シートにおける好ましい実施形態において、前記水分を放出する材料は、前記脱水剤を必須として含有し、前記脱水剤は、シリカゲル、活性アルミナ、活性炭、ゼオライト、イオン交換樹脂、硫酸塩水和物、亜硫酸塩水和物、リン酸塩水和物、硝酸塩水和物、酢酸塩水和物および金属水和塩からなる群のうち少なくとも1つである。
In a preferred embodiment of the assembled battery heat transfer suppressing sheet, the heat transfer suppressing layer contains the inorganic particles as an essential component, and the inorganic particles are made of a material that releases moisture by heating.
In a preferred embodiment of the heat transfer suppressing sheet for assembled batteries, the material that releases moisture by heating can be dehydrated at an inorganic hydrate having a thermal decomposition starting temperature of 200 ° C. or higher and / or a temperature of 150 ° C. or lower. A dehydrating agent.
In a preferred embodiment of the assembled battery heat transfer suppression sheet, the water-releasing material contains the inorganic hydrate as an essential component, and the inorganic hydrate includes aluminum hydroxide, magnesium hydroxide, hydroxide. It is at least one selected from the group consisting of calcium, zinc hydroxide, iron hydroxide, manganese hydroxide, zirconium hydroxide and gallium hydroxide.
In a preferred embodiment of the assembled battery heat transfer suppression sheet, the moisture releasing material contains the dehydrating agent as an essential component, and the dehydrating agent includes silica gel, activated alumina, activated carbon, zeolite, ion exchange resin, sulfuric acid. It is at least one of the group consisting of salt hydrate, sulfite hydrate, phosphate hydrate, nitrate hydrate, acetate hydrate and metal hydrate.
 上記組電池用熱伝達抑制シートにおける好ましい実施形態において、前記熱伝達抑制層は、前記無機繊維を必須として含有し、前記無機繊維は、シリカ-アルミナ繊維、アルミナ繊維、シリカ繊維、ロックウール、アルカリアースシリケート繊維およびガラス繊維からなる群のうち少なくとも1つである。
 上記組電池用熱伝達抑制シートにおける好ましい実施形態において、前記熱伝達抑制層は、前記無機粒子を必須として含有し、前記無機粒子は、TiOおよびSiOからなる群のうち少なくとも1つである。
In a preferred embodiment of the assembled battery heat transfer suppressing sheet, the heat transfer suppressing layer contains the inorganic fiber as an essential component, and the inorganic fiber includes silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkali. It is at least one selected from the group consisting of earth silicate fibers and glass fibers.
In a preferred embodiment of the assembled battery heat transfer suppression sheet, the heat transfer suppression layer contains the inorganic particles as an essential component, and the inorganic particles are at least one of the group consisting of TiO 2 and SiO 2. .
 上記組電池用熱伝達抑制シートにおける好ましい実施形態において、前記熱伝達抑制層は、前記無機粒子及び/または前記無機繊維を含有する断熱層と、該断熱層の両面に形成され、前記加熱により水分を放出する材料を含有する吸熱層を有する。 In a preferred embodiment of the assembled battery heat transfer suppressing sheet, the heat transfer suppressing layer is formed on both surfaces of the heat insulating layer containing the inorganic particles and / or the inorganic fibers and the heat insulating layer. A heat-absorbing layer containing a material that emits heat.
 また、本発明の一態様に係る組電池の要旨は、複数の電池セルが、上記の組電池用熱伝達抑制シートを介して配置され、該複数の電池セルが直列または並列に接続されたことを特徴とする。 The gist of the assembled battery according to one embodiment of the present invention is that a plurality of battery cells are arranged via the above-described assembled battery heat transfer suppression sheet, and the plurality of battery cells are connected in series or in parallel. It is characterized by.
 本発明に係る組電池用熱伝達抑制シートによれば、複数の電池セルが直列または並列に接続された組電池を構成するに当たり、異常時における電池セル間の熱の伝播を抑制しつつ、通常使用時における電池セルを効果的に冷却することのできる、組電池用熱伝達抑制シートを提供することができる。 According to the heat transfer suppression sheet for an assembled battery according to the present invention, in configuring an assembled battery in which a plurality of battery cells are connected in series or in parallel, while suppressing the propagation of heat between the battery cells during an abnormality, It is possible to provide an assembled battery heat transfer suppressing sheet capable of effectively cooling battery cells during use.
図1は、本発明の第1の実施形態に係る組電池用熱伝達抑制シートの構成例を模式的に示す図であり、熱伝達抑制層が、格子状の溝部を有する場合の例である。FIG. 1 is a diagram schematically illustrating a configuration example of a heat transfer suppression sheet for an assembled battery according to the first embodiment of the present invention, and is an example in a case where the heat transfer suppression layer includes lattice-shaped grooves. . 図2は、図1における溝部の凹凸形状を拡大した図である。FIG. 2 is an enlarged view of the uneven shape of the groove in FIG. 図3Aは、熱伝達抑制層が、角部がR加工された格子状の溝部を有する場合の例を示す図である。FIG. 3A is a diagram illustrating an example in which the heat transfer suppression layer has a lattice-shaped groove portion in which corner portions are R-processed. 図3Bは、熱伝達抑制層が、ラビリンス構造の溝部を有する場合の例を示す図である。FIG. 3B is a diagram illustrating an example in which the heat transfer suppression layer has a groove portion having a labyrinth structure. 図3Cは、熱伝達抑制層が、平面円形状のエンボス構造の溝部を有する場合の例を示す図である。FIG. 3C is a diagram illustrating an example in which the heat transfer suppressing layer has a groove portion having an embossed structure having a planar circular shape. 図3Dは、熱伝達抑制層が、ハニカム構造の溝部を有する場合の例を示す図である。FIG. 3D is a diagram illustrating an example in which the heat transfer suppression layer has a groove portion having a honeycomb structure. 図3Eは、熱伝達抑制層が、四角すい凸形状の溝部を有する場合の例を示す図である。FIG. 3E is a diagram illustrating an example in the case where the heat transfer suppression layer includes a square-convex convex groove. 図3Eは、熱伝達抑制層が、四角すい凹形状の溝部を有する場合の例を示す図である。FIG. 3E is a diagram illustrating an example in which the heat transfer suppression layer has a rectangular concavity groove. 図3Gは、熱伝達抑制層が、波形形状の溝部を有する場合の例を示す図である。FIG. 3G is a diagram illustrating an example in which the heat transfer suppression layer has a corrugated groove. 図4は、本発明の第1の実施形態に係る組電池用熱伝達抑制シートを適用した組電池の構成例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a configuration example of an assembled battery to which the assembled battery heat transfer suppression sheet according to the first embodiment of the present invention is applied. 図5は、本発明の第2の実施形態に係る組電池用熱伝達抑制シートの構成例を模式的に示す図であり、熱伝達抑制層が、断熱層とその両面に形成された吸熱層から構成される場合の例である。FIG. 5 is a diagram schematically illustrating a configuration example of a heat transfer suppression sheet for an assembled battery according to the second embodiment of the present invention, in which a heat transfer suppression layer includes a heat insulating layer and an endothermic layer formed on both surfaces thereof. It is an example in the case of being configured. 図6Aは、2つのエンボスローラーにより、熱伝達抑制層の上下面に溝部を形成する場合の製造例を示す図である。FIG. 6A is a diagram illustrating a manufacturing example in the case where grooves are formed on the upper and lower surfaces of the heat transfer suppression layer by two embossing rollers. 図6Bは、エンボスローラーとフラットローラーにより、熱伝達抑制層の片面に溝部を形成する場合の製造例を示す図である。FIG. 6B is a diagram illustrating a manufacturing example in the case where a groove portion is formed on one surface of a heat transfer suppression layer using an embossing roller and a flat roller. 図7は、プレス加工により、熱伝達抑制層に溝部を形成する場合の製造例を示す図である。FIG. 7 is a diagram illustrating a manufacturing example in the case where a groove is formed in the heat transfer suppression layer by press working. 図8は、エンドミル加工により、熱伝達抑制層に溝部を形成する場合の製造例を示す図である。FIG. 8 is a diagram illustrating a manufacturing example in the case where a groove is formed in the heat transfer suppression layer by end milling.
 本発明者らは、高温の熱が発生する異常時における電池セル間の熱の伝播を抑制しつつ、比較的低温の熱が発生する通常使用時における電池セルを冷却することのできる、組電池用熱伝達抑制シートを提供するため、鋭意検討を行ってきた。 The present inventors have an assembled battery that can cool a battery cell during normal use in which heat at a relatively low temperature is generated while suppressing propagation of heat between the battery cells at an abnormal time in which high-temperature heat is generated. In order to provide heat transfer suppression sheets for automobiles, we have conducted intensive studies.
 その結果、無機粒子及び/または無機繊維を含有する熱伝達抑制層を有するとともに、熱伝達抑制層は、熱伝達抑制層における面内方向の端面まで連通する溝部を有しており、かつ、溝部の表面が凹凸形状を有する熱伝達抑制シートを、電池セル間に介在させることにより、上記課題を解決できることを見出した。 As a result, it has a heat transfer suppression layer containing inorganic particles and / or inorganic fibers, and the heat transfer suppression layer has a groove that communicates with the end surface in the in-plane direction of the heat transfer suppression layer, and the groove It has been found that the above-mentioned problems can be solved by interposing a heat transfer suppression sheet having a concavo-convex shape on the surface between battery cells.
 すなわち、無機粒子及び/または無機繊維を含有する熱伝達抑制層を有することにより、ある電池セルに熱暴走が生じた場合、隣接する他の電池セルへの熱の伝播を効果的に抑制することができる。 That is, by having a heat transfer suppression layer containing inorganic particles and / or inorganic fibers, when thermal runaway occurs in a certain battery cell, it effectively suppresses the propagation of heat to other adjacent battery cells. Can do.
 その一方で、熱伝達抑制層は、熱伝達抑制層における面内方向の端面まで連通する溝部を有しており、上記溝部と隣接する電池セルの間に形成される空間によって、積層された電池セル間に滞留する熱(すなわち、熱伝達抑制層内に滞留する熱)が外へ逃げやすくなるため、通常使用時における電池セルを冷却することができる。 On the other hand, the heat transfer suppression layer has a groove portion that communicates with the end surface in the in-plane direction of the heat transfer suppression layer, and the batteries stacked by the space formed between the groove portion and the adjacent battery cell. Since the heat staying between the cells (that is, the heat staying in the heat transfer suppression layer) easily escapes outside, the battery cell during normal use can be cooled.
 更に、本発明においては、溝部の表面が凹凸形状を有することにより、溝部の表面が凹凸形状を有しない場合に比べて溝部の表面積が増大するため、熱伝達抑制層内に滞留する熱が更に外へ逃げやすくなる。その結果、特許文献2に示すような、表面に凹凸形状を有しない溝部が形成された断熱シートに比べ、通常使用時における電池セルをより効果的に冷却することができる。 Furthermore, in the present invention, since the surface of the groove part has a concavo-convex shape, the surface area of the groove part increases as compared to the case where the surface of the groove part does not have a concavo-convex shape, so that the heat retained in the heat transfer suppression layer is further increased Easier to escape. As a result, the battery cell during normal use can be more effectively cooled as compared to a heat insulating sheet having a groove portion that does not have an uneven shape on the surface as shown in Patent Document 2.
 なお、通常使用時における電池セルの冷却を行うために、発生した熱を外部に逃がすための空間を電池セル間に設けたり、また、異常時における電池セル間の熱の伝播を抑制するための空間を電池セル間に設けたりするものではないため、電池セル間の距離を極端に大きく取る必要がない。このため、熱伝達抑制シート全体の厚さを薄くすること(例えば、5mm以下)も可能となり、結果として、組電池の安全性や電池セルの十分な充放電性能を確保しつつ、組電池の体積エネルギー密度の向上を図ることも可能となる。 In addition, in order to cool the battery cells during normal use, a space for releasing the generated heat to the outside is provided between the battery cells, and also for suppressing the propagation of heat between the battery cells at the time of abnormality. Since no space is provided between the battery cells, it is not necessary to make the distance between the battery cells extremely large. For this reason, it is also possible to reduce the thickness of the entire heat transfer suppressing sheet (for example, 5 mm or less). As a result, while ensuring the safety of the assembled battery and sufficient charge / discharge performance of the battery cell, It is also possible to improve the volume energy density.
 以下、本発明の実施形態(本実施形態)について、図面を参照しつつ詳細に説明する。なお、以下において「~」とは、その下限の値以上、その上限の値以下であることを意味する。 Hereinafter, embodiments (present embodiments) of the present invention will be described in detail with reference to the drawings. In the following, “to” means not less than the lower limit value and not more than the upper limit value.
(第1の実施形態)
 まず、本発明の第1の実施形態に係る組電池用熱伝達抑制シートについて説明する。第1の実施形態は、熱伝達抑制シートが単層の場合である。
(First embodiment)
First, the assembled battery heat transfer suppression sheet according to the first embodiment of the present invention will be described. The first embodiment is a case where the heat transfer suppression sheet is a single layer.
<熱伝達抑制シートの基本構成>
 図1は、第1の実施形態に係る組電池用熱伝達抑制シート10の構成例を模式的に示す断面図である。
 本実施形態に係る熱伝達抑制シート10は、無機粒子及び/または無機繊維を含有する熱伝達抑制層20を有している。また、熱伝達抑制層20は、熱伝達抑制層20の面内方向の端面26、28まで連通する溝部22を有している。なお、本実施形態においては、溝部22は、図1に示すように、格子状に形成された複数の溝を有する。
 更に、図1における溝部22の拡大図に示すように、溝部22の表面は、微細な凹凸形状24を有している。
<Basic configuration of heat transfer suppression sheet>
FIG. 1 is a cross-sectional view schematically showing a configuration example of the assembled battery heat transfer suppression sheet 10 according to the first embodiment.
The heat transfer suppression sheet 10 according to the present embodiment has a heat transfer suppression layer 20 containing inorganic particles and / or inorganic fibers. In addition, the heat transfer suppression layer 20 includes a groove portion 22 that communicates with end surfaces 26 and 28 in the in-plane direction of the heat transfer suppression layer 20. In the present embodiment, the groove 22 has a plurality of grooves formed in a lattice shape as shown in FIG.
Furthermore, as shown in the enlarged view of the groove portion 22 in FIG. 1, the surface of the groove portion 22 has a fine uneven shape 24.
 熱伝達抑制シート10を構成する熱伝達抑制層20は、無機粒子および無機繊維のうち少なくとも一方を含有するため、後述するように、吸熱層または断熱層の役割を担う。そして、複数の電池セル50が積層されて構成される組電池100において、熱伝達抑制シート10が電池セル50間に配置されることで、ある電池セル50に熱暴走が生じた場合、隣接する他の電池セル50への熱の伝播を効果的に抑制することができる。 Since the heat transfer suppressing layer 20 constituting the heat transfer suppressing sheet 10 contains at least one of inorganic particles and inorganic fibers, it plays a role of an endothermic layer or a heat insulating layer as will be described later. And in the assembled battery 100 comprised by the some battery cell 50 laminated | stacked, when the thermal runaway arises in a certain battery cell 50 by arrange | positioning the heat transfer suppression sheet | seat 10 between the battery cells 50, it adjoins. The propagation of heat to other battery cells 50 can be effectively suppressed.
 また、熱伝達抑制層20は、熱伝達抑制層20の面内方向の端面26、28まで連通する溝部22を有するため、溝部22と隣接する電池セル50の間に形成される空間によって、積層された電池セル50間に滞留する熱(すなわち、熱伝達抑制層内に滞留する熱)が外へ逃げやすくなるため、通常使用時における電池セル50を冷却することができる。 Further, since the heat transfer suppression layer 20 has the groove portion 22 that communicates with the end surfaces 26 and 28 in the in-plane direction of the heat transfer suppression layer 20, the heat transfer suppression layer 20 is laminated by a space formed between the groove portion 22 and the adjacent battery cell 50. Since the heat staying between the battery cells 50 (that is, the heat staying in the heat transfer suppressing layer) easily escapes outside, the battery cells 50 can be cooled during normal use.
 なお、溝部22は、一の端面26と他の端面28を連通することが好ましい。溝部22が、少なくとも2つの端面26、28と連通することで、溝部22の一端と他端の両方が端面26、28に面することとなるため、熱伝達抑制層20に滞留する熱が外へ逃げやすくなる。ただし、溝部22の少なくとも一端が端面26、28に面していれば、熱を外へ逃がすことは可能なため、溝部22の少なくとも一端が端面26、28まで連通していれば良い。 In addition, it is preferable that the groove part 22 connects the one end surface 26 and the other end surface 28. Since the groove portion 22 communicates with the at least two end surfaces 26 and 28, both the one end and the other end of the groove portion 22 face the end surfaces 26 and 28, so that the heat staying in the heat transfer suppression layer 20 is outside. Easier to escape. However, if at least one end of the groove portion 22 faces the end surfaces 26 and 28, heat can be released to the outside. Therefore, it is only necessary that at least one end of the groove portion 22 communicates with the end surfaces 26 and 28.
 また、図1に示すように、熱伝達抑制層20は、平面視における外形形状が四角形であり、かつ、溝部22は、4つの端面のうち、隣接する2つの端面26、28を連通することが好ましい。上記構成を有することにより、熱伝達抑制層20に滞留する熱は、端面26に垂直な方向と、端面28に垂直な方向へ逃げることができるため、一方向のみに熱を逃がす場合と比べて、より効果的に熱を外へ逃がすことができる。
 なお、外形形状である四角形は、正方形、長方形、台形などの種々の四角形を含めることができる。また、四角形の角部はR形状を有するものであっても良い。
Moreover, as shown in FIG. 1, the heat transfer suppression layer 20 has a quadrangular outer shape in plan view, and the groove 22 communicates two adjacent end surfaces 26 and 28 among the four end surfaces. Is preferred. By having the above configuration, the heat staying in the heat transfer suppression layer 20 can escape in the direction perpendicular to the end face 26 and in the direction perpendicular to the end face 28, compared with the case where heat is released only in one direction. , Can escape the heat more effectively.
Note that the quadrangle that is the outer shape can include various quadrangles such as a square, a rectangle, and a trapezoid. The corners of the quadrangle may have an R shape.
 更に、本実施形態においては、溝部22の表面が凹凸形状24を有することにより、溝部22の表面が凹凸形状24を有しない場合に比べて溝部22の表面積が増大するため、熱伝達抑制層20内に滞留する熱が更に外へ逃げやすくなる。このため、表面に凹凸形状24を有しない溝部22が形成された断熱シートに比べ、通常使用時における電池セル50をより効果的に冷却することができる。 Furthermore, in this embodiment, since the surface of the groove part 22 has the concavo-convex shape 24, the surface area of the groove part 22 is increased as compared with the case where the surface of the groove part 22 does not have the concavo-convex shape 24. The heat staying inside becomes easier to escape to the outside. For this reason, compared with the heat insulation sheet in which the groove part 22 which does not have the uneven | corrugated shape 24 was formed on the surface, the battery cell 50 at the time of normal use can be cooled more effectively.
 続いて、溝部22の表面に有する凹凸形状24について詳細に説明する。図2は、図1における溝部22の凹凸形状24を拡大した図である。図2に示すように、溝部22の表面が凹凸形状24を有することは、熱伝達抑制層20が多数の無機粒子(あるいは無機繊維)30から構成され、熱伝達抑制層20の表面が凹凸形状24を形成することに起因する。 Then, the uneven | corrugated shape 24 which has on the surface of the groove part 22 is demonstrated in detail. FIG. 2 is an enlarged view of the uneven shape 24 of the groove 22 in FIG. As shown in FIG. 2, the surface of the groove portion 22 has the concavo-convex shape 24 because the heat transfer suppression layer 20 is composed of a large number of inorganic particles (or inorganic fibers) 30 and the surface of the heat transfer suppression layer 20 is concavo-convex. This is caused by forming 24.
 後述するように、数μmレベルの多数の無機粒子30から形成される熱伝達抑制層20は、ポリカーボネートやポリプロピレンなどの樹脂からなる断熱シートに比べると、その表面は、数μmサイズのピッチ及び深さを有する多数の凹凸形状24を有している。このため、熱伝達抑制層20に、後述する所定の溝形成手段により溝部22を形成した場合、溝部22の表面においても多数の無機粒子30が露出することとなる。その結果、溝部22の表面は、無機粒子30から構成される微細な凹凸形状24を有することとなる。 As will be described later, the heat transfer suppression layer 20 formed of a large number of inorganic particles 30 of several μm level has a surface with a pitch and depth of several μm compared to a heat insulating sheet made of a resin such as polycarbonate or polypropylene. A large number of concave and convex shapes 24 having a thickness are provided. For this reason, when the groove part 22 is formed in the heat transfer suppression layer 20 by a predetermined groove forming means described later, a large number of inorganic particles 30 are also exposed on the surface of the groove part 22. As a result, the surface of the groove portion 22 has a fine uneven shape 24 composed of the inorganic particles 30.
 ここで、凹凸のピッチ及び深さの下限はそれぞれ0.5μmであり、好ましくは1.0μm以上である。また、凹凸のピッチ及び深さの上限はそれぞれ100μmであり、好ましくは80μm以下、より好ましくは60μm以下、更に好ましくは40μm以下である。
 凹凸のピッチ又は深さが0.5μm未満であると、熱伝達抑制層20中に生じる空隙が小さくなり過ぎて、対流が起きにくくなることで、熱と接触しづらくなるため、熱伝達抑制層20内に滞留する熱を効果的に外へ逃がすことができないおそれがある。一方、凹凸のピッチ又は深さが100μmを超えると、無機粒子30の平均粒径が大きすぎて、無機粒子30の比表面積が低下するため、熱伝達抑制層20内に滞留する熱を効果的に外へ逃がすことができないおそれがある。
 なお、凹凸のピッチとは、隣接する凹部同士または凸部同士の中心間距離をいい、凹凸の深さとは、凹部の底部と凸部の頂部との間の距離をいう。
Here, the lower limit of the pitch and depth of the unevenness is 0.5 μm, preferably 1.0 μm or more. The upper limit of the pitch and depth of the irregularities is 100 μm, preferably 80 μm or less, more preferably 60 μm or less, and further preferably 40 μm or less.
If the pitch or depth of the unevenness is less than 0.5 μm, voids generated in the heat transfer suppression layer 20 become too small and convection is less likely to occur, making it difficult to come into contact with heat. There is a possibility that the heat staying in 20 cannot be effectively released to the outside. On the other hand, if the pitch or depth of the unevenness exceeds 100 μm, the average particle size of the inorganic particles 30 is too large and the specific surface area of the inorganic particles 30 is reduced, so that the heat staying in the heat transfer suppression layer 20 is effective. There is a risk that you cannot escape outside.
In addition, the pitch of unevenness means the distance between centers of adjacent recessed parts or convex parts, and the depth of unevenness means the distance between the bottom part of a recessed part and the top part of a convex part.
 ところで、図1においては、熱伝達抑制層20を平面視した場合の溝部22の形状として、格子状のものを示しているが、溝部22の形状はこれに限定されない。例えば、図3Aに示すような角部がR加工された格子状の溝部22や、図3Bに示すようなラビリンス構造の溝部22や、図3Cに示すような平面円形状のエンボス構造の溝部22や、図3Dに示すようなハニカム構造の溝部22や、図3Eに示すような四角すい凸形状の溝部22や、図3Fに示すような四角すい凹形状の溝部22や、図3Gに示すような波形形状の溝部22など、さまざまな形状の溝部22を採用することができる。 Incidentally, in FIG. 1, a lattice-like shape is shown as the shape of the groove portion 22 when the heat transfer suppressing layer 20 is viewed in plan, but the shape of the groove portion 22 is not limited to this. For example, as shown in FIG. 3A, a grid-like groove 22 having corners R processed, a groove 22 having a labyrinth structure as shown in FIG. 3B, or a groove 22 having a flat circular emboss structure as shown in FIG. 3C. 3D, a honeycomb-shaped groove 22 as shown in FIG. 3D, a square-concave convex groove 22 as shown in FIG. 3E, a square-concave groove 22 as shown in FIG. 3F, or as shown in FIG. 3G It is possible to employ variously shaped groove portions 22 such as a corrugated groove portion 22.
 また、溝部22の数については特に制限されないが、溝部22の数が多くなるにつれ、通常使用時における電池セル50からの熱の放出効果が高まる一方で、熱伝達抑制層20における溝部22以外の部分の割合が減り、電池セル50間の熱伝達を抑制する機能が低下するおそれがある。よって、通常使用時の冷却と、異常時の熱伝達抑制とのバランスを鑑みて、溝部22の数を決定することが好ましい。 Further, the number of the groove portions 22 is not particularly limited. However, as the number of the groove portions 22 increases, the effect of releasing heat from the battery cell 50 during normal use is enhanced, while the heat transfer suppressing layer 20 other than the groove portions 22 is increased. The proportion of the portion may decrease, and the function of suppressing heat transfer between the battery cells 50 may be reduced. Therefore, it is preferable to determine the number of grooves 22 in view of the balance between cooling during normal use and heat transfer suppression during abnormal conditions.
 なお、この熱伝達抑制シート10の具体的な使用形態としては、図4に示すように、複数の電池セル50が、熱伝達抑制シート10を介して配置され、複数の電池セル50同士が直列または並列に接続された状態(接続された状態は図示を省略)で、電池ケース60に格納されて組電池100が構成される。なお、電池セル50は、例えば、リチウムイオン二次電池が好適に用いられるが、特にこれに限定されず、その他の二次電池にも適用され得る。 In addition, as a concrete usage form of this heat transfer suppression sheet | seat 10, as shown in FIG. 4, the some battery cell 50 is arrange | positioned through the heat transfer suppression sheet | seat 10, and several battery cells 50 are in series. Alternatively, the assembled battery 100 is configured by being stored in the battery case 60 in a state of being connected in parallel (the connected state is not shown). In addition, although the lithium ion secondary battery is used suitably, for example, the battery cell 50 is not specifically limited to this, It can apply also to another secondary battery.
<熱伝達抑制シートの詳細>
 次に、組電池用熱伝達抑制シート10における各構成要素につき詳細に説明する。
 組電池用熱伝達抑制シート10を構成する熱伝達抑制層20は、無機粒子及び/又は無機繊維を含有する。無機粒子および無機繊維は、いずれか一方のみを含有するものであっても良く、両方を含有するものであっても良い。
<Details of heat transfer suppression sheet>
Next, each component in the assembled battery heat transfer suppression sheet 10 will be described in detail.
The heat transfer suppression layer 20 constituting the assembled battery heat transfer suppression sheet 10 contains inorganic particles and / or inorganic fibers. The inorganic particles and the inorganic fibers may contain only one of them or may contain both.
[熱伝達抑制層が吸熱層の役割を果たす場合]
 無機粒子30は、加熱により水分を放出する材料から構成されることが好ましい。熱伝達抑制層20が、加熱により水分を放出する材料を含有することで、吸熱層としての役割を担うことができる。熱伝達抑制層20が吸熱層の役割を果たす場合、電池セル50の異常時において、ある電池セル50で発生した熱により熱伝達抑制層20が加熱されると、熱伝達抑制層20はその熱を吸収しつつ、水分を放出する。この吸熱作用により、電池セル50の発熱量を低減することができる。よって、ある電池セル50に熱暴走が生じた場合、隣接する他の電池セル50への熱の伝播を効果的に抑制することができる。
[When the heat transfer suppression layer serves as an endothermic layer]
The inorganic particles 30 are preferably made of a material that releases moisture by heating. The heat transfer suppression layer 20 can play a role as an endothermic layer by containing a material that releases moisture by heating. When the heat transfer suppression layer 20 serves as an endothermic layer, when the heat transfer suppression layer 20 is heated by heat generated in a certain battery cell 50 when the battery cell 50 is abnormal, the heat transfer suppression layer 20 is heated. Releases moisture while absorbing water. Due to this endothermic action, the amount of heat generated by the battery cell 50 can be reduced. Therefore, when a thermal runaway occurs in a certain battery cell 50, the propagation of heat to other adjacent battery cells 50 can be effectively suppressed.
 なお、熱伝達抑制層20が吸熱層としての役割を果たす場合には、熱伝達抑制層20が溝部22を有しており、かつ、溝部22の表面が凹凸形状24を有することにより、熱の吸熱時において吸熱層44から水分を放出できる面積を多く確保することができるため、吸熱層44としての機能をより一層発揮すること、すなわち、吸熱反応の反応速度を向上させることができる。
 すなわち、上述したような通常使用時における電池セル50の冷却効果の向上に加え、異常時における電池セル50間の熱伝達抑制の効果も向上させることができる。
In addition, when the heat transfer suppression layer 20 plays a role as an endothermic layer, the heat transfer suppression layer 20 has the groove portion 22 and the surface of the groove portion 22 has the concavo-convex shape 24, thereby Since a large area capable of releasing moisture from the endothermic layer 44 during heat absorption can be ensured, the function as the endothermic layer 44 can be further exhibited, that is, the reaction rate of the endothermic reaction can be improved.
That is, in addition to the improvement of the cooling effect of the battery cell 50 during normal use as described above, the effect of suppressing heat transfer between the battery cells 50 at the time of abnormality can also be improved.
 ここで、凹凸のピッチ又は深さが0.5μm未満であると、熱伝達抑制層20中に生じる空隙が小さくなり過ぎて、対流が起きにくくなることで、熱と接触しづらくなるため、吸熱反応の反応速度が低下するおそれがある。一方、凹凸のピッチ又は深さが100μmを超えると、無機粒子30の平均粒径が大きすぎて、無機粒子30の比表面積が低下するため、吸熱反応の反応速度が低下するおそれがある。 Here, if the pitch or depth of the unevenness is less than 0.5 μm, voids generated in the heat transfer suppression layer 20 become too small, and convection is difficult to occur. The reaction rate of the reaction may decrease. On the other hand, if the pitch or depth of the unevenness exceeds 100 μm, the average particle size of the inorganic particles 30 is too large and the specific surface area of the inorganic particles 30 is decreased, so that the reaction rate of the endothermic reaction may be decreased.
 上記効果を得るための具体的な材料としては、比較的高温で水分を放出することのできる無機水和物であることが好ましく、より具体的には、熱分解開始温度が200℃以上の無機水和物であることが好ましい。異常時における電池セルの温度範囲は、一般的に200℃以上であるため、熱分解開始温度が200℃以上の無機水和物を用いることで、異常時に効果的に水分を放出し、熱を吸収することができる。 A specific material for obtaining the above effect is preferably an inorganic hydrate capable of releasing moisture at a relatively high temperature, and more specifically, an inorganic material having a thermal decomposition start temperature of 200 ° C. or higher. A hydrate is preferred. Since the temperature range of the battery cell at the time of abnormality is generally 200 ° C. or higher, by using an inorganic hydrate having a thermal decomposition starting temperature of 200 ° C. or higher, moisture is effectively released at the time of abnormality and heat is released. Can be absorbed.
 上記無機水和物として、例えば、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、水酸化カルシウム(Ca(OH))、水酸化亜鉛(Zn(OH))、水酸化鉄(Fe(OH))、水酸化マンガン(Mn(OH))、水酸化ジルコニウム(Zr(OH))、水酸化ガリウム(Ga(OH))などが挙げられる。
 これらの無機水和物は、単独で使用してもよいし、2種以上組み合わせて使用してもよい。
Examples of the inorganic hydrate include aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), calcium hydroxide (Ca (OH) 2 ), and zinc hydroxide (Zn (OH)). 2 ), iron hydroxide (Fe (OH) 2 ), manganese hydroxide (Mn (OH) 2 ), zirconium hydroxide (Zr (OH) 2 ), gallium hydroxide (Ga (OH) 3 ) and the like. .
These inorganic hydrates may be used alone or in combination of two or more.
 なお、水酸化アルミニウムの熱分解開始温度は約200℃であり、水酸化マグネシウムの熱分解開始温度は約330℃であり、水酸化カルシウムの熱分解開始温度は約580℃であり、水酸化亜鉛の熱分解開始温度は約200℃であり、水酸化鉄の熱分解開始温度は約350℃であり、水酸化マンガンの熱分解開始温度は約300℃であり、水酸化ジルコニウムの熱分解開始温度は約300℃であり、水酸化ガリウムの熱分解開始温度は約300℃である。
 このような熱分解開始温度が異なる2種以上の無機水和物を併用すれば、温度上昇した電池セル50を広い温度領域で冷却することができ、熱暴走時における電池セル50間の熱の伝播を効果的に抑制することが可能となるため、好ましい。
The thermal decomposition start temperature of aluminum hydroxide is about 200 ° C., the thermal decomposition start temperature of magnesium hydroxide is about 330 ° C., the thermal decomposition start temperature of calcium hydroxide is about 580 ° C., and zinc hydroxide The thermal decomposition start temperature of iron hydroxide is about 200 ° C., the thermal decomposition start temperature of iron hydroxide is about 350 ° C., the thermal decomposition start temperature of manganese hydroxide is about 300 ° C., and the thermal decomposition start temperature of zirconium hydroxide. Is about 300 ° C., and the thermal decomposition start temperature of gallium hydroxide is about 300 ° C.
If two or more kinds of inorganic hydrates having different pyrolysis start temperatures are used in combination, the battery cell 50 whose temperature has risen can be cooled in a wide temperature range, and the heat between the battery cells 50 during thermal runaway can be reduced. Propagation can be effectively suppressed, which is preferable.
 例えば水酸化アルミニウムの場合、水酸化アルミニウム中には約35%の結晶水を有しており、下記式に示すように、熱分解時に結晶水を放出することで、消炎機能(吸熱反応)を発揮することができる。
 2Al(OH)→Al+3H
 この機能により、電池セル50で発生した高温の熱を吸収することができ、電池セル50の発熱量を低減することができる。
For example, in the case of aluminum hydroxide, the aluminum hydroxide has about 35% water of crystallization. As shown in the following formula, the water of crystallization is released at the time of thermal decomposition, thereby providing a flame extinguishing function (endothermic reaction). It can be demonstrated.
2Al (OH) 3 → Al 2 O 3 + 3H 2 O
With this function, high-temperature heat generated in the battery cell 50 can be absorbed, and the amount of heat generated by the battery cell 50 can be reduced.
 例えば水酸化アルミニウムのような、熱分解温度が200℃以上である無機水和物は、電池セル50の熱暴走が生じた場合の、電池セル50表面の上昇温度と温度範囲が大きく重複している。このため、異常時における電池セル50の温度上昇に伴い、熱分解により脱水反応(吸熱反応)を生ずることで、効果的に電池セル50間の熱の伝播を抑制することができる。 For example, an inorganic hydrate having a thermal decomposition temperature of 200 ° C. or higher, such as aluminum hydroxide, has a large overlap in temperature and temperature range on the surface of the battery cell 50 when a thermal runaway of the battery cell 50 occurs. Yes. For this reason, with the temperature rise of the battery cell 50 at the time of abnormality, a dehydration reaction (endothermic reaction) is generated by thermal decomposition, so that propagation of heat between the battery cells 50 can be effectively suppressed.
 特に、水酸化アルミニウムの場合には、上記無機水和物の中で熱分解開始温度が低め(熱分解開始温度:約200℃)であるため、異常時の初期段階(比較的低めの温度)から、電池セル50の冷却を行うことができるため、好ましい。 In particular, in the case of aluminum hydroxide, since the thermal decomposition start temperature is lower (thermal decomposition start temperature: about 200 ° C.) among the inorganic hydrates, the initial stage at the time of abnormality (relatively lower temperature) Therefore, it is preferable because the battery cell 50 can be cooled.
 無機水和物の配合量としては、熱伝達抑制層20を構成する材料の合計質量に対して、好ましい上限が90質量%であり、より好ましい上限は65質量%である。この配合量が90質量%を超えると、熱伝達抑制シート10としての十分な強度を保つことができないおそれがある。 As the blending amount of the inorganic hydrate, a preferable upper limit is 90% by mass and a more preferable upper limit is 65% by mass with respect to the total mass of the materials constituting the heat transfer suppression layer 20. When this compounding quantity exceeds 90 mass%, there exists a possibility that sufficient intensity | strength as the heat transfer suppression sheet | seat 10 cannot be maintained.
 また、加熱により水分を放出する材料として、150℃以下の温度で脱水可能な脱水剤を用いることも好ましい。
 通常使用時における電池セル50の温度範囲である、常温(20℃程度)から最大150℃程度までの温度範囲内で脱水可能な脱水剤を有することで、通常使用時に電池セル50の温度が比較的低温で上昇した場合に、脱水剤が水分を放出するため、通常使用時における電池セル50を効果的に冷却することができる。
It is also preferable to use a dehydrating agent that can be dehydrated at a temperature of 150 ° C. or lower as a material that releases moisture by heating.
By having a dehydrating agent that can be dehydrated in a temperature range from normal temperature (about 20 ° C.) to a maximum of about 150 ° C., which is the temperature range of the battery cell 50 during normal use, the temperature of the battery cell 50 is compared during normal use. When the temperature rises at a low temperature, the dehydrating agent releases moisture, so that the battery cell 50 can be effectively cooled during normal use.
 上記効果を得るための具体的な材料としては、例えば、シリカゲル、活性アルミナ、活性炭、ゼオライト、イオン交換樹脂などのような水分吸着剤、あるいは、硫酸塩水和物、亜硫酸塩水和物、リン酸塩水和物、硝酸塩水和物、酢酸塩水和物、金属水和塩などが挙げられる。これらの脱水剤は、単独で使用してもよいし、2種以上組み合わせて使用してもよい。 Specific materials for obtaining the above-mentioned effects include, for example, a water adsorbent such as silica gel, activated alumina, activated carbon, zeolite, ion exchange resin, or sulfate hydrate, sulfite hydrate, phosphate water. Examples thereof include hydrates, nitrate hydrates, acetate hydrates, metal hydrates, and the like. These dehydrating agents may be used alone or in combination of two or more.
 ここで、硫酸塩水和物としては、例えば、硫酸アンモニウムアルミニウム12水和物、硫酸ナトリウムアルミニウム12水和物、硫酸アルミニウム27水和物、硫酸アルミニウム18水和物、硫酸アルミニウム16水和物、硫酸アルミニウム10水和物、硫酸アルミニウム6水和物、硫酸カリウムアルミニウム12水和物、硫酸鉄7水和物、硫酸鉄9水和物、硫酸カリウム鉄12水和物、硫酸マグネシウム7水和物、硫酸ナトリウム10水和物、硫酸ニッケル6水和物、硫酸亜鉛7水和物、硫酸ベリリウム4水和物、硫酸ジルコニウム4水和物等が挙げられる。
 亜硫酸塩水和物としては、例えば、亜硫酸亜鉛2水和物、亜硫酸ナトリウム7水和物等が挙げられる。
 リン酸塩水和物としては、例えば、リン酸アルミニウム2水和物、リン酸コバルト8水和物、リン酸マグネシウム8水和物、リン酸マグネシウムアンモニウム6水和物、リン酸水素マグネシウム3水和物、リン酸水素マグネシウム7水和物、リン酸亜鉛4水和物、リン酸二水素亜鉛2水和物等が挙げられる。
Here, as the sulfate hydrate, for example, ammonium aluminum sulfate 12 hydrate, sodium aluminum sulfate 12 hydrate, aluminum sulfate 27 hydrate, aluminum sulfate 18 hydrate, aluminum sulfate 16 hydrate, aluminum sulfate Decahydrate, aluminum sulfate hexahydrate, potassium aluminum sulfate 12 hydrate, iron sulfate heptahydrate, iron sulfate 9 hydrate, potassium iron sulfate 12 hydrate, magnesium sulfate heptahydrate, sulfuric acid Examples thereof include sodium decahydrate, nickel sulfate hexahydrate, zinc sulfate heptahydrate, beryllium sulfate tetrahydrate, zirconium sulfate tetrahydrate.
Examples of the sulfite hydrate include zinc sulfite dihydrate and sodium sulfite heptahydrate.
Examples of phosphate hydrates include aluminum phosphate dihydrate, cobalt phosphate octahydrate, magnesium phosphate octahydrate, magnesium ammonium phosphate hexahydrate, and magnesium hydrogen phosphate trihydrate. Products, magnesium hydrogen phosphate heptahydrate, zinc phosphate tetrahydrate, zinc dihydrogen phosphate dihydrate, and the like.
 硝酸塩水和物としては、例えば、硝酸アルミニウム9水和物、硝酸亜鉛6水和物、硝酸カルシウム4水和物、硝酸コバルト6水和物、硝酸ビスマス5水和物、硝酸ジルコニウム5水和物、硝酸セリウム6水和物、硝酸鉄6水和物、硝酸鉄9水和物、硝酸ニッケル6水和物、硝酸マグネシウム6水和物等が挙げられる。
 酢酸塩水和物としては、例えば、酢酸亜鉛2水和物、酢酸コバルト4水和物等が挙げられる。
 金属水和塩としては、例えば、塩化コバルト6水和物、塩化鉄4水和物等の塩化物塩、ホウ砂(四ホウ酸ナトリウム5水和物、四ホウ酸ナトリウム10水和物)、八ホウ酸二ナトリウム四水物、ホウ酸亜鉛3.5水和物等のホウ酸塩等が挙げられる。
Examples of nitrate hydrates include aluminum nitrate nonahydrate, zinc nitrate hexahydrate, calcium nitrate tetrahydrate, cobalt nitrate hexahydrate, bismuth nitrate pentahydrate, zirconium nitrate pentahydrate. Cerium nitrate hexahydrate, iron nitrate hexahydrate, iron nitrate nonahydrate, nickel nitrate hexahydrate, magnesium nitrate hexahydrate and the like.
Examples of acetate hydrates include zinc acetate dihydrate and cobalt acetate tetrahydrate.
Examples of metal hydrate salts include chloride salts such as cobalt chloride hexahydrate and iron chloride tetrahydrate, borax (sodium tetraborate pentahydrate, sodium tetraborate decahydrate), Examples thereof include borates such as disodium octaborate tetrahydrate and zinc borate 3.5 hydrate.
 なお、例えば、150℃以下の温度範囲内における高温側(75℃~150℃)での水分吸着量が大きいゼオライトと、上記高温側での水分吸着量が小さいシリカゲルを併用すれば、温度上昇した電池セル50を広い温度領域で冷却することが可能となるため、好ましい。 For example, when a zeolite having a large moisture adsorption amount on the high temperature side (75 ° C. to 150 ° C.) within a temperature range of 150 ° C. or lower and silica gel having a small moisture adsorption amount on the high temperature side are used in combination, the temperature rises. It is preferable because the battery cell 50 can be cooled in a wide temperature range.
 脱水剤のうち、より多くの水分を放出することができ、かつ、脱水温度範囲が広いという特性を有する観点から、特にゼオライトを用いることが好ましい。ゼオライトとしては、特に種類に限定されるものではなく、例えば、β型ゼオライト、Y型ゼオライト、フェリエライト、ZSM-5型ゼオライト、モルデナイト、フォージサイト、ゼオライトAおよびゼオライトL等が挙げられる。 Among the dehydrating agents, it is particularly preferable to use zeolite from the viewpoint of being able to release more water and having a wide dehydrating temperature range. The zeolite is not particularly limited, and examples thereof include β-type zeolite, Y-type zeolite, ferrierite, ZSM-5-type zeolite, mordenite, forgesite, zeolite A, and zeolite L.
 ゼオライトは、3次元網目構造を有するアルミノケイ酸塩である。水分を吸着するゼオライトは安定的に存在するため、通常、常温条件下で3次元網目構造の隙間に水分などを吸着している。しかし、ある温度以上の熱が与えられることにより、ゼオライトに吸着されていた水分がゼオライトから脱着する。
 しかし、水分を吸着していないゼオライトは不安定であるため、脱水したゼオライトは高い吸着作用を有するため、温度が低下した後は再び水分を吸着する。
Zeolite is an aluminosilicate having a three-dimensional network structure. Since zeolite that adsorbs moisture is stably present, moisture and the like are usually adsorbed in the gaps of the three-dimensional network structure under normal temperature conditions. However, when heat above a certain temperature is applied, the moisture adsorbed on the zeolite is desorbed from the zeolite.
However, since the zeolite that does not adsorb moisture is unstable, the dehydrated zeolite has a high adsorption action, and therefore adsorbs moisture again after the temperature decreases.
 例えばゼオライトのように、150℃以下の温度で脱水可能な脱水剤は、充放電サイクルを行う場合の電池セル50表面の上昇温度と温度範囲が大きく重複しているため、通常使用時における電池セル50の温度上昇に伴い、水分を放出することで効果的に電池セル50を冷却することができる。 For example, a dehydrating agent that can be dehydrated at a temperature of 150 ° C. or less, such as zeolite, greatly overlaps the temperature rise and temperature range of the surface of the battery cell 50 when performing a charge / discharge cycle. As the temperature rises by 50, the battery cell 50 can be effectively cooled by releasing moisture.
 また、特にゼオライトの場合には、電池セル50が冷却され、熱伝達抑制層20内の脱水剤の温度が低下した後は、熱伝達抑制層20周囲の水分を再び吸着することとなるため、繰り返し行われる充放電サイクルに対して何度でも再利用することができる。 In particular, in the case of zeolite, after the battery cell 50 is cooled and the temperature of the dehydrating agent in the heat transfer suppressing layer 20 is lowered, moisture around the heat transfer suppressing layer 20 is adsorbed again. It can be reused any number of times for repeated charge / discharge cycles.
 脱水剤の配合量としては、熱伝達抑制層20を構成する材料の合計質量に対して、好ましい上限が90質量%であり、より好ましい上限は65質量%である。
 これに対し、脱水剤の配合量の好ましい下限は10質量%であり、より好ましい下限は35質量%である。この配合量が10質量%未満では、十分な脱水効果が得られないおそれがある。また、この配合量が90質量%を超えると、熱伝達抑制シート10としての十分な強度を保つことができないおそれがある。
As a compounding quantity of a dehydrating agent, a preferable upper limit is 90 mass% with respect to the total mass of the material which comprises the heat transfer suppression layer 20, and a more preferable upper limit is 65 mass%.
On the other hand, the preferable minimum of the compounding quantity of a dehydrating agent is 10 mass%, and a more preferable minimum is 35 mass%. If the amount is less than 10% by mass, sufficient dehydration effect may not be obtained. Moreover, when this compounding quantity exceeds 90 mass%, there exists a possibility that sufficient intensity | strength as the heat transfer suppression sheet | seat 10 cannot be maintained.
 なお、上記で説明した、熱分解開始温度が200℃以上の無機水和物と、150℃以下の温度で脱水可能な脱水剤は、それぞれ単独で用いても良いが、これらを併用することが好ましい。これらを併用することにより、熱伝達抑制層20に凹凸形状24を表面に有する溝部22を形成して、異常時の熱伝達抑制と、通常使用時の冷却を両立する効果をより一層発揮することができる。すなわち、溝部22を有する熱伝達抑制層20における構造面からの上記課題の両立に加え、異常時と通常使用時にそれぞれ吸熱作用を発揮する材料を併用することによる、材料面からの上記課題の両立も図ることが可能となる。 The inorganic hydrate having a thermal decomposition starting temperature of 200 ° C. or higher and the dehydrating agent that can be dehydrated at a temperature of 150 ° C. or lower as described above may be used alone, but these may be used in combination. preferable. By using these together, the groove portion 22 having the concavo-convex shape 24 on the surface thereof is formed in the heat transfer suppression layer 20 to further exhibit the effect of achieving both heat transfer suppression during an abnormality and cooling during normal use. Can do. That is, in addition to coexistence of the above problems from the structural surface in the heat transfer suppression layer 20 having the groove portion 22, coexistence of the above problems from the material surface by using a material that exhibits endothermic action at the time of abnormality and normal use in combination. Can also be achieved.
 なお、熱伝達抑制層20は、成形時の強度向上を目的として、無機繊維やパルプ繊維を含んでいてもよい。 In addition, the heat transfer suppression layer 20 may contain inorganic fibers or pulp fibers for the purpose of improving the strength at the time of molding.
 無機繊維としては、例えば、シリカ-アルミナ繊維、アルミナ繊維、シリカ繊維、ロックウール、アルカリアースシリケート繊維、ガラス繊維、ジルコニア繊維およびチタン酸カリウムウィスカ繊維などが挙げられる。これらの無機繊維は、耐熱性、強度、入手容易性などの点で好ましい。無機繊維は、単独で使用してもよいし2種以上組み合わせて使用してもよい。無機繊維のうち、取り扱い性の観点から、特にシリカ-アルミナ繊維、アルミナ繊維、シリカ繊維、ロックウール、アルカリアースシリケート繊維、ガラス繊維が好ましい。 Examples of the inorganic fiber include silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkaline earth silicate fiber, glass fiber, zirconia fiber, and potassium titanate whisker fiber. These inorganic fibers are preferable in terms of heat resistance, strength, availability, and the like. An inorganic fiber may be used independently and may be used in combination of 2 or more types. Of the inorganic fibers, silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkali earth silicate fiber, and glass fiber are particularly preferable from the viewpoint of handleability.
 無機繊維の断面形状は、特に限定されず、円形断面、扁平断面、中空断面、多角断面、芯鞘断面などが挙げられる。中でも、中空断面、扁平断面または多角断面を有する異形断面繊維は、断熱性が若干向上されるため好適に使用することができる。 The cross-sectional shape of the inorganic fiber is not particularly limited, and examples thereof include a circular cross section, a flat cross section, a hollow cross section, a polygonal cross section, and a core-sheath cross section. Among these, a modified cross-section fiber having a hollow cross section, a flat cross section or a polygonal cross section can be preferably used because the heat insulation is slightly improved.
 無機繊維の平均繊維長の好ましい下限は0.1mmであり、より好ましい下限は0.5mmである。一方、無機繊維の平均繊維長の好ましい上限は50mmであり、より好ましい上限は10mmである。無機繊維の平均繊維長が0.1mm未満であると、無機繊維同士の絡み合いが生じにくく、得られる熱伝達抑制シート10の機械的強度が低下するおそれがある。一方、50mmを超えると、補強効果は得られるものの無機繊維同士が緊密に絡み合うことができなったり、単一の無機繊維だけで丸まったりし、それにより連続した空隙が生じやすくなるので断熱性の低下を招くおそれがある。 The preferable lower limit of the average fiber length of the inorganic fibers is 0.1 mm, and the more preferable lower limit is 0.5 mm. On the other hand, the preferable upper limit of the average fiber length of the inorganic fibers is 50 mm, and the more preferable upper limit is 10 mm. If the average fiber length of the inorganic fibers is less than 0.1 mm, the entanglement between the inorganic fibers is difficult to occur, and the mechanical strength of the obtained heat transfer suppression sheet 10 may be reduced. On the other hand, when the thickness exceeds 50 mm, although the reinforcing effect is obtained, the inorganic fibers cannot be intertwined closely or rounded with only a single inorganic fiber. There is a risk of lowering.
 無機繊維の平均繊維径の好ましい下限は1μmであり、より好ましい下限は2μmであり、更に好ましい下限は3μmである。一方、無機繊維の平均繊維径の好ましい上限は10μmであり、より好ましい上限は7μmである。無機繊維の平均繊維径が1μm未満であると、無機繊維自体の機械的強度が低下するおそれがある。また、人体の健康に対する影響の観点より、無機繊維の平均繊維径が3μm以上であるが好ましい。一方、無機繊維の平均繊維径が10μmより大きいと、無機繊維を媒体とする固体伝熱が増加して断熱性の低下を招くおそれがあり、また、熱伝達抑制シート10の成形性が悪化するおそれがある。 The preferable lower limit of the average fiber diameter of the inorganic fibers is 1 μm, the more preferable lower limit is 2 μm, and the still more preferable lower limit is 3 μm. On the other hand, the preferable upper limit of the average fiber diameter of the inorganic fibers is 10 μm, and the more preferable upper limit is 7 μm. There exists a possibility that the mechanical strength of inorganic fiber itself may fall that the average fiber diameter of inorganic fiber is less than 1 micrometer. In view of the influence on human health, the average fiber diameter of the inorganic fibers is preferably 3 μm or more. On the other hand, if the average fiber diameter of the inorganic fibers is larger than 10 μm, solid heat transfer using the inorganic fibers as a medium may increase, leading to a decrease in heat insulation, and the formability of the heat transfer suppressing sheet 10 may be deteriorated. There is a fear.
 この無機繊維やパルプ繊維は、熱伝達抑制層20を構成する材料の合計重量に対して、10~70質量%の範囲で必要に応じて使用することができる。 These inorganic fibers and pulp fibers can be used as necessary in the range of 10 to 70% by mass with respect to the total weight of the materials constituting the heat transfer suppressing layer 20.
 熱伝達抑制層20を構成する材料として、有機バインダーを必要に応じて使用してもよい。有機バインダーは、成形時の強度向上を目的とする上で有用であり、例えば高分子凝集剤やアクリルエマルジョンなどを好適に使用することができる。
 有機バインダーの配合量としては、熱伝達抑制層20を構成する材料の合計重量に対して0.5~5.0質量%の範囲で必要に応じて使用することができる。
An organic binder may be used as necessary as a material constituting the heat transfer suppression layer 20. The organic binder is useful for the purpose of improving the strength at the time of molding, and for example, a polymer flocculant or an acrylic emulsion can be suitably used.
The organic binder can be used as necessary in the range of 0.5 to 5.0 mass% with respect to the total weight of the materials constituting the heat transfer suppressing layer 20.
 熱伝達抑制シート10の厚さとしては特に限定されないが、0.05~5mmの範囲にあることが好ましい。熱伝達抑制シート10の厚さが0.05mm未満であると、充分な機械的強度を熱伝達抑制シート10に付与することができない。一方、熱伝達抑制シート10の厚さが5mmを超えると、熱伝達抑制シート10の成形自体が困難となるおそれがある。 The thickness of the heat transfer suppression sheet 10 is not particularly limited, but is preferably in the range of 0.05 to 5 mm. If the thickness of the heat transfer suppression sheet 10 is less than 0.05 mm, sufficient mechanical strength cannot be imparted to the heat transfer suppression sheet 10. On the other hand, if the thickness of the heat transfer suppression sheet 10 exceeds 5 mm, it may be difficult to form the heat transfer suppression sheet 10 itself.
 なお、熱伝達抑制層20に用いられる脱水剤と無機水和物の具体的な組み合わせとしては、上記脱水剤の中で比較的高温(100℃~150℃程度)においても水分吸着量が高めのゼオライトと、上記無機水和物の中で熱分解開始温度が低めの水酸化アルミニウム(熱分解開始温度:約200℃)の組み合わせが好ましい。
 これは、通常使用時の温度範囲と、異常時の温度範囲との境界温度域(150℃~200℃程度)においても、有効に電池セル50の冷却を行うことができるため、好ましい。
In addition, as a specific combination of the dehydrating agent and the inorganic hydrate used for the heat transfer suppressing layer 20, the moisture adsorption amount is high even at a relatively high temperature (about 100 ° C. to 150 ° C.) among the above dehydrating agents. A combination of zeolite and aluminum hydroxide having a lower thermal decomposition starting temperature (thermal decomposition starting temperature: about 200 ° C.) among the inorganic hydrates is preferable.
This is preferable because the battery cell 50 can be effectively cooled even in a boundary temperature range (about 150 ° C. to 200 ° C.) between the temperature range during normal use and the temperature range during abnormal operation.
[熱伝達抑制層が断熱層の役割を果たす場合]
 熱伝達抑制層20が断熱層としての役割を果たす場合には、熱伝達抑制層20は、無機粒子および無機繊維のうち少なくともいずれか一方を含むものであれば良く、これらのうちいずれか一方を含むことで断熱材としての効果を発揮させることができる。ただし、無機粒子および無機繊維の両方を含むことにより、無機繊維が絡み合って生じた構造中の連続した空隙を無機粒子が分断することができるため、熱伝達抑制層20における対流伝熱を有効に低減することが可能となり、断熱効果をより効果的に発揮することができる。
[When the heat transfer suppression layer acts as a heat insulation layer]
When the heat transfer suppression layer 20 plays a role as a heat insulating layer, the heat transfer suppression layer 20 only needs to include at least one of inorganic particles and inorganic fibers. By including, the effect as a heat insulating material can be exhibited. However, the inclusion of both inorganic particles and inorganic fibers enables the inorganic particles to divide continuous voids in the structure formed by the entanglement of the inorganic fibers, so that the convective heat transfer in the heat transfer suppression layer 20 is effectively performed. It becomes possible to reduce, and the heat insulation effect can be exhibited more effectively.
 無機繊維としては、例えば、シリカ-アルミナ繊維、アルミナ繊維、シリカ繊維、ロックウール、アルカリアースシリケート繊維、ガラス繊維、ジルコニア繊維およびチタン酸カリウムウィスカ繊維などが挙げられる。これらの無機繊維は、耐熱性、強度、入手容易性などの点で好ましい。上記無機繊維は、単独で使用してもよいし2種以上組み合わせて使用してもよい。上記無機繊維のうち、取り扱い性の観点から、特にシリカ-アルミナ繊維、アルミナ繊維、シリカ繊維、ロックウール、アルカリアースシリケート繊維、ガラス繊維が好ましい。 Examples of the inorganic fiber include silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkaline earth silicate fiber, glass fiber, zirconia fiber, and potassium titanate whisker fiber. These inorganic fibers are preferable in terms of heat resistance, strength, availability, and the like. The said inorganic fiber may be used independently and may be used in combination of 2 or more types. Of the inorganic fibers, silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkali earth silicate fiber, and glass fiber are particularly preferable from the viewpoint of handleability.
 無機繊維の断面形状は、特に限定されず、円形断面、扁平断面、中空断面、多角断面、芯鞘断面などが挙げられる。中でも、中空断面、扁平断面または多角断面を有する異形断面繊維は、断熱性が若干向上されるため好適に使用することができる。 The cross-sectional shape of the inorganic fiber is not particularly limited, and examples thereof include a circular cross section, a flat cross section, a hollow cross section, a polygonal cross section, and a core-sheath cross section. Among these, a modified cross-section fiber having a hollow cross section, a flat cross section or a polygonal cross section can be preferably used because the heat insulation is slightly improved.
 無機繊維の平均繊維長の好ましい下限は0.1mmであり、より好ましい下限は0.5mmである。一方、無機繊維の平均繊維長の好ましい上限は50mmであり、より好ましい上限は10mmである。無機繊維の平均繊維長が0.1mm未満であると、無機繊維同士の絡み合いが生じにくく、得られる熱伝達抑制シート10の機械的強度が低下するおそれがある。一方、50mmを超えると、補強効果は得られるものの無機繊維同士が緊密に絡み合うことができなったり、単一の無機繊維だけで丸まったりし、それにより連続した空隙が生じやすくなるので断熱性の低下を招くおそれがある。 The preferable lower limit of the average fiber length of the inorganic fibers is 0.1 mm, and the more preferable lower limit is 0.5 mm. On the other hand, the preferable upper limit of the average fiber length of the inorganic fibers is 50 mm, and the more preferable upper limit is 10 mm. If the average fiber length of the inorganic fibers is less than 0.1 mm, the entanglement between the inorganic fibers is difficult to occur, and the mechanical strength of the obtained heat transfer suppression sheet 10 may be reduced. On the other hand, when the thickness exceeds 50 mm, although the reinforcing effect is obtained, the inorganic fibers cannot be intertwined closely or rounded with only a single inorganic fiber. There is a risk of lowering.
 無機繊維の平均繊維径の好ましい下限は1μmであり、より好ましい下限は2μmであり、更に好ましい下限は3μmである。一方、無機繊維の平均繊維径の好ましい上限は10μmであり、より好ましい上限は7μmである。無機繊維の平均繊維径が1μm未満であると、無機繊維自体の機械的強度が低下するおそれがある。また、人体の健康に対する影響の観点より、無機繊維の平均繊維径が3μm以上であるが好ましい。一方、無機繊維の平均繊維径が10μmより大きいと、無機繊維を媒体とする固体伝熱が増加して断熱性の低下を招くおそれがあり、また、熱伝達抑制シート10の成形性が悪化するおそれがある。 The preferable lower limit of the average fiber diameter of the inorganic fibers is 1 μm, the more preferable lower limit is 2 μm, and the still more preferable lower limit is 3 μm. On the other hand, the preferable upper limit of the average fiber diameter of the inorganic fibers is 10 μm, and the more preferable upper limit is 7 μm. There exists a possibility that the mechanical strength of inorganic fiber itself may fall that the average fiber diameter of inorganic fiber is less than 1 micrometer. In view of the influence on human health, the average fiber diameter of the inorganic fibers is preferably 3 μm or more. On the other hand, if the average fiber diameter of the inorganic fibers is larger than 10 μm, solid heat transfer using the inorganic fibers as a medium may increase, leading to a decrease in heat insulation, and the formability of the heat transfer suppressing sheet 10 may be deteriorated. There is a fear.
 続いて、無機粒子としては、例えば、TiO粉末、SiO粉末、BaTiO粉末、PbS粉末、ZrO粉末、SiC粉末、NaF粉末およびLiF粉末などが挙げられる。これらの無機粒子は、単独で使用してもよいし、2種以上組み合わせて使用してもよい。 Subsequently, examples of the inorganic particles include TiO 2 powder, SiO 2 powder, BaTiO 3 powder, PbS powder, ZrO 2 powder, SiC powder, NaF powder, and LiF powder. These inorganic particles may be used alone or in combination of two or more.
 無機粒子を組み合わせて使用する場合、好ましい組み合わせとしては、TiO粉末とSiO粉末との組み合わせ、TiO粉末とBaTiO粉末との組み合わせ、SiO粉末とBaTiO粉末との組み合わせ、または、TiO粉末とSiO粉末とBaTiO粉末との組み合わせが挙げられる。 When the inorganic particles are used in combination, preferred combinations include a combination of TiO 2 powder and SiO 2 powder, a combination of TiO 2 powder and BaTiO 3 powder, a combination of SiO 2 powder and BaTiO 3 powder, or TiO combination of 2 powder and SiO 2 powder and BaTiO 3 powder.
 なお、TiO粉末は、赤外線に対する屈折率が高く、高温域での断熱性を向上させる効果がある。また、SiO粉末は、固体熱伝導率が低く、微小粒子で細かい空隙を作りやすいため、対流が抑制され低温域での断熱性を向上させる効果がある。よって、TiO粉末およびSiO粉末を併用することにより、低温域から高温域に至る広い温度領域での断熱性が期待できるため、これらの組合せが特に好ましい。 In addition, TiO 2 powder has a high refractive index with respect to infrared rays, and has an effect of improving heat insulation in a high temperature range. In addition, since the SiO 2 powder has a low solid thermal conductivity and is easy to form fine voids with fine particles, convection is suppressed and there is an effect of improving heat insulation in a low temperature region. Therefore, when TiO 2 powder and SiO 2 powder are used in combination, heat insulation in a wide temperature range from a low temperature range to a high temperature range can be expected, and these combinations are particularly preferable.
 熱伝達抑制層20を構成する材料として無機粒子および無機繊維の両方を含む場合、無機繊維の配合量としては、熱伝達抑制層20を構成する材料の合計重量に対して、好ましい上限が50質量%であり、更に好ましい上限は40質量%である。一方、無機繊維の配合量の好ましい下限は5質量%であり、更に好ましい下限は10質量%である。この配合量が5質量%未満では、無機繊維による補強効果が得られず、熱伝達抑制層20の取り扱い性、機械的強度が低下するおそれがあり、また、良好な成形性が得られないおそれがある。一方、この配合量が50質量%を超えると、熱伝達抑制層20を構成する無機繊維が絡み合った構造において連続した空隙が多く存在することになり、対流伝熱、分子伝熱、輻射伝熱が増大するため、断熱特性が低下するおそれがある。 When both inorganic particles and inorganic fibers are included as the material constituting the heat transfer suppression layer 20, the preferred upper limit of the amount of inorganic fibers is 50 masses with respect to the total weight of the materials constituting the heat transfer suppression layer 20 %, And a more preferable upper limit is 40% by mass. On the other hand, a preferable lower limit of the blending amount of the inorganic fibers is 5% by mass, and a more preferable lower limit is 10% by mass. If the blending amount is less than 5% by mass, the reinforcing effect by the inorganic fibers cannot be obtained, the handleability and mechanical strength of the heat transfer suppression layer 20 may be lowered, and good moldability may not be obtained. There is. On the other hand, when the blending amount exceeds 50% by mass, there are many continuous voids in the structure in which the inorganic fibers constituting the heat transfer suppression layer 20 are intertwined, and convection heat transfer, molecular heat transfer, radiation heat transfer. Increases the heat insulation properties.
 熱伝達抑制層20を構成する材料として無機粒子および無機繊維の両方を含む場合、無機粒子の配合量としては、熱伝達抑制層20を構成する材料の合計重量に対して、好ましい上限が95質量%であり、更に好ましい上限は90質量%である。これに対し、無機粒子の配合量の好ましい下限は50質量%であり、更に好ましい下限は60質量%である。無機粒子の配合量が上記範囲にあると、無機繊維による補強効果を維持しつつ、無機繊維の交絡構造中の連続した空隙を分断することによる、対流伝熱の低減効果を得ることができる。 When both inorganic particles and inorganic fibers are included as a material constituting the heat transfer suppression layer 20, the preferred upper limit of the amount of inorganic particles is 95 mass with respect to the total weight of the materials constituting the heat transfer suppression layer 20. %, And a more preferable upper limit is 90% by mass. On the other hand, the preferable minimum of the compounding quantity of an inorganic particle is 50 mass%, and a more preferable minimum is 60 mass%. When the blending amount of the inorganic particles is within the above range, it is possible to obtain an effect of reducing convective heat transfer by dividing continuous voids in the entangled structure of the inorganic fibers while maintaining the reinforcing effect by the inorganic fibers.
 無機粒子の平均粒径の好ましい下限は0.5μmであり、より好ましい下限は1μmである。一方、上記無機粒子の平均粒径の好ましい上限は20μmであり、より好ましい上限は10μmである。上記無機粒子の平均粒径が0.5μm未満では熱伝達抑制層20の製造が困難になるばかりでなく、輻射熱の散乱が不十分になり、熱伝達抑制層20の熱伝導率が上昇(すなわち、断熱性が低下)してしまうおそれがある。一方、無機粒子の平均粒径が20μmを超えると、熱伝達抑制層20中に生じる空隙が極めて大きくなってしまうため、対流伝熱および分子伝熱が増大し、この場合も熱伝導率が上昇してしまう。 The preferable lower limit of the average particle diameter of the inorganic particles is 0.5 μm, and the more preferable lower limit is 1 μm. On the other hand, the preferable upper limit of the average particle size of the inorganic particles is 20 μm, and the more preferable upper limit is 10 μm. If the average particle size of the inorganic particles is less than 0.5 μm, not only the heat transfer suppression layer 20 is difficult to manufacture, but also the radiation heat scattering becomes insufficient, and the thermal conductivity of the heat transfer suppression layer 20 increases (ie, , There is a risk that the heat insulation will be reduced). On the other hand, when the average particle size of the inorganic particles exceeds 20 μm, voids generated in the heat transfer suppression layer 20 become extremely large, and thus convection heat transfer and molecular heat transfer increase, and in this case also the heat conductivity increases. Resulting in.
 なお、無機粒子の形状としては、平均粒径が上記範囲内にあれば特に限定されず、例えば、球体、楕円体、多面体、表面に凹凸や突起を有する形状および異形体などの任意の形状が挙げられる。 The shape of the inorganic particles is not particularly limited as long as the average particle diameter is in the above range, and examples thereof include spheres, ellipsoids, polyhedrons, shapes having irregularities and protrusions on the surface, and irregular shapes. Can be mentioned.
 また、無機粒子において、波長1μm以上の光に対する屈折率の比(比屈折率)が1.25以上であることが好ましい。上記無機粒子は、輻射熱の散乱材として極めて重要な役割を有しており、屈折率が大きいほど、輻射熱をより効果的に散乱させることができる。また、比屈折率については、フォノン伝導の抑制について極めて重要であり、この値が大きいほど抑制効果が良好である。 Further, in the inorganic particles, the ratio of the refractive index to light having a wavelength of 1 μm or more (specific refractive index) is preferably 1.25 or more. The inorganic particles have a very important role as a radiant heat scattering material, and the larger the refractive index, the more effectively the radiant heat can be scattered. The relative refractive index is extremely important for the suppression of phonon conduction, and the larger the value, the better the suppression effect.
 フォノン伝導を抑制することができる材料としては、一般的に、結晶内に格子欠陥を有している物質もしくは、複雑な構造を有している物質が知られている。前述のTiOやSiO、BaTiOは格子欠陥を有しやすく、複雑な構造を有しているので、輻射熱の散乱だけでなく、フォノンの散乱にも効果的であると考えられる。 As a material capable of suppressing phonon conduction, a substance having a lattice defect in a crystal or a substance having a complicated structure is generally known. Since TiO 2 , SiO 2 , and BaTiO 3 described above are likely to have lattice defects and have a complicated structure, it is considered effective not only for radiant heat scattering but also for phonon scattering.
 更に、無機粒子として、波長10μm以上の光に対する反射率が70%以上である無機粒子を好適に使用することができる。波長10μm以上の光は、いわゆる赤外線~遠赤外線波長領域の光であり、この波長領域の光に対する反射率が70%以上であることで、輻射伝熱をより有効に低減させることができる。 Furthermore, inorganic particles having a reflectance of 70% or more for light having a wavelength of 10 μm or more can be suitably used as the inorganic particles. The light with a wavelength of 10 μm or more is light in the so-called infrared to far-infrared wavelength region, and the reflectance for light in this wavelength region is 70% or more, so that radiant heat transfer can be reduced more effectively.
 無機粒子の固体熱伝導率は、室温で20W/m・K以下であることが好ましい。室温での固体熱伝導率が20W/m・Kより大きい無機粒子を原料として用いると、熱伝達抑制層20中において固体伝熱が支配的になり、熱伝導率が上昇(断熱性が低下)してしまうおそれがある。 The solid particles preferably have a solid thermal conductivity of 20 W / m · K or less at room temperature. When inorganic particles having a solid thermal conductivity greater than 20 W / m · K at room temperature are used as raw materials, the solid heat transfer becomes dominant in the heat transfer suppression layer 20 and the thermal conductivity is increased (decreasing heat insulation). There is a risk of it.
 なお、本実施形態において、無機繊維とはアスペクト比が3以上である無機材料をいう。一方、無機粒子とはアスペクト比が3未満である無機材料をいう。また、アスペクト比とは、物質の短径aに対する長径bの比(b/a)を意味する。 In the present embodiment, the inorganic fiber refers to an inorganic material having an aspect ratio of 3 or more. On the other hand, the inorganic particles refer to inorganic materials having an aspect ratio of less than 3. The aspect ratio means the ratio (b / a) of the major axis b to the minor axis a of the substance.
 熱伝達抑制層20は、高温での強度維持を目的として無機結合材を含んでいてもよい。無機結合材としては、例えば、コロイダルシリカ、合成マイカ、モンモリロナイトなどが挙げられる。無機結合材は、単独で使用してもよいし、2種以上組み合わせて使用してもよい。 The heat transfer suppression layer 20 may contain an inorganic binder for the purpose of maintaining strength at high temperatures. Examples of the inorganic binder include colloidal silica, synthetic mica, and montmorillonite. An inorganic binder may be used independently and may be used in combination of 2 or more types.
 この無機結合材は、熱伝達抑制層20の構成材料の合計重量に対し、1~10質量%の範囲で必要に応じて使用することができる。上記無機結合材の使用態様としては、例えば、原料中に混合したり、もしくは得られた断熱材へ含浸したりして使用することができる。 This inorganic binder can be used as necessary in the range of 1 to 10% by mass with respect to the total weight of the constituent materials of the heat transfer suppressing layer 20. As a usage mode of the inorganic binder, for example, it can be used by mixing in a raw material or impregnating the obtained heat insulating material.
 更に、熱伝達抑制層20の構成材料として有機弾性物質を必要に応じて使用してもよい。この有機弾性物質は、熱伝達抑制層20に柔軟性を持たせる場合において有用であり、例えば、天然ゴムのエマルジョンやアクリロニトリルブタジエンゴム(NBR)、スチレンブタジエンゴム(SBR)などの合成ゴムラテックスバインダーを好適に使用することができる。特に、本実施形態の熱伝達抑制層20を湿式成形法にて製造する場合には、上記有機弾性物質を使用することにより柔軟性を向上させることができる。 Furthermore, an organic elastic substance may be used as a constituent material of the heat transfer suppression layer 20 as necessary. This organic elastic material is useful in the case where the heat transfer suppressing layer 20 is made flexible. For example, natural rubber emulsion, synthetic rubber latex binder such as acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), etc. It can be preferably used. In particular, when the heat transfer suppressing layer 20 of the present embodiment is manufactured by a wet molding method, the flexibility can be improved by using the organic elastic material.
 有機弾性物質の配合量は、熱伝達抑制層20の構成材料の合計重量に対し0~5質量%の範囲であることが好ましい。有機弾性物質は、その配合量が5質量%を超えると、700℃以上の高温域で使用する際に有機弾性物質が焼失し、空隙が著しく増大するため、断熱性が低下してしまうおそれがある。 The blending amount of the organic elastic substance is preferably in the range of 0 to 5% by mass with respect to the total weight of the constituent materials of the heat transfer suppression layer 20. When the blending amount of the organic elastic material exceeds 5% by mass, the organic elastic material is burnt down when used in a high temperature range of 700 ° C. or more, and the voids are remarkably increased. is there.
 熱伝達抑制層20の厚さとしては特に限定されないが、0.1~4.0mmの範囲にあることが好ましい。熱伝達抑制層20の厚さが0.1mm未満であると、充分な機械的強度を熱伝達抑制層20に付与することができない。一方、熱伝達抑制層20の厚さが4.0mmを超えると、組電池の体積エネルギー密度の低下を招くおそれがある。 The thickness of the heat transfer suppression layer 20 is not particularly limited, but is preferably in the range of 0.1 to 4.0 mm. If the thickness of the heat transfer suppression layer 20 is less than 0.1 mm, sufficient mechanical strength cannot be imparted to the heat transfer suppression layer 20. On the other hand, if the thickness of the heat transfer suppression layer 20 exceeds 4.0 mm, the volume energy density of the assembled battery may be reduced.
 熱伝達抑制層20を構成する無機粒子は、熱伝達抑制層20の外部には容易に脱出しないが、無機粒子の脱出防止を目的として、必要に応じて熱伝達抑制層20の一部または全部を緻密化してもよい。熱伝達抑制層20を構成する無機粒子が、無機繊維が絡み合った構造に包摂されている場合、無機繊維間から容易に外部に脱出しない。ただし、使用環境によっては強い衝撃などが熱伝達抑制層20に負荷されて、無機粒子が空気中に脱出する可能性も考えられるため、無機粒子を包摂した部分における無機繊維の構造を緻密化し、無機粒子が脱出しないようにしてもよい。 The inorganic particles constituting the heat transfer suppressing layer 20 do not easily escape to the outside of the heat transfer suppressing layer 20, but a part or all of the heat transfer suppressing layer 20 is necessary for the purpose of preventing the inorganic particles from escaping. May be densified. When the inorganic particles constituting the heat transfer suppression layer 20 are included in a structure in which inorganic fibers are entangled, they do not easily escape from between the inorganic fibers. However, depending on the usage environment, a strong impact or the like may be applied to the heat transfer suppression layer 20 and the inorganic particles may escape into the air. Therefore, the structure of the inorganic fibers in the portion including the inorganic particles is densified, The inorganic particles may be prevented from escaping.
 熱伝達抑制層20を緻密化する方法としては、例えば、無機繊維の交絡構造における表面のみを溶融させるように加熱する方法や、熱伝達抑制層20表面を耐熱性フィルムなどにより被覆するといった方法があるが、無機粒子が脱出しないような方法であれば特に限定されない。 Examples of a method for densifying the heat transfer suppression layer 20 include a method of heating so as to melt only the surface of the entangled structure of inorganic fibers, and a method of covering the surface of the heat transfer suppression layer 20 with a heat resistant film or the like. However, there is no particular limitation as long as the inorganic particles do not escape.
 熱伝達抑制層20のかさ密度は特に限定されないが、0.1~1.0g/cmの範囲内にあることが好ましい。なお、かさ密度は、質量をみかけの体積で除した値として求めることができる(JIS A0202_2213を参照)。かさ密度が0.1g/cm未満では、対流伝熱および分子伝熱が増大し、一方、かさ密度が1.0g/cmを超えると固体伝熱が増大するために熱伝導率が上昇し、いずれの場合も断熱性が低下することになる。 The bulk density of the heat transfer suppression layer 20 is not particularly limited, but is preferably in the range of 0.1 to 1.0 g / cm 3 . The bulk density can be obtained as a value obtained by dividing the mass by the apparent volume (see JIS A0202_2213). When the bulk density is less than 0.1 g / cm 3 , convective heat transfer and molecular heat transfer increase, while when the bulk density exceeds 1.0 g / cm 3 , the solid heat transfer increases and the thermal conductivity increases. In either case, the heat insulating properties are reduced.
(第2の実施形態)
 続いて、本発明の第2の実施形態に係る組電池用熱伝達抑制シートについて説明する。第2の実施形態は、熱伝達抑制シートが複層(積層体)の場合である。
(Second Embodiment)
Then, the heat transfer suppression sheet for assembled batteries which concerns on the 2nd Embodiment of this invention is demonstrated. 2nd Embodiment is a case where a heat transfer suppression sheet | seat is a multilayer (laminated body).
 図5は、本発明の第2の実施形態に係る組電池用熱伝達抑制シート10の構成例を模式的に示す図である。本実施形態に係る熱伝達抑制シート10は、熱伝達抑制層20が、無機粒子及び/または無機繊維を有する断熱層42と、その両面に形成され、加熱により水分を放出する材料を含有する吸熱層44から構成される。 FIG. 5 is a diagram schematically showing a configuration example of the assembled battery heat transfer suppression sheet 10 according to the second embodiment of the present invention. In the heat transfer suppression sheet 10 according to the present embodiment, the heat transfer suppression layer 20 includes a heat insulating layer 42 having inorganic particles and / or inorganic fibers, and an endothermic material containing a material that releases moisture by heating. It is composed of layer 44.
 本実施形態によれば、ある電池セル50で発生した熱により、外層である吸熱層44中の水分を放出する材料(具体的には、上述の無機水和物や脱水剤)が加熱されると、当該材料はその熱を吸収しつつ水分を放出する。この吸熱作用により、電池セル50の発熱量を効果的に低減することができる。そして、低減された熱は中間層である断熱層42によって、電池セル50間の熱の伝播を効果的に抑制することができる。このため、たとえ電池セル50から発生する熱量が大きなものであった場合においても、十分な断熱効果を得ることができる。結果として、ある電池セル50に熱暴走が生じた場合、隣接する他の電池セル50へ熱の伝播を効果的に抑制することができ、他の電池セル50の熱暴走が引き起こされるのを効果的に抑制することができる。 According to this embodiment, the material (specifically, the above-mentioned inorganic hydrate or dehydrating agent) that releases moisture in the heat absorbing layer 44 that is the outer layer is heated by the heat generated in a certain battery cell 50. Then, the material releases moisture while absorbing the heat. Due to this endothermic effect, the amount of heat generated by the battery cell 50 can be effectively reduced. And the propagation of the heat between the battery cells 50 can be effectively suppressed by the heat insulation layer 42 which is an intermediate | middle layer for the reduced heat. For this reason, even if the amount of heat generated from the battery cell 50 is large, a sufficient heat insulating effect can be obtained. As a result, when a thermal runaway occurs in a certain battery cell 50, the propagation of heat to other adjacent battery cells 50 can be effectively suppressed, and the effect of causing a thermal runaway of other battery cells 50 is effective. Can be suppressed.
 また、本実施形態においては、図5に示すように、外層である吸熱層44に溝部22が設けられており、当該溝部22の表面に凹凸形状24(図5においては図示せず)を有するため、通常使用時における電池セル50の冷却も行うことができる。更に、上述したように、吸熱層44において、表面に凹凸形状24を有する溝部22を有することから、熱の吸熱時において吸熱層44から水分を放出できる面積を多く確保することができるため、吸熱層44としての機能をより一層発揮することができる。 Further, in the present embodiment, as shown in FIG. 5, the groove portion 22 is provided in the heat absorption layer 44 which is the outer layer, and the surface of the groove portion 22 has an uneven shape 24 (not shown in FIG. 5). Therefore, the battery cell 50 can be cooled during normal use. Furthermore, as described above, since the endothermic layer 44 has the groove portion 22 having the concavo-convex shape 24 on the surface, it is possible to secure a large area from which moisture can be released from the endothermic layer 44 when the heat is absorbed. The function as the layer 44 can be further exhibited.
 なお、本実施形態における断熱層42や吸熱層44に用いられる具体的な材料としては、第1の実施形態で説明した材料と同じものを適用することができる。 In addition, as a specific material used for the heat insulation layer 42 and the heat absorption layer 44 in this embodiment, the same material as that described in the first embodiment can be applied.
(熱伝達抑制シートの製造方法)
 続いて、熱伝達抑制シート10の製造方法について詳細に説明する。
(Method of manufacturing heat transfer suppression sheet)
Then, the manufacturing method of the heat transfer suppression sheet | seat 10 is demonstrated in detail.
<熱伝達抑制層の製造>
 熱伝達抑制シート10を構成する熱伝達抑制層20は、少なくとも無機粒子または無機繊維から構成される材料を、乾式成形法または湿式成形法により型成形して製造される。以下に、熱伝達抑制層20をそれぞれの成形法により得る場合の製造方法について説明する。
<Manufacture of heat transfer suppression layer>
The heat transfer suppression layer 20 constituting the heat transfer suppression sheet 10 is manufactured by molding a material composed of at least inorganic particles or inorganic fibers by a dry molding method or a wet molding method. Below, the manufacturing method in the case of obtaining the heat-transfer suppression layer 20 by each shaping | molding method is demonstrated.
 [乾式成形法を用いて製造する場合]
 まず、乾式成形法では、無機粒子及び/または無機繊維、更に必要に応じて、無機結合材、パルプ繊維、有機バインダーなどを所定の割合でV型混合機などの混合機に投入する。混合機に投入された材料を充分に混合した後、所定の型内に混合物を投入し、プレスすることにより熱伝達抑制層20を得る。プレス時には、必要に応じて加熱してもよい。
[When manufacturing using dry molding]
First, in the dry molding method, inorganic particles and / or inorganic fibers and, if necessary, inorganic binders, pulp fibers, organic binders and the like are charged into a mixer such as a V-type mixer in a predetermined ratio. After thoroughly mixing the materials charged in the mixer, the mixture is charged into a predetermined mold and pressed to obtain the heat transfer suppressing layer 20. You may heat as needed at the time of a press.
 上記プレス圧は、0.98~9.80MPaの範囲であることが好ましい。プレス圧が0.98MPa未満であると、得られる熱伝達抑制層20において、強度を保つことができずに崩れてしまうおそれがある。一方、プレス圧が9.80MPaを超えると、過度の圧縮によって加工性が低下したり、更に、かさ密度が高くなるため固体伝熱が増加し、断熱性が低下するおそれがある。 The press pressure is preferably in the range of 0.98 to 9.80 MPa. If the press pressure is less than 0.98 MPa, the resulting heat transfer suppression layer 20 may not be able to maintain strength and may collapse. On the other hand, when the press pressure exceeds 9.80 MPa, workability may be reduced due to excessive compression, and further, the bulk density may be increased, so that solid heat transfer may increase and heat insulation may be deteriorated.
 [湿式成形法を用いて製造する場合]
 続いて、湿式成形法では、無機粒子及び/または無機繊維、更に必要に応じて、無機結合材、パルプ繊維、有機バインダーなどを水中で混合撹拌して充分に分散させ、その後、凝集剤を添加して、一次凝集体を得る。次に、必要に応じて有機弾性物質のエマルジョンなどを所定の範囲内で上記水中に添加した後、高分子凝集剤を添加することにより凝集体を含むスラリーを得る。
[When manufacturing using wet molding method]
Subsequently, in the wet molding method, inorganic particles and / or inorganic fibers, and if necessary, inorganic binders, pulp fibers, organic binders and the like are mixed and stirred in water to be sufficiently dispersed, and then a flocculant is added. Thus, primary aggregates are obtained. Next, if necessary, an emulsion of an organic elastic substance or the like is added to the water within a predetermined range, and then a polymer flocculant is added to obtain a slurry containing aggregates.
 次に、上記凝集体を含むスラリーを所定の型内へ投入して湿潤した熱伝達抑制層20を得る。得られた熱伝達抑制層20を乾燥することにより、目的の熱伝達抑制層20が得られる。 Next, a slurry containing the agglomerates is put into a predetermined mold to obtain a wet heat transfer suppressing layer 20. The intended heat transfer suppression layer 20 is obtained by drying the obtained heat transfer suppression layer 20.
 上述のように、熱伝達抑制層20は、乾式成形法または湿式成形法のいずれによっても得られるが、一体成形の容易性や機械的強度の点から湿式成形法を用いることが好ましい。 As described above, the heat transfer suppressing layer 20 can be obtained by either a dry molding method or a wet molding method, but it is preferable to use a wet molding method in terms of ease of integral molding and mechanical strength.
 なお、図5に示すような、中間層として断熱層42を有し、その両面に吸熱層44を有する積層タイプの熱伝達抑制層20の場合には、断熱層42と吸熱層44をそれぞれ上記の製造方法により製造した後、断熱層42と吸熱層44がウェット状態での加圧プレスや、これら部材の乾燥後に接着剤を用いて接着する方法などにより、製造することができる。 In the case of the laminated heat transfer suppression layer 20 having the heat insulating layer 42 as an intermediate layer and the heat absorbing layers 44 on both sides thereof as shown in FIG. 5, the heat insulating layer 42 and the heat absorbing layer 44 are respectively described above. Then, the heat insulating layer 42 and the endothermic layer 44 can be manufactured by a pressure press in a wet state, a method of bonding using an adhesive after drying these members, or the like.
<熱伝達抑制層における溝部の形成>
 上記で得られた熱伝達抑制層20に溝部22を形成する方法について説明する。
 例えば、図6Aに示すように、所望のエンボス形状を有する2つのエンボスローラー72を上下から挟みこんで、熱伝達抑制層20の両面に溝部22を形成することで、溝部22が両面に形成された熱伝達抑制シート10を得ることができる。また、片面にのみ溝部22を有する熱伝達抑制シート10を得る場合には、図6Bに示すように、エンボスローラー72とフラットローラー74を用いることができる。
<Groove formation in heat transfer suppression layer>
A method for forming the groove 22 in the heat transfer suppression layer 20 obtained above will be described.
For example, as shown in FIG. 6A, the groove portions 22 are formed on both surfaces by sandwiching two embossed rollers 72 having a desired emboss shape from above and below and forming the groove portions 22 on both surfaces of the heat transfer suppression layer 20. The heat transfer suppressing sheet 10 can be obtained. Moreover, when obtaining the heat transfer suppression sheet | seat 10 which has the groove part 22 only in one side, as shown to FIG. 6B, the embossing roller 72 and the flat roller 74 can be used.
 また、図7に示すように、所望の形状を有するプレス加工治具82と台座84の間に、熱伝達抑制層20を挟み込んでプレス加工を施すことによっても、溝部22が形成された熱伝達抑制シート10を得ることができる。
 あるいは、図8に示すように、エンドミル90を用いた加工により、熱伝達抑制層20の表面に所望の溝部22を形成することで、溝部22が形成された熱伝達抑制シート10を得ることができる。
In addition, as shown in FIG. 7, the heat transfer in which the groove 22 is formed can also be performed by pressing the heat transfer suppressing layer 20 between the press working jig 82 having a desired shape and the pedestal 84. The suppression sheet 10 can be obtained.
Alternatively, as shown in FIG. 8, by forming a desired groove 22 on the surface of the heat transfer suppression layer 20 by processing using an end mill 90, the heat transfer suppression sheet 10 in which the groove 22 is formed can be obtained. it can.
 なお、上記いずれの方法の場合であっても、熱伝達抑制層20は、無機粒子及び/または無機繊維を含有することから、溝部22の表面は微細な凹凸形状24を有するものであり、上記したような作用効果を得ることができる。 In any of the above methods, since the heat transfer suppression layer 20 contains inorganic particles and / or inorganic fibers, the surface of the groove 22 has a fine uneven shape 24. The effects as described above can be obtained.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood. In addition, the constituent elements in the above-described embodiment may be arbitrarily combined without departing from the spirit of the invention.
 なお、本出願は、2018年5月22日出願の日本特許出願(特願2018-097970)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application filed on May 22, 2018 (Japanese Patent Application No. 2018-097970), the contents of which are incorporated herein by reference.
 10 組電池用熱伝達抑制シート
 20 熱伝達抑制層
 22 溝部
 24 凹凸形状
 26 端面(一の端面)
 28 端面(他の端面)
 30 無機粒子(または無機繊維)
 42 断熱層
 44 吸熱層
 50 電池セル
 60 電池ケース
 72 エンボスローラー
 74 フラットローラー
 82 プレス加工治具
 84 台座
 90 エンドミル
 100 組電池
10 Heat Transfer Suppression Sheet for Battery Assembly 20 Heat Transfer Suppression Layer 22 Groove 24 Uneven Shape 26 End Face (One End Face)
28 End faces (other end faces)
30 Inorganic particles (or inorganic fibers)
42 heat insulation layer 44 endothermic layer 50 battery cell 60 battery case 72 emboss roller 74 flat roller 82 press jig 84 pedestal 90 end mill 100 assembled battery

Claims (11)

  1.  複数の電池セルが熱伝達抑制シートを介して配置され、該複数の電池セルが直列または並列に接続された組電池に用いられる熱伝達抑制シートであって、
     無機粒子及び/または無機繊維を含有する熱伝達抑制層を有するとともに、
     前記熱伝達抑制層は、該熱伝達抑制層における面内方向の端面まで連通する溝部を有しており、
     前記溝部の表面が凹凸形状を有することを特徴とする組電池用熱伝達抑制シート。
    A plurality of battery cells are arranged via a heat transfer suppression sheet, the heat transfer suppression sheet used in an assembled battery in which the plurality of battery cells are connected in series or in parallel,
    While having a heat transfer suppression layer containing inorganic particles and / or inorganic fibers,
    The heat transfer suppression layer has a groove portion that communicates with the end surface in the in-plane direction of the heat transfer suppression layer,
    The assembled battery heat transfer suppression sheet, wherein a surface of the groove has an uneven shape.
  2.  前記溝部は、一の前記端面と他の前記端面を連通する、請求項1に記載の組電池用熱伝達抑制シート。 The said groove part is a heat-transfer suppression sheet | seat for assembled batteries of Claim 1 which connects the said one end surface and the said other end surface.
  3.  前記熱伝達抑制層は、平面視における外形形状が四角形であり、
     前記溝部は、4つの前記端面のうち、隣接する2つの前記端面を連通する、請求項1または2に記載の組電池用熱伝達抑制シート。
    The heat transfer suppression layer has a quadrangular outer shape in plan view,
    3. The assembled battery heat transfer suppression sheet according to claim 1, wherein the groove portion communicates two adjacent end surfaces of the four end surfaces.
  4.  前記熱伝達抑制層は、前記無機粒子を必須として含有し、
     前記無機粒子は、加熱により水分を放出する材料から構成される、請求項1~3のいずれか1項に記載の組電池用熱伝達抑制シート。
    The heat transfer suppression layer contains the inorganic particles as essential,
    The assembled battery heat transfer suppression sheet according to any one of claims 1 to 3, wherein the inorganic particles are made of a material that releases moisture upon heating.
  5.  前記加熱により水分を放出する材料は、熱分解開始温度が200℃以上の無機水和物、及び/または、150℃以下の温度で脱水可能な脱水剤である、請求項4に記載の組電池用熱伝達抑制シート。 The assembled battery according to claim 4, wherein the material that releases moisture by heating is an inorganic hydrate having a thermal decomposition start temperature of 200 ° C or higher and / or a dehydrating agent that can be dehydrated at a temperature of 150 ° C or lower. Heat transfer suppression sheet.
  6.  前記水分を放出する材料は、前記無機水和物を必須として含有し、
     前記無機水和物は、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化亜鉛、水酸化鉄、水酸化マンガン、水酸化ジルコニウムおよび水酸化ガリウムからなる群のうち少なくとも1つである、請求項5に記載の組電池用熱伝達抑制シート。
    The material that releases moisture contains the inorganic hydrate as an essential component,
    The inorganic hydrate is at least one selected from the group consisting of aluminum hydroxide, magnesium hydroxide, calcium hydroxide, zinc hydroxide, iron hydroxide, manganese hydroxide, zirconium hydroxide, and gallium hydroxide. Item 6. The heat transfer suppression sheet for assembled batteries according to Item 5.
  7.  前記水分を放出する材料は、前記脱水剤を必須として含有し、
     前記脱水剤は、シリカゲル、活性アルミナ、活性炭、ゼオライト、イオン交換樹脂、硫酸塩水和物、亜硫酸塩水和物、リン酸塩水和物、硝酸塩水和物、酢酸塩水和物および金属水和塩からなる群のうち少なくとも1つである、請求項5に記載の組電池用熱伝達抑制シート。
    The material that releases moisture contains the dehydrating agent as an essential component,
    The dehydrating agent comprises silica gel, activated alumina, activated carbon, zeolite, ion exchange resin, sulfate hydrate, sulfite hydrate, phosphate hydrate, nitrate hydrate, acetate hydrate and metal hydrate. The heat transfer suppression sheet for an assembled battery according to claim 5, which is at least one member of the group.
  8.  前記熱伝達抑制層は、前記無機繊維を必須として含有し、
     前記無機繊維は、シリカ-アルミナ繊維、アルミナ繊維、シリカ繊維、ロックウール、アルカリアースシリケート繊維およびガラス繊維からなる群のうち少なくとも1つである、請求項1~7のいずれか1項に記載の組電池用熱伝達抑制シート。
    The heat transfer suppression layer contains the inorganic fiber as an essential component,
    The inorganic fiber according to any one of claims 1 to 7, wherein the inorganic fiber is at least one selected from the group consisting of silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkaline earth silicate fiber, and glass fiber. Heat transfer suppression sheet for assembled batteries.
  9.  前記熱伝達抑制層は、前記無機粒子を必須として含有し、
     前記無機粒子は、TiOおよびSiOからなる群のうち少なくとも1つである、請求項1~8のいずれか1項に記載の組電池用熱伝達抑制シート。
    The heat transfer suppression layer contains the inorganic particles as essential,
    The assembled battery heat transfer suppression sheet according to any one of claims 1 to 8, wherein the inorganic particles are at least one selected from the group consisting of TiO 2 and SiO 2 .
  10.  前記熱伝達抑制層は、前記無機粒子及び/または前記無機繊維を含有する断熱層と、該断熱層の両面に形成され、前記加熱により水分を放出する材料を含有する吸熱層を有する、請求項4~7のいずれか1項に記載の組電池用熱伝達抑制シート。 The heat transfer suppressing layer includes a heat insulating layer containing the inorganic particles and / or the inorganic fibers, and a heat absorbing layer formed on both surfaces of the heat insulating layer and containing a material that releases moisture by the heating. The heat transfer suppressing sheet for an assembled battery according to any one of 4 to 7.
  11.  前記複数の電池セルが、請求項1~10のいずれか1項に記載の組電池用熱伝達抑制シートを介して配置され、該複数の電池セルが直列または並列に接続された組電池。 An assembled battery in which the plurality of battery cells are arranged via the heat transfer suppressing sheet for assembled battery according to any one of claims 1 to 10, and the plurality of battery cells are connected in series or in parallel.
PCT/JP2019/020257 2018-05-22 2019-05-22 Heat transfer suppression sheet for battery pack, and battery pack WO2019225643A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-097970 2018-05-22
JP2018097970A JP7115906B2 (en) 2018-05-22 2018-05-22 Heat transfer suppression sheet for assembled battery and assembled battery

Publications (1)

Publication Number Publication Date
WO2019225643A1 true WO2019225643A1 (en) 2019-11-28

Family

ID=68617018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020257 WO2019225643A1 (en) 2018-05-22 2019-05-22 Heat transfer suppression sheet for battery pack, and battery pack

Country Status (2)

Country Link
JP (1) JP7115906B2 (en)
WO (1) WO2019225643A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7462134B2 (en) 2019-01-21 2024-04-05 パナソニックIpマネジメント株式会社 Heat insulating sheet and secondary battery using same
JP7292231B2 (en) * 2020-03-06 2023-06-16 ニチアス株式会社 Thermal insulation for batteries and batteries
JP7000508B1 (en) 2020-07-10 2022-01-19 イビデン株式会社 Heat transfer suppression sheet and assembled battery
JP7453162B2 (en) 2021-01-18 2024-03-19 イビデン株式会社 Heat transfer suppression sheet for assembled batteries and assembled batteries
JP7488202B2 (en) * 2021-01-18 2024-05-21 イビデン株式会社 Heat transfer suppression sheet for battery pack and battery pack
JP7453163B2 (en) 2021-01-18 2024-03-19 イビデン株式会社 Heat transfer suppression sheet for assembled batteries and assembled batteries
JP7203870B2 (en) * 2021-01-18 2023-01-13 イビデン株式会社 Heat transfer suppression sheet for assembled battery and assembled battery
EP4280347A1 (en) * 2021-01-18 2023-11-22 IBIDEN Co., Ltd. Heat transfer suppression sheet for battery pack, and battery pack
JP7052139B1 (en) 2021-12-28 2022-04-11 イビデン株式会社 Heat transfer suppression sheet and assembled battery
JP7074925B1 (en) * 2021-12-28 2022-05-24 イビデン株式会社 Heat transfer suppression sheet and assembled battery
JP7364739B2 (en) * 2021-12-28 2023-10-18 イビデン株式会社 Heat transfer suppression sheet and assembled battery
WO2023199820A1 (en) * 2022-04-14 2023-10-19 Nok株式会社 Battery cushioning material
JP7414888B2 (en) * 2022-05-27 2024-01-16 イビデン株式会社 Heat transfer suppression sheet and assembled battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016285A (en) * 2007-07-09 2009-01-22 Kojima Press Co Ltd Cooling device
WO2010026732A1 (en) * 2008-09-05 2010-03-11 パナソニック株式会社 Battery pack
JP2010097693A (en) * 2008-10-14 2010-04-30 Toyota Motor Corp Power storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016285A (en) * 2007-07-09 2009-01-22 Kojima Press Co Ltd Cooling device
WO2010026732A1 (en) * 2008-09-05 2010-03-11 パナソニック株式会社 Battery pack
JP2010097693A (en) * 2008-10-14 2010-04-30 Toyota Motor Corp Power storage device

Also Published As

Publication number Publication date
JP7115906B2 (en) 2022-08-09
JP2019204636A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
WO2019225643A1 (en) Heat transfer suppression sheet for battery pack, and battery pack
JP7359530B2 (en) Heat transfer suppression sheet for assembled batteries and assembled batteries
JP7203568B2 (en) Heat transfer suppression sheet for assembled battery, sheet structure, and assembled battery
WO2019088195A1 (en) Heat insulation sheet for battery pack, and battery pack
JP7184597B2 (en) Heat transfer suppression sheet for assembled battery, sheet structure, and assembled battery
JP7092536B2 (en) Endothermic sheet for assembled battery and assembled battery
WO2021070933A1 (en) Heat insulation sheet for battery packs, and battery pack
JP2020165483A (en) Heat transfer suppression sheet, heat transfer suppression sheet for battery pack, and battery pack
JP7307217B2 (en) Heat transfer suppression sheet for assembled battery and assembled battery
JP7182123B2 (en) Heat-absorbing sheet for assembled battery and assembled battery
JP7299029B2 (en) HEAT TRANSFER SUPPRESSING MEMBER AND METHOD OF USE THEREOF
WO2024117239A1 (en) Heat transfer suppression sheet and battery pack
JP7495468B2 (en) Heat transfer suppression sheet and battery pack
JP7414888B2 (en) Heat transfer suppression sheet and assembled battery
JP2020119841A (en) Heat transfer suppressing member and its use method
WO2023229042A1 (en) Heat transfer suppression sheet and battery pack
JP7364739B2 (en) Heat transfer suppression sheet and assembled battery
JP7364742B1 (en) Heat transfer suppression sheet and assembled battery
WO2023229046A1 (en) Heat transfer suppression sheet and battery pack
JP2023092423A (en) Heat-insulation sheet and battery pack
JP2023146554A (en) Heat transfer suppression sheet and battery pack
JP2023170065A (en) Flameproof sheet and manufacturing method therefor, and battery module
JP2023098612A (en) Heat transfer suppressing sheet and battery pack
JP2023174131A (en) Heat transmission suppression sheet and battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808007

Country of ref document: EP

Kind code of ref document: A1