WO2019088195A1 - Heat insulation sheet for battery pack, and battery pack - Google Patents

Heat insulation sheet for battery pack, and battery pack Download PDF

Info

Publication number
WO2019088195A1
WO2019088195A1 PCT/JP2018/040577 JP2018040577W WO2019088195A1 WO 2019088195 A1 WO2019088195 A1 WO 2019088195A1 JP 2018040577 W JP2018040577 W JP 2018040577W WO 2019088195 A1 WO2019088195 A1 WO 2019088195A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
inorganic
heat insulation
layer
heat insulating
Prior art date
Application number
PCT/JP2018/040577
Other languages
French (fr)
Japanese (ja)
Inventor
直己 高橋
清成 畑中
寿 安藤
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2019088195A1 publication Critical patent/WO2019088195A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/6595Means for temperature control structurally associated with the cells by chemical reactions other than electrochemical reactions of the cells, e.g. catalytic heaters or burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to, for example, a heat insulating sheet for a battery pack, which is suitably used for a battery pack serving as a power source of an electric motor for driving an electric vehicle or a hybrid vehicle.
  • This battery cell mainly uses a lithium ion secondary battery capable of high capacity and high output compared to lead storage battery and nickel hydrogen battery etc., but due to internal short circuit and overcharge of the battery etc.
  • thermal runaway occurs in one battery cell, the propagation of heat to the other adjacent battery cells may cause thermal runaway of the other battery cells.
  • Patent Document 1 describes a power storage device including one or more power storage elements, which is one of the one or more power storage elements.
  • a first plate and a second plate disposed laterally of the first storage element, the first plate and the second plate being disposed such that the surfaces of the first plate and the second plate face each other;
  • a low thermal conductive layer for example, an air layer
  • the first storage element is formed.
  • the radiation heat from the first storage element or the radiation heat toward the first storage element is blocked by the two plate members, and the heat transfer from one of the two plate members to the other is suppressed by the low heat conduction layer. Achieve effective insulation between the object and other objects It is disclosed that it is.
  • Patent Document 1 Although it is possible to suppress the radiation heat from a certain storage element or the radiation heat toward a certain storage element and the heat transfer between the two plate members by the low heat conduction layer, it becomes a heat source When the amount of heat generated from each storage element is large, it can not always be said that the heat insulation effect is sufficient.
  • the present invention has been made in view of such circumstances, and in forming a battery pack in which a plurality of battery cells are connected in series or in parallel, the propagation of heat between the battery cells is effectively suppressed. It is an object of the present invention to provide a heat insulating sheet for a battery pack that can be
  • the gist of the heat insulating sheet for a battery assembly is a set in which a plurality of battery cells are disposed via a heat insulating sheet and the plurality of battery cells are connected in series or in parallel.
  • a heat insulating sheet for use in a battery comprising: a heat insulating layer comprising at least inorganic fibers or inorganic powder; and an endothermic layer formed on both surfaces of the heat insulating layer and comprising at least inorganic hydrate.
  • the heat insulation layer has lower thermal conductivity than the heat absorption layer.
  • the inorganic powder has a refractive index ratio (relative refractive index) to light of a wavelength of 1 ⁇ m or more at 1.25 or more.
  • the inorganic powder contains TiO 2 powder or SiO 2 powder.
  • the inorganic powder is scale-like particles having anisotropy in thermal conductivity, and the plane direction of the scale-like particles is perpendicular to the thickness direction of the heat insulation sheet. It is oriented in the direction.
  • the inorganic hydrate is at least one of aluminum hydroxide and magnesium hydroxide.
  • the inorganic fibers are at least one of silica-alumina fibers, alumina fibers, silica fibers, rock wool, Alkaline Earth Silicate (AES) fibers and glass fibers. It is.
  • the gist of an assembled battery according to one aspect of the present invention is characterized in that a plurality of battery cells are disposed via the above-described heat insulating sheet for battery assembly, and the plurality of battery cells are connected in series or in parallel. I assume.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a heat insulation sheet for a battery assembly according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a configuration of a heat insulating sheet for battery assembly according to another embodiment of the present invention.
  • FIG. 3 is sectional drawing which shows typically the structure of the assembled battery which applied the heat insulation sheet for assembled batteries which concerns on one Embodiment of this invention.
  • FIG. 4 is a graph in which the temperature change of the adjacent battery cell surface is plotted against the elapsed time when the heat insulation sheets of Examples 1 to 3 and Comparative Examples 1 to 6 are heated by a heater.
  • the present inventors provide a heat insulating sheet for a battery pack capable of effectively suppressing the propagation of heat between battery cells even when the amount of heat generated from each storage element serving as a heat source is large. In order to do so, we have conducted intensive studies.
  • a heat insulating sheet comprising a heat insulating layer comprising at least inorganic fibers or inorganic powder as an intermediate layer, and a heat absorbing layer comprising at least inorganic hydrate formed on both surfaces thereof is disposed in a battery assembly It has been found that the above problems can be solved by interposing between the battery cells.
  • the inorganic hydrate in the endothermic layer which is the outer layer when the inorganic hydrate in the endothermic layer which is the outer layer is heated by the heat generated in a certain battery cell, the inorganic hydrate absorbs the heat and releases the water.
  • the heat absorption effect of the battery cell can be effectively reduced by this heat absorption action.
  • the reduced heat can effectively suppress the propagation of heat between the battery cells by the heat insulating layer which is the intermediate layer, even if the amount of heat generated from the battery cells is large. , Sufficient insulation effect can be obtained.
  • thermal runaway occurs in one battery cell, it is possible to effectively suppress the propagation of heat to other adjacent battery cells, thereby suppressing the occurrence of thermal runaway in the other battery cells. Can.
  • the thickness of the heat insulating layer is extreme unlike that using only the heat insulating layer to suppress heat transfer. There is no need to thicken. For this reason, it is possible to reduce the thickness of the whole heat insulating sheet (for example, 5 mm or less), and as a result, it is possible to improve the volumetric energy density of the assembled battery while securing the safety of the assembled battery. Become.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a heat insulation sheet for a battery assembly according to an embodiment of the present invention.
  • the heat insulating sheet 10 for a battery assembly according to the present embodiment has a heat insulating layer 12 containing at least inorganic fibers or inorganic powder as an intermediate layer, and a double layer in which the heat absorbing layer 14 made of at least inorganic hydrate is formed on both surfaces thereof. It consists of (laminated structure).
  • the heat insulating layer 12 is made of at least an inorganic fiber or an inorganic powder, and suppresses the transfer of heat generated in one battery cell to another adjacent battery cell. Also, the thermal conductivity of the heat insulating layer 12 is lower than the thermal conductivity of the endothermic layer 14.
  • the endothermic layer 14 is made of at least an inorganic hydrate, and when the inorganic hydrate in the endothermic layer is heated by the heat generated by a battery cell, the inorganic hydrate absorbs the heat and releases moisture. . This heat absorption action reduces the calorific value of the battery cell.
  • the heat insulating layer 12 having low thermal conductivity is provided as the intermediate layer, and the heat absorption layer 14 is disposed on both surfaces of the intermediate layer as the outer layer thereof, thereby reducing the amount of heat generated in the battery cell.
  • the heat insulating layer 12 can suppress the propagation of heat, and can effectively suppress the propagation of heat to other adjacent battery cells.
  • the heat insulation sheet 10 for a battery pack As a specific usage of the heat insulation sheet 10 for a battery pack, as shown in FIG. 3, a plurality of battery cells 20 are disposed via the heat insulation sheet 10 for a battery pack, and the plurality of battery cells 20 are in series.
  • the battery assembly 30 is configured to be stored in the battery case 30 in a state of being connected in parallel (the connected state is not shown).
  • the lithium ion secondary battery is used suitably, for example as the battery cell 20, it is not specifically limited to this.
  • the heat insulation layer 12 contains at least an inorganic fiber or an inorganic powder. That is, as a constituent material of the heat insulation layer 12, any one of inorganic fibers and inorganic powders may be included, and by including any one of these, it is possible to exhibit the effect as a heat insulation material. it can. However, by containing both the inorganic fiber and the inorganic powder, the inorganic powder can divide continuous voids in the structure formed by the intertwining of the inorganic fiber, so that the convective heat transfer in the heat insulating layer 12 is effectively made. It becomes possible to reduce and it can exhibit the heat insulation effect more effectively.
  • the inorganic fibers include silica-alumina fibers, alumina fibers, silica fibers, rock wool, alkali earth silicate fibers, glass fibers, zirconia fibers and potassium titanate whisker fibers. These inorganic fibers are preferable in terms of heat resistance, strength, and availability.
  • the inorganic fibers may be used alone or in combination of two or more.
  • silica-alumina fibers, alumina fibers, silica fibers, rock wool, alkali earth silicate fibers and glass fibers are preferable.
  • the cross-sectional shape of the inorganic fiber is not particularly limited, and examples thereof include a circular cross-section, a flat cross-section, a hollow cross-section, a polygonal cross-section, and a core-sheath cross-section.
  • a modified cross-section fiber having a hollow cross section, a flat cross section or a polygonal cross section can be suitably used because the heat insulation property is slightly improved.
  • the preferable lower limit of the average fiber length of the above-mentioned inorganic fiber is 0.1 mm, and the more preferable lower limit is 0.5 mm.
  • the preferable upper limit of the average fiber length of the said inorganic fiber is 50 mm, and a more preferable upper limit is 10 mm. If the average fiber length of the inorganic fibers is less than 0.1 mm, entanglement of the inorganic fibers is unlikely to occur, and the mechanical strength of the resulting heat insulating layer 12 may be reduced.
  • the inorganic fibers can not be tightly intertwined, or only a single inorganic fiber is curled up, which makes it easy to form continuous voids, so it has thermal insulation. It may cause a decline.
  • the preferable lower limit of the average fiber diameter of the inorganic fiber is 1 ⁇ m, the more preferable lower limit is 2 ⁇ m, and the still more preferable lower limit is 3 ⁇ m.
  • the preferable upper limit of the average fiber diameter of the said inorganic fiber is 10 micrometers, and a more preferable upper limit is 7 micrometers. If the average fiber diameter of the inorganic fiber is less than 1 ⁇ m, the mechanical strength of the inorganic fiber itself may be reduced. Further, from the viewpoint of the influence on the health of the human body, it is preferable that the average fiber diameter of the inorganic fiber is 3 ⁇ m or more.
  • the average fiber diameter of the above-mentioned inorganic fiber is larger than 10 ⁇ m, solid heat transfer with the inorganic fiber as a medium may increase to cause a decrease in heat insulation, and the formability of the heat insulation layer 12 may be deteriorated. There is.
  • examples of the inorganic powder include TiO 2 powder, SiO 2 powder, BaTiO 3 powder, PbS powder, ZrO 2 powder, SiC powder, NaF powder and LiF powder. These inorganic powders may be used alone or in combination of two or more.
  • preferred combinations are a combination of TiO 2 powder and SiO 2 powder, a combination of TiO 2 powder and BaTiO 3 powder, a combination of SiO 2 powder and BaTiO 3 powder, or And combinations of TiO 2 powder, SiO 2 powder and BaTiO 3 powder.
  • the TiO 2 powder has a high refractive index to infrared rays, and has an effect of improving the heat insulation in a high temperature range.
  • SiO 2 powder has a low solid thermal conductivity, and it is easy to form fine voids with fine particles, so that it has an effect of suppressing the convection and improving the heat insulation in a low temperature range. Therefore, the combination of TiO 2 powder and SiO 2 powder can be expected to provide heat insulation in a wide temperature range from a low temperature range to a high temperature range, and a combination of these is particularly preferable.
  • the plane direction of the scale-like particles 16 is the thickness direction of the heat insulation sheet 10 for the assembled battery. It is preferable to orient in a direction perpendicular to (that is, in the thickness direction of the heat insulating layer 12).
  • the scaly particles 16 made of inorganic powder have anisotropy in thermal conductivity, and the thermal conductivity of the scaly particles in the surface direction is very high compared to the thermal conductivity in the direction perpendicular to the surface direction. Excellent.
  • the heat propagation in the thickness direction of the heat insulation sheet 10 for the assembled battery is made more effective by orienting the surface direction of the scaly particles in the direction perpendicular to the thickness direction of the heat insulation sheet 10 for the assembled battery. Can be suppressed. Therefore, as shown in FIG. 3, when the battery assembly thermal insulation sheet 10 is interposed between a plurality of battery cells 20, the heat transfer from one battery cell 20 to another battery cell 20 is more effective. It is possible to Furthermore, by having the above configuration, the flexibility of the battery pack thermal insulation sheet 10 can be further enhanced.
  • a preferable upper limit is 50 mass% with respect to the total weight of the material which comprises the heat insulation layer 12
  • a further preferable upper limit is 40% by mass.
  • the preferable minimum of the compounding quantity of the said inorganic fiber is 5 mass%, and a still more preferable minimum is 10 mass%. If the compounding amount is less than 5% by mass, the reinforcing effect by the inorganic fibers can not be obtained, and the handleability and mechanical strength of the heat insulating layer 12 may be reduced, and a good formability may not be obtained.
  • the compounding amount exceeds 50% by mass, many continuous voids exist in the structure in which the inorganic fibers constituting the heat insulating layer 12 are intertwined, and convective heat transfer, molecular heat transfer and radiation heat transfer increase. Heat insulation properties may deteriorate.
  • a preferable upper limit is 95 mass% with respect to the total weight of the material which comprises the heat insulation layer 12
  • a further preferable upper limit is 90% by mass.
  • the preferable minimum of the compounding quantity of the said inorganic powder is 50 mass%, and a still more preferable minimum is 60 mass%.
  • the preferable lower limit of the average particle diameter of the inorganic powder is 0.5 ⁇ m, and the more preferable lower limit is 1 ⁇ m.
  • the preferable upper limit of the average particle diameter of the inorganic powder is 20 ⁇ m, and the more preferable upper limit is 10 ⁇ m. If the average particle diameter of the inorganic powder is less than 0.5 ⁇ m, not only the production of the heat insulating layer 12 becomes difficult, but also the radiation heat scattering becomes insufficient, and the thermal conductivity of the heat insulating layer 12 increases (that is, the heat insulating property) May decrease).
  • the air gaps formed in the heat insulating layer 12 become extremely large, so convective heat transfer and molecular heat transfer increase, and also in this case the thermal conductivity increases Resulting in.
  • the shape of the inorganic powder is not particularly limited as long as the average particle diameter is in the above range, and any shape such as a sphere, an ellipsoid, a polyhedron, or a shape or profile having irregularities or protrusions on the surface The shape of is mentioned.
  • the ratio of the refractive index to light with a wavelength of 1 ⁇ m or more is 1.25 or more.
  • the inorganic powder has a very important role as a scattering material of radiant heat, and the radiant heat can be scattered more effectively as the refractive index is larger.
  • the relative refractive index is extremely important for the suppression of phonon conduction, and the larger the value, the better the suppression effect.
  • materials capable of suppressing phonon conduction generally, substances having lattice defects in crystals or substances having complex structures are known.
  • the aforementioned TiO 2 , SiO 2 , and BaTiO 3 tend to have lattice defects and have a complex structure, and therefore are considered to be effective not only for radiation heat scattering but also phonon scattering.
  • an inorganic powder having a reflectance of 70% or more to light having a wavelength of 10 ⁇ m or more can be suitably used.
  • the light having a wavelength of 10 ⁇ m or more is light in the so-called infrared to far infrared wavelength region, and the radiation heat transfer can be more effectively reduced by the reflectance to light in this wavelength region being 70% or more.
  • the solid thermal conductivity of the inorganic powder is preferably 20 W / m ⁇ K or less at room temperature.
  • an inorganic powder whose solid thermal conductivity at room temperature is larger than 20 W / m ⁇ K is used as a raw material, solid heat transfer becomes dominant in the heat insulating layer 12, and the thermal conductivity increases (the thermal insulation property decreases). There is a risk of
  • the inorganic fiber refers to an inorganic material having an aspect ratio of 3 or more.
  • the inorganic powder refers to an inorganic material having an aspect ratio of less than 3.
  • the aspect ratio means the ratio (b / a) of the major axis b to the minor axis a of the substance.
  • the heat insulation layer 12 may contain an inorganic binder for the purpose of maintaining the strength at high temperature.
  • examples of the inorganic binder include colloidal silica, synthetic mica, montmorillonite and the like.
  • the above inorganic binders may be used alone or in combination of two or more.
  • This inorganic binder can be used as needed in the range of 1 to 10% by mass with respect to the total weight of the constituent materials of the heat insulation layer 12.
  • it can be used, for example, mixing in a raw material, or impregnating to the obtained heat insulating material.
  • an organic elastic material may be used as a constituent material of the heat insulating layer 12 as needed.
  • This organic elastic material is useful in providing flexibility to the heat insulating layer 12, and for example, synthetic rubber latex binders such as natural rubber emulsion, acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), etc. are suitably used. It can be used.
  • synthetic rubber latex binders such as natural rubber emulsion, acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), etc.
  • NBR acrylonitrile butadiene rubber
  • SBR styrene butadiene rubber
  • the compounding amount of the organic elastic material is preferably in the range of 0 to 5% by mass with respect to the total weight of the constituent materials of the heat insulation layer 12.
  • the organic elastic material burns away when used in a high temperature range of 700 ° C. or more when the compounding amount exceeds 5% by mass, and the voids significantly increase, so the heat insulation may be deteriorated. There is.
  • the thickness of the heat insulation layer 12 is not particularly limited, but is preferably in the range of 0.1 to 4.0 mm. When the thickness of the thermal insulation layer 12 is less than 0.1 mm, sufficient mechanical strength can not be imparted to the thermal insulation layer 12. On the other hand, when the thickness of the heat insulation layer 12 exceeds 4.0 mm, there is a possibility that the volume energy density of the assembled battery may be lowered.
  • the inorganic powder constituting the heat insulation layer 12 does not easily escape to the outside of the heat insulation layer 12, but for the purpose of preventing the escape of the inorganic powder, part or all of the heat insulation layer 12 is densified as needed. May be In the heat insulation layer 12 of the present embodiment, the inorganic powder constituting the heat insulation layer 12 is included in the structure in which the inorganic fibers are intertwined, and therefore does not easily escape from the inorganic fibers to the outside. However, depending on the use environment, strong impact may be applied to the heat insulation layer 12 and the inorganic powder may escape into the air, so the structure of the inorganic fiber in the portion including the inorganic powder is densified, The inorganic powder may be prevented from escaping.
  • a method of densifying the heat insulating layer 12 for example, there is a method of heating so as to melt only the surface in the entangled structure of inorganic fibers, or a method of covering the surface of the heat insulating layer 12 with a heat resistant film etc.
  • the method is not particularly limited as long as the powder does not escape.
  • the bulk density of the heat insulating layer 12 is not particularly limited, but is preferably in the range of 0.1 to 1.0 g / cm 3 .
  • the bulk density can be obtained as a value obtained by dividing the mass by the apparent volume (see JIS A 0202_2213). If the bulk density is less than 0.1 g / cm 3 , convective heat transfer and molecular heat transfer will increase, while if the bulk density exceeds 1.0 g / cm 3 , the heat transfer will increase due to the increase of solid heat transfer. In either case, the thermal insulation will be reduced.
  • the endothermic layer contains at least anhydrous hydrate.
  • the anhydrous hydrate include aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), dawsonite (NaAl (OH)) and the like. These inorganic hydrates may be used alone or in combination of two or more. Among the above-mentioned inorganic hydrates, aluminum hydroxide or magnesium hydroxide is particularly preferable from the viewpoint of good endothermic properties.
  • a preferable upper limit is 90 mass% with respect to the total weight of the material which comprises the endothermic layer 14, and a still more preferable upper limit is 80 mass%.
  • the preferable minimum of the compounding quantity of the said inorganic powder is 30 mass%, and a still more preferable minimum is 50 mass%. If this compounding amount is less than 30% by mass, there is a possibility that good endothermic characteristics can not be obtained. On the other hand, if the compounding amount exceeds 90% by mass, there is a possibility that the heat absorption layer can not be formed.
  • the heat absorption layer 14 may contain inorganic fibers or pulp fibers for the purpose of improving the strength at the time of molding.
  • inorganic fiber the thing similar to the inorganic fiber used for the heat insulation layer 12 demonstrated above can be used.
  • These inorganic fibers and pulp fibers can be used as needed in the range of 10 to 70% by mass with respect to the total weight of the materials constituting the endothermic layer 14.
  • An organic binder may be used as a material of the endothermic layer 14 if necessary.
  • This organic binder is useful for the purpose of improving the strength at the time of molding, and for example, a polymer flocculant or an acrylic emulsion can be suitably used.
  • the compounding amount of the organic binder can be used as needed in the range of 0.5 to 5.0% by mass with respect to the total weight of the materials constituting the endothermic layer 14.
  • the thickness of the heat absorption layer 14 is not particularly limited, but is preferably in the range of 0.1 to 4.0 mm. When the thickness of the endothermic layer 14 is less than 0.1 mm, sufficient mechanical strength can not be imparted to the endothermic layer 14. On the other hand, when the thickness of the heat absorption layer 14 exceeds 4.0 mm, there is a possibility that the formation of the heat absorption layer 14 itself becomes difficult.
  • the heat insulating layer 12 is manufactured by molding a material composed of at least inorganic fibers or inorganic powder by a dry molding method or a wet molding method. Below, the manufacturing method in the case of obtaining the heat insulation layer 12 by each shaping
  • inorganic fibers and inorganic powders and, if necessary, an inorganic binder and an organic elastic material are charged into a mixer such as a V-type mixer at a predetermined ratio. After thoroughly mixing the materials introduced into the mixer, the mixture is introduced into a predetermined mold and pressed to obtain the heat insulating layer 12. At the time of pressing, heating may be performed as needed.
  • the pressing pressure is preferably in the range of 0.98 to 9.80 MPa.
  • the heat insulation layer 12 obtained as a press pressure is less than 0.98 Mpa, there exists a possibility that it may collapse without being able to maintain intensity.
  • the pressing pressure exceeds 9.80 MPa, the processability is lowered due to excessive compression, and the bulk density is further increased, so that the solid heat transfer may be increased and the heat insulation may be lowered.
  • the slurry containing the above aggregates is introduced into a predetermined mold to obtain the heat insulating layer 12 which is wetted. By drying the obtained heat insulation layer 12, the target heat insulation layer 12 is obtained.
  • the heat insulating layer 12 can be obtained by either a dry molding method or a wet molding method, but it is preferable to use the wet molding method in terms of the ease of integral molding and the mechanical strength.
  • the endothermic layer 14 is manufactured by molding a material composed of at least an inorganic hydrate by a dry molding method or a wet molding method. About the detailed conditions of the manufacturing method of an endothermic layer, it is the same as that of the manufacturing method of the said heat insulation layer except changing an inorganic fiber and inorganic powder into an inorganic hydrate.
  • Example 1 As inorganic powder, 50% by mass of TiO 2 powder (average particle diameter: 8 ⁇ m) and 50% by mass of SiO 2 powder (average particle diameter: 15 nm) were added and thoroughly mixed. The above mixture was molded into a mold to obtain a heat insulating layer (heat insulating sheet) having a thickness of 1 mm, and then the heat insulating layer was dried at 110 ° C. for 8 hours.
  • TiO 2 powder average particle diameter: 8 ⁇ m
  • SiO 2 powder average particle diameter: 15 nm
  • the heat insulation sheet for assembled batteries was obtained.
  • Example 2 After molding an alumina-silica fiber (AF: Alumina Fiber) as an inorganic fiber by molding to obtain a heat insulation layer (heat insulation sheet) having a thickness of 1 mm, the heat insulation layer was dried under the condition of 110 ° C. ⁇ 8 hours.
  • AF Alumina Fiber
  • the heat insulation sheet for assembled batteries was obtained.
  • Example 3 60 mass% of alumina-silica fiber (AF) as inorganic fiber, 20 mass% of TiO 2 powder (average particle size: 8 ⁇ m) as inorganic powder, and 20 mass% of SiO 2 powder (average particle size: 15 nm) Mix well.
  • the above mixture was molded into a mold to obtain a heat insulating layer (heat insulating sheet) having a thickness of 1 mm, and then the heat insulating layer was dried at 110 ° C. for 8 hours.
  • the heat insulation sheet for assembled batteries was obtained.
  • Comparative Example 1 Under the same conditions and procedure as in Example 1, a heat insulating layer having a thickness of 2 mm was produced to obtain a heat insulating sheet for a battery pack.
  • the heat insulation sheet for assembled batteries is comprised only with the heat insulation layer in Example 1, and a heat absorption layer does not exist.
  • Comparative Example 2 Under the same conditions and procedure as in Example 2, a heat insulating layer having a thickness of 2 mm was produced to obtain a heat insulating sheet for a battery pack.
  • the heat insulation sheet for assembled batteries is comprised only with the heat insulation layer in Example 2, and a heat absorption layer does not exist.
  • Example 3 Under the same conditions and procedure as in Example 3, a heat insulating layer having a thickness of 2 mm was produced to obtain a heat insulating sheet for a battery pack.
  • the heat insulation sheet for assembled batteries is comprised only with the heat insulation layer in Example 3, and a heat absorption layer does not exist.
  • Comparative Example 4 A sheet of 2 mm in thickness made of alkali earth silicate (AES) fiber was prepared and used as a heat insulating sheet for battery pack.
  • AES alkali earth silicate
  • Comparative Example 5 A thermal insulation sheet for a battery pack was obtained by stacking a 1 mm thick mica sheet and a 1 mm thick alumina-silica fiber (AF) sheet.
  • Comparative Example 6 Under the same conditions and procedure as in Example 1, a heat absorption layer having a thickness of 2 mm was produced to obtain a heat insulating sheet for a battery pack. In Comparative Example 6, only the heat absorption layer in Example 1 constitutes a heat insulating sheet for a battery assembly, and no heat insulating layer is present.
  • a heater was disposed on one side of the heat insulation sheet for a battery pack obtained in each of Examples 1 to 3 and Comparative Examples 1 to 6, and a metal plate simulating a battery cell adjacent to the other side was disposed on the other side. Furthermore, a thermocouple was placed on the metal plate, and the heater temperature was heated to 700 ° C., and the temperature change of the surface of the adjacent battery cell (metal plate) with respect to elapsed time was measured.
  • Example 1 336 ° C.
  • Example 2 349 ° C.
  • Example 3 343 ° C Comparative Example 1: 367 ° C.
  • Comparative example 2 448 ° C.
  • Comparative example 3 427 ° C Comparative Example 4: 478 ° C.
  • Comparative example 5 403 ° C.
  • Comparative Example 6 385 ° C.

Abstract

Provided is a heat insulation sheet for a battery pack, the heat insulation sheet being capable of effectively suppressing heat propagation between respective battery cells, when a battery pack is configured in which a plurality of battery cells are connected in series or in parallel. This heat insulation sheet (10), through which a plurality of battery cells are disposed and which is used for a battery pack configured by connecting the plurality of battery cells in series or in parallel, has: a heat insulation layer (12) composed of at least an inorganic fiber or an inorganic powder; and heat absorption layers (14) formed on the both surfaces of the heat insulation layer (12) and composed of at least an inorganic hydrate.

Description

組電池用断熱シートおよび組電池Thermal insulation sheet for assembled battery and assembled battery
 本発明は、例えば、電気自動車またはハイブリッド車などを駆動する電動モータの電源となる組電池に好適に用いられる組電池用断熱シートに関する。 The present invention relates to, for example, a heat insulating sheet for a battery pack, which is suitably used for a battery pack serving as a power source of an electric motor for driving an electric vehicle or a hybrid vehicle.
 近年、環境保護の観点から電動モータで駆動する電気自動車またはハイブリッド車などの開発が盛んに進められている。この電気自動車またはハイブリッド車などには、駆動用電動モータの電源となるための、複数の電池セルが直列または並列に接続された組電池が搭載されている。 BACKGROUND ART In recent years, development of an electric car or a hybrid car driven by an electric motor has been actively promoted from the viewpoint of environmental protection. In the electric car or the hybrid car, etc., there is mounted a battery pack in which a plurality of battery cells are connected in series or in parallel to be a power source of a driving electric motor.
 この電池セルには、鉛蓄電池やニッケル水素電池などに比べて、高容量かつ高出力が可能なリチウムイオン二次電池が主に用いられているが、電池の内部短絡や過充電などが原因で1つの電池セルに熱暴走が生じた場合、隣接する他の電池セルへ熱の伝播が起こることで、他の電池セルの熱暴走を引き起こすおそれがある。 This battery cell mainly uses a lithium ion secondary battery capable of high capacity and high output compared to lead storage battery and nickel hydrogen battery etc., but due to internal short circuit and overcharge of the battery etc. When thermal runaway occurs in one battery cell, the propagation of heat to the other adjacent battery cells may cause thermal runaway of the other battery cells.
 上記のような熱暴走の伝播を抑制するための技術として、例えば、特許文献1には、1以上の蓄電素子を備える蓄電装置であって、前記1以上の蓄電素子のうちの1つである第一蓄電素子の側方に配置された第一板材および第二板材であって、互いの面が対向するように配置された第一板材および第二板材を備え、前記第一板材と前記第二板材との間には、前記第一板材および前記第二板材よりも熱伝導率の低い物質の層である低熱伝導層(例えば、空気層)が形成されていることにより、第一蓄電素子からの輻射熱、または、第一蓄電素子に向かう輻射熱は2枚の板材によって遮断され、かつ、これら2枚の板材の一方から他方への熱の移動は低熱伝導層によって抑制されるため、蓄電素子と他の物体との間の効果的な断熱を実現することができることが開示されている。 As a technique for suppressing the propagation of thermal runaway as described above, for example, Patent Document 1 describes a power storage device including one or more power storage elements, which is one of the one or more power storage elements. A first plate and a second plate disposed laterally of the first storage element, the first plate and the second plate being disposed such that the surfaces of the first plate and the second plate face each other; By forming a low thermal conductive layer (for example, an air layer) which is a layer of a substance having a thermal conductivity lower than that of the first plate and the second plate between the two plate members, the first storage element is formed. The radiation heat from the first storage element or the radiation heat toward the first storage element is blocked by the two plate members, and the heat transfer from one of the two plate members to the other is suppressed by the low heat conduction layer. Achieve effective insulation between the object and other objects It is disclosed that it is.
日本国特開2015-211013号公報Japanese Patent Laid-Open Publication 2015-211013
 しかし、上記特許文献1においては、ある蓄電素子からの輻射熱、または、ある蓄電素子に向かう輻射熱の遮断と、2枚の板材間の熱移動を低熱伝導層により抑制できるとあるものの、熱源となる各蓄電素子から発生する熱量が大きなものであった場合には、必ずしも断熱効果が十分とは言えなかった。 However, in Patent Document 1 described above, although it is possible to suppress the radiation heat from a certain storage element or the radiation heat toward a certain storage element and the heat transfer between the two plate members by the low heat conduction layer, it becomes a heat source When the amount of heat generated from each storage element is large, it can not always be said that the heat insulation effect is sufficient.
 本発明は、このような事情に着目してなされたものであり、複数の電池セルが直列または並列に接続された組電池を構成するに当たり、各電池セル間の熱の伝播を効果的に抑制することのできる、組電池用断熱シートを提供することを目的とする。 The present invention has been made in view of such circumstances, and in forming a battery pack in which a plurality of battery cells are connected in series or in parallel, the propagation of heat between the battery cells is effectively suppressed. It is an object of the present invention to provide a heat insulating sheet for a battery pack that can be
 上記目的を達成するため、本発明の一態様に係る組電池用断熱シートの要旨は、複数の電池セルが断熱シートを介して配置され、該複数の電池セルが直列または並列に接続された組電池に用いられる断熱シートであって、少なくとも無機繊維または無機粉体からなる断熱層と、前記断熱層の両面に形成され、少なくとも無機水和物からなる吸熱層を有することを特徴とする。 In order to achieve the above object, the gist of the heat insulating sheet for a battery assembly according to one aspect of the present invention is a set in which a plurality of battery cells are disposed via a heat insulating sheet and the plurality of battery cells are connected in series or in parallel. A heat insulating sheet for use in a battery, comprising: a heat insulating layer comprising at least inorganic fibers or inorganic powder; and an endothermic layer formed on both surfaces of the heat insulating layer and comprising at least inorganic hydrate.
 上記組電池用断熱シートにおける好ましい実施形態において、前記断熱層は、前記吸熱層よりも熱伝導率が低い。 In a preferred embodiment of the above-mentioned heat insulation sheet for battery pack, the heat insulation layer has lower thermal conductivity than the heat absorption layer.
 上記組電池用断熱シートにおける好ましい実施形態において、前記無機粉体は、波長1μm以上の光に対する屈折率の比(比屈折率)が1.25以上である。 In a preferred embodiment of the above-mentioned heat insulation sheet for battery assembly, the inorganic powder has a refractive index ratio (relative refractive index) to light of a wavelength of 1 μm or more at 1.25 or more.
 上記組電池用断熱シートにおける好ましい実施形態において、前記無機粉体は、TiO粉末またはSiO粉末を含む。 In a preferred embodiment of the above-mentioned heat insulation sheet for battery pack, the inorganic powder contains TiO 2 powder or SiO 2 powder.
 上記組電池用断熱シートにおける好ましい実施形態において、前記無機粉体は、熱伝導率に異方性を有する鱗片状粒子であり、前記鱗片状粒子の面方向が前記断熱シート厚さ方向に垂直な方向に配向している。 In a preferred embodiment of the above heat insulation sheet for battery pack, the inorganic powder is scale-like particles having anisotropy in thermal conductivity, and the plane direction of the scale-like particles is perpendicular to the thickness direction of the heat insulation sheet. It is oriented in the direction.
 上記組電池用断熱シートにおける好ましい実施形態において、前記無機水和物は、水酸化アルミニウムおよび水酸化マグネシウムのうち少なくとも1つである。 In a preferred embodiment of the above-mentioned heat insulation sheet for battery assembly, the inorganic hydrate is at least one of aluminum hydroxide and magnesium hydroxide.
 上記組電池用断熱シートにおける好ましい実施形態において、前記無機繊維は、シリカ-アルミナ繊維、アルミナ繊維、シリカ繊維、ロックウール、アルカリアースシリケート(AES:Alkaline Earth Silicate)繊維およびガラス繊維のうち少なくとも1つである。 In a preferred embodiment of the above heat insulation sheet for battery pack, the inorganic fibers are at least one of silica-alumina fibers, alumina fibers, silica fibers, rock wool, Alkaline Earth Silicate (AES) fibers and glass fibers. It is.
 また、本発明の一態様に係る組電池の要旨は、複数の電池セルが、上記の組電池用断熱シートを介して配置され、該複数の電池セルが直列または並列に接続されたことを特徴とする。 Further, the gist of an assembled battery according to one aspect of the present invention is characterized in that a plurality of battery cells are disposed via the above-described heat insulating sheet for battery assembly, and the plurality of battery cells are connected in series or in parallel. I assume.
 本発明に係る組電池用断熱シートによれば、複数の電池セルが直列または並列に接続された組電池を構成するに当たり、各電池セル間の熱の伝播を効果的に抑制することができる。 ADVANTAGE OF THE INVENTION According to the heat insulation sheet | seat for assembled batteries which concerns on this invention, when comprising the assembled battery in which several battery cells were connected in series or in parallel, the propagation of the heat between each battery cell can be suppressed effectively.
図1は、本発明の一実施形態に係る組電池用断熱シートの構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a configuration of a heat insulation sheet for a battery assembly according to an embodiment of the present invention. 図2は、本発明の他の実施形態に係る組電池用断熱シートの構成を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a configuration of a heat insulating sheet for battery assembly according to another embodiment of the present invention. 図3は、本発明の一実施形態に係る組電池用断熱シートを適用した組電池の構成を模式的に示す断面図である。FIG. 3: is sectional drawing which shows typically the structure of the assembled battery which applied the heat insulation sheet for assembled batteries which concerns on one Embodiment of this invention. 図4は、実施例1~3および比較例1~6の断熱シートをヒーターで加熱した場合の、経過時間に対する隣接する電池セル表面の温度変化をプロットしたグラフである。FIG. 4 is a graph in which the temperature change of the adjacent battery cell surface is plotted against the elapsed time when the heat insulation sheets of Examples 1 to 3 and Comparative Examples 1 to 6 are heated by a heater.
 本発明者らは、熱源となる各蓄電素子から発生する熱量が大きなものであった場合においても、各電池セル間の熱の伝播を効果的に抑制することのできる組電池用断熱シートを提供するため、鋭意検討を行ってきた。 The present inventors provide a heat insulating sheet for a battery pack capable of effectively suppressing the propagation of heat between battery cells even when the amount of heat generated from each storage element serving as a heat source is large. In order to do so, we have conducted intensive studies.
 その結果、中間層として少なくとも無機繊維または無機粉体を含む断熱層を有し、その両面に少なくとも無機水和物からなる吸熱層を形成した複層からなる断熱シートを、組電池に配置された各電池セル間に介在させることにより、上記課題を解決できることを見出した。 As a result, a heat insulating sheet comprising a heat insulating layer comprising at least inorganic fibers or inorganic powder as an intermediate layer, and a heat absorbing layer comprising at least inorganic hydrate formed on both surfaces thereof is disposed in a battery assembly It has been found that the above problems can be solved by interposing between the battery cells.
 すなわち、ある電池セルで発生した熱により、外層である吸熱層中の無機水和物が加熱されると、無機水和物はその熱を吸収しつつ水分を放出する。この吸熱作用により、電池セルの発熱量を効果的に低減することができる。そして、低減された熱は中間層である断熱層によって、各電池セル間の熱の伝播を効果的に抑制することができるため、たとえ電池セルから発生する熱量が大きなものであった場合においても、十分な断熱効果を得ることができる。結果として、ある電池セルに熱暴走が生じた場合、隣接する他の電池セルへ熱の伝播を効果的に抑制することができるため、他の電池セルの熱暴走が引き起こされるのを抑制することができる。 That is, when the inorganic hydrate in the endothermic layer which is the outer layer is heated by the heat generated in a certain battery cell, the inorganic hydrate absorbs the heat and releases the water. The heat absorption effect of the battery cell can be effectively reduced by this heat absorption action. And since the reduced heat can effectively suppress the propagation of heat between the battery cells by the heat insulating layer which is the intermediate layer, even if the amount of heat generated from the battery cells is large. , Sufficient insulation effect can be obtained. As a result, when thermal runaway occurs in one battery cell, it is possible to effectively suppress the propagation of heat to other adjacent battery cells, thereby suppressing the occurrence of thermal runaway in the other battery cells. Can.
 また、電池セルで発生する熱量を低減した上で、断熱層により熱の伝播を抑制するものであるため、断熱層のみで熱の伝播を抑制するものとは異なり、断熱層の厚さを極端に厚くする必要がない。このため、断熱シート全体の厚さを薄くすること(例えば、5mm以下)も可能となり、結果として、組電池の安全性を確保しつつ、組電池の体積エネルギー密度の向上を図ることも可能となる。 In addition, since heat transfer is suppressed by the heat insulating layer after reducing the amount of heat generated in the battery cell, the thickness of the heat insulating layer is extreme unlike that using only the heat insulating layer to suppress heat transfer. There is no need to thicken. For this reason, it is possible to reduce the thickness of the whole heat insulating sheet (for example, 5 mm or less), and as a result, it is possible to improve the volumetric energy density of the assembled battery while securing the safety of the assembled battery. Become.
 以下、本発明の実施形態(本実施形態)について、図面を参照しつつ詳細に説明する。なお、以下において「~」とは、その下限の値以上、その上限の値以下であることを意味する。 Hereinafter, an embodiment (this embodiment) of the present invention will be described in detail with reference to the drawings. In the following, “to” means that the value is not less than the lower limit value and not more than the upper limit value.
<組電池用断熱シートの基本構成>
 図1は、本発明の一実施形態に係る組電池用断熱シートの構成を模式的に示す断面図である。本実施形態に係る組電池用断熱シート10は、中間層として少なくとも無機繊維または無機粉体を含む断熱層12を有し、その両面に少なくとも無機水和物からなる吸熱層14を形成した複層(積層構造)からなる。
<Basic Configuration of Thermal Insulation Sheet for Battery Pack>
FIG. 1 is a cross-sectional view schematically showing a configuration of a heat insulation sheet for a battery assembly according to an embodiment of the present invention. The heat insulating sheet 10 for a battery assembly according to the present embodiment has a heat insulating layer 12 containing at least inorganic fibers or inorganic powder as an intermediate layer, and a double layer in which the heat absorbing layer 14 made of at least inorganic hydrate is formed on both surfaces thereof. It consists of (laminated structure).
 断熱層12は、少なくとも無機繊維または無機粉体からなり、ある電池セルで発生した熱を隣接する他の電池セルへ熱が伝播されるのを抑制する。また、断熱層12の熱伝導率は、吸熱層14の熱伝導率よりも低い。 The heat insulating layer 12 is made of at least an inorganic fiber or an inorganic powder, and suppresses the transfer of heat generated in one battery cell to another adjacent battery cell. Also, the thermal conductivity of the heat insulating layer 12 is lower than the thermal conductivity of the endothermic layer 14.
 吸熱層14は、少なくとも無機水和物からなり、ある電池セルで発生した熱により吸熱層中の無機水和物が加熱されると、無機水和物はその熱を吸収しつつ水分を放出する。この吸熱作用により、電池セルの発熱量を低減する。 The endothermic layer 14 is made of at least an inorganic hydrate, and when the inorganic hydrate in the endothermic layer is heated by the heat generated by a battery cell, the inorganic hydrate absorbs the heat and releases moisture. . This heat absorption action reduces the calorific value of the battery cell.
 上述の通り、中間層として熱伝導率の低い断熱層12を有し、その外層として中間層の両面に吸熱層14を配した構成を有することで、電池セルで発生する熱量を低減した上で、断熱層12により熱の伝播を抑制することができ、隣接する他の電池セルへ熱の伝播を効果的に抑制することが可能となる。 As described above, the heat insulating layer 12 having low thermal conductivity is provided as the intermediate layer, and the heat absorption layer 14 is disposed on both surfaces of the intermediate layer as the outer layer thereof, thereby reducing the amount of heat generated in the battery cell. The heat insulating layer 12 can suppress the propagation of heat, and can effectively suppress the propagation of heat to other adjacent battery cells.
 この組電池用断熱シート10の具体的な使用形態としては、図3に示すように、複数の電池セル20が、組電池用断熱シート10を介して配置され、複数の電池セル20同士が直列または並列に接続された状態(接続された状態は図示を省略)で、電池ケース30に格納されて組電池100が構成される。なお、電池セル20は、例えば、リチウムイオン二次電池が好適に用いられるが、特にこれに限定されない。 As a specific usage of the heat insulation sheet 10 for a battery pack, as shown in FIG. 3, a plurality of battery cells 20 are disposed via the heat insulation sheet 10 for a battery pack, and the plurality of battery cells 20 are in series. Alternatively, the battery assembly 30 is configured to be stored in the battery case 30 in a state of being connected in parallel (the connected state is not shown). In addition, although the lithium ion secondary battery is used suitably, for example as the battery cell 20, it is not specifically limited to this.
<組電池用断熱シートの詳細>
 次に、組電池用断熱シート10における各構成要素につき詳細に説明する。
<Details of thermal insulation sheet for battery pack>
Next, each component in the heat insulating sheet 10 for a battery assembly will be described in detail.
 (断熱層)
 上記断熱層12は、少なくとも無機繊維または無機粉体を含む。すなわち、断熱層12の構成材料として、無機繊維および無機粉体のうち少なくともいずれか一方を含むものであれば良く、これらのうちいずれか一方を含むことで断熱材としての効果を発揮させることができる。ただし、無機繊維および無機粉体の両方を含むことにより、無機繊維が絡み合って生じた構造中の連続した空隙を無機粉体が分断することができるため、断熱層12における対流伝熱を有効に低減することが可能となり、断熱効果をより効果的に発揮することができる。
(Adiabatic layer)
The heat insulation layer 12 contains at least an inorganic fiber or an inorganic powder. That is, as a constituent material of the heat insulation layer 12, any one of inorganic fibers and inorganic powders may be included, and by including any one of these, it is possible to exhibit the effect as a heat insulation material. it can. However, by containing both the inorganic fiber and the inorganic powder, the inorganic powder can divide continuous voids in the structure formed by the intertwining of the inorganic fiber, so that the convective heat transfer in the heat insulating layer 12 is effectively made. It becomes possible to reduce and it can exhibit the heat insulation effect more effectively.
 上記無機繊維としては、例えば、シリカ-アルミナ繊維、アルミナ繊維、シリカ繊維、ロックウール、アルカリアースシリケート繊維、ガラス繊維、ジルコニア繊維およびチタン酸カリウムウィスカ繊維などが挙げられる。これらの無機繊維は、耐熱性、強度、入手容易性などの点で好ましい。上記無機繊維は、単独で使用してもよいし2種以上組み合わせて使用してもよい。上記無機繊維のうち、取り扱い性の観点から、特にシリカ-アルミナ繊維、アルミナ繊維、シリカ繊維、ロックウール、アルカリアースシリケート繊維、ガラス繊維が好ましい。 Examples of the inorganic fibers include silica-alumina fibers, alumina fibers, silica fibers, rock wool, alkali earth silicate fibers, glass fibers, zirconia fibers and potassium titanate whisker fibers. These inorganic fibers are preferable in terms of heat resistance, strength, and availability. The inorganic fibers may be used alone or in combination of two or more. Among the above-mentioned inorganic fibers, in particular from the viewpoint of handleability, silica-alumina fibers, alumina fibers, silica fibers, rock wool, alkali earth silicate fibers and glass fibers are preferable.
 上記無機繊維の断面形状は、特に限定されず、円形断面、扁平断面、中空断面、多角断面、芯鞘断面などが挙げられる。中でも、中空断面、扁平断面または多角断面を有する異形断面繊維は、断熱性が若干向上されるため好適に使用することができる。 The cross-sectional shape of the inorganic fiber is not particularly limited, and examples thereof include a circular cross-section, a flat cross-section, a hollow cross-section, a polygonal cross-section, and a core-sheath cross-section. Among them, a modified cross-section fiber having a hollow cross section, a flat cross section or a polygonal cross section can be suitably used because the heat insulation property is slightly improved.
 上記無機繊維の平均繊維長の好ましい下限は0.1mmであり、より好ましい下限は0.5mmである。一方、上記無機繊維の平均繊維長の好ましい上限は50mmであり、より好ましい上限は10mmである。上記無機繊維の平均繊維長が0.1mm未満であると、無機繊維同士の絡み合いが生じにくく、得られる断熱層12の機械的強度が低下するおそれがある。一方、50mmを超えると、補強効果は得られるものの無機繊維同士が緊密に絡み合うことができなったり、単一の無機繊維だけで丸まったりし、それにより連続した空隙が生じやすくなるので断熱性の低下を招くおそれがある。 The preferable lower limit of the average fiber length of the above-mentioned inorganic fiber is 0.1 mm, and the more preferable lower limit is 0.5 mm. On the other hand, the preferable upper limit of the average fiber length of the said inorganic fiber is 50 mm, and a more preferable upper limit is 10 mm. If the average fiber length of the inorganic fibers is less than 0.1 mm, entanglement of the inorganic fibers is unlikely to occur, and the mechanical strength of the resulting heat insulating layer 12 may be reduced. On the other hand, if it exceeds 50 mm, although the reinforcing effect can be obtained, the inorganic fibers can not be tightly intertwined, or only a single inorganic fiber is curled up, which makes it easy to form continuous voids, so it has thermal insulation. It may cause a decline.
 上記無機繊維の平均繊維径の好ましい下限は1μmであり、より好ましい下限は2μmであり、更に好ましい下限は3μmである。一方、上記無機繊維の平均繊維径の好ましい上限は10μmであり、より好ましい上限は7μmである。上記無機繊維の平均繊維径が1μm未満であると、無機繊維自体の機械的強度が低下するおそれがある。また、人体の健康に対する影響の観点より、上記無機繊維の平均繊維径が3μm以上であるが好ましい。一方、上記無機繊維の平均繊維径が10μmより大きいと、無機繊維を媒体とする固体伝熱が増加して断熱性の低下を招くおそれがあり、また、断熱層12の成形性が悪化するおそれがある。 The preferable lower limit of the average fiber diameter of the inorganic fiber is 1 μm, the more preferable lower limit is 2 μm, and the still more preferable lower limit is 3 μm. On the other hand, the preferable upper limit of the average fiber diameter of the said inorganic fiber is 10 micrometers, and a more preferable upper limit is 7 micrometers. If the average fiber diameter of the inorganic fiber is less than 1 μm, the mechanical strength of the inorganic fiber itself may be reduced. Further, from the viewpoint of the influence on the health of the human body, it is preferable that the average fiber diameter of the inorganic fiber is 3 μm or more. On the other hand, if the average fiber diameter of the above-mentioned inorganic fiber is larger than 10 μm, solid heat transfer with the inorganic fiber as a medium may increase to cause a decrease in heat insulation, and the formability of the heat insulation layer 12 may be deteriorated. There is.
 続いて、上記無機粉体としては、例えば、TiO粉末、SiO粉末、BaTiO粉末、PbS粉末、ZrO粉末、SiC粉末、NaF粉末およびLiF粉末などが挙げられる。これらの無機粉体は、単独で使用してもよいし、2種以上組み合わせて使用してもよい。 Subsequently, examples of the inorganic powder include TiO 2 powder, SiO 2 powder, BaTiO 3 powder, PbS powder, ZrO 2 powder, SiC powder, NaF powder and LiF powder. These inorganic powders may be used alone or in combination of two or more.
 上記無機粉体を組み合わせて使用する場合、好ましい組み合わせとしては、TiO粉末とSiO粉末との組み合わせ、TiO粉末とBaTiO粉末との組み合わせ、SiO粉末とBaTiO粉末との組み合わせ、または、TiO粉末とSiO粉末とBaTiO粉末との組み合わせが挙げられる。 When the above inorganic powders are used in combination, preferred combinations are a combination of TiO 2 powder and SiO 2 powder, a combination of TiO 2 powder and BaTiO 3 powder, a combination of SiO 2 powder and BaTiO 3 powder, or And combinations of TiO 2 powder, SiO 2 powder and BaTiO 3 powder.
 なお、TiO粉末は、赤外線に対する屈折率が高く、高温域での断熱性を向上させる効果がある。また、SiO粉末は、固体熱伝導率が低く、微小粒子で細かい空隙を作りやすいため、対流が抑制され低温域での断熱性を向上させる効果がある。よって、TiO粉末およびSiO粉末を併用することにより、低温域から高温域に至る広い温度領域での断熱性が期待できるため、これらの組合せが特に好ましい。 The TiO 2 powder has a high refractive index to infrared rays, and has an effect of improving the heat insulation in a high temperature range. In addition, SiO 2 powder has a low solid thermal conductivity, and it is easy to form fine voids with fine particles, so that it has an effect of suppressing the convection and improving the heat insulation in a low temperature range. Therefore, the combination of TiO 2 powder and SiO 2 powder can be expected to provide heat insulation in a wide temperature range from a low temperature range to a high temperature range, and a combination of these is particularly preferable.
 また、図2に示すように、上記無機粉体として熱伝導率に異方性を有する鱗片状粒子16を用い、この鱗片状粒子16の面方向が、組電池用断熱シート10の厚さ方向(すなわち、断熱層12の厚さ方向)に垂直な方向に配向していることが好ましい。無機粉体からなる鱗片状粒子16は、熱伝導率に異方性を有しており、鱗片状粒子の面方向の熱伝導性は、面方向に垂直な方向の熱伝導性に比べて非常に優れている。このため、鱗片状粒子の面方向を、組電池用断熱シート10の厚さ方向に垂直な方向に配向させることで、組電池用断熱シート10の厚さ方向への熱の伝播をより効果的に抑制することができる。したがって、図3に示すように、複数の電池セル20の間に、組電池用断熱シート10を介在させた場合に、ある電池セル20から他の電池セル20への熱の伝播をより効果的に抑制することが可能となる。更に、上記構成を有することで、組電池用断熱シート10の柔軟性をより高くすることができる。 Further, as shown in FIG. 2, using the scale-like particles 16 having anisotropy in thermal conductivity as the above-mentioned inorganic powder, the plane direction of the scale-like particles 16 is the thickness direction of the heat insulation sheet 10 for the assembled battery. It is preferable to orient in a direction perpendicular to (that is, in the thickness direction of the heat insulating layer 12). The scaly particles 16 made of inorganic powder have anisotropy in thermal conductivity, and the thermal conductivity of the scaly particles in the surface direction is very high compared to the thermal conductivity in the direction perpendicular to the surface direction. Excellent. For this reason, the heat propagation in the thickness direction of the heat insulation sheet 10 for the assembled battery is made more effective by orienting the surface direction of the scaly particles in the direction perpendicular to the thickness direction of the heat insulation sheet 10 for the assembled battery. Can be suppressed. Therefore, as shown in FIG. 3, when the battery assembly thermal insulation sheet 10 is interposed between a plurality of battery cells 20, the heat transfer from one battery cell 20 to another battery cell 20 is more effective. It is possible to Furthermore, by having the above configuration, the flexibility of the battery pack thermal insulation sheet 10 can be further enhanced.
 断熱層12を構成する材料として無機繊維および無機粉体の両方を含む場合、上記無機繊維の配合量としては、断熱層12を構成する材料の合計重量に対して、好ましい上限が50質量%であり、更に好ましい上限は40質量%である。一方、上記無機繊維の配合量の好ましい下限は5質量%であり、更に好ましい下限は10質量%である。この配合量が5質量%未満では、無機繊維による補強効果が得られず、断熱層12の取り扱い性、機械的強度が低下するおそれがあり、また、良好な成形性が得られないおそれがある。一方、この配合量が50質量%を超えると、断熱層12を構成する無機繊維が絡み合った構造において連続した空隙が多く存在することになり、対流伝熱、分子伝熱、輻射伝熱が増大するため、断熱特性が低下するおそれがある。 When both inorganic fibers and inorganic powder are contained as a material which comprises the heat insulation layer 12, as a compounding quantity of the said inorganic fiber, a preferable upper limit is 50 mass% with respect to the total weight of the material which comprises the heat insulation layer 12 There is a further preferable upper limit is 40% by mass. On the other hand, the preferable minimum of the compounding quantity of the said inorganic fiber is 5 mass%, and a still more preferable minimum is 10 mass%. If the compounding amount is less than 5% by mass, the reinforcing effect by the inorganic fibers can not be obtained, and the handleability and mechanical strength of the heat insulating layer 12 may be reduced, and a good formability may not be obtained. . On the other hand, if the compounding amount exceeds 50% by mass, many continuous voids exist in the structure in which the inorganic fibers constituting the heat insulating layer 12 are intertwined, and convective heat transfer, molecular heat transfer and radiation heat transfer increase. Heat insulation properties may deteriorate.
 断熱層12を構成する材料として無機繊維および無機粉体の両方を含む場合、上記無機粉体の配合量としては、断熱層12を構成する材料の合計重量に対して、好ましい上限が95質量%であり、更に好ましい上限は90質量%である。これに対し、上記無機粉体の配合量の好ましい下限は50質量%であり、更に好ましい下限は60質量%である。無機粉体の配合量が上記範囲にあると、無機繊維による補強効果を維持しつつ、無機繊維の交絡構造中の連続した空隙を分断することによる、対流伝熱の低減効果を得ることができる。 When both inorganic fibers and inorganic powder are contained as a material which comprises the heat insulation layer 12, as a compounding quantity of the said inorganic powder, a preferable upper limit is 95 mass% with respect to the total weight of the material which comprises the heat insulation layer 12 A further preferable upper limit is 90% by mass. On the other hand, the preferable minimum of the compounding quantity of the said inorganic powder is 50 mass%, and a still more preferable minimum is 60 mass%. When the compounding amount of the inorganic powder is in the above range, a convective heat transfer reduction effect can be obtained by dividing continuous voids in the entangled structure of the inorganic fibers while maintaining the reinforcing effect by the inorganic fibers. .
 上記無機粉体の平均粒径の好ましい下限は0.5μmであり、より好ましい下限は1μmである。一方、上記無機粉体の平均粒径の好ましい上限は20μmであり、より好ましい上限は10μmである。上記無機粉体の平均粒径が0.5μm未満では断熱層12の製造が困難になるばかりでなく、輻射熱の散乱が不十分になり、断熱層12の熱伝導率が上昇(すなわち、断熱性が低下)してしまうおそれがある。一方、上記無機粉体の平均粒径が20μmを超えると、断熱層12中に生じる空隙が極めて大きくなってしまうため、対流伝熱および分子伝熱が増大し、この場合も熱伝導率が上昇してしまう。 The preferable lower limit of the average particle diameter of the inorganic powder is 0.5 μm, and the more preferable lower limit is 1 μm. On the other hand, the preferable upper limit of the average particle diameter of the inorganic powder is 20 μm, and the more preferable upper limit is 10 μm. If the average particle diameter of the inorganic powder is less than 0.5 μm, not only the production of the heat insulating layer 12 becomes difficult, but also the radiation heat scattering becomes insufficient, and the thermal conductivity of the heat insulating layer 12 increases (that is, the heat insulating property) May decrease). On the other hand, if the average particle diameter of the inorganic powder exceeds 20 μm, the air gaps formed in the heat insulating layer 12 become extremely large, so convective heat transfer and molecular heat transfer increase, and also in this case the thermal conductivity increases Resulting in.
 なお、無機粉体の形状としては、平均粒径が上記範囲内にあれば特に限定されず、例えば、球体、楕円体、多面体、表面に凹凸や突起を有すある形状および異形体などの任意の形状が挙げられる。 The shape of the inorganic powder is not particularly limited as long as the average particle diameter is in the above range, and any shape such as a sphere, an ellipsoid, a polyhedron, or a shape or profile having irregularities or protrusions on the surface The shape of is mentioned.
 また、上記無機粉体において、波長1μm以上の光に対する屈折率の比(比屈折率)が1.25以上であることが好ましい。上記無機粉体は、輻射熱の散乱材として極めて重要な役割を有しており、屈折率が大きいほど、輻射熱をより効果的に散乱させることができる。また、比屈折率については、フォノン伝導の抑制について極めて重要であり、この値が大きいほど抑制効果が良好である。 Further, in the above-mentioned inorganic powder, it is preferable that the ratio of the refractive index to light with a wavelength of 1 μm or more (the relative refractive index) is 1.25 or more. The inorganic powder has a very important role as a scattering material of radiant heat, and the radiant heat can be scattered more effectively as the refractive index is larger. The relative refractive index is extremely important for the suppression of phonon conduction, and the larger the value, the better the suppression effect.
 フォノン伝導を抑制することができる材料としては、一般的に、結晶内に格子欠陥を有している物質もしくは、複雑な構造を有している物質が知られている。前述のTiOやSiO、BaTiOは格子欠陥を有しやすく、複雑な構造を有しているので、輻射熱の散乱だけでなく、フォノンの散乱にも効果的であると考えられる。 As materials capable of suppressing phonon conduction, generally, substances having lattice defects in crystals or substances having complex structures are known. The aforementioned TiO 2 , SiO 2 , and BaTiO 3 tend to have lattice defects and have a complex structure, and therefore are considered to be effective not only for radiation heat scattering but also phonon scattering.
 更に、上記無機粉体として、波長10μm以上の光に対する反射率が70%以上である無機粉体を好適に使用することができる。波長10μm以上の光は、いわゆる赤外線~遠赤外線波長領域の光であり、この波長領域の光に対する反射率が70%以上であることで、輻射伝熱をより有効に低減させることができる。 Further, as the above-mentioned inorganic powder, an inorganic powder having a reflectance of 70% or more to light having a wavelength of 10 μm or more can be suitably used. The light having a wavelength of 10 μm or more is light in the so-called infrared to far infrared wavelength region, and the radiation heat transfer can be more effectively reduced by the reflectance to light in this wavelength region being 70% or more.
 上記無機粉体の固体熱伝導率は、室温で20W/m・K以下であることが好ましい。室温での固体熱伝導率が20W/m・Kより大きい無機粉体を原料として用いると、断熱層12中において固体伝熱が支配的になり、熱伝導率が上昇(断熱性が低下)してしまうおそれがある。 The solid thermal conductivity of the inorganic powder is preferably 20 W / m · K or less at room temperature. When an inorganic powder whose solid thermal conductivity at room temperature is larger than 20 W / m · K is used as a raw material, solid heat transfer becomes dominant in the heat insulating layer 12, and the thermal conductivity increases (the thermal insulation property decreases). There is a risk of
 なお、本明細書において、無機繊維とはアスペクト比が3以上である無機材料をいう。一方、無機粉体とはアスペクト比が3未満である無機材料をいう。また、アスペクト比とは、物質の短径aに対する長径bの比(b/a)を意味する。 In the present specification, the inorganic fiber refers to an inorganic material having an aspect ratio of 3 or more. On the other hand, the inorganic powder refers to an inorganic material having an aspect ratio of less than 3. Further, the aspect ratio means the ratio (b / a) of the major axis b to the minor axis a of the substance.
 上記断熱層12は、高温での強度維持を目的として無機結合材を含んでいてもよい。上記無機結合材としては、例えば、コロイダルシリカ、合成マイカ、モンモリロナイトなどが挙げられる。上記無機結合材は、単独で使用してもよいし、2種以上組み合わせて使用してもよい。 The heat insulation layer 12 may contain an inorganic binder for the purpose of maintaining the strength at high temperature. Examples of the inorganic binder include colloidal silica, synthetic mica, montmorillonite and the like. The above inorganic binders may be used alone or in combination of two or more.
 この無機結合材は、断熱層12の構成材料の合計重量に対し、1~10質量%の範囲で必要に応じて使用することができる。上記無機結合材の使用態様としては、例えば、原料中に混合したり、もしくは得られた断熱材へ含浸したりして使用することができる。 This inorganic binder can be used as needed in the range of 1 to 10% by mass with respect to the total weight of the constituent materials of the heat insulation layer 12. As a usage aspect of the said inorganic binder, it can be used, for example, mixing in a raw material, or impregnating to the obtained heat insulating material.
 更に、断熱層12の構成材料として有機弾性物質を必要に応じて使用してもよい。この有機弾性物質は、断熱層12に柔軟性を持たせる場合において有用であり、例えば、天然ゴムのエマルジョンやアクリロニトリルブタジエンゴム(NBR)、スチレンブタジエンゴム(SBR)などの合成ゴムラテックスバインダーを好適に使用することができる。特に、本実施形態の断熱層12を湿式成形法にて製造する場合には、上記有機弾性物質を使用することにより柔軟性を向上させることができる。 Furthermore, an organic elastic material may be used as a constituent material of the heat insulating layer 12 as needed. This organic elastic material is useful in providing flexibility to the heat insulating layer 12, and for example, synthetic rubber latex binders such as natural rubber emulsion, acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), etc. are suitably used. It can be used. In particular, when the heat insulation layer 12 of the present embodiment is manufactured by a wet molding method, the flexibility can be improved by using the organic elastic material.
 上記有機弾性物質の配合量は、断熱層12の構成材料の合計重量に対し0~5質量%の範囲であることが好ましい。上記有機弾性物質は、その配合量が5質量%を超えると、700℃以上の高温域で使用する際に有機弾性物質が焼失し、空隙が著しく増大するため、断熱性が低下してしまうおそれがある。 The compounding amount of the organic elastic material is preferably in the range of 0 to 5% by mass with respect to the total weight of the constituent materials of the heat insulation layer 12. The organic elastic material burns away when used in a high temperature range of 700 ° C. or more when the compounding amount exceeds 5% by mass, and the voids significantly increase, so the heat insulation may be deteriorated. There is.
 上記断熱層12の厚さとしては特に限定されないが、0.1~4.0mmの範囲にあることが好ましい。断熱層12の厚さが0.1mm未満であると、充分な機械的強度を断熱層12に付与することができない。一方、断熱層12の厚さが4.0mmを超えると、組電池の体積エネルギー密度の低下を招くおそれがある。 The thickness of the heat insulation layer 12 is not particularly limited, but is preferably in the range of 0.1 to 4.0 mm. When the thickness of the thermal insulation layer 12 is less than 0.1 mm, sufficient mechanical strength can not be imparted to the thermal insulation layer 12. On the other hand, when the thickness of the heat insulation layer 12 exceeds 4.0 mm, there is a possibility that the volume energy density of the assembled battery may be lowered.
 上記断熱層12を構成する無機粉体は、断熱層12の外部には容易に脱出しないが、無機粉体の脱出防止を目的として、必要に応じて断熱層12の一部または全部を緻密化してもよい。本実施形態の断熱層12では、断熱層12を構成する無機粉体は、無機繊維が絡み合った構造に包摂されているため、無機繊維間から容易に外部に脱出しない。ただし、使用環境によっては強い衝撃などが断熱層12に負荷されて、無機粉体が空気中に脱出する可能性も考えられるため、無機粉体を包摂した部分における無機繊維の構造を緻密化し、無機粉体が脱出しないようにしてもよい。 The inorganic powder constituting the heat insulation layer 12 does not easily escape to the outside of the heat insulation layer 12, but for the purpose of preventing the escape of the inorganic powder, part or all of the heat insulation layer 12 is densified as needed. May be In the heat insulation layer 12 of the present embodiment, the inorganic powder constituting the heat insulation layer 12 is included in the structure in which the inorganic fibers are intertwined, and therefore does not easily escape from the inorganic fibers to the outside. However, depending on the use environment, strong impact may be applied to the heat insulation layer 12 and the inorganic powder may escape into the air, so the structure of the inorganic fiber in the portion including the inorganic powder is densified, The inorganic powder may be prevented from escaping.
 断熱層12を緻密化する方法としては、例えば、無機繊維の交絡構造における表面のみを溶融させるように加熱する方法や、断熱層12表面を耐熱性フィルムなどにより被覆するといった方法があるが、無機粉体が脱出しないような方法であれば特に限定されない。 As a method of densifying the heat insulating layer 12, for example, there is a method of heating so as to melt only the surface in the entangled structure of inorganic fibers, or a method of covering the surface of the heat insulating layer 12 with a heat resistant film etc. The method is not particularly limited as long as the powder does not escape.
 上記断熱層12のかさ密度は特に限定されないが、0.1~1.0g/cmの範囲内にあることが好ましい。なお、かさ密度は、質量をみかけの体積で除した値として求めることができる(JIS A0202_2213を参照)。かさ密度が0.1g/cm未満では、対流伝熱および分子伝熱が増大し、一方、かさ密度が1.0g/cmを超えると固体伝熱が増大するために熱伝導率が上昇し、いずれの場合も断熱性が低下することになる。 The bulk density of the heat insulating layer 12 is not particularly limited, but is preferably in the range of 0.1 to 1.0 g / cm 3 . The bulk density can be obtained as a value obtained by dividing the mass by the apparent volume (see JIS A 0202_2213). If the bulk density is less than 0.1 g / cm 3 , convective heat transfer and molecular heat transfer will increase, while if the bulk density exceeds 1.0 g / cm 3 , the heat transfer will increase due to the increase of solid heat transfer. In either case, the thermal insulation will be reduced.
 (吸熱層)
 上記吸熱層は、少なくとも無水水和物を含む。上記無水水和物としては、例えば、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、ドーソナイト(NaAl(OH))などが挙げられる。これらの無機水和物は、単独で使用してもよいし、2種以上組み合わせて使用してもよい。上記無機水和物のうち、良好な吸熱特性の観点から、特に水酸化アルミニウムまたは水酸化マグネシウムが好ましい。
(Endothermic layer)
The endothermic layer contains at least anhydrous hydrate. Examples of the anhydrous hydrate include aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), dawsonite (NaAl (OH)) and the like. These inorganic hydrates may be used alone or in combination of two or more. Among the above-mentioned inorganic hydrates, aluminum hydroxide or magnesium hydroxide is particularly preferable from the viewpoint of good endothermic properties.
 例えば水酸化アルミニウムの場合、水酸化アルミニウム中には約35%の結晶水を有しており、下記式に示すように、熱分解時に結晶水を放出することで、消炎機能を発揮することができる。
 2Al(OH)→Al+3H
 この機能により、電池セル20で発生した熱を吸収することができ、電池セルの発熱量を低減することができる。
For example, in the case of aluminum hydroxide, about 35% of crystal water is contained in aluminum hydroxide, and as shown in the following formula, it is possible to exhibit an anti-inflammatory function by releasing crystal water at the time of thermal decomposition. it can.
2Al (OH) 3 → Al 2 O 3 + 3H 2 O
By this function, the heat generated in the battery cell 20 can be absorbed, and the calorific value of the battery cell can be reduced.
 上記無機水和物の配合量としては、吸熱層14を構成する材料の合計重量に対して、好ましい上限が90質量%であり、更に好ましい上限は80質量%である。これに対し、上記無機粉体の配合量の好ましい下限は30質量%であり、更に好ましい下限は50質量%である。この配合量が30質量%未満では、良好な吸熱特性が得られないおそれがある。一方、この配合量が90質量%を超えると、吸熱層を成形することができないおそれがある。 As a compounding quantity of the said inorganic hydrate, a preferable upper limit is 90 mass% with respect to the total weight of the material which comprises the endothermic layer 14, and a still more preferable upper limit is 80 mass%. On the other hand, the preferable minimum of the compounding quantity of the said inorganic powder is 30 mass%, and a still more preferable minimum is 50 mass%. If this compounding amount is less than 30% by mass, there is a possibility that good endothermic characteristics can not be obtained. On the other hand, if the compounding amount exceeds 90% by mass, there is a possibility that the heat absorption layer can not be formed.
 また、上記吸熱層14は、成形時の強度向上を目的として、無機繊維やパルプ繊維を含んでいてもよい。上記無機繊維としては、上記で説明した断熱層12に用いられる無機繊維と同様のものを用いることができる。 The heat absorption layer 14 may contain inorganic fibers or pulp fibers for the purpose of improving the strength at the time of molding. As said inorganic fiber, the thing similar to the inorganic fiber used for the heat insulation layer 12 demonstrated above can be used.
 この無機繊維やパルプ繊維は、吸熱層14を構成する材料の合計重量に対して、10~70質量%の範囲で必要に応じて使用することができる。 These inorganic fibers and pulp fibers can be used as needed in the range of 10 to 70% by mass with respect to the total weight of the materials constituting the endothermic layer 14.
 吸熱層14を構成する材料として、有機バインダーを必要に応じて使用してもよい。この有機バインダーは、成形時の強度向上を目的とする上で有用であり、例えば高分子凝集剤やアクリルエマルジョンなどを好適に使用することができる。 An organic binder may be used as a material of the endothermic layer 14 if necessary. This organic binder is useful for the purpose of improving the strength at the time of molding, and for example, a polymer flocculant or an acrylic emulsion can be suitably used.
 上記有機バインダーの配合量としては、吸熱層14を構成する材料の合計重量に対して0.5~5.0質量%の範囲で必要に応じて使用することができる。 The compounding amount of the organic binder can be used as needed in the range of 0.5 to 5.0% by mass with respect to the total weight of the materials constituting the endothermic layer 14.
 上記吸熱層14の厚さとしては特に限定されないが、0.1~4.0mmの範囲にあることが好ましい。吸熱層14の厚さが0.1mm未満であると、充分な機械的強度を吸熱層14に付与することができない。一方、吸熱層14の厚さが4.0mmを超えると、吸熱層14の成形自体が困難となるおそれがある。 The thickness of the heat absorption layer 14 is not particularly limited, but is preferably in the range of 0.1 to 4.0 mm. When the thickness of the endothermic layer 14 is less than 0.1 mm, sufficient mechanical strength can not be imparted to the endothermic layer 14. On the other hand, when the thickness of the heat absorption layer 14 exceeds 4.0 mm, there is a possibility that the formation of the heat absorption layer 14 itself becomes difficult.
<組電池用断熱シートの製造方法>
 続いて、組電池用断熱シート10の製造方法について詳細に説明する。
<Method of Manufacturing Insulation Sheet for Battery Pack>
Then, the manufacturing method of the heat insulation sheet 10 for assembled batteries is demonstrated in detail.
 (断熱層の製造方法)
 本実施形態に係る断熱層12は、少なくとも無機繊維または無機粉体から構成される材料を、乾式成形法または湿式成形法により型成形して製造される。以下に、断熱層12をそれぞれの成形法により得る場合の製造方法について説明する。
(Production method of thermal insulation layer)
The heat insulating layer 12 according to the present embodiment is manufactured by molding a material composed of at least inorganic fibers or inorganic powder by a dry molding method or a wet molding method. Below, the manufacturing method in the case of obtaining the heat insulation layer 12 by each shaping | molding method is demonstrated.
 [乾式成形法を用いて製造する場合]
 まず、乾式成形法では、無機繊維または無機粉体のうち少なくともいずれか1つ、更に必要に応じて無機結合材や有機弾性物質を所定の割合でV型混合機などの混合機に投入する。混合機に投入された材料を充分に混合した後、所定の型内に混合物を投入し、プレスすることにより断熱層12を得る。プレス時には、必要に応じて加熱してもよい。
[When manufacturing using dry molding method]
First, in the dry molding method, at least one of inorganic fibers and inorganic powders and, if necessary, an inorganic binder and an organic elastic material are charged into a mixer such as a V-type mixer at a predetermined ratio. After thoroughly mixing the materials introduced into the mixer, the mixture is introduced into a predetermined mold and pressed to obtain the heat insulating layer 12. At the time of pressing, heating may be performed as needed.
 上記プレス圧は、0.98~9.80MPaの範囲であることが好ましい。プレス圧が0.98MPa未満であると、得られる断熱層12において、強度を保つことができずに崩れてしまうおそれがある。一方、プレス圧が9.80MPaを超えると、過度の圧縮によって加工性が低下し、更に、かさ密度が高くなるため固体伝熱が増加し、断熱性が低下するおそれがある。 The pressing pressure is preferably in the range of 0.98 to 9.80 MPa. In the heat insulation layer 12 obtained as a press pressure is less than 0.98 Mpa, there exists a possibility that it may collapse without being able to maintain intensity. On the other hand, if the pressing pressure exceeds 9.80 MPa, the processability is lowered due to excessive compression, and the bulk density is further increased, so that the solid heat transfer may be increased and the heat insulation may be lowered.
 [湿式成形法を用いて製造する場合]
 続いて、湿式成形法では、無機繊維または無機粉体のうち少なくともいずれか1つ、更に必要に応じて無機結合材を水中で混合撹拌して充分に分散させ、その後、凝集剤を添加し、無機繊維に無機粉体や無機結合材を添着させた一次凝集体を得る。次に、必要に応じて有機弾性物質のエマルジョンなどを所定の範囲内で上記水中に添加した後、高分子凝集剤を添加することにより凝集体を含むスラリーを得る。
[When manufacturing using a wet molding method]
Subsequently, in the wet molding method, at least any one of inorganic fibers and inorganic powders, and optionally, an inorganic binder, is mixed and stirred in water to be sufficiently dispersed, and then a coagulant is added, A primary aggregate obtained by attaching an inorganic powder and an inorganic binder to inorganic fibers is obtained. Next, after adding an emulsion of an organic elastic material or the like into the water within a predetermined range as necessary, a polymer flocculant is added to obtain a slurry containing aggregates.
 次に、上記凝集体を含むスラリーを所定の型内へ投入して湿潤した断熱層12を得る。得られた断熱層12を乾燥することにより、目的の断熱層12が得られる。 Next, the slurry containing the above aggregates is introduced into a predetermined mold to obtain the heat insulating layer 12 which is wetted. By drying the obtained heat insulation layer 12, the target heat insulation layer 12 is obtained.
 上述のように、断熱層12は、乾式成形法または湿式成形法のいずれによっても得られるが、一体成形の容易性や機械的強度の点から湿式成形法を用いることが好ましい。 As described above, the heat insulating layer 12 can be obtained by either a dry molding method or a wet molding method, but it is preferable to use the wet molding method in terms of the ease of integral molding and the mechanical strength.
 (吸熱層の製造方法)
 本実施形態に係る吸熱層14は、少なくとも無機水和物から構成される材料を、乾式成形法または湿式成形法により型成形して製造される。吸熱層の製造方法の詳細条件については、無機繊維や無機粉体を無機水和物に変更する以外は上記断熱層の製造方法と同様である。
(Method of manufacturing endothermic layer)
The endothermic layer 14 according to this embodiment is manufactured by molding a material composed of at least an inorganic hydrate by a dry molding method or a wet molding method. About the detailed conditions of the manufacturing method of an endothermic layer, it is the same as that of the manufacturing method of the said heat insulation layer except changing an inorganic fiber and inorganic powder into an inorganic hydrate.
 (断熱層と吸熱層の接合)
 断熱層12と吸熱層14とを接合して組電池用断熱シート10を形成する方法については、断熱層12および吸熱層14がウェット状態での加圧プレスや、これら部材の乾燥後に接着剤を用いて接着する方法などを挙げることができる。
(Joining of heat insulation layer and heat absorption layer)
About the method of joining the heat insulation layer 12 and the endothermic layer 14 and forming the heat insulation sheet 10 for assembled batteries, the heat insulation layer 12 and the endothermic layer 14 press the adhesive in the wet state in the wet state, or after drying these members The method of using and adhering can be mentioned.
 以下に、本実施形態に係る組電池用断熱シートの実施例を説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, examples of the heat insulating sheet for battery assembly according to the present embodiment will be described, but the present invention is not limited to these examples.
<実施例1>
 無機粉体としてTiO粉末(平均粒径:8μm)50質量%、SiO粉末(平均粒径:15nm)50質量%を加えて十分に混合した。上記混合物を金型成形し、厚さ1mmの断熱層(断熱シート)を得た後、この断熱層を110℃×8hrの条件で乾燥させた。
Example 1
As inorganic powder, 50% by mass of TiO 2 powder (average particle diameter: 8 μm) and 50% by mass of SiO 2 powder (average particle diameter: 15 nm) were added and thoroughly mixed. The above mixture was molded into a mold to obtain a heat insulating layer (heat insulating sheet) having a thickness of 1 mm, and then the heat insulating layer was dried at 110 ° C. for 8 hours.
 続いて、水酸化アルミニウム(Al(OH))粉末(平均粒径:1μm)を45質量%、無機繊維としてロックウールを45質量%、パルプ繊維を8質量%、無機バインダーを1.5質量%、高分子凝集材を0.5質量%加え、十分に撹拌混合してスラリーを調整した。上記スラリーを抄造して厚さ1mmの吸熱層(吸熱シート)を得た。 Subsequently, 45% by mass of aluminum hydroxide (Al (OH) 3 ) powder (average particle diameter: 1 μm), 45% by mass of rock wool as inorganic fiber, 8% by mass of pulp fiber, 1.5% by mass of inorganic binder %, And 0.5% by mass of a polymer flocculant, and the mixture was sufficiently stirred and mixed to prepare a slurry. The slurry was formed into a sheet to obtain a heat absorbing layer (heat absorbing sheet) having a thickness of 1 mm.
 作製した断熱層および吸熱層を重ね合わせることにより、組電池用断熱シートを得た。 By laminating the produced heat insulation layer and endothermic layer, the heat insulation sheet for assembled batteries was obtained.
<実施例2>
 無機繊維としてアルミナ-シリカ系ファイバー(AF:Alumina Fiber)を金型成形し、厚さ1mmの断熱層(断熱シート)を得た後、この断熱層を110℃×8hrの条件で乾燥させた。
Example 2
After molding an alumina-silica fiber (AF: Alumina Fiber) as an inorganic fiber by molding to obtain a heat insulation layer (heat insulation sheet) having a thickness of 1 mm, the heat insulation layer was dried under the condition of 110 ° C. × 8 hours.
 続いて、水酸化アルミニウム粉末(平均粒径:1μm)を45質量%、無機繊維としてロックウールを45質量%、パルプ繊維を8質量%、無機バインダーを1.5質量%、高分子凝集材を0.5質量%加え、十分に撹拌混合してスラリーを調整した。上記スラリーを抄造して厚さ1mmの吸熱層(吸熱シート)を得た。 Subsequently, 45% by mass of aluminum hydroxide powder (average particle diameter: 1 μm), 45% by mass of rock wool as inorganic fiber, 8% by mass of pulp fiber, 1.5% by mass of inorganic binder, and polymer aggregate The slurry was prepared by adding 0.5% by mass and thoroughly stirring and mixing. The slurry was formed into a sheet to obtain a heat absorbing layer (heat absorbing sheet) having a thickness of 1 mm.
 作製した断熱層および吸熱層を重ね合わせることにより、組電池用断熱シートを得た。 By laminating the produced heat insulation layer and endothermic layer, the heat insulation sheet for assembled batteries was obtained.
<実施例3>
 無機繊維としてアルミナ-シリカ系ファイバー(AF)を60質量%、無機粉体としてTiO粉末(平均粒径:8μm)20質量%、SiO粉末(平均粒径:15nm)20質量%を加えてよく混合した。上記混合物を金型成形し、厚さ1mmの断熱層(断熱シート)を得た後、この断熱層を110℃×8hrの条件で乾燥させた。
Example 3
60 mass% of alumina-silica fiber (AF) as inorganic fiber, 20 mass% of TiO 2 powder (average particle size: 8 μm) as inorganic powder, and 20 mass% of SiO 2 powder (average particle size: 15 nm) Mix well. The above mixture was molded into a mold to obtain a heat insulating layer (heat insulating sheet) having a thickness of 1 mm, and then the heat insulating layer was dried at 110 ° C. for 8 hours.
 続いて、水酸化アルミニウム粉末(平均粒径:1μm)を45質量%、無機繊維としてロックウールを45質量%、パルプ繊維を8質量%、無機バインダーを1.5質量%、高分子凝集材を0.5質量%加え、十分に撹拌混合してスラリーを調整した。上記スラリーを抄造して厚さ1mmの吸熱層(吸熱シート)を得た。 Subsequently, 45% by mass of aluminum hydroxide powder (average particle diameter: 1 μm), 45% by mass of rock wool as inorganic fiber, 8% by mass of pulp fiber, 1.5% by mass of inorganic binder, and polymer aggregate The slurry was prepared by adding 0.5% by mass and thoroughly stirring and mixing. The slurry was formed into a sheet to obtain a heat absorbing layer (heat absorbing sheet) having a thickness of 1 mm.
 作製した断熱層および吸熱層を重ね合わせることにより、組電池用断熱シートを得た。 By laminating the produced heat insulation layer and endothermic layer, the heat insulation sheet for assembled batteries was obtained.
<比較例1>
 実施例1と同様の条件および手順で、厚さ2mmの断熱層を作製し、組電池用断熱シートを得た。比較例1では、実施例1における断熱層のみで組電池用断熱シートを構成しており、吸熱層は存在しない。
Comparative Example 1
Under the same conditions and procedure as in Example 1, a heat insulating layer having a thickness of 2 mm was produced to obtain a heat insulating sheet for a battery pack. In the comparative example 1, the heat insulation sheet for assembled batteries is comprised only with the heat insulation layer in Example 1, and a heat absorption layer does not exist.
<比較例2>
 実施例2と同様の条件および手順で、厚さ2mmの断熱層を作製し、組電池用断熱シートを得た。比較例2では、実施例2における断熱層のみで組電池用断熱シートを構成しており、吸熱層は存在しない。
Comparative Example 2
Under the same conditions and procedure as in Example 2, a heat insulating layer having a thickness of 2 mm was produced to obtain a heat insulating sheet for a battery pack. In the comparative example 2, the heat insulation sheet for assembled batteries is comprised only with the heat insulation layer in Example 2, and a heat absorption layer does not exist.
<比較例3>
 実施例3と同様の条件および手順で、厚さ2mmの断熱層を作製し、組電池用断熱シートを得た。比較例3では、実施例3における断熱層のみで組電池用断熱シートを構成しており、吸熱層は存在しない。
Comparative Example 3
Under the same conditions and procedure as in Example 3, a heat insulating layer having a thickness of 2 mm was produced to obtain a heat insulating sheet for a battery pack. In the comparative example 3, the heat insulation sheet for assembled batteries is comprised only with the heat insulation layer in Example 3, and a heat absorption layer does not exist.
<比較例4>
 アルカリアースシリケート(AES)ファイバーにより構成される厚み2mmのシートを準備し、組電池用断熱シートとした。
Comparative Example 4
A sheet of 2 mm in thickness made of alkali earth silicate (AES) fiber was prepared and used as a heat insulating sheet for battery pack.
<比較例5>
 厚み1mmのマイカシートと厚み1mmのアルミナ-シリカ系ファイバー(AF)シートを重ね合わせることにより、組電池用断熱シートを得た。
Comparative Example 5
A thermal insulation sheet for a battery pack was obtained by stacking a 1 mm thick mica sheet and a 1 mm thick alumina-silica fiber (AF) sheet.
<比較例6>
 実施例1と同様の条件および手順で、厚さ2mmの吸熱層を作製し、組電池用断熱シートを得た。比較例6では、実施例1における吸熱層のみで組電池用断熱シートを構成しており、断熱層は存在しない。
Comparative Example 6
Under the same conditions and procedure as in Example 1, a heat absorption layer having a thickness of 2 mm was produced to obtain a heat insulating sheet for a battery pack. In Comparative Example 6, only the heat absorption layer in Example 1 constitutes a heat insulating sheet for a battery assembly, and no heat insulating layer is present.
 実施例1~3および比較例1~6で得られた組電池用断熱シートの一方の面にヒーターを配し、他方の面に隣接する電池セルを模擬した金属板を配した。更に、金属板に熱電対を配して、ヒーター温度が700℃になるように加熱し、経過時間に対する隣接する電池セル(金属板)表面の温度変化を測定した。 A heater was disposed on one side of the heat insulation sheet for a battery pack obtained in each of Examples 1 to 3 and Comparative Examples 1 to 6, and a metal plate simulating a battery cell adjacent to the other side was disposed on the other side. Furthermore, a thermocouple was placed on the metal plate, and the heater temperature was heated to 700 ° C., and the temperature change of the surface of the adjacent battery cell (metal plate) with respect to elapsed time was measured.
 各実施例および各比較例における、経過時間に対する隣接する電池セル表面の温度変化をプロットしたグラフを図4に示す。また、各実施例および各比較例の最高表面温度を下記に示す。
 実施例1:336℃
 実施例2:349℃
 実施例3:343℃
 比較例1:367℃
 比較例2:448℃
 比較例3:427℃
 比較例4:478℃
 比較例5:403℃
 比較例6:385℃
The graph which plotted the temperature change of the adjacent battery cell surface with respect to elapsed time in each Example and each comparative example is shown in FIG. Moreover, the maximum surface temperature of each Example and each comparative example is shown below.
Example 1: 336 ° C.
Example 2: 349 ° C.
Example 3: 343 ° C
Comparative Example 1: 367 ° C.
Comparative example 2: 448 ° C.
Comparative example 3: 427 ° C
Comparative Example 4: 478 ° C.
Comparative example 5: 403 ° C.
Comparative Example 6: 385 ° C.
 図4に示すように、実施例1~実施例3の組電池用断熱シートは、比較例1~比較例6に比べて、隣接する電池セル表面の温度が低く抑えられていることが分かる。以上より、本実施例に係る組電池用断熱シートは、各電池セル間の熱の伝播を効果的に抑制できることが示された。 As shown in FIG. 4, it can be seen that the temperature of the surface of the adjacent battery cell is kept low compared to Comparative Examples 1 to 6 in the heat insulation sheets for battery packs of Examples 1 to 3. From the above, it has been shown that the heat insulating sheet for a battery pack according to this example can effectively suppress the propagation of heat between the battery cells.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the appended claims, and of course these also fall within the technical scope of the present invention. It is understood. In addition, the components in the above-described embodiment may be arbitrarily combined without departing from the scope of the invention.
 なお、本出願は、2017年10月31日出願の日本特許出願(特願2017-210668)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on Japanese Patent Application (Japanese Patent Application No. 2017-210668) filed on October 31, 2017, the contents of which are incorporated into the present application as a reference.
 10 組電池用断熱シート
 12 断熱層
 14 吸熱層
 16 鱗片状粒子
 20 電池セル
 30 電池ケース
 100 組電池
DESCRIPTION OF SYMBOLS 10 Thermal insulation sheet for assembled batteries 12 Thermal insulation layer 14 Heat absorption layer 16 scale-like particle 20 battery cell 30 battery case 100 assembled battery

Claims (8)

  1.  複数の電池セルが断熱シートを介して配置され、該複数の電池セルが直列または並列に接続された組電池に用いられる断熱シートであって、
     少なくとも無機繊維または無機粉体からなる断熱層と、
     前記断熱層の両面に形成され、少なくとも無機水和物からなる吸熱層を有することを特徴とする組電池用断熱シート。
    A heat insulating sheet for use in a battery pack in which a plurality of battery cells are disposed via a heat insulating sheet, and the plurality of battery cells are connected in series or in parallel,
    A thermal insulation layer consisting of at least inorganic fiber or inorganic powder,
    A heat insulating sheet for battery assembly characterized in that it has an endothermic layer formed on both sides of the heat insulating layer and made of at least inorganic hydrate.
  2.  前記断熱層は、前記吸熱層よりも熱伝導率が低い請求項1に記載の組電池用断熱シート。 The heat insulation sheet according to claim 1, wherein the heat insulation layer has a thermal conductivity lower than that of the heat absorption layer.
  3.  前記無機粉体は、波長1μm以上の光に対する屈折率の比(比屈折率)が1.25以上である請求項1または2に記載の組電池用断熱シート。 The heat insulation sheet according to claim 1 or 2, wherein the inorganic powder has a refractive index ratio (relative refractive index) to light having a wavelength of 1 μm or more.
  4.  前記無機粉体は、TiO粉末またはSiO粉末を含む請求項1~3のいずれか1項に記載の組電池用断熱シート。 The heat insulating sheet according to any one of claims 1 to 3, wherein the inorganic powder comprises TiO 2 powder or SiO 2 powder.
  5.  前記無機粉体は、熱伝導率に異方性を有する鱗片状粒子であり、前記鱗片状粒子の面方向が前記断熱シートの厚さ方向に垂直な方向に配向している請求項1~4のいずれか1項に記載の組電池用断熱シート。 The inorganic powder is scale-like particles having anisotropy in thermal conductivity, and the plane direction of the scale-like particles is oriented in the direction perpendicular to the thickness direction of the heat insulation sheet. The heat insulation sheet for assembled batteries according to any one of the above.
  6.  前記無機水和物は、水酸化アルミニウムおよび水酸化マグネシウムのうち少なくとも1つである請求項1~5のいずれか1項に記載の組電池用断熱シート。 6. The heat insulating sheet according to any one of claims 1 to 5, wherein the inorganic hydrate is at least one of aluminum hydroxide and magnesium hydroxide.
  7.  前記無機繊維は、シリカ-アルミナ繊維、アルミナ繊維、シリカ繊維、ロックウール、アルカリアースシリケート繊維およびガラス繊維のうち少なくとも1つである請求項1~6のいずれか1項に記載の組電池用断熱シート。 The heat insulation according to any one of claims 1 to 6, wherein the inorganic fiber is at least one of silica-alumina fiber, alumina fiber, silica fiber, rock wool, alkali earth silicate fiber and glass fiber. Sheet.
  8.  前記複数の電池セルが、請求項1~7のいずれか1項に記載の組電池用断熱シートを介して配置され、該複数の電池セルが直列または並列に接続された組電池。 An assembled battery in which the plurality of battery cells are disposed via the heat insulating sheet for a battery assembly according to any one of claims 1 to 7, and the plurality of battery cells are connected in series or in parallel.
PCT/JP2018/040577 2017-10-31 2018-10-31 Heat insulation sheet for battery pack, and battery pack WO2019088195A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017210668A JP7074455B2 (en) 2017-10-31 2017-10-31 Insulation sheet for assembled battery and assembled battery
JP2017-210668 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019088195A1 true WO2019088195A1 (en) 2019-05-09

Family

ID=66332622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040577 WO2019088195A1 (en) 2017-10-31 2018-10-31 Heat insulation sheet for battery pack, and battery pack

Country Status (2)

Country Link
JP (1) JP7074455B2 (en)
WO (1) WO2019088195A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187868A (en) * 2019-05-10 2020-11-19 イビデン株式会社 Heat transfer suppression sheet and battery pack
JP2020187869A (en) * 2019-05-10 2020-11-19 イビデン株式会社 Heat transfer suppression sheet and battery pack
WO2021168026A1 (en) * 2020-02-18 2021-08-26 Rogers Corporation Thermal management multilayer sheet for a battery
CN113540657A (en) * 2020-04-15 2021-10-22 上海汽车集团股份有限公司 Method and device for thermal runaway impact protection of high-efficiency power battery
WO2021235189A1 (en) * 2020-05-18 2021-11-25 阿波製紙株式会社 Thermal insulation sheet
CN113906619A (en) * 2019-06-28 2022-01-07 三洋电机株式会社 Power supply device, electric vehicle provided with same, and power storage device
WO2022024078A1 (en) * 2020-07-30 2022-02-03 3M Innovative Properties Company Battery cell thermal runaway barrier
CN114556669A (en) * 2019-10-11 2022-05-27 揖斐电株式会社 Heat insulating sheet for battery pack and battery pack
US11489217B2 (en) 2019-01-24 2022-11-01 Tdk Corporation Battery pack
CN115612299A (en) * 2022-09-09 2023-01-17 东莞市零度导热材料有限公司 Fireproof heat insulation pad applied to new energy battery pack and preparation method thereof
CN115926228A (en) * 2022-12-26 2023-04-07 蜂巢能源科技(无锡)有限公司 Protective layer, preparation method thereof and lithium ion battery
US11735332B2 (en) 2019-08-01 2023-08-22 3M Innovative Properties Company Thermal barrier material for a rechargeable electrical energy storage system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7329788B2 (en) * 2019-05-31 2023-08-21 東洋システム株式会社 battery pack
CN112397844B (en) * 2019-08-15 2022-08-09 比亚迪股份有限公司 Battery module
JP7164742B2 (en) 2019-08-27 2022-11-01 イビデン株式会社 Thermal insulation sheet for assembled battery and assembled battery
JP7032360B2 (en) * 2019-08-27 2022-03-08 イビデン株式会社 Insulation sheet for assembled battery and assembled battery
JP7440233B2 (en) * 2019-09-19 2024-02-28 イビデン株式会社 Insulation sheet for assembled batteries and assembled batteries
KR20210070762A (en) * 2019-12-05 2021-06-15 주식회사 엘지에너지솔루션 Battery pack comprising thermal progagation blocking member
JP7203870B2 (en) * 2021-01-18 2023-01-13 イビデン株式会社 Heat transfer suppression sheet for assembled battery and assembled battery
JP7089076B1 (en) * 2021-02-01 2022-06-21 イビデン株式会社 Batteries and battery packs
WO2023157781A1 (en) * 2022-02-15 2023-08-24 井前工業株式会社 Thermal runaway suppression sheet, battery pack using same, and battery pack module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205134A (en) * 1985-03-09 1986-09-11 平岡織染株式会社 Refractory cloth laminate
JP2007211963A (en) * 2006-02-13 2007-08-23 Ibiden Co Ltd Inorganic fiber block
WO2011121901A1 (en) * 2010-03-30 2011-10-06 パナソニック株式会社 Battery pack
JP2012164463A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Battery module
JP2013054973A (en) * 2011-09-05 2013-03-21 Sony Corp Separator, nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
JP2017084460A (en) * 2015-10-22 2017-05-18 トヨタ自動車株式会社 battery
JP2018206605A (en) * 2017-06-05 2018-12-27 積水化学工業株式会社 Thermal runaway prevention sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205134A (en) * 1985-03-09 1986-09-11 平岡織染株式会社 Refractory cloth laminate
JP2007211963A (en) * 2006-02-13 2007-08-23 Ibiden Co Ltd Inorganic fiber block
WO2011121901A1 (en) * 2010-03-30 2011-10-06 パナソニック株式会社 Battery pack
JP2012164463A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Battery module
JP2013054973A (en) * 2011-09-05 2013-03-21 Sony Corp Separator, nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
JP2017084460A (en) * 2015-10-22 2017-05-18 トヨタ自動車株式会社 battery
JP2018206605A (en) * 2017-06-05 2018-12-27 積水化学工業株式会社 Thermal runaway prevention sheet

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489217B2 (en) 2019-01-24 2022-11-01 Tdk Corporation Battery pack
JP2020187869A (en) * 2019-05-10 2020-11-19 イビデン株式会社 Heat transfer suppression sheet and battery pack
JP2020187868A (en) * 2019-05-10 2020-11-19 イビデン株式会社 Heat transfer suppression sheet and battery pack
JP7332333B2 (en) 2019-05-10 2023-08-23 イビデン株式会社 Heat transfer suppression sheet and assembled battery
JP7332332B2 (en) 2019-05-10 2023-08-23 イビデン株式会社 Heat transfer suppression sheet and assembled battery
CN113906619B (en) * 2019-06-28 2023-07-28 三洋电机株式会社 Power supply device, electric vehicle provided with same, and power storage device
CN113906619A (en) * 2019-06-28 2022-01-07 三洋电机株式会社 Power supply device, electric vehicle provided with same, and power storage device
US11735332B2 (en) 2019-08-01 2023-08-22 3M Innovative Properties Company Thermal barrier material for a rechargeable electrical energy storage system
CN114556669A (en) * 2019-10-11 2022-05-27 揖斐电株式会社 Heat insulating sheet for battery pack and battery pack
WO2021168026A1 (en) * 2020-02-18 2021-08-26 Rogers Corporation Thermal management multilayer sheet for a battery
GB2607232A (en) * 2020-02-18 2022-11-30 Rogers Corp Thermal management multilayer sheet for a battery
CN113540657A (en) * 2020-04-15 2021-10-22 上海汽车集团股份有限公司 Method and device for thermal runaway impact protection of high-efficiency power battery
WO2021235189A1 (en) * 2020-05-18 2021-11-25 阿波製紙株式会社 Thermal insulation sheet
WO2022024076A1 (en) * 2020-07-30 2022-02-03 3M Innovative Properties Company Battery cell thermal runaway barrier
WO2022024078A1 (en) * 2020-07-30 2022-02-03 3M Innovative Properties Company Battery cell thermal runaway barrier
CN115612299A (en) * 2022-09-09 2023-01-17 东莞市零度导热材料有限公司 Fireproof heat insulation pad applied to new energy battery pack and preparation method thereof
CN115926228A (en) * 2022-12-26 2023-04-07 蜂巢能源科技(无锡)有限公司 Protective layer, preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
JP7074455B2 (en) 2022-05-24
JP2019083150A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
WO2019088195A1 (en) Heat insulation sheet for battery pack, and battery pack
JP7115906B2 (en) Heat transfer suppression sheet for assembled battery and assembled battery
JP7359530B2 (en) Heat transfer suppression sheet for assembled batteries and assembled batteries
JP7203568B2 (en) Heat transfer suppression sheet for assembled battery, sheet structure, and assembled battery
WO2021070933A1 (en) Heat insulation sheet for battery packs, and battery pack
JP7235562B2 (en) Heat transfer suppression sheet, heat transfer suppression sheet for assembled battery, and assembled battery
JP7184597B2 (en) Heat transfer suppression sheet for assembled battery, sheet structure, and assembled battery
EP4287371A1 (en) Flameproof sheet, assembled battery, and battery pack
WO2023127904A1 (en) Heat transfer suppression sheet and battery pack
JP7299029B2 (en) HEAT TRANSFER SUPPRESSING MEMBER AND METHOD OF USE THEREOF
WO2021054110A1 (en) Heat insulation sheet for battery pack, and battery pack
JP7307217B2 (en) Heat transfer suppression sheet for assembled battery and assembled battery
WO2023120545A1 (en) Insulating sheet and battery pack
JP6168733B2 (en) Insulation
JP2020119841A (en) Heat transfer suppressing member and its use method
JP7364739B2 (en) Heat transfer suppression sheet and assembled battery
WO2023229042A1 (en) Heat transfer suppression sheet and battery pack
WO2023229043A1 (en) Heat transfer suppression sheet and battery pack
WO2023229044A1 (en) Heat-transmission controlling sheet and battery pack
JP2023092423A (en) Heat-insulation sheet and battery pack
WO2023229047A1 (en) Heat transfer suppression sheet and battery pack
JP2020031012A (en) Heat-absorbing sheet for battery pack and assembled battery
JP7410224B1 (en) Flameproof sheet and its manufacturing method, and battery module
JP2023146554A (en) Heat transfer suppression sheet and battery pack
JP2023098612A (en) Heat transfer suppressing sheet and battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874230

Country of ref document: EP

Kind code of ref document: A1