WO2019225633A1 - Biological sample microchip, cover, biological sample sealing kit and method - Google Patents

Biological sample microchip, cover, biological sample sealing kit and method Download PDF

Info

Publication number
WO2019225633A1
WO2019225633A1 PCT/JP2019/020219 JP2019020219W WO2019225633A1 WO 2019225633 A1 WO2019225633 A1 WO 2019225633A1 JP 2019020219 W JP2019020219 W JP 2019020219W WO 2019225633 A1 WO2019225633 A1 WO 2019225633A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchip
biological sample
cover
nematode
channel
Prior art date
Application number
PCT/JP2019/020219
Other languages
French (fr)
Japanese (ja)
Inventor
芳代 鈴木
哲哉 坂下
知夫 舟山
哉 平塚
Original Assignee
国立研究開発法人量子科学技術研究開発機構
Biocosm株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人量子科学技術研究開発機構, Biocosm株式会社 filed Critical 国立研究開発法人量子科学技術研究開発機構
Priority to JP2020521272A priority Critical patent/JPWO2019225633A1/en
Publication of WO2019225633A1 publication Critical patent/WO2019225633A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a microchip for a biological sample that is used when locally irradiating or observing a microbeam (eg, fluorescence imaging observation) in a state where a biological sample such as an animal or plant cell or a micro organism is cultured or encapsulated.
  • a microbeam eg, fluorescence imaging observation
  • the present invention relates to a technique for using the microchip for biological samples.
  • Caenorhabditis elegans (hereinafter sometimes abbreviated as “C. elegans”) is a model organism established for research on neurobiology, developmental biology, and biochemistry. is there. Studies have been conducted on the effects of radiation on animal motility using this nematode. For example, it is known that when a whole body is irradiated with a quantum beam such as a gamma ray or an ion beam, its motility decreases according to the dose. However, it remains unclear whether the reduction in nematode motility was induced by irradiation of specific tissues or regions.
  • a microbeam is a beam in which a quantum beam is reduced to a micrometer size so that a specific region can be irradiated locally.
  • a quantum beam for example, an X-ray, an electron beam, an ion beam, a laser, or the like can be used.
  • anesthesia is performed on the nematode so that the nematode does not move, thereby enabling microbeam irradiation targeting a specific tissue or region.
  • the nerve calming action by anesthesia affects, it is not possible to immediately observe how the microbeam irradiation to a specific tissue or region affects the mobility of the nematode.
  • Non-Patent Document 1 a method has been proposed in which a nematode is retained without anesthesia using a PDMS (polydimethylsiloxane) microchip, and a microbeam is irradiated aiming at a specific tissue or region of the retained nematode.
  • PDMS polydimethylsiloxane
  • Non-Patent Document 1 The conventional PDMS microchip was developed to encapsulate and maintain nematodes for the purpose of imaging neural activity of nematodes, and is formed on the chip surface with a width of 10 to 80 ⁇ m, a depth of 40 ⁇ m, and a length. A nematode is enclosed in a linear channel of about 1 mm and used.
  • nematodes can be encapsulated and retained in a channel without anesthesia, so that a microbeam can be used to attach a specific tissue or region of a nematode or a specific cell. You can aim and irradiate.
  • the conventional PDMS microchip has a thickness t of about 2.5 mm, for example, an ion microbeam with an underwater range of 1 mm does not penetrate to the lower surface of the conventional PDMS microchip. Therefore, the ion detection system (scintillator-photomultiplier tube assembly, etc.) of the ion microbeam irradiation device installed on the lower surface side of the PDMS microchip that converts the beam into an electrical signal is irradiated with the nematode. There is a problem that the beam cannot be detected accurately. In particular, it is important to investigate the effects of carbon ion beams used in heavy ion beam therapy and proton beams used in proton beam therapy (also called proton ion beams).
  • the underwater range of the carbon ion beam or proton beam is not so long that it can pass through the conventional PDMS microchip, so that the conventional PDMS microchip cannot be used.
  • the present invention is a microchip suitable for locally irradiating a microbeam or observing (for example, fluorescence imaging observation) in a state where a biological sample such as an animal or plant cell or a micro organism is cultured or encapsulated.
  • An object of the present invention is to provide a biological sample microchip capable of solving the above-mentioned conventional problems, and a cover suitable for use with the biological sample microchip, and a biological sample
  • An object of the present invention is to provide a biological sample enclosure kit in which a microchip and a cover are combined. Another object of the present invention is to provide various methods using a microchip for biological samples.
  • the present invention provides a microchip for a biological sample in which at least one recess for culturing or enclosing a biological sample is formed on the surface, and the thickness t of the entire microchip is 800 ⁇ m or less. It is formed in this.
  • the thickness t of the entire microchip in the present invention is preferably 300 ⁇ m or less. Further, the thickness t of the entire microchip in the present invention is still more preferably 100 ⁇ m or less.
  • hydrophilicity is imparted to at least the microchip surface.
  • surface means “exposed surface”. That is, the hydrophilicity is given to the surface as long as the outermost surface is made hydrophilic. Furthermore, in the present invention, it is more preferable that hydrophilicity is imparted to the entire microchip.
  • the present invention is a microchip for a biological sample in which at least one recess for culturing or encapsulating a biological sample is formed on the surface, wherein hydrophilicity is imparted to at least the microchip surface. To do.
  • the microchip surface may be subjected to plasma treatment.
  • the present invention is directed to a cover used for enclosing and holding a biological sample in the concave portion of the biological sample microchip. That is, the cover in the present invention is transparent and has a surface roughness Ra of 0.02 ⁇ m or less.
  • the cover thickness t2 is preferably 50 ⁇ m or more and 300 ⁇ m or less. Moreover, it is preferable that the water contact angle (25 degreeC, 30% RH) of a cover is 100 degrees or less. Further, the oxygen permeability (20 ° C., 50% RH) of the cover is preferably 30 mL / (m 2 ⁇ 24 h ⁇ atm) or more. Further, the carbon dioxide permeability (20 ° C., 50% RH) of the cover is preferably 30 mL / (m 2 ⁇ 24 h ⁇ atm) or more. The cover is preferably made of polystyrene.
  • the present invention is also directed to a biological sample enclosing kit. That is, the biological sample enclosure kit according to the present invention is configured to include the biological sample microchip and the cover.
  • the present invention is also directed to a biological sample retention method in which a biological sample is enclosed and retained. That is, the biological sample retention method in the present invention is a method including enclosing a biological sample in the concave portion of the biological sample microchip.
  • the present invention is also directed to a microbeam irradiation method for irradiating a biological sample with a microbeam. That is, the microbeam irradiation method in the present invention is a method including enclosing a biological sample in the concave portion of the biological sample microchip and irradiating the biological sample with a microbeam.
  • the present invention is also directed to a method for culturing or breeding a biological sample. That is, in the method of the present invention, the biological sample is sealed in the recess of the biological sample microchip, and the biological sample microchip in which the biological sample is sealed is placed in a culture environment or a breeding environment of the biological sample. Standing still.
  • a biological sample can be cultured or encapsulated in a good state, and microbeam irradiation and observation of cells and tissues (for example, fluorescence imaging observation) can be performed well.
  • microchip for micro organism individuals among the microchips for biological samples. It is a figure which shows an example of the microchip for animal and plant cells among the microchips for biological samples. It is a figure which shows an example of the cover used for the microchip for biological samples. It is a figure which shows the outline
  • FIG. It is a figure which shows the frequency
  • FIG. It is a figure which shows the relative value of the frequency
  • FIG. It is a figure which shows the relative value of the frequency
  • FIG. It is a figure which shows the relative value of the frequency
  • FIG. 1 It is a figure which shows the frequency
  • FIG. It is a figure which shows the frequency
  • FIG. It is the bright field image which image
  • FIG. It is the fluorescence image which image
  • FIG. It is the bright field image which image
  • FIG. 6 It is the bright-field image which image
  • FIG. 6 It is the bright field image which image
  • FIG. 1 is a diagram showing an example of a microchip for microbiology among microchips 1 for biological samples (hereinafter simply referred to as “microchip 1”) in the present invention
  • FIG. FIG. 1B is an enlarged sectional view of the recess 3 (channel 3a).
  • the microchip 1 is a thin chip formed using PDMS (polydimethylsiloxane) as a base material. For example, it is used when irradiating a specific tissue or region or one specific cell with a microbeam while enclosing and holding a biological sample such as a nematode.
  • PDMS polydimethylsiloxane
  • the microchip 1 can also be suitably used when observing a biological sample (for example, fluorescence imaging observation).
  • the microchip 1 can be rectangular, for example.
  • it is formed in a square shape in plan view having the same length in the X direction and the Y direction.
  • the size in the X direction and the Y direction is 15 mm.
  • the microchip 1 is not necessarily limited to a square in plan view, and may be a rectangle, and may have a shape that matches the size of a sample stage such as an integrated microscope having an automatic photographing function.
  • At least one recess 3 for culturing or enclosing a biological sample is formed on the surface 2 of the microchip 1.
  • the recess 3 is formed with a plurality of channels 3 a.
  • Each channel 3 a is formed to extend in the X direction on the surface 2 of the microchip 1.
  • the plurality of channels 3a are formed at substantially equal intervals in the Y direction on the surface 2 of the microchip 1.
  • Such a microchip 1 is in a form that can be suitably used when nematodes are used as biological samples. That is, the channel 3a is formed as a groove having a width W that can enclose the nematode.
  • the nematode moves (crawls) by shaking its head from side to side.
  • the width W is set to be equal to or less than the width (thickness) B (size in the direction orthogonal to the head-to-tail direction) of the body of the nematode (typically the thickest part, for example, the abdomen).
  • the nematode Since the nematode has a cylindrical elongated body and is elastic, it can be enclosed in the channel 3a even when the width W of the channel 3a is narrower than the width B of the body, and the fit in the channel is good. The movement can be reliably suppressed.
  • the width W is preferably set so that the difference between the width W of the channel 3a and the width B of the nematode body is approximately 20 ⁇ m or less.
  • the width W of the channel 3a is preferably equal to or less than the width B of the nematode body.
  • the nematode may rotate vertically in the channel 3a or bend in two.
  • the depth D of the channel 3a is C.I.
  • the width W of the channel 3a is about 10 to 90 ⁇ m
  • the depth D is about 20 to 100 ⁇ m.
  • Elegance has stages of L1 to L4 larvae (approximately 2.5 days of age immediately after hatching), and the width B of the body is about 10 to 40 ⁇ m. Therefore, in the case of the microchip 1 for larvae at each stage, it is preferable that the width W of the channel 3a is 5 to 40 ⁇ m and the depth D is 10 to 50 ⁇ m.
  • the width B of the body of a relatively young adult (about 2.5 to 4.5 days of age) is about 50 to 70 ⁇ m. Therefore, in the case of a relatively young adult microchip 1, it is preferable that the width W of the channel 3a is 40 to 60 ⁇ m and the depth D is 50 to 70 ⁇ m. Nematodes grow even after they become adults.
  • the width B of the body is finally about 90 ⁇ m.
  • the width W of the channel 3a is preferably 60 to 90 ⁇ m and the depth D is preferably 70 to 100 ⁇ m.
  • the microchip 1 can be formed with channels 3a of various sizes according to the nematode generation stage. Further, for example, a substantially rectangular channel having a function of holding a buffer solution or bait (for example, E. coli) is formed at the end of the plurality of linear channels 3a of the microchip 1 shown in FIG. Can be reared and observed.
  • the width W of the channel 3a can be made smaller than the width B of the nematode body, and the depth D of the channel 3a can be made smaller than the width B of the nematode body.
  • the nematode is stretched in the long axis direction so as to be closely attached to the channel 3a. It can be suppressed more strongly.
  • Such a channel 3a can be suitably used for fluorescence imaging observation of an arbitrary cell or tissue.
  • the depth D of the channel 3a is about 2/3 of the width B of the nematode body and the width W is about 1.2 to 1.5 times the width B of the nematode body
  • the body can be held in the channel 3a in a state of being expanded in the width direction of the channel 3a, and can be suitably used for morphological observation of cells and tissues.
  • the microchip 1 having a small width W or depth D of the channel 3a has a small amount of buffer solution that can be held in the channel 3a, the amount of the buffer solution may be insufficient during long-term breeding and observation. is there. For this reason, it can be suitably used for morphological observation in a relatively short time.
  • the channel size should be selected in consideration of the influence of stress on the observed response. Is preferred.
  • the width W or depth D of the channel 3a is made smaller than the width B of the nematode body, for example, the nematode C.I.
  • the width W of the channel 3a is preferably 5-15 ⁇ m and the depth D is preferably 10-15 ⁇ m.
  • the width W of the channel 3a is preferably 15 to 30 ⁇ m and the depth D is preferably 15 to 30 ⁇ m.
  • the width W and depth D of the channel 3a are preferably about 10 ⁇ m smaller than the width B of the nematode body.
  • the width W or depth D of the channel 3a is made larger than the width B of the nematode body, it can be kept in the observation field such as a microscope without suppressing the movement of the enclosed nematode body, The movement of the nematode can be observed.
  • the width W and depth D of the channel 3a may be about 10 to 20 ⁇ m larger than the width B of the nematode body.
  • Such a channel 3a can be suitably used for comparatively macroscopic fluorescence imaging observation or the like targeting a group of neural cells or muscle cells of a moving nematode.
  • the microchip 1 can be suitably used not only for various nematode individuals (eggs, larvae, adults) but also for holding or observing biological samples that can be enclosed in the recesses 3.
  • a biological sample may be either an animal or a plant, and the presence or absence of motor ability is not limited.
  • microscopic organisms whose body width B or diameter F is approximately equal to or less than the depth D of the recess 3, that is, approximately 2/3 or less of the thickness t of the microchip 1, animals, plants, algae cells, seeds, pollen, eggs, Sperm etc. are targeted.
  • pollen of various plants, cultured cells and blood cells of animals and plants Paramecium, Tetrahymena, Euglena, Paramecium, Mikazuki, etc., microorganisms such as fertilized eggs of nematodes, fertilized eggs of Drosophila and zebrafish, It can be suitably used for animal individuals such as rotifers (for example, stink bugs and L-type rotifers), and beetles (for example, Dojarjaran rotifers).
  • rotifers for example, stink bugs and L-type rotifers
  • beetles for example, Dojarjaran rotifers
  • shape of the recess 3 formed on the surface 2 of the microchip 1 it is preferable to adopt a shape suitable for a biological sample.
  • the depth D of the channel 3 is approximately equal to the body thickness (typically the length in the short axis direction of the thinnest surface) T or the diameter F of the biological sample. It is desirable that the width W of the channel 3 is equal to or less than the width B or the diameter F of the organism body, and the length L of the channel 3 is sufficiently longer than the body length H of the organism.
  • the size of the channel 3 is not limited to the above, and may be set according to the elasticity of the biological sample to be sealed, the speed of movement, and the like.
  • the width W and the depth D of the channel 3a are constant has been described as an example, but the present invention is not limited to this.
  • Nematodes generally have a narrower head and tail than the abdomen. Therefore, a shape in which the width W or depth D of the channel 3a is matched to the width of each nematode site, for example, a narrow portion having a small width W or depth D may be provided in a part of the channel 3a. By enclosing the head or tail of the nematode in such a narrowed portion, the nematode can be suitably retained.
  • the non-constricted portion is equivalent to any of the conditions described as the width W and the depth D of the channel 3a.
  • the shape of the channel 3a can be a constricted repeating pattern that repeats a wide portion and a small portion.
  • the shape of the channel 3a may be an arbitrary shape such as a sine wave shape that matches the trajectory of the nematode's lameness movement or an oval shape that can enclose an egg.
  • the number of channels 3a may be freely selected according to the purpose. For example, it may be 1 or more, 2 or more, 3 or more, and 5 or more are preferable. More preferably, it is 10 or more, more preferably 15 or more.
  • the upper limit of the number of channels 3a is not limited, and may be set within a range that can be formed on a chip. For example, it may be 100 or less and 50 or less.
  • One or more of the channels 3a may be different from the shape and size of the other channels 3a.
  • FIG. 2 is a diagram showing an example of a microchip for animal and plant cells in the microchip 1.
  • the surface 2 of the microchip 1 shown in FIG. 2 shows a structure in which a plurality of rectangular wells 3b for cultivating animal and plant cells are formed as recesses 3 for enclosing biological samples (FIG. 2 ( a)).
  • the shape of the well 3b is not limited to a rectangle, and may be a circle or an ellipse. Since the cells (not moving violently) can be irradiated with microbeams or observed without being held by one cell, the size of the recess 3 may be set to be considerably larger than that of the cells. For example, as shown in FIG.
  • the well 3b is formed in a rectangular shape having a width L in the X direction and a width W in the Y direction.
  • the ratio of the width L in the X direction to the width W in the Y direction is set to have the same aspect ratio as the angle of view of the camera that captures the whole cell before and after the microbeam irradiation, the entire region of one well 3b Is suitable for observation for the purpose of tracking the cell dynamics after irradiation.
  • the depth D of the well 3b is preferably about 50 to 100 ⁇ m in order to secure a space for injecting a culture solution or the like into the well 3b. Further, in order to maintain the shape of the formed well 3b, it is preferable that the depth D of the well 3b has an upper limit of about 2/3 of the thickness t of the microchip 1. Therefore, for example, if the thickness t of the microchip 1 is 300 ⁇ m, the depth D of the well 3b is preferably 50 to 200 ⁇ m.
  • the microchip 1 in which the well 3b illustrated in FIG. 2 is used is used as an animal or plant cell has been described as an example. May be used.
  • the microchip 1 as described above is formed in a thin sheet shape. If the thickness t is 800 ⁇ m or less, a microbeam having an underwater range of about 1000 ⁇ m can pass through the microchip 1 and reach a detection system provided on the lower surface side of the microchip 1. Such a microchip 1 having a thickness t of 800 ⁇ m or less can transmit a microbeam having an underwater range of about 1000 ⁇ m even when the cover described later is provided on both the opening side and the lower surface side of the recess. Particularly preferred.
  • the thickness t of the microchip 1 is thinner than 800 ⁇ m, the types of microbeams that can be detected by the ion detection system of the ion microbeam irradiation apparatus can be increased.
  • FIG. 3 is a diagram showing an example of a cover that covers the surface 2 of the microchip 1.
  • the shape of the surface that contacts the surface of the microchip 1 is not particularly limited, and examples thereof include a rectangle, a circle, and an ellipse. The shape which rounded one or more corners of the rectangle may be sufficient.
  • a rectangle as shown in FIG. 3 is preferable because it can be easily manufactured and manufacturing loss hardly occurs.
  • the cover 4 may have a grip part or may have a hole.
  • the cover 4 having a gripping portion is preferable because it can be easily arranged on the surface of the microchip 1 or peeled off.
  • the cover 4 in which the holes are formed is preferable because air bubbles can be easily discharged through the holes when the cover 4 is brought into close contact with the surface of the microchip 1.
  • the underwater range of the ion beam is determined by the ion species and energy.
  • Table 1 lists the major ions and energies that can be used at the Takasaki Quantum Science and Technology Research Institute of Quantum Science and Technology, and shows their relationship with the calculated values of the underwater range.
  • the ion beam passes through the microchip 1.
  • the ion beam can pass through the microchip 1. Therefore, by setting the thickness t of the microchip 1 to 800 ⁇ m or less, it becomes possible to perform an experiment using an ion beam having an underwater range longer than 800 ⁇ m. Will also increase significantly.
  • the thickness t of the microchip 1 is 800 ⁇ m or less, the ion beam such as neon exemplified in Table 1 does not pass through the microchip 1.
  • the thickness t of the microchip 1 is preferably 300 ⁇ m or less.
  • the microbeam of 350 MeV neon ions having an underwater range of 700 ⁇ m and 260 MeV neon ions having an underwater range of 420 ⁇ m shown in Table 1 is also installed on the lower surface side of the microchip 1. It becomes possible to detect accurately by the ion detection system of the ion microbeam irradiation apparatus. This makes it possible to investigate the biological effects of at least four different types of ions such as helium ions, protons, carbon ions, and neon ions in the same experimental system.
  • the thickness t of the microchip 1 is 100 ⁇ m or less.
  • the ion detection system of the ion microbeam irradiation apparatus installed on the lower surface side of the microchip 1 can accurately detect the microbeam transmitted through the biological sample. Therefore, if the thickness t is set to 100 ⁇ m or less, the experiment is performed using all the ion species illustrated in Table 1, that is, at least five different microbeams such as helium ions, protons, carbon ions, neon ions, and argon ions. The versatility of the microchip 1 becomes higher.
  • the biological sample that can be cultured or sealed in the recesses 3 such as the channel 3a and the well 3b is not more than the depth D of the recesses 3, that is, approximately 530 ⁇ m or less.
  • moving biological samples include Paramecium, Tetrahymena, Euglena, Paramecium, Daphnia, C. elegans.
  • rotifer, caterpillar, leopard mite (dust mite), artemia and so on Since these are preferably observed in a state where movement is suppressed, the microchip 1 shown in FIG. 1 may be used to enclose and hold the channel 3a.
  • biological samples that do not move, or do not move so much as to interfere with microbeam irradiation and observation include pollen, mika mochi, moss, volbox, cultured cells, nematode eggs (eg, fertilized eggs), blood cells, Examples include human eggs, rotifer eggs, Drosophila eggs, and zebrafish eggs (eg, fertilized eggs). Since these do not move, or do not move so much as to interfere with microbeam irradiation and observation, the microchip 1 shown in FIG. 2 may be used to culture or enclose and hold in the well 3b. However, the microchip 1 shown in FIG. 1 may be used. In the present specification, “egg” includes both unfertilized eggs and fertilized eggs.
  • the biological sample that can be cultured or sealed in the recess 3 such as the channel 3a or the well 3b has a depth D of the recess 3 or less, that is, approximately 200 ⁇ m or less. It becomes a target.
  • moving biological samples include Paramecium, Tetrahymena, Euglena, Euglena, Nematode C.
  • the microchip 1 shown in FIG. 1 may be used to enclose and hold the channel 3a.
  • Biological samples that do not move, or do not move so much as to interfere with microbeam irradiation and observation include pollen, mika mochi, moss, cultured cells, nematode eggs (eg, fertilized eggs), blood cells, and human eggs. , Rotifer eggs. Since these do not move, or do not move so much as to interfere with microbeam irradiation and observation, the microchip 1 shown in FIG. 2 may be used to culture or enclose and hold in the well 3b. However, the microchip 1 shown in FIG. 1 may be used.
  • the biological sample that can be enclosed in the recesses 3 such as the channel 3a and the well 3b is intended to have a depth D of the recess 3 or less, that is, approximately 65 ⁇ m or less.
  • moving biological samples include Paramecium, Tetrahymena, Euglena, Euglena, Nematode C. There are elegance and rotifer. Since these are preferably observed in a state where movement is suppressed, the microchip 1 shown in FIG. 1 may be used to enclose and hold the channel 3a.
  • Examples of biological samples that do not move, or that do not move so much as to interfere with microbeam irradiation and observation include pollen, mika mochi, moss, cultured cells, nematode eggs (eg, fertilized eggs), and blood cells. Since these do not move, or do not move so much as to interfere with microbeam irradiation and observation, the microchip 1 shown in FIG. 2 may be used to culture or enclose and hold in the well 3b. However, the microchip 1 shown in FIG. 1 may be used.
  • the thickness t of the microchip 1 is 800 ⁇ m, 300 ⁇ m, and 100 ⁇ m has been described as an example, but the present invention is not limited to this. It can be set as appropriate in consideration of the underwater range of the ion beam to be used and the size of the biological sample to be cultured or sealed in the recess 3. For example, an arbitrary thickness such as 600 ⁇ m, 500 ⁇ m, or 200 ⁇ m may be used. If the thickness t is 600 ⁇ m, the depth D of the concave portion 3 formed on the surface 2 of the microchip 1 can be set to 400 ⁇ m, so that daphnia and the like can be suitably enclosed and retained.
  • the thickness t is 200 ⁇ m
  • the depth D of the recess 3 is set to 140 ⁇ m, so that L-type rotifer larvae, eggs, human eggs, etc. can be suitably enclosed and retained.
  • 200 MeV neon ions having an underwater range of 270 ⁇ m and 460 MeV argon ions having an underwater range of 250 ⁇ m may be irradiated.
  • the thickness t of the microchip 1 is larger than 800 ⁇ m, for example, to an arbitrary thickness such as 1000 ⁇ m, 1500 ⁇ m, 2000 ⁇ m. If the thickness t is 1000 ⁇ m, the depth D of the recess 3 formed on the surface 2 of the microchip 1 can be set to 650 ⁇ m, so that fertilized eggs of silkworms can be suitably enclosed and retained. 10 MeV protons having an underwater range of 1180 ⁇ m and 220 MeV carbon ions having an underwater range of 1210 ⁇ m may be irradiated.
  • the thickness t of the microchip 1 when investigating the influence of protons used in proton beam therapy, if the thickness t of the microchip 1 is 1000 ⁇ m or less, at least 2 of 10 MeV protons in the underwater range 1180 and 15 MeV protons in the underwater range 2440 ⁇ m. Different types of protons can be used. Further, if the thickness t is 1500 ⁇ m, the depth D of the recess 3 can be set to 1000 ⁇ m, so that fertilized eggs of medaka can be suitably enclosed and retained, and the ion beam is 50 MeV with an underwater range of 1770 ⁇ m. Helium ions, 320 MeV carbon ions having an underwater range of 2370 ⁇ m, and the like can be irradiated.
  • the depth D of the recess 3 is set to 1300 ⁇ m, so that the types of micro-organisms, eggs, and plant seeds that can be enclosed can be increased.
  • the ion beam that can be transmitted through the microchip 1 is limited to 50 MeV helium ions with an underwater range of 1770 ⁇ m, 320 MeV carbon ions with an underwater range of 2370 ⁇ m, 63 MeV helium ions with an underwater range of 2680 ⁇ m, and the like. It can be suitably used for culture or entrapment retention for fluorescence imaging observations and the like that are not limited to irradiation.
  • the thickness t of the microchip 1 has been described by paying attention to the relationship between the underwater range of the microbeam and the object to be sealed in the recess, the present invention is not limited to this.
  • observation that has been difficult in the past can be made possible.
  • observation using a water immersion lens has been performed when fluorescent imaging observation is performed while an object is alive.
  • the thickness of the microchip 1 is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 200 ⁇ m or less.
  • the microchip surface 2 on which at least the concave portion 3 is formed has hydrophilicity.
  • PDMS is usually hydrophobic.
  • the surface 2 of the microchip exhibits hydrophobicity. If the microchip surface 2 is hydrophobic, dehydration occurs in a biological sample such as a nematode enclosed in the channel 3a. In order to prevent this, the microchip 1 imparts hydrophilicity to the microchip surface 2.
  • the hydrophilicity may be imparted only to the microchip surface 2 or may be imparted to the entire microchip.
  • having hydrophilicity means a state in which a water contact angle (25 ° C., 30% RH) is 100 degrees or less.
  • the water contact angle is 90 degrees or less, more preferably 60 degrees or less, and still more preferably 40 degrees or less.
  • a hydrophilicity imparting agent such as MPC (2-Methacryloyloxyethyl Phosphorylcholine) polymer is applied to the surface 2 of the microchip 1. That is, the thickness of the hydrophilic portion can be adjusted by the amount (thickness) of the hydrophilicity imparting agent applied.
  • the microchip 1 subjected to such surface hydrophilic treatment includes a base material layer using PDMS as a base material and a hydrophilic layer containing a hydrophilicity-imparting agent. Thereby, hydrophilicity can be imparted to the surface 2 of the microchip 1.
  • the hydrophilicity imparting agent applied to the surface 2 of the microchip 1 reacts with air, the hydrophilicity of the microchip surface 2 is lost over time. Therefore, the microchip 1 is not suitable for long-time use or repeated use.
  • hydrophilicity can be imparted only to the microchip surface 2. That is, the thickness of the hydrophilic portion can be adjusted by plasma irradiation conditions (irradiation intensity, irradiation time, etc.).
  • the microchip 1 subjected to such surface hydrophilic treatment includes a plasma treated portion (portion having hydrophilicity) and a plasma untreated portion.
  • polarity can be provided to the outermost surface of a microchip (typically the recessed part 3) by performing a plasma process. For example, when cells are cultured using the microchip 1 for animal and plant cells shown in FIG. 2, it is preferable that the cultured cells adhere to the well 3b.
  • Adhesive cells are known to grow well by adhering to a polar scaffold. For this reason, especially when using the microchip 1 disclosed here for the microbeam irradiation or observation for the adhesive cells, the plasma-treated microchip 1 can be preferably used. However, in the hydrophilization by plasma treatment, the hydrophilicity of the microchip surface 2 may be lost over time, as in the case of applying the hydrophilicity imparting agent such as the MPC polymer described above.
  • hydrophilicity when hydrophilicity is imparted to the entire microchip 1, for example, when the microchip 1 is manufactured, the microchip 1 is poured into a mold and solidified by adding a hydrophilicity imparting agent to PDMS as a base material. It ’s fine. Thereby, hydrophilicity can be imparted to the entire microchip 1.
  • a hydrophilicity imparting agent for example, nonionic surfactants such as Tween 20, Brij 35, Triton X-100 can be used. If the nonionic surfactant is up to about 10 wt% with respect to the base material PDMS, hydrophilicity can be imparted to the PDMS without hindering the formation of the microchip 1.
  • the addition amount of the nonionic surfactant is 10 wt% or less, if the addition amount of the nonionic surfactant increases, the transparency of the PDMS may be impaired. Therefore, it is preferable that the addition amount of the nonionic surfactant is up to about 3 wt%. If the addition amount is about 3 wt% or less, effective hydrophilicity can be imparted to PDMS without impairing the transparency of PDMS.
  • conventionally known hydrophilicity imparting agents that are known to impart hydrophilicity to PDMS can be used without any particular limitation. By imparting hydrophilicity to the entire microchip 1, hydrophilic deterioration can be suppressed, and thus there is an advantage that hydrophilicity can be maintained even when the microchip 1 is repeatedly used. .
  • hydrophilicity is also imparted to the recess 3 for enclosing the biological sample.
  • Such hydrophilicity makes it easy to draw water into the recess 3.
  • the biological sample can be smoothly sealed in the recess 3.
  • the water retention of the recessed part 3 can be improved.
  • evaporation of water from the recess 3 can be suppressed.
  • dehydration and drying of the biological sample can be reduced.
  • microchip 1 for animal and plant cells shown in FIG. 2 is produced, after imparting hydrophilicity to the entire microchip 1 as described above, plasma treatment is further performed on the microchip surface 2. You may do it. By this plasma treatment, the adhesion of cells to the microchip surface 2, in particular, the surface 6 of the well 3 b can be improved, so that the microchip 1 suitable for cultured cells can be realized. However, when the microchip 1 is used for floating cells or blood cells, cell adhesion may not be required.
  • the plasma treatment described above can be given.
  • cell adhesion can also be improved using methods other than plasma treatment.
  • a process for improving the cell adhesiveness there is a process for applying a surface coating agent for improving the cell adhesiveness to the surface 6 of the well 3b.
  • the surface 6 of the well 3b only needs to include at least the bottom surface of the well 3b.
  • the surface coating agent for improving cell adhesion may be appropriately selected from conventionally known cell adhesion polymers. For example, polylysine, fibronectin, Corning (registered trademark) Inc.
  • CellTak (registered trademark) (manufactured by mussel-derived polyphenol protein) and the like can be mentioned.
  • Such treatment for improving cell adhesion may be performed by one method alone or in combination of two or more methods.
  • a process for imparting hydrophilicity to the microchip 1 for example, a process for imparting hydrophilicity to the entire microchip 1, a process for imparting hydrophilicity to at least the surface 2 (application of a hydrophilicity imparting agent, plasma treatment, etc.) And treatment for improving cell adhesion may be performed in combination.
  • the microchip 1 configured as described above can be used in combination with a cover when used.
  • the cover is typically arranged to cover the channel 3.
  • the cover 4 shown in FIG. 3 is used.
  • the cover 4 is a transparent sheet-like cover having a thickness of about 100 ⁇ m, for example.
  • the cover 4 is covered so as to be in close contact with the surface 2 of the microchip 1, for example. Therefore, the biological sample enclosed in the channel 3a by the cover 4 can be prevented from being detached from the inside of the channel 3a, and can be retained in the channel 3a. Further, by covering the surface 2 of the microchip 1 with the cover 4, evaporation of the liquid (typically moisture) from the recess 3 can be suppressed.
  • the microchip 1 and the cover 4 are preferably disposed so as to be in close contact.
  • “adhesion” refers to a state in which the cover surface 5 is in contact with the microchip surface 2 without a gap due to the self-adsorption property of PDMS. Particularly preferably, it is arranged so as to be watertight.
  • the contact surfaces of the microchip 1 and the cover 4 that is, the microchip surface 2 and the cover surface 5 are smooth planes.
  • the smoothness of the surface 2 of the microchip 1 is more preferably 0.007 to 0.012 ⁇ m in surface roughness Ra (JIS 2001 standard).
  • the surface roughness Ra (JIS 2001 standard) is preferably 0.03 ⁇ m or less, more preferably 0.02 ⁇ m or less, and still more preferably 0.01 ⁇ m or less.
  • the minimum of the smoothness of the surface 5 of a cover is not specifically limited, Preferably it is 0.002 micrometer or more, More preferably, it is 0.005 micrometer or more.
  • the cover 4 provided on the surface 2 of the microchip 1 is preferably formed of a transparent material having a smooth surface 5 (at least a surface in contact with the microchip 1) and hardly cracking.
  • a polystyrene film having a thickness of 100 ⁇ m and an Ra of about 0.008 ⁇ m is suitable because it is transparent and difficult to break, has good adhesion to PDMS, and can be easily peeled off.
  • a PDMS cover film can also be used.
  • the biological sample placed on the microchip 1 and a liquid are pressed with a cover, whereby the biological sample can be guided into the channel 3a.
  • a liquid typically water or an aqueous solution
  • the biological sample held in the recess 3 of the microchip 1 using the cover 4 is easy to observe visually or using a magnifier such as a microscope.
  • the cover disposed on the microchip 1 is transparent. That is, the cover 4 that covers the surface 2 of the microchip 1 is preferably transparent. Or when arrange
  • the cover 4 that covers the front surface 2 of the microchip 1 and the cover that is disposed on the back surface of the microchip 1 may be the same or may have different properties.
  • the cover's parallel light transmittance (according to the optical characteristic test method of JISK7105 plastic) is preferably 80% or more. Preferably it is 85% or more, more preferably 90% or more.
  • the haze of the cover (according to the JISK7105 plastic optical property test method) is preferably 4.0% or less. Preferably it is 2.5% or less, More preferably, it is 0%.
  • the refractive index of the cover disposed on the microchip 1 is preferably small.
  • the refractive index of the cover is preferably 1.0 or less, and more preferably 0.8 or less.
  • the lower limit of the refractive index is not particularly limited, but may be, for example, 0.3 or more.
  • a cover having no or little autofluorescence in the wavelength region of light used for observation or excitation is suitable for fluorescence observation.
  • the light transmittance of the cover disposed on the microchip 1 is preferably 70% or more, and 80% or more in the wavelength region of the light used. Is more preferable, and it is still more preferable that it is 90% or more.
  • the light transmittance of the cover is desirably 80% or more at a wavelength of 360 to 860 nm, more preferably 85% or more, and still more preferably 90% or more.
  • the light transmittance at a wavelength of 860 to 1500 nm is preferably 80% or more, more preferably 90% or more.
  • the cover 4 is preferably flexible.
  • the supple cover 4 it is possible to prevent the cover from being damaged when the cover 4 adhered to the surface 2 of the microchip 1 is removed.
  • the thickness t2 of the cover is not particularly limited. However, from the viewpoint of operability when attaching / detaching the cover 4 to / from the surface 2 of the microchip 1, for example, the cover 4 is preferably 50 ⁇ m or more, and more preferably 80 ⁇ m or more. By using the cover 4 having such a thickness, the cover 4 can be prevented from being damaged during the attachment / detachment operation. On the other hand, from the viewpoint of microbeam transparency or visibility (observability), the thickness t2 of the cover 4 is preferably 300 ⁇ m or less, and more preferably 200 ⁇ m or less. For example, it is preferable to use the cover 4 having a thickness of 100 ⁇ m or more and 150 ⁇ m or less.
  • the cover disposed on the back surface of the microchip 1 is also preferably a cover according to this.
  • the cover 4 has hydrophilicity like the microchip 1.
  • the cover 4 having hydrophilicity By using the cover 4 having hydrophilicity, evaporation of the liquid (typically moisture) from the recess 3 can be further suppressed. Thereby, drying of a biological sample can be prevented.
  • the cover 4 of 90 degrees or less is more preferable.
  • the minimum of the water contact angle of the cover 4 is not specifically limited, For example, what is necessary is just 40 degree
  • both the microchip 1 and the surface 5 of the cover 4 have hydrophilicity, for example, the water contact angle is 100 degrees or less.
  • the microchip 1 and the cover 4 having a water contact angle of the surface 5 of 100 degrees or less are preferably used in combination.
  • the cover 4 having a water contact angle of the surface 5 of 60 degrees or more and 100 degrees or less is exemplified as one condition of a suitable combination.
  • transmit oxygen is preferable at the point which can supply oxygen to the biological sample culture
  • FIG. When a biological sample is cultured or sealed in the recess 3 for a certain time or more, or when a biological sample with high oxygen demand is used, oxygen tends to be insufficient in the space in the recess 3 of the microchip 1. Therefore, the oxygen permeability of the cover 4 is important in order to prevent the lack of oxygen in the biological sample. Therefore, for example, the cover 4 having an oxygen permeability (20 ° C., 50% RH) of 30 mL / (m 2 ⁇ 24 h ⁇ atm) or more when measured by a gas chromatographic method is desirable.
  • the oxygen permeability is preferably 100 mL / (m 2 ⁇ 24 h ⁇ atm) or more, more preferably 1000 to 1500 mL / (m 2 ⁇ 24 h. Atm).
  • the cover 4 capable of transmitting carbon dioxide is preferable in that carbon dioxide can be supplied to a biological sample such as a plant cultured or enclosed in the recess 3 or carbon dioxide can be discharged from the recess 3.
  • a biological sample such as a plant cultured or enclosed in the recess 3 or carbon dioxide can be discharged from the recess 3.
  • carbon dioxide is insufficient in the space in the recess 3 of the microchip 1.
  • the carbon dioxide permeability of the cover 4 is important in order to control the influence of carbon dioxide on a biological sample because the carbon dioxide tends to be excessive.
  • the cover 4 having a carbon dioxide permeability (20 ° C., 50% RH) of 30 mL / (m 2 ⁇ 24 h ⁇ atm) or more when measured by a gas chromatographic method is desirable.
  • carbon dioxide transmittance 300mL / (m 2 ⁇ 24h ⁇ atm) or more, more preferably 3000mL / (m 2 ⁇ 24h ⁇ atm) or more.
  • oxygen permeability and carbon dioxide permeability e.g.
  • the carbon dioxide permeability 3000mL / (m 2 ⁇ 24h ⁇ atm) or more in the cover 4 of the oxygen permeability 1000mL / (m 2 ⁇ 24h ⁇ atm), the carbon dioxide permeability 3000mL / (m 2 ⁇ 24h ⁇ atm) or more.
  • a carbon dioxide permeability of 3 times or more than the oxygen permeability can be selected, and may be about 10 times.
  • the material of the cover 4 is not particularly limited, and examples thereof include polystyrene, polypropylene, polyethylene, polyester, polyethylene terephthalate, polyethylene naphthalate, glass, and polyimide. Among these, polystyrene and polypropylene are more preferable as the material of the cover 4 because they are excellent in the oxygen permeability described above. In addition, conventionally well-known various additives (a plasticizer, a crosslinking agent, a stabilizer, etc.) may be added.
  • various additives a plasticizer, a crosslinking agent, a stabilizer, etc.
  • the back surface may be adsorbed on a sample stage, for example, a stereomicroscope stage, which may be difficult to operate.
  • a cover having a thickness of about 100 ⁇ m may be laid on the back surface of the microchip 1 and placed on the sample table.
  • the cover provided on the back surface of the microchip 1 only needs to be formed of a material having a smooth and transparent surface.
  • the above polystyrene film is suitable.
  • a cover glass or a slide glass having a thickness of 100 ⁇ m and a surface roughness Ra (JIS 2001 standard) of about 0.001 ⁇ m is preferable because it is transparent, has high adhesion to PDMS, and can be easily peeled off. It is.
  • the microbeam needs to pass through the cover disposed on the front surface 2 and the back surface of the microchip in addition to the microchip 1. For this reason, when ion microbeam irradiation is performed using a cover, ion species having an underwater range longer than the sum of the thicknesses of the cover 2 on the front surface 2 and the back surface of the microchip 1 and the thickness t of the microchip 1 are selected.
  • a polyimide film (Kapton (registered trademark)) manufactured by Toray DuPont Co., Ltd. having a thickness t2 of about 25 ⁇ m is used as the cover 4. May be used.
  • a cover provided on the back surface of the microchip 1 is provided with a plastic film for ion track detection, for example, manufactured by Fukubi Chemical Co., Ltd. Use CR-39 (Solid State Nuclear Track Detector, TNF-1).
  • the thickness of CR-39 should be selected as appropriate such as 100 ⁇ m or 450 ⁇ m in consideration of the underwater range and the conditions of alkaline etching for detecting ion tracks depending on the ion species used. good.
  • the covers provided on the front surface 2 and the back surface of the microchip are made of a material having no or little autofluorescence in addition to the above features. It is good to choose what. For example, a polystyrene film can be suitably used.
  • a biological sample culture kit or a biological sample enclosing kit combined with the microchip 1 and the cover 4 can be provided.
  • a biological sample culture kit or biological sample enclosure kit cultivates or encloses a biological sample in a gap formed between the recess 3 of the microchip 1 and the cover 4.
  • the biological sample culture kit or the biological sample enclosure kit can be used for the purpose of keeping the biological sample cultured or enclosed in the kit in a wet state.
  • a polystyrene film having a thickness t2 of 100 to 130 ⁇ m and an Ra of about 0.008 ⁇ m can be used.
  • positioned on the back surface of the microchip 1 the cover glass and slide glass whose Ra is about 0.002 micrometer other than the said polystyrene film can be used conveniently.
  • the biological sample culture kit or the biological sample enclosing kit can be used for the purpose of irradiating the biological sample cultured or enclosed in the kit with a microbeam.
  • the total sum of the thickness t of the microchip 1 and the thickness of the cover provided on the front surface 2 and the back surface thereof is not more than the underwater range of the ionic species used.
  • the biological sample culture kit or the biological sample enclosing kit can be used for the purpose of fluorescence imaging observation of the biological sample cultured or enclosed in the kit.
  • the microchip 1 made of a material having no or little autofluorescence and the cover in combination.
  • microchip 1 can be suitably used for retaining the biological sample in the recess 3.
  • the biological sample is a nematode
  • the microchip 1 shown in FIG. 1 is used.
  • the method of enclosing the biological sample in the microchip 1 includes an operation of guiding the biological sample into the recess 3. That is, a biological sample is disposed on the surface 2 (surface where the recess 3 is formed) of the microchip 1 and the disposed biological sample is guided to the recess 3.
  • a biological sample is disposed on the surface 2 (surface where the recess 3 is formed) of the microchip 1 and the disposed biological sample is guided to the recess 3.
  • nematodes are used as the biological sample, for example, a predetermined amount of liquid (typically water or an aqueous solution) is dropped on the surface 2 of the microchip 1 and the nematodes are transferred into the droplets.
  • the nematode can be placed on the surface 2 of the microchip 1.
  • the nematodes may be arranged on the surface 2 of the microchip 1 by dispersing the nematodes in a liquid and dropping a predetermined amount of the nematode dispersion on the surface
  • the method for guiding the biological sample formed on the surface 2 of the microchip 1 to the recess 3 is not particularly limited.
  • the biological sample may be appropriately selected according to the characteristics of the biological sample, such as waiting for the biological sample to fit in the recess 3, vibrating and dropping, pushing using a platinum wire, or pushing with pressure from above. If a nematode is used as the biological sample and the nematode is placed in a droplet dropped on the surface 2 of the microchip 1 as described above, the droplet is placed on the surface of the microchip 1.
  • the nematode in the droplet can be guided to the recess 3 by crushing toward 2 to spread the liquid (water or aqueous solution) in the recess 3.
  • the cover 4 may be used in combination in order to retain the biological sample in the recess 3 of the microchip 1. That is, the method of enclosing the biological sample in the recess 3 of the microchip 1 may further include an operation of placing the cover 4 on the surface 2 (surface where the recess 3 is formed) of the microchip 1 so as to cover the recess 3. From the viewpoint of bringing the cover 4 into close contact with the surface 2 of the microchip 1, it is preferable to press the microchip 1 and the cover 4. When the cover 4 is used in this way, it is preferable to use the cover 4 for the operation of crushing the droplets because the procedure can be simplified.
  • the biological sample is sealed in the well 3b by enclosing the biological sample in the well 3b and covering the surface 2 of the microchip 1 with the cover 4. can do.
  • the microchip 1 is suitably used when the biological sample is irradiated with the microbeam in a state where the biological sample is enclosed in the recess 3 as described above.
  • the microchip 1 of FIG. If the elegance is held in the channel 3a, the movement of the nematode can be suppressed to the minimum at the time of the microbeam irradiation, so that the target is targeted at a specific tissue or region of the nematode or one specific cell. Can be irradiated with a microbeam.
  • the microchip 1 is also preferably used when culturing or raising a biological sample with the biological sample enclosed in the recess 3 as described above. For example, if the biological sample is sealed in the well 3b using the microchip 1 of FIG. 2, the microchip 1 in which the biological sample is sealed is allowed to stand for a predetermined time in a predetermined culture environment or breeding environment. Biological samples can be cultured or bred.
  • the microchip 1 is preferably used when observing a biological sample in a state where the biological sample is enclosed in the recess 3 as described above. For example, if the biological sample is sealed and held using the microchip 1, the movement of the biological sample can be minimized, so that it is easy to observe the biological sample having motility. In addition, by enclosing and retaining the recess 3 of the microchip 1, the encapsulated and retained biological sample can be easily distinguished. For this reason, it is easy to observe a specific cell, a specific cell population, or a specific micro organism over time.
  • the observation method is not particularly limited, and may be appropriately selected according to the purpose such as observation with a microscope in the visible light region, observation with a fluorescence microscope.
  • the ion microbeam irradiation to the biological sample enclosed in the microchip 1, culture or breeding of the biological sample in the state enclosed in the microchip 1, or observation of the biological sample enclosed in the microchip 1 may be performed alone or in combination of two or more.
  • FIG. 4 is a diagram showing an outline of an apparatus for an ion microbeam local irradiation experiment using the microchip 1.
  • the microchip 1 used in the experiment is the one shown in FIG. 1 and has a thickness t of 300 ⁇ m.
  • a buffer solution such as a Wash buffer
  • a buffer solution such as a Wash buffer
  • one or more adult nematodes are captured from the culture plate using a platinum wire, washed, and then placed into a droplet of the solution dropped on the microchip 1. Repeat this procedure depending on the number of nematodes needed for the experiment.
  • the cover 4 having a thickness of 100 ⁇ m is placed on the microchip 1, and the nematode is guided to the channel 3 a while rolling the droplet with the cover, and the cover 4 is brought into close contact with the surface 2 of the microchip 1.
  • the nematode By covering the channel 3a with the cover 4, the nematode can be contained within the channel 3a. Further, the cover 4 can prevent the nematode from being detached from the inside of the channel 3a, and can be retained in the channel 3a. Further, the ion track detecting plastic film having a thickness of 100 ⁇ m is placed on the back surface of the microchip 1 as a cover and placed on the sample table.
  • the thickness of the sample placed on the sample stage of the ion microbeam irradiation apparatus is the thickness t of the microchip 1 in which nematodes are encapsulated and retained, the surface 2 and the back surface 2.
  • the total thickness of the cover sheets is 500 ⁇ m.
  • FIG. 5 is a diagram showing a trace (irradiation trace) of the microbeam that has reached the ion detection system of the ion microbeam irradiation apparatus.
  • This is a visualization of the irradiation traces (etch pits) of the microbeam transmitted through the ion track detection plastic film CR-39 provided on the back surface of the microchip 1 by an alkali etching process.
  • an ion detection system such as a scintillator-photomultiplier tube assembly
  • the reached ion beam was counted. From this, it is clear that the microbeam has passed through the microchip 1.
  • FIG. 6 is a diagram showing an outline of an experimental apparatus using a conventional PDMS microchip.
  • the thickness t of the PDMS microchip used in the experiment is about 2.5 mm.
  • the total thickness of the microchips encapsulating and retaining nematodes and the covers disposed on the front and back surfaces of the microchips placed on the sample stage of the ion microbeam irradiation apparatus is about 2.7 mm. .
  • the microchip 1 according to the present invention is suitable for locally irradiating various ion microbeams in a state in which a biological sample is encapsulated and retained. Moreover, it can be suitably used for microbeam irradiation such as X-rays, electron beams, and lasers.
  • nematodes are captured from a plate in which nematodes are cultured using a platinum wire and washed in a droplet of one of the three solutions.
  • Five or more washed nematodes are transferred onto an agar plate (hereinafter referred to as “NGM”) using a platinum wire and allowed to move freely for 1 hour.
  • NGM agar plate
  • the nematode is transferred onto a new NGM using a platinum wire, and the number of flexion of the head of the nematode is counted.
  • the number of flexion of the head is counted for 20 seconds per animal, and an average value of the number of flexion of the head of a total of 5 nematodes is obtained.
  • FIG. 7 shows the results of an experiment in which this was independently performed 6 times for each of the three types of solutions. Note that error bars in FIG. 7 indicate standard errors.
  • chip L a conventional PDMS microchip
  • chip B1 three microchips are prepared, which may be referred to as “chip B1”) and microchip 1 (hereinafter also referred to as “chip B2”) in which hydrophilicity is imparted to the entire microchip.
  • chip B2 three microchips are prepared, which may be referred to as “chip B1”) and microchip 1 (hereinafter also referred to as “chip B2”) in which hydrophilicity is imparted to the entire microchip.
  • Five or more washed nematodes are transferred into droplets of the same solution on a microchip using a platinum wire, all nematodes are placed in a channel using a cover, and the cover is adhered to the microchip. That is, the nematode is encapsulated and retained inside the channel. After standing for 1 hour in that state, the cover is removed from the surface of the microchip, and the same solution is dropped into the channel containing the nematode. The nematode in the droplet is transferred onto the NGM using a platinum wire, and the number of head flexion of the nematode is counted. Similarly to the above, the number of head flexions is counted for 20 seconds per animal, and the average value of the number of head flexions of a total of 5 nematodes is obtained.
  • FIG. 8 is a diagram showing the relative value of the number of flexion times of nematode heads when pure water is used as a solution, and the average head when using pure water of nematodes freely moved as shown in FIG. The number of bends is normalized and represented as 1.
  • the motility after the nematode was encapsulated and retained in the channel for 1 hour was significantly reduced only in the conventional PDMS microchip (chip L) (* P ⁇ 0.05).
  • Chip L conventional PDMS microchip
  • FIG. 9 is a diagram showing a relative value of the number of times the head of the nematode bends when the first buffer is used as a solution.
  • the number of times of partial bending is normalized and expressed as 1. ** in FIG. 9 indicates that there is a significant difference from the control group at the significance level P ⁇ 0.01. This point is the same in other drawings below.
  • a conventional PDMS microchip (chip L) and a microchip (chip B1) not imparting hydrophilicity are used. In one microchip, motility was significantly reduced after nematodes were encapsulated in channels for 1 hour (* P ⁇ 0.05, ** P ⁇ 0.01).
  • FIG. 10 is a diagram showing a relative value of the number of times the nematode head bends when the second buffer solution is used as a solution, and the nematode head portion when the second buffer solution shown in FIG. 7 is used.
  • the number of bends is normalized and represented as 1.
  • the nematode was sealed and retained in the channel for 1 hour only with the conventional PDMS microchip (chip L). Motility was significantly reduced (** P ⁇ 0.01).
  • hydrophilic microchip 1 (chip B2) is encapsulated and retained in channel 3a for 1 hour regardless of the type of solution used when nematodes are washed and encapsulated. Even after doing so, no effect on the worm's motility is observed. That is, it is clear that the use of the microchip 1 having hydrophilicity throughout the microchip can suppress dehydration of micro-organisms such as nematodes.
  • chip B1 A microchip that has the same shape as the above-described microchip 1 and has no hydrophilicity
  • chip B1 A microchip having hydrophilicity only on the surface
  • chip B2 a microchip 1 having hydrophilicity imparted to the entire microchip
  • the first buffer solution (S basal buffer) having a high salt concentration, in which the motility of the nematode is reduced most in Experiment 2, is used for washing and encapsulating the nematode.
  • the nematode channel 3a was sealed for 3 hours, and the number of head flexions of 5 nematodes transferred to NGM after 3 hours was counted. Find the average value.
  • the number of flexion of the heads of five nematodes that were moved freely on the NGM for 3 hours and then transferred to a new NGM was also counted to obtain an average value.
  • FIG. 11 shows the result of an experiment in which this was independently performed three times for each of the three types of microchips and NGM.
  • a microchip (chip B1) that is not hydrophilic and has a hydrophobic property and a microchip (chip B1) that is hydrophilic only on the surface by plasma treatment are encapsulated and held for 3 hours.
  • motility was significantly reduced (* P ⁇ 0.05).
  • the motility of the nematode encapsulated and retained for 3 hours in the microchip (chip B2) provided with hydrophilicity throughout the microchip is significantly different from that of the nematode freely moved on NGM. It was revealed that there was no decrease in motility due to dehydration.
  • a series of operations of entrapment and retention of nematodes, microchip cleaning and sterilization are repeated 9 times.
  • the nematode is encapsulated and held in the channel 3a of the microchip 1 for 3 hours, and then the nematode is transferred onto the NGM, and the number of flexion of five heads is counted to obtain an average value.
  • the number of flexion of the heads of five nematodes that were moved freely on the NGM for 3 hours and then transferred to a new NGM was also counted to obtain an average value.
  • FIG. 12 shows the results of an experiment in which this was independently performed three times for chips B2 and NGM.
  • the microchip 1 imparted with hydrophilicity to the entire microchip retains hydrophilicity even when used repeatedly for a long time. It is clear that dehydration of micro-organisms such as elegance can be suppressed.
  • FIG. 13 is a bright-field image obtained by photographing a state in which nematodes are encapsulated and retained in the channel 3 a of the microchip 1.
  • the nematodes encapsulated and retained in the channel 3a are genetically modified nematodes in which only body wall myocytes extending from the head to the tail are labeled with a fluorescent probe.
  • FIG. 14 is a fluorescent image of the same nematode.
  • the fluorescence image is an image having a fluorescence intensity corresponding to the contraction intensity of the cells.
  • the microchip 1 suppresses the movement of the nematode without using an anesthetic, and enables observation in a living state. Moreover, the nematode dehydration can be suppressed, and it is also suitable for long-term observation. Further, the above-described microchip 1 has no autofluorescence. Therefore, it can be suitably used for fluorescence imaging observation for the purpose of capturing activities of nematode muscle cells, nerve cells, and the like.
  • FIG. 15 is a bright field image obtained by photographing the results of culturing human cells using a commercially available dish for cell culture. That is, a human cell suspension was spotted (seeded) on a commercially available dish for cell culture, covered with a lid to prevent dehydration, cultured at 37 ° C., and the inside of the dish was photographed after 6 hours. As shown in FIG. 15, when a commercially available dish for cell culture is used, it can be seen that the cells adhere to the dish and start to grow.
  • FIG. 16 shows the result of culturing human cells using the microchip 1 shown in FIG. 2 that imparts hydrophilicity to the entire microchip and the microchip surface 2 is not subjected to plasma treatment.
  • a bright field image taken That is, after sterilizing the microchip 1 of FIG. 2, it is placed in an aseptic processing dish, seeded with a human cell suspension, covered with a lid to prevent dehydration, and cultured at 37 ° C. 3b is taken.
  • FIG. 16 it can be seen that in the microchip 1 in which hydrophilicity is imparted to the entire microchip, cell adhesion and proliferation after 6 hours are insufficient.
  • FIG. 17 shows the microchip 1 shown in FIG. 2, in which human cells are cultured using the microchip in which hydrophilicity is imparted to the entire microchip and the surface 2 is subjected to plasma treatment. It is a bright field image which image
  • the cells start to adhere and proliferate in the same manner as in the case of using the commercially available cell culture dish shown in FIG. Can be confirmed. Therefore, the above-described microchip 1 can be suitably used for cultured cells if the microchip surface 2 is subjected to plasma treatment.
  • FIG. 18 shows the microchip 1 shown in FIG. 2, which is a coating agent (CellTak) that imparts hydrophilicity to the entire microchip and further improves cell adhesion on the surface 6 of the well 3 b of the microchip 1.
  • CellTak a coating agent that imparts hydrophilicity to the entire microchip and further improves cell adhesion on the surface 6 of the well 3 b of the microchip 1.
  • the microchip 1 in which a coating agent for improving cell adhesion is applied to the surface 6 of the well 3b of the microchip 1 the same as in the case of using the commercially available cell culture dish shown in FIG. It can be confirmed that the cells adhere to the cell and start to proliferate. Therefore, the microchip 1 in which the coating agent that improves cell adhesion is applied to the surface 6 of the well 3b can be suitably used for cultured cells.
  • microchip 1 is suitable for cultured cell observation, particularly for fluorescence imaging observation.
  • a microchip having a hydrophilic property throughout the microchip (a microchip made of the same material as “chip B2” in Experiment 2 above) was used.
  • FIG. 19 shows that the entire microchip 1 is made hydrophilic, and further, a coating agent (CellTak (registered trademark)) for improving cell adhesion is applied to the surface 6 of the well 3b, and then the whole is stained with a fluorescent dye.
  • CellTak registered trademark
  • the microchip 1 can acquire a fluorescence image with the cells adhered, and has no autofluorescence. Since the microchip 1 has a small thickness t, it is possible to take an image using an upright microscope that cannot be realized without using a water immersion lens in normal fluorescent imaging observation of living cells. Therefore, it can also be suitably used for fluorescence imaging observation for the purpose of analyzing the dynamics of living cells of animals and plants using biological fluorescent staining.
  • oxygen transmittance 20 ° C., 50% RH
  • a PET cover very low polyester film
  • an oxygen transmission rate 1000 mL / (m 2 ⁇ 24 h ⁇ atm) or more.
  • the glass cover has a thickness t of 130 to 170 ⁇ m
  • the PET cover has a thickness t of about 130 ⁇ m
  • the PS cover has a thickness t of 125 ⁇ m.
  • the first buffer solution S basal buffer
  • Ten or more adult nematodes were captured from a plate in which the nematodes were cultured using a platinum wire and washed in a first buffer droplet.
  • Ten or more washed nematodes are transferred into a buffer droplet dropped on the microchip 1 using a platinum wire, all the nematodes are placed in the channel 3a using the cover 4, and the cover 4 is micro The chip 1 was brought into close contact with the surface.
  • the entrapment time of the nematode in the channel 3a was set to 3 hours on the assumption of long-time use in imaging or the like. That is, nematodes were sealed in the channels 3a of the three microchips 1 and the respective microchips 1 were covered with different covers 4 and allowed to stand for 3 hours. Thereafter, the cover 4 is removed from the surface 2 of each microchip 1, and the first buffer solution is dropped onto the channel 3a enclosing the nematode.
  • the nematodes in the droplets were transferred onto NGM, and the number of head flexions per nematode was counted for 20 seconds, and the average value of the total number of head flexes of 10 nematodes was determined.
  • the number of flexion of the heads of 10 nematodes that were moved freely on NGM for 3 hours and then transferred to a new NGM was counted to obtain an average value.
  • FIG. 20 shows the results of performing this experiment independently for each of glass cover, PET cover, PS cover and NG ⁇ five times. The measured values of the physical properties of the three types of covers used are shown in Table 3 below.
  • Both sexes were significantly reduced compared to nematodes that were allowed to move freely on NGM for 3 hours (* P ⁇ 0.05, ** P ⁇ 0.01).
  • the motility of the nematode encapsulated with the PS cover was not significantly different from that of the comparative example which was allowed to move freely on NGM for 3 hours. That is, it has been clarified that if a PS cover is used when the nematode is encapsulated in the channel 3a, motility is not reduced due to lack of oxygen or dehydration.
  • a droplet dropped on the surface 2 of the microchip 1 is spread by the cover 4 to a diameter of 5 to 10 mm and spreads into a plurality of channels 3a.
  • the nematode is in close contact with the surface 2 of 1 and sealed in the channel 3a. Therefore, the nematodes encapsulated and retained with the PS cover were maintained in a suitable state without causing dehydration in the channel 3a filled with the buffer solution, and exhibited normal motility even after the encapsulated retention for 3 hours.
  • the PET cover is a cover with extremely low oxygen permeability. Therefore, it is considered that the nematode encapsulated and held for 3 hours with a PET cover was deficient in oxygen and decreased in mobility.
  • the PS cover is a material having higher oxygen permeability than the PET cover. Therefore, nematodes encapsulated and retained with the PS cover did not lack oxygen, and exhibited normal motility even after 3 hours of encapsulated retention.
  • the cover 4 used when culturing or encapsulating an oxygen-requiring biological sample in the microchip 1 is preferably one having high oxygen permeability.
  • the microchip 1 and the cover 4 according to the present invention have characteristics suitable for locally irradiating and observing a microbeam in a state where animal and plant cells and micro organisms are cultured or encapsulated.
  • the conventional problems can be solved.
  • Microchip (Microchip for biological samples) 2 Microchip surface 3 Recess 3a Channel 3b Well 4 Cover 5 Cover surface 6 Well surface

Abstract

Provided is a biological sample microchip suitable for being locally irradiated with a microbeam or for observing cells, tissues, etc. in a state where a biological sample is cultured or sealed therein. In the biological sample microchip, at least one recessed section for culturing or sealing a biological sample is formed in a surface thereof, and the overall thickness of the microchip is formed to be 800 µm or less. Further, in the biological sample microchip, hydrophilicity is imparted to the surface of the microchip in which the recessed section for culturing or sealing the biological sample is formed.

Description

生物試料用マイクロチップ、カバー、生物試料封入キットおよび方法Biological sample microchip, cover, biological sample enclosing kit and method
 本発明は、動植物細胞や微小生物といった生物試料を培養又は封入保定した状態で局所的にマイクロビームを照射したり観察(例えば、蛍光イメージング観察)する際に使用される生物試料用マイクロチップ、および、その生物試料用マイクロチップを用いるための技術に関する。 The present invention relates to a microchip for a biological sample that is used when locally irradiating or observing a microbeam (eg, fluorescence imaging observation) in a state where a biological sample such as an animal or plant cell or a micro organism is cultured or encapsulated. The present invention relates to a technique for using the microchip for biological samples.
 線虫セノラブディティス・エレガンス(Caenorhabditis elegans、以下では、「C.エレガンス」と略すことがある。)は、神経生物学、発生生物学および老化学などの研究のために確立されたモデル生物である。この線虫を用いて放射線が動物の運動性に与える影響を調べる研究が行われている。例えば、ガンマ線やイオンビームなどの量子ビームを線虫に全身照射すると、その運動性が線量に応じて低下することが知られている。しかしながら、線虫の運動性の低下が特定の組織又は領域への照射によって誘発されたものであるかどうかは不明のままである。 Caenorhabditis elegans (hereinafter sometimes abbreviated as “C. elegans”) is a model organism established for research on neurobiology, developmental biology, and biochemistry. is there. Studies have been conducted on the effects of radiation on animal motility using this nematode. For example, it is known that when a whole body is irradiated with a quantum beam such as a gamma ray or an ion beam, its motility decreases according to the dose. However, it remains unclear whether the reduction in nematode motility was induced by irradiation of specific tissues or regions.
 そこで近年では、線虫の中枢神経がある頭部、腸や生殖器がある腹部および尾部といった特定の組織や領域のみに対してマイクロビームを標的照射することにより、運動性の低下がそれら特定の組織や領域への照射によって誘発されたものであるかどうかを調べる研究がなされている。マイクロビームとは、量子ビームをマイクロメートルサイズまで細くし、特定の領域を局所的に照射できるようにしたビームである。このような量子ビームとしては、例えば、X線、電子線、イオンビーム、レーザーなどを用いることができる。この種の従来研究では、線虫に麻酔をかけることによって線虫が動かないようにすることで、特定の組織や領域を狙ったマイクロビーム照射を可能にしている。しかし、この場合、麻酔による神経沈静作用が影響するため、特定の組織や領域へのマイクロビーム照射が線虫の運動性に対してどのように影響したかを即時に観察することができない。 Therefore, in recent years, by irradiating only a specific tissue or region such as the head with the central nervous system of the nematode, the abdomen and tail with the intestine or genital organs, the motility is reduced. Research has been conducted to determine whether or not it was induced by irradiation of the area. A microbeam is a beam in which a quantum beam is reduced to a micrometer size so that a specific region can be irradiated locally. As such a quantum beam, for example, an X-ray, an electron beam, an ion beam, a laser, or the like can be used. In this type of conventional research, anesthesia is performed on the nematode so that the nematode does not move, thereby enabling microbeam irradiation targeting a specific tissue or region. However, in this case, since the nerve calming action by anesthesia affects, it is not possible to immediately observe how the microbeam irradiation to a specific tissue or region affects the mobility of the nematode.
 これを改善するため、PDMS(ポリジメチルシロキサン)マイクロチップを用いて麻酔なしで線虫を保定し、その保定した線虫の特定の組織や領域を狙ってマイクロビームを照射する方法が提案されている(例えば非特許文献1)。従来のPDMSマイクロチップは、線虫の神経活動イメージングなどを目的として線虫を封入保定するために開発されたものであり、チップ表面上に形成した、幅10~80μm、深さ40μm、長さ1mm程度の直線状のチャネルに線虫を封入して用いるものである。このようなPDMSマイクロチップを用いれば、麻酔なしで、線虫をチャネル内に封入し保定しておくことができるため、マイクロビームを線虫の特定の組織や領域、或いは特定の細胞一つを狙って照射することができるようになる。 In order to improve this, a method has been proposed in which a nematode is retained without anesthesia using a PDMS (polydimethylsiloxane) microchip, and a microbeam is irradiated aiming at a specific tissue or region of the retained nematode. (For example, Non-Patent Document 1). The conventional PDMS microchip was developed to encapsulate and maintain nematodes for the purpose of imaging neural activity of nematodes, and is formed on the chip surface with a width of 10 to 80 μm, a depth of 40 μm, and a length. A nematode is enclosed in a linear channel of about 1 mm and used. By using such a PDMS microchip, nematodes can be encapsulated and retained in a channel without anesthesia, so that a microbeam can be used to attach a specific tissue or region of a nematode or a specific cell. You can aim and irradiate.
 しかしながら、従来のPDMSマイクロチップは厚さtが約2.5mmであるため、例えば水中飛程1mmのイオンマイクロビームは従来のPDMSマイクロチップの下面まで透過しない。そのため、PDMSマイクロチップの下面側に設置される、ビームを電気信号に変換する、イオンマイクロビーム照射装置のイオン検出系(シンチレーター-光電子増倍管アセンブリなど)が、線虫に照射されたイオンマイクロビームを正確に検出することができないという問題がある。特に、この種の研究は、重粒子線治療で用いられる炭素イオンビームや陽子線治療で用いられるプロトンビーム(プロトンイオンビームとも言う。)による影響を調べることが重要であり、エネルギーの異なる複数種類の炭素イオンビームやプロトンビームを照射してその結果を検出できるようにすることが望まれる。ところが、一般に、炭素イオンビームやプロトンビームの水中飛程は、従来のPDMSマイクロチップを透過できる程長くはないため、従来のPDMSマイクロチップを使用することができない。 However, since the conventional PDMS microchip has a thickness t of about 2.5 mm, for example, an ion microbeam with an underwater range of 1 mm does not penetrate to the lower surface of the conventional PDMS microchip. Therefore, the ion detection system (scintillator-photomultiplier tube assembly, etc.) of the ion microbeam irradiation device installed on the lower surface side of the PDMS microchip that converts the beam into an electrical signal is irradiated with the nematode. There is a problem that the beam cannot be detected accurately. In particular, it is important to investigate the effects of carbon ion beams used in heavy ion beam therapy and proton beams used in proton beam therapy (also called proton ion beams). It is desirable to be able to detect the result of irradiation with a carbon ion beam or a proton beam. However, in general, the underwater range of the carbon ion beam or proton beam is not so long that it can pass through the conventional PDMS microchip, so that the conventional PDMS microchip cannot be used.
 また、従来のPDMSマイクロチップは、チャネルに封入保定した線虫に脱水症状を生じさせることも知られている。そのため、仮にチャネルに封入保定した線虫にマイクロビームを照射することができたとしても、照射後に観られる運動性の低下がマイクロビーム局部照射によるものであるのか、或いは、脱水症状によるものであるかを判別することが困難であるという問題もある。さらに脱水症状による運動性の低下は、線虫のイメージングにも影響を与えるものである。 In addition, it is also known that conventional PDMS microchips cause dehydration in nematodes encapsulated and retained in channels. Therefore, even if the nematode encapsulated and retained in the channel can be irradiated with the microbeam, the decrease in mobility observed after irradiation is due to the local irradiation of the microbeam or due to dehydration. There is also a problem that it is difficult to discriminate. Furthermore, the decline in motility due to dehydration affects nematode imaging.
 そこで本発明は、動植物細胞や微小生物といった生物試料を培養又は封入保定した状態で局所的にマイクロビームを照射したり観察(例えば、蛍光イメージング観察)したりするのに適したマイクロチップであって、上述した従来の問題点を解決することができる生物試料用マイクロチップを提供することを目的とし、また、その生物試料用マイクロチップと合わせて使用するのに適したカバー、および、生物試料用マイクロチップとカバーとを組み合わせた生物試料封入キットを提供することを目的とする。さらに本発明は、生物試料用マイクロチップを用いた各種の方法を提供することも目的とする。 Therefore, the present invention is a microchip suitable for locally irradiating a microbeam or observing (for example, fluorescence imaging observation) in a state where a biological sample such as an animal or plant cell or a micro organism is cultured or encapsulated. An object of the present invention is to provide a biological sample microchip capable of solving the above-mentioned conventional problems, and a cover suitable for use with the biological sample microchip, and a biological sample An object of the present invention is to provide a biological sample enclosure kit in which a microchip and a cover are combined. Another object of the present invention is to provide various methods using a microchip for biological samples.
 上記目的を達成するために、本発明は、表面に生物試料を培養又は封入するための少なくとも1つの凹部が形成された生物試料用マイクロチップであって、マイクロチップ全体の厚さtが800μm以下に形成されることを特徴とするものである。 In order to achieve the above object, the present invention provides a microchip for a biological sample in which at least one recess for culturing or enclosing a biological sample is formed on the surface, and the thickness t of the entire microchip is 800 μm or less. It is formed in this.
 本発明におけるマイクロチップ全体の厚さtは、好ましくは300μm以下である。また本発明におけるマイクロチップ全体の厚さtは、さらにより好ましくは100μm以下である。 The thickness t of the entire microchip in the present invention is preferably 300 μm or less. Further, the thickness t of the entire microchip in the present invention is still more preferably 100 μm or less.
 また、本発明において少なくともマイクロチップ表面には親水性が付与されていることが好ましい。本明細書において「表面」とは、「露出面」を意味する。即ち、表面に親水性が付与されているとは、最表面が親水化されていれば良い。さらに、本発明においてより好ましくは、マイクロチップの全体に親水性が付与されていることである。 In the present invention, it is preferable that hydrophilicity is imparted to at least the microchip surface. In this specification, “surface” means “exposed surface”. That is, the hydrophilicity is given to the surface as long as the outermost surface is made hydrophilic. Furthermore, in the present invention, it is more preferable that hydrophilicity is imparted to the entire microchip.
 また、本発明は、表面に生物試料を培養又は封入するための少なくとも1つの凹部が形成された生物試料用マイクロチップであって、少なくともマイクロチップ表面に親水性が付与されていることを特徴とするものである。 Further, the present invention is a microchip for a biological sample in which at least one recess for culturing or encapsulating a biological sample is formed on the surface, wherein hydrophilicity is imparted to at least the microchip surface. To do.
 また、本発明においてマイクロチップ表面にはプラズマ処理を施しても良い。 In the present invention, the microchip surface may be subjected to plasma treatment.
 また、本発明は、上記生物試料用マイクロチップの凹部に生物試料を封入して保定するために用いるカバーを対象としている。即ち、本発明におけるカバーは、透明であり、かつ、表面粗さRaが0.02μm以下であることを特徴とするものである。 Also, the present invention is directed to a cover used for enclosing and holding a biological sample in the concave portion of the biological sample microchip. That is, the cover in the present invention is transparent and has a surface roughness Ra of 0.02 μm or less.
 また、カバーの厚さt2は、50μm以上300μm以下であることが好ましい。また、カバーの水接触角(25℃、30%RH)は、100度以下であることが好ましい。また、カバーの酸素透過率(20℃、50%RH)は、30mL/(m・24h・atm)以上であることが好ましい。また、カバーの二酸化炭素透過率(20℃、50%RH)は、30mL/(m・24h・atm)以上であることが好ましい。また、カバーは、ポリスチレン製であることが好ましい。 The cover thickness t2 is preferably 50 μm or more and 300 μm or less. Moreover, it is preferable that the water contact angle (25 degreeC, 30% RH) of a cover is 100 degrees or less. Further, the oxygen permeability (20 ° C., 50% RH) of the cover is preferably 30 mL / (m 2 · 24 h · atm) or more. Further, the carbon dioxide permeability (20 ° C., 50% RH) of the cover is preferably 30 mL / (m 2 · 24 h · atm) or more. The cover is preferably made of polystyrene.
 また、本発明は、生物試料封入キットを対象としている。即ち、本発明における生物試料封入キットは、上記生物試料用マイクロチップと、上記カバーとを備える構成である。 The present invention is also directed to a biological sample enclosing kit. That is, the biological sample enclosure kit according to the present invention is configured to include the biological sample microchip and the cover.
 また、本発明は、生物試料を封入して保定する生物試料保定方法を対象としている。即ち、本発明における生物試料保定方法は、上記生物試料用マイクロチップの凹部に生物試料を封入することを含む方法である。 The present invention is also directed to a biological sample retention method in which a biological sample is enclosed and retained. That is, the biological sample retention method in the present invention is a method including enclosing a biological sample in the concave portion of the biological sample microchip.
 また、本発明は、生物試料にマイクロビームを照射するマイクロビーム照射方法を対象としている。即ち、本発明におけるマイクロビーム照射方法は、上記生物試料用マイクロチップの凹部に生物試料を封入することと、前記生物試料にマイクロビームを照射すること、とを含む方法である。 The present invention is also directed to a microbeam irradiation method for irradiating a biological sample with a microbeam. That is, the microbeam irradiation method in the present invention is a method including enclosing a biological sample in the concave portion of the biological sample microchip and irradiating the biological sample with a microbeam.
 また、本発明は、生物試料を培養又は飼育する方法を対象としている。即ち、本発明における方法は、上記生物試料用マイクロチップの凹部に生物試料を封入することと、前記生物試料を封入した前記生物試料用マイクロチップを前記生物試料の培養環境下又は飼育環境下に静置すること、とを含む方法である。 The present invention is also directed to a method for culturing or breeding a biological sample. That is, in the method of the present invention, the biological sample is sealed in the recess of the biological sample microchip, and the biological sample microchip in which the biological sample is sealed is placed in a culture environment or a breeding environment of the biological sample. Standing still.
 発明によれば、生物試料を良好な状態で培養又は封入保定することができ、マイクロビーム照射および細胞や組織等の観察(例えば、蛍光イメージング観察)などを良好に行うことができるようになる。 According to the invention, a biological sample can be cultured or encapsulated in a good state, and microbeam irradiation and observation of cells and tissues (for example, fluorescence imaging observation) can be performed well.
生物試料用マイクロチップのうち、微小生物個体用のマイクロチップの一例を示す図である。It is a figure which shows an example of the microchip for micro organism individuals among the microchips for biological samples. 生物試料用マイクロチップのうち、動植物細胞用のマイクロチップの一例を示す図である。It is a figure which shows an example of the microchip for animal and plant cells among the microchips for biological samples. 生物試料用マイクロチップに用いるカバーの一例を示す図である。It is a figure which shows an example of the cover used for the microchip for biological samples. マイクロチップを使用したイオンマイクロビーム局部照射実験の装置の概要を示す図である。It is a figure which shows the outline | summary of the apparatus of the ion microbeam local irradiation experiment using a microchip. マイクロチップを透過して検出系に到達したイオンマイクロビームの照射痕を示す図である。It is a figure which shows the irradiation trace of the ion micro beam which permeate | transmitted the microchip and reached | attained the detection system. 従来のPDMSマイクロチップを使用したイオンマイクロビーム局部照射実験の装置の概要を示す図である。It is a figure which shows the outline | summary of the apparatus of the ion microbeam local irradiation experiment using the conventional PDMS microchip. 実験2において寒天プレート上で1時間自由に運動させた場合の線虫の頭部屈曲回数を示す図である。It is a figure which shows the frequency | count of head flexion of a nematode at the time of making it move freely on an agar plate for 1 hour in Experiment 2. FIG. 実験2において純水を使用した場合の線虫の頭部屈曲回数の相対値を示す図である。It is a figure which shows the relative value of the frequency | count of a head bend of a nematode at the time of using a pure water in the experiment 2. FIG. 実験2において第1の緩衝液を使用した場合の線虫の頭部屈曲回数の相対値を示す図である。It is a figure which shows the relative value of the frequency | count of head bending of a nematode at the time of using the 1st buffer solution in the experiment 2. FIG. 実験2において第2の緩衝液を使用した場合の線虫の頭部屈曲回数の相対値を示す図である。It is a figure which shows the relative value of the frequency | count of head bending of a nematode at the time of using the 2nd buffer solution in the experiment 2. FIG. 実験3において第1の緩衝液を使用した場合の線虫の頭部屈曲回数を示す図である。It is a figure which shows the frequency | count of head bending of a nematode at the time of using the 1st buffer solution in the experiment 3. FIG. 実験4において第1の緩衝液を使用した場合の線虫の頭部屈曲回数を示す図である。It is a figure which shows the frequency | count of head bending of a nematode at the time of using the 1st buffer solution in the experiment 4. FIG. 実験5においてマイクロチップのチャネルに線虫を封入保定した状態を撮影した明視野像である。It is the bright field image which image | photographed the state which enclosed and maintained the nematode in the channel of the microchip in the experiment 5. FIG. 実験5においてマイクロチップのチャネルに線虫を封入保定した状態を撮影した蛍光像である。It is the fluorescence image which image | photographed the state which enclosed and maintained the nematode in the channel of the microchip in the experiment 5. FIG. 実験6において市販の細胞培養用ディッシュを用いてヒト細胞を培養した結果を撮影した明視野像である。It is the bright field image which image | photographed the result of having cultured the human cell using the commercially available dish for cell cultures in the experiment 6. FIG. 実験6においてマイクロチップ表面に対してプラズマ処理を行っていないマイクロチップを用いてヒト細胞を培養した結果を撮影した明視野像である。It is the bright-field image which image | photographed the result of having cultured the human cell using the microchip which has not performed the plasma process with respect to the microchip surface in the experiment 6. FIG. 実験6においてマイクロチップ表面に対してプラズマ処理を行ったマイクロチップを用いてヒト細胞を培養した結果を撮影した明視野像である。It is the bright field image which image | photographed the result of having cultured the human cell using the microchip which performed the plasma process with respect to the microchip surface in the experiment 6. FIG. 実験6においてマイクロチップのウェル表面に細胞接着性を向上させるコート剤を塗布したマイクロチップを用いてヒト細胞を培養した結果を撮影した明視野像である。In Experiment 6, it is the bright field image which image | photographed the result of having cultured the human cell using the microchip which apply | coated the coating agent which improves cell adhesiveness to the well surface of a microchip. 実験6においてマイクロチップのウェル表面にヒト細胞を培養した結果を撮影した蛍光像である。It is the fluorescence image which image | photographed the result of having cultured the human cell on the well surface of the microchip in Experiment 6. FIG. 実験7において寒天プレート上で3時間自由に運動させた線虫又はマイクロチップに異なるカバーを用いて3時間封入保定した線虫の頭部屈曲回数を示す図である。It is a figure which shows the frequency | count of head flexion of the nematode which carried out the entrapment for 3 hours using the different cover for the nematode which moved freely on the agar plate for 3 hours in experiment 7, or a microchip.
 以下、本発明に関する好ましい実施形態について図面を参照しつつ詳細に説明する。尚、以下に説明する実施形態において互いに共通する部材には同一符号を付しており、それらについての重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the embodiments described below, members that are common to each other are denoted by the same reference numerals, and redundant descriptions thereof are omitted.
 [実施例]
 (マイクロチップの全体構成)
 図1は、本発明における生物試料用マイクロチップ1(以下、単に「マイクロチップ1」という。)のうち、微小生物用マイクロチップの一例を示す図であり、図1(a)はマイクロチップ1の全体的な外観構成を示す斜視図であり、図1(b)は凹部3(チャネル3a)の拡大断面図である。このマイクロチップ1は、PDMS(ポリジメチルシロキサン)を母材として形成される薄型チップである。例えば、線虫などの生物試料を封入保定した状態でマイクロビームを特定の組織や領域、或いは特定の細胞一つを狙って照射する際に使用される。また、マイクロチップ1は、生物試料を観察(例えば、蛍光イメージング観察)する場合にも好適に使用できるものである。このマイクロチップ1は、例えば矩形状とすることができる。例えば、X方向およびY方向に同一長さを有する平面視正方形状に形成される。例えば、X方向およびY方向のサイズは15mmである。ただし、マイクロチップ1は、必ずしも平面視正方形に限られるものではなく、長方形であっても良く、自動撮影機能を備えた一体型顕微鏡などの試料台のサイズに合わせた形状とすることもできる。
[Example]
(Overall configuration of microchip)
FIG. 1 is a diagram showing an example of a microchip for microbiology among microchips 1 for biological samples (hereinafter simply referred to as “microchip 1”) in the present invention, and FIG. FIG. 1B is an enlarged sectional view of the recess 3 (channel 3a). The microchip 1 is a thin chip formed using PDMS (polydimethylsiloxane) as a base material. For example, it is used when irradiating a specific tissue or region or one specific cell with a microbeam while enclosing and holding a biological sample such as a nematode. The microchip 1 can also be suitably used when observing a biological sample (for example, fluorescence imaging observation). The microchip 1 can be rectangular, for example. For example, it is formed in a square shape in plan view having the same length in the X direction and the Y direction. For example, the size in the X direction and the Y direction is 15 mm. However, the microchip 1 is not necessarily limited to a square in plan view, and may be a rectangle, and may have a shape that matches the size of a sample stage such as an integrated microscope having an automatic photographing function.
 マイクロチップ1の表面2には、生物試料を培養又は封入するための少なくとも1つの凹部3が形成される。図1に示すマイクロチップ1では、凹部3として複数のチャネル3aを形成したものを例示している。各チャネル3aは、マイクロチップ1の表面2においてX方向に延びるように形成される。また、複数のチャネル3aは、マイクロチップ1の表面2においてY方向にほぼ等間隔で形成される。このようなマイクロチップ1は、生物試料として線虫を用いる場合に好適に利用し得る形態である。即ち、チャネル3aは線虫を封入することが可能な幅Wを有する溝として形成される。線虫は頭部を左右に振って移動(這行運動)する。このため、幅Wは線虫の体(典型的に、最も太い部分、例えば腹部)の幅(太さ)B(頭尾方向に直交する方向の大きさ)と同程度かそれ以下に設定する。線虫は円柱形の細長い体をしており、弾力があるため、体の幅Bよりチャネル3aの幅Wが狭い場合にもチャネル3aに封入することができ、チャネル内でのおさまりが良く、その動きを確実に抑制できる。例えば、各種線虫のうち、C.エレガンスの成虫用のマイクロチップ1の場合は、チャネル3aの幅Wと線虫の体の幅Bの差が概ね20μm以下となるように幅Wを設定することが好ましい。ただし、C.エレガンスの幼虫用のマイクロチップ1の場合は、チャネル3aの幅Wを線虫の体の幅Bと同程度かそれ以下にするのが好ましい。チャネル3aの幅Wを上記範囲となるように設定することで、線虫の動きを抑制し、好適に保定することができる。尚、当該チャネル3aの中に緩衝液と共に線虫を封入した後、その開口部に後述のカバーを配置することを考慮すれば、チャネル3aの深さDは線虫の体の幅Bよりも深く設定するのが好ましい。ただし、深さDが線虫の体の幅Bより深過ぎると、線虫がチャネル3aの中で上下方向に回転したり、二つに折れ曲がることがある。したがって、例えば、線虫C.エレガンスの野生型を封入する場合には、チャネル3aの深さDはC.エレガンスの体の幅Bと同程度か、10μm程度大きくなるように設定すれば良い。例えば、チャネル3aの幅Wは10~90μm程度であり、深さDは20~100μm程度である。C.エレガンスには、L1~L4までの幼虫(孵化直後から2.5日齢程度)の発生段階があり、その体の幅Bは10~40μm程度である。このため、各段階の幼虫用のマイクロチップ1の場合は、チャネル3aの幅Wを5~40μmとし、深さDを10~50μmとするのが好ましい。比較的若い成虫(2.5~4.5日齢程度)の体の幅Bは50~70μm程度である。このため、比較的若い成虫用のマイクロチップ1の場合は、チャネル3aの幅Wを40~60μmとし、深さDを50~70μmとするのが好ましい。また、線虫は成虫になってからも成長し、C.エレガンスでは、その体の幅Bは最終的には約90μmとなる。このため、約4. 5日齢以降の成虫用のマイクロチップ1の場合は、チャネル3aの幅Wを60~90μmとし、深さDを70~100μmとするのが好ましい。このようにマイクロチップ1には、線虫の発生段階に応じた多様なサイズのチャネル3aを形成することができる。また、例えば、図1に示すマイクロチップ1の直線状の複数のチャネル3aの端に、緩衝液や餌(例えば、大腸菌)などを保持する機能を有する略矩形状のチャネルを形成し、長時間の飼育、観察を行うこともできる。 At least one recess 3 for culturing or enclosing a biological sample is formed on the surface 2 of the microchip 1. In the microchip 1 shown in FIG. 1, the recess 3 is formed with a plurality of channels 3 a. Each channel 3 a is formed to extend in the X direction on the surface 2 of the microchip 1. Further, the plurality of channels 3a are formed at substantially equal intervals in the Y direction on the surface 2 of the microchip 1. Such a microchip 1 is in a form that can be suitably used when nematodes are used as biological samples. That is, the channel 3a is formed as a groove having a width W that can enclose the nematode. The nematode moves (crawls) by shaking its head from side to side. For this reason, the width W is set to be equal to or less than the width (thickness) B (size in the direction orthogonal to the head-to-tail direction) of the body of the nematode (typically the thickest part, for example, the abdomen). . Since the nematode has a cylindrical elongated body and is elastic, it can be enclosed in the channel 3a even when the width W of the channel 3a is narrower than the width B of the body, and the fit in the channel is good. The movement can be reliably suppressed. For example, among various nematodes, C.I. In the case of the elegance adult microchip 1, the width W is preferably set so that the difference between the width W of the channel 3a and the width B of the nematode body is approximately 20 μm or less. However, C.I. In the case of the elegance larva microchip 1, the width W of the channel 3a is preferably equal to or less than the width B of the nematode body. By setting the width W of the channel 3a to be in the above range, the movement of the nematode can be suppressed and preferably maintained. If the nematode is encapsulated with the buffer solution in the channel 3a and then a cover described later is arranged in the opening, the depth D of the channel 3a is larger than the width B of the nematode body. It is preferable to set it deeply. However, if the depth D is too deeper than the width B of the nematode body, the nematode may rotate vertically in the channel 3a or bend in two. Thus, for example, C. elegans C.I. When encapsulating the wild type of elegance, the depth D of the channel 3a is C.I. What is necessary is just to set so that it may be as large as the width | variety B of an elegance body, or about 10 micrometers. For example, the width W of the channel 3a is about 10 to 90 μm, and the depth D is about 20 to 100 μm. C. Elegance has stages of L1 to L4 larvae (approximately 2.5 days of age immediately after hatching), and the width B of the body is about 10 to 40 μm. Therefore, in the case of the microchip 1 for larvae at each stage, it is preferable that the width W of the channel 3a is 5 to 40 μm and the depth D is 10 to 50 μm. The width B of the body of a relatively young adult (about 2.5 to 4.5 days of age) is about 50 to 70 μm. Therefore, in the case of a relatively young adult microchip 1, it is preferable that the width W of the channel 3a is 40 to 60 μm and the depth D is 50 to 70 μm. Nematodes grow even after they become adults. In elegance, the width B of the body is finally about 90 μm. For this reason, in the case of the adult microchip 1 of about 4.5 days or older, the width W of the channel 3a is preferably 60 to 90 μm and the depth D is preferably 70 to 100 μm. As described above, the microchip 1 can be formed with channels 3a of various sizes according to the nematode generation stage. Further, for example, a substantially rectangular channel having a function of holding a buffer solution or bait (for example, E. coli) is formed at the end of the plurality of linear channels 3a of the microchip 1 shown in FIG. Can be reared and observed.
 または、チャネル3aの幅Wを線虫の体の幅Bよりも小さくし、チャネル3aの深さDを線虫の体の幅Bより小さくすることもできる。線虫の体の幅Bよりも小さい幅Wおよび深さDのチャネル3aの中では、線虫が長軸方向に体を延伸してチャネル3aに密着して収まるため、当該線虫の動きをより強く抑制し得る。このようなチャネル3aは、任意の細胞や組織の蛍光イメージング観察等において好適に利用できる。また、チャネル3aの深さDを線虫の体の幅Bの2/3程度とし、幅Wを線虫の体の幅Bの1.2~1.5倍程度にすれば、線虫の体をチャネル3aの幅方向に押し広げた状態でチャネル3aの中に保持することができ、細胞や組織の形態観察等に好適に利用できる。ここで、チャネル3aの幅W又は深さDが小さいマイクロチップ1は、チャネル3a内に保持できる緩衝液の量が少ないため、長時間の飼育、観察時に緩衝液の液量が不足する場合がある。このため、比較的短時間の形態観察に好適に使用し得る。また、線虫をチャネル3aの幅W又は深さDが小さいチャネル3aに押し込めると、線虫にストレスがかかる場合があるため、観察する応答に対するストレスの影響を考慮してチャネルサイズを選択するのが好ましい。 Alternatively, the width W of the channel 3a can be made smaller than the width B of the nematode body, and the depth D of the channel 3a can be made smaller than the width B of the nematode body. In the channel 3a having a width W and a depth D smaller than the width B of the nematode body, the nematode is stretched in the long axis direction so as to be closely attached to the channel 3a. It can be suppressed more strongly. Such a channel 3a can be suitably used for fluorescence imaging observation of an arbitrary cell or tissue. Further, if the depth D of the channel 3a is about 2/3 of the width B of the nematode body and the width W is about 1.2 to 1.5 times the width B of the nematode body, The body can be held in the channel 3a in a state of being expanded in the width direction of the channel 3a, and can be suitably used for morphological observation of cells and tissues. Here, since the microchip 1 having a small width W or depth D of the channel 3a has a small amount of buffer solution that can be held in the channel 3a, the amount of the buffer solution may be insufficient during long-term breeding and observation. is there. For this reason, it can be suitably used for morphological observation in a relatively short time. Also, if the nematode is pushed into the channel 3a where the width W or the depth D of the channel 3a is small, the nematode may be stressed. Therefore, the channel size should be selected in consideration of the influence of stress on the observed response. Is preferred.
 チャネル3aの幅W又は深さDを線虫の体の幅Bよりも小さくする場合、例えば、線虫C.エレガンスの野生型のL1~L2の幼虫用としては、チャネル3aの幅Wを5~15μmとし、深さDを10~15μmとするのが好ましい。L3~L4の幼虫用としては、チャネル3aの幅Wを15~30μmとし、深さDを15~30μmとするのが好ましい。成虫用としては、チャネル3aの幅Wおよび深さDを線虫の体の幅Bより10μm程度小さくするのが好ましい。 When the width W or depth D of the channel 3a is made smaller than the width B of the nematode body, for example, the nematode C.I. For elegance wild-type L1-L2 larvae, the width W of the channel 3a is preferably 5-15 μm and the depth D is preferably 10-15 μm. For L3 to L4 larvae, the width W of the channel 3a is preferably 15 to 30 μm and the depth D is preferably 15 to 30 μm. For adults, the width W and depth D of the channel 3a are preferably about 10 μm smaller than the width B of the nematode body.
 または、チャネル3aの幅W又は深さDを線虫の体の幅Bよりも大きくすれば、封入した線虫の体の動きを抑制せずに、顕微鏡等の観察野に留めることができ、当該線虫の動きを観察することができる。例えば、線虫C.エレガンスの野生型を封入する場合には、チャネル3aの幅Wおよび深さDを線虫の体の幅Bよりも10~20μm程度大きくすれば良い。このようなチャネル3aは、運動中の線虫の神経細胞群や筋細胞群を対象とした、比較的マクロな蛍光イメージング観察等に好適に利用できる。 Alternatively, if the width W or depth D of the channel 3a is made larger than the width B of the nematode body, it can be kept in the observation field such as a microscope without suppressing the movement of the enclosed nematode body, The movement of the nematode can be observed. For example, C. elegans C.I. In order to enclose the wild type of elegance, the width W and depth D of the channel 3a may be about 10 to 20 μm larger than the width B of the nematode body. Such a channel 3a can be suitably used for comparatively macroscopic fluorescence imaging observation or the like targeting a group of neural cells or muscle cells of a moving nematode.
 さらにマイクロチップ1は、各種線虫の個体(卵、幼虫、成虫)のみを対象とするのではなく、凹部3に封入可能な生物試料の保定又は観察にも好適に使用することができる。かかる生物試料は、動物又は植物のいずれであっても良く、運動能の有無も制限されない。例えば、体の幅B又は直径Fが概ね凹部3の深さD以下、即ちマイクロチップ1の厚さtの概ね2/3以下の微小生物個体、動植物や藻類の細胞、種子、花粉、卵、精子などが対象となる。具体的には、各種植物の花粉、動植物の培養細胞や血球細胞、ゾウリムシ、テトラヒメナ、ミドリムシ、オオミドリムシ、ミカヅキモなどの所謂微生物や、線虫の受精卵、ショウジョウバエの卵やゼブラフィッシュの受精卵、ワムシ(例えば、カメノコウワムシやL型ワムシ)、クマムシ(例えば、ドウジャルダンヤマクマムシ)などの動物個体に好適に使用することができる。ただし、マイクロチップ1の表面2に形成する凹部3の形状は、生物試料に適したものを採用することが好ましい。運動能を有する生物試料を封入する場合には、チャネル3の深さDを当該生物試料の体の厚さ(典型的に最も薄い面の短軸方向の長さ)T又は直径Fと同程度かそれ以上とし、チャネル3の幅Wを当該生物の体の幅B又は直径Fと同程度かそれ以下とし、チャネル3の長さLを当該生物の体長Hよりも十分長くすることが望ましい。ただし、チャネル3のサイズは上記に限らず、封入する生物試料の弾力や動きの速さなどに応じて設定すれば良い。 Furthermore, the microchip 1 can be suitably used not only for various nematode individuals (eggs, larvae, adults) but also for holding or observing biological samples that can be enclosed in the recesses 3. Such a biological sample may be either an animal or a plant, and the presence or absence of motor ability is not limited. For example, microscopic organisms whose body width B or diameter F is approximately equal to or less than the depth D of the recess 3, that is, approximately 2/3 or less of the thickness t of the microchip 1, animals, plants, algae cells, seeds, pollen, eggs, Sperm etc. are targeted. Specifically, pollen of various plants, cultured cells and blood cells of animals and plants, Paramecium, Tetrahymena, Euglena, Paramecium, Mikazuki, etc., microorganisms such as fertilized eggs of nematodes, fertilized eggs of Drosophila and zebrafish, It can be suitably used for animal individuals such as rotifers (for example, stink bugs and L-type rotifers), and beetles (for example, Dojarjaran rotifers). However, as the shape of the recess 3 formed on the surface 2 of the microchip 1, it is preferable to adopt a shape suitable for a biological sample. When enclosing a biological sample having motility, the depth D of the channel 3 is approximately equal to the body thickness (typically the length in the short axis direction of the thinnest surface) T or the diameter F of the biological sample. It is desirable that the width W of the channel 3 is equal to or less than the width B or the diameter F of the organism body, and the length L of the channel 3 is sufficiently longer than the body length H of the organism. However, the size of the channel 3 is not limited to the above, and may be set according to the elasticity of the biological sample to be sealed, the speed of movement, and the like.
 図1に示すマイクロチップ1はチャネル3aの幅Wおよび深さDが一定の場合を例に説明したが、当然これに限定されない。線虫は一般的に、腹部に比べて頭部と尾部が細い形状をしている。このため、チャネル3aの幅W又は深さDを線虫の部位ごとの幅に合わせた形状、例えば、チャネル3aの一部に幅W又は深さDが小さい狭窄部を設けても良い。かかる狭窄部に線虫の頭部又は尾部を封入することで、線虫を好適に保定することができる。このとき、非狭窄部は上記チャネル3aの幅Wおよび深さDとして説明した条件のいずれかと同等とすることが好ましい。例えば、チャネル3aの形状は、幅の大きい部分と小さい部分を繰り返すようなくびれ形状の繰り返しパターンとすることができる。 In the microchip 1 shown in FIG. 1, the case where the width W and the depth D of the channel 3a are constant has been described as an example, but the present invention is not limited to this. Nematodes generally have a narrower head and tail than the abdomen. Therefore, a shape in which the width W or depth D of the channel 3a is matched to the width of each nematode site, for example, a narrow portion having a small width W or depth D may be provided in a part of the channel 3a. By enclosing the head or tail of the nematode in such a narrowed portion, the nematode can be suitably retained. At this time, it is preferable that the non-constricted portion is equivalent to any of the conditions described as the width W and the depth D of the channel 3a. For example, the shape of the channel 3a can be a constricted repeating pattern that repeats a wide portion and a small portion.
 また、チャネル3aの形状は、線虫の這行運動の軌跡に合わせた正弦波形状、卵を封入可能な楕円形など、任意の形状とすれば良い。チャネル3aの数も目的に応じて、自由に選択すれば良い。例えば、1本以上、2本以上、3本以上とすれば良く、5本以上が好ましい。より好ましくは10本以上、さらに好ましくは15本以上である。チャネル3aの数の上限は限定されず、チップに形成可能な範囲で設定すれば良い。例えば、100本以下、50本以下とすれば良い。尚、チャネル3aの1又は2以上が、他のチャネル3aの形状やサイズと異なっていても良い。 The shape of the channel 3a may be an arbitrary shape such as a sine wave shape that matches the trajectory of the nematode's lameness movement or an oval shape that can enclose an egg. The number of channels 3a may be freely selected according to the purpose. For example, it may be 1 or more, 2 or more, 3 or more, and 5 or more are preferable. More preferably, it is 10 or more, more preferably 15 or more. The upper limit of the number of channels 3a is not limited, and may be set within a range that can be formed on a chip. For example, it may be 100 or less and 50 or less. One or more of the channels 3a may be different from the shape and size of the other channels 3a.
 図2は、マイクロチップ1のうち、動植物細胞用のマイクロチップの一例を示す図である。図2に示すマイクロチップ1の表面2には、生物試料を封入するための凹部3として、動植物細胞を培養するための矩形の複数のウェル3bが形成されたものを示している(図2(a)参照)。ただし、ウェル3bの形状は、矩形に限定されず、円形、楕円形であっても良い。細胞(激しく移動しない)は1細胞で保定しなくても、マイクロビーム照射や観察などが可能なため、凹部3のサイズは細胞よりも相当大きく設定すれば良い。例えば、図2(b)に示すように、ウェル3bは、X方向に幅Lを有し、Y方向に幅Wを有する矩形状に形成される。例えばX方向の幅Lと、Y方向の幅Wの比を、マイクロビーム照射前後の細胞全体を撮影するカメラの画角と同じアスペクト比となるように設定すれば、1つのウェル3bの全領域を撮影範囲に収めることが可能であり、照射後の細胞動態の追跡等の目的での観察などに好適である。 FIG. 2 is a diagram showing an example of a microchip for animal and plant cells in the microchip 1. The surface 2 of the microchip 1 shown in FIG. 2 shows a structure in which a plurality of rectangular wells 3b for cultivating animal and plant cells are formed as recesses 3 for enclosing biological samples (FIG. 2 ( a)). However, the shape of the well 3b is not limited to a rectangle, and may be a circle or an ellipse. Since the cells (not moving violently) can be irradiated with microbeams or observed without being held by one cell, the size of the recess 3 may be set to be considerably larger than that of the cells. For example, as shown in FIG. 2B, the well 3b is formed in a rectangular shape having a width L in the X direction and a width W in the Y direction. For example, if the ratio of the width L in the X direction to the width W in the Y direction is set to have the same aspect ratio as the angle of view of the camera that captures the whole cell before and after the microbeam irradiation, the entire region of one well 3b Is suitable for observation for the purpose of tracking the cell dynamics after irradiation.
 培養細胞の厚さは概ね10μm以下であるが、ウェル3bに培養液等を注入するための空間を確保するため、ウェル3bの深さDは、50~100μm程度とすることが好ましい。また、形成されたウェル3bの形状を保持するために、ウェル3bの深さDは、マイクロチップ1の厚さtの2/3程度を上限としておくことが好ましい。そのため、例えば、マイクロチップ1の厚さtが300μmであれば、ウェル3bの深さDは50~200μmとすることが好ましい。尚、ここでは図2に例示するウェル3bが形成されたマイクロチップ1を動植物細胞に用いる場合を例として説明したが、これに限られず、ウェル3bに細胞以外の生物試料(例えば、線虫)を封入して用いても良い。 Although the thickness of the cultured cells is approximately 10 μm or less, the depth D of the well 3b is preferably about 50 to 100 μm in order to secure a space for injecting a culture solution or the like into the well 3b. Further, in order to maintain the shape of the formed well 3b, it is preferable that the depth D of the well 3b has an upper limit of about 2/3 of the thickness t of the microchip 1. Therefore, for example, if the thickness t of the microchip 1 is 300 μm, the depth D of the well 3b is preferably 50 to 200 μm. Here, the case where the microchip 1 in which the well 3b illustrated in FIG. 2 is used is used as an animal or plant cell has been described as an example. May be used.
 (マイクロチップの厚さ)
 上記のようなマイクロチップ1は薄型のシート状に形成される。その厚さtを800μm以下とすれば、水中飛程1000μm程度のマイクロビームは、当該マイクロチップ1を透過することができ、マイクロチップ1の下面側に設けられる検出系に到達できる。このような厚さtが800μm以下のマイクロチップ1は、凹部の開口側および下面側の両面に後述のカバーを備えた場合であっても、水中飛程1000μm程度のマイクロビームを透過し得るため特に好ましい。マイクロチップ1の厚さtは800μmよりも薄ければ薄い程、イオンマイクロビーム照射装置のイオン検出系で検出可能なマイクロビームの種類を増加させることができる。一方、マイクロチップ1の厚さtは厚ければ厚い程、凹部3に培養又は封入可能な生物試料の種類を増加させることができる。
(Thickness of microchip)
The microchip 1 as described above is formed in a thin sheet shape. If the thickness t is 800 μm or less, a microbeam having an underwater range of about 1000 μm can pass through the microchip 1 and reach a detection system provided on the lower surface side of the microchip 1. Such a microchip 1 having a thickness t of 800 μm or less can transmit a microbeam having an underwater range of about 1000 μm even when the cover described later is provided on both the opening side and the lower surface side of the recess. Particularly preferred. As the thickness t of the microchip 1 is thinner than 800 μm, the types of microbeams that can be detected by the ion detection system of the ion microbeam irradiation apparatus can be increased. On the other hand, the thicker the thickness t of the microchip 1, the more kinds of biological samples that can be cultured or sealed in the recess 3.
 図3は、マイクロチップ1の表面2に被せるカバーの一例を示す図である。マイクロチップ1の表面に接触する面の形状は特に限定されず、矩形、円形、楕円形などが例示される。矩形の1つ以上の角を丸めた形状であっても良い。図3に示すような矩形は容易に製造可能であり、製造ロスも生じにくいことから好ましい。カバー4は、把持部を有していても良いし、孔が形成されていても良い。把持部を有するカバー4は、マイクロチップ1の表面への配置又は剥離の操作が容易となるため好ましい。孔が形成されたカバー4は、マイクロチップ1の表面にカバー4を密着させる際に当該孔を介して気泡を容易に排出可能であることから好ましい。 FIG. 3 is a diagram showing an example of a cover that covers the surface 2 of the microchip 1. The shape of the surface that contacts the surface of the microchip 1 is not particularly limited, and examples thereof include a rectangle, a circle, and an ellipse. The shape which rounded one or more corners of the rectangle may be sufficient. A rectangle as shown in FIG. 3 is preferable because it can be easily manufactured and manufacturing loss hardly occurs. The cover 4 may have a grip part or may have a hole. The cover 4 having a gripping portion is preferable because it can be easily arranged on the surface of the microchip 1 or peeled off. The cover 4 in which the holes are formed is preferable because air bubbles can be easily discharged through the holes when the cover 4 is brought into close contact with the surface of the microchip 1.
 イオンビームの水中飛程は、イオン種とエネルギーにより決定される。次の表1に、量子科学技術研究開発機構高崎量子応用研究所で使用可能な各種イオンおよびエネルギーの主なものを挙げ、その水中飛程の計算値との関係を示す。 The underwater range of the ion beam is determined by the ion species and energy. The following Table 1 lists the major ions and energies that can be used at the Takasaki Quantum Science and Technology Research Institute of Quantum Science and Technology, and shows their relationship with the calculated values of the underwater range.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 マイクロチップ1に水中飛程が800μmよりも長いイオンビームを照射した場合には、そのイオンビームがマイクロチップ1を透過する。例えば、上記表1に例示した水中飛程930μmの190MeVの炭素イオンであれば、イオンビームはマイクロチップ1を透過することができる。したがって、マイクロチップ1の厚さtを800μm以下にすることで、水中飛程が800μmよりも長いイオンビームを用いて実験を行うことができるようになり、使用可能なイオンビームの種類が従来よりも大幅に増加する。特に、重粒子線治療で使用される炭素イオンの場合、水中飛程2370μmの320MeVの炭素イオン、水中飛程1210μmの220MeVの炭素イオン、水中飛程930μmの190MeVの炭素イオンというエネルギーの異なる少なくとも3種類の炭素イオンを使用できるようになるという利点がある。また、陽子線治療に使用されるプロトンの場合、水中飛程2440μmの15MeVのプロトン、水中飛程1180μmの10MeVのプロトンというエネルギーの異なる少なくとも2種類のプロトンを使用できるようになる。これにより、重粒子線治療や陽子線治療などの治療現場で使用される量子ビームについて、エネルギーの違いによる生物影響の違いを同じ実験系で調べられるようになる。ただし、マイクロチップ1の厚さtが800μm以下の場合、上記表1に例示したネオンなどのイオンビームは、マイクロチップ1を透過しない。 When the microchip 1 is irradiated with an ion beam having an underwater range longer than 800 μm, the ion beam passes through the microchip 1. For example, in the case of 190 MeV carbon ions having an underwater range of 930 μm exemplified in Table 1, the ion beam can pass through the microchip 1. Therefore, by setting the thickness t of the microchip 1 to 800 μm or less, it becomes possible to perform an experiment using an ion beam having an underwater range longer than 800 μm. Will also increase significantly. In particular, in the case of carbon ions used in heavy ion radiotherapy, at least 3 different carbon ions of 320 MeV with an underwater range of 2370 μm, 220 MeV of 1210 μm with an underwater range of 190 MeV with an underwater range of 930 μm. There is an advantage that various kinds of carbon ions can be used. Further, in the case of protons used for proton therapy, at least two types of protons having different energies can be used: a 15 MeV proton with an underwater range of 2440 μm and a 10 MeV proton with an underwater range of 1180 μm. This makes it possible to investigate differences in biological effects due to energy differences in the same experimental system for quantum beams used in treatment sites such as heavy ion beam therapy and proton beam therapy. However, when the thickness t of the microchip 1 is 800 μm or less, the ion beam such as neon exemplified in Table 1 does not pass through the microchip 1.
 そのため、マイクロチップ1の厚さtは、好ましくは300μm以下である。厚さtを300μm以下とすることにより、表1に示した水中飛程700μmの350MeVのネオンイオンおよび水中飛程420μmの260MeVのネオンイオンのマイクロビームもマイクロチップ1の下面側に設置される、イオンマイクロビーム照射装置のイオン検出系で正確に検出することが可能となる。これにより、少なくとも、ヘリウムイオン、プロトン、炭素イオン、ネオンイオンという異なる4種類のイオンの生物影響を同じ実験系で調べることができるようになる。 Therefore, the thickness t of the microchip 1 is preferably 300 μm or less. By setting the thickness t to 300 μm or less, the microbeam of 350 MeV neon ions having an underwater range of 700 μm and 260 MeV neon ions having an underwater range of 420 μm shown in Table 1 is also installed on the lower surface side of the microchip 1. It becomes possible to detect accurately by the ion detection system of the ion microbeam irradiation apparatus. This makes it possible to investigate the biological effects of at least four different types of ions such as helium ions, protons, carbon ions, and neon ions in the same experimental system.
 さらに、より好ましくは、マイクロチップ1の厚さtは、100μm以下である。厚さtを100μm以下とすることにより、表1に例示した全てのイオン種のマイクロビームが、マイクロチップ1を透過できる。即ち、マイクロチップ1の下面側に設置される、イオンマイクロビーム照射装置のイオン検出系が生物試料を透過したマイクロビームを正確に検出することが可能である。それ故、厚さtを100μm以下にすれば、表1に例示した全てのイオン種、即ち、ヘリウムイオン、プロトン、炭素イオン、ネオンイオン、アルゴンイオンという異なる少なくとも5種類のマイクロビームを用いて実験を行うことができるようになり、マイクロチップ1の汎用性がより高くなる。 More preferably, the thickness t of the microchip 1 is 100 μm or less. By setting the thickness t to 100 μm or less, microbeams of all ion species exemplified in Table 1 can pass through the microchip 1. In other words, the ion detection system of the ion microbeam irradiation apparatus installed on the lower surface side of the microchip 1 can accurately detect the microbeam transmitted through the biological sample. Therefore, if the thickness t is set to 100 μm or less, the experiment is performed using all the ion species illustrated in Table 1, that is, at least five different microbeams such as helium ions, protons, carbon ions, neon ions, and argon ions. The versatility of the microchip 1 becomes higher.
 マイクロチップ1の厚さtを800μmとする場合、チャネル3aやウェル3bなどの凹部3に培養又は封入可能な生物試料としては、凹部3の深さD以下、即ち概ね530μm以下のものが対象となる。例えば、動く生物試料としては、ゾウリムシ、テトラヒメナ、ミドリムシ、オオミドリムシ、ミジンコ、線虫C.エレガンス、ワムシ、クマムシ、ヒョウヒダニ(チリダニ)、アルテミアなどがある。これらはいずれも動きを抑制した状態で観察することが好ましいため、図1に示したマイクロチップ1を用いてチャネル3aに封入保定すれば良い。また、動かない、又はマイクロビーム照射や観察に支障を来す程は動かない生物試料としては、花粉、ミカヅキモ、コケ、ボルボックス、培養細胞、線虫の卵(例えば、受精卵)、血球細胞、ヒトの卵子、ワムシの卵、ショウジョウバエの卵、ゼブラフィッシュの卵(例えば、受精卵)などがある。これらはいずれも動かない、又はマイクロビーム照射や観察に支障を来す程は動かないため、図2に示したマイクロチップ1を用いてウェル3bに培養又は封入保定すれば良い。ただし、図1に示したマイクロチップ1を用いるようにしても良い。尚、本明細書において「卵」とは、未受精卵又は受精卵のいずれも含む。 When the thickness t of the microchip 1 is set to 800 μm, the biological sample that can be cultured or sealed in the recesses 3 such as the channel 3a and the well 3b is not more than the depth D of the recesses 3, that is, approximately 530 μm or less. Become. For example, moving biological samples include Paramecium, Tetrahymena, Euglena, Paramecium, Daphnia, C. elegans. There are elegance, rotifer, caterpillar, leopard mite (dust mite), artemia and so on. Since these are preferably observed in a state where movement is suppressed, the microchip 1 shown in FIG. 1 may be used to enclose and hold the channel 3a. In addition, biological samples that do not move, or do not move so much as to interfere with microbeam irradiation and observation include pollen, mika mochi, moss, volbox, cultured cells, nematode eggs (eg, fertilized eggs), blood cells, Examples include human eggs, rotifer eggs, Drosophila eggs, and zebrafish eggs (eg, fertilized eggs). Since these do not move, or do not move so much as to interfere with microbeam irradiation and observation, the microchip 1 shown in FIG. 2 may be used to culture or enclose and hold in the well 3b. However, the microchip 1 shown in FIG. 1 may be used. In the present specification, “egg” includes both unfertilized eggs and fertilized eggs.
 また、マイクロチップ1の厚さtを300μmとする場合、チャネル3aやウェル3bなどの凹部3に培養又は封入可能な生物試料としては、凹部3の深さD以下、即ち概ね200μm以下のものが対象となる。例えば、動く生物試料としては、ゾウリムシ、テトラヒメナ、ミドリムシ、オオミドリムシ、線虫C.エレガンス、ワムシ、クマムシ、ヒョウヒダニ(チリダニ)などがある。これらはいずれも動きを抑制した状態で観察することが好ましいため、図1に示したマイクロチップ1を用いてチャネル3aに封入保定すれば良い。また動かない、又はマイクロビーム照射や観察に支障を来す程は動かない生物試料としては、花粉、ミカヅキモ、コケ、培養細胞、線虫の卵(例えば、受精卵)、血球細胞、ヒトの卵子、ワムシの卵などがある。これらはいずれも動かない、又はマイクロビーム照射や観察に支障を来す程は動かないため、図2に示したマイクロチップ1を用いてウェル3bに培養又は封入保定すれば良い。ただし、図1に示したマイクロチップ1を用いるようにしても良い。 When the thickness t of the microchip 1 is 300 μm, the biological sample that can be cultured or sealed in the recess 3 such as the channel 3a or the well 3b has a depth D of the recess 3 or less, that is, approximately 200 μm or less. It becomes a target. For example, moving biological samples include Paramecium, Tetrahymena, Euglena, Euglena, Nematode C. There are elegance, rotifer, caterpillar, and leopard mite. Since these are preferably observed in a state where movement is suppressed, the microchip 1 shown in FIG. 1 may be used to enclose and hold the channel 3a. Biological samples that do not move, or do not move so much as to interfere with microbeam irradiation and observation include pollen, mika mochi, moss, cultured cells, nematode eggs (eg, fertilized eggs), blood cells, and human eggs. , Rotifer eggs. Since these do not move, or do not move so much as to interfere with microbeam irradiation and observation, the microchip 1 shown in FIG. 2 may be used to culture or enclose and hold in the well 3b. However, the microchip 1 shown in FIG. 1 may be used.
 さらに、マイクロチップ1の厚さtを100μmとする場合、チャネル3aやウェル3bなどの凹部3に封入可能な生物試料としては、凹部3の深さD以下、即ち概ね65μm以下のものが対象となる。例えば、動く生物試料としては、ゾウリムシ、テトラヒメナ、ミドリムシ、オオミドリムシ、線虫C.エレガンス、ワムシなどがある。これらはいずれも動きを抑制した状態で観察することが好ましいため、図1に示したマイクロチップ1を用いてチャネル3aに封入保定すれば良い。また動かない、又はマイクロビーム照射や観察に支障を来す程は動かない生物試料としては、花粉、ミカヅキモ、コケ、培養細胞、線虫の卵(例えば、受精卵)、血球細胞などがある。これらはいずれも動かない、又はマイクロビーム照射や観察に支障を来す程は動かないため、図2に示したマイクロチップ1を用いてウェル3bに培養又は封入保定すれば良い。ただし、図1に示したマイクロチップ1を用いるようにしても良い。 Further, when the thickness t of the microchip 1 is set to 100 μm, the biological sample that can be enclosed in the recesses 3 such as the channel 3a and the well 3b is intended to have a depth D of the recess 3 or less, that is, approximately 65 μm or less. Become. For example, moving biological samples include Paramecium, Tetrahymena, Euglena, Euglena, Nematode C. There are elegance and rotifer. Since these are preferably observed in a state where movement is suppressed, the microchip 1 shown in FIG. 1 may be used to enclose and hold the channel 3a. Examples of biological samples that do not move, or that do not move so much as to interfere with microbeam irradiation and observation include pollen, mika mochi, moss, cultured cells, nematode eggs (eg, fertilized eggs), and blood cells. Since these do not move, or do not move so much as to interfere with microbeam irradiation and observation, the microchip 1 shown in FIG. 2 may be used to culture or enclose and hold in the well 3b. However, the microchip 1 shown in FIG. 1 may be used.
 ここで、マイクロチップ1の厚さtが800μm、300μm、100μmの場合を例として説明したが、当然これに限定されない。使用するイオンビームの水中飛程と、凹部3に培養又は封入する生物試料の大きさを考慮し、適宜設定し得る。例えば、600μm、500μm、200μmなどの任意の厚さとすれば良い。厚さtが600μmであれば、マイクロチップ1の表面2に形成する凹部3の深さDを400μmとすることで、ミジンコなどを好適に封入保定することができ、イオンビームとしては水中飛程700μmの350MeVのネオンイオンなどを照射し得る。また、厚さtが200μmであれば、凹部3の深さDを140μmとすることで、L型ワムシの幼虫や卵、ヒトの卵子などを好適に封入保定することができ、イオンビームとしては水中飛程270μmの200MeVのネオンイオンや水中飛程250μmの460MeVのアルゴンイオンなどを照射し得る。 Here, the case where the thickness t of the microchip 1 is 800 μm, 300 μm, and 100 μm has been described as an example, but the present invention is not limited to this. It can be set as appropriate in consideration of the underwater range of the ion beam to be used and the size of the biological sample to be cultured or sealed in the recess 3. For example, an arbitrary thickness such as 600 μm, 500 μm, or 200 μm may be used. If the thickness t is 600 μm, the depth D of the concave portion 3 formed on the surface 2 of the microchip 1 can be set to 400 μm, so that daphnia and the like can be suitably enclosed and retained. 700 μm 350 MeV neon ions or the like may be irradiated. Further, if the thickness t is 200 μm, the depth D of the recess 3 is set to 140 μm, so that L-type rotifer larvae, eggs, human eggs, etc. can be suitably enclosed and retained. 200 MeV neon ions having an underwater range of 270 μm and 460 MeV argon ions having an underwater range of 250 μm may be irradiated.
 さらに、マイクロチップ1の厚さtを800μmより厚くすること、例えば、1000μm、1500μm、2000μmなどの任意の厚さに設定することも当然可能である。厚さtが1000μmであれば、マイクロチップ1の表面2に形成する凹部3の深さDを650μmとすることで、カイコの受精卵などを好適に封入保定することができ、イオンビームとしては水中飛程1180μmの10MeVのプロトンや水中飛程1210μmの220MeVの炭素イオンなどを照射し得る。例えば、陽子線治療に用いられるプロトンによる影響を調べる場合、マイクロチップ1の厚さtが1000μm以下であれば、水中飛程1180の10MeVのプロトンと、水中飛程2440μmの15MeVのプロトンという少なくとも2種類のプロトンを使用することができる。また、厚さtが1500μmであれば、凹部3の深さDを1000μmとすることで、メダカの受精卵などを好適に封入保定することができ、イオンビームとしては水中飛程1770μmの50MeVのヘリウムイオンや水中飛程2370μmの320MeVの炭素イオンなどを照射し得る。さらに、厚さtが2000μmであれば、凹部3の深さDを1300μmとすることで、封入できる微小生物個体や卵、植物の種子の種類を増加させることができる。この場合、マイクロチップ1を透過可能なイオンビームとしては水中飛程1770μmの50MeVのヘリウムイオン、水中飛程2370μmの320MeVの炭素イオン、水中飛程2680μmの63MeVのヘリウムイオンなどに限定されるが、照射に限らない蛍光イメージング観察などのための培養又は封入保定に好適に使用できる。 Furthermore, it is naturally possible to set the thickness t of the microchip 1 to be larger than 800 μm, for example, to an arbitrary thickness such as 1000 μm, 1500 μm, 2000 μm. If the thickness t is 1000 μm, the depth D of the recess 3 formed on the surface 2 of the microchip 1 can be set to 650 μm, so that fertilized eggs of silkworms can be suitably enclosed and retained. 10 MeV protons having an underwater range of 1180 μm and 220 MeV carbon ions having an underwater range of 1210 μm may be irradiated. For example, when investigating the influence of protons used in proton beam therapy, if the thickness t of the microchip 1 is 1000 μm or less, at least 2 of 10 MeV protons in the underwater range 1180 and 15 MeV protons in the underwater range 2440 μm. Different types of protons can be used. Further, if the thickness t is 1500 μm, the depth D of the recess 3 can be set to 1000 μm, so that fertilized eggs of medaka can be suitably enclosed and retained, and the ion beam is 50 MeV with an underwater range of 1770 μm. Helium ions, 320 MeV carbon ions having an underwater range of 2370 μm, and the like can be irradiated. Furthermore, if the thickness t is 2000 μm, the depth D of the recess 3 is set to 1300 μm, so that the types of micro-organisms, eggs, and plant seeds that can be enclosed can be increased. In this case, the ion beam that can be transmitted through the microchip 1 is limited to 50 MeV helium ions with an underwater range of 1770 μm, 320 MeV carbon ions with an underwater range of 2370 μm, 63 MeV helium ions with an underwater range of 2680 μm, and the like. It can be suitably used for culture or entrapment retention for fluorescence imaging observations and the like that are not limited to irradiation.
 マイクロチップ1の厚さtについて、マイクロビームの水中飛程と凹部に封入する対象物との関係に着目して説明したが、これに限定されない。マイクロチップ1の凹部3に封入した対象物の顕微鏡観察に薄いマイクロチップ1を用いることで、従来は困難であった観察を可能とすることができる。例えば、従前、対象物を生きたまま蛍光イメージング観察する場合には水浸レンズを用いた観察が行われていた。一方で、厚さtのマイクロチップ1の凹部3に対象物を保定することで、正立蛍光顕微鏡を用い、生きたままの蛍光イメージング観察をはじめとする顕微鏡観察を実現できる。かかる観点では、マイクロチップ1の厚さは400μm以下とすることが好ましく、300μm以下がより好ましく、200μm以下がさらに好ましい。 Although the thickness t of the microchip 1 has been described by paying attention to the relationship between the underwater range of the microbeam and the object to be sealed in the recess, the present invention is not limited to this. By using the thin microchip 1 for microscopic observation of the object enclosed in the concave portion 3 of the microchip 1, observation that has been difficult in the past can be made possible. For example, in the past, observation using a water immersion lens has been performed when fluorescent imaging observation is performed while an object is alive. On the other hand, by holding the object in the concave portion 3 of the microchip 1 having a thickness t, it is possible to realize microscopic observation including live fluorescence imaging observation using an upright fluorescent microscope. From this point of view, the thickness of the microchip 1 is preferably 400 μm or less, more preferably 300 μm or less, and even more preferably 200 μm or less.
 (マイクロチップの親水性)
 また、マイクロチップ1は、少なくとも凹部3が形成されたマイクロチップ表面2が親水性を有している。通常、PDMSは疎水性である。PDMSのみを母材としてマイクロチップ1を形成した場合は、マイクロチップの表面2が疎水性を示す。マイクロチップ表面2が疎水性を示すと、例えばチャネル3aに封入した線虫などの生物試料に脱水症状が生じる。これを防止するため、マイクロチップ1は、マイクロチップ表面2に親水性を付与している。親水性は、マイクロチップ表面2のみに付与するものであっても良いし、マイクロチップ全体に付与するものであっても良い。本明細書において親水性を有するとは、水接触角(25℃、30%RH)が100度以下の状態をいう。好ましくは、水接触角が90度以下であり、より好ましくは60度以下であり、さらに好ましくは40度以下である。
(Hydrophilicity of microchip)
Further, in the microchip 1, the microchip surface 2 on which at least the concave portion 3 is formed has hydrophilicity. PDMS is usually hydrophobic. When the microchip 1 is formed using only PDMS as a base material, the surface 2 of the microchip exhibits hydrophobicity. If the microchip surface 2 is hydrophobic, dehydration occurs in a biological sample such as a nematode enclosed in the channel 3a. In order to prevent this, the microchip 1 imparts hydrophilicity to the microchip surface 2. The hydrophilicity may be imparted only to the microchip surface 2 or may be imparted to the entire microchip. In this specification, having hydrophilicity means a state in which a water contact angle (25 ° C., 30% RH) is 100 degrees or less. Preferably, the water contact angle is 90 degrees or less, more preferably 60 degrees or less, and still more preferably 40 degrees or less.
 例えば、マイクロチップ表面2のみに親水性を付与する場合、マイクロチップ1の表面2に対し、例えばMPC(2-Methacryloyloxyethyl Phosphorylcholine;2-メタクリロイルオキシエチルホスホリルコリン)ポリマーなどの親水性付与剤を塗布する。即ち、親水性を有する部分の厚さは、当該親水性付与剤の塗布の量(厚さ)によって調整し得る。典型的には、かかる表面親水処理がなされたマイクロチップ1は、PDMSを母材とした基材層と、親水性付与剤を含む親水層とを備える。これにより、マイクロチップ1の表面2に親水性を付与することができる。ただし、この場合は、マイクロチップ1の表面2に塗布された親水性付与剤が空気と反応するため、時間経過に伴ってマイクロチップ表面2の親水性が失われていく。そのため、マイクロチップ1の長時間使用や反復使用には適さない。 For example, when hydrophilicity is imparted only to the microchip surface 2, a hydrophilicity imparting agent such as MPC (2-Methacryloyloxyethyl Phosphorylcholine) polymer is applied to the surface 2 of the microchip 1. That is, the thickness of the hydrophilic portion can be adjusted by the amount (thickness) of the hydrophilicity imparting agent applied. Typically, the microchip 1 subjected to such surface hydrophilic treatment includes a base material layer using PDMS as a base material and a hydrophilic layer containing a hydrophilicity-imparting agent. Thereby, hydrophilicity can be imparted to the surface 2 of the microchip 1. However, in this case, since the hydrophilicity imparting agent applied to the surface 2 of the microchip 1 reacts with air, the hydrophilicity of the microchip surface 2 is lost over time. Therefore, the microchip 1 is not suitable for long-time use or repeated use.
 また、マイクロチップ1の表面2にプラズマ処理を行うことにより、マイクロチップ表面2のみに対して親水性を付与することもできる。即ち、親水性を有する部分の厚さは、プラズマ照射の条件(照射強度、照射時間など)により調整し得る。典型的には、かかる表面親水処理がなされたマイクロチップ1は、プラズマ処理部分(親水性を有する部分)と、プラズマ未処理部分とを備える。また、プラズマ処理を施すことにより、マイクロチップ(典型的には凹部3)の最表面に極性を付与することができる。例えば、図2に示した動植物細胞用のマイクロチップ1を用いて細胞を培養する場合、培養細胞がウェル3bに接着することが好ましい。接着性の細胞は極性を有する足場に接着することで良好に増殖することが知られている。このため、特に接着性の細胞を対象としたマイクロビーム照射や観察にここで開示するマイクロチップ1を使用する場合には、プラズマ処理されたマイクロチップ1を好適に使用し得る。ただし、プラズマ処理による親水化では、上述したMPCポリマーなどの親水性付与剤を塗布する場合と同様、時間経過に伴ってマイクロチップ表面2の親水性が失われていく可能性がある。 Further, by performing plasma treatment on the surface 2 of the microchip 1, hydrophilicity can be imparted only to the microchip surface 2. That is, the thickness of the hydrophilic portion can be adjusted by plasma irradiation conditions (irradiation intensity, irradiation time, etc.). Typically, the microchip 1 subjected to such surface hydrophilic treatment includes a plasma treated portion (portion having hydrophilicity) and a plasma untreated portion. Moreover, polarity can be provided to the outermost surface of a microchip (typically the recessed part 3) by performing a plasma process. For example, when cells are cultured using the microchip 1 for animal and plant cells shown in FIG. 2, it is preferable that the cultured cells adhere to the well 3b. Adhesive cells are known to grow well by adhering to a polar scaffold. For this reason, especially when using the microchip 1 disclosed here for the microbeam irradiation or observation for the adhesive cells, the plasma-treated microchip 1 can be preferably used. However, in the hydrophilization by plasma treatment, the hydrophilicity of the microchip surface 2 may be lost over time, as in the case of applying the hydrophilicity imparting agent such as the MPC polymer described above.
 これに対し、マイクロチップ1の全体に親水性を付与する場合、例えば、マイクロチップ1の作製時に、母材となるPDMSに親水性付与剤を添加した状態で型に流し込んで固化させるようにすれば良い。これにより、マイクロチップ1の全体に対して親水性を付与することができる。この場合の親水性付与剤としては、例えば、Tween20、Brij35、TritonX-100などの非イオン性界面活性剤を用いることができる。非イオン性界面活性剤は母材のPDMSに対して10wt%程度までであれば、マイクロチップ1の成形に支障を来すことなく、PDMSに親水性を付与することができる。ただし、非イオン性界面活性剤の添加量が10wt%以下であっても、非イオン性界面活性剤の添加量が多くなると、PDMSの透明性が損なわれる可能性がある。そのため、非イオン性界面活性剤の添加量は3wt%程度までとすることが好ましい。添加量が3wt%程度以下であれば、PDMSの透明性を損なうことなく、PDMSに有効な親水性を付与することができる。この他にも、PDMSへ親水性を付与することが知られている従来公知の親水性付与剤を特に限定なく使用することができる。マイクロチップ1の全体に親水性を付与することにより、親水性の劣化現象を抑制することができるため、マイクロチップ1を反復使用しても親水性を保持しておくことができるという利点がある。 On the other hand, when hydrophilicity is imparted to the entire microchip 1, for example, when the microchip 1 is manufactured, the microchip 1 is poured into a mold and solidified by adding a hydrophilicity imparting agent to PDMS as a base material. It ’s fine. Thereby, hydrophilicity can be imparted to the entire microchip 1. As the hydrophilicity imparting agent in this case, for example, nonionic surfactants such as Tween 20, Brij 35, Triton X-100 can be used. If the nonionic surfactant is up to about 10 wt% with respect to the base material PDMS, hydrophilicity can be imparted to the PDMS without hindering the formation of the microchip 1. However, even if the addition amount of the nonionic surfactant is 10 wt% or less, if the addition amount of the nonionic surfactant increases, the transparency of the PDMS may be impaired. Therefore, it is preferable that the addition amount of the nonionic surfactant is up to about 3 wt%. If the addition amount is about 3 wt% or less, effective hydrophilicity can be imparted to PDMS without impairing the transparency of PDMS. In addition, conventionally known hydrophilicity imparting agents that are known to impart hydrophilicity to PDMS can be used without any particular limitation. By imparting hydrophilicity to the entire microchip 1, hydrophilic deterioration can be suppressed, and thus there is an advantage that hydrophilicity can be maintained even when the microchip 1 is repeatedly used. .
 マイクロチップ1に親水性を付与することにより、生物試料を封入する凹部3にも親水性が付与される。かかる親水性付与により、凹部3内へ水を引き込みやすくなる。これにより、凹部3内への生物試料の封入をスムーズに行うことができる。また、凹部3の保水性を向上させることができる。換言すると、凹部3からの水の蒸発を抑制することができる。このため、湿潤状態を要求する生物試料を培養又は封入保定し、マイクロビーム照射又は観察を行う際、かかる生物試料の脱水や乾燥を低減することができる。例えば、チャネル3aに線虫C.エレガンスなどの生物試料を封入保定した状態でマイクロビームを照射するとき、例えば、生物試料に脱水症状が生じること、およびそれに起因すると考えられる運動性の低下などを抑制することができるようになる。これにより、マイクロチップ1のチャネル3aにC.エレガンスを封入保定した状態でマイクロビームを照射した後、線虫の運動性が低下していれば、その低下の要因がマイクロビーム照射によるものであることを容易に判別することができるようになる。また、生物試料に脱水症状を生じさせることなく、保定しておくことができるため、生物試料の観察(例えば、蛍光イメージング観察)にも適している。 By imparting hydrophilicity to the microchip 1, hydrophilicity is also imparted to the recess 3 for enclosing the biological sample. Such hydrophilicity makes it easy to draw water into the recess 3. Thereby, the biological sample can be smoothly sealed in the recess 3. Moreover, the water retention of the recessed part 3 can be improved. In other words, evaporation of water from the recess 3 can be suppressed. For this reason, when a biological sample requiring a wet state is cultured or sealed, and microbeam irradiation or observation is performed, dehydration and drying of the biological sample can be reduced. For example, C. elegans C. When irradiating a microbeam while enclosing and holding a biological sample such as elegance, it is possible to suppress, for example, dehydration of the biological sample and a decrease in mobility considered to be caused by it. As a result, C.I. If the mobility of the nematode is reduced after irradiation with microbeams with elegance encapsulated and retained, it will be possible to easily determine that the cause of the decrease is due to microbeam irradiation. . Moreover, since it can hold | maintain, without producing the dehydration symptom in a biological sample, it is suitable also for observation (for example, fluorescence imaging observation) of a biological sample.
 また、図2に示した動植物細胞用のマイクロチップ1を作製する際には、上述したようにマイクロチップ1の全体に親水性を付与した後、さらにマイクロチップ表面2に対してプラズマ処理を行うようにしても良い。このプラズマ処理により、細胞のマイクロチップ表面2、とりわけ、ウェル3bの表面6への接着性を高めることができるため、培養細胞に適したマイクロチップ1を実現することができる。ただし、マイクロチップ1を浮遊細胞や血球細胞に用いる場合には、細胞の接着性は要求されないことがある。 In addition, when the microchip 1 for animal and plant cells shown in FIG. 2 is produced, after imparting hydrophilicity to the entire microchip 1 as described above, plasma treatment is further performed on the microchip surface 2. You may do it. By this plasma treatment, the adhesion of cells to the microchip surface 2, in particular, the surface 6 of the well 3 b can be improved, so that the microchip 1 suitable for cultured cells can be realized. However, when the microchip 1 is used for floating cells or blood cells, cell adhesion may not be required.
 対象として、接着性の細胞を用いる場合には、マイクロチップ1の表面2の細胞接着性を向上させる処理を施すことが好ましい。例えば、上述のプラズマ処理が挙げられる。また、プラズマ処理以外の方法を用いて細胞接着性を向上させることもできる。例えば、かかる細胞接着性を向上させる処理として、細胞接着性を向上させる表面コート剤をウェル3bの表面6に塗布する処理が挙げられる。この場合のウェル3bの表面6は、少なくともウェル3bの底面を含むものであれば良い。細胞接着性を向上させる表面コート剤としては、従来公知の細胞接着性高分子から適宜選択して用いれば良く、例えば、ポリリジン、ファイブロネクチン、Corning(登録商標)Inc.製のCellTak(登録商標)(ムラサキイガイ由来のポリフェノールタンパク質)などが挙げられる。かかる細胞接着性を向上させる処理は、1の方法を単独で実施しても良いし、2以上の方法を組み合わせても良い。また、マイクロチップ1に親水性を付与する処理、例えば、マイクロチップ1の全体に親水性を付与する処理、少なくとも表面2に親水性を付与する処理(親水性付与剤の塗布やプラズマ処理など)と、細胞接着性を向上させる処理とを、組み合わせて行っても良い。 When using adhesive cells as the target, it is preferable to perform a treatment for improving the cell adhesiveness of the surface 2 of the microchip 1. For example, the plasma treatment described above can be given. Moreover, cell adhesion can also be improved using methods other than plasma treatment. For example, as a process for improving the cell adhesiveness, there is a process for applying a surface coating agent for improving the cell adhesiveness to the surface 6 of the well 3b. In this case, the surface 6 of the well 3b only needs to include at least the bottom surface of the well 3b. The surface coating agent for improving cell adhesion may be appropriately selected from conventionally known cell adhesion polymers. For example, polylysine, fibronectin, Corning (registered trademark) Inc. CellTak (registered trademark) (manufactured by mussel-derived polyphenol protein) and the like can be mentioned. Such treatment for improving cell adhesion may be performed by one method alone or in combination of two or more methods. Also, a process for imparting hydrophilicity to the microchip 1, for example, a process for imparting hydrophilicity to the entire microchip 1, a process for imparting hydrophilicity to at least the surface 2 (application of a hydrophilicity imparting agent, plasma treatment, etc.) And treatment for improving cell adhesion may be performed in combination.
 (カバー)
 上述のように構成されるマイクロチップ1は、使用する際に、カバーを組み合わせて用いることができる。当該カバーは、典型的にはチャネル3を被覆するように配置される。例えば、図3に示すカバー4が用いられる。カバー4は、例えば厚さ100μm程度の透明シート状のカバーである。このカバー4は、例えばマイクロチップ1の表面2に密着するように被せられる。そのため、カバー4によってチャネル3aに封入された生物試料がチャネル3aの内部から離脱することを防ぐことができ、チャネル3a内に保定することができる。また、かかるカバー4をマイクロチップ1の表面2に被せることで、凹部3からの液体(典型的には水分)の蒸発を抑制することができる。生物試料の培養又は封入および凹部3からの水分蒸発抑制の観点から、マイクロチップ1とカバー4は密着するように配置するのが好ましい。ここで、「密着」とは、PDMSの自己吸着性によりマイクロチップ表面2にカバー表面5が隙間無く接触している状態を指す。特に好ましくは、水密となるように配置する。マイクロチップ1とカバー4をPDMSの自己吸着性によって密着させて配置するため、マイクロチップ1およびカバー4の接触面、即ち、マイクロチップ表面2およびカバー表面5は平滑な平面とすることが好ましい。マイクロチップ1の表面2の平滑度は、より好ましくは、表面粗さRa(JIS2001年規格)が0.007~0.012μmであると良い。カバー4の表面5の平滑度は、表面粗さRa(JIS2001年規格)が0.03μm以下が好ましく、より好ましくは0.02μm以下であり、さらに好ましくは0.01μm以下である。カバーの表面5の平滑度の下限は特に限定されないが、好ましくは0.002μm以上であり、より好ましくは0.005μm以上である。尚、マイクロチップ1の表面2に設けるカバー4は、表面5(少なくともマイクロチップ1に接する面)が平滑であり、割れにくい透明な素材で形成されたものが好ましい。例えば、厚さ100μm、Raが0.008μm程度であるポリスチレンフィルムは、透明で割れにくく、PDMSへの密着性が良く、かつ容易に剥がせるため、好適である。また、PDMSカバーフィルムを用いることもできる。
(cover)
The microchip 1 configured as described above can be used in combination with a cover when used. The cover is typically arranged to cover the channel 3. For example, the cover 4 shown in FIG. 3 is used. The cover 4 is a transparent sheet-like cover having a thickness of about 100 μm, for example. The cover 4 is covered so as to be in close contact with the surface 2 of the microchip 1, for example. Therefore, the biological sample enclosed in the channel 3a by the cover 4 can be prevented from being detached from the inside of the channel 3a, and can be retained in the channel 3a. Further, by covering the surface 2 of the microchip 1 with the cover 4, evaporation of the liquid (typically moisture) from the recess 3 can be suppressed. From the viewpoint of culturing or enclosing a biological sample and suppressing moisture evaporation from the recess 3, the microchip 1 and the cover 4 are preferably disposed so as to be in close contact. Here, “adhesion” refers to a state in which the cover surface 5 is in contact with the microchip surface 2 without a gap due to the self-adsorption property of PDMS. Particularly preferably, it is arranged so as to be watertight. In order to arrange the microchip 1 and the cover 4 in close contact by the self-adsorption property of PDMS, it is preferable that the contact surfaces of the microchip 1 and the cover 4, that is, the microchip surface 2 and the cover surface 5 are smooth planes. The smoothness of the surface 2 of the microchip 1 is more preferably 0.007 to 0.012 μm in surface roughness Ra (JIS 2001 standard). As for the smoothness of the surface 5 of the cover 4, the surface roughness Ra (JIS 2001 standard) is preferably 0.03 μm or less, more preferably 0.02 μm or less, and still more preferably 0.01 μm or less. Although the minimum of the smoothness of the surface 5 of a cover is not specifically limited, Preferably it is 0.002 micrometer or more, More preferably, it is 0.005 micrometer or more. Note that the cover 4 provided on the surface 2 of the microchip 1 is preferably formed of a transparent material having a smooth surface 5 (at least a surface in contact with the microchip 1) and hardly cracking. For example, a polystyrene film having a thickness of 100 μm and an Ra of about 0.008 μm is suitable because it is transparent and difficult to break, has good adhesion to PDMS, and can be easily peeled off. A PDMS cover film can also be used.
 好ましい一実施形態では、マイクロチップ1上に配置された生物試料と液体(典型的には水又は水溶液)とをカバーで圧迫することで、生物試料をチャネル3a内に誘導することができる。また、このようにマイクロチップ1上にカバー4を圧迫することで、マイクロチップ1とカバー4の密着性を向上させることができる。 In a preferred embodiment, the biological sample placed on the microchip 1 and a liquid (typically water or an aqueous solution) are pressed with a cover, whereby the biological sample can be guided into the channel 3a. In addition, by pressing the cover 4 on the microchip 1 in this way, the adhesion between the microchip 1 and the cover 4 can be improved.
 カバー4を用いてマイクロチップ1の凹部3内に保定された生物試料は、目視又は顕微鏡などの拡大鏡を用いて観察し易いことが好ましい。このため、マイクロチップ1に配するカバーは、透明であることが好ましい。即ち、マイクロチップ1の表面2に被せるカバー4は、透明であることが好ましい。或いは、マイクロチップ1の表面2以外、例えば裏面にカバーを配置する場合には、当該カバーも透明であることが好ましい。尚、上記マイクロチップ1の表面2に被せるカバー4とマイクロチップ1の裏面に配置するカバーは同一のものを用いても良いし、異なる性質のものを用いても良い。カバーの平行光線透過率(JISK7105プラスチックの光学的特性試験方法による)は80%以上が望ましい。好ましくは85%以上、より好ましくは90%以上である。また、カバーの曇価(へーズ)(JISK7105プラスチックの光学的特性試験方法による)は4.0%以下が望ましい。好ましくは2.5%以下、より好ましくは0%である。観察し易さ、又は実験し易さ(マイクロビームの照射し易さ)の観点から、マイクロチップ1に配するカバーの屈折率は小さいことが好ましい。例えば、カバーの屈折率は1.0以下が好ましく、例えば0.8以下がより好ましい。屈折率の下限は特に限定されないが、例えば0.3以上とすれば良い。また、観察又は励起に用いる光の波長領域で自家蛍光の無い又は少ないカバーは、蛍光観察において好適である。また、マイクロチップ1に配するカバーの光透過率(紫外可視分光光度計を用いた直線透過法による)は、用いる光の波長領域で70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。例えば、可視光観察を行う場合には、カバーの光透過率は、波長360~860nmで80%以上であることが望ましく、より好ましくは85%以上、さらに好ましくは90%以上である。紫外光領域の光を観察に用いる場合(例えば、マルチフォトン観察を行う場合)には、波長860~1500nmでの光透過率が80%以上であることが好ましく、より好ましくは90%以上である。 It is preferable that the biological sample held in the recess 3 of the microchip 1 using the cover 4 is easy to observe visually or using a magnifier such as a microscope. For this reason, it is preferable that the cover disposed on the microchip 1 is transparent. That is, the cover 4 that covers the surface 2 of the microchip 1 is preferably transparent. Or when arrange | positioning a cover other than the surface 2 of the microchip 1, for example, a back surface, it is preferable that the said cover is also transparent. The cover 4 that covers the front surface 2 of the microchip 1 and the cover that is disposed on the back surface of the microchip 1 may be the same or may have different properties. The cover's parallel light transmittance (according to the optical characteristic test method of JISK7105 plastic) is preferably 80% or more. Preferably it is 85% or more, more preferably 90% or more. The haze of the cover (according to the JISK7105 plastic optical property test method) is preferably 4.0% or less. Preferably it is 2.5% or less, More preferably, it is 0%. From the viewpoint of ease of observation or ease of experimentation (ease of microbeam irradiation), the refractive index of the cover disposed on the microchip 1 is preferably small. For example, the refractive index of the cover is preferably 1.0 or less, and more preferably 0.8 or less. The lower limit of the refractive index is not particularly limited, but may be, for example, 0.3 or more. In addition, a cover having no or little autofluorescence in the wavelength region of light used for observation or excitation is suitable for fluorescence observation. Further, the light transmittance of the cover disposed on the microchip 1 (by the linear transmission method using an ultraviolet-visible spectrophotometer) is preferably 70% or more, and 80% or more in the wavelength region of the light used. Is more preferable, and it is still more preferable that it is 90% or more. For example, when visible light observation is performed, the light transmittance of the cover is desirably 80% or more at a wavelength of 360 to 860 nm, more preferably 85% or more, and still more preferably 90% or more. When using light in the ultraviolet region for observation (for example, when performing multiphoton observation), the light transmittance at a wavelength of 860 to 1500 nm is preferably 80% or more, more preferably 90% or more. .
 カバー4をマイクロチップ1から着脱する操作性の観点から、カバー4は柔軟であることが好ましい。しなやかなカバー4を用いることで、マイクロチップ1の表面2に密着したカバー4を取り外す際に当該カバーの破損を防ぐことができる。 From the viewpoint of operability for attaching / detaching the cover 4 to / from the microchip 1, the cover 4 is preferably flexible. By using the supple cover 4, it is possible to prevent the cover from being damaged when the cover 4 adhered to the surface 2 of the microchip 1 is removed.
 上記カバーの厚さt2は特に限定されない。しかし、マイクロチップ1の表面2にカバー4を着脱する際の操作性の観点から、例えばカバー4は50μm以上とすることが好ましく、80μm以上がより好ましい。この程度の厚さのカバー4を用いることで着脱操作時にカバー4の破損を防ぐことができる。一方で、マイクロビームの透過性、又は、視認性(観察性)の観点からすると、カバー4の厚さt2は300μm以下が好ましく、200μm以下がより好ましい。例えば、100μm以上150μm以下の厚さのカバー4を用いることが好ましい。マイクロチップ1の裏面に配置するカバーも、これに準じたカバーが好ましい。 The thickness t2 of the cover is not particularly limited. However, from the viewpoint of operability when attaching / detaching the cover 4 to / from the surface 2 of the microchip 1, for example, the cover 4 is preferably 50 μm or more, and more preferably 80 μm or more. By using the cover 4 having such a thickness, the cover 4 can be prevented from being damaged during the attachment / detachment operation. On the other hand, from the viewpoint of microbeam transparency or visibility (observability), the thickness t2 of the cover 4 is preferably 300 μm or less, and more preferably 200 μm or less. For example, it is preferable to use the cover 4 having a thickness of 100 μm or more and 150 μm or less. The cover disposed on the back surface of the microchip 1 is also preferably a cover according to this.
 また、カバー4は、マイクロチップ1と同様に、親水性を有することが好ましい。親水性を有するカバー4を用いることで、凹部3からの液体(典型的には水分)の蒸発をより抑制することができる。これにより、生物試料の乾燥を防止することができる。この場合、例えば水接触角(25℃、30%RH)が100度以下のカバー4を用いることが好ましい。例えば90度以下のカバー4がより好ましい。尚、カバー4の水接触角の下限は特に限定されないが、例えば、40度以上であれば良く、60度以上であっても良い。マイクロチップ1の凹部3からの液体(水分)の蒸発を抑制する観点からは、マイクロチップ1とカバー4の表面5との両方が親水性を有することが好ましく、例えば水接触角が100度以下のマイクロチップ1と、表面5の水接触角が100度以下のカバー4とを組み合わせて用いることが好ましい。表面5の水接触角が60度以上100度以下のカバー4は好適な組合せの一条件として例示される。 Moreover, it is preferable that the cover 4 has hydrophilicity like the microchip 1. By using the cover 4 having hydrophilicity, evaporation of the liquid (typically moisture) from the recess 3 can be further suppressed. Thereby, drying of a biological sample can be prevented. In this case, for example, it is preferable to use the cover 4 having a water contact angle (25 ° C., 30% RH) of 100 degrees or less. For example, the cover 4 of 90 degrees or less is more preferable. In addition, although the minimum of the water contact angle of the cover 4 is not specifically limited, For example, what is necessary is just 40 degree | times or more, and may be 60 degree | times or more. From the viewpoint of suppressing the evaporation of liquid (water) from the recess 3 of the microchip 1, it is preferable that both the microchip 1 and the surface 5 of the cover 4 have hydrophilicity, for example, the water contact angle is 100 degrees or less. The microchip 1 and the cover 4 having a water contact angle of the surface 5 of 100 degrees or less are preferably used in combination. The cover 4 having a water contact angle of the surface 5 of 60 degrees or more and 100 degrees or less is exemplified as one condition of a suitable combination.
 また、酸素を透過可能なカバー4は、凹部3に培養又は封入した生物試料に酸素を供給可能な点で好ましい。生物試料を一定時間以上凹部3内に培養又は封入して保定する場合、又は、酸素要求性の高い生物試料を用いる場合には、マイクロチップ1の凹部3内の空間において酸素が不足しがちであるため、生物試料の酸欠状態を防ぐためにもカバー4の酸素透過性が重要となる。そのため、例えば、ガスクロマトグラフ法で測定した場合の酸素透過率(20℃、50%RH)が30mL/(m・24h・atm)以上であるカバー4が望ましい。1時間を超える長時間の培養又は封入を考慮する場合には、酸素透過率が100mL/(m・24h・atm)以上であることが好ましく、より好ましくは1000~1500mL/(m・24h・atm)である。 Moreover, the cover 4 which can permeate | transmit oxygen is preferable at the point which can supply oxygen to the biological sample culture | cultivated or enclosed in the recessed part 3. FIG. When a biological sample is cultured or sealed in the recess 3 for a certain time or more, or when a biological sample with high oxygen demand is used, oxygen tends to be insufficient in the space in the recess 3 of the microchip 1. Therefore, the oxygen permeability of the cover 4 is important in order to prevent the lack of oxygen in the biological sample. Therefore, for example, the cover 4 having an oxygen permeability (20 ° C., 50% RH) of 30 mL / (m 2 · 24 h · atm) or more when measured by a gas chromatographic method is desirable. In consideration of long-term culture or encapsulation exceeding 1 hour, the oxygen permeability is preferably 100 mL / (m 2 · 24 h · atm) or more, more preferably 1000 to 1500 mL / (m 2 · 24 h. Atm).
 さらに、二酸化炭素を透過可能なカバー4は、凹部3に培養又は封入した植物などの生物試料に二酸化炭素を供給可能、或いは凹部3から二酸化炭素を排出可能な点で好ましい。生物試料を一定時間以上凹部3内に培養又は封入して保定する場合、又は、二酸化炭素要求性の高い生物試料を用いる場合には、マイクロチップ1の凹部3内の空間において二酸化炭素が不足しがち或いは二酸化炭素が過剰になりがちであるため、生物試料に対する二酸化炭素の影響をコントロールするためにもカバー4の二酸化炭素透過性が重要となる。そのため、例えば、ガスクロマトグラフ法で測定した場合の二酸化炭素透過率(20℃、50%RH)が30mL/(m・24h・atm)以上であるカバー4が望ましい。1時間を超える長時間の培養又は封入を考慮する場合には、二酸化炭素透過率が300mL/(m・24h・atm)以上であることが好ましく、より好ましくは3000mL/(m・24h・atm)以上である。ここで、酸素透過性と二酸化炭素透過性のバランスを考慮すると、例えば酸素透過率が1000mL/(m・24h・atm)のカバー4では、二酸化炭素透過率が3000mL/(m・24h・atm)以上であることが望ましい。換言すると、二酸化炭素透過率が酸素透過率の3倍以上のものを選択でき、10倍程度でも良い。 Further, the cover 4 capable of transmitting carbon dioxide is preferable in that carbon dioxide can be supplied to a biological sample such as a plant cultured or enclosed in the recess 3 or carbon dioxide can be discharged from the recess 3. When a biological sample is cultured or enclosed in the recess 3 for a certain time or more, or when a biological sample having a high carbon dioxide requirement is used, carbon dioxide is insufficient in the space in the recess 3 of the microchip 1. The carbon dioxide permeability of the cover 4 is important in order to control the influence of carbon dioxide on a biological sample because the carbon dioxide tends to be excessive. Therefore, for example, the cover 4 having a carbon dioxide permeability (20 ° C., 50% RH) of 30 mL / (m 2 · 24 h · atm) or more when measured by a gas chromatographic method is desirable. When considering the long culture or encapsulating more than 1 hour, preferably carbon dioxide transmittance of 300mL / (m 2 · 24h · atm) or more, more preferably 3000mL / (m 2 · 24h · atm) or more. Here, considering the balance of oxygen permeability and carbon dioxide permeability, e.g. in the cover 4 of the oxygen permeability 1000mL / (m 2 · 24h · atm), the carbon dioxide permeability 3000mL / (m 2 · 24h · atm) or more. In other words, a carbon dioxide permeability of 3 times or more than the oxygen permeability can be selected, and may be about 10 times.
 カバー4の材質は、特に限定されないが、例えば、ポリスチレン、ポリプロピレン、ポリエチレン、ポリエステル、ポリエチレンテレフタレート、ポリエチレンナフタレート、ガラス、ポリイミドなどが挙げられる。なかでも、ポリスチレンおよびポリプロピレンは、上述の酸素透過性に優れることから、カバー4の材質としてより好ましい。尚、従来公知の種々の添加剤(可塑剤、架橋剤、安定剤など)が添加されていても良い。 The material of the cover 4 is not particularly limited, and examples thereof include polystyrene, polypropylene, polyethylene, polyester, polyethylene terephthalate, polyethylene naphthalate, glass, and polyimide. Among these, polystyrene and polypropylene are more preferable as the material of the cover 4 because they are excellent in the oxygen permeability described above. In addition, conventionally well-known various additives (a plasticizer, a crosslinking agent, a stabilizer, etc.) may be added.
 また、PDMSを母材として形成されるマイクロチップ1は、自己吸着性(密着性)が高いため、裏面が試料台、例えば実体顕微鏡のステージに吸着してしまい操作しづらくなることがある。これを防止するため、マイクロチップ1の裏面にも厚さ100μm程度のカバーを敷いて試料台に載置するようにしても良い。マイクロチップ1の裏面に設けるカバーは、表面が平滑で透明な素材で形成されたものであれば良い。例えば、上記のポリスチレンフィルムは好適である。また、例えば、厚さが100μm、表面粗さRa(JIS2001年規格)が0.001μm程度であるカバーガラスやスライドガラスは、透明でPDMSへの密着性が高く、かつ容易に剥がせるため、好適である。また、イオンマイクロビームを照射する場合、マイクロビームは、マイクロチップ1に加え、マイクロチップ表面2および裏面に配置したカバーを透過する必要がある。このため、カバーを用いてイオンマイクロビーム照射を行う場合には、マイクロチップ1の表面2および裏面の各カバーの厚さとマイクロチップ1の厚さtの総和よりも水中飛程が長いイオン種を選択して使用するのが好ましい。水中飛程が比較的短いイオン種のマイクロビーム照射を行う場合などには、カバー4として、例えば、厚さt2が25μm程度である東レ・デュポン株式会社製のポリイミドフィルム(カプトン(登録商標))を用いても良い。また、イオンマイクロビーム照射において、生物試料を透過したイオンを視覚的に確認する場合には、マイクロチップ1の裏面に設けるカバーを、イオン飛跡検出用プラスチックフィルム、例えば、フクビ化学工業株式会社製のCR-39(Solid State Nuclear Track Detector、TNF-1)とすると良い。尚、CR-39の厚さは、使用するイオン種によって、水中飛程やイオン飛跡検出のためのアルカリエッチングの条件等が異なることを考慮して100μmや450μmなど、適したものを選択すれば良い。さらに、マイクロチップ1に培養又は封入保定した生物試料の蛍光イメージング観察を行う場合は、マイクロチップ表面2および裏面に設けるカバーは、上記の特徴に加えて、自家蛍光の無い又は少ない素材で形成されたものを選択すると良い。例えば、ポリスチレンフィルムは好適に使用できる。 Also, since the microchip 1 formed using PDMS as a base material has high self-adsorption property (adhesion), the back surface may be adsorbed on a sample stage, for example, a stereomicroscope stage, which may be difficult to operate. In order to prevent this, a cover having a thickness of about 100 μm may be laid on the back surface of the microchip 1 and placed on the sample table. The cover provided on the back surface of the microchip 1 only needs to be formed of a material having a smooth and transparent surface. For example, the above polystyrene film is suitable. For example, a cover glass or a slide glass having a thickness of 100 μm and a surface roughness Ra (JIS 2001 standard) of about 0.001 μm is preferable because it is transparent, has high adhesion to PDMS, and can be easily peeled off. It is. When irradiating an ion microbeam, the microbeam needs to pass through the cover disposed on the front surface 2 and the back surface of the microchip in addition to the microchip 1. For this reason, when ion microbeam irradiation is performed using a cover, ion species having an underwater range longer than the sum of the thicknesses of the cover 2 on the front surface 2 and the back surface of the microchip 1 and the thickness t of the microchip 1 are selected. It is preferable to select and use. When performing microbeam irradiation of ion species having a relatively short underwater range, for example, a polyimide film (Kapton (registered trademark)) manufactured by Toray DuPont Co., Ltd. having a thickness t2 of about 25 μm is used as the cover 4. May be used. Further, in the ion microbeam irradiation, in order to visually confirm ions that have passed through the biological sample, a cover provided on the back surface of the microchip 1 is provided with a plastic film for ion track detection, for example, manufactured by Fukubi Chemical Co., Ltd. Use CR-39 (Solid State Nuclear Track Detector, TNF-1). The thickness of CR-39 should be selected as appropriate such as 100 μm or 450 μm in consideration of the underwater range and the conditions of alkaline etching for detecting ion tracks depending on the ion species used. good. Furthermore, in the case of performing fluorescence imaging observation of a biological sample cultured or encapsulated and retained in the microchip 1, the covers provided on the front surface 2 and the back surface of the microchip are made of a material having no or little autofluorescence in addition to the above features. It is good to choose what. For example, a polystyrene film can be suitably used.
 (キット)
 他の実施形態として、上記マイクロチップ1と上記カバー4と組み合わせた生物試料培養キット又は生物試料封入キットを提供し得る。かかる生物試料培養キット又は生物試料封入キットは、マイクロチップ1の凹部3とカバー4との間に構成される空隙内に生物試料を培養又は封入する。上記生物試料培養キット又は生物試料封入キットは、当該キット内に培養又は封入した生物試料を湿潤状態に保持する目的で使用し得る。この場合、表面粗さRaが0.007~0.012μm程度のマイクロチップ1とRaが0.03μm以下のカバー4を組み合わせることが好ましい。マイクロチップ1の表面2に被せるカバー4としては、例えば、厚さt2が100~130μm、Raが0.008μm程度であるポリスチレンフィルムを使用することができる。また、マイクロチップ1の裏面に配置するカバーとしては、上記ポリスチレンフィルムの他、Raが0.002μm程度であるカバーガラスやスライドガラスが好適に使用できる。上記生物試料培養キット又は生物試料封入キットは、当該キット内に培養又は封入した生物試料にマイクロビームを照射する目的で使用し得る。この場合、マイクロチップ1の厚さtとその表面2および裏面に設けるカバーの厚さの総和が使用するイオン種の水中飛程以下となるようにすることが好ましい。上記生物試料培養キット又は生物試料封入キットは、当該キット内に培養又は封入した生物試料を蛍光イメージング観察する目的で使用し得る。この場合、自家蛍光の無い又は少ない素材からなるマイクロチップ1とカバーとを組み合わせて使用することが好ましい。
(kit)
As another embodiment, a biological sample culture kit or a biological sample enclosing kit combined with the microchip 1 and the cover 4 can be provided. Such a biological sample culture kit or biological sample enclosure kit cultivates or encloses a biological sample in a gap formed between the recess 3 of the microchip 1 and the cover 4. The biological sample culture kit or the biological sample enclosure kit can be used for the purpose of keeping the biological sample cultured or enclosed in the kit in a wet state. In this case, it is preferable to combine the microchip 1 having a surface roughness Ra of about 0.007 to 0.012 μm and the cover 4 having an Ra of 0.03 μm or less. As the cover 4 that covers the surface 2 of the microchip 1, for example, a polystyrene film having a thickness t2 of 100 to 130 μm and an Ra of about 0.008 μm can be used. Moreover, as a cover arrange | positioned on the back surface of the microchip 1, the cover glass and slide glass whose Ra is about 0.002 micrometer other than the said polystyrene film can be used conveniently. The biological sample culture kit or the biological sample enclosing kit can be used for the purpose of irradiating the biological sample cultured or enclosed in the kit with a microbeam. In this case, it is preferable that the total sum of the thickness t of the microchip 1 and the thickness of the cover provided on the front surface 2 and the back surface thereof is not more than the underwater range of the ionic species used. The biological sample culture kit or the biological sample enclosing kit can be used for the purpose of fluorescence imaging observation of the biological sample cultured or enclosed in the kit. In this case, it is preferable to use the microchip 1 made of a material having no or little autofluorescence and the cover in combination.
 (マイクロチップの使用方法)
 上述のマイクロチップ1は、生物試料を凹部3に保定するために好適に使用し得る。例えば、生物試料が線虫である場合、図1に示したマイクロチップ1が使用される。
(How to use microchip)
The above-described microchip 1 can be suitably used for retaining the biological sample in the recess 3. For example, when the biological sample is a nematode, the microchip 1 shown in FIG. 1 is used.
 マイクロチップ1に生物試料を封入する方法は、凹部3に生物試料を誘導する操作を含む。即ち、マイクロチップ1の表面2(凹部3形成面)に生物試料を配置し、当該配置された生物試料を凹部3へ誘導する。上記生物試料として線虫を用いる場合であれば、例えば、マイクロチップ1の表面2に液体(典型的には、水又は水溶液)を所定量滴下し、当該液滴中に線虫を移入することで線虫をマイクロチップ1の表面2に配置することができる。或いは、液体中に線虫を分散させておき、当該線虫分散液をマイクロチップ1の表面2に所定量滴下することで線虫をマイクロチップ1の表面2に配置しても良い。 The method of enclosing the biological sample in the microchip 1 includes an operation of guiding the biological sample into the recess 3. That is, a biological sample is disposed on the surface 2 (surface where the recess 3 is formed) of the microchip 1 and the disposed biological sample is guided to the recess 3. If nematodes are used as the biological sample, for example, a predetermined amount of liquid (typically water or an aqueous solution) is dropped on the surface 2 of the microchip 1 and the nematodes are transferred into the droplets. The nematode can be placed on the surface 2 of the microchip 1. Alternatively, the nematodes may be arranged on the surface 2 of the microchip 1 by dispersing the nematodes in a liquid and dropping a predetermined amount of the nematode dispersion on the surface 2 of the microchip 1.
 上記マイクロチップ1の表面2に形成された生物試料を凹部3に誘導する方法は特に限定されない。例えば、生物試料の運動能により凹部3に嵌るのを待つ、振動して落とし込む、白金線を用いて押し込む、上部から圧力をかけて押し込む等、生物試料の特性に応じて適宜選択すれば良い。上記生物試料として線虫を用いる場合であって、上述したようにマイクロチップ1の表面2上に滴下した液滴中に線虫を配置する場合であれば、当該液滴をマイクロチップ1の表面2に向かって押しつぶして凹部3内に液体(水又は水溶液)を行き渡らせることで、当該液滴中の線虫を凹部3に誘導することができる。 The method for guiding the biological sample formed on the surface 2 of the microchip 1 to the recess 3 is not particularly limited. For example, the biological sample may be appropriately selected according to the characteristics of the biological sample, such as waiting for the biological sample to fit in the recess 3, vibrating and dropping, pushing using a platinum wire, or pushing with pressure from above. If a nematode is used as the biological sample and the nematode is placed in a droplet dropped on the surface 2 of the microchip 1 as described above, the droplet is placed on the surface of the microchip 1. The nematode in the droplet can be guided to the recess 3 by crushing toward 2 to spread the liquid (water or aqueous solution) in the recess 3.
 さらに、マイクロチップ1の凹部3に生物試料を保定するために、上記カバー4を組み合わせて用いても良い。即ち、マイクロチップ1の凹部3内に生物試料を封入する方法は、マイクロチップ1の表面2(凹部3形成面)に、凹部3を覆うようにカバー4を配置する操作をさらに含んでも良い。マイクロチップ1の表面2にカバー4を密着させる観点からは、当該マイクロチップ1とカバー4とを押圧することが好ましい。このようにカバー4を用いる場合には、上記液滴を押しつぶす操作に当該カバー4を用いることで、手技を簡略化できるため好ましい。 Furthermore, the cover 4 may be used in combination in order to retain the biological sample in the recess 3 of the microchip 1. That is, the method of enclosing the biological sample in the recess 3 of the microchip 1 may further include an operation of placing the cover 4 on the surface 2 (surface where the recess 3 is formed) of the microchip 1 so as to cover the recess 3. From the viewpoint of bringing the cover 4 into close contact with the surface 2 of the microchip 1, it is preferable to press the microchip 1 and the cover 4. When the cover 4 is used in this way, it is preferable to use the cover 4 for the operation of crushing the droplets because the procedure can be simplified.
 また、図2に示したマイクロチップ1を用いる場合も同様であり、生物試料をウェル3b内に封入し、マイクロチップ1の表面2にカバー4を被せることにより、生物試料をウェル3b内に保定することができる。 The same applies when the microchip 1 shown in FIG. 2 is used. The biological sample is sealed in the well 3b by enclosing the biological sample in the well 3b and covering the surface 2 of the microchip 1 with the cover 4. can do.
 また、マイクロチップ1は、上記のようにして生物試料を凹部3に封入した状態で生物試料に対してマイクロビームを照射する際に好適に使用される。例えば図1のマイクロチップ1を用いて線虫C.エレガンスをチャネル3aに保定した状態であれば、マイクロビーム照射時に線虫の動きを最小限に抑えることができるので、線虫の特定の組織や領域、或いは特定の細胞一つを狙って局所的にマイクロビームを照射することができる。 Further, the microchip 1 is suitably used when the biological sample is irradiated with the microbeam in a state where the biological sample is enclosed in the recess 3 as described above. For example, using the microchip 1 of FIG. If the elegance is held in the channel 3a, the movement of the nematode can be suppressed to the minimum at the time of the microbeam irradiation, so that the target is targeted at a specific tissue or region of the nematode or one specific cell. Can be irradiated with a microbeam.
 また、マイクロチップ1は、上記のようにして生物試料を凹部3に封入した状態で生物試料を培養又は飼育する際にも好適に使用される。例えば図2のマイクロチップ1を用いて生物試料をウェル3bに封入した状態であれば、生物試料を封入したマイクロチップ1を所定の培養環境下又は飼育環境下で所定時間静置することで、生物試料を培養又は飼育することができる。 The microchip 1 is also preferably used when culturing or raising a biological sample with the biological sample enclosed in the recess 3 as described above. For example, if the biological sample is sealed in the well 3b using the microchip 1 of FIG. 2, the microchip 1 in which the biological sample is sealed is allowed to stand for a predetermined time in a predetermined culture environment or breeding environment. Biological samples can be cultured or bred.
 また、マイクロチップ1は、上記のようにして生物試料を凹部3に封入した状態で生物試料を観察する際に好適に使用される。例えば、マイクロチップ1を用いて生物試料を封入保定した状態であれば、生物試料の動きを最小限に抑えることができるので、運動能を有する生物試料を観察し易い。また、マイクロチップ1の凹部3に封入保定することで、当該封入保定された生物試料を容易に区別可能である。このことから、特定の細胞、特定の細胞集団、又は特定の微小生物などの経時的な観察を行い易い。尚、観察方法は特に限定されず、可視光領域での顕微鏡観察、蛍光顕微鏡観察など目的に応じて適宜選択すれば良い。 The microchip 1 is preferably used when observing a biological sample in a state where the biological sample is enclosed in the recess 3 as described above. For example, if the biological sample is sealed and held using the microchip 1, the movement of the biological sample can be minimized, so that it is easy to observe the biological sample having motility. In addition, by enclosing and retaining the recess 3 of the microchip 1, the encapsulated and retained biological sample can be easily distinguished. For this reason, it is easy to observe a specific cell, a specific cell population, or a specific micro organism over time. The observation method is not particularly limited, and may be appropriately selected according to the purpose such as observation with a microscope in the visible light region, observation with a fluorescence microscope.
 尚、上記マイクロチップ1に封入した生物試料へのイオンマイクロビーム照射、上記マイクロチップ1に封入した状態での生物試料の培養又は飼育、又は上記マイクロチップ1に封入した生物試料の観察は、それら単独で行っても良いし、2つ以上を組み合わせて行っても良い。 In addition, the ion microbeam irradiation to the biological sample enclosed in the microchip 1, culture or breeding of the biological sample in the state enclosed in the microchip 1, or observation of the biological sample enclosed in the microchip 1 It may be performed alone or in combination of two or more.
 [実験1]
 線虫C.エレガンス(以下では、単に「線虫」と示すことがある。)の野生型を対象として、上記マイクロチップ1がマイクロビーム照射に適しているかを検証する実験を行った。図4は、マイクロチップ1を使用したイオンマイクロビーム局部照射実験の装置の概要を示す図である。実験に使用したマイクロチップ1は、図1に示したものであり、その厚さtは300μmである。
[Experiment 1]
C. elegans C.I. An experiment was conducted to verify whether the microchip 1 is suitable for microbeam irradiation, with the wild type of elegance (hereinafter sometimes simply referred to as “nematode”) being the target. FIG. 4 is a diagram showing an outline of an apparatus for an ion microbeam local irradiation experiment using the microchip 1. The microchip 1 used in the experiment is the one shown in FIG. 1 and has a thickness t of 300 μm.
 まず、マイクロチップ1の表面2に形成された互いに平行な2つのチャネル3a間に、Wash bufferなどの緩衝液を1滴(約1μL)滴下する。次に、実体顕微鏡で観察しながら、培養プレートから白金線を用いて線虫の成虫を1匹或いは複数匹捕捉し、洗浄した後にマイクロチップ1上に滴下した溶液の液滴の中に入れる。実験に必要な線虫の数に応じてこの操作を繰り返す。その後、マイクロチップ1上に厚さ100μmのカバー4を被せ、カバーで液滴を転がしながら線虫をチャネル3aに誘導し、カバー4をマイクロチップ1の表面2に密着させる。チャネル3aにカバー4を被せることにより、線虫がチャネル3aの内部に自ら収まる。また、カバー4により、チャネル3aの内部から線虫が離脱することを防ぐことができ、チャネル3aに保定することができる。さらに、マイクロチップ1の裏面にも厚さ100μmのイオン飛跡検出用プラスチックフィルムをカバーとして配置した状態で試料台に載置する。 First, one drop (about 1 μL) of a buffer solution such as a Wash buffer is dropped between two parallel channels 3 a formed on the surface 2 of the microchip 1. Next, while observing with a stereomicroscope, one or more adult nematodes are captured from the culture plate using a platinum wire, washed, and then placed into a droplet of the solution dropped on the microchip 1. Repeat this procedure depending on the number of nematodes needed for the experiment. Thereafter, the cover 4 having a thickness of 100 μm is placed on the microchip 1, and the nematode is guided to the channel 3 a while rolling the droplet with the cover, and the cover 4 is brought into close contact with the surface 2 of the microchip 1. By covering the channel 3a with the cover 4, the nematode can be contained within the channel 3a. Further, the cover 4 can prevent the nematode from being detached from the inside of the channel 3a, and can be retained in the channel 3a. Further, the ion track detecting plastic film having a thickness of 100 μm is placed on the back surface of the microchip 1 as a cover and placed on the sample table.
 したがって、図2に示すように、イオンマイクロビーム照射装置の試料台に載置する、試料の厚さは、線虫を封入保定したマイクロチップ1の厚さt、表面2および裏面に配置した2枚のカバーの厚さを合わせた厚さとなり、合計500μmとなる。この状態で、チャネル3aに封入保定された生物試料(線虫)に対し、イオンマイクロビーム照射装置のマイクロアパーチャーから水中飛程1210μmの220MeVの炭素イオンマイクロビームを照射すると、マイクロビームがイオンマイクロビーム照射装置のイオン検出系に到達した。 Therefore, as shown in FIG. 2, the thickness of the sample placed on the sample stage of the ion microbeam irradiation apparatus is the thickness t of the microchip 1 in which nematodes are encapsulated and retained, the surface 2 and the back surface 2. The total thickness of the cover sheets is 500 μm. In this state, when a biological sample (nematode) encapsulated and retained in the channel 3a is irradiated with a 220 MeV carbon ion microbeam having an underwater range of 1210 μm from the micro aperture of the ion micro beam irradiation apparatus, the micro beam is ion micro beam. It reached the ion detection system of the irradiation device.
 図5は、イオンマイクロビーム照射装置のイオン検出系に到達したマイクロビームの飛跡(照射痕)を示す図である。これは、マイクロチップ1の裏面に設けたイオン飛跡検出用プラスチックフィルムCR-39を透過したマイクロビームの照射痕(エッチピット)をアルカリエッチング処理により可視化したものである。これと共に、試料台の下部に配した、ビームを電気信号に変換するイオン検出系(シンチレーター-光電子増倍管アセンブリなど)では、到達したイオンビームが計数された。このことから、マイクロチップ1をマイクロビームが透過したことは明らかである。 FIG. 5 is a diagram showing a trace (irradiation trace) of the microbeam that has reached the ion detection system of the ion microbeam irradiation apparatus. This is a visualization of the irradiation traces (etch pits) of the microbeam transmitted through the ion track detection plastic film CR-39 provided on the back surface of the microchip 1 by an alkali etching process. At the same time, in an ion detection system (such as a scintillator-photomultiplier tube assembly) arranged at the lower part of the sample stage for converting the beam into an electric signal, the reached ion beam was counted. From this, it is clear that the microbeam has passed through the microchip 1.
 次に、比較例として、従来のPDMSマイクロチップ(非特許文献1)を使用して上記と同様の実験を行った。図6は、従来のPDMSマイクロチップを使用した実験装置の概要を示す図である。実験に使用したPDMSマイクロチップの厚さtは約2.5mmである。図6に示すように、イオンマイクロビーム照射装置の試料台に載置する、線虫を封入保定したマイクロチップとその表面および裏面に配置したカバーの厚さは、合計で約2.7mmとなる。その状態で、チャネルに封入保定された線虫に対し、イオンマイクロビーム照射装置のマイクロアパーチャーから水中飛程1210μmの220MeVの炭素イオンマイクロビームを照射すると、マイクロビームはイオンマイクロビーム照射装置のイオン検出系に到達せず、線虫に照射されたマイクロビームを測定することができなかった。 Next, as a comparative example, an experiment similar to the above was performed using a conventional PDMS microchip (Non-Patent Document 1). FIG. 6 is a diagram showing an outline of an experimental apparatus using a conventional PDMS microchip. The thickness t of the PDMS microchip used in the experiment is about 2.5 mm. As shown in FIG. 6, the total thickness of the microchips encapsulating and retaining nematodes and the covers disposed on the front and back surfaces of the microchips placed on the sample stage of the ion microbeam irradiation apparatus is about 2.7 mm. . In this state, when a nematode encapsulated and retained in the channel is irradiated with a 220 MeV carbon ion microbeam having an underwater range of 1210 μm from the micro aperture of the ion micro beam irradiation apparatus, the micro beam is detected by the ion micro beam irradiation apparatus. The microbeam irradiated to the nematode could not be measured without reaching the system.
 以上のことから、本発明におけるマイクロチップ1は、生物試料を封入保定した状態で局所的に各種イオンマイクロビームを照射するのに適していることが明らかである。また、X線、電子線、レーザーなどのマイクロビーム照射にも好適に使用できる。 From the above, it is apparent that the microchip 1 according to the present invention is suitable for locally irradiating various ion microbeams in a state in which a biological sample is encapsulated and retained. Moreover, it can be suitably used for microbeam irradiation such as X-rays, electron beams, and lasers.
 [実験2]
 次に、上述のように親水性を付与したマイクロチップ1が生物試料の脱水症状を緩和できるかを検証する実験を行った。本実験では、線虫C.エレガンスの野生型を対象とし、線虫の洗浄およびチャネル3aへの封入に用いる溶液として、純水(Milli Q water)と、第1の緩衝液(S basal buffer)と、第2の緩衝液(M9 buffer)との3種類の溶液を用意し、それらの溶液が線虫に及ぼす影響を調べた。尚、第1の緩衝液および第2の緩衝液の組成は、次の表2に示す通りである。
[Experiment 2]
Next, an experiment was conducted to verify whether the microchip 1 imparted with hydrophilicity as described above can alleviate the dehydration of the biological sample. In this experiment, C. elegans C.I. For the wild type of elegance, as a solution used for nematode washing and encapsulation in the channel 3a, pure water (Milli Q water), a first buffer solution (Sbasal buffer), and a second buffer solution ( Three types of solutions with M9 buffer) were prepared, and the effects of these solutions on nematodes were examined. The compositions of the first buffer solution and the second buffer solution are as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 まず、基準データを得るため、線虫を培養したプレートから白金線を用いて線虫の成虫5匹以上を捕捉し、3種類の溶液のうちの1つの溶液の液滴中で洗浄する。洗浄した5匹以上の線虫を、白金線を用いて寒天プレート(以下、「NGM」という。)上に移し、1時間自由に運動させる。その後、白金線を用いて線虫を新しいNGM上に移し、線虫の頭部屈曲回数を計数する。頭部屈曲回数は1匹当たり20秒間計数することとし、合計5匹の線虫の頭部屈曲回数の平均値を求める。これを3種類の溶液のそれぞれについて各6回独立して行った実験の結果を図7に示す。尚、図7におけるエラーバーは標準誤差を示す。 First, in order to obtain reference data, five or more adult nematodes are captured from a plate in which nematodes are cultured using a platinum wire and washed in a droplet of one of the three solutions. Five or more washed nematodes are transferred onto an agar plate (hereinafter referred to as “NGM”) using a platinum wire and allowed to move freely for 1 hour. Thereafter, the nematode is transferred onto a new NGM using a platinum wire, and the number of flexion of the head of the nematode is counted. The number of flexion of the head is counted for 20 seconds per animal, and an average value of the number of flexion of the head of a total of 5 nematodes is obtained. FIG. 7 shows the results of an experiment in which this was independently performed 6 times for each of the three types of solutions. Note that error bars in FIG. 7 indicate standard errors.
 図7に示すように、NGM上で1時間自由に運動させた場合には、3種類の溶液のいずれを使用して洗浄した場合であっても、線虫の平均頭部屈曲回数は約25回/20秒で有意差は無い、即ち、各溶液の線虫の運動性に対する有意な影響は認められない(有意水準をP<0.05とした場合)。この平均頭部屈曲回数を次の実験の基準データとする。 As shown in FIG. 7, when the NGM was allowed to move freely for 1 hour, the average number of flexion of the head of the nematode was about 25, regardless of which of the three types of solutions was used for washing. No significant difference at times / 20 seconds, that is, no significant effect on the worm motility of each solution is observed (when the significance level is P <0.05). This average head flexion number is used as reference data for the next experiment.
 次に、従来のPDMSマイクロチップ(以下、「チップL」と示すことがある。)と、上述したマイクロチップ1(図1参照)と同形状であって親水性を付与していないマイクロチップ(以下、「チップB1」と示すことがある。)と、マイクロチップ全体に親水性を付与したマイクロチップ1(以下、「チップB2」と示すことがある。)との3つのマイクロチップを用意し、それぞれのマイクロチップを用いて上記と同様の実験を行った。即ち、線虫を培養したプレートから白金線を用いて線虫の成虫5匹以上を捕捉し、3種類の溶液のうちの1つの溶液の液滴中で洗浄する。洗浄した5匹以上の線虫を、白金線を用いてマイクロチップ上の同じ溶液の液滴中に移し、カバーを用いて全ての線虫をチャネルに収め、カバーをマイクロチップに密着させる。即ち、線虫をチャネルの内部に封入保定するのである。その状態で1時間静置した後、マイクロチップ表面からカバーを取り除き、線虫を封入したチャネルに同じ溶液を滴下する。液滴中の線虫を、白金線を用いてNGM上に移し、線虫の頭部屈曲回数を計数する。上記と同様に、頭部屈曲回数は1匹当たり20秒間計数することとし、合計5匹の線虫の頭部屈曲回数の平均値を求める。 Next, a conventional PDMS microchip (hereinafter sometimes referred to as “chip L”) and a microchip that has the same shape as the above-described microchip 1 (see FIG. 1) and has no hydrophilicity ( Hereinafter, three microchips are prepared, which may be referred to as “chip B1”) and microchip 1 (hereinafter also referred to as “chip B2”) in which hydrophilicity is imparted to the entire microchip. The same experiment as described above was performed using each microchip. That is, 5 or more adult nematodes are captured from a plate in which nematodes are cultured using a platinum wire and washed in a droplet of one of the three types of solutions. Five or more washed nematodes are transferred into droplets of the same solution on a microchip using a platinum wire, all nematodes are placed in a channel using a cover, and the cover is adhered to the microchip. That is, the nematode is encapsulated and retained inside the channel. After standing for 1 hour in that state, the cover is removed from the surface of the microchip, and the same solution is dropped into the channel containing the nematode. The nematode in the droplet is transferred onto the NGM using a platinum wire, and the number of head flexion of the nematode is counted. Similarly to the above, the number of head flexions is counted for 20 seconds per animal, and the average value of the number of head flexions of a total of 5 nematodes is obtained.
 図8は、溶液として純水を使用した場合の線虫の頭部屈曲回数の相対値を示す図であり、図7に示した自由に運動させた線虫の純水使用時の平均頭部屈曲回数を1として正規化して表している。図8に示すように、溶液として純水を使用した場合、従来のPDMSマイクロチップ(チップL)のみにおいて、線虫を1時間チャネルに封入保定した後の運動性が有意に低下した(*P<0.05)。図8における*は有意水準P<0.05で対照群との間に有意差があることを示している。この点は、以下の他の図においても同様である。 FIG. 8 is a diagram showing the relative value of the number of flexion times of nematode heads when pure water is used as a solution, and the average head when using pure water of nematodes freely moved as shown in FIG. The number of bends is normalized and represented as 1. As shown in FIG. 8, when pure water was used as the solution, the motility after the nematode was encapsulated and retained in the channel for 1 hour was significantly reduced only in the conventional PDMS microchip (chip L) (* P <0.05). * In FIG. 8 indicates that there is a significant difference from the control group at the significance level P <0.05. This point is the same in other drawings below.
 図9は、溶液として第1の緩衝液を使用した場合の線虫の頭部屈曲回数の相対値を示す図であり、図7に示した第1の緩衝液使用時の線虫の平均頭部屈曲回数を1として正規化して表している。図9における**は有意水準P<0.01で対照群との間に有意差があることを示している。この点は、以下の他の図においても同様である。図9に示すように、溶液として塩濃度の高い第1の緩衝液を使用した場合、従来のPDMSマイクロチップ(チップL)と、親水性を付与していないマイクロチップ(チップB1)との2つのマイクロチップにおいて、線虫を1時間チャネルに封入保定した後の運動性が有意に低下した(*P<0.05、**P<0.01)。 FIG. 9 is a diagram showing a relative value of the number of times the head of the nematode bends when the first buffer is used as a solution. The average head of the nematode when the first buffer shown in FIG. 7 is used. The number of times of partial bending is normalized and expressed as 1. ** in FIG. 9 indicates that there is a significant difference from the control group at the significance level P <0.01. This point is the same in other drawings below. As shown in FIG. 9, when a first buffer solution having a high salt concentration is used as a solution, a conventional PDMS microchip (chip L) and a microchip (chip B1) not imparting hydrophilicity are used. In one microchip, motility was significantly reduced after nematodes were encapsulated in channels for 1 hour (* P <0.05, ** P <0.01).
 図10は、溶液として第2の緩衝液を使用した場合の線虫の頭部屈曲回数の相対値を示す図であり、図7に示した第2の緩衝液使用時の線虫の頭部屈曲回数を1として正規化して表している。図10に示すように、溶液としてリン酸および塩濃度の高い第2の緩衝液を使用した場合、従来のPDMSマイクロチップ(チップL)のみにおいて、線虫を1時間チャネルに封入保定した後の運動性が有意に低下した(**P<0.01)。 FIG. 10 is a diagram showing a relative value of the number of times the nematode head bends when the second buffer solution is used as a solution, and the nematode head portion when the second buffer solution shown in FIG. 7 is used. The number of bends is normalized and represented as 1. As shown in FIG. 10, when the second buffer solution having a high phosphate and salt concentration was used as the solution, the nematode was sealed and retained in the channel for 1 hour only with the conventional PDMS microchip (chip L). Motility was significantly reduced (** P <0.01).
 以上のことから、本発明のように、親水性を付与したマイクロチップ1(チップB2)は、線虫を洗浄および封入する際に使用する溶液の種類に関わらず、1時間チャネル3aに封入保定した後においても線虫の運動性に対する影響は観られない。即ち、マイクロチップ全体に親水性を付与したマイクロチップ1を使用すれば、線虫のような微小生物の脱水症状を抑制できることが明らかである。 From the above, as in the present invention, hydrophilic microchip 1 (chip B2) is encapsulated and retained in channel 3a for 1 hour regardless of the type of solution used when nematodes are washed and encapsulated. Even after doing so, no effect on the worm's motility is observed. That is, it is clear that the use of the microchip 1 having hydrophilicity throughout the microchip can suppress dehydration of micro-organisms such as nematodes.
 [実験3]
 次に、マイクロチップ表面のみを親水化した場合と、マイクロチップ全体を親水化した場合とを比較する実験を行った。上述したマイクロチップ1と同形状であって親水性を付与していないマイクロチップ(以下、「チップB1」と示すことがある。)と、上述したマイクロチップ1と同形状であってプラズマ処理によって表面のみに親水性を付与したマイクロチップ(以下、「チップB1」と示すことがある。)と、マイクロチップ全体に親水性を付与したマイクロチップ1(以下、「チップB2」と示すことがある。)との3つのマイクロチップを用意し、それぞれのマイクロチップを用いて上記と同様の実験を行った。本実験では、線虫C.エレガンスの野生型を対象とし、線虫の洗浄および封入には、実験2で線虫の運動性を最も低下させた塩濃度の高い第1の緩衝液(S basal buffer)を用いる。また、蛍光イメージング観察などでの長時間使用を想定し、線虫のチャネル3aへの封入時間を3時間とし、3時間後にNGM上に移した線虫5匹の頭部屈曲回数を計数して平均値を求める。比較対象として、NGM上で3時間自由に運動させた後、新たなNGM上に移した線虫5匹の頭部屈曲回数も計数して平均値を求める。これを3種類のマイクロチップとNGMのそれぞれについて各3回独立して行った実験の結果を図11に示す。
[Experiment 3]
Next, an experiment was conducted comparing the case where only the microchip surface was hydrophilized and the case where the entire microchip was hydrophilized. A microchip that has the same shape as the above-described microchip 1 and has no hydrophilicity (hereinafter, may be referred to as “chip B1”), and that has the same shape as the above-described microchip 1 and that is subjected to plasma treatment. A microchip having hydrophilicity only on the surface (hereinafter sometimes referred to as “chip B1”) and a microchip 1 having hydrophilicity imparted to the entire microchip (hereinafter referred to as “chip B2”). .) And three microchips were prepared, and an experiment similar to the above was performed using each microchip. In this experiment, C. elegans C.I. For the elegance wild type, the first buffer solution (S basal buffer) having a high salt concentration, in which the motility of the nematode is reduced most in Experiment 2, is used for washing and encapsulating the nematode. Assuming long-term use in fluorescence imaging observation, etc., the nematode channel 3a was sealed for 3 hours, and the number of head flexions of 5 nematodes transferred to NGM after 3 hours was counted. Find the average value. As a comparison object, the number of flexion of the heads of five nematodes that were moved freely on the NGM for 3 hours and then transferred to a new NGM was also counted to obtain an average value. FIG. 11 shows the result of an experiment in which this was independently performed three times for each of the three types of microchips and NGM.
 図11に示すように、親水性を付与しておらず疎水性を示すマイクロチップ(チップB1)およびプラズマ処理により表面のみに親水性を付与したマイクロチップ(チップB1)に3時間封入保定した線虫では、いずれも運動性が有意に低下した(*P<0.05)。これに対し、マイクロチップ全体に親水性を付与したマイクロチップ(チップB2)に3時間封入保定した線虫の運動性には、NGM上で自由に運動させた線虫との間に有意な差が無く、脱水による運動性の低下が生じないことが明らかとなった。 As shown in FIG. 11, a microchip (chip B1) that is not hydrophilic and has a hydrophobic property and a microchip (chip B1) that is hydrophilic only on the surface by plasma treatment are encapsulated and held for 3 hours. In all insects, motility was significantly reduced (* P <0.05). On the other hand, the motility of the nematode encapsulated and retained for 3 hours in the microchip (chip B2) provided with hydrophilicity throughout the microchip is significantly different from that of the nematode freely moved on NGM. It was revealed that there was no decrease in motility due to dehydration.
 したがって、生物試料の脱水症状を抑制するためには、マイクロチップ1の表面2のチャネル3aのみに対して親水性を付与するよりも、マイクロチップ全体に対して親水性を付与する方が、特に長時間使用時において顕著な効果が得られることが判明した。 Therefore, in order to suppress dehydration of the biological sample, it is particularly preferable to impart hydrophilicity to the entire microchip rather than to impart hydrophilicity only to the channel 3a on the surface 2 of the microchip 1. It has been found that a remarkable effect can be obtained when used for a long time.
 [実験4]
 次に、マイクロチップ1の反復使用によって親水性に劣化が生じないかどうかを検証する実験を行った。本実験では、線虫C.エレガンスの野生型を対象とし、線虫の洗浄および封入には、実験3と同様の第1の緩衝液を用いることとし、マイクロチップ全体に親水性を付与したマイクロチップ1(以下、「チップB2」と示すことがある。)のチャネル3aに線虫を3時間封入保定した後に線虫を取り出し、同マイクロチップ1を純水(Milli Q water)で洗浄したうえで、70%エタノールで滅菌処理し、その後、乾燥させる。線虫の封入保定、マイクロチップ洗浄および滅菌処理の一連の作業を、9回反復して行う。そして、10回目の使用時には、マイクロチップ1のチャネル3aに線虫を3時間封入保定した後、線虫をNGM上に移し、5匹の頭部屈曲回数を計数して平均値を求める。比較対象として、NGM上で3時間自由に運動させた後、新たなNGM上に移した線虫5匹の頭部屈曲回数も計数して平均値を求める。これをチップB2とNGMについて各3回独立して行った実験の結果を図12に示す。
[Experiment 4]
Next, an experiment was conducted to verify whether the hydrophilicity does not deteriorate due to repeated use of the microchip 1. In this experiment, C. elegans C.I. For the wild type of elegance, the first buffer solution used in Experiment 3 was used for washing and encapsulating nematodes, and the microchip 1 (hereinafter referred to as “chip B2”) was given hydrophilicity to the entire microchip. The nematode is encapsulated and held in the channel 3a for 3 hours, and then the nematode is taken out and washed with pure water (Milli Q water) and sterilized with 70% ethanol. And then dried. A series of operations of entrapment and retention of nematodes, microchip cleaning and sterilization are repeated 9 times. At the time of use for the tenth time, the nematode is encapsulated and held in the channel 3a of the microchip 1 for 3 hours, and then the nematode is transferred onto the NGM, and the number of flexion of five heads is counted to obtain an average value. As a comparison object, the number of flexion of the heads of five nematodes that were moved freely on the NGM for 3 hours and then transferred to a new NGM was also counted to obtain an average value. FIG. 12 shows the results of an experiment in which this was independently performed three times for chips B2 and NGM.
 図12に示すように、マイクロチップ全体に親水性を付与したマイクロチップ1を10回使用した場合であっても、マイクロチップ1のチャネル3aに3時間封入保定した線虫の運動性には、NGM上で3時間自由に運動させた線虫と有意な差が無かった。したがって、マイクロチップ全体に親水性を付与したマイクロチップ1は、長時間かつ反復して使用する場合であっても親水性を保持し、線虫C.エレガンスのような微小生物の脱水症状を抑制できることが明らかである。 As shown in FIG. 12, even when the microchip 1 imparted with hydrophilicity to the entire microchip is used ten times, the mobility of the nematode sealed and held in the channel 3a of the microchip 1 for 3 hours is There was no significant difference from nematodes that were allowed to move freely on NGM for 3 hours. Therefore, the microchip 1 imparted with hydrophilicity to the entire microchip retains hydrophilicity even when used repeatedly for a long time. It is clear that dehydration of micro-organisms such as elegance can be suppressed.
 [実験5]
 次に、マイクロチップ1が観察、特に蛍光イメージング観察用として適しているか否かを検証する実験を行った。図13は、マイクロチップ1のチャネル3aに線虫を封入保定した状態を撮影した明視野像である。チャネル3aに封入保定した線虫は、頭から尾まで伸びる体壁筋細胞のみを蛍光プローブで標識した遺伝子組換え線虫である。蛍光がわからない図13の明視野像では野生型の線虫と変わらない。これに対し、図14は、同じ線虫の蛍光像である。蛍光像は、細胞の収縮強度に対応する蛍光強度の画像となる。マイクロチップ1は、麻酔薬を使うことなく線虫の動きを抑制し、生きた状態のままで観察することを可能にする。しかも、線虫の脱水症状を抑制することができ、長時間の観察にも好適である。また、上述したマイクロチップ1には、自家蛍光が全く無い。そのため、線虫の筋細胞や神経細胞等の活動を捉えることを目的とする蛍光イメージング観察にも、好適に利用できる。
[Experiment 5]
Next, an experiment was conducted to verify whether the microchip 1 is suitable for observation, particularly for fluorescence imaging observation. FIG. 13 is a bright-field image obtained by photographing a state in which nematodes are encapsulated and retained in the channel 3 a of the microchip 1. The nematodes encapsulated and retained in the channel 3a are genetically modified nematodes in which only body wall myocytes extending from the head to the tail are labeled with a fluorescent probe. In the bright field image of FIG. 13 where the fluorescence is not known, it is not different from the wild type nematode. On the other hand, FIG. 14 is a fluorescent image of the same nematode. The fluorescence image is an image having a fluorescence intensity corresponding to the contraction intensity of the cells. The microchip 1 suppresses the movement of the nematode without using an anesthetic, and enables observation in a living state. Moreover, the nematode dehydration can be suppressed, and it is also suitable for long-term observation. Further, the above-described microchip 1 has no autofluorescence. Therefore, it can be suitably used for fluorescence imaging observation for the purpose of capturing activities of nematode muscle cells, nerve cells, and the like.
 [実験6]
 次に、図2に示したマイクロチップ1が細胞培養に適しているか否かを検証する実験を行った。図15は、市販の細胞培養用ディッシュを用いてヒト細胞を培養した結果を撮影した明視野像である。即ち、市販の細胞培養用ディッシュにヒト細胞懸濁液をスポットし(播き込み)、脱水防止のために蓋を被せて37℃で培養し、6時間経過後にディッシュ内を撮影したものである。図15に示すように、市販の細胞培養用ディッシュを使用すれば、細胞がディッシュに接着し、増殖し始めていることがわかる。
[Experiment 6]
Next, an experiment was conducted to verify whether or not the microchip 1 shown in FIG. 2 is suitable for cell culture. FIG. 15 is a bright field image obtained by photographing the results of culturing human cells using a commercially available dish for cell culture. That is, a human cell suspension was spotted (seeded) on a commercially available dish for cell culture, covered with a lid to prevent dehydration, cultured at 37 ° C., and the inside of the dish was photographed after 6 hours. As shown in FIG. 15, when a commercially available dish for cell culture is used, it can be seen that the cells adhere to the dish and start to grow.
 図16は、図2に示したマイクロチップ1であってマイクロチップ全体に親水性を付与し、マイクロチップ表面2に対してプラズマ処理を行っていないマイクロチップを用いてヒト細胞を培養した結果を撮影した明視野像である。即ち、図2のマイクロチップ1を滅菌処理した後、無菌処理ディッシュ内に置き、ヒト細胞懸濁液を播き込み、脱水防止のために蓋を被せて37℃で培養し、6時間経過後にウェル3b内を撮影したものである。図16に示すように、マイクロチップ全体に親水性を付与しただけのマイクロチップ1では、6時間経過後の細胞の接着および増殖が不十分であることがわかる。 FIG. 16 shows the result of culturing human cells using the microchip 1 shown in FIG. 2 that imparts hydrophilicity to the entire microchip and the microchip surface 2 is not subjected to plasma treatment. A bright field image taken. That is, after sterilizing the microchip 1 of FIG. 2, it is placed in an aseptic processing dish, seeded with a human cell suspension, covered with a lid to prevent dehydration, and cultured at 37 ° C. 3b is taken. As shown in FIG. 16, it can be seen that in the microchip 1 in which hydrophilicity is imparted to the entire microchip, cell adhesion and proliferation after 6 hours are insufficient.
 次に、図17は、図2に示したマイクロチップ1であって、マイクロチップ全体に親水性を付与し、さらにその表面2に対してプラズマ処理を行ったマイクロチップを用いてヒト細胞を培養した結果を撮影した明視野像である。即ち、プラズマ処理を行ったマイクロチップ1を滅菌処理した後、無菌処理ディッシュ内に置き、ヒト細胞懸濁液を播き込み、脱水防止のために蓋を被せて37℃で培養し、6時間経過後にウェル3b内を撮影したものである。図17に示すように、マイクロチップ表面2にプラズマ処理を行ったマイクロチップ1では、図15に示した市販の細胞培養用ディッシュを用いた場合と同様に細胞が接着し、増殖し始めていることが確認できる。したがって、上述したマイクロチップ1は、マイクロチップ表面2に対してプラズマ処理を行えば、培養細胞にも好適に利用することができる。 Next, FIG. 17 shows the microchip 1 shown in FIG. 2, in which human cells are cultured using the microchip in which hydrophilicity is imparted to the entire microchip and the surface 2 is subjected to plasma treatment. It is a bright field image which image | photographed the result. That is, after sterilizing the microchip 1 subjected to plasma treatment, it is placed in an aseptic treatment dish, seeded with a human cell suspension, covered with a lid to prevent dehydration, and cultured at 37 ° C. for 6 hours. The inside of the well 3b was taken later. As shown in FIG. 17, in the microchip 1 in which the microchip surface 2 is subjected to the plasma treatment, the cells start to adhere and proliferate in the same manner as in the case of using the commercially available cell culture dish shown in FIG. Can be confirmed. Therefore, the above-described microchip 1 can be suitably used for cultured cells if the microchip surface 2 is subjected to plasma treatment.
 次に、図18は、図2に示したマイクロチップ1であって、マイクロチップ全体に親水性を付与し、さらにマイクロチップ1のウェル3bの表面6に細胞接着性を向上させるコート剤(CellTak(登録商標))を塗布したマイクロチップ1を用いてヒト細胞を培養した結果を撮影した明視野像である。即ち、ウェル3bの表面6に細胞接着性を向上させるコート剤を塗布したマイクロチップ1を滅菌処理した後、無菌処理ディッシュ内に置き、ヒト細胞懸濁液を播き込み、脱水防止のために蓋を被せて37℃で培養し、6時間経過後にウェル3b内を撮影したものである。図18に示すように、マイクロチップ1のウェル3bの表面6に細胞接着性を向上させるコート剤を塗布したマイクロチップ1では、図15に示した市販の細胞培養用ディッシュを用いた場合と同様に細胞が接着し、増殖し始めていることが確認できる。したがって、ウェル3bの表面6に細胞接着性を向上させるコート剤を塗布したマイクロチップ1は、培養細胞に好適に利用することができる。 Next, FIG. 18 shows the microchip 1 shown in FIG. 2, which is a coating agent (CellTak) that imparts hydrophilicity to the entire microchip and further improves cell adhesion on the surface 6 of the well 3 b of the microchip 1. It is the bright field image which image | photographed the result of having cultured the human cell using the microchip 1 which apply | coated (registered trademark). That is, after sterilizing the microchip 1 coated with a coating agent that improves cell adhesion on the surface 6 of the well 3b, the microchip 1 is placed in an aseptic processing dish, seeded with a human cell suspension, and covered with a lid to prevent dehydration. The well 3b was photographed after 6 hours. As shown in FIG. 18, in the microchip 1 in which a coating agent for improving cell adhesion is applied to the surface 6 of the well 3b of the microchip 1, the same as in the case of using the commercially available cell culture dish shown in FIG. It can be confirmed that the cells adhere to the cell and start to proliferate. Therefore, the microchip 1 in which the coating agent that improves cell adhesion is applied to the surface 6 of the well 3b can be suitably used for cultured cells.
 次に、マイクロチップ1が培養細胞観察、特に蛍光イメージング観察用として適しているか否かを検証する実験を行った。マイクロチップ1として、マイクロチップ全体に親水性を付与したマイクロチップ(上記実験2における「チップB2」と同様の材質のマイクロチップ)を用いた。図19は、マイクロチップ1全体に親水性を付与し、さらにウェル3bの表面6に細胞接着性を向上させるコート剤(CellTak(登録商標))を塗布したうえで、蛍光色素で全体を生体染色したヒト細胞を播種して接着した状態で、ウェル3bの表面6にカバーを密着させ、正立蛍光顕微鏡を用いて撮影した蛍光像である。マイクロチップ1は、細胞を接着した状態で蛍光像を取得することができ、自家蛍光が全く無い。マイクロチップ1は厚さtが薄いため、通常の生きた細胞の蛍光イメージング観察では水浸レンズを用いない限り実現できない正立顕微鏡を用いた撮影ができる。そのため、動植物の生きた細胞の動態を生体蛍光染色を用いて解析することを目的とする蛍光イメージング観察にも、好適に利用できる。 Next, an experiment was conducted to verify whether the microchip 1 is suitable for cultured cell observation, particularly for fluorescence imaging observation. As the microchip 1, a microchip having a hydrophilic property throughout the microchip (a microchip made of the same material as “chip B2” in Experiment 2 above) was used. FIG. 19 shows that the entire microchip 1 is made hydrophilic, and further, a coating agent (CellTak (registered trademark)) for improving cell adhesion is applied to the surface 6 of the well 3b, and then the whole is stained with a fluorescent dye. It is the fluorescence image which image | photographed using the erecting fluorescence microscope, making the cover closely_contact | adhere to the surface 6 of the well 3b in the state which seed | inoculated and adhere | attached the obtained human cell. The microchip 1 can acquire a fluorescence image with the cells adhered, and has no autofluorescence. Since the microchip 1 has a small thickness t, it is possible to take an image using an upright microscope that cannot be realized without using a water immersion lens in normal fluorescent imaging observation of living cells. Therefore, it can also be suitably used for fluorescence imaging observation for the purpose of analyzing the dynamics of living cells of animals and plants using biological fluorescent staining.
 [実験7]
 次に、マイクロチップ1に被せるカバー4の酸素透過性が生物試料に与える影響を検証する実験を行った。本実験では、線虫C.エレガンスの野生型の成虫を対象とし、実験2で使用したマイクロチップ全体に親水性を付与したマイクロチップ1(チップB2)のチャネル3aへの封入のために被せるカバー4として、例えば波長360~1500nmでの光透過率が90%以上であり観察に好適ではあるが、酸素を透過しないカバーガラス(以下、「ガラスカバー」と示すことがある。)、酸素透過率(20℃、50%RH)が30mL/(m・24h・atm)程度と極めて低いポリエステルフィルム(以下、PETカバーと示すことがある。)、酸素透過率が1000mL/(m・24h・atm)以上と極めて高いポリスチレンフィルム(以下、PSカバーと示すことがある。)とを用い、それらの使用が線虫に及ぼす影響を調べた。ガラスカバーは厚さtが130~170μmであり、PETカバーは厚さtが約130μmであり、PSカバーは厚さtが125μmである。線虫の洗浄およびチャネル3aへの封入には、実験2において線虫の運動性を最も低下させた、即ち、脱水を生じやすい塩濃度の高い第1の緩衝液(S basal buffer)を用いた。線虫を培養したプレートから白金線を用いて線虫の成虫を10匹以上捕捉し、第1の緩衝液の液滴中で洗浄した。洗浄した10匹以上の線虫を、マイクロチップ1上に滴下した緩衝液の液滴中に白金線を用いて移し、カバー4を用いて全ての線虫をチャネル3aに収め、カバー4をマイクロチップ1の表面に密着させた。イメージング等での長時間使用を想定して線虫のチャネル3aへの封入時間を3時間とした。即ち、3つのマイクロチップ1のチャネル3aに線虫を封入し、それぞれのマイクロチップ1に異なるカバー4を被せて3時間静置した。その後、各マイクロチップ1の表面2からカバー4を取り除き、線虫を封入したチャネル3aに第1の緩衝液を滴下する。液滴中の線虫をNGM上に移し、線虫1匹当たりの頭部屈曲回数を20秒間計数することとし、合計10匹の線虫の頭部屈曲回数の平均値を求めた。また、比較対象として、NGM上で3時間自由運動させた後、新たなNGMに移した線虫10匹の頭部屈曲回数も計数して平均値を求めた。この実験をガラスカバー、PETカバー、PSカバーとNGМについて各5回独立して行った結果を図20に示す。尚、使用した3種類のカバーの物性の測定値を次の表3に示す。
[Experiment 7]
Next, an experiment was conducted to verify the influence of the oxygen permeability of the cover 4 placed on the microchip 1 on the biological sample. In this experiment, C. elegans C.I. Cover 4 for covering the channel 3a of the microchip 1 (chip B2) in which the entire microchip used in the experiment 2 is made hydrophilic for the elegance wild-type adult, for example, a wavelength of 360 to 1500 nm The light transmittance at 90 ° C. is 90% or more, which is suitable for observation, but does not transmit oxygen (hereinafter sometimes referred to as “glass cover”), oxygen transmittance (20 ° C., 50% RH) Is a very low polyester film (hereinafter sometimes referred to as a PET cover) of about 30 mL / (m 2 · 24 h · atm), and an oxygen transmission rate of 1000 mL / (m 2 · 24 h · atm) or more. (Hereinafter, it may be referred to as PS cover.) And the effect of their use on nematodes was examined. The glass cover has a thickness t of 130 to 170 μm, the PET cover has a thickness t of about 130 μm, and the PS cover has a thickness t of 125 μm. For the nematode washing and encapsulation in the channel 3a, the first buffer solution (S basal buffer) having the lowest salt motility, that is, the salt concentration that tends to cause dehydration, was used in Experiment 2. . Ten or more adult nematodes were captured from a plate in which the nematodes were cultured using a platinum wire and washed in a first buffer droplet. Ten or more washed nematodes are transferred into a buffer droplet dropped on the microchip 1 using a platinum wire, all the nematodes are placed in the channel 3a using the cover 4, and the cover 4 is micro The chip 1 was brought into close contact with the surface. The entrapment time of the nematode in the channel 3a was set to 3 hours on the assumption of long-time use in imaging or the like. That is, nematodes were sealed in the channels 3a of the three microchips 1 and the respective microchips 1 were covered with different covers 4 and allowed to stand for 3 hours. Thereafter, the cover 4 is removed from the surface 2 of each microchip 1, and the first buffer solution is dropped onto the channel 3a enclosing the nematode. The nematodes in the droplets were transferred onto NGM, and the number of head flexions per nematode was counted for 20 seconds, and the average value of the total number of head flexes of 10 nematodes was determined. In addition, as a comparison object, the number of flexion of the heads of 10 nematodes that were moved freely on NGM for 3 hours and then transferred to a new NGM was counted to obtain an average value. FIG. 20 shows the results of performing this experiment independently for each of glass cover, PET cover, PS cover and NGМ five times. The measured values of the physical properties of the three types of covers used are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図20に示すように、マイクロチップ全体に親水性を付与したマイクロチップ1(チップB2)のチャネル3aにガラスカバーを被せて3時間封入した線虫およびPETカバーを被せて封入した線虫の運動性はいずれも、NGM上で3時間自由運動させた線虫に比べて有意に低下した(*P<0.05、**P<0.01)。一方、PSカバーを被せて封入した線虫の運動性は、NGM上で3時間自由運動させた比較例との間に有意な差が無かった。即ち、線虫をチャネル3aに封入する際にPSカバーを用いれば、酸欠や脱水による運動性の低下が生じないことが明らかとなった。 As shown in FIG. 20, the movement of a nematode encapsulated for 3 hours by covering the channel 3a of the microchip 1 (chip B2) with hydrophilicity imparted to the entire microchip and enclosing the PET cover for 3 hours. Both sexes were significantly reduced compared to nematodes that were allowed to move freely on NGM for 3 hours (* P <0.05, ** P <0.01). On the other hand, the motility of the nematode encapsulated with the PS cover was not significantly different from that of the comparative example which was allowed to move freely on NGM for 3 hours. That is, it has been clarified that if a PS cover is used when the nematode is encapsulated in the channel 3a, motility is not reduced due to lack of oxygen or dehydration.
 上記結果について考察すると、ガラスカバーで封入保定した場合には、3時間の封入保定後に全く脱水症状を起こさずに正常な運動性を示す個体と、脱水症状を起こして著しく運動性が低下した個体とが混在していた。この一因は、ガラス表面で緩衝液の液滴が十分に微細化せず、チャネル3aに対して十分な水分が行き渡らなかったことにあると考えられる。また、酸素を全く通さないため、水分と共に密封できた場合でも、酸欠状態となって運動性が低下したと考えられる。 Considering the above results, when encapsulated and retained with a glass cover, individuals exhibiting normal motility without causing dehydration at all after 3 hours of encapsulated retention, and individuals with significantly decreased motility due to dehydration And was mixed. One reason for this is thought to be that the droplets of the buffer solution did not become sufficiently fine on the glass surface, and sufficient moisture did not reach the channel 3a. Moreover, since oxygen is not allowed to pass through at all, even when it can be sealed together with moisture, it is thought that the motility is reduced due to lack of oxygen.
 これに対し、PSカバーの場合は、マイクロチップ1の表面2上に滴下した液滴がカバー4によって直径5~10mmの範囲に押し広げられて複数のチャネル3aに染み渡ると共に、カバー4がマイクロチップ1の表面2に密着して線虫がチャネル3aに密封された状態となる。そのため、PSカバーで封入保定した線虫は、緩衝液で満たされたチャネル3aの中で脱水を起こすことなく好適な状態で保持され、3時間封入保定後も正常な運動性を示した。 On the other hand, in the case of the PS cover, a droplet dropped on the surface 2 of the microchip 1 is spread by the cover 4 to a diameter of 5 to 10 mm and spreads into a plurality of channels 3a. The nematode is in close contact with the surface 2 of 1 and sealed in the channel 3a. Therefore, the nematodes encapsulated and retained with the PS cover were maintained in a suitable state without causing dehydration in the channel 3a filled with the buffer solution, and exhibited normal motility even after the encapsulated retention for 3 hours.
 PETカバーで封入保定した場合、3時間封入保定後にほぼ全ての個体で運動性の低下が観られた。つまり、一部の個体の運動性が低下するのではなく、全体的に運動性が低下するという傾向が現れた。表3に示した通り、PETカバーは、酸素透過性の極めて低いカバーである。そのため、PETカバーで3時間封入保定した線虫は、酸欠状態となって運動性が低下したと考えられる。 When encapsulated and retained with a PET cover, decreased mobility was observed in almost all individuals after 3 hours of encapsulated retention. That is, a tendency that the motility of some individuals did not decrease, but decreased overall. As shown in Table 3, the PET cover is a cover with extremely low oxygen permeability. Therefore, it is considered that the nematode encapsulated and held for 3 hours with a PET cover was deficient in oxygen and decreased in mobility.
 これに対し、PSカバーは、PETカバーに比べて酸素透過性が高い素材である。そのため、PSカバーで封入保定した線虫は、酸欠状態とはならず、3時間封入保定後であっても正常な運動性を示した。 In contrast, the PS cover is a material having higher oxygen permeability than the PET cover. Therefore, nematodes encapsulated and retained with the PS cover did not lack oxygen, and exhibited normal motility even after 3 hours of encapsulated retention.
 以上の結果から、酸素要求性の生物試料をマイクロチップ1に培養又は封入保定する際に用いるカバー4としては、酸素透過性の高いものであることが好ましいことが明らかである。 From the above results, it is clear that the cover 4 used when culturing or encapsulating an oxygen-requiring biological sample in the microchip 1 is preferably one having high oxygen permeability.
 [実験結果]
 以上の通り、本発明におけるマイクロチップ1およびカバー4は、動植物細胞や微小生物を培養又は封入保定した状態で、局所的にマイクロビームを照射したり観察するのに適した特徴を有しており、従来の問題点を解決することができるものである。
[Experimental result]
As described above, the microchip 1 and the cover 4 according to the present invention have characteristics suitable for locally irradiating and observing a microbeam in a state where animal and plant cells and micro organisms are cultured or encapsulated. The conventional problems can be solved.
 1 マイクロチップ(生物試料用マイクロチップ)
 2 マイクロチップ表面
 3 凹部
 3a チャネル
 3b ウェル
 4 カバー
 5 カバー表面
 6 ウェル表面
1 Microchip (Microchip for biological samples)
2 Microchip surface 3 Recess 3a Channel 3b Well 4 Cover 5 Cover surface 6 Well surface

Claims (17)

  1.  表面に生物試料を培養又は封入するための少なくとも1つの凹部が形成された生物試料用マイクロチップであって、マイクロチップ全体の厚さが800μm以下に形成されることを特徴とする生物試料用マイクロチップ。 A biological sample microchip having a surface on which at least one recess for culturing or enclosing a biological sample is formed, wherein the thickness of the entire microchip is 800 μm or less. Chip.
  2.  マイクロチップ全体の厚さが300μm以下であることを特徴とする請求項1に記載の生物試料用マイクロチップ。 The microchip for biological samples according to claim 1, wherein the thickness of the entire microchip is 300 µm or less.
  3.  マイクロチップ全体の厚さが100μm以下であることを特徴とする請求項1に記載の生物試料用マイクロチップ。 The microchip for biological samples according to claim 1, wherein the thickness of the entire microchip is 100 µm or less.
  4.  少なくともマイクロチップ表面に親水性が付与されていることを特徴とする請求項1乃至3のいずれかに記載の生物試料用マイクロチップ。 The microchip for biological samples according to any one of claims 1 to 3, wherein at least the surface of the microchip is hydrophilic.
  5.  マイクロチップの全体に親水性が付与されていることを特徴とする請求項4に記載の生物試料用マイクロチップ。 The biochip microchip according to claim 4, wherein hydrophilicity is imparted to the entire microchip.
  6.  表面に生物試料を培養又は封入するための少なくとも1つの凹部が形成された生物試料用マイクロチップであって、少なくともマイクロチップ表面に親水性が付与されていることを特徴とする生物試料用マイクロチップ。 A biochip microchip having at least one concave portion for culturing or enclosing a biological sample on the surface, wherein hydrophilicity is imparted to at least the microchip surface. .
  7.  マイクロチップ表面にプラズマ処理が施されていることを特徴とする請求項1乃至6のいずれかに記載の生物試料用マイクロチップ。 The microchip for biological samples according to any one of claims 1 to 6, wherein the surface of the microchip is subjected to plasma treatment.
  8.  請求項1乃至7のいずれかに記載の生物試料用マイクロチップの凹部に生物試料を封入し保定するために用いるカバーであって、透明であり、表面粗さが0.03μm以下であることを特徴とするカバー。 A cover used for enclosing and retaining a biological sample in the recess of the microchip for biological sample according to claim 1, wherein the cover is transparent and has a surface roughness of 0.03 μm or less. Features a cover.
  9.  厚さが50μm以上300μm以下であることを特徴とする請求項8に記載のカバー。 The cover according to claim 8, wherein the thickness is 50 μm or more and 300 μm or less.
  10.  水接触角が100度以下であることを特徴とする請求項8又は9に記載のカバー。 The cover according to claim 8 or 9, wherein a water contact angle is 100 degrees or less.
  11.  酸素透過率が30mL/(m・24h・atm)以上であることを特徴とする請求項8乃至10のいずれかに記載のカバー。 The cover according to any one of claims 8 to 10, wherein the oxygen permeability is 30 mL / (m 2 · 24 h · atm) or more.
  12.  二酸化炭素透過率が30mL/(m・24h・atm)以上であることを特徴とする請求項8乃至11のいずれかに記載のカバー。 The cover according to any one of claims 8 to 11, wherein the carbon dioxide permeability is 30 mL / (m 2 · 24 h · atm) or more.
  13.  ポリスチレン製であることを特徴とする請求項8乃至12のいずれかに記載のカバー。 The cover according to any one of claims 8 to 12, wherein the cover is made of polystyrene.
  14.  請求項1乃至7のいずれかに記載の生物試料用マイクロチップと、請求項8乃至13のいずれかに記載のカバーと、を備えることを特徴とする生物試料封入キット。 A biological sample enclosing kit comprising the biological sample microchip according to any one of claims 1 to 7 and the cover according to any one of claims 8 to 13.
  15.  生物試料を保定する生物試料保定方法であって、請求項1乃至7のいずれかに記載の生物試料用マイクロチップの凹部に生物試料を封入すること、を含むことを特徴とする生物試料保定方法。 A biological sample retention method for retaining a biological sample, comprising enclosing the biological sample in a recess of the microchip for biological sample according to any one of claims 1 to 7. .
  16.  生物試料にマイクロビームを照射するマイクロビーム照射方法であって、請求項1乃至7のいずれかに記載の生物試料用マイクロチップの凹部に生物試料を封入することと、 前記生物試料にマイクロビームを照射することと、を含むことを特徴とするマイクロビーム照射方法。 A microbeam irradiation method for irradiating a biological sample with a microbeam, wherein the biological sample is sealed in a concave portion of the microchip for biological sample according to any one of claims 1 to 7, and the microbeam is applied to the biological sample. Irradiating a microbeam irradiation method.
  17.  生物試料を培養又は飼育する方法であって、請求項1乃至7のいずれかに記載の生物試料用マイクロチップの凹部に生物試料を封入することと、前記生物試料を封入した前記生物試料用マイクロチップを前記生物試料の培養環境下又は飼育環境下に静置することと、
    を含むことを特徴とする方法。
    A method for culturing or rearing a biological sample, wherein the biological sample is enclosed in a recess of the biological sample microchip according to any one of claims 1 to 7, and the biological sample microcapsule in which the biological sample is enclosed. Leaving the chip in the culture or breeding environment of the biological sample;
    A method comprising the steps of:
PCT/JP2019/020219 2018-05-24 2019-05-22 Biological sample microchip, cover, biological sample sealing kit and method WO2019225633A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020521272A JPWO2019225633A1 (en) 2018-05-24 2019-05-22 Biological Sample Microchips, Covers, Biological Sample Encapsulation Kits and Methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-099452 2018-05-24
JP2018099452 2018-05-24
JP2019-045480 2019-03-13
JP2019045480 2019-03-13

Publications (1)

Publication Number Publication Date
WO2019225633A1 true WO2019225633A1 (en) 2019-11-28

Family

ID=68615827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020219 WO2019225633A1 (en) 2018-05-24 2019-05-22 Biological sample microchip, cover, biological sample sealing kit and method

Country Status (2)

Country Link
JP (1) JPWO2019225633A1 (en)
WO (1) WO2019225633A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218501A1 (en) * 2019-04-25 2020-10-29 国立研究開発法人量子科学技術研究開発機構 Nematode trap plate and use therefor
WO2022195945A1 (en) * 2021-03-19 2022-09-22 国立研究開発法人量子科学技術研究開発機構 Test method and nematode test plate
WO2023106318A1 (en) * 2021-12-08 2023-06-15 国立研究開発法人量子科学技術研究開発機構 Nematode-sealed capsule, method for producing nematode-sealed capsule, and use of nematode-sealed capsule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000047A (en) * 2003-06-11 2005-01-06 National Agriculture & Bio-Oriented Research Organization Device for measuring or controlling behavior of minute animal
JP2007089566A (en) * 2005-08-30 2007-04-12 Tokyo Univ Of Agriculture & Technology Microorganism separating device
WO2015034011A1 (en) * 2013-09-04 2015-03-12 独立行政法人産業技術総合研究所 Microarray chip and cell analysis method using same
WO2018061795A1 (en) * 2016-09-30 2018-04-05 大日本印刷株式会社 Cell-handling container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111373A (en) * 2009-11-27 2011-06-09 Tosoh Corp Method for producing member with hydrophilized surface
JPWO2016140327A1 (en) * 2015-03-04 2017-12-14 国立研究開発法人産業技術総合研究所 Micro chamber array plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000047A (en) * 2003-06-11 2005-01-06 National Agriculture & Bio-Oriented Research Organization Device for measuring or controlling behavior of minute animal
JP2007089566A (en) * 2005-08-30 2007-04-12 Tokyo Univ Of Agriculture & Technology Microorganism separating device
WO2015034011A1 (en) * 2013-09-04 2015-03-12 独立行政法人産業技術総合研究所 Microarray chip and cell analysis method using same
WO2018061795A1 (en) * 2016-09-30 2018-04-05 大日本印刷株式会社 Cell-handling container

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUGIMOTO, T. ET AL.: "Cell cycle arrest and apoptosis in Caenorhabditis elegans germline cells following heavy-ion microbeam irradiation", INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, vol. 82, no. 1, 2006, pages 31, 38 *
SUZUKI, M. ET AL.: "Region-specific irradiation system with heavy-ion microbeam for active individuals of Caenorhabditis elegans", JOURNAL OF RADIATION RESEARCH, vol. 58, no. 6, 2017, pages 881 - 886, XP055656210 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218501A1 (en) * 2019-04-25 2020-10-29 国立研究開発法人量子科学技術研究開発機構 Nematode trap plate and use therefor
WO2022195945A1 (en) * 2021-03-19 2022-09-22 国立研究開発法人量子科学技術研究開発機構 Test method and nematode test plate
JPWO2022195945A1 (en) * 2021-03-19 2022-09-22
JP7301436B2 (en) 2021-03-19 2023-07-03 国立研究開発法人量子科学技術研究開発機構 Test method and nematode test plate
WO2023106318A1 (en) * 2021-12-08 2023-06-15 国立研究開発法人量子科学技術研究開発機構 Nematode-sealed capsule, method for producing nematode-sealed capsule, and use of nematode-sealed capsule

Also Published As

Publication number Publication date
JPWO2019225633A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
WO2019225633A1 (en) Biological sample microchip, cover, biological sample sealing kit and method
Vincent et al. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface
JP6430680B2 (en) Apparatus for culturing nerve cells, method for culturing nerve cells, cultured nerve cells, method for analyzing and identifying proteins in axon bundles, and method for using nerve cells
Burnett et al. Rapid and gentle hydrogel encapsulation of living organisms enables long-term microscopy over multiple hours
Dzhagalov et al. Two‐photon imaging of the immune system
KR20120089769A (en) System and method for time-related microscopy of biological organisms
US11248995B2 (en) Hydrogel encapsulation of living organisms for long-term microscopy
Smith et al. Avian models in teratology and developmental toxicology
Boyde et al. Optical and scanning electron microscopy in the single osteoclast resorption assay
Zabihihesari et al. Fly-on-a-chip: microfluidics for Drosophila melanogaster studies
Rossi et al. Excitatory and inhibitory intracortical circuits for orientation and direction selectivity
Suzuki et al. Immobilization of live Caenorhabditis elegans individuals using an ultra-thin polydimethylsiloxane microfluidic chip with water retention
JP7151966B2 (en) Apparatus for culturing nerve cells, method for culturing nerve cells, method for quantifying morphological degeneration of axonal bundles by orientation analysis, method for analyzing and identifying proteins in nerve tissue and axonal bundles, and use of nerve cells Method
Gori et al. A soft zwitterionic hydrogel as potential coating on a polyimide surface to reduce foreign body reaction to intraneural electrodes
Chaudhury et al. On chip cryo-anesthesia of Drosophila larvae for high resolution in vivo imaging applications
US20130196368A1 (en) Electrophysiological Recording System and Methods of Using Same
Suriyah et al. Comparison of the in vitro and in vivo toxic effects of thymoquinone using oral cancer HSC-3 and HSC-4 cell lines, oral fibroblasts, HACAT cell line, and Zebrafish embryos
Trautmann et al. Design of an implantable artificial dural window for chronic two-photon optical imaging in non-human primates
DE102017220067B4 (en) Apparatus for cultivating and radiation-induced killing of living biological cells, uses of the apparatus, and methods for studying migration and / or wound healing of biological cells
CN208000305U (en) A kind of Similis Contact toxicity measurement device
Terni et al. Functional evaluation of olfactory pathways in living Xenopus tadpoles
Henkels et al. Spatiotemporal mechanical variation reveals critical role for rho kinase during primitive streak morphogenesis
Burnett et al. Hydrogel encapsulation of living organisms for long-term microscopy
Lefevre et al. Flexible Organic Electronic Devices for Pulsed Electric Field Therapy of Glioblastoma
Charrier et al. Growth and immunolocalisation of the brown alga Ectocarpus in a microfluidic environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808006

Country of ref document: EP

Kind code of ref document: A1