WO2019225605A1 - Medical image processing device, medical image diagnostic device, and medical image processing program - Google Patents

Medical image processing device, medical image diagnostic device, and medical image processing program Download PDF

Info

Publication number
WO2019225605A1
WO2019225605A1 PCT/JP2019/020113 JP2019020113W WO2019225605A1 WO 2019225605 A1 WO2019225605 A1 WO 2019225605A1 JP 2019020113 W JP2019020113 W JP 2019020113W WO 2019225605 A1 WO2019225605 A1 WO 2019225605A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaflets
display
length
image data
medical image
Prior art date
Application number
PCT/JP2019/020113
Other languages
French (fr)
Japanese (ja)
Inventor
昂彦 西岡
Original Assignee
キヤノンメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンメディカルシステムズ株式会社 filed Critical キヤノンメディカルシステムズ株式会社
Priority to CN201980001267.3A priority Critical patent/CN110740686B/en
Priority claimed from JP2019095130A external-priority patent/JP7210376B2/en
Publication of WO2019225605A1 publication Critical patent/WO2019225605A1/en
Priority to US16/751,305 priority patent/US11416992B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • Embodiments described herein relate generally to a medical image processing apparatus, a medical image diagnostic apparatus, and a medical image processing program.
  • an ultrasonic diagnostic apparatus is used in a preoperative examination for various diseases (for example, aortic regurgitation or mitral regurgitation) of valves (heart valves) such as an aortic valve and a mitral valve.
  • various diseases for example, aortic regurgitation or mitral regurgitation
  • valves heart valves
  • mitral valves mitral valves
  • confirmation of the backflow of blood is performed by a user such as a doctor.
  • the problem to be solved by the present invention is to make the user grasp the detailed state of the valve.
  • the medical image processing apparatus includes an extraction unit, a measurement unit, and a display control unit.
  • the extraction unit extracts a plurality of leaflets of the heart valve from the image data of the subject.
  • a measurement part measures the length of a predetermined reference direction in the region where the valve leaf and the other leaflet are in contact with each other, regarding at least one of the plurality of leaflets.
  • the display control unit controls the display unit to display the distribution of the length at each of the plurality of positions of the leaflets.
  • FIG. 1 is a diagram illustrating an example of a configuration of a medical image processing apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a plurality of leaflets extracted by the extraction function according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a plurality of leaflets extracted by the extraction function according to the first embodiment.
  • FIG. 4 is a diagram for explaining an example of processing executed by the setting function according to the first embodiment.
  • FIG. 5 is a diagram for explaining an example of processing executed by the setting function according to the first embodiment.
  • FIG. 6 is a diagram for explaining an example of processing executed by the setting function according to the first embodiment.
  • FIG. 7 is a diagram for explaining an example of processing executed by the setting function according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of a medical image processing apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a plurality of leaflets extracted by the extraction function according to
  • FIG. 8 is a diagram illustrating an example of the arrangement of reference surfaces according to the first embodiment.
  • FIG. 9 is a diagram for explaining an example of processing for setting a boundary line by the setting function according to the first embodiment.
  • FIG. 10 is a diagram for explaining an example of processing for setting a boundary line by the setting function according to the first embodiment.
  • FIG. 11 is a diagram for explaining an example of processing for setting a boundary line by the setting function according to the first embodiment.
  • FIG. 12 is a diagram for explaining an example of processing for measuring the length of the contact region in the blood flow direction by the measurement function according to the first embodiment.
  • FIG. 13 is a diagram for explaining an example of a process of generating graph image data and display image data by the generation function according to the first embodiment.
  • FIG. 14 is an enlarged view of a part of the boundary line shown in FIG.
  • FIG. 15 is a diagram for explaining an example of processing for generating image data of another graph and image data for other display by the generation function according to the first embodiment.
  • FIG. 16 is a flowchart illustrating an example of a flow of processing executed by the processing circuit according to the first embodiment.
  • FIG. 17 is a diagram for describing an example of processing executed according to the second modification and the third modification.
  • FIG. 18 is a diagram for describing an example of processing executed according to the fourth modification and the fifth modification.
  • FIG. 19 is a diagram for describing an example of processing executed according to the fourth modification.
  • FIG. 20 is a diagram for explaining an example of processing executed according to the fifth modification.
  • FIG. 21 is a diagram for explaining an example of processing executed according to the sixth modification.
  • FIG. 22 is a diagram for explaining an example of processing executed according to the sixth modification.
  • FIG. 23 is a diagram for describing an example of processing executed by the setting function according to the seventh modification example of the first embodiment.
  • FIG. 24 is a diagram for describing an example of processing executed by the setting function according to the eighth modification example of the first embodiment.
  • FIG. 25 is a diagram illustrating an example of a configuration of a medical image processing apparatus according to the second embodiment.
  • FIG. 26 is a diagram illustrating an example of the configuration of the X-ray CT apparatus according to the third embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of a medical image processing apparatus 300 according to the first embodiment.
  • the medical image processing apparatus 300 is connected to the medical image diagnostic apparatus 100 and the image storage apparatus 200 via a network 400.
  • the configuration illustrated in FIG. 1 is merely an example, and various devices such as a terminal device may be connected to the network 400 in addition to the medical image diagnostic apparatus 100, the image storage apparatus 200, and the medical image processing apparatus 300 illustrated in the figure. Good.
  • the medical image diagnostic apparatus 100 is, for example, an X-ray CT (Computed Tomography) apparatus, an ultrasonic diagnostic apparatus, a magnetic resonance imaging apparatus (MRI (Magnetic Resonance Imaging) apparatus), or an X-ray diagnostic apparatus.
  • the medical image diagnostic apparatus 100 is not limited to the above-described medical image diagnostic apparatus (X-ray CT apparatus, ultrasonic diagnostic apparatus, magnetic resonance imaging apparatus, and X-ray diagnostic apparatus), and is another medical image diagnostic apparatus. Also good.
  • the medical image diagnostic apparatus 100 acquires three-dimensional image data including a heart valve (heart valve) of a subject. Note that the three-dimensional image data is also referred to as volume data.
  • the X-ray CT apparatus collects CT image data of the subject. For example, an X-ray CT apparatus rotates an X-ray tube and an X-ray detector around a subject, detects X-rays transmitted through the subject, and collects projection data. Then, the X-ray CT apparatus generates three-dimensional CT image data based on the collected projection data. For example, an X-ray CT apparatus collects projection data obtained by imaging a region including a heart valve of a subject, and generates three-dimensional CT image data based on the collected projection data. Then, the X-ray CT apparatus transmits the generated three-dimensional CT image data to the image storage apparatus 200 and the medical image processing apparatus 300.
  • the X-ray CT apparatus collects four-dimensional CT image data including the heart valve of the subject and transmits the collected four-dimensional CT image data to the image storage apparatus 200 and the medical image processing apparatus 300.
  • the four-dimensional CT image data including the heart valve is composed of, for example, a plurality of time-series three-dimensional CT image data. That is, the four-dimensional CT image data including the heart valve is composed of a plurality of three-dimensional CT image data having different imaging times (time phases).
  • Each of the plurality of three-dimensional CT image data constituting the four-dimensional CT image data is generated based on projection data obtained by imaging a region including the heart valve of the subject.
  • the three-dimensional CT image data and the four-dimensional CT image data are examples of image data. Further, the three-dimensional CT image data and the four-dimensional CT image data may be simply referred to as “CT image data”.
  • examples of the heart valve of the subject include a mitral valve, an aortic valve, a tricuspid valve, and a pulmonary valve.
  • the medical image diagnostic apparatus 100 is an X-ray CT apparatus will be described as an example.
  • the medical image diagnostic apparatus 100 may be an ultrasonic diagnostic apparatus or a magnetic resonance imaging apparatus. That is, the medical image processing apparatus 300 may perform the same processes as various processes described later on the image data collected by the ultrasonic diagnostic apparatus or the magnetic resonance imaging apparatus.
  • the image storage apparatus 200 stores CT image data collected by the medical image diagnostic apparatus 100 that is an X-ray CT apparatus.
  • the image storage device 200 is realized by a computer device such as a server device.
  • the image storage apparatus 200 acquires CT image data from the medical image diagnostic apparatus 100 via the network 400, and stores the acquired CT image data in a memory such as a hard disk or an optical disk provided inside or outside the apparatus.
  • the image storage device 200 acquires three-dimensional CT image data or four-dimensional CT image data from the medical image diagnostic apparatus 100 that is an X-ray CT apparatus, and stores the acquired CT image data in a memory.
  • the image storage apparatus 200 transmits CT image data stored in the memory to the medical image processing apparatus 300 in response to a request from the medical image processing apparatus 300.
  • the medical image processing apparatus 300 acquires CT image data from the medical image diagnostic apparatus 100 and the image storage apparatus 200 via the network 400, and processes the acquired CT image data. For example, the medical image processing apparatus 300 acquires 3D CT image data or 4D CT image data from the medical image diagnostic apparatus 100 or the image storage apparatus 200, and performs various types of image processing on the acquired CT image data. . Then, the medical image processing apparatus 300 displays an image after image processing (for example, a display image) or the like on the display 340.
  • image after image processing for example, a display image
  • the medical image processing apparatus 300 includes a communication interface 310, a memory 320, an input interface 330, a display 340, and a processing circuit 350.
  • the communication interface 310 is connected to the processing circuit 350, transmits various data between the medical image diagnostic apparatus 100 and the image storage apparatus 200 connected via the network 400, and the medical image diagnostic apparatus 100 and the image. Controls communication performed with the storage device 200.
  • the communication interface 310 is realized by a network card, a network adapter, a NIC (Network Interface Controller), or the like.
  • the communication interface 310 receives 3D CT image data or 4D CT image data from the medical image diagnostic apparatus 100 or the image storage apparatus 200, and outputs the received CT image data to the processing circuit 350.
  • the memory 320 is connected to the processing circuit 350 and stores various data.
  • the memory 320 is realized by a RAM (Random Access Memory), a semiconductor memory element such as a flash memory, a hard disk, or an optical disk.
  • the memory 320 stores 3D CT image data or 4D CT image data received from the medical image diagnostic apparatus 100 or the image storage apparatus 200.
  • the memory 320 stores various information used for processing of the processing circuit 350, processing results by the processing circuit 350, and the like.
  • the memory 320 stores display image data generated by the processing circuit 350, a measurement result by a measurement function 354, which will be described later, and the like.
  • the input interface 330 is connected to the processing circuit 350, converts an input operation received from the operator into an electrical signal, and outputs the electrical signal to the processing circuit 350.
  • the input interface 330 is not limited to one having physical operation components such as a mouse and a keyboard.
  • an example of the input interface includes an electric signal processing circuit that receives an electric signal corresponding to an input operation from an external input device provided separately from the apparatus and outputs the electric signal to the control circuit.
  • the input interface 330 includes a trackball for performing various settings, a switch button, a mouse, a keyboard, a touch pad for performing an input operation by touching an operation surface, a touch in which a display screen and a touch pad are integrated. It is realized by a screen, a non-contact input interface using an optical sensor, or a voice input interface.
  • the display 340 is connected to the processing circuit 350 and displays various information and various images output from the processing circuit 350.
  • the display 340 is realized by a liquid crystal monitor, a CRT (Cathode Ray Tube) monitor, or a touch panel.
  • the display 340 displays a GUI (Graphical User Interface) for receiving an instruction from the operator, various display images, and various processing results by the processing circuit 350.
  • the display 340 is an example of a display unit.
  • the processing circuit 350 controls each component included in the medical image processing apparatus 300 in accordance with an input operation received from the operator via the input interface 330.
  • the processing circuit 350 is realized by a processor.
  • the processing circuit 350 stores the three-dimensional CT image data or the four-dimensional CT image data output from the communication interface 310 in the memory 320. Further, the processing circuit 350 reads out the three-dimensional CT image data or the four-dimensional CT image data from the memory 320, and displays a display image indicated by the display image data generated from the read CT image data.
  • the display 340 is controlled.
  • the medical image processing apparatus 300 is configured to allow the user to grasp the detailed state of the valve.
  • the processing circuit 350 includes a control function 351, an extraction function 352, a setting function 353, a measurement function 354, and a generation function 355, as shown in FIG.
  • the processing circuit 350 implements a function corresponding to each program by reading each program from the memory 320 and executing each read program. In other words, the processing circuit 350 in a state where each program is read has the functions shown in the processing circuit 350 of FIG.
  • control function 351, the extraction function 352, the setting function 353, the measurement function 354, and the generation function 355 may be recorded in the memory 320 in the form of one program that can be executed by a computer.
  • a program is also referred to as a medical image processing program.
  • the processing circuit 350 reads the medical image processing program from the memory 320 and executes the read medical image processing program to thereby control the control function 351, the extraction function 352, the setting function 353, and the measurement function corresponding to the medical image processing program.
  • 354 and the generation function 355 are realized.
  • the control function 351 is an example of a display control unit.
  • the extraction function 352 is an example of an extraction unit.
  • the setting function 353 is an example of a setting unit.
  • the measurement function 354 is an example of a measurement unit.
  • the generation function 355 is an example of a generation unit.
  • the control function 351 executes overall control of the medical image processing apparatus 300.
  • the control function 351 acquires CT image data from the medical image diagnostic apparatus 100 or the image storage apparatus 200 via the communication interface 310.
  • the control function 351 acquires three-dimensional CT image data including a heart valve of the subject or four-dimensional CT image data including a heart valve of the subject.
  • the control function 351 stores the acquired CT image data in the memory 320.
  • the control function 351 controls the display 340 so as to display a display image indicated by display image data generated from CT image data by various image processing.
  • the control function 351 controls the display 340 so as to display the measurement result measured by the measurement function 354.
  • the extraction function 352 extracts a plurality of leaflets constituting the valve from CT image data including the valve of the subject. That is, the extraction function 352 extracts a plurality of leaflets of the heart valve from the image data of the subject.
  • the extraction function 352 first acquires 3D CT image data or 4D CT image data stored in the memory 320.
  • the CT image data acquired by the extraction function 352 is three-dimensional CT image data
  • the user obtains a three-dimensional CT image obtained by photographing the valve that the user wants to observe at the time phase that the user wants to observe on the medical image diagnostic apparatus 100 or the image storage apparatus 200 via the input interface 330.
  • Send a request to send data Then, the medical image diagnostic apparatus 100 or the image storage apparatus 200 that has received the transmission request transmits three-dimensional CT image data that satisfies the transmission request to the medical image processing apparatus 300.
  • the three-dimensional CT image data transmitted in this way is the three-dimensional CT image data acquired by the extraction function 352.
  • the valve and time phase that the user wants to observe will be described with specific examples.
  • the aortic valve closes and the mitral valve opens, and blood flows from the left atrium into the left ventricle.
  • mitral stenosis the opening of the mitral valve is narrowed, and the amount of blood flowing from the left atrium into the left ventricle during diastole is reduced. Therefore, when the subject is suspected of having mitral stenosis, a user such as a doctor may want to know the detailed state of the mitral valve during diastole.
  • aortic regurgitation aortic regurgitation
  • a part of blood flows back to the left ventricle because the aortic valve does not close sufficiently during diastole. Therefore, the user may want to grasp the detailed state of the aortic valve in the diastole.
  • mitral valve In the normal state of the subject, in the systole, the mitral valve is closed and the aortic valve is opened, and blood is sent from the left ventricle to the aorta.
  • mitral regurgitation mitral regurgitation
  • mitral valve does not close sufficiently so that a part of blood flows back to the left atrium. Therefore, when the subject is suspected of having mitral stenosis, the user may want to grasp the detailed state of the mitral valve during the systole.
  • aortic stenosis In aortic stenosis, the opening of the aortic valve becomes narrow during the systole, and the amount of blood flowing from the left ventricle into the aorta during the systole decreases. Therefore, when the subject is suspected of having aortic stenosis, the user may want to grasp the detailed state of the aortic valve during the systole.
  • the extraction function 352 selects one time-phase three-dimensional CT image data designated by the user from a plurality of time-phase three-dimensional CT image data constituting the four-dimensional CT image data. To do. Then, the extraction function 352 acquires the selected three-dimensional CT image data.
  • the extraction function 352 extracts each of a plurality of leaflets constituting the heart valve of the subject from the acquired three-dimensional CT image data.
  • the extraction function 352 extracts leaflets one by one from the three-dimensional CT image data using various known techniques.
  • the memory 320 may store information indicating the standard shape of the leaflets, and the extraction function 352 may acquire information indicating the standard shape of the leaflets from the memory 320.
  • the extraction function 352 may detect a portion similar to the shape indicated by the acquired information from the three-dimensional CT image data, and extract the detected portion from the three-dimensional CT image data.
  • FIG. 2 and 3 are diagrams illustrating an example of a plurality of leaflets extracted by the extraction function 352 according to the first embodiment.
  • FIG. 2 is a view when the mitral valve 40 is viewed from the upstream side in the flow of blood passing through the mitral valve 40.
  • FIG. 3 is a perspective view of the mitral valve 40.
  • the mitral valve 40 includes two leaflets 40a and 40b extracted by the extraction function 352.
  • region) 41 where the leaflet 40a and the leaflet 40b are contacting exists. Since the leaflet 40a and the leaflet 40b are in contact (joined) with each other, the contact region 41 is common to the leaflets 40a and 40b. Note that the contact between the leaflets 40a and 40b is also referred to as the leaflets 40a overlapping the leaflets 40b.
  • a part of the leaflets 40a and a part of the leaflets 40b are separated from each other, and a part of the leaflets 40a and the leaflets 40b that are separated from each other are separated.
  • the range of the separation region 42 in the blood flow direction is, for example, the range from the upstream end of the contact region 41 in the blood flow direction to the downstream end of the contact region 41 in the blood flow direction.
  • the downstream end of the contact region 41 in the blood flow direction is the position of the reference plane 50 set by the setting function 353 as will be described later.
  • the separation region 42 may be a region that is less than a threshold value for considering that the leaflets 40a and the leaflets 40b are separated from each other, for example.
  • the setting function 353 sets reference planes related to a plurality of leaflets for the plurality of leaflets extracted by the extraction function 352.
  • the processing target is the mitral valve 40 as an example.
  • FIGS. 4 4, 5, 6, and 7 are diagrams for explaining an example of processing executed by the setting function 353 according to the first embodiment.
  • the setting function 353 sets a reference plane (first reference plane) 50 for the plurality of leaflets 40a and 40b, as shown in FIGS.
  • the setting function 353 sets the reference plane 50 so as to be orthogonal or substantially orthogonal to the blood flow direction.
  • the setting function 353 sets the reference plane 50 that is perpendicular or substantially perpendicular to the blood flow direction. That is, the setting function 353 sets the reference plane 50 so as to intersect the blood flow direction.
  • FIG. 6 shows a direction 40a_3 from the root portion 40a_1 of one of the two leaflets 40a and 40b toward the distal end portion 40a_2.
  • the direction 40a_3 is a direction from the root portion 40a_1 toward the tip portion 40a_2 along the leaflet 40a.
  • the direction 40a_3 at the distal end portion 40a_2 is considered to be the same direction as the blood flow direction or the direction in the substantially same direction.
  • the setting function 353 sets the reference plane 50 that is in contact with the tip portion 40a_2 and orthogonal to the direction 40a_3. Thereby, the reference plane 50 orthogonal or substantially orthogonal to the blood flow direction is set.
  • the setting function 353 may perform the same process on the leaflets 40b instead of the leaflets 40a to set the reference plane 50 that is orthogonal or substantially orthogonal to the blood flow direction. That is, the setting function 353 sets the reference plane 50 that intersects the blood flow direction by performing the above-described processing on one of the plurality of leaflets constituting the valve.
  • the reference surface 50 may have a shape that follows the shape of the tip portion 40a_2. In this case, since the shape of the reference surface 50 depends on the shape of the tip end portion 40a_2, the reference surface 50 may be a curved surface or a flat surface.
  • the setting function 353 can move the set reference plane 50 along the normal direction or the blood flow direction of the reference plane 50 and place it within a predetermined range (arrangeable range). .
  • a predetermined range range
  • an MPR image corresponding to the moved position is newly generated by the generation function 355 described later, and the new MPR image is displayed on the display by the control function 351 described later. Is displayed.
  • a new MPR image 76 see FIG. 13
  • a new MPR image 80 are generated by the generation function 355
  • a new MPR image 76 and a new MPR image 80 are displayed by the control function 351. Is done. Since the surface passing through the origin of the coronary artery is relatively coincident with the overlapping portion of the valves, it is conceivable to arrange the reference surface 50 so as to pass through the origin of the coronary artery.
  • the arrangement range of the reference surface 50 is different between the case where the two leaflets 40a and the leaflets 40b are at least partially in contact with each other and the case where they are not in contact at all.
  • the arrangement range of the reference surface 50 when the two leaflets 40a and the leaflets 40b are in contact with each other at least partially will be described.
  • the setting function 353 is within the possible range from the upstream end in the blood flow direction of the contact area 41 shown in FIG. 5 to the downstream end in the blood flow direction of the contact area 41 shown in FIG.
  • the surface 50 can be moved and arranged.
  • a specific example will be described.
  • the setting function 353 receives the designation of the arrangement position of the reference plane 50 within the possible arrangement range from the user via the input interface 330, the setting function 353 moves the reference plane 50 to the designated arrangement position and arranges it.
  • FIG. 8 is a diagram illustrating an example of the arrangement of the reference surfaces 50 according to the first embodiment.
  • the setting function 353 arranges the reference plane 50 as shown in FIG. A center 52a on the reference plane 50 between the leaflets 40a and 40b shown in FIG. 8 will be described later.
  • the setting function 353, as shown in FIGS. 4, 5, and 7, is orthogonal to the reference plane 50 and orthogonal to the line segment 40e ( (Second reference plane) 51 is set.
  • the line segment 40e is a line segment connecting the commissure part 40c and the commissure part 40d of the mitral valve 40.
  • the reference surface 51 is an example of a surface.
  • the reference surface 50 and the reference surface 51 are used in various processes described below.
  • the method for setting the reference surface 50 and the reference surface 51 for the mitral valve 40 configured by the two leaflets 40a and 40b has been described, the setting function 353 uses the same method for the three leaflets.
  • the reference plane 50 and the reference plane 51 can be set for the aortic valve, tricuspid valve, and pulmonary valve configured by
  • the setting function 353 sets the reference plane 50 for one valve leaf out of three leaflets constituting one three-leaflet valve by the same method as described above.
  • the setting function 353 sets the reference plane 51 for each combination of two adjacent leaflets. That is, the setting function 353 sets one reference plane 50 and three reference planes 51 for the trilobe valve.
  • the setting function 353 is configured to connect the contact point to the three commissures of the three-leaf valve.
  • Three line segments connecting each of the parts are derived.
  • the setting function 353 sets a reference plane 51 that is orthogonal to the line segment and orthogonal to the reference plane 50 for each of the three line segments.
  • the setting function 353 calculates the position of the center of gravity of the area surrounded by the three leaflets on the reference plane 50 when the three-leaflet valve is not completely closed. Then, the setting function 353 derives three line segments connecting the center of gravity and each of the three commissures of the trilobe valve. The setting function 353 sets a reference plane 51 that is orthogonal to the line segment and orthogonal to the reference plane 50 for each of the three line segments.
  • the setting function 353 sets a boundary line between two adjacent leaflets.
  • the boundary line indicates, for example, the boundary between two adjacent leaflets.
  • the boundary line is an example of a line segment.
  • an example of processing for setting the boundary line by the setting function 353 will be described by taking the case where the processing target is the mitral valve 40 (see FIG. 9) and the aortic valve 60 (see FIGS. 10 and 11) as examples. .
  • FIG. 9 is a diagram for explaining an example of processing for setting the boundary line 55 by the setting function 353 according to the first embodiment.
  • FIG. 9 shows a case where the processing target is the mitral valve 40.
  • the setting function 353 sets a boundary line 55 between the leaflets 40a and the leaflets 40b on the reference plane 50.
  • the boundary line 55 is a line in which one end of the boundary line 55a and one end of the temporary boundary line 55b are connected.
  • the setting function 353 sets the boundary line 55a on the reference surface 50 at a position where the reference surface 50 and the contact area 41 intersect. Further, the setting function 353 sets a temporary boundary line 55b that passes through the center 52a on the reference plane 50 between the leaflets 40a and 40b as shown in FIG. Then, the setting function 353 generates the boundary line 55 by connecting one end of the boundary line 55a and one end of the temporary boundary line 55b. In this way, the boundary line 55 is set with respect to the reference plane 50.
  • 10 and 11 are diagrams for explaining an example of processing for setting the boundary lines 64 to 66 by the setting function 353 according to the first embodiment.
  • 10 and 11 show a case where the processing target is the aortic valve 60 composed of three leaflets 60a, 60b, and 60c.
  • FIG. 10 shows a case where the aortic valve 60 is completely closed
  • FIG. 11 shows a case where the aortic valve 60 is not completely closed. That is, FIG. 11 shows a case where the leaflets 60a and 60b are partially separated, the leaflets 60b and 60c are partially separated, and the leaflets 60c and 60a are partially separated.
  • the setting function 353 sets a boundary line 64 between the leaflets 60c and the leaflets 60a on the reference plane 50.
  • the setting function 353 sets the boundary line 64 at a position where the reference surface 50 and the contact area 61 intersect on the reference surface 50.
  • the contact area 61 is an area where the leaflet 60c and the leaflet 60a are in contact with each other.
  • the setting function 353 sets a boundary line 65 between the leaflets 60a and 60b and sets a boundary line 66 between the leaflets 60b and 60c.
  • the setting function 353 sets the boundary line 65 at a position where the reference surface 50 and the contact area 62 intersect on the reference surface 50.
  • the setting function 353 sets a boundary line 66 at a position where the reference surface 50 and the contact area 63 intersect on the reference surface 50.
  • the contact region 62 is a region where the leaflets 60a and 60b are in contact
  • the contact region 63 is a region where the leaflets 60b and 60c are in contact.
  • the setting function 353 calculates the center of gravity 67 of the region surrounded by the three leaflets 60a, 60b, 60c on the reference plane 50.
  • the region surrounded by the leaflets 60a, 60b, and 60c is a non-contact region where the leaflets 60a, 60b, and 60c are not in contact with each other, and is also a non-existing region where the leaflets 60a, 60b, and 60c are not present.
  • the setting function 353 sets a boundary line 68 between the leaflets 60c and the leaflets 60a on the reference plane 50.
  • the boundary line 68 is a line in which one end of the boundary line 68a is connected to one end of the temporary boundary line 68b.
  • the setting function 353 sets the boundary line 68a on the reference plane 50 at the position where the contact area where the leaflets 60c and 60a contact each other and the reference plane 50 intersect.
  • the setting function 353 sets a temporary boundary line 68b passing through the center on the reference surface 50 between the leaflets 60c and the leaflets 60a in the non-contact region with respect to the reference surface 50.
  • the setting function 353 generates the boundary line 68 by connecting one end of the boundary line 68a and one end of the temporary boundary line 68b.
  • the other end of the temporary boundary line 68 b is connected to the center of gravity 67. That is, the position of the other end of the temporary boundary line 68 b is the same as the position of the center of gravity 67. In this way, the boundary line 68 is set with respect to the reference plane 50.
  • the setting function 353 sets a boundary line 69 between the leaflets 60a and 60b, and sets a boundary line 70 between the leaflets 60b and 60c.
  • the boundary line 69 is a line in which one end of the boundary line 69a and one end of the temporary boundary line 69b are connected, and the boundary line 70 is connected to one end of the boundary line 70a and one end of the temporary boundary line 70b. Is a line.
  • the other end of the temporary boundary line 69 b and the other end of the temporary boundary line 70 b are connected to the center of gravity 67.
  • the setting function 353 sets the leaflet 60a and the leaflet 60b in the same manner as described above for setting the boundary line 68a and the temporary boundary line 68b on the reference surface 50 using the leaflet 60c and the leaflet 60a.
  • the boundary line 69 is set by setting the boundary line 69 a and the temporary boundary line 69 b on the reference plane 50.
  • the setting function 353 sets the boundary line 70 by setting the boundary line 70a and the temporary boundary line 70b on the reference plane 50 using the leaflets 60b and the leaflets 60c in the same manner.
  • the measurement function 354 is the length in the blood flow direction of the contact area where each of the leaflets is in contact with the other leaflets for each of the plurality of leaflets extracted by the extraction function 352. Measure the thickness. In other words, the measurement function 354 measures the length in the blood flow direction for each of the plurality of leaflets, in the contact area where the leaflets and other leaflets contact. This length is also an index indicating, for example, the degree of close contact of the contact area where the leaflet contacts another leaflet.
  • the processing target is the mitral valve 40 as an example.
  • FIG. 12 is a diagram for explaining an example of processing for measuring the length of the contact region 41 in the blood flow direction 74 by the measurement function 354 according to the first embodiment.
  • FIG. 12 shows a case where the processing target is the mitral valve 40.
  • the measurement function 354 moves the reference plane 51 along the boundary line 71 in the direction 72 from one end of the boundary line 71 toward the other end of the boundary line 71, while on the boundary line 71.
  • the length in the blood flow direction 74 of the contact region 41 is measured at a plurality of positions.
  • the blood flow direction 74 is an example of a predetermined reference direction.
  • boundary line 71 is a line set between the leaflets 40a and 40b.
  • one end of the boundary line 71 is the left end of the boundary line 71
  • the other end of the boundary line 71 is the right end of the boundary line 71.
  • the measurement function 354 moves the reference surface 51 and positions the reference surface 51 at each of a plurality of positions on the boundary line 71. Then, each time the reference surface 51 is positioned at each of a plurality of positions, the measurement function 354 contacts the length of the blood flow direction 74 on the reference surface 51 of the contact region 41 intersecting with the reference surface 51. The length of the region 41 in the blood flow direction 74 is measured. That is, the measurement function 354 measures the length of the contact region 41 in the direction intersecting the reference plane 50 as the length of the contact region 41 in the blood flow direction. More specifically, the measurement function 354 measures the length of the contact region 41 in the direction substantially perpendicular to the reference surface 50 as the length of the contact region 41 in the blood flow direction.
  • the measurement function 354 measures the length of the contact region 41 in the blood flow direction.
  • the measurement function 354 measures the length of the contact region 41 in the direction intersecting the boundary line 71 and in the direction intersecting the reference plane 50 as the length of the contact region 41 in the blood flow direction.
  • the measurement function 354 measures the length of the contact region 41 in the direction orthogonal to the boundary line 71 and in the direction orthogonal to the reference plane 50 as the length of the contact region 41 in the blood flow direction.
  • the measurement function 354 may measure the length of the contact region 41 intersecting the reference surface 51 on the reference surface 51 as the length of the contact region 41 in the blood flow direction 74. That is, the measurement function 354 may measure the length of the contact area 41 on the reference surface 51 as the length of the contact area 41 in the blood flow direction 74.
  • the measurement function 354 has a length 73a and a length 73b in the blood flow direction 74 of the contact area 41 as shown in FIG. Measure. In this way, the measurement function 354 measures a plurality of lengths corresponding to a plurality of positions on the boundary line 71. That is, the measurement function 354 measures the length of the blood flow direction 74 of the contact region 41 at each position in the direction along the boundary line 71 that intersects the blood flow direction 74 of the contact region 41. Such a length is also referred to as “depth”.
  • One end of the boundary line 71 is the origin (0), and the distance (position) on the boundary line 71 from the origin is also referred to as “width”.
  • the direction along the boundary line 71 is an example of the second direction.
  • the measurement function 354 uses CT image data having a relatively high spatial resolution, the measurement function 354 can measure the length of the contact region 41 in the blood flow direction with relatively good accuracy.
  • the length 73a and the length 73b in the blood flow direction of the contact region 41 where the leaflets 40a and the leaflets 40b are in contact are information indicating the detailed state of the mitral valve 77, and are a doctor and the like. This information is useful as a judgment material when determining the operation method of the mitral valve 77.
  • the length of the blood flow direction 74 of the contact region 41 is measured with respect to one boundary line 71 in the mitral valve 40 in which one boundary line 71 is set, the setting function 353 is described.
  • the length of the contact region in the blood flow direction may be calculated by performing the same process on the aortic valve, tricuspid valve, and pulmonary valve in which three boundary lines are set in the same manner. That is, in the case of an aortic valve, a tricuspid valve, and a pulmonary valve, the method described above for measuring the length of the blood flow direction 74 of the contact region 41 with respect to one boundary line 71 in each of the three boundary lines; By using the same method, three lengths corresponding to three boundary lines can be measured.
  • the measurement function 351 may control the display 340 so as to display the measured tilt angle.
  • the generation function 355 generates a graph indicating the length at each position (each of a plurality of positions) on the boundary line 71 measured by the measurement function 354. Such a graph shows the length distribution at each of a plurality of positions of the leaflets.
  • the generation function 355 generates display image data in which a plurality of leaflets extracted by the extraction function 352 are depicted.
  • processing for generating a graph and display image data by the generation function 355 will be described.
  • FIG. 13 is a diagram for explaining an example of processing for generating graph image data and display image data by the generation function 355 according to the first embodiment.
  • the generation function 355 generates image data indicating a graph 75 representing the length of each position on the boundary line 78.
  • the length of each position on the boundary line 78 is the length measured by the measurement function 354.
  • the boundary line 78 is a line set between a plurality of leaflets 77a and leaflets 77b constituting the mitral valve 77.
  • the mitral valve 77 is a valve configured by a plurality of leaflets 77a and leaflets 77b extracted by the extraction function 352.
  • the horizontal axis is the length (depth) [mm] in the blood flow direction of the contact area where the leaflets 77a and 77b contact, and the vertical axis is the position (width) on the boundary line 78.
  • the graph [mm] a plurality of lengths corresponding to a plurality of positions on the boundary line 78 measured by the measurement function 354 are plotted, thereby generating image data indicating the graph 75.
  • the generation function 355 generates image data indicating an MPR (Multi Planar Reconstruction) image (tomographic image) 76 of the cross section of the mitral valve 77 cut by the reference plane 50 as display image data. That is, the generation function 355 generates display image data including a plurality of leaflets 77a and 77b from the three-dimensional CT image data. Such image data is an example of first image data for display. Such image data is an example of first tomographic image data. The MPR image 76 is an example of a first tomographic image. Then, the generation function 355 generates image data indicating the boundary line 78.
  • MPR Multi Planar Reconstruction
  • the generation function 355 generates image data indicating the MPR image 76 on which the boundary line 78 is superimposed by superimposing the boundary line 78 on the MPR image 76. That is, the generation function 355 has a boundary line 78 corresponding to a contact area where the two leaflets 77a and 77b come into contact with each other in the MPR image 76 with respect to the MPR image 76 at a position substantially corresponding to the reference plane 50 in the CT image data. Is generated.
  • the generation function 355 makes the display mode in which the user can easily recognize the boundary between the leaflet 77a shown in FIG. 13 and the separation region between the leaflet 77a and the leaflet 77b.
  • the generation function 355 changes the boundary between the leaflet 77b shown in FIG. 13 and the separated area into a display mode that is easy for the user to recognize.
  • the generation function 355 generates red line image data superimposed on the boundary between the leaflet 77a and the leaflet 77b and the separation region, and the red line indicated by the generated image data is converted into the leaflet 77a. And it overlaps with the boundary between the leaflet 77b and the separation region.
  • a threshold value for determining that the leaflets 77 a and 77 b are separated from each other is set as 1 [mm]. In this case, even if the position on the boundary line 78 where the length in the blood flow direction of the contact region 41 is less than 1 [mm] is the contact region, the leaflet 77a and the leaflet 77b are separated from each other. It is thought that it is close to the state.
  • the generation function 355 includes, in the graph 75, a portion of the curve that indicates the correspondence between the position (width) on the boundary line 78 and the length (depth) of the contact region in the blood flow direction, less than the threshold, Image data representing the graph 75 is generated so that the portion (display manner) is different from the portion of.
  • the generation function 355 may generate image data indicating the graph 75 so that the portion of the curve that is less than the threshold and the portion that is greater than or equal to the threshold have different colors.
  • the threshold value is not limited to 1 [mm] described above, and may be another value.
  • the generation function 355 may change the threshold value based on the instruction.
  • FIG. 14 is an enlarged view of a part of the boundary line 78 shown in FIG.
  • the generation function 355 includes a portion 78a of the boundary line 78 where the length of the contact region in the blood flow direction is less than the threshold value, and a boundary line where the length of the contact region in the blood flow direction is equal to or greater than the threshold value.
  • Image data indicating the boundary line 78 is generated so that the portion (part other than the portion 78a) of 78 has a different form (display form).
  • the generation function 355 superimposes the boundary line 78 on the MPR image 76. That is, the generation function 355 is a boundary line 78 set between two adjacent leaflets 77a and 77b, and the length of the contact region in the blood flow direction is equal to or greater than the threshold value (other than the portion 78a).
  • the boundary line 78 having a different aspect between the portion 78 and the portion 78 a less than the threshold is superimposed on the MPR image 76.
  • the generation function 355 may generate a boundary line that is more finely displayed according to the size of the length of the contact region in the blood flow direction using a plurality of threshold values instead of one threshold value.
  • FIG. 15 is a diagram for explaining an example of processing for generating image data of another graph and image data for other display by the generation function 355 according to the first embodiment.
  • the generation function 355 generates image data indicating an MPR image 80 of a cross section of the aortic valve 83 cut by the reference plane 50 as display image data.
  • the aortic valve 83 is a valve composed of a plurality of leaflets 83a, 83b, 83c extracted by the extraction function 352. That is, the generation function 355 generates display image data including a plurality of leaflets 83a, 83b, and 83c from the three-dimensional CT image data.
  • Such image data is an example of first image data for display.
  • the generation function 355 generates image data indicating the boundary line 84a, image data indicating the boundary line 84b, and image data indicating the boundary line 84c.
  • the boundary line 84a is a line set between the leaflet 83c and the leaflet 83a.
  • the boundary line 84b is a line set between the leaflets 83a and the leaflets 83b.
  • the boundary line 84c is a line set between the leaflets 83b and the leaflets 83c.
  • the generation function 355 generates image data indicating the center of gravity mark 85.
  • the center of gravity here is the center of gravity of the non-contact region (non-existing region) surrounded by the three leaflets 83a, leaflets 83b, and leaflets 83c on the reference plane 50.
  • the generation function 355 generates image data indicating the mark 86a at the end opposite to the center of gravity of the boundary line 84a.
  • the generation function 355 generates image data indicating the mark 86b at the end opposite to the center of gravity of the boundary line 84b.
  • the generation function 355 generates image data indicating the mark 86c at the end opposite to the center of gravity of the boundary line 84c.
  • the generation function 355 generates image data indicating the mark 87a that can move on the boundary line 84a.
  • the generation function 355 generates image data indicating the mark 87b that can move on the boundary line 84b.
  • the generation function 355 generates image data indicating the mark 87c that can move on the boundary line 84c.
  • the generation function 355 superimposes the boundary lines 84a to 84c, the marks 85, 86a to 86c, and 87a to 87c on the MPR image 80. Accordingly, the generation function 355 generates image data indicating the MPR image 80 on which the boundary lines 84a to 84c, the marks 85, 86a to 86c, and 87a to 87c are superimposed.
  • the generation function 355 generates image data indicating the MPR image 81a of the cross section of the aortic valve 83 passing through the mark 87a on the boundary line 84a and orthogonal to the boundary line 84a.
  • the generation function 355 generates image data indicating the MPR image 81b of the cross section of the aortic valve 83 that passes through the mark 87b on the boundary line 84b and is orthogonal to the boundary line 84b.
  • the generation function 355 generates image data indicating the MPR image 81c of the cross section of the aortic valve 83 that passes through the mark 87c on the boundary line 84c and is orthogonal to the boundary line 84c.
  • the MPR image 81a shows the contact state between the leaflets 83c and the leaflets 83a.
  • the MPR image 81b shows the contact state between the valve leaf 83a and the valve leaf 83b
  • the MPR image 81c shows the contact state between the valve leaf 83b and the valve leaf 83c.
  • the MPR image 81a shows a state where the leaflets 83c and the leaflets 83a are separated from each other. Further, the MPR image 81b shows a state where the leaflets 83a and the leaflets 83b are in contact with each other. Further, the MPR image 81c shows a state in which the leaflets 83b and the leaflets 83c are in contact with each other.
  • the generation function 355 generates image data indicating a graph 82a representing the length of the contact region in the blood flow direction for each position on the boundary line 84a. In addition, the generation function 355 generates image data indicating a graph 82b representing the length in the blood flow direction of the contact region for each position on the boundary line 84b. In addition, the generation function 355 generates image data indicating a graph 82c representing the length in the blood flow direction of the contact region for each position on the boundary line 84c.
  • the length in the blood flow direction of the contact area for each position on the boundary line 84a, the length in the blood flow direction of the contact area for each position on the boundary line 84b, and the blood in the contact area for each position on the boundary line 84c The length in the flow direction is measured by the measurement function 354.
  • a curve 99a in the graph 82a indicates a correspondence relationship between the position (width) on the boundary line 84a and the length (depth) in the blood flow direction of the contact region where the leaflets 83c and the leaflets 83a are in contact with each other. .
  • the mark 89a in the graph 82a corresponds to the mark 86a at the end of the boundary line 84a. That is, in the graph 82a, the mark 89a has a position (width; origin (0)) on the boundary line 84a of the mark 86a and a length (depth) corresponding to the position on the boundary line 84a of the mark 86a. 5 [mm]).
  • the mark 88 in the graph 82a corresponds to the mark 85 indicating the center of gravity. That is, in the graph 82a, the mark 88 is arranged at a position indicating a position (depth; 0 [mm]) corresponding to a position on the boundary line 84a of the center of gravity and a position on the boundary line 84a of the center of gravity. Has been.
  • the mark 90a in the graph 82a corresponds to the mark 87a. That is, the mark 90a is arranged on the curve 99a so as to indicate the same position as the position of the mark 87a on the boundary line 84a.
  • the curve 99b shows the correspondence between the position on the boundary line 84b and the length in the blood flow direction of the contact area where the leaflets 83a and the leaflets 83b are in contact.
  • the mark 89b corresponds to the mark 86b at the end of the boundary line 84b.
  • a mark 88 in the graph 82b indicates a position on the boundary line 84b of the center of gravity and a length (depth; 0 [mm]) corresponding to the position on the boundary line 84b of the center of gravity.
  • the mark 90b corresponds to the mark 87b.
  • the curve 99c shows the correspondence between the position on the boundary line 84c and the length in the blood flow direction of the contact area where the leaflets 83b and the leaflets 83c are in contact.
  • the mark 89c corresponds to the mark 86c at the end of the boundary line 84c.
  • a mark 88 in the graph 82c indicates a position on the boundary line 84c of the center of gravity and a length (depth; 0 [mm]) corresponding to the position on the boundary line 84c of the center of gravity.
  • the mark 90c corresponds to the mark 87c.
  • a threshold value 98 for setting the leaflet 83c and the leaflet 83a to be separated from each other is set as 1 [mm]. Therefore, the generation function 355 may generate image data indicating the graph 82a so that the portion of the curve 99a that is less than the threshold 98 is different from the portion that is equal to or greater than the threshold 98. The same applies to the graph 82b and the graph 82c.
  • the threshold value is not limited to 1 [mm] described above, and may be other values, as in the example of FIG.
  • the generation function 355 may change the threshold value based on the instruction.
  • the control function 351 displays the graph 75.
  • the image data to be displayed and the image data to indicate the MPR image 76 on which the boundary line 78 is superimposed are transmitted to the display 340.
  • the control function 351 controls the display 340 to display the MPR image 76 on which the graph 75 and the boundary line 78 are superimposed, as shown in FIG.
  • control function 351 is a position in the contact region where the leaflet 77a and the leaflet 77b contact each other, and the blood flow direction of the contact region at each position in the direction along the boundary line 78 intersecting the blood flow direction.
  • the display 340 is controlled to display the length of.
  • the control function 351 causes the display 34 to display a graph of the length distribution at each of the plurality of positions of the boundary line 78.
  • the control function 351 controls the display 340 so as to display the display MPR image 76 in which the plurality of leaflets 77a and leaflets 77b are drawn together with the length of the contact region in the blood flow direction.
  • control function 351 causes the display 34 to display an image in which the boundary line 78 corresponding to the contact region where the two leaflets 77a and 77b are in contact with the MPR image 76 is superimposed on the MPR image 76.
  • the display MPR image 76 is an example of a first display image.
  • the direction along the boundary line 78 is an example of the second direction.
  • the medical image processing apparatus 300 displays the length in the blood flow direction of the contact area where the leaflets 77a and 77b contact.
  • the length in the blood flow direction of the contact area where the leaflets 77a and 77b are in contact is information indicating the detailed state of the mitral valve 77, and for a user such as a doctor, the mitral valve This information is useful as a judgment material when determining 77 surgical methods. Therefore, according to the medical image processing apparatus 300, the user can grasp the detailed state of the mitral valve 77. Furthermore, as a result, according to the medical image processing apparatus 300, it is possible to assist the user in determining the operation method of the mitral valve 77. For example, the user can intuitively specify the portion of the mitral valve 77 that requires surgery. For this reason, the time required for planning the operation of the mitral valve 77 can be shortened.
  • the medical image processing apparatus 300 superimposes on the MPR image 76 a boundary line 78 having different aspects in a portion (a portion other than the portion 78a) whose length in the blood flow direction of the contact region is greater than or equal to a threshold value and a portion 78a that is less than the threshold value.
  • the image is displayed on the display 340.
  • the threshold value to be larger than 0
  • the generation function 355 generates a new MPR image 76 based on the position of the reference surface 50 after the movement when the reference surface 50 is moved by a user operation. Then, the control function 351 updates the MPR image 76 being displayed on the display 340 with the new MPR image 76.
  • the control function 351 transmits these image data to the display 340. Then, as shown in FIG.
  • control function 351 displays the MPR image 80, the MPR images 81a to 81c, and the graphs 82a to 82c on which the boundary lines 84a to 84c, the marks 85, 86a to 86c, and 87a to 87c are superimposed.
  • the display 340 is controlled as follows.
  • the mark 87 a displayed on the display 340 can be moved on the boundary line 84 a by a user operation via the input interface 330.
  • the mark 87b can be moved on the boundary line 84b by the user's operation
  • the mark 87c can be moved on the boundary line 84c.
  • the generation function 355 moves the marks 87a, 87b, 87c to positions specified by the user.
  • the generation function 355 According to the position of the mark 87a after movement, the generation function 355 generates image data indicating a new MPR image 81a. Similarly, the generation function 355 generates image data indicating a new MPR image 81b according to the position of the moved mark 87b, and image data indicating the new MPR image 81c according to the position of the moved mark 87c. Is generated. That is, the generation function 355 generates image data indicating new MPR images 81a, 81b, and 81c in conjunction with changes in the positions of the marks 87a, 87b, and 87c.
  • the generation function 355 receives the designation of the position on the boundary line 84a, and includes the designated position, and the MPR image 81a for display in which the two adjacent leaflets 83c and the leaflets 83a are depicted. Display image data indicating the above is generated. Similarly, the generation function 355 accepts designation of a position on the boundary line 84b, and displays an MPR image 81b for display that includes the designated position and depicts two adjacent leaflets 83a and leaflets 83b. Display image data to be displayed is generated. Further, the generation function 355 accepts designation of a position on the boundary line 84c, and shows a display MPR image 81c that includes the designated position and depicts two adjacent leaflets 83b and leaflets 83c. Display image data is generated.
  • the MPR images 81a, 81b, and 81c are examples of the second display image.
  • the MPR images 81a, 81b, and 81c are examples of the second tomographic image.
  • Each image data of the MPR images 81a, 81b, 81c is an example of second image data for display.
  • each image data of the MPR images 81a, 81b, 81c is an example of second tomographic image data.
  • the control function 351 controls the display 340 so as to display the MPR image 81a indicated by the image data of the MPR image 81a.
  • the control function 351 controls the display 340 so as to display the MPR image 81b indicated by the image data of the MPR image 81b.
  • the control function 351 controls the display 340 so as to display the MPR image 81b indicated by the image data of the MPR image 81c.
  • the control function 351 controls the display 340 so as to update the MPR images 81a, 81b, and 81c being displayed with the new MPR images 81a, 81b, and 81c.
  • the medical image processing apparatus 300 updates the displayed MPR images 81a, 81b, and 81c in conjunction with changes in the positions of the marks 87a, 87b, and 87c.
  • the user simply moves the marks 87a, 87b, 87c, the contact state between the leaflets 83c and 83a, the contact state between the leaflets 83a and 83b, and the leaflets 83b and valves at various positions.
  • the contact state of the leaves 83c can be easily grasped.
  • the generation function 355 displays an image showing a new graph 82a in which the position of the mark 90a on the curve 99a is changed to the same position as the position of the mark 87a after the movement. Generate data. Further, the generation function 355 displays an image showing a new graph 82b in which the position of the mark 90b on the curve 99b is changed to the same position as the position of the moved mark 87b according to the position of the moved mark 87b. Generate data.
  • the generation function 355 displays an image showing a new graph 82c in which the position of the mark 90c on the curve 99c is changed to the same position as the position of the moved mark 87c according to the position of the moved mark 87c. Generate data.
  • the generation function 355 generates new graphs 82a, 82b, and 82c in conjunction with changes in the positions of the marks 87a, 87b, and 87c.
  • the control function 351 controls the display 340 so as to update the currently displayed graphs 82a, 82b, and 82c with the new graphs 82a, 82b, and 82c.
  • the medical image processing apparatus 300 updates the displayed graphs 82a, 82b, and 82c in conjunction with the change in the positions of the marks 87a, 87b, and 87c.
  • the generation function 355 when the reference plane 50 is moved by a user operation, the generation function 355 generates a new MPR image 80 based on the position of the reference plane 50 after the movement. Then, the control function 351 updates the MPR image 80 being displayed on the display 340 with the new MPR image 80.
  • the length in the flow direction and the length in the blood flow direction of the contact area where the leaflets 83a and the leaflets 83b contact are displayed. Therefore, according to the medical image processing apparatus 300, the user can grasp the detailed state of the aortic valve 83. Further, according to the medical image processing apparatus 300, it is possible to assist the user in determining the operation method for the aortic valve 83.
  • FIG. 16 is a flowchart illustrating an example of a flow of processing executed by the processing circuit 350 according to the first embodiment. Such processing is executed by the functions 351 to 355 of the processing circuit 350 when, for example, an instruction for executing processing is received by the input interface 330.
  • the extraction function 352 acquires 3D CT image data or 4D CT image data stored in the memory 320 (step S101). In addition, when the four-dimensional CT image data is acquired, the extraction function 352 selects one time phase 3 from a plurality of time-phase three-dimensional CT image data constituting the four-dimensional CT image data. Dimensional CT image data is acquired.
  • the extraction function 352 extracts each of a plurality of leaflets constituting the heart valve of the subject from the three-dimensional CT image data (step S102). Then, the setting function 353 sets the reference plane 50 and the reference plane 51 related to the plurality of leaflets for the plurality of leaflets extracted by the extraction function 352 (step S103).
  • the setting function 353 sets a boundary line between two adjacent leaflets (step S104).
  • the measurement function 354 measures the length of the blood flow direction of the contact area
  • generation function 355 produces
  • the generation function 355 generates image data indicating an MPR image of the cross section of the valve cut by the reference plane 50 as display image data (step S107). Then, the control function 351 controls the display 340 so as to display the graph and the display image (Step S108), and ends the process.
  • Steps S101 and S102 shown in FIG. 16 are steps corresponding to the extraction function 352.
  • Steps S101 and S102 are steps in which the extraction function 352 is realized by the processing circuit 350 calling and executing a program corresponding to the extraction function 352 from the memory 320.
  • Steps S103 and S104 are steps corresponding to the setting function 353.
  • Steps S103 and S104 are steps in which the setting function 353 is realized by the processing circuit 350 calling and executing a program corresponding to the setting function 353 from the memory 320.
  • Step S105 is a step corresponding to the measurement function 354.
  • Step S105 is a step in which the measurement function 354 is realized by the processing circuit 350 calling and executing a program corresponding to the measurement function 354 from the memory 320.
  • Steps S106 and S107 are steps corresponding to the generation function 355.
  • Steps S106 and S107 are steps in which the generation function 355 is realized by the processing circuit 350 calling and executing a program corresponding to the generation function 355 from the memory 320.
  • Step S108 is a step in which the control function 351 is realized by the processing circuit 350 calling and executing a program corresponding to the control function 351 from the memory 320.
  • the medical image processing apparatus 300 has been described above. According to the medical image processing apparatus 300, as described above, the user can grasp the detailed state of the valve.
  • the setting function 353 is a reference plane 50 related to a plurality of leaflets and intersects with the blood flow direction with respect to the plurality of leaflets extracted by the extraction function 352.
  • the case where 50 is set has been described.
  • the setting function 353 sets, for at least one leaflet among the plurality of leaflets, a reference surface 50 related to the at least one leaflet and intersecting the blood flow direction. Also good.
  • the measurement function 354 measures the length of the blood flow direction of the contact area which each leaflet and other leaflets contact about each of several leaflets.
  • the measurement function 354 may measure the length in the blood flow direction of the contact region where the valve leaf and another leaf leaf are in contact with each other for at least one of the plurality of leaflets.
  • the medical image processing apparatus 300 may measure information indicating the detailed state of the valve other than the length of the contact region in the blood flow direction. Therefore, a case where information indicating the detailed state of other valves is measured will be described. Hereinafter, five pieces of information indicating the detailed state of the valve other than the length of the contact region in the blood flow direction in the second to sixth modifications of the first embodiment will be described.
  • the medical image processing apparatus 300 according to each of the second to sixth modifications of the first embodiment performs the same processing as the medical image processing apparatus 300 according to the first embodiment described above. In addition, processing described below is further executed.
  • FIG. 17 is a diagram for describing an example of processing executed according to the second modification and the third modification.
  • the measurement function 354 measures the length 91a of the boundary line 55a. That is, the measurement function 354 calculates the length 91a in the direction along the boundary line 55a of the contact region 41 where the leaflets 40a and 40b are in contact.
  • the direction along the boundary line 55a is an example of the second direction.
  • the measurement function 354 is the length of the contact area where at least one of the plurality of leaflets extracted by the extraction function 352 is in contact with the other leaflets, and the boundary What is necessary is just to calculate the length of the direction along a line.
  • control function 351 controls the display 340 so as to display the length in the direction along the boundary line of the contact area measured by the measurement function 354.
  • control function 351 controls the display 340 to display the length 91a in the direction along the boundary line 55a of the contact area 41.
  • the measurement function 354 has a length in the direction along the boundary line 55 b of the separation region 42 between a part of the leaflets 40 a and a part of the other leaflets 40 b that are separated from each other. 91b is measured.
  • the direction along the boundary line 55b is an example of the second direction.
  • the measurement function 354 has, on at least one leaflet extracted from the plurality of leaflets extracted by the extraction function 352, a boundary line between the leaflets and the other leaflets that are separated from each other. What is necessary is just to calculate the length of the direction along.
  • control function 351 controls the display 340 so as to display the length in the direction along the boundary line of the separation area measured by the measurement function 354.
  • control function 351 controls the display 340 so as to display the length 91 b in the direction along the boundary line 55 b of the separation region 42.
  • FIG. 18 is a diagram for describing an example of processing executed according to the fourth modification and the fifth modification.
  • the measurement function 354 measures the contact area 41a in the contact region 41 where the leaflets 40a and 40b are in contact.
  • An example of a method for measuring the contact area 41a will be described.
  • the measurement function 354 integrates a plurality of lengths corresponding to a plurality of positions on the measured boundary line 71 (length in the blood flow direction of the contact region 41) in a direction along the boundary line 71. The obtained integrated value is measured as the contact area 41a.
  • the measurement function 354 measures the contact area in the contact area where the valve leaf and the other leaflet are in contact with each other for at least one of the plurality of leaflets extracted by the extraction function 352. Good.
  • control function 351 controls the display 340 so as to display the contact area measured by the measurement function 354.
  • FIG. 19 is a diagram for describing an example of processing executed according to the fourth modification.
  • the generation function 355 uses a plurality of contact areas in a plurality of time phases measured by the measurement function 354, as shown in FIG. 19, the horizontal axis is time (time phase), and the vertical axis is the overlapping area. Image data indicating a graph representing a contact area for each time phase is generated.
  • control function 351 transmits the image data generated by the generation function 355 to the display 340, and controls the display 340 so as to display a graph indicated by the image data.
  • the measurement function 354 measures the area of “a part of the leaflet 40 a” that forms the separation region 42 as the separation area 42 a.
  • the measurement function 354 moves the reference surface 51 along the boundary line 71 in the direction 72 from one end of the boundary line 71 toward the other end of the boundary line 71 in the separation area 42, while moving on the boundary line 71.
  • the length on the reference plane 51 of the leaflet 40a intersecting with the reference plane 51 is measured at a plurality of positions.
  • the measurement function 354 moves the reference surface 51 and positions the reference surface 51 at each of a plurality of positions on the boundary line 71 in the separation region 42. And the measurement function 354 measures the length on the reference surface 51 of the leaflet 40a intersecting the reference surface 51 in the separation region 42 when the reference surface 51 is positioned at each of a plurality of positions. To do.
  • the measurement function 354 is obtained by integrating a plurality of lengths corresponding to a plurality of positions on the boundary line 71 (lengths on the reference plane 51 of the leaflets 40a) in the direction along the boundary line 71. The integral value is measured as the separation area 42a. Then, the control function 351 controls the display 340 so as to display the separation area 42a measured by the measurement function 354.
  • the measurement function 354 has a separation area in a separation region between the valve leaf and the other leaflets that are separated from each other with respect to at least one of the plurality of leaflets extracted by the extraction function 352. Just measure.
  • FIG. 20 is a diagram for explaining an example of processing executed according to the fifth modification.
  • the generation function 355 uses a plurality of separation areas in a plurality of time phases measured by the measurement function 354, and the horizontal axis is time (time phase) and the vertical axis is the deviation area, as shown in FIG. Image data indicating a graph indicating a separation area for each time phase is generated.
  • control function 351 transmits the image data generated by the generation function 355 to the display 340, and controls the display 340 so as to display a graph indicated by the image data.
  • the measurement function 354 may measure the area of the “part of the leaflet 40b” forming the separation region 42 as the separation area by the same method.
  • FIG. 21 is a diagram for explaining an example of processing executed according to the sixth modification.
  • the measurement function 354 measures the distance 51b between the leaflets 40a and 40b in the separation region 42.
  • the measurement function 354 measures the distance 51b between the leaflets 40a and 40b in the separation region 42 on the reference surface 50 and on the reference surface 51.
  • the distance 51b is also referred to as a gap (gap) width.
  • the measurement function 354 measures the distance 51b at each of the plurality of positions of the reference surface 51 while moving the reference surface 51 along the boundary line 55b, and is the longest of the plurality of distances 51b.
  • the distance 51b may be adopted as the distance between the leaflets 40a and 40b in the separation region 42.
  • the measurement function 354 has the leaflets in the separated region between the leaflets and the other leaflets that are separated from each other for at least one leaflet extracted from the plurality of leaflets extracted by the extraction function 352. What is necessary is just to measure the distance between and other leaflets.
  • control function 351 controls the display 340 so as to display the distance 51b measured by the measurement function 354.
  • FIG. 22 is a diagram for explaining an example of processing executed according to the sixth modification.
  • the generation function 355 uses the plurality of distances 51b in the plurality of time phases measured by the measurement function 354, as shown in FIG. 22, the horizontal axis is time (time phase), and the vertical axis is the gap width. Image data indicating a graph representing the distance 51b for each time phase is generated.
  • control function 351 transmits the image data generated by the generation function 355 to the display 340, and controls the display 340 so as to display a graph indicated by the image data.
  • control function 351 may control the display 340 so that various measurement results measured by the measurement function 354 are displayed by an indicator bar. Thereby, a user can grasp
  • the setting function 353 is orthogonal to the reference plane 50 in the two-leaf valve such as the mitral valve 40 and the two-leaf valve.
  • the reference plane 51 orthogonal to the line segment connecting the two commissures has been described.
  • the setting function 353 may set the reference plane 51 by another method. Therefore, such a modification will be described as a seventh modification of the first embodiment.
  • FIG. 23 is a diagram for explaining an example of processing executed by the setting function according to the seventh modification of the first embodiment.
  • the seventh modification differences from the above-described first embodiment and the first to sixth modifications will be mainly described.
  • the same reference numerals are given to the same configurations as those in the first embodiment and the first to sixth modifications described above, and the description may be omitted.
  • the setting function 353 detects the long axis 40f of the heart included in the CT image data as shown in FIG.
  • the long axis 40 f is an axis that connects the apex of the heart and the apex of the mitral valve 40.
  • the setting function 353 sets the reference plane 51 that is orthogonal to the line segment 40e and that extends along the long axis 40f.
  • the setting function 353 may set a reference surface 51 that is orthogonal to the reference surface 50 and that extends along the long axis 40f.
  • the setting function 353 sets the reference plane 51 for an aortic valve composed of three leaflets.
  • the setting function 353 extracts the core wire (not shown) of the aorta.
  • the aorta is a blood vessel that carries blood that flows in via the aortic valve.
  • the setting function 353 sets the reference plane 51 that is orthogonal to the line segment that connects the contact point or the center of gravity and the commissure described above, and that is along the core line.
  • the setting function 353 may set the reference surface 51 that is orthogonal to the reference surface 50 and that is along the core wire.
  • the setting function 353 sets the reference plane 51 for a pulmonary valve composed of three leaflets.
  • the setting function 353 extracts a pulmonary artery core wire (not shown).
  • the pulmonary artery is a blood vessel that carries blood that has flowed in via the pulmonary valve.
  • the setting function 353 sets the reference plane 51 that is orthogonal to the line segment that connects the contact point or the center of gravity and the commissure described above, and that is along the core line.
  • the setting function 353 may set the reference surface 51 that is orthogonal to the reference surface 50 and that is along the core wire.
  • the measurement function 354 may measure the inclination angle of the leaflets and the length of the contact region in the inclination direction of the leaflets. Therefore, such a modification will be described as an eighth modification of the first embodiment.
  • FIG. 24 is a diagram for explaining an example of processing executed by the setting function according to the eighth modification of the first embodiment.
  • the eighth modification differences from the above-described first embodiment and the first to seventh modifications will be mainly described.
  • the same reference numerals are given to the same configurations as those in the first embodiment and the first to seventh modifications described above, and the description may be omitted.
  • the measurement function 354 derives the angle ⁇ formed by the line segment 40g on the reference plane 51 and the leaflet 40a as the inclination angle of the leaflet 40a.
  • the line segment 40g is a line segment parallel to the line segment 40e.
  • the line segment 40g may be a line segment parallel to the line segment where the reference plane 50 and the reference plane 51 intersect.
  • the measurement function 354 specifies the direction in which the leaflet 40a extends (the direction indicated by the arrow 40i, the extending direction) from the inclination angle ⁇ of the leaflet 40a. Then, the measurement function 354 measures the length of the contact area on the reference surface 51 in the extending direction. That is, the measurement function 354 measures the length of the contact area in the direction in which the leaflet 40a extends.
  • the measurement function 354 may measure the length of the contact region intersecting the reference surface 51 on the reference surface 51 as the length of the contact region 41 in the extending direction.
  • control function 351 may display other images on the display 340 in addition to the display in the first embodiment and the first to eighth modifications. Therefore, such a modification will be described as a ninth modification of the first embodiment.
  • the ninth modification will be described with reference to FIG.
  • the generation function 355 according to the ninth modification generates volume rendering image data in a predetermined range that passes through the mark 87a on the boundary line 84a shown in FIG. 15 and includes the leaflets 83c and the leaflets 83a. .
  • the generation function 355 generates volume rendering image data in which a predetermined color is assigned to a contact area where the leaflets 83c and the leaflets 83a are in contact with each other.
  • a predetermined color for example, when a volume rendering image is displayed on the display 340, a color in which the contact area is conspicuous with respect to an area around the contact area is employed.
  • the predetermined color may be red.
  • the mark 87 a can be moved on the boundary line 84 a by a user operation via the input interface 330.
  • the generation function 355 moves the marks 87a, 87b, 87c to positions specified by the user. Therefore, the generation function 355 generates new volume rendering image data according to the position of the mark 87a after movement.
  • the generation function 355 receives the designation of the position on the boundary line 84a, is volume rendering image data that includes the designated position and depicts two adjacent leaflets 83c and 83a, Volume rendering image data in which a predetermined color is assigned to the contact area where the leaflets 83c and 83a contact is generated.
  • control function 351 causes the display 340 to display a volume rendering image indicated by the volume rendering image data.
  • the contact area is displayed in a three-dimensional manner in the volume rendering image that the user looks three-dimensional.
  • a conspicuous color is assigned to the contact area, the user can easily grasp the shape and position of the contact area.
  • the user can easily grasp the shape and position of the contact area.
  • FIG. 25 is a diagram illustrating an example of a configuration of a medical image processing apparatus 300 according to the second embodiment.
  • the medical image processing apparatus 300 according to the second embodiment is different from the medical image processing apparatus 300 according to the first embodiment in that the processing circuit 350 further has an analysis function 356.
  • the same components as those in the first embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • the analysis function 356 executes various simulations using the measurement results obtained by the measurement function 354. For example, the analysis function 356 obtains the reverse flow rate of blood when the blood flowing through the valve flows backward in the valve constituted by a plurality of leaflets extracted by the extraction function 352 based on the measurement result by the measurement function 354. Run the simulation.
  • the analysis function 356 is a time period during which the two lobules constituting the mitral valve are open during the systole when the mitral valve is completely closed if normal, and the separation region measured by the measurement function 354 during the systole.
  • the contraction speed of the left ventricle of the subject's heart, the heart rate discharge of the subject's heart, the back flow of blood when the blood flowing through the mitral valve flows back and A fluid simulation for obtaining a backflow position and the like is executed.
  • the medical image processing apparatus 300 is obtained from four-dimensional CT image data including three-dimensional CT image data in the time phase of the systole. Is obtained.
  • the medical image processing apparatus 300 can calculate the time during which the two leaflets are open by measuring the length of the contact region in the blood flow direction in each time phase of the systole.
  • the cardiac discharge amount of the subject's heart can also be obtained by the medical image processing apparatus 300 by a known technique using the four-dimensional CT image data. Further, the contraction speed of the left ventricle of the subject's heart is also obtained by the medical image processing apparatus 300 by a known technique using the four-dimensional CT image data.
  • the analysis function 356 is not the length in the direction along the boundary line of the separation region measured by the measurement function 354 when performing the fluid simulation described above, but the separation region in the valve after the plastic surgery assumed by the doctor.
  • the fluid simulation may be executed using the length in the direction along the boundary line. Thereby, the simulation after the operation of the valve is performed, and the user can obtain a valve forming method suitable for the operation.
  • the analysis function 356 may superimpose information indicating the reverse flow rate of blood obtained by the fluid simulation at a position where the leaflet and the leaflet are separated from each other on the MPR image.
  • the MPR image here include an MPR image 76 shown in FIG. 13 and MPR images 80, 81a to 81c shown in FIG.
  • the analysis function 356 replaces the subject valve in the valve replacement operation instead of the length in the direction along the boundary line of the separated region measured by the measurement function 354 when performing the fluid simulation described above.
  • Fluid simulation may be executed using information on leaflets and annulus of a plurality of biological valves and mechanical valves that are candidates. Thereby, the user can discriminate
  • FIG. 26 is a diagram illustrating an example of the configuration of the X-ray CT apparatus according to the third embodiment.
  • the X-ray CT apparatus 500 includes a gantry 10, a bed 20, and a console 30.
  • the gantry 10 is an apparatus that irradiates the subject P with X-rays and collects data related to the X-rays transmitted through the subject P.
  • the gantry 10 includes an X-ray high-voltage device 11, an X-ray generator 12, and an X-ray detector. 13, a data collection circuit 14, a rotating frame 15, and a gantry control device 16.
  • an orthogonal coordinate system including an X axis, a Y axis, and a Z axis is defined. That is, the X axis indicates the horizontal direction, the Y axis indicates the vertical direction, and the Z axis indicates the direction of the rotation center axis of the rotating frame 15 when the gantry 10 is not tilted.
  • the rotating frame 15 supports the X-ray generator 12 and the X-ray detector 13 so as to face each other with the subject P interposed therebetween, and is fast at a circular orbit centered on the subject P by a gantry control device 16 described later. It is an annular frame that rotates in a circle.
  • the X-ray generator 12 is an apparatus that generates X-rays and irradiates the subject P with the generated X-rays.
  • the X-ray generator 12 includes an X-ray tube 12a, a wedge 12b, and a collimator 12c.
  • the X-ray tube 12a is a vacuum tube that receives a high voltage from the X-ray high voltage device 11 and irradiates thermoelectrons from a cathode (sometimes referred to as a filament) to an anode (target).
  • the X-ray beam is irradiated to the subject P with the rotation of. That is, the X-ray tube 12 a generates X-rays using the high voltage supplied from the X-ray high voltage device 11.
  • the X-ray tube 12a generates an X-ray beam that spreads with a fan angle and a cone angle.
  • the X-ray tube 12a controls the X-ray high-voltage apparatus 11 to continuously expose X-rays around the subject P for full reconstruction or exposure that can be reconfigured for half reconstruction. It is possible to continuously expose X-rays in the irradiation range (180 degrees + fan angle).
  • the X-ray tube 12a can intermittently emit X-rays (pulse X-rays) at a preset position (tube position) under the control of the X-ray high voltage apparatus 11.
  • the X-ray high voltage apparatus 11 can also modulate the intensity of X-rays exposed from the X-ray tube 12a.
  • the X-ray high voltage apparatus 11 increases the intensity of X-rays emitted from the X-ray tube 12a at a specific tube position, and exposes from the X-ray tube 12a in a range other than the specific tube position. Reduce the intensity of the emitted X-rays.
  • the wedge 12b is an X-ray filter for adjusting the X-ray dose of X-rays exposed from the X-ray tube 12a. Specifically, the wedge 12b transmits the X-rays exposed from the X-ray tube 12a so that the X-rays irradiated from the X-ray tube 12a to the subject P have a predetermined distribution. Attenuating filter.
  • the wedge 12b is a filter obtained by processing aluminum so as to have a predetermined target angle or a predetermined thickness.
  • the wedge is also called a wedge filter or a bow-tie filter.
  • the collimator 12c is composed of a lead plate or the like and has a slit in part.
  • the collimator 12c narrows down the X-ray irradiation range in which the X-ray dose is adjusted by the wedge 12b with the slits under the control of the X-ray high voltage apparatus 11 described later.
  • the X-ray source of the X-ray generator 12 is not limited to the X-ray tube 12a.
  • the X-ray generator 12 collides with a focus coil that focuses an electron beam generated from an electron gun, a deflection coil that electromagnetically deflects, and an electron beam that deflects around a half circumference of the subject P. And a target ring that generates X-rays.
  • the X-ray high voltage device 11 is composed of an electric circuit such as a transformer and a rectifier, and has a function of generating a high voltage to be applied to the X-ray tube 12a, and the X-ray tube 12a emits light.
  • An X-ray control device that controls the output voltage according to the X-ray to be performed.
  • the high voltage generator may be a transformer system or an inverter system.
  • the X-ray high voltage apparatus 11 adjusts the X-ray dose irradiated to the subject P by adjusting the tube voltage and tube current supplied to the X-ray tube 12a. Further, the X-ray high voltage apparatus 11 receives control from the processing circuit 37 of the console 30.
  • the gantry control device 16 includes a processing circuit configured by a CPU (Central Processing Unit) and the like and a driving mechanism such as a motor and an actuator.
  • the gantry control device 16 has a function of controlling the operation of the gantry 10 by receiving an input signal from the input interface 31 attached to the console 30 or the input interface attached to the gantry 10. For example, the gantry control device 16 receives the input signal and rotates the rotary frame 15 to rotate the X-ray tube 12a and the X-ray detector 13 on a circular orbit around the subject P. Control for tilting the gantry 10 and control for operating the bed 20 and the top plate 22 are performed. The gantry control device 16 receives control from the processing circuit 37 of the console 30.
  • a CPU Central Processing Unit
  • the gantry control device 16 monitors the position of the X-ray tube 12a, and when the X-ray tube 12a reaches a predetermined rotation angle (imaging angle), a timing at which data acquisition to the data acquisition circuit 14 is started.
  • a plurality of X-ray detection elements are arranged in the channel direction along one circular arc with the focal point of the X-ray tube 12a as the center. It is composed of a plurality of X-ray detection element arrays.
  • the X-ray detector 13 has a structure in which a plurality of X-ray detection element arrays in which a plurality of X-ray detection elements are arranged in the channel direction are arranged in the slice direction.
  • Each X-ray detection element of the X-ray detector 13 detects X-rays irradiated from the X-ray generator 12 and passed through the subject P, and outputs an electric signal (pulse) corresponding to the X-ray dose to the data collection circuit 14. To output.
  • the X-ray detector 13 is an indirect conversion type detector composed of, for example, a grid, a scintillator array, and an optical sensor array.
  • the scintillator array is composed of a plurality of scintillators, and the scintillator is composed of a scintillator crystal that outputs a photon amount of light corresponding to the incident X-ray dose.
  • the grid is an X-ray shielding plate that is disposed on the surface on the X-ray incident side of the scintillator array and has a function of absorbing scattered X-rays.
  • the photosensor array has a function of converting into an electrical signal corresponding to the amount of light from the scintillator, and is composed of a photosensor such as a photomultiplier tube, for example.
  • the optical sensor is, for example, a SiPM (Silicon photomultiplier).
  • the X-ray detector 13 may be a direct conversion type detector composed of a semiconductor element that converts incident X-rays into electrical signals.
  • the data acquisition circuit 14 (DAS: Data Acquisition System) includes an amplifier that performs amplification processing on an electric signal output from each X-ray detection element of the X-ray detector 13 and an A / A that converts the electric signal into a digital signal. It comprises at least a D (Analog-to-digital) converter and generates detection data using the detection signal of the X-ray detector 13.
  • DAS Data Acquisition System
  • the bed 20 is a device for placing and moving the subject P to be scanned, and includes a bed driving device 21, a top plate 22, a base 23, and a base (support frame) 24.
  • the top plate 22 is a plate on which the subject P is placed.
  • the base 24 supports the top plate 22.
  • the base 23 is a housing that supports the base 24 so as to be movable in the vertical direction.
  • the couch driving device 21 is a motor or an actuator that moves the subject P into the rotary frame 15 by moving the top 22 on which the subject P is placed in the major axis direction of the top 22.
  • the couch driving device 21 can move the top plate 22 also in the X-axis direction.
  • the top plate moving method may be a method of moving only the top plate 22 or a method of moving the base 24 of the bed 20 together. In the case of standing CT, a method of moving a patient moving mechanism corresponding to the top board 22 may be used.
  • the gantry 10 executes a helical scan that scans the subject P in a spiral by rotating the rotating frame 15 while moving the top plate 22, for example.
  • the gantry 10 performs a conventional scan in which the subject P is scanned in a circular orbit by rotating the rotating frame 15 while the position of the subject P is fixed after the top plate 22 is moved.
  • a change in the relative position between the gantry 10 and the top plate 22 will be described as being realized by controlling the top plate 22, but the embodiment is not limited to this.
  • a change in the relative position between the gantry 10 and the top plate 22 may be realized by controlling the traveling of the gantry 10.
  • the relative position of the gantry 10 and the top plate 22 may be changed by controlling the traveling of the gantry 10 and the top plate 22.
  • the console 30 is a device that accepts an operation of the medical image diagnostic apparatus 100 by an operator and reconstructs CT image data using projection data collected by the gantry 10. As shown in FIG. 26, the console 30 includes an input interface 31, a display 32, a memory 35, and a processing circuit 37.
  • the input interface 31 receives various input operations from the operator, converts the received input operations into electrical signals, and outputs them to the processing circuit 37.
  • the input interface 31 is used to set the conditions for collecting projection data, the reconstruction conditions for reconstructing CT image data, the image processing conditions for generating a post-processed image from CT image data, Accept from.
  • the input interface 31 is realized by a mouse, a keyboard, a trackball, a switch, a button, a joystick, or the like.
  • Display 32 displays various information.
  • the display 32 outputs a medical image (CT image) generated by the processing circuit 37, a GUI for receiving various operations from the operator, and the like.
  • CT image medical image
  • the display 32 is configured by a liquid crystal display, a CRT display, or the like.
  • the memory 35 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, a hard disk, an optical disk, or the like.
  • the memory 35 stores, for example, projection data and CT image data.
  • the processing circuit 37 executes, for example, a control function 37a, an extraction function 37b, a setting function 37c, a measurement function 37d, and a generation function 37e.
  • each processing function executed by the control function 37a, the extraction function 37b, the setting function 37c, the measurement function 37d, and the generation function 37e which are components of the processing circuit 37 shown in FIG. In the memory 35.
  • the processing circuit 37 is, for example, a processor, and realizes a function corresponding to each read program by reading and executing each program from the memory 35. In other words, the processing circuit 37 in a state where each program is read has each function shown in the processing circuit 37 of FIG.
  • the control function 37a controls the entire medical image diagnostic apparatus 100.
  • the control function 37a executes the same processing as the control function 351 described above.
  • the extraction function 37b performs the same process as the extraction function 352 described above.
  • the setting function 37c executes the same processing as the setting function 353 described above.
  • the measurement function 37d performs the same process as the generation function 354 described above.
  • the generation function 37e performs the same process as the generation function 355 described above.
  • the generation function 37e generates three-dimensional CT image data based on the collected projection data. For example, the generation function 37e collects projection data obtained by imaging a region including the heart valve of the subject P, and generates three-dimensional CT image data based on the collected projection data. The generation function 37e can also collect projection data obtained by imaging a region including the heart valve of the subject P, and can generate four-dimensional CT image data based on the collected projection data. . In this way, the generation function 37e collects 3D CT image data and 4D CT image data.
  • the generation function 37e is an example of a generation unit and a collection unit.
  • each processing function is realized by a single processing circuit (the processing circuit 350 and the processing circuit 37) has been described, but the embodiment is not limited thereto.
  • the processing circuit 350 and the processing circuit 37 may be configured by combining a plurality of independent processors, and each processing function may be realized by each processor executing each program.
  • the processing functions of the processing circuit 350 and the processing circuit 37 may be realized by appropriately distributing or integrating the processing functions in a single or a plurality of processing circuits.
  • processor used in the description of each embodiment described above is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an application-specific integrated circuit (ASIC), or a programmable.
  • Means circuits such as logic devices (for example, Simple Programmable Logic Device (SPLD), Complex Programmable Logic Device (CPLD), and Field Programmable Gate Array (FPGA)) To do.
  • SPLD Simple Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • each processor of the present embodiment is not limited to being configured as a single circuit for each processor, but may be configured as a single processor by combining a plurality of independent circuits to realize its function. Good.
  • the program executed by the processor is provided by being incorporated in advance in a ROM (Read Only Memory) or a storage unit.
  • This program is a file in a format that can be installed or executed on these devices.
  • CD Compact Disk
  • FD Flexible Disk
  • CD-R Recordable
  • DVD Digital Versatile Disk
  • the program may be provided or distributed by being stored on a computer connected to a network such as the Internet and downloaded via the network.
  • this program is composed of modules including each functional unit.
  • the CPU reads a program from a storage medium such as a ROM and executes it, whereby each module is loaded on the main storage device and generated on the main storage device.
  • the detailed state of the valve can be grasped by the user.

Abstract

A medical image processing device (300) according to an embodiment has an extraction function (352), a measurement function (354), and a control function (351). The extraction function (352) extracts a plurality of valve leaflets of a heart valve from image data on a subject. The measurement function (354) measures the length of at least one of the plurality of valve leaflets in a predetermined reference direction in a region in which said valve leaflet contacts another valve leaflet. The control function (351) controls a display unit to display the length distribution of the valve leaflets in each of a plurality of positions.

Description

医用画像処理装置、医用画像診断装置及び医用画像処理プログラムMedical image processing apparatus, medical image diagnostic apparatus, and medical image processing program
 本発明の実施形態は、医用画像処理装置、医用画像診断装置及び医用画像処理プログラムに関する。 Embodiments described herein relate generally to a medical image processing apparatus, a medical image diagnostic apparatus, and a medical image processing program.
 従来、大動脈弁及び僧帽弁などの弁(心臓弁)の各種の疾患(例えば、大動脈弁閉鎖不全症や僧帽弁閉鎖不全症)に対する術前検査では、例えば、超音波診断装置が用いられて血液の逆流の確認が医師などのユーザにより行われている。 Conventionally, for example, an ultrasonic diagnostic apparatus is used in a preoperative examination for various diseases (for example, aortic regurgitation or mitral regurgitation) of valves (heart valves) such as an aortic valve and a mitral valve. Thus, confirmation of the backflow of blood is performed by a user such as a doctor.
特開2017-018305号公報Japanese Patent Laid-Open No. 2017-018305 特開2015-226693号公報Japanese Patent Laying-Open No. 2015-226693
 本発明が解決しようとする課題は、弁の詳細な状態をユーザに把握させることである。 The problem to be solved by the present invention is to make the user grasp the detailed state of the valve.
 実施形態の医用画像処理装置は、抽出部と、計測部と、表示制御部とを備える。抽出部は、被検体の画像データから、心臓弁の複数の弁葉を抽出する。計測部は、前記複数の弁葉のうち少なくとも1つの弁葉について、当該弁葉と他の弁葉とが接触する領域のうち、所定の基準方向の長さを計測する。表示制御部は、前記弁葉の複数の位置のそれぞれにおける前記長さの分布を表示するように表示部を制御する。 The medical image processing apparatus according to the embodiment includes an extraction unit, a measurement unit, and a display control unit. The extraction unit extracts a plurality of leaflets of the heart valve from the image data of the subject. A measurement part measures the length of a predetermined reference direction in the region where the valve leaf and the other leaflet are in contact with each other, regarding at least one of the plurality of leaflets. The display control unit controls the display unit to display the distribution of the length at each of the plurality of positions of the leaflets.
図1は、第1の実施形態に係る医用画像処理装置の構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a configuration of a medical image processing apparatus according to the first embodiment. 図2は、第1の実施形態に係る抽出機能により抽出された複数の弁葉の一例を示す図である。FIG. 2 is a diagram illustrating an example of a plurality of leaflets extracted by the extraction function according to the first embodiment. 図3は、第1の実施形態に係る抽出機能により抽出された複数の弁葉の一例を示す図である。FIG. 3 is a diagram illustrating an example of a plurality of leaflets extracted by the extraction function according to the first embodiment. 図4は、第1の実施形態に係る設定機能により実行される処理の一例を説明するための図である。FIG. 4 is a diagram for explaining an example of processing executed by the setting function according to the first embodiment. 図5は、第1の実施形態に係る設定機能により実行される処理の一例を説明するための図である。FIG. 5 is a diagram for explaining an example of processing executed by the setting function according to the first embodiment. 図6は、第1の実施形態に係る設定機能により実行される処理の一例を説明するための図である。FIG. 6 is a diagram for explaining an example of processing executed by the setting function according to the first embodiment. 図7は、第1の実施形態に係る設定機能により実行される処理の一例を説明するための図である。FIG. 7 is a diagram for explaining an example of processing executed by the setting function according to the first embodiment. 図8は、第1の実施形態に係る基準面の配置の一例を示す図である。FIG. 8 is a diagram illustrating an example of the arrangement of reference surfaces according to the first embodiment. 図9は、第1の実施形態に係る設定機能による境界線を設定する処理の一例について説明するための図である。FIG. 9 is a diagram for explaining an example of processing for setting a boundary line by the setting function according to the first embodiment. 図10は、第1の実施形態に係る設定機能による境界線を設定する処理の一例について説明するための図である。FIG. 10 is a diagram for explaining an example of processing for setting a boundary line by the setting function according to the first embodiment. 図11は、第1の実施形態に係る設定機能による境界線を設定する処理の一例について説明するための図である。FIG. 11 is a diagram for explaining an example of processing for setting a boundary line by the setting function according to the first embodiment. 図12は、第1の実施形態に係る計測機能による接触領域の血流方向における長さを計測する処理の一例について説明するための図である。FIG. 12 is a diagram for explaining an example of processing for measuring the length of the contact region in the blood flow direction by the measurement function according to the first embodiment. 図13は、第1の実施形態に係る生成機能によるグラフの画像データ及び表示用の画像データを生成する処理の一例について説明するための図である。FIG. 13 is a diagram for explaining an example of a process of generating graph image data and display image data by the generation function according to the first embodiment. 図14は、図13に示す境界線の一部の拡大図である。FIG. 14 is an enlarged view of a part of the boundary line shown in FIG. 図15は、第1の実施形態に係る生成機能による他のグラフの画像データ及び他の表示用の画像データを生成する処理の一例について説明するための図である。FIG. 15 is a diagram for explaining an example of processing for generating image data of another graph and image data for other display by the generation function according to the first embodiment. 図16は、第1の実施形態に係る処理回路が実行する処理の流れの一例を示すフローチャートである。FIG. 16 is a flowchart illustrating an example of a flow of processing executed by the processing circuit according to the first embodiment. 図17は、第2の変形例及び第3の変形例により実行される処理の一例を説明するための図である。FIG. 17 is a diagram for describing an example of processing executed according to the second modification and the third modification. 図18は、第4の変形例及び第5の変形例により実行される処理の一例を説明するための図である。FIG. 18 is a diagram for describing an example of processing executed according to the fourth modification and the fifth modification. 図19は、第4の変形例により実行される処理の一例を説明するための図である。FIG. 19 is a diagram for describing an example of processing executed according to the fourth modification. 図20は、第5の変形例により実行される処理の一例を説明するための図である。FIG. 20 is a diagram for explaining an example of processing executed according to the fifth modification. 図21は、第6の変形例により実行される処理の一例を説明するための図である。FIG. 21 is a diagram for explaining an example of processing executed according to the sixth modification. 図22は、第6の変形例により実行される処理の一例を説明するための図である。FIG. 22 is a diagram for explaining an example of processing executed according to the sixth modification. 図23は、第1の実施形態の第7の変形例に係る設定機能により実行される処理の一例を説明するための図である。FIG. 23 is a diagram for describing an example of processing executed by the setting function according to the seventh modification example of the first embodiment. 図24は、第1の実施形態の第8の変形例に係る設定機能により実行される処理の一例を説明するための図である。FIG. 24 is a diagram for describing an example of processing executed by the setting function according to the eighth modification example of the first embodiment. 図25は、第2の実施形態に係る医用画像処理装置の構成の一例を示す図である。FIG. 25 is a diagram illustrating an example of a configuration of a medical image processing apparatus according to the second embodiment. 図26は、第3の実施形態に係るX線CT装置の構成の一例を示す図である。FIG. 26 is a diagram illustrating an example of the configuration of the X-ray CT apparatus according to the third embodiment.
 以下、図面を参照して、医用画像処理装置、医用画像診断装置及び医用画像処理プログラムの実施形態を説明する。なお、一つの実施形態又は変形例に記載した内容は、他の実施形態又は他の変形例にも同様に適用されてもよい。 Hereinafter, embodiments of a medical image processing apparatus, a medical image diagnostic apparatus, and a medical image processing program will be described with reference to the drawings. Note that the content described in one embodiment or modification may be similarly applied to other embodiments or other modifications.
(第1の実施形態)
 まず、第1の実施形態について説明する。図1は、第1の実施形態に係る医用画像処理装置300の構成の一例を示す図である。図1に示すように、医用画像処理装置300は、ネットワーク400を介して、医用画像診断装置100及び画像保管装置200に接続される。なお、図1に示す構成はあくまでも一例であり、図示する医用画像診断装置100、画像保管装置200及び医用画像処理装置300以外にも、端末装置などの種々の装置がネットワーク400に接続されてもよい。
(First embodiment)
First, the first embodiment will be described. FIG. 1 is a diagram illustrating an example of a configuration of a medical image processing apparatus 300 according to the first embodiment. As shown in FIG. 1, the medical image processing apparatus 300 is connected to the medical image diagnostic apparatus 100 and the image storage apparatus 200 via a network 400. The configuration illustrated in FIG. 1 is merely an example, and various devices such as a terminal device may be connected to the network 400 in addition to the medical image diagnostic apparatus 100, the image storage apparatus 200, and the medical image processing apparatus 300 illustrated in the figure. Good.
 医用画像診断装置100は、例えば、X線CT(Computed Tomography)装置、超音波診断装置、磁気共鳴イメージング装置(MRI(Magnetic Resonance Imaging)装置)又はX線診断装置である。なお、医用画像診断装置100は、上述した医用画像診断装置(X線CT装置、超音波診断装置、磁気共鳴イメージング装置及びX線診断装置)に限定されず、他の医用画像診断装置であってもよい。医用画像診断装置100は、被検体の心臓の弁(心臓弁)を含む3次元の画像データを取得する。なお、3次元の画像データは、ボリュームデータとも称される。 The medical image diagnostic apparatus 100 is, for example, an X-ray CT (Computed Tomography) apparatus, an ultrasonic diagnostic apparatus, a magnetic resonance imaging apparatus (MRI (Magnetic Resonance Imaging) apparatus), or an X-ray diagnostic apparatus. The medical image diagnostic apparatus 100 is not limited to the above-described medical image diagnostic apparatus (X-ray CT apparatus, ultrasonic diagnostic apparatus, magnetic resonance imaging apparatus, and X-ray diagnostic apparatus), and is another medical image diagnostic apparatus. Also good. The medical image diagnostic apparatus 100 acquires three-dimensional image data including a heart valve (heart valve) of a subject. Note that the three-dimensional image data is also referred to as volume data.
 医用画像診断装置100がX線CT装置である場合、X線CT装置は、被検体のCT画像データを収集する。例えば、X線CT装置は、被検体を略中心にX線管及びX線検出器を旋回移動させ、被検体を透過したX線を検出して投影データを収集する。そして、X線CT装置は、収集された投影データに基づいて、3次元のCT画像データを生成する。例えば、X線CT装置は、被検体の心臓の弁を含む領域を撮影することにより得られた投影データを収集し、収集した投影データに基づいて3次元のCT画像データを生成する。そして、X線CT装置は、生成した3次元のCT画像データを画像保管装置200及び医用画像処理装置300に送信する。 When the medical image diagnostic apparatus 100 is an X-ray CT apparatus, the X-ray CT apparatus collects CT image data of the subject. For example, an X-ray CT apparatus rotates an X-ray tube and an X-ray detector around a subject, detects X-rays transmitted through the subject, and collects projection data. Then, the X-ray CT apparatus generates three-dimensional CT image data based on the collected projection data. For example, an X-ray CT apparatus collects projection data obtained by imaging a region including a heart valve of a subject, and generates three-dimensional CT image data based on the collected projection data. Then, the X-ray CT apparatus transmits the generated three-dimensional CT image data to the image storage apparatus 200 and the medical image processing apparatus 300.
 なお、X線CT装置は、被検体の心臓の弁を含む4次元のCT画像データを収集し、収集した4次元のCT画像データを画像保管装置200及び医用画像処理装置300に送信してもよい。ここで、心臓の弁を含む4次元のCT画像データは、例えば、時系列の複数の3次元のCT画像データから構成される。すなわち、心臓の弁を含む4次元のCT画像データは、撮影された時間(時相)が異なる複数の3次元のCT画像データから構成される。そして、4次元のCT画像データを構成する複数の3次元のCT画像データのそれぞれは、被検体の心臓の弁を含む領域を撮影することにより得られた投影データに基づいて生成される。なお、3次元のCT画像データ及び4次元のCT画像データは、画像データの一例である。また、3次元のCT画像データ及び4次元のCT画像データを単に「CT画像データ」と呼ぶ場合がある。 Note that the X-ray CT apparatus collects four-dimensional CT image data including the heart valve of the subject and transmits the collected four-dimensional CT image data to the image storage apparatus 200 and the medical image processing apparatus 300. Good. Here, the four-dimensional CT image data including the heart valve is composed of, for example, a plurality of time-series three-dimensional CT image data. That is, the four-dimensional CT image data including the heart valve is composed of a plurality of three-dimensional CT image data having different imaging times (time phases). Each of the plurality of three-dimensional CT image data constituting the four-dimensional CT image data is generated based on projection data obtained by imaging a region including the heart valve of the subject. Note that the three-dimensional CT image data and the four-dimensional CT image data are examples of image data. Further, the three-dimensional CT image data and the four-dimensional CT image data may be simply referred to as “CT image data”.
 また、被検体の心臓の弁として、例えば、僧帽弁、大動脈弁、三尖弁又は肺動脈弁が挙げられる。以下、医用画像診断装置100がX線CT装置である場合を例に挙げて説明するが、医用画像診断装置100が超音波診断装置又は磁気共鳴イメージング装置であってもよい。すなわち、医用画像処理装置300は、超音波診断装置又は磁気共鳴イメージング装置によって収集された画像データに対して、後述する各種の処理と同様の処理を施してもよい。 Further, examples of the heart valve of the subject include a mitral valve, an aortic valve, a tricuspid valve, and a pulmonary valve. Hereinafter, a case where the medical image diagnostic apparatus 100 is an X-ray CT apparatus will be described as an example. However, the medical image diagnostic apparatus 100 may be an ultrasonic diagnostic apparatus or a magnetic resonance imaging apparatus. That is, the medical image processing apparatus 300 may perform the same processes as various processes described later on the image data collected by the ultrasonic diagnostic apparatus or the magnetic resonance imaging apparatus.
 画像保管装置200は、X線CT装置である医用画像診断装置100によって収集されたCT画像データを保管する。例えば、画像保管装置200は、サーバ装置等のコンピュータ機器によって実現される。画像保管装置200は、ネットワーク400を介して医用画像診断装置100からCT画像データを取得し、取得したCT画像データを装置内又は装置外に設けられたハードディスク又は光ディスク等のメモリに記憶させる。例えば、画像保管装置200は、X線CT装置である医用画像診断装置100から3次元のCT画像データ又は4次元のCT画像データを取得し、取得したCT画像データをメモリに記憶させる。また、画像保管装置200は、医用画像処理装置300からの要求に応じて、メモリに記憶させたCT画像データを医用画像処理装置300に送信する。 The image storage apparatus 200 stores CT image data collected by the medical image diagnostic apparatus 100 that is an X-ray CT apparatus. For example, the image storage device 200 is realized by a computer device such as a server device. The image storage apparatus 200 acquires CT image data from the medical image diagnostic apparatus 100 via the network 400, and stores the acquired CT image data in a memory such as a hard disk or an optical disk provided inside or outside the apparatus. For example, the image storage device 200 acquires three-dimensional CT image data or four-dimensional CT image data from the medical image diagnostic apparatus 100 that is an X-ray CT apparatus, and stores the acquired CT image data in a memory. The image storage apparatus 200 transmits CT image data stored in the memory to the medical image processing apparatus 300 in response to a request from the medical image processing apparatus 300.
 医用画像処理装置300は、ネットワーク400を介して医用画像診断装置100及び画像保管装置200からCT画像データを取得し、取得したCT画像データを処理する。例えば、医用画像処理装置300は、医用画像診断装置100又は画像保管装置200から3次元のCT画像データ又は4次元のCT画像データを取得し、取得したCT画像データに対して各種画像処理を行う。そして、医用画像処理装置300は、画像処理後の画像(例えば表示用の画像)等をディスプレイ340に表示する。 The medical image processing apparatus 300 acquires CT image data from the medical image diagnostic apparatus 100 and the image storage apparatus 200 via the network 400, and processes the acquired CT image data. For example, the medical image processing apparatus 300 acquires 3D CT image data or 4D CT image data from the medical image diagnostic apparatus 100 or the image storage apparatus 200, and performs various types of image processing on the acquired CT image data. . Then, the medical image processing apparatus 300 displays an image after image processing (for example, a display image) or the like on the display 340.
 図1に示すように、医用画像処理装置300は、通信インターフェース310と、メモリ320と、入力インターフェース330と、ディスプレイ340と、処理回路350とを有する。 As shown in FIG. 1, the medical image processing apparatus 300 includes a communication interface 310, a memory 320, an input interface 330, a display 340, and a processing circuit 350.
 通信インターフェース310は、処理回路350に接続され、ネットワーク400を介して接続された医用画像診断装置100及び画像保管装置200との間で行われる各種データの伝送、及び、医用画像診断装置100及び画像保管装置200との間で行われる通信を制御する。例えば、通信インターフェース310は、ネットワークカードやネットワークアダプタ、NIC(Network Interface Controller)等によって実現される。例えば、通信インターフェース310は、医用画像診断装置100又は画像保管装置200から3次元のCT画像データ又は4次元のCT画像データを受信し、受信したCT画像データを処理回路350に出力する。 The communication interface 310 is connected to the processing circuit 350, transmits various data between the medical image diagnostic apparatus 100 and the image storage apparatus 200 connected via the network 400, and the medical image diagnostic apparatus 100 and the image. Controls communication performed with the storage device 200. For example, the communication interface 310 is realized by a network card, a network adapter, a NIC (Network Interface Controller), or the like. For example, the communication interface 310 receives 3D CT image data or 4D CT image data from the medical image diagnostic apparatus 100 or the image storage apparatus 200, and outputs the received CT image data to the processing circuit 350.
 メモリ320は、処理回路350に接続され、各種データを記憶する。例えば、メモリ320は、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク又は光ディスクによって実現される。本実施形態では、メモリ320は、医用画像診断装置100又は画像保管装置200から受信した3次元のCT画像データ又は4次元のCT画像データを記憶する。 The memory 320 is connected to the processing circuit 350 and stores various data. For example, the memory 320 is realized by a RAM (Random Access Memory), a semiconductor memory element such as a flash memory, a hard disk, or an optical disk. In the present embodiment, the memory 320 stores 3D CT image data or 4D CT image data received from the medical image diagnostic apparatus 100 or the image storage apparatus 200.
 また、メモリ320は、処理回路350の処理に用いられる種々の情報や、処理回路350による処理結果等を記憶する。例えば、メモリ320は、処理回路350によって生成された表示用の画像データや、後述する計測機能354による計測結果等を記憶する。 Further, the memory 320 stores various information used for processing of the processing circuit 350, processing results by the processing circuit 350, and the like. For example, the memory 320 stores display image data generated by the processing circuit 350, a measurement result by a measurement function 354, which will be described later, and the like.
 入力インターフェース330は、処理回路350に接続され、操作者から受け付けた入力操作を電気信号に変換して処理回路350に出力する。なお、本明細書において入力インターフェース330は、マウス、キーボードなどの物理的な操作部品を備えるものだけに限られない。例えば、装置とは別体に設けられた外部の入力機器から入力操作に対応する電気信号を受け取り、この電気信号を制御回路へ出力する電気信号の処理回路も入力インターフェースの例に含まれる。 The input interface 330 is connected to the processing circuit 350, converts an input operation received from the operator into an electrical signal, and outputs the electrical signal to the processing circuit 350. In the present specification, the input interface 330 is not limited to one having physical operation components such as a mouse and a keyboard. For example, an example of the input interface includes an electric signal processing circuit that receives an electric signal corresponding to an input operation from an external input device provided separately from the apparatus and outputs the electric signal to the control circuit.
 例えば、入力インターフェース330は、種々の設定などを行うためのトラックボール、スイッチボタン、マウス、キーボード、操作面へ触れることで入力操作を行うタッチパッド、表示画面とタッチパッドとが一体化されたタッチスクリーン、光学センサを用いた非接触入力インターフェース、又は、音声入力インターフェースによって実現される。 For example, the input interface 330 includes a trackball for performing various settings, a switch button, a mouse, a keyboard, a touch pad for performing an input operation by touching an operation surface, a touch in which a display screen and a touch pad are integrated. It is realized by a screen, a non-contact input interface using an optical sensor, or a voice input interface.
 ディスプレイ340は、処理回路350に接続され、処理回路350から出力される各種情報及び各種画像を表示する。例えば、ディスプレイ340は、液晶モニタやCRT(Cathode Ray Tube)モニタ、又は、タッチパネルによって実現される。例えば、ディスプレイ340は、操作者の指示を受け付けるためのGUI(Graphical User Interface)や、種々の表示用の画像、処理回路350による種々の処理結果を表示する。ディスプレイ340は、表示部の一例である。 The display 340 is connected to the processing circuit 350 and displays various information and various images output from the processing circuit 350. For example, the display 340 is realized by a liquid crystal monitor, a CRT (Cathode Ray Tube) monitor, or a touch panel. For example, the display 340 displays a GUI (Graphical User Interface) for receiving an instruction from the operator, various display images, and various processing results by the processing circuit 350. The display 340 is an example of a display unit.
 処理回路350は、入力インターフェース330を介して操作者から受け付けた入力操作に応じて、医用画像処理装置300が有する各構成要素を制御する。例えば、処理回路350は、プロセッサによって実現される。本実施形態では、処理回路350は、通信インターフェース310から出力された3次元のCT画像データ又は4次元のCT画像データをメモリ320に記憶させる。また、処理回路350は、メモリ320から3次元のCT画像データ又は4次元のCT画像データを読み出し、読み出したCT画像データから生成した表示用の画像データにより示される表示用の画像を表示するようにディスプレイ340を制御する。 The processing circuit 350 controls each component included in the medical image processing apparatus 300 in accordance with an input operation received from the operator via the input interface 330. For example, the processing circuit 350 is realized by a processor. In the present embodiment, the processing circuit 350 stores the three-dimensional CT image data or the four-dimensional CT image data output from the communication interface 310 in the memory 320. Further, the processing circuit 350 reads out the three-dimensional CT image data or the four-dimensional CT image data from the memory 320, and displays a display image indicated by the display image data generated from the read CT image data. The display 340 is controlled.
 以上、本実施形態に係る医用画像処理装置の全体構成について説明した。ここで、術前検査において超音波診断装置が用いられて、被検体の心臓の弁における血液の逆流の確認が医師などのユーザにより行われる場合について説明する。この場合には、弁の詳細な状態まではユーザに提示されないため、ユーザは、弁の詳細な状態を把握することが困難である。このため、例えば、ユーザは、術前に、僧帽弁の置換手術を行ったほうがよいのか、又は、僧帽弁の修復手術を行ったほうがよいのか等の弁の手術方法を決定することが困難である。 The overall configuration of the medical image processing apparatus according to this embodiment has been described above. Here, a case will be described in which an ultrasonic diagnostic apparatus is used in the preoperative examination, and confirmation of blood backflow in the heart valve of the subject is performed by a user such as a doctor. In this case, since the detailed state of the valve is not presented to the user, it is difficult for the user to grasp the detailed state of the valve. For this reason, for example, the user may decide on a valve operation method such as whether to perform mitral valve replacement surgery or to perform mitral valve repair surgery before surgery. Have difficulty.
 そこで、本実施形態に係る医用画像処理装置300は、以下に説明するように、弁の詳細な状態をユーザに把握させることができるように構成されている。 Therefore, as described below, the medical image processing apparatus 300 according to the present embodiment is configured to allow the user to grasp the detailed state of the valve.
 第1の実施形態に係る処理回路350は、図1に示すように、制御機能351と、抽出機能352と、設定機能353と、計測機能354と、生成機能355とを有する。ここで、例えば、図1に示す処理回路350の構成要素である制御機能351、抽出機能352、設定機能353、計測機能354及び生成機能355の各処理機能は、コンピュータによって実行可能なプログラムの形態でメモリ320に記録されている。処理回路350は、各プログラムをメモリ320から読み出し、読み出した各プログラムを実行することで各プログラムに対応する機能を実現する。換言すると、各プログラムを読み出した状態の処理回路350は、図1の処理回路350内に示された各機能を有することとなる。 The processing circuit 350 according to the first embodiment includes a control function 351, an extraction function 352, a setting function 353, a measurement function 354, and a generation function 355, as shown in FIG. Here, for example, the processing functions of the control function 351, the extraction function 352, the setting function 353, the measurement function 354, and the generation function 355, which are components of the processing circuit 350 shown in FIG. Is recorded in the memory 320. The processing circuit 350 implements a function corresponding to each program by reading each program from the memory 320 and executing each read program. In other words, the processing circuit 350 in a state where each program is read has the functions shown in the processing circuit 350 of FIG.
 なお、制御機能351、抽出機能352、設定機能353、計測機能354及び生成機能355の全ての処理機能がコンピュータによって実行可能な1つのプログラムの形態で、メモリ320に記録されていてもよい。例えば、このようなプログラムは、医用画像処理プログラムとも称される。この場合、処理回路350は、医用画像処理プログラムをメモリ320から読み出し、読み出した医用画像処理プログラムを実行することで医用画像処理プログラムに対応する制御機能351、抽出機能352、設定機能353、計測機能354及び生成機能355を実現する。 Note that all processing functions of the control function 351, the extraction function 352, the setting function 353, the measurement function 354, and the generation function 355 may be recorded in the memory 320 in the form of one program that can be executed by a computer. For example, such a program is also referred to as a medical image processing program. In this case, the processing circuit 350 reads the medical image processing program from the memory 320 and executes the read medical image processing program to thereby control the control function 351, the extraction function 352, the setting function 353, and the measurement function corresponding to the medical image processing program. 354 and the generation function 355 are realized.
 制御機能351は、表示制御部の一例である。抽出機能352は、抽出部の一例である。設定機能353は、設定部の一例である。計測機能354は、計測部の一例である。生成機能355は、生成部の一例である。 The control function 351 is an example of a display control unit. The extraction function 352 is an example of an extraction unit. The setting function 353 is an example of a setting unit. The measurement function 354 is an example of a measurement unit. The generation function 355 is an example of a generation unit.
 制御機能351は、医用画像処理装置300の全体制御を実行する。例えば、制御機能351は、通信インターフェース310を介して、医用画像診断装置100又は画像保管装置200からCT画像データを取得する。例えば、制御機能351は、被検体の心臓の弁を含む3次元のCT画像データ、又は、被検体の心臓の弁を含む4次元のCT画像データを取得する。そして、制御機能351は、取得したCT画像データをメモリ320に格納する。また、制御機能351は、種々の画像処理によってCT画像データから生成された表示用の画像データが示す表示用の画像を表示するようにディスプレイ340を制御する。また、制御機能351は、計測機能354により計測された計測結果を表示するようにディスプレイ340を制御する。 The control function 351 executes overall control of the medical image processing apparatus 300. For example, the control function 351 acquires CT image data from the medical image diagnostic apparatus 100 or the image storage apparatus 200 via the communication interface 310. For example, the control function 351 acquires three-dimensional CT image data including a heart valve of the subject or four-dimensional CT image data including a heart valve of the subject. Then, the control function 351 stores the acquired CT image data in the memory 320. In addition, the control function 351 controls the display 340 so as to display a display image indicated by display image data generated from CT image data by various image processing. In addition, the control function 351 controls the display 340 so as to display the measurement result measured by the measurement function 354.
 抽出機能352は、被検体の弁を含むCT画像データから弁を構成する複数の弁葉を抽出する。すなわち、抽出機能352は、被検体の画像データから、心臓弁の複数の弁葉を抽出する。以下、抽出機能352により実行される各種の処理の一例について説明する。例えば、抽出機能352は、まず、メモリ320に記憶された3次元のCT画像データ又は4次元のCT画像データを取得する。 The extraction function 352 extracts a plurality of leaflets constituting the valve from CT image data including the valve of the subject. That is, the extraction function 352 extracts a plurality of leaflets of the heart valve from the image data of the subject. Hereinafter, an example of various processes executed by the extraction function 352 will be described. For example, the extraction function 352 first acquires 3D CT image data or 4D CT image data stored in the memory 320.
 ここで、抽出機能352により取得されたCT画像データが3次元のCT画像データである場合について説明する。例えば、ユーザは、入力インターフェース330を介して、医用画像診断装置100又は画像保管装置200に、ユーザが観察したい弁がユーザが観察したい時相で撮影されることにより得られた3次元のCT画像データの送信要求を送る。すると、送信要求を受信した医用画像診断装置100又は画像保管装置200は、送信要求を満たす3次元のCT画像データを医用画像処理装置300に送信する。このようにして送信された3次元のCT画像データが、抽出機能352により取得された3次元のCT画像データである。 Here, the case where the CT image data acquired by the extraction function 352 is three-dimensional CT image data will be described. For example, the user obtains a three-dimensional CT image obtained by photographing the valve that the user wants to observe at the time phase that the user wants to observe on the medical image diagnostic apparatus 100 or the image storage apparatus 200 via the input interface 330. Send a request to send data. Then, the medical image diagnostic apparatus 100 or the image storage apparatus 200 that has received the transmission request transmits three-dimensional CT image data that satisfies the transmission request to the medical image processing apparatus 300. The three-dimensional CT image data transmitted in this way is the three-dimensional CT image data acquired by the extraction function 352.
 ユーザが観察したい弁及び時相について、具体例を挙げて説明する。例えば、被検体の心臓が正常な状態では、拡張期において、大動脈弁が閉じて僧帽弁が開き、左心房から左心室へ血液が流れ込む。ここで、僧帽弁狭窄症では、僧帽弁の開口部が狭くなり、拡張期に左心房から左心室へ流れ込む血液の量が減少する。そのため、被検体が僧帽弁狭窄症である疑いがある場合、医師などのユーザは、拡張期における僧帽弁の詳細な状態を把握したいことがある。 The valve and time phase that the user wants to observe will be described with specific examples. For example, when the subject's heart is in a normal state, in the diastole, the aortic valve closes and the mitral valve opens, and blood flows from the left atrium into the left ventricle. Here, in mitral stenosis, the opening of the mitral valve is narrowed, and the amount of blood flowing from the left atrium into the left ventricle during diastole is reduced. Therefore, when the subject is suspected of having mitral stenosis, a user such as a doctor may want to know the detailed state of the mitral valve during diastole.
 また、大動脈弁閉鎖不全症(大動脈弁逆流症)では、拡張期において、大動脈弁が十分に閉じないために血液の一部が左心室に逆流する。そのため、ユーザは、拡張期における大動脈弁の詳細な状態を把握したいことがある。 Also, in aortic regurgitation (aortic regurgitation), a part of blood flows back to the left ventricle because the aortic valve does not close sufficiently during diastole. Therefore, the user may want to grasp the detailed state of the aortic valve in the diastole.
 また、被検体が正常な状態では、収縮期では、僧帽弁が閉じて大動脈弁が開き、血液が左心室から大動脈へと送られる。ここで、僧帽弁閉鎖不全症(僧帽弁逆流症)では、収縮期において左心室が収縮する際に、僧帽弁が十分に閉じないために血液の一部が左心房に逆流する。そのため、被検体が僧帽弁狭窄症である疑いがある場合、ユーザは、収縮期において僧帽弁の詳細な状態を把握したいことがある。 In the normal state of the subject, in the systole, the mitral valve is closed and the aortic valve is opened, and blood is sent from the left ventricle to the aorta. Here, in mitral regurgitation (mitral regurgitation), when the left ventricle contracts during systole, the mitral valve does not close sufficiently so that a part of blood flows back to the left atrium. Therefore, when the subject is suspected of having mitral stenosis, the user may want to grasp the detailed state of the mitral valve during the systole.
 また、大動脈弁狭窄症では、収縮期において、大動脈弁の開口部が狭くなり、収縮期に左心室から大動脈へ流れ込む血液の量が減少する。そのため、被検体が大動脈弁狭窄症である疑いがある場合、ユーザは、収縮期において大動脈弁の詳細な状態を把握したいことがある。 In aortic stenosis, the opening of the aortic valve becomes narrow during the systole, and the amount of blood flowing from the left ventricle into the aorta during the systole decreases. Therefore, when the subject is suspected of having aortic stenosis, the user may want to grasp the detailed state of the aortic valve during the systole.
 次に、抽出機能352により取得されたCT画像データが4次元のCT画像データである場合について説明する。この場合、抽出機能352は、4次元のCT画像データを構成する複数の時相の3次元のCT画像データの中から、ユーザにより指定された1つの時相の3次元のCT画像データを選択する。そして、抽出機能352は、選択した3次元のCT画像データを取得する。 Next, the case where the CT image data acquired by the extraction function 352 is four-dimensional CT image data will be described. In this case, the extraction function 352 selects one time-phase three-dimensional CT image data designated by the user from a plurality of time-phase three-dimensional CT image data constituting the four-dimensional CT image data. To do. Then, the extraction function 352 acquires the selected three-dimensional CT image data.
 そして、抽出機能352は、取得した3次元のCT画像データから、被検体の心臓の弁を構成する複数の弁葉のそれぞれを抽出する。このとき、抽出機能352は、各種の公知の技術を用いて、3次元のCT画像データから弁葉を1枚ずつ抽出する。例えば、メモリ320が弁葉の標準的な形状を示す情報を記憶し、抽出機能352が、メモリ320から弁葉の標準的な形状を示す情報を取得してもよい。そして、抽出機能352が、取得した情報が示す形状に類似した部分を3次元のCT画像データから検出し、検出した部分を3次元のCT画像データから抽出してもよい。 Then, the extraction function 352 extracts each of a plurality of leaflets constituting the heart valve of the subject from the acquired three-dimensional CT image data. At this time, the extraction function 352 extracts leaflets one by one from the three-dimensional CT image data using various known techniques. For example, the memory 320 may store information indicating the standard shape of the leaflets, and the extraction function 352 may acquire information indicating the standard shape of the leaflets from the memory 320. Then, the extraction function 352 may detect a portion similar to the shape indicated by the acquired information from the three-dimensional CT image data, and extract the detected portion from the three-dimensional CT image data.
 図2及び図3は、第1の実施形態に係る抽出機能352により抽出された複数の弁葉の一例を示す図である。図2は、僧帽弁40を通過する血液の流れにおける上流側から僧帽弁40を見た場合の図である。図3は、僧帽弁40の斜視図である。 2 and 3 are diagrams illustrating an example of a plurality of leaflets extracted by the extraction function 352 according to the first embodiment. FIG. 2 is a view when the mitral valve 40 is viewed from the upstream side in the flow of blood passing through the mitral valve 40. FIG. 3 is a perspective view of the mitral valve 40.
 図2及び図3に示すように、僧帽弁40は、抽出機能352により抽出された2枚の弁葉40a及び弁葉40bにより構成される。図2及び図3の例では、弁葉40aと弁葉40bとが接触している領域(接触領域)41が存在する。弁葉40aと弁葉40bとが互いに接触(接合)しているため、接触領域41は、弁葉40a及び弁葉40bに共通して存在する。なお、弁葉40aと弁葉40bとが互いに接触していることを、弁葉40aが弁葉40bに重なっているとも言う。 As shown in FIGS. 2 and 3, the mitral valve 40 includes two leaflets 40a and 40b extracted by the extraction function 352. In the example of FIG.2 and FIG.3, the area | region (contact area | region) 41 where the leaflet 40a and the leaflet 40b are contacting exists. Since the leaflet 40a and the leaflet 40b are in contact (joined) with each other, the contact region 41 is common to the leaflets 40a and 40b. Note that the contact between the leaflets 40a and 40b is also referred to as the leaflets 40a overlapping the leaflets 40b.
 また、図2及び図3の例では、弁葉40aの一部と弁葉40bの一部とが互いに離間(乖離)しており、互いに離間している弁葉40aの一部と弁葉40bの一部により形成される領域(離間領域)42が存在する。すなわち、離間している弁葉40aの一部と弁葉40bの一部との間の領域である離間領域42が存在する。ここで、離間領域42の血流方向における範囲は、例えば、接触領域41の血流方向における上流側の端から、接触領域41の血流方向における下流側の端までの範囲である。なお、接触領域41の血流方向における下流側の端は、後述するように、設定機能353により設定された基準面50の位置である。また、離間領域42は、例えば、弁葉40aと弁葉40bとが互いに離間しているとみなすための閾値未満となる領域であってもよい。 In the example of FIGS. 2 and 3, a part of the leaflets 40a and a part of the leaflets 40b are separated from each other, and a part of the leaflets 40a and the leaflets 40b that are separated from each other are separated. There is a region (separated region) 42 formed by a part of. That is, there is a separation region 42 that is a region between a part of the leaflets 40a and a part of the leaflets 40b that are separated from each other. Here, the range of the separation region 42 in the blood flow direction is, for example, the range from the upstream end of the contact region 41 in the blood flow direction to the downstream end of the contact region 41 in the blood flow direction. The downstream end of the contact region 41 in the blood flow direction is the position of the reference plane 50 set by the setting function 353 as will be described later. In addition, the separation region 42 may be a region that is less than a threshold value for considering that the leaflets 40a and the leaflets 40b are separated from each other, for example.
 図1の説明に戻り、設定機能353は、抽出機能352により抽出された複数の弁葉に対して、複数の弁葉に関する基準面を設定する。以下、設定機能353による基準面を設定する処理の一例について、処理対象が僧帽弁40である場合を例に挙げて説明する。 1, the setting function 353 sets reference planes related to a plurality of leaflets for the plurality of leaflets extracted by the extraction function 352. Hereinafter, an example of processing for setting the reference plane by the setting function 353 will be described by taking a case where the processing target is the mitral valve 40 as an example.
 図4、図5、図6及び図7は、第1の実施形態に係る設定機能353により実行される処理の一例を説明するための図である。例えば、設定機能353は、図4及び図5に示すように、複数の弁葉40a及び40bに関する基準面(第1の基準面)50を設定する。 4, 5, 6, and 7 are diagrams for explaining an example of processing executed by the setting function 353 according to the first embodiment. For example, the setting function 353 sets a reference plane (first reference plane) 50 for the plurality of leaflets 40a and 40b, as shown in FIGS.
 ここで、設定機能353は、血流方向に対して直交又は略直交するように基準面50を設定する。このように、設定機能353は、血流方向に対して垂直又は略垂直な基準面50を設定する。すなわち、設定機能353は、血流方向に対して交差するように基準面50を設定する。図6には、2つの弁葉40a及び40bのうち1つの弁葉40aの付け根部分40a_1から先端部分40a_2に向かう方向40a_3が示されている。ここで方向40a_3は、弁葉40aに沿って、付け根部分40a_1から先端部分40a_2に向かう方向である。この先端部分40a_2における方向40a_3は、血流方向と同一の方向又は略同一の方向の向きであると考えられる。 Here, the setting function 353 sets the reference plane 50 so as to be orthogonal or substantially orthogonal to the blood flow direction. Thus, the setting function 353 sets the reference plane 50 that is perpendicular or substantially perpendicular to the blood flow direction. That is, the setting function 353 sets the reference plane 50 so as to intersect the blood flow direction. FIG. 6 shows a direction 40a_3 from the root portion 40a_1 of one of the two leaflets 40a and 40b toward the distal end portion 40a_2. Here, the direction 40a_3 is a direction from the root portion 40a_1 toward the tip portion 40a_2 along the leaflet 40a. The direction 40a_3 at the distal end portion 40a_2 is considered to be the same direction as the blood flow direction or the direction in the substantially same direction.
 そこで、設定機能353は、図6に示すように、先端部分40a_2と接触し、かつ、方向40a_3と直交する基準面50を設定する。これにより、血流方向に対して直交又は略直交する基準面50が設定される。なお、設定機能353は、弁葉40aではなく弁葉40bに対して同様の処理を行って、血流方向に対して直交又は略直交する基準面50を設定してもよい。すなわち、設定機能353は、弁を構成する複数の弁葉のうち1つの弁葉に対して、上述した処理を行うことで、血流方向に対して交差する基準面50を設定する。 Therefore, as shown in FIG. 6, the setting function 353 sets the reference plane 50 that is in contact with the tip portion 40a_2 and orthogonal to the direction 40a_3. Thereby, the reference plane 50 orthogonal or substantially orthogonal to the blood flow direction is set. The setting function 353 may perform the same process on the leaflets 40b instead of the leaflets 40a to set the reference plane 50 that is orthogonal or substantially orthogonal to the blood flow direction. That is, the setting function 353 sets the reference plane 50 that intersects the blood flow direction by performing the above-described processing on one of the plurality of leaflets constituting the valve.
 なお、基準面50は先端部分40a_2の形状に沿う形状であってもよい。この場合、基準面50の形状が先端部分40a_2の形状に依存するため、基準面50が曲面となる場合や平面となる場合が考えられる。 It should be noted that the reference surface 50 may have a shape that follows the shape of the tip portion 40a_2. In this case, since the shape of the reference surface 50 depends on the shape of the tip end portion 40a_2, the reference surface 50 may be a curved surface or a flat surface.
 なお、設定機能353は、設定された基準面50を、基準面50の法線方向又は血流方向に沿って移動させて所定の配置可能な範囲(配置可能範囲)内で配置させることができる。基準面50が配置可能範囲内で移動された場合には、後述する生成機能355により移動後の位置に対応するMPR画像が新たに生成され、後述する制御機能351により新たなMPR画像がディスプレイに表示される。例えば、生成機能355により、新たなMPR画像76(図13参照)、新たなMPR画像80(図15参照)が生成され、制御機能351により、新たなMPR画像76、新たなMPR画像80が表示される。なお、冠動脈の起始部を通る面は、比較的、弁の重なる部分に一致することから、冠動脈の起始部を通るように、基準面50を配置することが考えられる。 In addition, the setting function 353 can move the set reference plane 50 along the normal direction or the blood flow direction of the reference plane 50 and place it within a predetermined range (arrangeable range). . When the reference plane 50 is moved within the possible arrangement range, an MPR image corresponding to the moved position is newly generated by the generation function 355 described later, and the new MPR image is displayed on the display by the control function 351 described later. Is displayed. For example, a new MPR image 76 (see FIG. 13) and a new MPR image 80 (see FIG. 15) are generated by the generation function 355, and a new MPR image 76 and a new MPR image 80 are displayed by the control function 351. Is done. Since the surface passing through the origin of the coronary artery is relatively coincident with the overlapping portion of the valves, it is conceivable to arrange the reference surface 50 so as to pass through the origin of the coronary artery.
 ここで、2つの弁葉40a及び弁葉40bが少なくとも一部分で接触している場合と、全く接触していない場合とで基準面50の配置可能範囲が異なる。 Here, the arrangement range of the reference surface 50 is different between the case where the two leaflets 40a and the leaflets 40b are at least partially in contact with each other and the case where they are not in contact at all.
 まずは、2つの弁葉40a及び弁葉40bが少なくとも一部分で接触している場合の基準面50の配置可能範囲について説明する。例えば、設定機能353は、図5に示す接触領域41の血流方向における上流側の端から、図7に示す接触領域41の血流方向における下流側の端までの配置可能範囲内で、基準面50を移動させて配置させることができる。具体例を挙げて説明する。設定機能353は、入力インターフェース330を介してユーザから配置可能範囲内の基準面50の配置位置の指定を受け付けた場合、指定された配置位置に基準面50を移動させて配置させる。 First, the arrangement range of the reference surface 50 when the two leaflets 40a and the leaflets 40b are in contact with each other at least partially will be described. For example, the setting function 353 is within the possible range from the upstream end in the blood flow direction of the contact area 41 shown in FIG. 5 to the downstream end in the blood flow direction of the contact area 41 shown in FIG. The surface 50 can be moved and arranged. A specific example will be described. When the setting function 353 receives the designation of the arrangement position of the reference plane 50 within the possible arrangement range from the user via the input interface 330, the setting function 353 moves the reference plane 50 to the designated arrangement position and arranges it.
 次に、2つの弁葉40a及び弁葉40bが全く接触していない場合について説明する。この場合、例えば、設定機能353は、予め定められた配置可能範囲内で、基準面50を移動させて配置する。図8は、第1の実施形態に係る基準面50の配置の一例を示す図である。例えば、設定機能353は、図8に示すように、基準面50を配置する。なお、図8に示す、弁葉40a及び弁葉40bの間の基準面50上の中心52aについては後述する。 Next, a case where the two leaflets 40a and 40b are not in contact with each other will be described. In this case, for example, the setting function 353 moves and arranges the reference plane 50 within a predetermined arrangement possible range. FIG. 8 is a diagram illustrating an example of the arrangement of the reference surfaces 50 according to the first embodiment. For example, the setting function 353 arranges the reference plane 50 as shown in FIG. A center 52a on the reference plane 50 between the leaflets 40a and 40b shown in FIG. 8 will be described later.
 基準面50を設定(配置)すると、設定機能353は、図4、図5及び図7に示すように、基準面50に対して直交し、かつ、線分40eに対して直交する基準面(第2の基準面)51を設定する。線分40eは、僧帽弁40の交連部40cと交連部40dとを結ぶ線分である。基準面51は、面の一例である。 When the reference plane 50 is set (arranged), the setting function 353, as shown in FIGS. 4, 5, and 7, is orthogonal to the reference plane 50 and orthogonal to the line segment 40e ( (Second reference plane) 51 is set. The line segment 40e is a line segment connecting the commissure part 40c and the commissure part 40d of the mitral valve 40. The reference surface 51 is an example of a surface.
 本実施形態では、基準面50及び基準面51は、以下に説明する各種の処理において用いられる。なお、2つの弁葉40a,40bにより構成される僧帽弁40に対して基準面50及び基準面51を設定する方法について説明したが、設定機能353は、同様の方法で、3つの弁葉により構成される大動脈弁、三尖弁及び肺動脈弁に対して基準面50及び基準面51を設定することができる。 In the present embodiment, the reference surface 50 and the reference surface 51 are used in various processes described below. In addition, although the method for setting the reference surface 50 and the reference surface 51 for the mitral valve 40 configured by the two leaflets 40a and 40b has been described, the setting function 353 uses the same method for the three leaflets. The reference plane 50 and the reference plane 51 can be set for the aortic valve, tricuspid valve, and pulmonary valve configured by
 3つの弁葉により構成される弁(三葉弁)に基準面50及び基準面51を設定する方法の一例について説明する。例えば、設定機能353は、上述した方法と同様の方法で、1つの三葉弁を構成する3つの弁葉のうち1つの弁葉に対して基準面50を設定する。また、設定機能353は、隣接する2つの弁葉の組合せごとに、基準面51を設定する。すなわち、設定機能353は、三葉弁に対して1つの基準面50及び3つの基準面51を設定する。 An example of a method of setting the reference surface 50 and the reference surface 51 on a valve (three-leaf valve) constituted by three leaflets will be described. For example, the setting function 353 sets the reference plane 50 for one valve leaf out of three leaflets constituting one three-leaflet valve by the same method as described above. The setting function 353 sets the reference plane 51 for each combination of two adjacent leaflets. That is, the setting function 353 sets one reference plane 50 and three reference planes 51 for the trilobe valve.
 例えば、設定機能353は、三葉弁が完全に閉じている場合、すなわち、3つの弁葉が1点(接触点)で接触する場合には、この接触点と、三葉弁の3つの交連部のそれぞれとを結ぶ3つの線分を導出する。そして、設定機能353は、3つの線分のそれぞれについて、線分と直交し、かつ、基準面50と直交する基準面51を設定する。 For example, when the three-leaf valve is completely closed, that is, when the three leaflets contact at one point (contact point), the setting function 353 is configured to connect the contact point to the three commissures of the three-leaf valve. Three line segments connecting each of the parts are derived. The setting function 353 sets a reference plane 51 that is orthogonal to the line segment and orthogonal to the reference plane 50 for each of the three line segments.
 また、例えば、設定機能353は、三葉弁が完全に閉じていない場合、基準面50上で、3つの弁葉に囲まれた領域の重心の位置を算出する。そして、設定機能353は、この重心と、三葉弁の3つの交連部のそれぞれとを結ぶ3つの線分を導出する。そして、設定機能353は、3つの線分のそれぞれについて、線分と直交し、かつ、基準面50と直交する基準面51を設定する。 For example, the setting function 353 calculates the position of the center of gravity of the area surrounded by the three leaflets on the reference plane 50 when the three-leaflet valve is not completely closed. Then, the setting function 353 derives three line segments connecting the center of gravity and each of the three commissures of the trilobe valve. The setting function 353 sets a reference plane 51 that is orthogonal to the line segment and orthogonal to the reference plane 50 for each of the three line segments.
 そして、基準面50及び基準面51を設定すると、設定機能353は、隣接する2つの弁葉の間に境界線を設定する。境界線は、例えば、隣接する2つの弁葉の境界を示す。なお、境界線は、線分の一例である。以下、設定機能353による境界線を設定する処理の一例について、処理対象が僧帽弁40(図9参照)である場合及び大動脈弁60(図10、図11参照)を例に挙げて説明する。 When the reference plane 50 and the reference plane 51 are set, the setting function 353 sets a boundary line between two adjacent leaflets. The boundary line indicates, for example, the boundary between two adjacent leaflets. The boundary line is an example of a line segment. Hereinafter, an example of processing for setting the boundary line by the setting function 353 will be described by taking the case where the processing target is the mitral valve 40 (see FIG. 9) and the aortic valve 60 (see FIGS. 10 and 11) as examples. .
 図9は、第1の実施形態に係る設定機能353による境界線55を設定する処理の一例について説明するための図である。図9は、処理対象が僧帽弁40である場合を示す。図9に示すように、設定機能353は、基準面50上で、弁葉40a及び弁葉40bの間に境界線55を設定する。 FIG. 9 is a diagram for explaining an example of processing for setting the boundary line 55 by the setting function 353 according to the first embodiment. FIG. 9 shows a case where the processing target is the mitral valve 40. As illustrated in FIG. 9, the setting function 353 sets a boundary line 55 between the leaflets 40a and the leaflets 40b on the reference plane 50.
 境界線55は、境界線55aの一端と仮の境界線55bの一端とが接続された線である。例えば、設定機能353は、基準面50上で、基準面50と接触領域41とが交差する位置に境界線55aを設定する。また、設定機能353は、先の図8に示すように、弁葉40a及び弁葉40bの間の基準面50上の中心52aを通る仮の境界線55bを基準面50に対して設定する。そして、設定機能353は、境界線55aの一端と仮の境界線55bの一端とを接続することで、境界線55を生成する。このようにして、境界線55が基準面50に対して設定される。 The boundary line 55 is a line in which one end of the boundary line 55a and one end of the temporary boundary line 55b are connected. For example, the setting function 353 sets the boundary line 55a on the reference surface 50 at a position where the reference surface 50 and the contact area 41 intersect. Further, the setting function 353 sets a temporary boundary line 55b that passes through the center 52a on the reference plane 50 between the leaflets 40a and 40b as shown in FIG. Then, the setting function 353 generates the boundary line 55 by connecting one end of the boundary line 55a and one end of the temporary boundary line 55b. In this way, the boundary line 55 is set with respect to the reference plane 50.
 図10及び図11は、第1の実施形態に係る設定機能353による境界線64~66を設定する処理の一例について説明するための図である。図10及び図11は、処理対象が、3つの弁葉60a、60b,60cにより構成される大動脈弁60である場合を示す。ただし、図10は、大動脈弁60が完全に閉じている場合を示し、図11は、大動脈弁60が完全に閉じていない場合を示す。すなわち、図11は、弁葉60a及び弁葉60bが一部分で離間し、弁葉60b及び弁葉60cが一部分で離間し、弁葉60c及び弁葉60aが一部分で離間している場合を示す。 10 and 11 are diagrams for explaining an example of processing for setting the boundary lines 64 to 66 by the setting function 353 according to the first embodiment. 10 and 11 show a case where the processing target is the aortic valve 60 composed of three leaflets 60a, 60b, and 60c. However, FIG. 10 shows a case where the aortic valve 60 is completely closed, and FIG. 11 shows a case where the aortic valve 60 is not completely closed. That is, FIG. 11 shows a case where the leaflets 60a and 60b are partially separated, the leaflets 60b and 60c are partially separated, and the leaflets 60c and 60a are partially separated.
 図10に示すように、大動脈弁60が完全に閉じている場合、設定機能353は、基準面50上で、弁葉60c及び弁葉60aの間に境界線64を設定する。例えば、設定機能353は、基準面50上で、基準面50と接触領域61とが交差する位置に境界線64を設定する。接触領域61は、弁葉60cと弁葉60aとが接触している領域である。 As shown in FIG. 10, when the aortic valve 60 is completely closed, the setting function 353 sets a boundary line 64 between the leaflets 60c and the leaflets 60a on the reference plane 50. For example, the setting function 353 sets the boundary line 64 at a position where the reference surface 50 and the contact area 61 intersect on the reference surface 50. The contact area 61 is an area where the leaflet 60c and the leaflet 60a are in contact with each other.
 同様に、設定機能353は、基準面50上で、弁葉60a及び弁葉60bの間に境界線65を設定し、弁葉60b及び弁葉60cの間に境界線66を設定する。例えば、設定機能353は、基準面50上で、基準面50と接触領域62とが交差する位置に境界線65を設定する。また、設定機能353は、基準面50上で、基準面50と接触領域63とが交差する位置に境界線66を設定する。接触領域62は、弁葉60aと弁葉60bとが接触している領域であり、接触領域63は、弁葉60bと弁葉60cとが接触している領域である。 Similarly, on the reference plane 50, the setting function 353 sets a boundary line 65 between the leaflets 60a and 60b and sets a boundary line 66 between the leaflets 60b and 60c. For example, the setting function 353 sets the boundary line 65 at a position where the reference surface 50 and the contact area 62 intersect on the reference surface 50. The setting function 353 sets a boundary line 66 at a position where the reference surface 50 and the contact area 63 intersect on the reference surface 50. The contact region 62 is a region where the leaflets 60a and 60b are in contact, and the contact region 63 is a region where the leaflets 60b and 60c are in contact.
 一方、図11に示すように、大動脈弁60が完全に閉じていない場合、設定機能353は、基準面50上で、3つの弁葉60a,60b,60cに囲まれた領域の重心67を算出する。なお、弁葉60a,60b,60cに囲まれた領域は、弁葉60a,60b,60cが接触していない非接触領域であり、弁葉60a,60b,60cが存在しない非存在領域でもある。 On the other hand, as shown in FIG. 11, when the aortic valve 60 is not completely closed, the setting function 353 calculates the center of gravity 67 of the region surrounded by the three leaflets 60a, 60b, 60c on the reference plane 50. To do. The region surrounded by the leaflets 60a, 60b, and 60c is a non-contact region where the leaflets 60a, 60b, and 60c are not in contact with each other, and is also a non-existing region where the leaflets 60a, 60b, and 60c are not present.
 そして、設定機能353は、基準面50上で、弁葉60c及び弁葉60aの間に境界線68を設定する。境界線68は、境界線68aの一端と仮の境界線68bの一端とが接続された線である。例えば、設定機能353は、基準面50上で、弁葉60c及び弁葉60aが互いに接触する接触領域と、基準面50とが交差する位置に境界線68aを設定する。また、設定機能353は、非接触領域において、弁葉60c及び弁葉60aの間の基準面50上の中心を通る仮の境界線68bを基準面50に対して設定する。そして、設定機能353は、境界線68aの一端と仮の境界線68bの一端とを接続することで、境界線68を生成する。なお、仮の境界線68bの他端は、重心67に接続される。すなわち、仮の境界線68bの他端の位置は、重心67の位置と同一である。このようにして、境界線68が基準面50に対して設定される。 Then, the setting function 353 sets a boundary line 68 between the leaflets 60c and the leaflets 60a on the reference plane 50. The boundary line 68 is a line in which one end of the boundary line 68a is connected to one end of the temporary boundary line 68b. For example, the setting function 353 sets the boundary line 68a on the reference plane 50 at the position where the contact area where the leaflets 60c and 60a contact each other and the reference plane 50 intersect. The setting function 353 sets a temporary boundary line 68b passing through the center on the reference surface 50 between the leaflets 60c and the leaflets 60a in the non-contact region with respect to the reference surface 50. Then, the setting function 353 generates the boundary line 68 by connecting one end of the boundary line 68a and one end of the temporary boundary line 68b. Note that the other end of the temporary boundary line 68 b is connected to the center of gravity 67. That is, the position of the other end of the temporary boundary line 68 b is the same as the position of the center of gravity 67. In this way, the boundary line 68 is set with respect to the reference plane 50.
 同様に、設定機能353は、基準面50上で、弁葉60a及び弁葉60bの間に境界線69を設定し、弁葉60b及び弁葉60cの間に境界線70を設定する。境界線69は、境界線69aの一端と仮の境界線69bの一端とが接続された線であり、境界線70は、境界線70aの一端と仮の境界線70bの一端とが接続された線である。仮の境界線69bの他端及び仮の境界線70bの他端は、重心67に接続される。 Similarly, on the reference plane 50, the setting function 353 sets a boundary line 69 between the leaflets 60a and 60b, and sets a boundary line 70 between the leaflets 60b and 60c. The boundary line 69 is a line in which one end of the boundary line 69a and one end of the temporary boundary line 69b are connected, and the boundary line 70 is connected to one end of the boundary line 70a and one end of the temporary boundary line 70b. Is a line. The other end of the temporary boundary line 69 b and the other end of the temporary boundary line 70 b are connected to the center of gravity 67.
 例えば、設定機能353は、弁葉60c及び弁葉60aを用いて基準面50に境界線68a及び仮の境界線68bを設定する上述した方法と同様の方法で、弁葉60a及び弁葉60bを用いて基準面50に境界線69a及び仮の境界線69bを設定することで、境界線69を設定する。また、設定機能353は、同様の方法で、弁葉60b及び弁葉60cを用いて基準面50に境界線70a及び仮の境界線70bを設定することで、境界線70を設定する。 For example, the setting function 353 sets the leaflet 60a and the leaflet 60b in the same manner as described above for setting the boundary line 68a and the temporary boundary line 68b on the reference surface 50 using the leaflet 60c and the leaflet 60a. The boundary line 69 is set by setting the boundary line 69 a and the temporary boundary line 69 b on the reference plane 50. In addition, the setting function 353 sets the boundary line 70 by setting the boundary line 70a and the temporary boundary line 70b on the reference plane 50 using the leaflets 60b and the leaflets 60c in the same manner.
 図1の説明に戻り、計測機能354は、抽出機能352により抽出された複数の弁葉のそれぞれについて、それぞれの弁葉と他の弁葉とが接触している接触領域の血流方向の長さを計測する。すなわち、計測機能354は、複数の弁葉のそれぞれについて、当該弁葉と他の弁葉とが接触する接触領域のうち、血流方向の長さを計測する。この長さは、例えば、当該弁葉と他の弁葉とが接触する接触領域の密着の度合いを示す指標でもある。以下、計測機能354による接触領域の血流方向における長さを計測する処理の一例について、処理対象が僧帽弁40である場合を例に挙げて説明する。 Returning to the description of FIG. 1, the measurement function 354 is the length in the blood flow direction of the contact area where each of the leaflets is in contact with the other leaflets for each of the plurality of leaflets extracted by the extraction function 352. Measure the thickness. In other words, the measurement function 354 measures the length in the blood flow direction for each of the plurality of leaflets, in the contact area where the leaflets and other leaflets contact. This length is also an index indicating, for example, the degree of close contact of the contact area where the leaflet contacts another leaflet. Hereinafter, an example of the process of measuring the length of the contact region in the blood flow direction by the measurement function 354 will be described by taking a case where the processing target is the mitral valve 40 as an example.
 図12は、第1の実施形態に係る計測機能354による接触領域41の血流方向74における長さを計測する処理の一例について説明するための図である。図12は、処理対象が僧帽弁40である場合を示す。図12に示すように、計測機能354は、境界線71の一端から境界線71の他端に向かう方向72に、境界線71に沿うように基準面51を移動させつつ、境界線71上の複数の位置で、接触領域41の血流方向74における長さを計測する。血流方向74は、所定の基準方向の一例である。 FIG. 12 is a diagram for explaining an example of processing for measuring the length of the contact region 41 in the blood flow direction 74 by the measurement function 354 according to the first embodiment. FIG. 12 shows a case where the processing target is the mitral valve 40. As shown in FIG. 12, the measurement function 354 moves the reference plane 51 along the boundary line 71 in the direction 72 from one end of the boundary line 71 toward the other end of the boundary line 71, while on the boundary line 71. The length in the blood flow direction 74 of the contact region 41 is measured at a plurality of positions. The blood flow direction 74 is an example of a predetermined reference direction.
 なお、境界線71は、弁葉40aと弁葉40bとの間に設定された線である。また、図12の例において、境界線71の一端は、境界線71の左側の端であり、境界線71の他端は、境界線71の右側の端である。 Note that the boundary line 71 is a line set between the leaflets 40a and 40b. In the example of FIG. 12, one end of the boundary line 71 is the left end of the boundary line 71, and the other end of the boundary line 71 is the right end of the boundary line 71.
 例えば、計測機能354は、基準面51を移動させつつ、境界線71上の複数の位置のそれぞれに基準面51を位置させる。そして、計測機能354は、複数の位置のそれぞれに基準面51が位置されるたびに、基準面51と交差している接触領域41の基準面51上の血流方向74の長さを、接触領域41の血流方向74における長さとして計測する。すなわち、計測機能354は、基準面50に交差する方向における接触領域41の長さを、接触領域41の血流方向の長さとして計測する。より具体的には、計測機能354は、接触領域41のうち、基準面50に略垂直な方向の長さを、接触領域41の血流方向の長さとして計測する。このようにして、計測機能354は、接触領域41のうち、血流方向の長さを計測する。また、計測機能354は、境界線71に対して交差する方向、かつ、基準面50に交差する方向における接触領域41の長さを、接触領域41の血流方向の長さとして計測する。例えば、計測機能354は、境界線71に対して直交する方向、かつ、基準面50に直交する方向における接触領域41の長さを、接触領域41の血流方向の長さとして計測する。なお、計測機能354は、基準面51と交差している接触領域41の基準面51上の長さを、接触領域41の血流方向74における長さとして計測してもよい。すなわち、計測機能354は、基準面51における接触領域41の長さを、接触領域41の血流方向74における長さとして計測してもよい。 For example, the measurement function 354 moves the reference surface 51 and positions the reference surface 51 at each of a plurality of positions on the boundary line 71. Then, each time the reference surface 51 is positioned at each of a plurality of positions, the measurement function 354 contacts the length of the blood flow direction 74 on the reference surface 51 of the contact region 41 intersecting with the reference surface 51. The length of the region 41 in the blood flow direction 74 is measured. That is, the measurement function 354 measures the length of the contact region 41 in the direction intersecting the reference plane 50 as the length of the contact region 41 in the blood flow direction. More specifically, the measurement function 354 measures the length of the contact region 41 in the direction substantially perpendicular to the reference surface 50 as the length of the contact region 41 in the blood flow direction. In this way, the measurement function 354 measures the length of the contact region 41 in the blood flow direction. The measurement function 354 measures the length of the contact region 41 in the direction intersecting the boundary line 71 and in the direction intersecting the reference plane 50 as the length of the contact region 41 in the blood flow direction. For example, the measurement function 354 measures the length of the contact region 41 in the direction orthogonal to the boundary line 71 and in the direction orthogonal to the reference plane 50 as the length of the contact region 41 in the blood flow direction. Note that the measurement function 354 may measure the length of the contact region 41 intersecting the reference surface 51 on the reference surface 51 as the length of the contact region 41 in the blood flow direction 74. That is, the measurement function 354 may measure the length of the contact area 41 on the reference surface 51 as the length of the contact area 41 in the blood flow direction 74.
 例えば、計測機能354は、境界線71上の互いに異なる位置に基準面51が位置している場合に、図12に示すように、接触領域41の血流方向74における長さ73a及び長さ73bを計測する。このようにして、計測機能354は、境界線71上の複数の位置に対応する複数の長さを計測する。すなわち、計測機能354は、接触領域41の血流方向74と交差する境界線71に沿う方向における各位置において、接触領域41の血流方向74の長さを計測する。なお、このような長さは、「深さ」とも称される。また、境界線71の一端を原点(0)とし、原点からの境界線71上の距離(位置)は、「幅」とも称される。また、境界線71に沿う方向は、第2の方向の一例である。 For example, the measurement function 354 has a length 73a and a length 73b in the blood flow direction 74 of the contact area 41 as shown in FIG. Measure. In this way, the measurement function 354 measures a plurality of lengths corresponding to a plurality of positions on the boundary line 71. That is, the measurement function 354 measures the length of the blood flow direction 74 of the contact region 41 at each position in the direction along the boundary line 71 that intersects the blood flow direction 74 of the contact region 41. Such a length is also referred to as “depth”. One end of the boundary line 71 is the origin (0), and the distance (position) on the boundary line 71 from the origin is also referred to as “width”. The direction along the boundary line 71 is an example of the second direction.
 ここで、計測機能354は、比較的空間分解能が高いCT画像データを用いているため、比較的良好な精度で接触領域41の血流方向の長さを計測することができる。 Here, since the measurement function 354 uses CT image data having a relatively high spatial resolution, the measurement function 354 can measure the length of the contact region 41 in the blood flow direction with relatively good accuracy.
 また、弁葉40aと弁葉40bとが接触している接触領域41の血流方向の長さ73a及び長さ73bは、僧帽弁77の詳細な状態を示す情報であり、また、医師などのユーザにとって、僧帽弁77の手術方法を決定する際の判断材料として有効な情報である。 The length 73a and the length 73b in the blood flow direction of the contact region 41 where the leaflets 40a and the leaflets 40b are in contact are information indicating the detailed state of the mitral valve 77, and are a doctor and the like. This information is useful as a judgment material when determining the operation method of the mitral valve 77.
 なお、1つの境界線71が設定される僧帽弁40において、1つの境界線71に対して、接触領域41の血流方向74の長さを計測する場合について説明したが、設定機能353は、同様の方法で、3つの境界線が設定される大動脈弁、三尖弁及び肺動脈弁に対して同様の処理を行うことで、接触領域の血流方向の長さを計算してもよい。すなわち、大動脈弁、三尖弁及び肺動脈弁の場合には、3つの境界線のそれぞれにおいて、1つの境界線71に対して接触領域41の血流方向74の長さを計測する上述した方法と同様の方法を用いることで、3つの境界線に対応する3つの長さを計測することができる。 In addition, although the case where the length of the blood flow direction 74 of the contact region 41 is measured with respect to one boundary line 71 in the mitral valve 40 in which one boundary line 71 is set, the setting function 353 is described. The length of the contact region in the blood flow direction may be calculated by performing the same process on the aortic valve, tricuspid valve, and pulmonary valve in which three boundary lines are set in the same manner. That is, in the case of an aortic valve, a tricuspid valve, and a pulmonary valve, the method described above for measuring the length of the blood flow direction 74 of the contact region 41 with respect to one boundary line 71 in each of the three boundary lines; By using the same method, three lengths corresponding to three boundary lines can be measured.
 また、図12に示すように、離間領域42の全領域のうち、基準面51に対向する領域(対向領域)が基準面51に対して平行でない場合、すなわち、傾斜している場合、計測機能354により基準面51に対する対向領域の傾斜角度を計測してもよい。そして、制御機能351は、計測した傾斜角度を表示するようにディスプレイ340を制御してもよい。 In addition, as shown in FIG. 12, when the region facing the reference surface 51 (opposite region) is not parallel to the reference surface 51 out of all the regions 42, the measurement function The inclination angle of the facing region with respect to the reference plane 51 may be measured by 354. Then, the control function 351 may control the display 340 so as to display the measured tilt angle.
 図1の説明に戻り、生成機能355は、計測機能354により計測された、境界線71上の各位置(複数の位置のそれぞれ)における長さを示すグラフを生成する。このようなグラフは、弁葉の複数の位置のそれぞれにおける長さの分布を示す。また、生成機能355は、抽出機能352により抽出された複数の弁葉が描出された表示用の画像データを生成する。以下、生成機能355によるグラフ及び表示用の画像データを生成する処理の一例について説明する。 1, the generation function 355 generates a graph indicating the length at each position (each of a plurality of positions) on the boundary line 71 measured by the measurement function 354. Such a graph shows the length distribution at each of a plurality of positions of the leaflets. The generation function 355 generates display image data in which a plurality of leaflets extracted by the extraction function 352 are depicted. Hereinafter, an example of processing for generating a graph and display image data by the generation function 355 will be described.
 図13は、第1の実施形態に係る生成機能355によるグラフの画像データ及び表示用の画像データを生成する処理の一例について説明するための図である。図13に示すように、生成機能355は、境界線78上の位置ごとの長さを表すグラフ75を示す画像データを生成する。なお、境界線78上の位置ごとの長さは、計測機能354により計測された長さである。また、境界線78は、僧帽弁77を構成する複数の弁葉77a及び弁葉77bの間に設定された線である。また、僧帽弁77は、抽出機能352により抽出された複数の弁葉77a及び弁葉77bにより構成される弁である。 FIG. 13 is a diagram for explaining an example of processing for generating graph image data and display image data by the generation function 355 according to the first embodiment. As illustrated in FIG. 13, the generation function 355 generates image data indicating a graph 75 representing the length of each position on the boundary line 78. Note that the length of each position on the boundary line 78 is the length measured by the measurement function 354. The boundary line 78 is a line set between a plurality of leaflets 77a and leaflets 77b constituting the mitral valve 77. The mitral valve 77 is a valve configured by a plurality of leaflets 77a and leaflets 77b extracted by the extraction function 352.
 生成機能355は、横軸を、弁葉77aと弁葉77bとが接触する接触領域の血流方向における長さ(深さ)[mm]とし、縦軸を境界線78上の位置(幅)[mm]とするグラフにおいて、計測機能354により計測された境界線78上の複数の位置に対応する複数の長さをプロットすることで、グラフ75を示す画像データを生成する。 In the generation function 355, the horizontal axis is the length (depth) [mm] in the blood flow direction of the contact area where the leaflets 77a and 77b contact, and the vertical axis is the position (width) on the boundary line 78. In the graph [mm], a plurality of lengths corresponding to a plurality of positions on the boundary line 78 measured by the measurement function 354 are plotted, thereby generating image data indicating the graph 75.
 また、生成機能355は、表示用の画像データとして、基準面50により切断された僧帽弁77の断面のMPR(Multi Planar Reconstruction)画像(断層像)76を示す画像データを生成する。すなわち、生成機能355は、3次元のCT画像データから、複数の弁葉77a,77bを含む表示用の画像データを生成する。かかる画像データは、表示用の第1の画像データの一例である。また、かかる画像データは、第1の断層像データの一例である。また、MPR画像76は、第1の断層像の一例である。そして、生成機能355は、境界線78を示す画像データを生成する。そして、生成機能355は、MPR画像76に境界線78を重畳させることで、境界線78が重畳されたMPR画像76を示す画像データを生成する。すなわち、生成機能355は、CT画像データにおける基準面50に略相当する位置のMPR画像76に対して、MPR画像76中に2つの弁葉77a,77bが接触する接触領域に対応する境界線78が重畳された画像を生成する。 Also, the generation function 355 generates image data indicating an MPR (Multi Planar Reconstruction) image (tomographic image) 76 of the cross section of the mitral valve 77 cut by the reference plane 50 as display image data. That is, the generation function 355 generates display image data including a plurality of leaflets 77a and 77b from the three-dimensional CT image data. Such image data is an example of first image data for display. Such image data is an example of first tomographic image data. The MPR image 76 is an example of a first tomographic image. Then, the generation function 355 generates image data indicating the boundary line 78. Then, the generation function 355 generates image data indicating the MPR image 76 on which the boundary line 78 is superimposed by superimposing the boundary line 78 on the MPR image 76. That is, the generation function 355 has a boundary line 78 corresponding to a contact area where the two leaflets 77a and 77b come into contact with each other in the MPR image 76 with respect to the MPR image 76 at a position substantially corresponding to the reference plane 50 in the CT image data. Is generated.
 ここで、CT画像データは、比較的、空間分解能が高いため、抽出機能352により複数の弁葉が比較的精度良く抽出される。このため、生成機能355は、例えば、図13に示す弁葉77aと、弁葉77aと弁葉77bとの間の離間領域との境界を、ユーザが認識しやすい表示態様にする。同様に、生成機能355は、図13に示す弁葉77bと、かかる離間領域との境界を、ユーザが認識しやすい表示態様にする。例えば、生成機能355は、弁葉77a及び弁葉77bと離間領域との境界に重畳される赤い色の線の画像データを生成し、生成した画像データが示す赤い色の線を、弁葉77a及び弁葉77bと離間領域との境界に重畳する。 Here, since CT image data has a relatively high spatial resolution, a plurality of leaflets are extracted with relatively high accuracy by the extraction function 352. Therefore, for example, the generation function 355 makes the display mode in which the user can easily recognize the boundary between the leaflet 77a shown in FIG. 13 and the separation region between the leaflet 77a and the leaflet 77b. Similarly, the generation function 355 changes the boundary between the leaflet 77b shown in FIG. 13 and the separated area into a display mode that is easy for the user to recognize. For example, the generation function 355 generates red line image data superimposed on the boundary between the leaflet 77a and the leaflet 77b and the separation region, and the red line indicated by the generated image data is converted into the leaflet 77a. And it overlaps with the boundary between the leaflet 77b and the separation region.
 ここで、図13では、グラフ75において、破線により示されるように、弁葉77aと弁葉77bとが互いに離間しているとみなすための閾値が1[mm]として設定されている。この場合、接触領域41の血流方向の長さが1[mm]未満となる境界線78上の位置は、接触領域であったとしても、弁葉77aと弁葉77bとが互いに離間している状態に近いと考えられる。 Here, in FIG. 13, as indicated by a broken line in the graph 75, a threshold value for determining that the leaflets 77 a and 77 b are separated from each other is set as 1 [mm]. In this case, even if the position on the boundary line 78 where the length in the blood flow direction of the contact region 41 is less than 1 [mm] is the contact region, the leaflet 77a and the leaflet 77b are separated from each other. It is thought that it is close to the state.
 そのため、生成機能355は、グラフ75において、境界線78上の位置(幅)と接触領域の血流方向の長さ(深さ)との対応関係を示す曲線の閾値未満の部分と、閾値以上の部分とが異なる態様(表示態様)となるようにグラフ75を示す画像データを生成する。例えば、生成機能355は、曲線の閾値未満の部分と、閾値以上の部分とが異なる色となるようにグラフ75を示す画像データを生成してもよい。 For this reason, the generation function 355 includes, in the graph 75, a portion of the curve that indicates the correspondence between the position (width) on the boundary line 78 and the length (depth) of the contact region in the blood flow direction, less than the threshold, Image data representing the graph 75 is generated so that the portion (display manner) is different from the portion of. For example, the generation function 355 may generate image data indicating the graph 75 so that the portion of the curve that is less than the threshold and the portion that is greater than or equal to the threshold have different colors.
 なお、閾値は上述した1[mm]に限られず、他の値であってもよい。また、生成機能355は、入力インターフェース330を介してユーザから閾値を変更する指示を受け付けると、指示に基づいて、閾値を変更してもよい。 The threshold value is not limited to 1 [mm] described above, and may be another value. In addition, when the generation function 355 receives an instruction to change the threshold value from the user via the input interface 330, the generation function 355 may change the threshold value based on the instruction.
 図14は、図13に示す境界線78の一部の拡大図である。図14に示すように、生成機能355は、接触領域の血流方向の長さが閾値未満となる境界線78の部分78aと、接触領域の血流方向の長さが閾値以上となる境界線78の部分(部分78a以外の部分)とが異なる態様(表示態様)となるように境界線78を示す画像データを生成する。 FIG. 14 is an enlarged view of a part of the boundary line 78 shown in FIG. As illustrated in FIG. 14, the generation function 355 includes a portion 78a of the boundary line 78 where the length of the contact region in the blood flow direction is less than the threshold value, and a boundary line where the length of the contact region in the blood flow direction is equal to or greater than the threshold value. Image data indicating the boundary line 78 is generated so that the portion (part other than the portion 78a) of 78 has a different form (display form).
 ここで、上述したように、生成機能355は、MPR画像76に境界線78を重畳させる。すなわち、生成機能355は、隣接する2つの弁葉77a及び弁葉77bの間に設定された境界線78であって、接触領域の血流方向の長さが閾値以上の部分(部分78a以外の部分)と閾値未満の部分78aとで態様が異なる境界線78をMPR画像76に重畳させる。 Here, as described above, the generation function 355 superimposes the boundary line 78 on the MPR image 76. That is, the generation function 355 is a boundary line 78 set between two adjacent leaflets 77a and 77b, and the length of the contact region in the blood flow direction is equal to or greater than the threshold value (other than the portion 78a). The boundary line 78 having a different aspect between the portion 78 and the portion 78 a less than the threshold is superimposed on the MPR image 76.
 なお、生成機能355は、1つの閾値ではなく、複数の閾値を用いて、接触領域の血流方向の長さの大きさに応じて更に細かく表示態様が異なる境界線を生成してもよい。 Note that the generation function 355 may generate a boundary line that is more finely displayed according to the size of the length of the contact region in the blood flow direction using a plurality of threshold values instead of one threshold value.
 図15は、第1の実施形態に係る生成機能355による他のグラフの画像データ及び他の表示用の画像データを生成する処理の一例について説明するための図である。図15に示すように、生成機能355は、表示用の画像データとして、基準面50により切断された大動脈弁83の断面のMPR画像80を示す画像データを生成する。ここで、大動脈弁83は、抽出機能352により抽出された複数の弁葉83a,83b,83cにより構成される弁である。すなわち、生成機能355は、3次元のCT画像データから、複数の弁葉83a,83b,83cを含む表示用の画像データを生成する。かかる画像データは、表示用の第1の画像データの一例である。 FIG. 15 is a diagram for explaining an example of processing for generating image data of another graph and image data for other display by the generation function 355 according to the first embodiment. As shown in FIG. 15, the generation function 355 generates image data indicating an MPR image 80 of a cross section of the aortic valve 83 cut by the reference plane 50 as display image data. Here, the aortic valve 83 is a valve composed of a plurality of leaflets 83a, 83b, 83c extracted by the extraction function 352. That is, the generation function 355 generates display image data including a plurality of leaflets 83a, 83b, and 83c from the three-dimensional CT image data. Such image data is an example of first image data for display.
 そして、生成機能355は、境界線84aを示す画像データ、境界線84bを示す画像データ、及び、境界線84cを示す画像データを生成する。なお、境界線84aは、弁葉83cと弁葉83aとの間に設定された線である。また、境界線84bは、弁葉83aと弁葉83bとの間に設定された線である。また、境界線84cは、弁葉83bと弁葉83cとの間に設定された線である。 The generation function 355 generates image data indicating the boundary line 84a, image data indicating the boundary line 84b, and image data indicating the boundary line 84c. The boundary line 84a is a line set between the leaflet 83c and the leaflet 83a. The boundary line 84b is a line set between the leaflets 83a and the leaflets 83b. The boundary line 84c is a line set between the leaflets 83b and the leaflets 83c.
 また、生成機能355は、重心のマーク85を示す画像データを生成する。ここでいう重心は、基準面50において、3つの弁葉83a、弁葉83b及び弁葉83cに囲まれた非接触領域(非存在領域)の重心である。 Further, the generation function 355 generates image data indicating the center of gravity mark 85. The center of gravity here is the center of gravity of the non-contact region (non-existing region) surrounded by the three leaflets 83a, leaflets 83b, and leaflets 83c on the reference plane 50.
 また、生成機能355は、境界線84aの重心側とは反対側の端部のマーク86aを示す画像データを生成する。また、生成機能355は、境界線84bの重心側とは反対側の端部のマーク86bを示す画像データを生成する。また、生成機能355は、境界線84cの重心側とは反対側の端部のマーク86cを示す画像データを生成する。 Further, the generation function 355 generates image data indicating the mark 86a at the end opposite to the center of gravity of the boundary line 84a. The generation function 355 generates image data indicating the mark 86b at the end opposite to the center of gravity of the boundary line 84b. The generation function 355 generates image data indicating the mark 86c at the end opposite to the center of gravity of the boundary line 84c.
 また、生成機能355は、境界線84a上を移動可能なマーク87aを示す画像データを生成する。また、生成機能355は、境界線84b上を移動可能なマーク87bを示す画像データを生成する。また、生成機能355は、境界線84c上を移動可能なマーク87cを示す画像データを生成する。 Further, the generation function 355 generates image data indicating the mark 87a that can move on the boundary line 84a. The generation function 355 generates image data indicating the mark 87b that can move on the boundary line 84b. The generation function 355 generates image data indicating the mark 87c that can move on the boundary line 84c.
 そして、生成機能355は、MPR画像80に、境界線84a~84c、マーク85,86a~86c,87a~87cを重畳させる。これにより、生成機能355は、境界線84a~84c、マーク85,86a~86c,87a~87cが重畳されたMPR画像80を示す画像データを生成する。 The generation function 355 superimposes the boundary lines 84a to 84c, the marks 85, 86a to 86c, and 87a to 87c on the MPR image 80. Accordingly, the generation function 355 generates image data indicating the MPR image 80 on which the boundary lines 84a to 84c, the marks 85, 86a to 86c, and 87a to 87c are superimposed.
 また、生成機能355は、境界線84a上のマーク87aを通り、かつ、境界線84aに直交する大動脈弁83の断面のMPR画像81aを示す画像データを生成する。また、生成機能355は、境界線84b上のマーク87bを通り、かつ、境界線84bに直交する大動脈弁83の断面のMPR画像81bを示す画像データを生成する。また、生成機能355は、境界線84c上のマーク87cを通り、かつ、境界線84cに直交する大動脈弁83の断面のMPR画像81cを示す画像データを生成する。 Further, the generation function 355 generates image data indicating the MPR image 81a of the cross section of the aortic valve 83 passing through the mark 87a on the boundary line 84a and orthogonal to the boundary line 84a. The generation function 355 generates image data indicating the MPR image 81b of the cross section of the aortic valve 83 that passes through the mark 87b on the boundary line 84b and is orthogonal to the boundary line 84b. The generation function 355 generates image data indicating the MPR image 81c of the cross section of the aortic valve 83 that passes through the mark 87c on the boundary line 84c and is orthogonal to the boundary line 84c.
 図15に示すように、MPR画像81aには、弁葉83c及び弁葉83aの接触状態が示される。同様に、MPR画像81bには、弁葉83a及び弁葉83bの接触状態が示され、MPR画像81cには、弁葉83b及び弁葉83cの接触状態が示される。 As shown in FIG. 15, the MPR image 81a shows the contact state between the leaflets 83c and the leaflets 83a. Similarly, the MPR image 81b shows the contact state between the valve leaf 83a and the valve leaf 83b, and the MPR image 81c shows the contact state between the valve leaf 83b and the valve leaf 83c.
 例えば、MPR画像81aには、弁葉83cと弁葉83aとが離間している状態が示されている。また、MPR画像81bには、弁葉83aと弁葉83bとが接触している状態が示されている。また、MPR画像81cには、弁葉83bと弁葉83cとが接触している状態が示されている。 For example, the MPR image 81a shows a state where the leaflets 83c and the leaflets 83a are separated from each other. Further, the MPR image 81b shows a state where the leaflets 83a and the leaflets 83b are in contact with each other. Further, the MPR image 81c shows a state in which the leaflets 83b and the leaflets 83c are in contact with each other.
 また、生成機能355は、境界線84a上の位置ごとの接触領域の血流方向の長さを表すグラフ82aを示す画像データを生成する。また、生成機能355は、境界線84b上の位置ごとの接触領域の血流方向の長さを表すグラフ82bを示す画像データを生成する。また、生成機能355は、境界線84c上の位置ごとの接触領域の血流方向の長さを表すグラフ82cを示す画像データを生成する。境界線84a上の位置ごとの接触領域の血流方向の長さ、境界線84b上の位置ごとの接触領域の血流方向の長さ、及び、境界線84c上の位置ごとの接触領域の血流方向の長さは、計測機能354により計測される。 Further, the generation function 355 generates image data indicating a graph 82a representing the length of the contact region in the blood flow direction for each position on the boundary line 84a. In addition, the generation function 355 generates image data indicating a graph 82b representing the length in the blood flow direction of the contact region for each position on the boundary line 84b. In addition, the generation function 355 generates image data indicating a graph 82c representing the length in the blood flow direction of the contact region for each position on the boundary line 84c. The length in the blood flow direction of the contact area for each position on the boundary line 84a, the length in the blood flow direction of the contact area for each position on the boundary line 84b, and the blood in the contact area for each position on the boundary line 84c The length in the flow direction is measured by the measurement function 354.
 グラフ82aにおける曲線99aは、境界線84a上の位置(幅)と、弁葉83cと弁葉83aとが接触している接触領域の血流方向の長さ(深さ)との対応関係を示す。 A curve 99a in the graph 82a indicates a correspondence relationship between the position (width) on the boundary line 84a and the length (depth) in the blood flow direction of the contact region where the leaflets 83c and the leaflets 83a are in contact with each other. .
 グラフ82aにおけるマーク89aは、境界線84aの端部のマーク86aに対応する。すなわち、グラフ82aにおいて、マーク89aは、マーク86aの境界線84a上での位置(幅;原点(0))、及び、マーク86aの境界線84a上での位置に対応する長さ(深さ;5[mm])を示す位置に配置されている。 The mark 89a in the graph 82a corresponds to the mark 86a at the end of the boundary line 84a. That is, in the graph 82a, the mark 89a has a position (width; origin (0)) on the boundary line 84a of the mark 86a and a length (depth) corresponding to the position on the boundary line 84a of the mark 86a. 5 [mm]).
 また、グラフ82aにおけるマーク88は、重心を示すマーク85に対応する。すなわち、グラフ82aにおいて、マーク88は、重心の境界線84a上での位置、及び、重心の境界線84a上での位置に対応する長さ(深さ;0[mm])を示す位置に配置されている。 The mark 88 in the graph 82a corresponds to the mark 85 indicating the center of gravity. That is, in the graph 82a, the mark 88 is arranged at a position indicating a position (depth; 0 [mm]) corresponding to a position on the boundary line 84a of the center of gravity and a position on the boundary line 84a of the center of gravity. Has been.
 また、グラフ82aにおけるマーク90aは、マーク87aに対応する。すなわち、マーク90aは、境界線84a上でのマーク87aの位置と同一の位置を示すように、曲線99a上に配置される。 Further, the mark 90a in the graph 82a corresponds to the mark 87a. That is, the mark 90a is arranged on the curve 99a so as to indicate the same position as the position of the mark 87a on the boundary line 84a.
 グラフ82bにおける曲線99b、マーク89b、マーク88及びマーク90b、並びに、グラフ82cにおける曲線99c、マーク89c、マーク88及びマーク90cについても同様である。すなわち、曲線99bは、境界線84b上の位置と、弁葉83a及び弁葉83bが接触している接触領域の血流方向の長さとの対応関係を示す。マーク89bは、境界線84bの端部のマーク86bに対応する。グラフ82bにおけるマーク88は、重心の境界線84b上での位置、及び、重心の境界線84b上での位置に対応する長さ(深さ;0[mm])を示す。マーク90bは、マーク87bに対応する。 The same applies to the curve 99b, the mark 89b, the mark 88, and the mark 90b in the graph 82b, and the curve 99c, the mark 89c, the mark 88, and the mark 90c in the graph 82c. That is, the curve 99b shows the correspondence between the position on the boundary line 84b and the length in the blood flow direction of the contact area where the leaflets 83a and the leaflets 83b are in contact. The mark 89b corresponds to the mark 86b at the end of the boundary line 84b. A mark 88 in the graph 82b indicates a position on the boundary line 84b of the center of gravity and a length (depth; 0 [mm]) corresponding to the position on the boundary line 84b of the center of gravity. The mark 90b corresponds to the mark 87b.
 また、曲線99cは、境界線84c上の位置と、弁葉83b及び弁葉83cが接触している接触領域の血流方向の長さとの対応関係を示す。マーク89cは、境界線84cの端部のマーク86cに対応する。グラフ82cにおけるマーク88は、重心の境界線84c上での位置、及び、重心の境界線84c上での位置に対応する長さ(深さ;0[mm])を示す。マーク90cは、マーク87cに対応する。 The curve 99c shows the correspondence between the position on the boundary line 84c and the length in the blood flow direction of the contact area where the leaflets 83b and the leaflets 83c are in contact. The mark 89c corresponds to the mark 86c at the end of the boundary line 84c. A mark 88 in the graph 82c indicates a position on the boundary line 84c of the center of gravity and a length (depth; 0 [mm]) corresponding to the position on the boundary line 84c of the center of gravity. The mark 90c corresponds to the mark 87c.
 なお、グラフ82aにおいて、弁葉83cと弁葉83aとが互いに離間しているとみなすための閾値98が1[mm]として設定されている。そのため、生成機能355は、グラフ82aにおいて、曲線99aの閾値98未満の部分と、閾値98以上の部分とが異なる態様となるようにグラフ82aを示す画像データを生成してもよい。グラフ82b及びグラフ82cにおいても同様である。 In the graph 82a, a threshold value 98 for setting the leaflet 83c and the leaflet 83a to be separated from each other is set as 1 [mm]. Therefore, the generation function 355 may generate image data indicating the graph 82a so that the portion of the curve 99a that is less than the threshold 98 is different from the portion that is equal to or greater than the threshold 98. The same applies to the graph 82b and the graph 82c.
 なお、図15の例においても、図13の例と同様に、閾値は上述した1[mm]に限られず、他の値であってもよい。また、生成機能355は、ユーザから閾値を変更する指示を受け付けると、指示に基づいて閾値を変更してもよい。 In the example of FIG. 15 as well, the threshold value is not limited to 1 [mm] described above, and may be other values, as in the example of FIG. In addition, when the generation function 355 receives an instruction to change the threshold value from the user, the generation function 355 may change the threshold value based on the instruction.
 ここで、例えば、図13に示すグラフ75を示す画像データ、及び、境界線78が重畳されたMPR画像76を示す画像データが生成機能355により生成されると、制御機能351は、グラフ75を示す画像データ、及び、境界線78が重畳されたMPR画像76を示す画像データをディスプレイ340に送信する。そして、制御機能351は、図13に示すように、グラフ75、及び、境界線78が重畳されたMPR画像76を表示するようにディスプレイ340を制御する。 Here, for example, when the image data indicating the graph 75 shown in FIG. 13 and the image data indicating the MPR image 76 on which the boundary line 78 is superimposed are generated by the generation function 355, the control function 351 displays the graph 75. The image data to be displayed and the image data to indicate the MPR image 76 on which the boundary line 78 is superimposed are transmitted to the display 340. Then, the control function 351 controls the display 340 to display the MPR image 76 on which the graph 75 and the boundary line 78 are superimposed, as shown in FIG.
 すなわち、制御機能351は、弁葉77aと弁葉77bとが接触する接触領域における各位置であって、血流方向と交差する境界線78に沿う方向における各位置での接触領域の血流方向の長さを表示するようにディスプレイ340を制御する。このように、制御機能351は、境界線78の複数の位置のそれぞれにおける長さの分布をディスプレイ34にグラフ表示させる。また、制御機能351は、接触領域の血流方向の長さとともに、複数の弁葉77a及び弁葉77bが描出された表示用のMPR画像76を表示するようにディスプレイ340を制御する。すなわち、制御機能351は、MPR画像76に対して、MPR画像76中に2つの弁葉77a,77bが接触する接触領域に対応する境界線78が重畳された画像をディスプレイ34に表示させる。なお、表示用のMPR画像76は、第1の表示用画像の一例である。また、境界線78に沿う方向は、第2の方向の一例である。 That is, the control function 351 is a position in the contact region where the leaflet 77a and the leaflet 77b contact each other, and the blood flow direction of the contact region at each position in the direction along the boundary line 78 intersecting the blood flow direction. The display 340 is controlled to display the length of. Thus, the control function 351 causes the display 34 to display a graph of the length distribution at each of the plurality of positions of the boundary line 78. In addition, the control function 351 controls the display 340 so as to display the display MPR image 76 in which the plurality of leaflets 77a and leaflets 77b are drawn together with the length of the contact region in the blood flow direction. That is, the control function 351 causes the display 34 to display an image in which the boundary line 78 corresponding to the contact region where the two leaflets 77a and 77b are in contact with the MPR image 76 is superimposed on the MPR image 76. The display MPR image 76 is an example of a first display image. The direction along the boundary line 78 is an example of the second direction.
 このように、第1の実施形態に係る医用画像処理装置300は、弁葉77aと弁葉77bとが接触する接触領域の血流方向における長さを表示する。ここで、弁葉77aと弁葉77bとが接触する接触領域の血流方向における長さは、僧帽弁77の詳細な状態を示す情報であり、また、医師などのユーザにとって、僧帽弁77の手術方法を決定する際の判断材料として有効な情報である。よって、医用画像処理装置300によれば、僧帽弁77の詳細な状態をユーザに把握させることができる。更に、この結果、医用画像処理装置300によれば、ユーザによる僧帽弁77の手術方法の決定を支援することができる。例えば、ユーザは、直感的に手術が必要な僧帽弁77の部分を特定することができる。このため、僧帽弁77の手術を計画する際に要する時間を短縮することができる。 Thus, the medical image processing apparatus 300 according to the first embodiment displays the length in the blood flow direction of the contact area where the leaflets 77a and 77b contact. Here, the length in the blood flow direction of the contact area where the leaflets 77a and 77b are in contact is information indicating the detailed state of the mitral valve 77, and for a user such as a doctor, the mitral valve This information is useful as a judgment material when determining 77 surgical methods. Therefore, according to the medical image processing apparatus 300, the user can grasp the detailed state of the mitral valve 77. Furthermore, as a result, according to the medical image processing apparatus 300, it is possible to assist the user in determining the operation method of the mitral valve 77. For example, the user can intuitively specify the portion of the mitral valve 77 that requires surgery. For this reason, the time required for planning the operation of the mitral valve 77 can be shortened.
 また、医用画像処理装置300は、接触領域の血流方向の長さが閾値以上の部分(部分78a以外の部分)と閾値未満の部分78aとで態様が異なる境界線78がMPR画像76に重畳された状態でディスプレイ340に表示させる。このため、医用画像処理装置300によれば、閾値を0よりも大きくすることで、弁葉77aと弁葉77bとが離間している離間領域のみならず、離間している状態に近いと考えられる弁葉77aと弁葉77bとの接触領域をユーザに容易に把握させることができる。 Further, the medical image processing apparatus 300 superimposes on the MPR image 76 a boundary line 78 having different aspects in a portion (a portion other than the portion 78a) whose length in the blood flow direction of the contact region is greater than or equal to a threshold value and a portion 78a that is less than the threshold value. In this state, the image is displayed on the display 340. For this reason, according to the medical image processing apparatus 300, by setting the threshold value to be larger than 0, it is considered that the medical image processing apparatus 300 is close to the separated state as well as the separated region where the leaflet 77a and the leaflet 77b are separated. The user can easily grasp the contact area between the leaflet 77a and the leaflet 77b.
 なお、生成機能355は、ユーザの操作により基準面50が移動された場合、移動後の基準面50の位置に基づいて新たなMPR画像76を生成する。そして、制御機能351は、新たなMPR画像76で、ディスプレイ340に表示中のMPR画像76を更新する。 The generation function 355 generates a new MPR image 76 based on the position of the reference surface 50 after the movement when the reference surface 50 is moved by a user operation. Then, the control function 351 updates the MPR image 76 being displayed on the display 340 with the new MPR image 76.
 また、例えば、図15に示す境界線84a~84c、マーク85,86a~86c,87a~87cが重畳されたMPR画像80を示す画像データ、MPR画像81a~81cの各画像データ、及び、グラフ82a~82cの各画像データが生成機能355により生成された場合について説明する。この場合、制御機能351は、これらの画像データをディスプレイ340に送信する。そして、制御機能351は、図15に示すように、境界線84a~84c、マーク85,86a~86c,87a~87cが重畳されたMPR画像80、MPR画像81a~81c、グラフ82a~82cを表示するようにディスプレイ340を制御する。 Further, for example, the image data indicating the MPR image 80 on which the boundary lines 84a to 84c, the marks 85, 86a to 86c, and 87a to 87c shown in FIG. 15 are superimposed, the image data of the MPR images 81a to 81c, and the graph 82a A case where each of the image data 82 to 82c is generated by the generation function 355 will be described. In this case, the control function 351 transmits these image data to the display 340. Then, as shown in FIG. 15, the control function 351 displays the MPR image 80, the MPR images 81a to 81c, and the graphs 82a to 82c on which the boundary lines 84a to 84c, the marks 85, 86a to 86c, and 87a to 87c are superimposed. The display 340 is controlled as follows.
 ここで、ディスプレイ340に表示されたマーク87aは、入力インターフェース330を介したユーザの操作により、境界線84a上を移動可能である。同様に、ユーザの操作によりマーク87bは、境界線84b上を移動可能であり、マーク87cは、境界線84c上を移動可能である。例えば、生成機能355は、ユーザにより指定された位置に、マーク87a,87b,87cを移動させる。 Here, the mark 87 a displayed on the display 340 can be moved on the boundary line 84 a by a user operation via the input interface 330. Similarly, the mark 87b can be moved on the boundary line 84b by the user's operation, and the mark 87c can be moved on the boundary line 84c. For example, the generation function 355 moves the marks 87a, 87b, 87c to positions specified by the user.
 そのため、移動後のマーク87aの位置に応じて、生成機能355は、新たなMPR画像81aを示す画像データを生成する。同様に、生成機能355は、移動後のマーク87bの位置に応じて新たなMPR画像81bを示す画像データを生成し、移動後のマーク87cの位置に応じて新たなMPR画像81cを示す画像データを生成する。すなわち、生成機能355は、マーク87a,87b,87cの位置の変化に連動して、新たなMPR画像81a,81b,81cを示す画像データを生成する。 Therefore, according to the position of the mark 87a after movement, the generation function 355 generates image data indicating a new MPR image 81a. Similarly, the generation function 355 generates image data indicating a new MPR image 81b according to the position of the moved mark 87b, and image data indicating the new MPR image 81c according to the position of the moved mark 87c. Is generated. That is, the generation function 355 generates image data indicating new MPR images 81a, 81b, and 81c in conjunction with changes in the positions of the marks 87a, 87b, and 87c.
 このように、生成機能355は、境界線84a上の位置の指定を受け付け、指定された位置を含み、かつ、隣接する2つの弁葉83c及び弁葉83aが描出された表示用のMPR画像81aを示す表示用の画像データを生成する。同様に、生成機能355は、境界線84b上の位置の指定を受け付け、指定された位置を含み、かつ、隣接する2つの弁葉83a及び弁葉83bが描出された表示用のMPR画像81bを示す表示用の画像データを生成する。また、生成機能355は、境界線84c上の位置の指定を受け付け、指定された位置を含み、かつ、隣接する2つの弁葉83b及び弁葉83cが描出された表示用のMPR画像81cを示す表示用の画像データを生成する。 As described above, the generation function 355 receives the designation of the position on the boundary line 84a, and includes the designated position, and the MPR image 81a for display in which the two adjacent leaflets 83c and the leaflets 83a are depicted. Display image data indicating the above is generated. Similarly, the generation function 355 accepts designation of a position on the boundary line 84b, and displays an MPR image 81b for display that includes the designated position and depicts two adjacent leaflets 83a and leaflets 83b. Display image data to be displayed is generated. Further, the generation function 355 accepts designation of a position on the boundary line 84c, and shows a display MPR image 81c that includes the designated position and depicts two adjacent leaflets 83b and leaflets 83c. Display image data is generated.
 なお、MPR画像81a,81b,81cは、第2の表示用画像の一例である。また、MPR画像81a,81b,81cは、第2の断層像の一例である。また、MPR画像81a,81b,81cのそれぞれの画像データは、表示用の第2の画像データの一例である。また、MPR画像81a,81b,81cのそれぞれの画像データは、第2の断層像データの一例である。 Note that the MPR images 81a, 81b, and 81c are examples of the second display image. The MPR images 81a, 81b, and 81c are examples of the second tomographic image. Each image data of the MPR images 81a, 81b, 81c is an example of second image data for display. In addition, each image data of the MPR images 81a, 81b, 81c is an example of second tomographic image data.
 そして、制御機能351は、MPR画像81aの画像データが示すMPR画像81aを表示するようにディスプレイ340を制御する。同様に、制御機能351は、MPR画像81bの画像データが示すMPR画像81bを表示するようにディスプレイ340を制御する。制御機能351は、MPR画像81cの画像データが示すMPR画像81bを表示するようにディスプレイ340を制御する。具体例を挙げて説明すると、制御機能351は、新たなMPR画像81a,81b,81cで表示中のMPR画像81a,81b,81cを更新するようにディスプレイ340を制御する。このように、医用画像処理装置300は、マーク87a,87b,87cの位置の変化に連動して、表示されるMPR画像81a,81b,81cを更新する。 Then, the control function 351 controls the display 340 so as to display the MPR image 81a indicated by the image data of the MPR image 81a. Similarly, the control function 351 controls the display 340 so as to display the MPR image 81b indicated by the image data of the MPR image 81b. The control function 351 controls the display 340 so as to display the MPR image 81b indicated by the image data of the MPR image 81c. For example, the control function 351 controls the display 340 so as to update the MPR images 81a, 81b, and 81c being displayed with the new MPR images 81a, 81b, and 81c. As described above, the medical image processing apparatus 300 updates the displayed MPR images 81a, 81b, and 81c in conjunction with changes in the positions of the marks 87a, 87b, and 87c.
 したがって、ユーザは、マーク87a,87b,87cを移動させるだけで、様々な位置における弁葉83c及び弁葉83aの接触状態、弁葉83a及び弁葉83bの接触状態、並びに、弁葉83b及び弁葉83cの接触状態を容易に把握することができる。 Therefore, the user simply moves the marks 87a, 87b, 87c, the contact state between the leaflets 83c and 83a, the contact state between the leaflets 83a and 83b, and the leaflets 83b and valves at various positions. The contact state of the leaves 83c can be easily grasped.
 また、移動後のマーク87aの位置に応じて、生成機能355は、曲線99a上のマーク90aの位置が、移動後のマーク87aの位置と同一の位置に変更された新たなグラフ82aを示す画像データを生成する。また、生成機能355は、移動後のマーク87bの位置に応じて、曲線99b上のマーク90bの位置が、移動後のマーク87bの位置と同一の位置に変更された新たなグラフ82bを示す画像データを生成する。また、生成機能355は、移動後のマーク87cの位置に応じて、曲線99c上のマーク90cの位置が、移動後のマーク87cの位置と同一の位置に変更された新たなグラフ82cを示す画像データを生成する。 Further, according to the position of the mark 87a after the movement, the generation function 355 displays an image showing a new graph 82a in which the position of the mark 90a on the curve 99a is changed to the same position as the position of the mark 87a after the movement. Generate data. Further, the generation function 355 displays an image showing a new graph 82b in which the position of the mark 90b on the curve 99b is changed to the same position as the position of the moved mark 87b according to the position of the moved mark 87b. Generate data. Further, the generation function 355 displays an image showing a new graph 82c in which the position of the mark 90c on the curve 99c is changed to the same position as the position of the moved mark 87c according to the position of the moved mark 87c. Generate data.
 すなわち、生成機能355は、マーク87a,87b,87cの位置の変化に連動して、新たなグラフ82a,82b,82cを生成する。そして、制御機能351は、新たなグラフ82a,82b,82cで、表示中のグラフ82a,82b,82cを更新するようにディスプレイ340を制御する。このように、医用画像処理装置300は、マーク87a,87b,87cの位置の変化に連動して、表示されるグラフ82a,82b,82cを更新する。 That is, the generation function 355 generates new graphs 82a, 82b, and 82c in conjunction with changes in the positions of the marks 87a, 87b, and 87c. Then, the control function 351 controls the display 340 so as to update the currently displayed graphs 82a, 82b, and 82c with the new graphs 82a, 82b, and 82c. As described above, the medical image processing apparatus 300 updates the displayed graphs 82a, 82b, and 82c in conjunction with the change in the positions of the marks 87a, 87b, and 87c.
 また、生成機能355は、ユーザの操作により基準面50が移動された場合、移動後の基準面50の位置に基づいて新たなMPR画像80を生成する。そして、制御機能351は、新たなMPR画像80で、ディスプレイ340に表示中のMPR画像80を更新する。 Further, when the reference plane 50 is moved by a user operation, the generation function 355 generates a new MPR image 80 based on the position of the reference plane 50 after the movement. Then, the control function 351 updates the MPR image 80 being displayed on the display 340 with the new MPR image 80.
 第1の実施形態に係る医用画像処理装置300は、弁葉83cと弁葉83aとが接触する接触領域の血流方向における長さ、弁葉83aと弁葉83bとが接触する接触領域の血流方向における長さ、及び、弁葉83aと弁葉83bとが接触する接触領域の血流方向における長さを表示する。よって、医用画像処理装置300によれば、大動脈弁83の詳細な状態をユーザに把握させることができる。また、医用画像処理装置300によれば、ユーザによる大動脈弁83の手術方法の決定を支援することができる。 In the medical image processing apparatus 300 according to the first embodiment, the length in the blood flow direction of the contact region where the leaflets 83c and the leaflets 83a contact each other, the blood in the contact region where the leaflets 83a and the leaflets 83b contact each other. The length in the flow direction and the length in the blood flow direction of the contact area where the leaflets 83a and the leaflets 83b contact are displayed. Therefore, according to the medical image processing apparatus 300, the user can grasp the detailed state of the aortic valve 83. Further, according to the medical image processing apparatus 300, it is possible to assist the user in determining the operation method for the aortic valve 83.
 図16は、第1の実施形態に係る処理回路350が実行する処理の流れの一例を示すフローチャートである。かかる処理は、例えば、入力インターフェース330により処理を実行するための指示が受け付けられた場合に、処理回路350の各機能351~355により実行される。 FIG. 16 is a flowchart illustrating an example of a flow of processing executed by the processing circuit 350 according to the first embodiment. Such processing is executed by the functions 351 to 355 of the processing circuit 350 when, for example, an instruction for executing processing is received by the input interface 330.
 図16に示すように、抽出機能352は、メモリ320に記憶された3次元のCT画像データ又は4次元のCT画像データを取得する(ステップS101)。なお、4次元のCT画像データを取得した場合には、抽出機能352は、4次元のCT画像データを構成する複数の時相の3次元のCT画像データの中から、1つの時相の3次元のCT画像データを取得する。 As shown in FIG. 16, the extraction function 352 acquires 3D CT image data or 4D CT image data stored in the memory 320 (step S101). In addition, when the four-dimensional CT image data is acquired, the extraction function 352 selects one time phase 3 from a plurality of time-phase three-dimensional CT image data constituting the four-dimensional CT image data. Dimensional CT image data is acquired.
 そして、抽出機能352は、3次元のCT画像データから、被検体の心臓の弁を構成する複数の弁葉のそれぞれを抽出する(ステップS102)。そして、設定機能353は、抽出機能352により抽出された複数の弁葉に対して、複数の弁葉に関する基準面50及び基準面51を設定する(ステップS103)。 Then, the extraction function 352 extracts each of a plurality of leaflets constituting the heart valve of the subject from the three-dimensional CT image data (step S102). Then, the setting function 353 sets the reference plane 50 and the reference plane 51 related to the plurality of leaflets for the plurality of leaflets extracted by the extraction function 352 (step S103).
 そして、設定機能353は、隣接する2つの弁葉の間に境界線を設定する(ステップS104)。そして、計測機能354は、複数の弁葉のそれぞれについて、それぞれの弁葉と他の弁葉とが接触している接触領域の血流方向の長さを計測する(ステップS105)。そして、生成機能355は、弁を構成する弁葉の間に設定された境界線上の位置ごとの接触領域の血流方向の長さを表すグラフを示す画像データを生成する(ステップS106)。 Then, the setting function 353 sets a boundary line between two adjacent leaflets (step S104). And the measurement function 354 measures the length of the blood flow direction of the contact area | region where each valve leaf and another valve leaf are contacting about each of several leaflets (step S105). And the production | generation function 355 produces | generates the image data which shows the graph showing the length of the blood flow direction of the contact area for every position on the boundary line set between the leaflets which comprise a valve (step S106).
 そして、生成機能355は、表示用の画像データとして、基準面50により切断された弁の断面のMPR画像を示す画像データを生成する(ステップS107)。そして、制御機能351は、グラフ及び表示用の画像を表示するようにディスプレイ340を制御し(ステップS108)、処理を終了する。 Then, the generation function 355 generates image data indicating an MPR image of the cross section of the valve cut by the reference plane 50 as display image data (step S107). Then, the control function 351 controls the display 340 so as to display the graph and the display image (Step S108), and ends the process.
 図16に示すステップS101,S102は、抽出機能352に対応するステップである。ステップS101,S102は、処理回路350がメモリ320から抽出機能352に対応するプログラムを呼び出し実行することにより、抽出機能352が実現されるステップである。ステップS103,S104は、設定機能353に対応するステップである。ステップS103,S104は、処理回路350がメモリ320から設定機能353に対応するプログラムを呼び出し実行することにより、設定機能353が実現されるステップである。 Steps S101 and S102 shown in FIG. 16 are steps corresponding to the extraction function 352. Steps S101 and S102 are steps in which the extraction function 352 is realized by the processing circuit 350 calling and executing a program corresponding to the extraction function 352 from the memory 320. Steps S103 and S104 are steps corresponding to the setting function 353. Steps S103 and S104 are steps in which the setting function 353 is realized by the processing circuit 350 calling and executing a program corresponding to the setting function 353 from the memory 320.
 ステップS105は、計測機能354に対応するステップである。ステップS105は、処理回路350がメモリ320から計測機能354に対応するプログラムを呼び出し実行することにより、計測機能354が実現されるステップである。 Step S105 is a step corresponding to the measurement function 354. Step S105 is a step in which the measurement function 354 is realized by the processing circuit 350 calling and executing a program corresponding to the measurement function 354 from the memory 320.
 ステップS106,S107は、生成機能355に対応するステップである。ステップS106,S107は、処理回路350がメモリ320から生成機能355に対応するプログラムを呼び出し実行することにより、生成機能355が実現されるステップである。ステップS108は、処理回路350がメモリ320から制御機能351に対応するプログラムを呼び出し実行することにより、制御機能351が実現されるステップである。 Steps S106 and S107 are steps corresponding to the generation function 355. Steps S106 and S107 are steps in which the generation function 355 is realized by the processing circuit 350 calling and executing a program corresponding to the generation function 355 from the memory 320. Step S108 is a step in which the control function 351 is realized by the processing circuit 350 calling and executing a program corresponding to the control function 351 from the memory 320.
 以上、第1の実施形態に係る医用画像処理装置300について説明した。医用画像処理装置300によれば、上述したように、弁の詳細な状態をユーザに把握させることができる。 The medical image processing apparatus 300 according to the first embodiment has been described above. According to the medical image processing apparatus 300, as described above, the user can grasp the detailed state of the valve.
(第1の実施形態の第1の変形例)
 なお、第1の実施形態では、設定機能353が、抽出機能352により抽出された複数の弁葉に対して、複数の弁葉に関する基準面50であって血流方向に対して交差する基準面50を設定する場合について説明した。しかしながら、設定機能353は、複数の弁葉のうち少なくとも1つの弁葉に対して、当該少なくとも1つの弁葉に関する基準面50であって血流方向に対して交差する基準面50を設定してもよい。
(First modification of the first embodiment)
In the first embodiment, the setting function 353 is a reference plane 50 related to a plurality of leaflets and intersects with the blood flow direction with respect to the plurality of leaflets extracted by the extraction function 352. The case where 50 is set has been described. However, the setting function 353 sets, for at least one leaflet among the plurality of leaflets, a reference surface 50 related to the at least one leaflet and intersecting the blood flow direction. Also good.
 また、第1の実施形態では、計測機能354が、複数の弁葉のそれぞれについて、それぞれの弁葉と他の弁葉とが接触している接触領域の血流方向の長さを計測する場合について説明した。しかしながら、計測機能354は、複数の弁葉のうち少なくとも1つの弁葉について、当該弁葉と他の弁葉とが接触している接触領域の血流方向の長さを計測してもよい。 Moreover, in 1st Embodiment, when the measurement function 354 measures the length of the blood flow direction of the contact area which each leaflet and other leaflets contact about each of several leaflets. Explained. However, the measurement function 354 may measure the length in the blood flow direction of the contact region where the valve leaf and another leaf leaf are in contact with each other for at least one of the plurality of leaflets.
(第1の実施形態の第2の変形例)
 医用画像処理装置300は、接触領域の血流方向の長さ以外の弁の詳細な状態を示す情報を計測してもよい。そこで、他の弁の詳細な状態を示す情報を計測する場合について説明する。以下では、第1の実施形態の第2の変形例~第6の変形例において、接触領域の血流方向の長さ以外の弁の詳細な状態を示す情報を5つ説明する。
(Second modification of the first embodiment)
The medical image processing apparatus 300 may measure information indicating the detailed state of the valve other than the length of the contact region in the blood flow direction. Therefore, a case where information indicating the detailed state of other valves is measured will be described. Hereinafter, five pieces of information indicating the detailed state of the valve other than the length of the contact region in the blood flow direction in the second to sixth modifications of the first embodiment will be described.
 第1の実施形態の第2の変形例~第6の変形例の各変形例に係る医用画像処理装置300は、上述した第1の実施形態に係る医用画像処理装置300と同様の処理を実行した上で、更に、以下で説明する処理を実行する。 The medical image processing apparatus 300 according to each of the second to sixth modifications of the first embodiment performs the same processing as the medical image processing apparatus 300 according to the first embodiment described above. In addition, processing described below is further executed.
 なお、第1の実施形態の第2の変形例~第6の変形例の説明において、第1の実施形態と同様の構成については同一の符号を付して説明を省略する場合がある。図17は、第2の変形例及び第3の変形例により実行される処理の一例を説明するための図である。 Note that, in the descriptions of the second to sixth modifications of the first embodiment, the same components as those in the first embodiment may be denoted by the same reference numerals and description thereof may be omitted. FIG. 17 is a diagram for describing an example of processing executed according to the second modification and the third modification.
 まず、1つ目の弁の詳細な状態を示す情報を計測する第2の変形例について説明する。図17に示すように、計測機能354は、境界線55aの長さ91aを測定する。すなわち、計測機能354は、弁葉40aと弁葉40bとが接触している接触領域41の、境界線55aに沿う方向の長さ91aを算出する。境界線55aに沿う方向は、第2の方向の一例である。 First, a second modification example that measures information indicating the detailed state of the first valve will be described. As shown in FIG. 17, the measurement function 354 measures the length 91a of the boundary line 55a. That is, the measurement function 354 calculates the length 91a in the direction along the boundary line 55a of the contact region 41 where the leaflets 40a and 40b are in contact. The direction along the boundary line 55a is an example of the second direction.
 なお、計測機能354は、抽出機能352により抽出された複数の弁葉のうち少なくとも1つの弁葉について、当該弁葉と他の弁葉とが接触している接触領域の長さであって境界線に沿う方向の長さを算出すればよい。 Note that the measurement function 354 is the length of the contact area where at least one of the plurality of leaflets extracted by the extraction function 352 is in contact with the other leaflets, and the boundary What is necessary is just to calculate the length of the direction along a line.
 そして、制御機能351は、計測機能354により計測された接触領域の境界線に沿う方向の長さを表示するようにディスプレイ340を制御する。例えば、制御機能351は、接触領域41の境界線55aに沿う方向の長さ91aを表示するようにディスプレイ340を制御する。 Then, the control function 351 controls the display 340 so as to display the length in the direction along the boundary line of the contact area measured by the measurement function 354. For example, the control function 351 controls the display 340 to display the length 91a in the direction along the boundary line 55a of the contact area 41.
(第1の実施形態の第3の変形例)
 次に、2つ目の弁の詳細な状態を示す情報を計測する第3の変形例について説明する。図17に示すように、計測機能354は、互いに離間している弁葉40aの一部と他の弁葉40bの一部との間の離間領域42の、境界線55bに沿う方向の長さ91bを計測する。境界線55bに沿う方向は、第2の方向の一例である。
(Third Modification of First Embodiment)
Next, a third modification for measuring information indicating the detailed state of the second valve will be described. As shown in FIG. 17, the measurement function 354 has a length in the direction along the boundary line 55 b of the separation region 42 between a part of the leaflets 40 a and a part of the other leaflets 40 b that are separated from each other. 91b is measured. The direction along the boundary line 55b is an example of the second direction.
 なお、計測機能354は、抽出機能352により抽出された複数の弁葉のうち少なくとも1つの弁葉について、互いに離間している当該弁葉と他の弁葉との間の離間領域の境界線に沿う方向の長さを算出すればよい。 Note that the measurement function 354 has, on at least one leaflet extracted from the plurality of leaflets extracted by the extraction function 352, a boundary line between the leaflets and the other leaflets that are separated from each other. What is necessary is just to calculate the length of the direction along.
 そして、制御機能351は、計測機能354により計測された離間領域の境界線に沿う方向の長さを表示するようにディスプレイ340を制御する。例えば、制御機能351は、離間領域42の境界線55bに沿う方向の長さ91bを表示するようにディスプレイ340を制御する。 Then, the control function 351 controls the display 340 so as to display the length in the direction along the boundary line of the separation area measured by the measurement function 354. For example, the control function 351 controls the display 340 so as to display the length 91 b in the direction along the boundary line 55 b of the separation region 42.
(第1の実施形態の第4の変形例)
 次に、3つ目の弁の詳細な状態を示す情報を計測する第4の変形例について説明する。図18は、第4の変形例及び第5の変形例により実行される処理の一例を説明するための図である。図18に示すように、計測機能354は、弁葉40aと弁葉40bとが接触している接触領域41における接触面積41aを計測する。接触面積41aの計測方法の一例について説明する。例えば、計測機能354は、計測済みの境界線71上の複数の位置に対応する複数の長さ(接触領域41の血流方向の長さ)を、境界線71に沿う方向に積分することで得られる積分値を接触面積41aとして計測する。
(Fourth modification of the first embodiment)
Next, a fourth modification for measuring information indicating the detailed state of the third valve will be described. FIG. 18 is a diagram for describing an example of processing executed according to the fourth modification and the fifth modification. As shown in FIG. 18, the measurement function 354 measures the contact area 41a in the contact region 41 where the leaflets 40a and 40b are in contact. An example of a method for measuring the contact area 41a will be described. For example, the measurement function 354 integrates a plurality of lengths corresponding to a plurality of positions on the measured boundary line 71 (length in the blood flow direction of the contact region 41) in a direction along the boundary line 71. The obtained integrated value is measured as the contact area 41a.
 なお、計測機能354は、抽出機能352により抽出された複数の弁葉のうち少なくとも1つの弁葉について、当該弁葉と他の弁葉とが接触している接触領域における接触面積を計測すればよい。 Note that the measurement function 354 measures the contact area in the contact area where the valve leaf and the other leaflet are in contact with each other for at least one of the plurality of leaflets extracted by the extraction function 352. Good.
 そして、制御機能351は、計測機能354により計測された接触面積を表示するようにディスプレイ340を制御する。 Then, the control function 351 controls the display 340 so as to display the contact area measured by the measurement function 354.
 ここで、計測機能354が、1つの時相の3次元CT画像データを用いて、1つの時相における接触面積を計測した場合について説明した。しかしながら、計測機能354は、4次元のCT画像データを構成する複数の時相の3次元CT画像データのそれぞれを用いて、複数の時相のそれぞれにおける接触面積を計測してもよい。図19は、第4の変形例により実行される処理の一例を説明するための図である。この場合、生成機能355は、計測機能354により計測された複数の時相における複数の接触面積を用いて、図19に示すように、横軸を時間(時相)とし、縦軸を重なり面積(接触面積)とするグラフであって、時相ごとの接触面積を表すグラフを示す画像データを生成する。 Here, the case where the measurement function 354 measures the contact area in one time phase using the three-dimensional CT image data of one time phase has been described. However, the measurement function 354 may measure the contact area in each of the plurality of time phases using each of the plurality of time-phase three-dimensional CT image data constituting the four-dimensional CT image data. FIG. 19 is a diagram for describing an example of processing executed according to the fourth modification. In this case, the generation function 355 uses a plurality of contact areas in a plurality of time phases measured by the measurement function 354, as shown in FIG. 19, the horizontal axis is time (time phase), and the vertical axis is the overlapping area. Image data indicating a graph representing a contact area for each time phase is generated.
 そして、制御機能351は、生成機能355により生成された画像データをディスプレイ340に送信し、画像データが示すグラフを表示するように、ディスプレイ340を制御する。 Then, the control function 351 transmits the image data generated by the generation function 355 to the display 340, and controls the display 340 so as to display a graph indicated by the image data.
(第1の実施形態の第5の変形例)
 次に、4つ目の弁の詳細な状態を示す情報を計測する第5の変形例について説明する。図18に示すように、計測機能354は、離間領域42を形成する上述した「弁葉40aの一部」の面積を離間面積42aとして計測する。
(Fifth modification of the first embodiment)
Next, a fifth modification for measuring information indicating the detailed state of the fourth valve will be described. As shown in FIG. 18, the measurement function 354 measures the area of “a part of the leaflet 40 a” that forms the separation region 42 as the separation area 42 a.
 例えば、計測機能354は、離間領域42内で、境界線71の一端から境界線71の他端に向かう方向72に、境界線71に沿うように基準面51を移動させつつ、境界線71上の複数の位置で、基準面51と交差している弁葉40aの基準面51上での長さを計測する。 For example, the measurement function 354 moves the reference surface 51 along the boundary line 71 in the direction 72 from one end of the boundary line 71 toward the other end of the boundary line 71 in the separation area 42, while moving on the boundary line 71. The length on the reference plane 51 of the leaflet 40a intersecting with the reference plane 51 is measured at a plurality of positions.
 例えば、計測機能354は、基準面51を移動させつつ、離間領域42内の境界線71上の複数の位置のそれぞれに基準面51を位置させる。そして、計測機能354は、複数の位置のそれぞれに基準面51が位置される場合に、離間領域42内において、基準面51と交差している弁葉40aの基準面51上の長さを計測する。 For example, the measurement function 354 moves the reference surface 51 and positions the reference surface 51 at each of a plurality of positions on the boundary line 71 in the separation region 42. And the measurement function 354 measures the length on the reference surface 51 of the leaflet 40a intersecting the reference surface 51 in the separation region 42 when the reference surface 51 is positioned at each of a plurality of positions. To do.
 そして、計測機能354は、境界線71上の複数の位置に対応する複数の長さ(弁葉40aの基準面51上の長さ)を、境界線71に沿う方向に積分することで得られる積分値を離間面積42aとして計測する。そして、制御機能351は、計測機能354により計測された離間面積42aを表示するようにディスプレイ340を制御する。 The measurement function 354 is obtained by integrating a plurality of lengths corresponding to a plurality of positions on the boundary line 71 (lengths on the reference plane 51 of the leaflets 40a) in the direction along the boundary line 71. The integral value is measured as the separation area 42a. Then, the control function 351 controls the display 340 so as to display the separation area 42a measured by the measurement function 354.
 なお、計測機能354は、抽出機能352により抽出された複数の弁葉のうち少なくとも1つの弁葉について、互いに離間している当該弁葉と他の弁葉との間の離間領域における離間面積を計測すればよい。 Note that the measurement function 354 has a separation area in a separation region between the valve leaf and the other leaflets that are separated from each other with respect to at least one of the plurality of leaflets extracted by the extraction function 352. Just measure.
 ここで、計測機能354が、1つの時相の3次元CT画像データを用いて、1つの時相における離間面積を計測した場合について説明した。しかしながら、計測機能354は、4次元のCT画像データを構成する複数の時相の3次元CT画像データのそれぞれを用いて、複数の時相のそれぞれにおける離間面積を計測してもよい。図20は、第5の変形例により実行される処理の一例を説明するための図である。この場合、生成機能355は、計測機能354により計測された複数の時相における複数の離間面積を用いて、図20に示すように、横軸を時間(時相)とし、縦軸を乖離面積(離間面積)とするグラフであって、時相ごとの離間面積を表すグラフを示す画像データを生成する。 Here, the case where the measurement function 354 measures the separated area in one time phase using the three-dimensional CT image data of one time phase has been described. However, the measurement function 354 may measure the separation area in each of the plurality of time phases using each of the plurality of time-phase three-dimensional CT image data constituting the four-dimensional CT image data. FIG. 20 is a diagram for explaining an example of processing executed according to the fifth modification. In this case, the generation function 355 uses a plurality of separation areas in a plurality of time phases measured by the measurement function 354, and the horizontal axis is time (time phase) and the vertical axis is the deviation area, as shown in FIG. Image data indicating a graph indicating a separation area for each time phase is generated.
 そして、制御機能351は、生成機能355により生成された画像データをディスプレイ340に送信し、画像データが示すグラフを表示するように、ディスプレイ340を制御する。 Then, the control function 351 transmits the image data generated by the generation function 355 to the display 340, and controls the display 340 so as to display a graph indicated by the image data.
 なお、計測機能354は、同様の方法で、離間領域42を形成する上述した「弁葉40bの一部」の面積を離間面積として計測してもよい。 Note that the measurement function 354 may measure the area of the “part of the leaflet 40b” forming the separation region 42 as the separation area by the same method.
(第1の実施形態の第6の変形例)
 次に、5つ目の弁の詳細な状態を示す情報を計測する第6の変形例について説明する。図21は、第6の変形例により実行される処理の一例を説明するための図である。図21に示すように、計測機能354は、離間領域42における弁葉40aと弁葉40bとの間の距離51bを計測する。具体例を挙げて説明すると、計測機能354は、基準面50上で、かつ、基準面51上の離間領域42における弁葉40aと弁葉40bとの間の距離51bを計測する。距離51bは、Gap(ギャップ)幅とも称される。ここで、計測機能354は、例えば、基準面51を境界線55bに沿って移動させながら、基準面51の複数の位置のそれぞれにおいて、距離51bを計測し、複数の距離51bのうち、最も長い距離51bを、離間領域42における弁葉40aと弁葉40bとの間の距離として採用してもよい。
(Sixth Modification of First Embodiment)
Next, a sixth modification that measures information indicating the detailed state of the fifth valve will be described. FIG. 21 is a diagram for explaining an example of processing executed according to the sixth modification. As shown in FIG. 21, the measurement function 354 measures the distance 51b between the leaflets 40a and 40b in the separation region 42. To explain with a specific example, the measurement function 354 measures the distance 51b between the leaflets 40a and 40b in the separation region 42 on the reference surface 50 and on the reference surface 51. The distance 51b is also referred to as a gap (gap) width. Here, for example, the measurement function 354 measures the distance 51b at each of the plurality of positions of the reference surface 51 while moving the reference surface 51 along the boundary line 55b, and is the longest of the plurality of distances 51b. The distance 51b may be adopted as the distance between the leaflets 40a and 40b in the separation region 42.
 なお、計測機能354は、抽出機能352により抽出された複数の弁葉のうち少なくとも1つの弁葉について、互いに離間している当該弁葉と他の弁葉との間の離間領域における当該弁葉と他の弁葉との間の距離を計測すればよい。 Note that the measurement function 354 has the leaflets in the separated region between the leaflets and the other leaflets that are separated from each other for at least one leaflet extracted from the plurality of leaflets extracted by the extraction function 352. What is necessary is just to measure the distance between and other leaflets.
 そして、制御機能351は、計測機能354により計測された距離51bを表示するようにディスプレイ340を制御する。 Then, the control function 351 controls the display 340 so as to display the distance 51b measured by the measurement function 354.
 ここで、計測機能354が、1つの時相の3次元CT画像データを用いて、1つの時相における距離51bを計測した場合について説明した。しかしながら、計測機能354は、4次元のCT画像データを構成する複数の時相の3次元CT画像データのそれぞれを用いて、複数の時相のそれぞれにおける距離51bを計測してもよい。図22は、第6の変形例により実行される処理の一例を説明するための図である。この場合、生成機能355は、計測機能354により計測された複数の時相における複数の距離51bを用いて、図22に示すように、横軸を時間(時相)とし、縦軸をGap幅(距離51b)とするグラフであって、時相ごとの距離51bを表すグラフを示す画像データを生成する。 Here, the case where the measurement function 354 measures the distance 51b in one time phase using the three-dimensional CT image data of one time phase has been described. However, the measurement function 354 may measure the distance 51b in each of the plurality of time phases by using each of the plurality of time-phase three-dimensional CT image data constituting the four-dimensional CT image data. FIG. 22 is a diagram for explaining an example of processing executed according to the sixth modification. In this case, the generation function 355 uses the plurality of distances 51b in the plurality of time phases measured by the measurement function 354, as shown in FIG. 22, the horizontal axis is time (time phase), and the vertical axis is the gap width. Image data indicating a graph representing the distance 51b for each time phase is generated.
 そして、制御機能351は、生成機能355により生成された画像データをディスプレイ340に送信し、画像データが示すグラフを表示するように、ディスプレイ340を制御する。 Then, the control function 351 transmits the image data generated by the generation function 355 to the display 340, and controls the display 340 so as to display a graph indicated by the image data.
 なお、制御機能351は、計測機能354により計測された各種の計測結果をインジケーターバーにより表示するようにディスプレイ340を制御してもよい。これにより、計測された接触領域の境界線に沿う方向の長さをユーザに定量的に把握させることができる。 Note that the control function 351 may control the display 340 so that various measurement results measured by the measurement function 354 are displayed by an indicator bar. Thereby, a user can grasp | ascertain quantitatively the length of the direction in alignment with the boundary line of the measured contact area | region.
(第1の実施形態の第7の変形例)
 なお、上述した第1の実施形態及び第1~第6の変形例では、設定機能353は、僧帽弁40等の二葉弁においては、基準面50に対して直交し、かつ、二葉弁の2つの交連部を結ぶ線分に対して直交する基準面51を設定する場合について説明した。しかしながら、設定機能353は、他の方法によっても、基準面51を設定してもよい。そこで、このような変形例を、第1の実施形態の第7の変形例として説明する。
(Seventh Modification of First Embodiment)
In the first embodiment and the first to sixth modifications described above, the setting function 353 is orthogonal to the reference plane 50 in the two-leaf valve such as the mitral valve 40 and the two-leaf valve. The case where the reference plane 51 orthogonal to the line segment connecting the two commissures is set has been described. However, the setting function 353 may set the reference plane 51 by another method. Therefore, such a modification will be described as a seventh modification of the first embodiment.
 図23は、第1の実施形態の第7の変形例に係る設定機能により実行される処理の一例を説明するための図である。第7の変形例の説明において、上述した第1の実施形態及び第1~第6の変形例と異なる点を主に説明する。また、第7の変形例の説明において、上述した第1の実施形態及び第1~第6の変形例と同様の構成については、同一の符号を付して、説明を省略する場合がある。 FIG. 23 is a diagram for explaining an example of processing executed by the setting function according to the seventh modification of the first embodiment. In the description of the seventh modification, differences from the above-described first embodiment and the first to sixth modifications will be mainly described. In the description of the seventh modification, the same reference numerals are given to the same configurations as those in the first embodiment and the first to sixth modifications described above, and the description may be omitted.
 第7の変形例では、例えば、設定機能353は、図23に示すように、CT画像データに含まれる心臓の長軸40fを検出する。長軸40fは、心尖部と僧帽弁40の尖端とを結ぶ軸である。そして、設定機能353は、線分40eと直交し、かつ、長軸40fに沿う基準面51を設定する。なお、設定機能353は、基準面50と直交し、かつ、長軸40fに沿う基準面51を設定してもよい。 In the seventh modification, for example, the setting function 353 detects the long axis 40f of the heart included in the CT image data as shown in FIG. The long axis 40 f is an axis that connects the apex of the heart and the apex of the mitral valve 40. Then, the setting function 353 sets the reference plane 51 that is orthogonal to the line segment 40e and that extends along the long axis 40f. The setting function 353 may set a reference surface 51 that is orthogonal to the reference surface 50 and that extends along the long axis 40f.
 また、例えば、設定機能353が、3つの弁葉により構成される大動脈弁に対して基準面51を設定する場合の一例について説明する。この場合、設定機能353は、大動脈の芯線(図示せず)を抽出する。なお、大動脈は、大動脈弁を経由して流入された血液を運ぶ血管である。そして、設定機能353は、上述した接触点又は重心と交連部とを結ぶ線分と直交し、かつ、芯線に沿う基準面51を設定する。なお、設定機能353は、基準面50と直交し、かつ、芯線に沿う基準面51を設定してもよい。 For example, an example in which the setting function 353 sets the reference plane 51 for an aortic valve composed of three leaflets will be described. In this case, the setting function 353 extracts the core wire (not shown) of the aorta. The aorta is a blood vessel that carries blood that flows in via the aortic valve. Then, the setting function 353 sets the reference plane 51 that is orthogonal to the line segment that connects the contact point or the center of gravity and the commissure described above, and that is along the core line. The setting function 353 may set the reference surface 51 that is orthogonal to the reference surface 50 and that is along the core wire.
 また、例えば、設定機能353が、3つの弁葉により構成される肺動脈弁に対して基準面51を設定する場合の一例について説明する。この場合、設定機能353は、肺動脈の芯線(図示せず)を抽出する。なお、肺動脈は、肺動脈弁を経由して流入された血液を運ぶ血管である。そして、設定機能353は、上述した接触点又は重心と交連部とを結ぶ線分と直交し、かつ、芯線に沿う基準面51を設定する。なお、設定機能353は、基準面50と直交し、かつ、芯線に沿う基準面51を設定してもよい。 Further, for example, an example in which the setting function 353 sets the reference plane 51 for a pulmonary valve composed of three leaflets will be described. In this case, the setting function 353 extracts a pulmonary artery core wire (not shown). The pulmonary artery is a blood vessel that carries blood that has flowed in via the pulmonary valve. Then, the setting function 353 sets the reference plane 51 that is orthogonal to the line segment that connects the contact point or the center of gravity and the commissure described above, and that is along the core line. The setting function 353 may set the reference surface 51 that is orthogonal to the reference surface 50 and that is along the core wire.
(第1の実施形態の第8の変形例)
 なお、計測機能354は、弁葉の傾き角度、及び、接触領域の弁葉の傾き方向の長さを計測してもよい。そこで、このような変形例を、第1の実施形態の第8の変形例として説明する。
(Eighth Modification of First Embodiment)
The measurement function 354 may measure the inclination angle of the leaflets and the length of the contact region in the inclination direction of the leaflets. Therefore, such a modification will be described as an eighth modification of the first embodiment.
 図24は、第1の実施形態の第8の変形例に係る設定機能により実行される処理の一例を説明するための図である。第8の変形例の説明において、上述した第1の実施形態及び第1~第7の変形例と異なる点を主に説明する。また、第8の変形例の説明において、上述した第1の実施形態及び第1~第7の変形例と同様の構成については、同一の符号を付して、説明を省略する場合がある。 FIG. 24 is a diagram for explaining an example of processing executed by the setting function according to the eighth modification of the first embodiment. In the description of the eighth modification, differences from the above-described first embodiment and the first to seventh modifications will be mainly described. In the description of the eighth modification, the same reference numerals are given to the same configurations as those in the first embodiment and the first to seventh modifications described above, and the description may be omitted.
 図24に示すように、計測機能354は、基準面51上の線分40gと弁葉40aとの成す角の角度θを、弁葉40aの傾き角度として導出する。ここで、線分40gは、線分40eと平行な線分である。なお、線分40gは、基準面50と基準面51とが交差する線分に平行な線分であってもよい。 24, the measurement function 354 derives the angle θ formed by the line segment 40g on the reference plane 51 and the leaflet 40a as the inclination angle of the leaflet 40a. Here, the line segment 40g is a line segment parallel to the line segment 40e. The line segment 40g may be a line segment parallel to the line segment where the reference plane 50 and the reference plane 51 intersect.
 そして、計測機能354は、弁葉40aの傾き角度θから、弁葉40aが延びる方向(矢印40iが示す方向、延在方向)を特定する。そして、計測機能354は、基準面51上の接触領域の延在方向の長さを計測する。すなわち、計測機能354は、接触領域のうち、弁葉40aが延びる方向の長さを計測する。 Then, the measurement function 354 specifies the direction in which the leaflet 40a extends (the direction indicated by the arrow 40i, the extending direction) from the inclination angle θ of the leaflet 40a. Then, the measurement function 354 measures the length of the contact area on the reference surface 51 in the extending direction. That is, the measurement function 354 measures the length of the contact area in the direction in which the leaflet 40a extends.
 なお、計測機能354は、基準面51と交差している接触領域の基準面51上の長さを、接触領域41の延在方向における長さとして計測してもよい。 Note that the measurement function 354 may measure the length of the contact region intersecting the reference surface 51 on the reference surface 51 as the length of the contact region 41 in the extending direction.
(第1の実施形態の第9の変形例)
 なお、制御機能351は、第1の実施形態及び第1~第8の変形例における表示に加えて、更に、他の画像をディスプレイ340に表示させてもよい。そこで、このような変形例を第1の実施形態の第9の変形例として説明する。
(Ninth Modification of First Embodiment)
Note that the control function 351 may display other images on the display 340 in addition to the display in the first embodiment and the first to eighth modifications. Therefore, such a modification will be described as a ninth modification of the first embodiment.
 先の図15を参照して、第9の変形例について説明する。例えば、第9の変形例に係る生成機能355は、図15に示す境界線84a上のマーク87aを通り、かつ、弁葉83c及び弁葉83aを含む所定の範囲のボリュームレンダリング画像データを生成する。 The ninth modification will be described with reference to FIG. For example, the generation function 355 according to the ninth modification generates volume rendering image data in a predetermined range that passes through the mark 87a on the boundary line 84a shown in FIG. 15 and includes the leaflets 83c and the leaflets 83a. .
 この場合、生成機能355は、弁葉83cと弁葉83aとが接触する接触領域に所定の色が割り当てられたボリュームレンダリング画像データを生成する。所定の色としては、例えば、ディスプレイ340にボリュームレンダリング画像が表示された場合に、接触領域が、接触領域の周囲の領域に対して目立つような色が採用される。例えば、所定の色としては、赤色が挙げられる。 In this case, the generation function 355 generates volume rendering image data in which a predetermined color is assigned to a contact area where the leaflets 83c and the leaflets 83a are in contact with each other. As the predetermined color, for example, when a volume rendering image is displayed on the display 340, a color in which the contact area is conspicuous with respect to an area around the contact area is employed. For example, the predetermined color may be red.
 ここで、上述したように、マーク87aは、入力インターフェース330を介したユーザの操作により、境界線84a上を移動可能である。例えば、生成機能355は、ユーザにより指定された位置に、マーク87a,87b,87cを移動させる。そのため、生成機能355は、移動後のマーク87aの位置に応じて、新たなボリュームレンダリング画像データを生成する。 Here, as described above, the mark 87 a can be moved on the boundary line 84 a by a user operation via the input interface 330. For example, the generation function 355 moves the marks 87a, 87b, 87c to positions specified by the user. Therefore, the generation function 355 generates new volume rendering image data according to the position of the mark 87a after movement.
 すなわち、生成機能355は、境界線84a上の位置の指定を受け付け、指定された位置を含み、かつ、隣接する2つの弁葉83c,83aが描出されたボリュームレンダリング画像データであって、2つの弁葉83c,83aが接触する接触領域に所定の色が割り当てられたボリュームレンダリング画像データを生成する。 That is, the generation function 355 receives the designation of the position on the boundary line 84a, is volume rendering image data that includes the designated position and depicts two adjacent leaflets 83c and 83a, Volume rendering image data in which a predetermined color is assigned to the contact area where the leaflets 83c and 83a contact is generated.
 そして、制御機能351は、ボリュームレンダリング画像データにより示されるボリュームレンダリング画像をディスプレイ340に表示させる。これにより、ユーザが立体的に見えるボリュームレンダリング画像において、接触領域が立体的に表示される。また、接触領域には、目立つ色が割り当てられるため、ユーザは、接触領域の形状及び位置を容易に把握することができる。 Then, the control function 351 causes the display 340 to display a volume rendering image indicated by the volume rendering image data. As a result, the contact area is displayed in a three-dimensional manner in the volume rendering image that the user looks three-dimensional. In addition, since a conspicuous color is assigned to the contact area, the user can easily grasp the shape and position of the contact area.
 したがって、第9の変形例によれば、ユーザに、接触領域の形状及び位置を容易に把握させることができる。 Therefore, according to the ninth modification, the user can easily grasp the shape and position of the contact area.
(第2の実施形態)
 次に、第2の実施形態に係る医用画像処理装置300について説明する。図25は、第2の実施形態に係る医用画像処理装置300の構成の一例を示す図である。第2の実施形態に係る医用画像処理装置300は、処理回路350が更に解析機能356を有する点で、第1の実施形態に係る医用画像処理装置300と異なる。第2の実施形態の説明において、第1の実施形態と同様の構成については、同一の符号を付して説明を省略する場合がある。
(Second Embodiment)
Next, a medical image processing apparatus 300 according to the second embodiment will be described. FIG. 25 is a diagram illustrating an example of a configuration of a medical image processing apparatus 300 according to the second embodiment. The medical image processing apparatus 300 according to the second embodiment is different from the medical image processing apparatus 300 according to the first embodiment in that the processing circuit 350 further has an analysis function 356. In the description of the second embodiment, the same components as those in the first embodiment may be denoted by the same reference numerals and description thereof may be omitted.
 第2の実施形態に係る解析機能356は、計測機能354による計測結果を用いて各種のシミュレーションを実行する。例えば、解析機能356は、計測機能354による計測結果に基づいて、抽出機能352により抽出された複数の弁葉により構成される弁において、弁を流れる血液が逆流する場合の血液の逆流量を得るシミュレーションを実行する。 The analysis function 356 according to the second embodiment executes various simulations using the measurement results obtained by the measurement function 354. For example, the analysis function 356 obtains the reverse flow rate of blood when the blood flowing through the valve flows backward in the valve constituted by a plurality of leaflets extracted by the extraction function 352 based on the measurement result by the measurement function 354. Run the simulation.
 例えば、解析機能356は、正常であれば僧帽弁が完全に閉じる収縮期において僧帽弁を構成する2つの弁葉が開いている時間、収縮期において計測機能354により計測された離間領域の境界線に沿う方向の長さ、被検体の心臓の左心室の収縮速度、被検体の心臓の心拍吐出量を用いて、僧帽弁を流れる血液が逆流する場合の血液の逆流量、及び、逆流位置などを得る流体シミュレーションを実行する。 For example, the analysis function 356 is a time period during which the two lobules constituting the mitral valve are open during the systole when the mitral valve is completely closed if normal, and the separation region measured by the measurement function 354 during the systole. Using the length in the direction along the boundary line, the contraction speed of the left ventricle of the subject's heart, the heart rate discharge of the subject's heart, the back flow of blood when the blood flowing through the mitral valve flows back, and A fluid simulation for obtaining a backflow position and the like is executed.
 なお、収縮期において僧帽弁を構成する2つの弁葉が開いている時間については、収縮期の時相の3次元のCT画像データを含む4次元のCT画像データから、医用画像処理装置300により得られる。例えば、医用画像処理装置300は、収縮期の各時相における接触領域の血流方向の長さを計測することで、2つの弁葉が開いている時間を計算することができる。 Regarding the time during which the two leaflets constituting the mitral valve are open in the systole, the medical image processing apparatus 300 is obtained from four-dimensional CT image data including three-dimensional CT image data in the time phase of the systole. Is obtained. For example, the medical image processing apparatus 300 can calculate the time during which the two leaflets are open by measuring the length of the contact region in the blood flow direction in each time phase of the systole.
 また、被検体の心臓の心拍吐出量についても4次元のCT画像データを用いて、公知の技術により医用画像処理装置300により得られる。また、被検体の心臓の左心室の収縮速度についても4次元のCT画像データを用いて、公知の技術により医用画像処理装置300により得られる。 Further, the cardiac discharge amount of the subject's heart can also be obtained by the medical image processing apparatus 300 by a known technique using the four-dimensional CT image data. Further, the contraction speed of the left ventricle of the subject's heart is also obtained by the medical image processing apparatus 300 by a known technique using the four-dimensional CT image data.
 解析機能356は、上述の流体シミュレーションを行う際に、計測機能354により計測された離間領域の境界線に沿う方向の長さではなく、医者により想定された弁の形成手術後の弁における離間領域の境界線に沿う方向の長さを用いて、流体シミュレーションを実行してもよい。これにより、弁の手術後のシミュレーションが行われ、ユーザは、手術に適した弁の形成方法を得ることができる。 The analysis function 356 is not the length in the direction along the boundary line of the separation region measured by the measurement function 354 when performing the fluid simulation described above, but the separation region in the valve after the plastic surgery assumed by the doctor. The fluid simulation may be executed using the length in the direction along the boundary line. Thereby, the simulation after the operation of the valve is performed, and the user can obtain a valve forming method suitable for the operation.
 また、解析機能356は、流体シミュレーションにより得られた血液の逆流量を示す情報を、MPR画像上で弁葉と弁葉が離間している位置に重畳させてもよい。ここでいうMPR画像とは、例えば、図13に示すMPR画像76、図15に示すMPR画像80,81a~81c等が挙げられる。 Further, the analysis function 356 may superimpose information indicating the reverse flow rate of blood obtained by the fluid simulation at a position where the leaflet and the leaflet are separated from each other on the MPR image. Examples of the MPR image here include an MPR image 76 shown in FIG. 13 and MPR images 80, 81a to 81c shown in FIG.
 また、解析機能356は、上述の流体シミュレーションを行う際に、計測機能354により計測された離間領域の境界線に沿う方向の長さではなく、弁の置換手術において被検体の弁と置換される候補である複数の生体弁及び機械弁の弁葉及び弁輪の情報を用いて、流体シミュレーションを実行してもよい。これにより、ユーザは、複数の候補の中から、逆流が抑えられるような最適な生体弁及び機械弁を判別することができる。 The analysis function 356 replaces the subject valve in the valve replacement operation instead of the length in the direction along the boundary line of the separated region measured by the measurement function 354 when performing the fluid simulation described above. Fluid simulation may be executed using information on leaflets and annulus of a plurality of biological valves and mechanical valves that are candidates. Thereby, the user can discriminate | determine the optimal biological valve and mechanical valve which can suppress a backflow from several candidates.
(第3の実施形態)
 また、上述した実施形態では、医用画像処理装置300が各種処理を実行する場合について説明した。しかしながら、実施形態はこれに限定されるものではなく、例えば、医用画像診断装置において各種処理が実行される場合であってもよい。以下、各種処理を実行する医用画像診断装置がX線CT装置である場合について説明するが、各種処理を実行する医用画像診断装置が、超音波診断装置、磁気共鳴イメージング装置又はX線診断装置であってもよい。図26は、第3の実施形態に係るX線CT装置の構成の一例を示す図である。
(Third embodiment)
In the above-described embodiment, the case where the medical image processing apparatus 300 executes various processes has been described. However, the embodiment is not limited to this, and for example, various processes may be executed in the medical image diagnostic apparatus. Hereinafter, although the case where the medical image diagnostic apparatus which performs various processes is an X-ray CT apparatus is demonstrated, the medical image diagnostic apparatus which performs various processes is an ultrasonic diagnostic apparatus, a magnetic resonance imaging apparatus, or an X-ray diagnostic apparatus. There may be. FIG. 26 is a diagram illustrating an example of the configuration of the X-ray CT apparatus according to the third embodiment.
 例えば、図26に示すように、第3の実施形態に係るX線CT装置500は、架台10と、寝台20と、コンソール30とを有する。 For example, as shown in FIG. 26, the X-ray CT apparatus 500 according to the third embodiment includes a gantry 10, a bed 20, and a console 30.
 架台10は、被検体PにX線を照射し、被検体Pを透過したX線に関するデータを収集する装置であり、X線高電圧装置11と、X線発生装置12と、X線検出器13と、データ収集回路14と、回転フレーム15と、架台制御装置16とを有する。また、架台10において、図26に示すように、X軸、Y軸及びZ軸からなる直交座標系を定義する。すなわち、X軸は水平方向を示し、Y軸は鉛直方向を示し、Z軸は架台10が非チルト時の状態における回転フレーム15の回転中心軸方向を示す。 The gantry 10 is an apparatus that irradiates the subject P with X-rays and collects data related to the X-rays transmitted through the subject P. The gantry 10 includes an X-ray high-voltage device 11, an X-ray generator 12, and an X-ray detector. 13, a data collection circuit 14, a rotating frame 15, and a gantry control device 16. In the gantry 10, as shown in FIG. 26, an orthogonal coordinate system including an X axis, a Y axis, and a Z axis is defined. That is, the X axis indicates the horizontal direction, the Y axis indicates the vertical direction, and the Z axis indicates the direction of the rotation center axis of the rotating frame 15 when the gantry 10 is not tilted.
 回転フレーム15は、X線発生装置12とX線検出器13とを被検体Pを挟んで対向するように支持し、後述する架台制御装置16によって被検体Pを中心とした円軌道にて高速に回転する円環状のフレームである。 The rotating frame 15 supports the X-ray generator 12 and the X-ray detector 13 so as to face each other with the subject P interposed therebetween, and is fast at a circular orbit centered on the subject P by a gantry control device 16 described later. It is an annular frame that rotates in a circle.
 X線発生装置12は、X線を発生し、発生したX線を被検体Pへ照射する装置である。X線発生装置12は、X線管12aと、ウェッジ12bと、コリメータ12cとを有する。 The X-ray generator 12 is an apparatus that generates X-rays and irradiates the subject P with the generated X-rays. The X-ray generator 12 includes an X-ray tube 12a, a wedge 12b, and a collimator 12c.
 X線管12aは、X線高電圧装置11から高電圧の供給を受けて、陰極(フィラメントと呼ぶ場合もある)から陽極(ターゲット)に向けて熱電子を照射する真空管であり、回転フレーム15の回転にともなって、X線ビームを被検体Pに対して照射する。すなわち、X線管12aは、X線高電圧装置11から供給される高電圧を用いてX線を発生する。 The X-ray tube 12a is a vacuum tube that receives a high voltage from the X-ray high voltage device 11 and irradiates thermoelectrons from a cathode (sometimes referred to as a filament) to an anode (target). The X-ray beam is irradiated to the subject P with the rotation of. That is, the X-ray tube 12 a generates X-rays using the high voltage supplied from the X-ray high voltage device 11.
 また、X線管12aは、ファン角及びコーン角を持って広がるX線ビームを発生する。例えば、X線管12aは、X線高電圧装置11の制御により、フル再構成用に被検体Pの全周囲でX線を連続曝射したり、ハーフ再構成用にハーフ再構成可能な曝射範囲(180度+ファン角)でX線を連続曝射したりすることが可能である。また、X線管12aは、X線高電圧装置11の制御により、予め設定された位置(管球位置)でX線(パルスX線)を間欠曝射したりすることが可能である。また、X線高電圧装置11は、X線管12aから曝射されるX線の強度を変調させることも可能である。例えば、X線高電圧装置11は、特定の管球位置では、X線管12aから曝射されるX線の強度を強くし、特定の管球位置以外の範囲では、X線管12aから曝射されるX線の強度を弱くする。 Also, the X-ray tube 12a generates an X-ray beam that spreads with a fan angle and a cone angle. For example, the X-ray tube 12a controls the X-ray high-voltage apparatus 11 to continuously expose X-rays around the subject P for full reconstruction or exposure that can be reconfigured for half reconstruction. It is possible to continuously expose X-rays in the irradiation range (180 degrees + fan angle). Further, the X-ray tube 12a can intermittently emit X-rays (pulse X-rays) at a preset position (tube position) under the control of the X-ray high voltage apparatus 11. Further, the X-ray high voltage apparatus 11 can also modulate the intensity of X-rays exposed from the X-ray tube 12a. For example, the X-ray high voltage apparatus 11 increases the intensity of X-rays emitted from the X-ray tube 12a at a specific tube position, and exposes from the X-ray tube 12a in a range other than the specific tube position. Reduce the intensity of the emitted X-rays.
 ウェッジ12bは、X線管12aから曝射されたX線のX線量を調節するためのX線フィルタである。具体的には、ウェッジ12bは、X線管12aから被検体Pへ照射されるX線が、予め定められた分布になるように、X線管12aから曝射されたX線を透過して減衰するフィルタである。例えば、ウェッジ12bは、所定のターゲット角度や所定の厚みとなるようにアルミニウムを加工したフィルタである。なお、ウェッジは、ウェッジフィルタ(wedge filter)や、ボウタイフィルタ(bow-tie filter)とも呼ばれる。 The wedge 12b is an X-ray filter for adjusting the X-ray dose of X-rays exposed from the X-ray tube 12a. Specifically, the wedge 12b transmits the X-rays exposed from the X-ray tube 12a so that the X-rays irradiated from the X-ray tube 12a to the subject P have a predetermined distribution. Attenuating filter. For example, the wedge 12b is a filter obtained by processing aluminum so as to have a predetermined target angle or a predetermined thickness. The wedge is also called a wedge filter or a bow-tie filter.
 コリメータ12cは、鉛板等によって構成され、一部にスリットを有する。例えば、コリメータ12cは、後述するX線高電圧装置11の制御により、ウェッジ12bによってX線量が調節されたX線の照射範囲をスリットにより絞り込む。 The collimator 12c is composed of a lead plate or the like and has a slit in part. For example, the collimator 12c narrows down the X-ray irradiation range in which the X-ray dose is adjusted by the wedge 12b with the slits under the control of the X-ray high voltage apparatus 11 described later.
 なお、X線発生装置12のX線源は、X線管12aに限定されるものではない。例えば、X線発生装置12は、X線管12aに代えて、電子銃から発生した電子ビームを集束させるフォーカスコイルと電磁偏向させる偏向コイルと、被検体Pの半周を囲い偏向した電子ビームと衝突することによってX線を発生させるターゲットリングとによって構成されてもよい。 Note that the X-ray source of the X-ray generator 12 is not limited to the X-ray tube 12a. For example, in place of the X-ray tube 12a, the X-ray generator 12 collides with a focus coil that focuses an electron beam generated from an electron gun, a deflection coil that electromagnetically deflects, and an electron beam that deflects around a half circumference of the subject P. And a target ring that generates X-rays.
 X線高電圧装置11は、変圧器(トランス)及び整流器等の電気回路から構成され、X線管12aに印加する高電圧を発生する機能を有する高電圧発生装置と、X線管12aが照射するX線に応じた出力電圧の制御を行うX線制御装置から構成される。高電圧発生装置は、変圧器方式であってもよいし、インバータ方式であっても構わない。例えば、X線高電圧装置11は、X線管12aに供給する管電圧や管電流を調整することで、被検体Pに対して照射されるX線量を調整する。また、X線高電圧装置11は、コンソール30の処理回路37から制御を受ける。 The X-ray high voltage device 11 is composed of an electric circuit such as a transformer and a rectifier, and has a function of generating a high voltage to be applied to the X-ray tube 12a, and the X-ray tube 12a emits light. An X-ray control device that controls the output voltage according to the X-ray to be performed. The high voltage generator may be a transformer system or an inverter system. For example, the X-ray high voltage apparatus 11 adjusts the X-ray dose irradiated to the subject P by adjusting the tube voltage and tube current supplied to the X-ray tube 12a. Further, the X-ray high voltage apparatus 11 receives control from the processing circuit 37 of the console 30.
 架台制御装置16は、CPU(Central Processing Unit)等によって構成される処理回路とモータ及びアクチュエータ等の駆動機構から構成される。架台制御装置16は、コンソール30に取り付けられた入力インターフェース31もしくは架台10に取り付けられた入力インターフェースからの入力信号を受けて、架台10の動作制御を行う機能を有する。例えば、架台制御装置16は、入力信号を受けて回転フレーム15を回転させることによって、被検体Pを中心とした円軌道上でX線管12aとX線検出器13とを旋回させる制御や、架台10をチルトさせる制御、及び寝台20及び天板22を動作させる制御を行う。架台制御装置16は、コンソール30の処理回路37から制御を受ける。 The gantry control device 16 includes a processing circuit configured by a CPU (Central Processing Unit) and the like and a driving mechanism such as a motor and an actuator. The gantry control device 16 has a function of controlling the operation of the gantry 10 by receiving an input signal from the input interface 31 attached to the console 30 or the input interface attached to the gantry 10. For example, the gantry control device 16 receives the input signal and rotates the rotary frame 15 to rotate the X-ray tube 12a and the X-ray detector 13 on a circular orbit around the subject P. Control for tilting the gantry 10 and control for operating the bed 20 and the top plate 22 are performed. The gantry control device 16 receives control from the processing circuit 37 of the console 30.
 また、架台制御装置16は、X線管12aの位置を監視しており、X線管12aが所定の回転角度(撮影角度)に到達するとデータ収集回路14に対してデータの取り込みを開始するタイミングを示すビュートリガ信号を出力する。例えば、回転撮影における全ビュー数が2460ビューである場合、架台制御装置16は、X線管12aが円軌道上を約0.15度(=360/2460)移動する毎にビュートリガ信号を出力する。 Further, the gantry control device 16 monitors the position of the X-ray tube 12a, and when the X-ray tube 12a reaches a predetermined rotation angle (imaging angle), a timing at which data acquisition to the data acquisition circuit 14 is started. A view trigger signal indicating is output. For example, when the total number of views in rotational imaging is 2460 views, the gantry control device 16 outputs a view trigger signal every time the X-ray tube 12a moves about 0.15 degrees (= 360/2460) on a circular orbit. To do.
 X線検出器13は、例えば、X線管12aの焦点を中心として1つの円弧に沿ってチャネル方向に複数のX線検出素子(「センサ」或いは単に「検出素子」とも言う)が配列された複数のX線検出素子列から構成される。X線検出器13は、チャネル方向に複数のX線検出素子が配列されたX線検出素子列がスライス方向に複数配列された構造を有する。X線検出器13の各X線検出素子は、X線発生装置12から照射され、被検体Pを通過したX線を検出し、当該X線量に対応した電気信号(パルス)をデータ収集回路14へと出力する。 In the X-ray detector 13, for example, a plurality of X-ray detection elements (also referred to as “sensors” or simply “detection elements”) are arranged in the channel direction along one circular arc with the focal point of the X-ray tube 12a as the center. It is composed of a plurality of X-ray detection element arrays. The X-ray detector 13 has a structure in which a plurality of X-ray detection element arrays in which a plurality of X-ray detection elements are arranged in the channel direction are arranged in the slice direction. Each X-ray detection element of the X-ray detector 13 detects X-rays irradiated from the X-ray generator 12 and passed through the subject P, and outputs an electric signal (pulse) corresponding to the X-ray dose to the data collection circuit 14. To output.
 また、X線検出器13は、例えば、グリッドと、シンチレータアレイと、光センサアレイとから構成される間接変換型の検出器である。シンチレータアレイは、複数のシンチレータから構成され、シンチレータは入射X線量に応じた光子量の光を出力するシンチレータ結晶にて構成される。グリッドは、シンチレータアレイのX線入射側の面に配置され、散乱X線を吸収する機能を有するX線遮蔽板で構成される。光センサアレイは、シンチレータからの光量に応じた電気信号に変換する機能を有し、例えば、光電子増倍管等の光センサから構成される。ここで、光センサは、例えばSiPM(Silicon photomultiplier)である。 Further, the X-ray detector 13 is an indirect conversion type detector composed of, for example, a grid, a scintillator array, and an optical sensor array. The scintillator array is composed of a plurality of scintillators, and the scintillator is composed of a scintillator crystal that outputs a photon amount of light corresponding to the incident X-ray dose. The grid is an X-ray shielding plate that is disposed on the surface on the X-ray incident side of the scintillator array and has a function of absorbing scattered X-rays. The photosensor array has a function of converting into an electrical signal corresponding to the amount of light from the scintillator, and is composed of a photosensor such as a photomultiplier tube, for example. Here, the optical sensor is, for example, a SiPM (Silicon photomultiplier).
 なお、X線検出器13は、入射したX線を電気信号に変換する半導体素子から構成される直接変換型の検出器であっても構わない。 It should be noted that the X-ray detector 13 may be a direct conversion type detector composed of a semiconductor element that converts incident X-rays into electrical signals.
 データ収集回路14(DAS:Data Acquisition System)は、X線検出器13の各X線検出素子から出力される電気信号に対して増幅処理を行う増幅器と、電気信号をデジタル信号に変換するA/D(Analog-to-digital)変換器とから少なくとも構成され、X線検出器13の検出信号を用いた検出データを生成する。 The data acquisition circuit 14 (DAS: Data Acquisition System) includes an amplifier that performs amplification processing on an electric signal output from each X-ray detection element of the X-ray detector 13 and an A / A that converts the electric signal into a digital signal. It comprises at least a D (Analog-to-digital) converter and generates detection data using the detection signal of the X-ray detector 13.
 寝台20は、スキャン対象の被検体Pを載置、移動させる装置であり、寝台駆動装置21と、天板22と、基台23と、ベース(支持フレーム)24とを備えている。 The bed 20 is a device for placing and moving the subject P to be scanned, and includes a bed driving device 21, a top plate 22, a base 23, and a base (support frame) 24.
 天板22は、被検体Pが載置される板である。ベース24は、天板22を支持する。基台23は、ベース24を鉛直方向に移動可能に支持する筐体である。寝台駆動装置21は、被検体Pが載置された天板22を天板22の長軸方向へ移動して、被検体Pを回転フレーム15内に移動するモータあるいはアクチュエータである。なお、寝台駆動装置21は、天板22をX軸方向にも移動可能である。 The top plate 22 is a plate on which the subject P is placed. The base 24 supports the top plate 22. The base 23 is a housing that supports the base 24 so as to be movable in the vertical direction. The couch driving device 21 is a motor or an actuator that moves the subject P into the rotary frame 15 by moving the top 22 on which the subject P is placed in the major axis direction of the top 22. The couch driving device 21 can move the top plate 22 also in the X-axis direction.
 なお、天板移動方法は、天板22だけを移動させてもよいし、寝台20のベース24ごと移動する方式であってもよい。また、立位CTである場合には、天板22に相当する患者移動機構を移動させる方式であってもよい。 The top plate moving method may be a method of moving only the top plate 22 or a method of moving the base 24 of the bed 20 together. In the case of standing CT, a method of moving a patient moving mechanism corresponding to the top board 22 may be used.
 なお、架台10は、例えば、天板22を移動させながら回転フレーム15を回転させて被検体Pをらせん状にスキャンするヘリカルスキャンを実行する。または、架台10は、天板22を移動させた後に被検体Pの位置を固定したままで回転フレーム15を回転させて被検体Pを円軌道にてスキャンするコンベンショナルスキャンを実行する。なお、以下の実施形態では、架台10と天板22との相対位置の変化が天板22を制御することによって実現されるものとして説明するが、実施形態はこれに限定されるものではない。例えば、架台10が自走式である場合、架台10の走行を制御することによって架台10と天板22との相対位置の変化が実現されてもよい。また、架台10の走行と天板22とを制御することによって架台10と天板22との相対位置の変化が実現されてもよい。 Note that the gantry 10 executes a helical scan that scans the subject P in a spiral by rotating the rotating frame 15 while moving the top plate 22, for example. Alternatively, the gantry 10 performs a conventional scan in which the subject P is scanned in a circular orbit by rotating the rotating frame 15 while the position of the subject P is fixed after the top plate 22 is moved. In the following embodiment, a change in the relative position between the gantry 10 and the top plate 22 will be described as being realized by controlling the top plate 22, but the embodiment is not limited to this. For example, when the gantry 10 is self-propelled, a change in the relative position between the gantry 10 and the top plate 22 may be realized by controlling the traveling of the gantry 10. Further, the relative position of the gantry 10 and the top plate 22 may be changed by controlling the traveling of the gantry 10 and the top plate 22.
 コンソール30は、操作者による医用画像診断装置100の操作を受け付けるとともに、架台10によって収集された投影データを用いてCT画像データを再構成する装置である。コンソール30は、図26に示すように、入力インターフェース31と、ディスプレイ32と、メモリ35と、処理回路37とを有する。 The console 30 is a device that accepts an operation of the medical image diagnostic apparatus 100 by an operator and reconstructs CT image data using projection data collected by the gantry 10. As shown in FIG. 26, the console 30 includes an input interface 31, a display 32, a memory 35, and a processing circuit 37.
 入力インターフェース31は、操作者からの各種の入力操作を受け付け、受け付けた入力操作を電気信号に変換して処理回路37に出力する。例えば、入力インターフェース31は、投影データを収集する際の収集条件や、CT画像データを再構成する際の再構成条件、CT画像データから後処理画像を生成する際の画像処理条件等を操作者から受け付ける。例えば、入力インターフェース31は、マウスやキーボード、トラックボール、スイッチ、ボタン、ジョイスティック等により実現される。 The input interface 31 receives various input operations from the operator, converts the received input operations into electrical signals, and outputs them to the processing circuit 37. For example, the input interface 31 is used to set the conditions for collecting projection data, the reconstruction conditions for reconstructing CT image data, the image processing conditions for generating a post-processed image from CT image data, Accept from. For example, the input interface 31 is realized by a mouse, a keyboard, a trackball, a switch, a button, a joystick, or the like.
 ディスプレイ32は、各種の情報を表示する。例えば、ディスプレイ32は、処理回路37によって生成された医用画像(CT画像)や、操作者からの各種操作を受け付けるためのGUI等を出力する。例えば、ディスプレイ32は、液晶ディスプレイやCRTディスプレイ等によって構成される。 Display 32 displays various information. For example, the display 32 outputs a medical image (CT image) generated by the processing circuit 37, a GUI for receiving various operations from the operator, and the like. For example, the display 32 is configured by a liquid crystal display, a CRT display, or the like.
 メモリ35は、例えば、RAM、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。メモリ35は、例えば、投影データやCT画像データを記憶する。 The memory 35 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, a hard disk, an optical disk, or the like. The memory 35 stores, for example, projection data and CT image data.
 処理回路37は、例えば、制御機能37a、抽出機能37b、設定機能37c、計測機能37d及び生成機能37eを実行する。ここで、例えば、図26に示す処理回路37の構成要素である制御機能37a、抽出機能37b、設定機能37c、計測機能37d及び生成機能37eが実行する各処理機能は、コンピュータによって実行可能なプログラムの形態でメモリ35内に記録されている。処理回路37は、例えば、プロセッサであり、メモリ35から各プログラムを読み出し、実行することで読み出した各プログラムに対応する機能を実現する。換言すると、各プログラムを読み出した状態の処理回路37は、図26の処理回路37内に示された各機能を有することとなる。 The processing circuit 37 executes, for example, a control function 37a, an extraction function 37b, a setting function 37c, a measurement function 37d, and a generation function 37e. Here, for example, each processing function executed by the control function 37a, the extraction function 37b, the setting function 37c, the measurement function 37d, and the generation function 37e, which are components of the processing circuit 37 shown in FIG. In the memory 35. The processing circuit 37 is, for example, a processor, and realizes a function corresponding to each read program by reading and executing each program from the memory 35. In other words, the processing circuit 37 in a state where each program is read has each function shown in the processing circuit 37 of FIG.
 制御機能37aは、医用画像診断装置100の全体を制御する。また、制御機能37aは、上述した制御機能351と同様の処理を実行する。抽出機能37bは、上述した抽出機能352と同様の処理を実行する。設定機能37cは、上述した設定機能353と同様の処理を実行する。計測機能37dは、上述した生成機能354と同様の処理を実行する。生成機能37eは、上述した生成機能355と同様の処理を実行する。 The control function 37a controls the entire medical image diagnostic apparatus 100. In addition, the control function 37a executes the same processing as the control function 351 described above. The extraction function 37b performs the same process as the extraction function 352 described above. The setting function 37c executes the same processing as the setting function 353 described above. The measurement function 37d performs the same process as the generation function 354 described above. The generation function 37e performs the same process as the generation function 355 described above.
 また、生成機能37eは、収集された投影データに基づいて、3次元のCT画像データを生成する。例えば、生成機能37eは、被検体Pの心臓の弁を含む領域を撮影することにより得られた投影データを収集し、収集した投影データに基づいて3次元のCT画像データを生成する。なお、生成機能37eは、被検体Pの心臓の弁を含む領域を撮影することにより得られた投影データを収集し、収集した投影データに基づいて4次元のCT画像データを生成することもできる。このようにして、生成機能37eは、3次元のCT画像データ及び4次元のCT画像データを収集する。生成機能37eは、生成部及び収集部の一例である。 Also, the generation function 37e generates three-dimensional CT image data based on the collected projection data. For example, the generation function 37e collects projection data obtained by imaging a region including the heart valve of the subject P, and generates three-dimensional CT image data based on the collected projection data. The generation function 37e can also collect projection data obtained by imaging a region including the heart valve of the subject P, and can generate four-dimensional CT image data based on the collected projection data. . In this way, the generation function 37e collects 3D CT image data and 4D CT image data. The generation function 37e is an example of a generation unit and a collection unit.
 また、上述した実施形態では、単一の処理回路(処理回路350及び処理回路37)によって各処理機能が実現される場合の例を説明したが、実施形態はこれに限られない。例えば、処理回路350及び処理回路37は、複数の独立したプロセッサを組み合わせて構成され、各プロセッサが各プログラムを実行することにより各処理機能を実現するものとしても構わない。また、処理回路350及び処理回路37が有する各処理機能は、単一又は複数の処理回路に適宜に分散又は統合されて実現されてもよい。 In the above-described embodiment, an example in which each processing function is realized by a single processing circuit (the processing circuit 350 and the processing circuit 37) has been described, but the embodiment is not limited thereto. For example, the processing circuit 350 and the processing circuit 37 may be configured by combining a plurality of independent processors, and each processing function may be realized by each processor executing each program. The processing functions of the processing circuit 350 and the processing circuit 37 may be realized by appropriately distributing or integrating the processing functions in a single or a plurality of processing circuits.
 上述した各実施形態の説明で用いた「プロセッサ」という文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。ここで、メモリにプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むように構成しても構わない。この場合には、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。また、本実施形態の各プロセッサは、プロセッサごとに単一の回路として構成される場合に限らず、複数の独立した回路を組み合わせて一つのプロセッサとして構成され、その機能を実現するようにしてもよい。 The term “processor” used in the description of each embodiment described above is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an application-specific integrated circuit (ASIC), or a programmable. Means circuits such as logic devices (for example, Simple Programmable Logic Device (SPLD), Complex Programmable Logic Device (CPLD), and Field Programmable Gate Array (FPGA)) To do. Here, instead of storing the program in the memory, the program may be directly incorporated in the circuit of the processor. In this case, the processor realizes the function by reading and executing the program incorporated in the circuit. In addition, each processor of the present embodiment is not limited to being configured as a single circuit for each processor, but may be configured as a single processor by combining a plurality of independent circuits to realize its function. Good.
 ここで、プロセッサによって実行されるプログラムは、ROM(Read Only Memory)や記憶部等に予め組み込まれて提供される。なお、このプログラムは、これらの装置にインストール可能な形式又は実行可能な形式のファイルでCD(Compact Disk)-ROM、FD(Flexible Disk)、CD-R(Recordable)、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記憶媒体に記録されて提供されてもよい。また、このプログラムは、インターネット等のネットワークに接続されたコンピュータ上に格納され、ネットワーク経由でダウンロードされることにより提供又は配布されてもよい。例えば、このプログラムは、各機能部を含むモジュールで構成される。実際のハードウェアとしては、CPUが、ROM等の記憶媒体からプログラムを読み出して実行することにより、各モジュールが主記憶装置上にロードされて、主記憶装置上に生成される。 Here, the program executed by the processor is provided by being incorporated in advance in a ROM (Read Only Memory) or a storage unit. This program is a file in a format that can be installed or executed on these devices. CD (Compact Disk) -ROM, FD (Flexible Disk), CD-R (Recordable), DVD (Digital Versatile Disk), etc. It may be provided by being recorded on a computer-readable storage medium. The program may be provided or distributed by being stored on a computer connected to a network such as the Internet and downloaded via the network. For example, this program is composed of modules including each functional unit. As actual hardware, the CPU reads a program from a storage medium such as a ROM and executes it, whereby each module is loaded on the main storage device and generated on the main storage device.
 以上説明した少なくとも一つの実施形態によれば、弁の詳細な状態をユーザに把握させることができる。 According to at least one embodiment described above, the detailed state of the valve can be grasped by the user.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (26)

  1.  被検体の画像データから、心臓弁の複数の弁葉を抽出する抽出部と、
     前記複数の弁葉のうち少なくとも1つの弁葉について、当該弁葉と他の弁葉とが接触する領域のうち、所定の基準方向の長さを計測する計測部と、
     前記弁葉の複数の位置のそれぞれにおける前記長さの分布を表示するように表示部を制御する表示制御部と、
     を備える、医用画像処理装置。
    An extraction unit for extracting a plurality of leaflets of the heart valve from the image data of the subject;
    For at least one leaflet of the plurality of leaflets, a measurement unit that measures a length in a predetermined reference direction in a region where the leaflet and the other leaflets contact;
    A display control unit for controlling the display unit to display the distribution of the length at each of the plurality of positions of the leaflets;
    A medical image processing apparatus comprising:
  2.  前記少なくとも1つの弁葉に対して、前記少なくとも1つの弁葉に関する基準面を設定する設定部を更に備え、
     前記表示制御部は、
     前記画像データにおける前記基準面に略相当する位置の第1の断層像に対して、前記第1の断層像中に2つの弁葉が接触する領域に対応する線分が重畳された画像を前記表示部に表示させるとともに、前記線分の前記複数の位置のそれぞれにおける前記長さの分布を前記表示部にグラフ表示させる、
     請求項1に記載の医用画像処理装置。
    A setting unit for setting a reference plane for the at least one leaflet with respect to the at least one leaflet;
    The display control unit
    An image in which a line segment corresponding to a region where two leaflets are in contact with each other in the first tomographic image is superimposed on the first tomographic image at a position substantially corresponding to the reference plane in the image data. Displaying on the display unit, and displaying the distribution of the length at each of the plurality of positions of the line segment on the display unit,
    The medical image processing apparatus according to claim 1.
  3.  前記計測部は、前記所定の基準方向の長さとして、前記領域のうち、前記基準面に略垂直な方向の長さを計測する、請求項2に記載の医用画像処理装置。 The medical image processing apparatus according to claim 2, wherein the measuring unit measures a length in a direction substantially perpendicular to the reference plane in the region as the length in the predetermined reference direction.
  4.  前記計測部は、前記所定の基準方向の長さとして、前記領域のうち、血流方向の長さを計測する、請求項1に記載の医用画像処理装置。 The medical image processing apparatus according to claim 1, wherein the measurement unit measures a length in a blood flow direction in the region as the length in the predetermined reference direction.
  5.  前記計測部は、前記所定の基準方向の長さとして、前記領域のうち、前記弁葉が延びる方向の長さを計測する、請求項1に記載の医用画像処理装置。 The medical image processing apparatus according to claim 1, wherein the measurement unit measures a length of the region in a direction in which the valve leaf extends as the length of the predetermined reference direction.
  6.  前記抽出部は、前記心臓弁を構成する2つの弁葉を抽出し、
     前記計測部は、前記基準面に対して直交し、かつ、前記心臓弁の2つの交連部を結ぶ線分に対して直交する面における前記領域の長さを計測する、請求項2に記載の医用画像処理装置。
    The extraction unit extracts two leaflets constituting the heart valve,
    The said measurement part measures the length of the said area | region in the surface orthogonal to the said reference plane, and orthogonal to the line segment which connects the two commissure parts of the said heart valve. Medical image processing apparatus.
  7.  前記抽出部は、前記心臓弁を構成する2つの弁葉を抽出し、
     前記計測部は、前記基準面に対して直交し、かつ、心臓の長軸に沿う面における前記領域の長さを計測する、請求項2に記載の医用画像処理装置。
    The extraction unit extracts two leaflets constituting the heart valve,
    The medical image processing apparatus according to claim 2, wherein the measurement unit measures the length of the region in a plane orthogonal to the reference plane and along the long axis of the heart.
  8.  前記抽出部は、前記心臓弁を構成する2つの弁葉を抽出し、
     前記計測部は、前記心臓弁の2つの交連部を結ぶ線分に対して直交し、かつ、心臓の長軸に沿う面における前記領域の長さを計測する、請求項2に記載の医用画像処理装置。
    The extraction unit extracts two leaflets constituting the heart valve,
    The medical image according to claim 2, wherein the measurement unit measures the length of the region in a plane that is orthogonal to a line segment that connects two commissural portions of the heart valve and is along the long axis of the heart. Processing equipment.
  9.  前記抽出部は、前記心臓弁を構成する3つの弁葉を抽出し、
     前記計測部は、前記基準面に対して直交し、かつ、前記心臓弁の交連部と前記3つの弁葉が交差する点又は前記3つの弁葉により囲まれた領域の重心とを結ぶ線分に直交する面における前記領域の長さを計測する、請求項2に記載の医用画像処理装置。
    The extraction unit extracts three leaflets constituting the heart valve,
    The measurement unit is a line segment that is orthogonal to the reference plane and connects the commissure of the heart valve and the point where the three leaflets intersect or the center of gravity of the region surrounded by the three leaflets. The medical image processing apparatus according to claim 2, wherein the length of the region in a plane orthogonal to the surface is measured.
  10.  前記抽出部は、前記心臓弁を構成する3つの弁葉を抽出し、
     前記計測部は、前記基準面に対して直交し、かつ、前記心臓弁を経由して流入された血液を運ぶ血管の芯線に沿う面における前記領域の長さを計測する、請求項2に記載の医用画像処理装置。
    The extraction unit extracts three leaflets constituting the heart valve,
    The said measurement part measures the length of the said area | region in the surface which is orthogonal to the said reference plane, and follows the core line of the blood vessel which carries the blood flowed in via the said heart valve. Medical image processing apparatus.
  11.  前記抽出部は、前記心臓弁を構成する3つの弁葉を抽出し、
     前記計測部は、前記心臓弁の交連部と、前記3つの弁葉が交差する点又は前記3つの弁葉により囲まれた領域の重心とを結ぶ線分に直交し、かつ、前記心臓弁を経由して流入された血液を運ぶ血管の芯線に沿う面における前記領域の長さを計測する、請求項2に記載の医用画像処理装置。
    The extraction unit extracts three leaflets constituting the heart valve,
    The measurement unit is orthogonal to a line segment connecting the commissural portion of the heart valve and the point where the three leaflets intersect or the center of gravity of the region surrounded by the three leaflets, and the heart valve The medical image processing apparatus according to claim 2, wherein the length of the region on a surface along a core line of a blood vessel that carries blood that has flowed in is measured.
  12.  前記計測部は、前記少なくとも1つの弁葉について、前記線分に対して交差する方向、かつ、前記基準面に交差する方向における前記長さを計測する、請求項2に記載の医用画像処理装置。 The medical image processing apparatus according to claim 2, wherein the measurement unit measures the length of the at least one leaflet in a direction intersecting the line segment and in a direction intersecting the reference plane. .
  13.  前記計測部は、前記領域の前記所定の基準方向と交差する方向における前記複数の位置のそれぞれにおいて、前記長さを計測し、
     前記表示制御部は、前記複数の位置における前記長さの分布を表示するように前記表示部を制御する、請求項1に記載の医用画像処理装置。
    The measurement unit measures the length at each of the plurality of positions in a direction intersecting the predetermined reference direction of the region;
    The medical image processing apparatus according to claim 1, wherein the display control unit controls the display unit to display the distribution of the lengths at the plurality of positions.
  14.  前記画像データから、前記複数の弁葉を含む第1の断層像データを生成する生成部を更に備え、
     前記表示制御部は、前記分布とともに、前記第1の断層像データが示す前記第1の断層像を表示するように前記表示部を制御する、請求項2に記載の医用画像処理装置。
    A generator for generating first tomographic image data including the plurality of leaflets from the image data;
    The medical image processing apparatus according to claim 2, wherein the display control unit controls the display unit to display the first tomographic image indicated by the first tomographic image data together with the distribution.
  15.  前記生成部は、前記長さが閾値以上の部分と閾値未満の部分とで態様が異なる前記線分を前記第1の断層像に重畳させ、
     前記表示制御部は、前記線分が重畳された前記第1の断層像を表示するように前記表示部を制御する、請求項14に記載の医用画像処理装置。
    The generation unit superimposes the line segments having different aspects on the first tomographic image in a portion where the length is greater than or equal to a threshold and a portion less than the threshold,
    The medical image processing apparatus according to claim 14, wherein the display control unit controls the display unit to display the first tomographic image on which the line segment is superimposed.
  16.  前記線分は、隣接する2つの弁葉の境界を示し、
     前記生成部は、前記線分上の位置の指定を受け付け、指定された位置を含み、かつ、前記隣接する2つの弁葉が描出された第2の断層像データを生成し、
     前記表示制御部は、前記第2の断層像データが示す第2の断層像を表示するように表示部を制御する、請求項15に記載の医用画像処理装置。
    The line segment indicates the boundary between two adjacent leaflets,
    The generation unit receives a designation of a position on the line segment, generates second tomographic image data including the designated position and in which the two adjacent leaflets are depicted,
    The medical image processing apparatus according to claim 15, wherein the display control unit controls the display unit to display a second tomographic image indicated by the second tomographic image data.
  17.  前記計測部は、前記複数の弁葉のうち少なくとも1つの弁葉について、当該弁葉と他の弁葉とが接触している前記領域の前記所定の基準方向と交差する方向の長さを計測し、
     前記表示制御部は、前記領域の前記所定の基準方向と交差する方向の長さを表示するように前記表示部を制御する、請求項1に記載の医用画像処理装置。
    The measurement unit measures, for at least one leaflet of the plurality of leaflets, a length in a direction intersecting the predetermined reference direction of the region where the leaflet and another leaflet are in contact with each other. And
    The medical image processing apparatus according to claim 1, wherein the display control unit controls the display unit to display a length of the region in a direction intersecting the predetermined reference direction.
  18.  前記計測部は、前記複数の弁葉のうち少なくとも1つの弁葉について、互いに離間している当該弁葉と他の弁葉との間の離間領域の前記所定の基準方向と交差する方向の長さを計測し、
     前記表示制御部は、前記離間領域の前記所定の基準方向と交差する方向の長さを表示するように前記表示部を制御する、請求項1に記載の医用画像処理装置。
    The measurement unit has a length in a direction intersecting the predetermined reference direction of a separation region between the leaflets and the other leaflets that are separated from each other with respect to at least one leaflet of the plurality of leaflets. Measuring
    The medical image processing apparatus according to claim 1, wherein the display control unit controls the display unit to display a length of the separation area in a direction intersecting the predetermined reference direction.
  19.  前記計測部は、前記複数の弁葉のうち少なくとも1つの弁葉について、当該弁葉と他の弁葉とが接触している前記領域における接触面積を計測し、
     前記表示制御部は、前記接触面積を表示するように前記表示部を制御する、請求項1に記載の医用画像処理装置。
    The measurement unit measures a contact area in the region where the leaflet and another leaflet are in contact with each other for at least one leaflet of the plurality of leaflets,
    The medical image processing apparatus according to claim 1, wherein the display control unit controls the display unit to display the contact area.
  20.  前記計測部は、前記複数の弁葉のうち少なくとも1つの弁葉について、互いに離間している当該弁葉と他の弁葉との間の離間領域における離間面積を計測し、
     前記表示制御部は、前記離間面積を表示するように前記表示部を制御する、請求項1に記載の医用画像処理装置。
    The measurement unit measures a separation area in a separation region between the valve leaf and the other leaflets that are separated from each other with respect to at least one of the plurality of leaflets.
    The medical image processing apparatus according to claim 1, wherein the display control unit controls the display unit to display the separation area.
  21.  前記計測部は、前記複数の弁葉のうち少なくとも1つの弁葉について、互いに離間している当該弁葉と他の弁葉との間の離間領域における当該弁葉と他の弁葉との間の距離を計測し、
     前記表示制御部は、前記距離を表示するように前記表示部を制御する、請求項1に記載の医用画像処理装置。
    The measurement unit is configured such that, with respect to at least one of the plurality of leaflets, between the leaflets and the other leaflets in a separation region between the leaflets and the other leaflets that are separated from each other. Measure the distance of
    The medical image processing apparatus according to claim 1, wherein the display control unit controls the display unit to display the distance.
  22.  前記計測部により計測された前記離間領域の前記所定の基準方向と交差する方向の長さに基づいて、前記心臓弁において当該心臓弁を流れる血液が逆流する場合の血液の逆流量を得るシミュレーションを実行する解析部を更に有する、請求項18に記載の医用画像処理装置。 Based on the length in the direction intersecting the predetermined reference direction of the separation region measured by the measurement unit, a simulation for obtaining a reverse flow rate of blood when the blood flowing through the heart valve flows backward in the heart valve The medical image processing apparatus according to claim 18, further comprising an analysis unit to be executed.
  23.  被検体の画像データから、心臓弁の複数の弁葉を抽出する抽出部と、
     前記複数の弁葉のうち少なくとも1つの弁葉について、当該弁葉と他の弁葉とが接触する領域の密着の度合いを示す指標を計測する計測部と、
     前記弁葉の複数の位置のそれぞれにおける前記指標を表示するように表示部を制御する表示制御部と、
     を備える、医用画像処理装置。
    An extraction unit for extracting a plurality of leaflets of the heart valve from the image data of the subject;
    For at least one leaflet of the plurality of leaflets, a measurement unit that measures an index indicating the degree of adhesion of a region where the leaflet and the other leaflets contact;
    A display control unit that controls the display unit to display the index at each of a plurality of positions of the leaflets;
    A medical image processing apparatus comprising:
  24.  前記線分は、隣接する2つの弁葉の境界を示し、
     前記生成部は、
     前記線分上の位置の指定を受け付け、指定された位置を含み、かつ、前記隣接する2つの弁葉が描出されたボリュームレンダリング画像データであって、前記2つの弁葉が接触する接触領域に所定の色が割り当てられたボリュームレンダリング画像データを生成し、
     前記表示制御部は、前記ボリュームレンダリング画像データが示すボリュームレンダリング画像を表示するように表示部を制御する、請求項15に記載の医用画像処理装置。
    The line segment indicates the boundary between two adjacent leaflets,
    The generator is
    It is volume rendering image data that accepts designation of a position on the line segment, includes the designated position, and depicts the two adjacent leaflets, and is in a contact region where the two leaflets contact each other. Generate volume rendering image data to which a predetermined color is assigned,
    The medical image processing apparatus according to claim 15, wherein the display control unit controls the display unit to display a volume rendering image indicated by the volume rendering image data.
  25.  被検体の画像データを収集する収集部と、
     前記画像データから、心臓弁の複数の弁葉を抽出する抽出部と、
     前記複数の弁葉のうち少なくとも1つの弁葉について、当該弁葉と他の弁葉とが接触する領域のうち、所定の基準方向の長さを計測する計測部と、
     前記弁葉の複数の位置のそれぞれにおける前記長さの分布を表示するように表示部を制御する表示制御部と、
     を備える、医用画像診断装置。
    A collection unit for collecting image data of the subject;
    An extraction unit for extracting a plurality of leaflets of the heart valve from the image data;
    For at least one leaflet of the plurality of leaflets, a measurement unit that measures a length in a predetermined reference direction in a region where the leaflet and the other leaflets contact;
    A display control unit for controlling the display unit to display the distribution of the length at each of the plurality of positions of the leaflets;
    A medical image diagnostic apparatus comprising:
  26.  被検体の画像データから、心臓弁の複数の弁葉を抽出し、
     前記複数の弁葉のうち少なくとも1つの弁葉について、当該弁葉と他の弁葉とが接触する領域のうち、所定の基準方向の長さを計測し、
     前記弁葉の複数の位置のそれぞれにおける前記長さの分布を表示するように表示部を制御する、
     各処理をコンピュータに実行させる医用画像処理プログラム。
    Extract multiple leaflets of the heart valve from the image data of the subject,
    For at least one leaflet of the plurality of leaflets, measure a length in a predetermined reference direction in a region where the leaflet and another leaflet contact,
    Controlling the display unit to display the distribution of the length at each of a plurality of positions of the leaflets;
    A medical image processing program for causing a computer to execute each process.
PCT/JP2019/020113 2018-05-21 2019-05-21 Medical image processing device, medical image diagnostic device, and medical image processing program WO2019225605A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980001267.3A CN110740686B (en) 2018-05-21 2019-05-21 Medical image processing device, medical image diagnostic device, and storage medium
US16/751,305 US11416992B2 (en) 2018-05-21 2020-01-24 Medical image processing apparatus, medical image diagnostic apparatus, and non-transitory storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018097306 2018-05-21
JP2018-097306 2018-05-21
JP2019-095130 2019-05-21
JP2019095130A JP7210376B2 (en) 2018-05-21 2019-05-21 Medical image processing device, medical image diagnostic device and medical image processing program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/751,305 Continuation US11416992B2 (en) 2018-05-21 2020-01-24 Medical image processing apparatus, medical image diagnostic apparatus, and non-transitory storage medium

Publications (1)

Publication Number Publication Date
WO2019225605A1 true WO2019225605A1 (en) 2019-11-28

Family

ID=68616127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020113 WO2019225605A1 (en) 2018-05-21 2019-05-21 Medical image processing device, medical image diagnostic device, and medical image processing program

Country Status (1)

Country Link
WO (1) WO2019225605A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100240996A1 (en) * 2009-03-18 2010-09-23 Razvan Ioan Ionasec Valve assessment from medical diagnostic imaging data
US20150178938A1 (en) * 2013-10-08 2015-06-25 The Trustees Of The University Of Pennsylvania Fully Automatic Image Segmentation of Heart Valves Using Multi-Atlas Label Fusion and Deformable Medial Modeling
US20160171766A1 (en) * 2014-12-16 2016-06-16 Siemens Healthcare Gmbh Valve modeling with dense chordae from medical scan data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100240996A1 (en) * 2009-03-18 2010-09-23 Razvan Ioan Ionasec Valve assessment from medical diagnostic imaging data
US20150178938A1 (en) * 2013-10-08 2015-06-25 The Trustees Of The University Of Pennsylvania Fully Automatic Image Segmentation of Heart Valves Using Multi-Atlas Label Fusion and Deformable Medial Modeling
US20160171766A1 (en) * 2014-12-16 2016-06-16 Siemens Healthcare Gmbh Valve modeling with dense chordae from medical scan data

Similar Documents

Publication Publication Date Title
US10650522B2 (en) Medical image processing apparatus, medical image processing method, and X-ray CT apparatus
JP2021000540A (en) X-ray computer tomography apparatus, scan plan setting support apparatus, medical image diagnostic system, control method, and control program
JP5942266B2 (en) X-ray CT apparatus and tube current determination method
JP5191787B2 (en) X-ray CT system
US9237874B2 (en) Method and system for non-invasive imaging of a target region
JP2019030637A (en) Variable-distance imaging
WO2011016508A1 (en) Radiation imaging apparatus and imaging method using radiation
JP5317389B2 (en) Radiation tomography equipment
JP2023138721A (en) medical image processing device
JP7160659B2 (en) Medical information processing apparatus, medical information processing system, and medical information processing method
JP7210376B2 (en) Medical image processing device, medical image diagnostic device and medical image processing program
JP6933498B2 (en) Medical information processing equipment, X-ray CT equipment and medical information processing program
JP2018089364A (en) Medical image processing apparatus, X-ray CT apparatus and medical image processing program
JP7242288B2 (en) Medical image diagnosis device and model learning device
WO2019225605A1 (en) Medical image processing device, medical image diagnostic device, and medical image processing program
WO2019139054A1 (en) Medical information processing device, medical information processing system, medical information processing method, and recording medium
JP2020099409A (en) Medical image processing apparatus, medical image diagnostic apparatus, and medical image processing method
JP2018064715A (en) Medical image diagnostic apparatus
JP2021090495A (en) Medical image processing device, medical image diagnostic device and medical image processing program
JP7246915B2 (en) MEDICAL IMAGE PROCESSING APPARATUS, MEDICAL IMAGE PROCESSING METHOD, AND X-RAY DIAGNOSTIC APPARATUS
US20170347973A1 (en) Medical information processing apparatus, x-ray ct apparatus, and medical information processing method
JP6923414B2 (en) X-ray computed tomography equipment, medical imaging equipment, and programs
JP2019153180A (en) Image processing apparatus, 3d modeling apparatus and data structure
CN109152561A (en) The acquisition adjusted through anatomical structure is carried out using fixed multi-source x-ray system
JP7437887B2 (en) Medical information processing equipment and X-ray CT equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806794

Country of ref document: EP

Kind code of ref document: A1