WO2019225470A1 - Louver film, surface light source device, and liquid crystal display device - Google Patents

Louver film, surface light source device, and liquid crystal display device Download PDF

Info

Publication number
WO2019225470A1
WO2019225470A1 PCT/JP2019/019486 JP2019019486W WO2019225470A1 WO 2019225470 A1 WO2019225470 A1 WO 2019225470A1 JP 2019019486 W JP2019019486 W JP 2019019486W WO 2019225470 A1 WO2019225470 A1 WO 2019225470A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
layer
openings
light source
Prior art date
Application number
PCT/JP2019/019486
Other languages
French (fr)
Japanese (ja)
Inventor
恵 関口
高 玉田
晋也 渡邉
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019225470A1 publication Critical patent/WO2019225470A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V11/00Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a louver film, a surface light source device including the louver film, and a liquid crystal display device.
  • Liquid crystal display devices (hereinafter also referred to as LCDs (Liquid Crystal Displays)) have low power consumption and are increasingly used as space-saving image display devices year by year.
  • a liquid crystal display device is usually composed of a surface light source device and a liquid crystal panel.
  • the organic EL (Electro Luminescence) display device like the liquid crystal display device, has a low power consumption, and its application is expanding year by year as a space-saving image display device.
  • the various image display devices described above are generally required to have a wide viewing angle as viewing angle characteristics. However, depending on the installation location of the image display device, the display image of the image display device may be displayed in a place where it is not desired to be displayed.
  • the viewing angle of the image display device it is necessary to limit the viewing angle of the image display device.
  • the viewing angle is set so as not to be seen by others. Need to be restricted.
  • Patent Document 1 As a method for limiting the viewing angle described above, for example, there is an optical sheet used for illumination light path control in a display backlight unit disclosed in Patent Document 1.
  • the optical sheet of Patent Document 1 reflects light on a surface of a lenticular sheet having a lens portion in which convex cylindrical lens groups are formed in parallel and a surface on the opposite side of the lens portion, and a region including a non-condensing surface by the lens portion.
  • the lenticular sheet has a tangent line at a valley between adjacent unit lenses in a range of 35 to 60 ° at a boundary between adjacent unit lenses.
  • the aperture ratio of the opening and the distance from the opening to the lens are defined using equations.
  • Patent Document 1 as described above, the aperture ratio of the aperture and the distance from the aperture to the lens are defined using equations in order to reduce the sideband.
  • the louver film is a vehicle-mounted monitor, it is necessary to reduce not only the sideband but also the light leakage on the wide angle side.
  • the sideband cannot be reduced and the light leakage on the wide angle side cannot be reduced.
  • An object of the present invention is to provide a louver film, a surface light source device including the louver film, and a liquid crystal display device that eliminate the above-mentioned problems based on the prior art, maintain light utilization efficiency, and suppress light leakage on the wide-angle side. There is to do.
  • louver film Used in surface light source devices, A plurality of lenses arranged at a constant pitch on the light output side of the light source; A first support that is disposed closer to the light source than the lens and supports a plurality of lenses, the thickness being smaller than a certain pitch; and A light absorption layer that is disposed on the light source side of the first support and includes a plurality of first openings corresponding to the plurality of lenses; A light reflecting layer that is disposed closer to the light source than the light absorbing layer and includes a plurality of second openings corresponding to a plurality of lenses; The light absorption layer and the light reflection layer are arranged in a state where the plurality of first openings and the plurality of second openings are aligned, The light absorption layer has an opening ratio of the plurality of first openings of 25% to 50%, The light reflection layer has a reflectance of 90% or more, and the opening ratios of the plurality of second openings of the light
  • the louver film is a film with improved directivity, and in a liquid crystal display device provided with a surface light source device including this film, the directivity related to visibility is improved as compared with the case without this film, for example, It is a film that can suppress visual recognition from an oblique direction.
  • the film has a limited viewing angle and improved reflection in areas that are not desired to be displayed. The limitation on the viewing angle is that the viewing angle is visible in a certain angle range with respect to the louver film surface.
  • the luminance in a direction perpendicular to the surface of the louver film is used as a reference
  • the luminance in a direction inclined by 45 ° with respect to a line perpendicular to the surface of the louver film is lower than the reference luminance.
  • the viewing angle is limited near the front of the louver film.
  • the luminance in the direction inclined by 45 ° is higher than the reference luminance
  • the viewing angle is limited to the oblique direction of the louver film.
  • the light utilization efficiency mentioned above refers to a value measured by the following method.
  • ELDIM EZ-Contrast XL88
  • brightness in 1 ° increments from 0 ° (front direction) to 88 ° polar angle (Y0) Is measured, and the maximum luminance value is defined as the maximum luminance.
  • This maximum luminance is measured in a state where the louver film is not disposed on the surface light source device (T0) and in a state where the louver film is disposed (T), and the ratio (T / T0) is calculated to obtain the maximum luminance ratio.
  • T / T0 the ratio
  • the directivity mentioned above refers to a value evaluated by the following method.
  • EZ-Contrast XL88 manufactured by ELDIM
  • the S / N ratio is evaluated as a hem.
  • the larger the S / N ratio the better the hem and the higher the directivity.
  • the larger the S / N ratio the smaller the light leakage on the wide angle side.
  • the plurality of lenses are arranged two-dimensionally.
  • the first support has a thickness of 50% or less with respect to a constant pitch.
  • the further aspect of this invention is related with the surface light source device containing the above-mentioned louver film and a light source. In one mode, it has a reflective type polarizer arranged between a louver film and a light source.
  • the further aspect of this invention is related with the liquid crystal display device containing the above-mentioned louver film, a surface light source device, and a liquid crystal panel.
  • a louver film capable of maintaining light utilization efficiency and suppressing light leakage on the wide-angle side
  • a surface light source device including the louver film
  • a liquid crystal display device
  • FIG. 11 is a sectional view taken along line BB in FIG. 10. It is CC sectional view taken on the line of FIG. It is the DD sectional view taken on the line of FIG.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a surface light source device according to an embodiment of the first aspect of the present invention.
  • a surface light source device 1 shown in FIG. 1 has a louver film 2.
  • the louver film of the present invention is used in a surface light source device, and is arranged at a constant pitch on the emission side of the light source 16 and a plurality of lenses arranged on the light source 16 side of the plurality of lenses 11. And a plurality of first openings corresponding to the plurality of lenses 11 disposed on the light source 16 side of the first support 12 and having a thickness smaller than a certain pitch.
  • the light absorption layer 18 and the light reflection layer 19 are disposed in a state where the one opening 18b and the plurality of second openings 19b are aligned, and the light absorption layer 18 includes the plurality of first openings.
  • the aperture ratio of the portion 18b is 25% to 50%, and light reflection 19 has a reflectance of 90% or more, and the aperture ratios of the plurality of second openings 19b of the light reflection layer 19 are larger than the aperture ratios of the plurality of first openings 18b of the light absorption layer 18.
  • the present invention relates to a louver film 2 having a ratio expressed by an aperture ratio of a plurality of first openings / an aperture ratio of a plurality of second openings of 65% to 99%.
  • the ratio represented by the aperture ratio of the plurality of first openings / the aperture ratio of the plurality of second openings is referred to as an aperture ratio.
  • the surface light source device 1 includes the louver film 2 described above, a diffusion plate 14 disposed on the light reflection layer 19 side of the louver film 2, a light source 16, and a reflection plate 15 in this order.
  • a first opening 18 b and a second opening 19 b are provided for each lens 11, and the first opening 18 b and the second opening 19 b are provided in one lens 11. Is provided.
  • louver film 2 of the above-described aspect enables further improvement in directivity with respect to visibility while maintaining the light utilization efficiency.
  • the thickness of the first support 12 is smaller than the pitch of the lenses 11, light from adjacent openings other than the openings on the optical axis CL of the lenses 11 is less likely to be guided, and the sidebands are reduced. Can be reduced.
  • the light absorbing layer 18 absorbs the light reflected by the lens or the light reflecting layer 19 or the like, or the light in which the light incident from the outside is repeatedly reflected in the first support 12, and the generation of stray light can be suppressed. Thereby, generation
  • a light absorption layer 18 is provided on the lens surface side of the light reflection layer 19 in order to eliminate light leakage on the wide angle side.
  • stray light generated between the lens 11 and the light reflecting layer 19 can be absorbed, and light leakage on the wide angle side can be reduced.
  • the aperture ratio of the light reflection layer 19 and the aperture ratio of the light absorption layer 18 are completely the same, the reflected light at the edge of the light reflection layer 19 enters the lens 11 and causes stray light. It was. By making the aperture ratio of the light absorption layer 18 smaller than the aperture ratio of the light reflection layer 19, stray light can be completely extinguished.
  • the louver film 2 can reduce sidebands, maintain light utilization efficiency, suppress light leakage on the wide-angle side, and realize further improvement in directivity regarding visibility.
  • a louver film is used for an in-vehicle monitor, reflection of an image on a windshield and a side glass can be suppressed.
  • the above includes inference by the present inventors and does not limit the present invention.
  • FIG. 2 is a schematic cross-sectional view schematically showing a first example of the louver film
  • FIG. 3 is a plan view schematically showing a first example of the louver film
  • FIG. 4 is a first view of the louver film. It is a top view which shows an example typically.
  • 3 is a plan view seen from the lens 11 side
  • FIG. 4 is a plan view seen from the light reflecting layer 19 side.
  • the configuration of the louver film When used in a surface light source device, the configuration of the louver film includes a plurality of lenses arranged on the light emission side of the light source, a first support disposed on the light source side of the lens, and the first support described above.
  • a light-absorbing layer having a first opening on the optical axes of the plurality of lenses arranged on the light source side of the body, and a light reflection having a second opening on the optical axes of the plurality of lenses.
  • the lens 11 is a hemispherical convex lens.
  • a plurality of lenses 11 are two-dimensionally arranged at a constant pitch Lp.
  • the first opening 18 b of the light absorption layer 18 and the second opening 19 b of the light reflection layer 19 are provided in alignment with respect to one lens 11. ing.
  • the center of the first opening 18b of the light absorption layer 18 and the center of the second opening 19b of the light reflecting layer 13 coincide with the optical axis CL (see FIG. 2) of the lens 11, but this It is not limited to.
  • the light absorption layer 18 is disposed closer to the light source 16 than the first support 12 and includes a plurality of first openings 18b corresponding to a plurality of lenses. In the light absorption layer 18, the aperture ratio of the plurality of first openings 18b is 25% to 50%.
  • the light reflection layer 19 is disposed on the light source 16 side of the light absorption layer 18 and is provided on the back surface 18c of the light absorption layer 18 on the opposite side of the first support 12 and includes a plurality of lenses corresponding to the plurality of lenses. A second opening 19b is provided.
  • the light reflection layer 19 has a reflectance of 90% or more.
  • the aperture ratio of the second opening 19b of the light reflecting layer 19 is larger than the aperture ratio of the plurality of first openings 18b of the light absorption layer 18, and the aperture ratio of the plurality of first openings / the plurality of second openings.
  • the ratio represented by the opening ratio of the opening is 65% to 99%.
  • the light absorption layer 18 and the light reflection layer 19 have the same opening pattern.
  • the light reflection layer 19 and the light absorption layer 18 are arranged in a state where the plurality of first openings 18b of the light absorption layer 18 and the plurality of second openings 19b of the light reflection layer 19 are aligned. Yes.
  • the second support 17 may be disposed closer to the light source 16 than the light reflecting layer 19.
  • the center of the first opening 18b of the light absorption layer 18 and the 13 second openings 19b of the light reflection layer are formed.
  • the center may be deviated from the optical axis CL of the lens 11.
  • the direction of directivity can be adjusted by setting the center position of the opening to a position shifted from the optical axis CL of the lens. Note that being off the optical axis CL of the lens 11 means that the optical axis CL does not pass through the center of the first opening 18 b of the light absorption layer 18.
  • the amount of deviation between the optical axis CL and the center of the first opening 18b and the second opening 19b is 5% or more with respect to the pitch of the lens, it is deviated from the optical axis CL of the lens 11.
  • “matching on the optical axis CL of the lens 11” means that the deviation amount between the optical axis CL and the center of the first opening 18b and the second opening 19b is 5% with respect to the pitch of the lens. Is less than.
  • All of the louver films 2 shown in FIG. 5 described above have a configuration in which the centers of all the openings are deviated from the optical axis CL of the lens 11, but are not limited thereto. For example, based on the relationship between the opening and the optical axis of the lens, which opening to remove from the optical axis of the lens may be determined in advance according to the direction of directivity or the like.
  • the lens is not limited to the hemispherical convex lens described above, and may be an aspheric lens.
  • the refractive index of the lens is preferably 1.4 to 1.6, more preferably 1.45 to 1.6 from the viewpoint of directivity.
  • the pitch Lp (see FIG. 2) and the radius of curvature of the two-dimensionally arranged lenses may be constant or random.
  • the lens pitch Lp is preferably twice the radius of curvature of the lens.
  • the thickness Dt (see FIG. 2) of the first support is smaller than the lens pitch Lp (see FIG. 2).
  • the lens pitch Lp (see FIG. 2) is constant, and the thickness Dt (see FIG. 2) of the first support is 50% or less with respect to the lens pitch Lp (see FIG. 2).
  • the sideband can be reduced.
  • the thickness is preferably 30 ⁇ m or less from the viewpoint of not deteriorating brittleness. More preferably, it is 10 ⁇ m or less, and more preferably around 1 ⁇ m.
  • the refractive index of the first support is preferably 1.4 to 1.6, more preferably 1.45 to 1.6 from the viewpoint of directivity.
  • the refractive index can be measured by a known refractive index measuring device.
  • a known refractive index measuring device there is a multi-wavelength Abbe refractometer DR-M2 manufactured by Atago Co., Ltd.
  • the refractive index in the present invention refers to a refractive index with respect to light having a wavelength of 550 nm.
  • the refractive index of the first support can be adjusted according to the type of components used to form the layer.
  • a component used in order to form a layer it can form using the polymeric composition containing a polymeric compound and a polymerization initiator.
  • the resin layer which has resin as a main component may be sufficient.
  • the main component means that the resin occupies most of the components constituting the layer.
  • the resin contained may be one kind or two or more kinds.
  • the resin amount in the resin layer is, for example, 50% by mass or more, preferably 70% by mass or more, with respect to the total mass of the resin layer.
  • the resin amount in the resin layer is based on the total mass of the resin layer. For example, it is 99 mass% or less, or 95 mass% or less, but may be 100 mass%.
  • the resin layer include a thermoplastic resin layer.
  • the thermoplastic resin include polymethyl methacrylate resin (PMMA), polycarbonate resin, polystyrene resin, polymethacryl styrene (MS) resin, acrylonitrile styrene (AS) resin, polypropylene resin, polyethylene resin, polyethylene terephthalate resin, polyvinyl chloride.
  • PMMA polymethyl methacrylate resin
  • MS polystyrene resin
  • AS acrylonitrile styrene
  • PVC resins
  • cellulose acylates cellulose triacetates
  • cellulose acetate propionates cellulose diacetates
  • thermoplastic elastomers copolymers thereof, and cycloolefin polymers.
  • Such a resin layer is preferably a cured layer formed by subjecting this composition to a polymerization treatment (curing treatment) using a polymerizable composition, from the viewpoint of ease of layer formation.
  • the polymerizable composition may be a photopolymerizable composition that is cured by light irradiation or a thermopolymerizable composition that is cured by heating. From the viewpoint of improving productivity, a photopolymerizable composition is preferable because the curing treatment can be completed in a short time.
  • Particles may be included for adjusting the refractive index of the first support.
  • the particles are not particularly limited, and may be inorganic particles or organic particles. Specific examples of the above-mentioned particles include inorganic particles such as ZrO 2 , TiO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , polymethyl methacrylate particles, crosslinked polymethyl methacrylate particles, Examples thereof include organic particles such as acrylic-styrene copolymer particles, melamine particles, polycarbonate particles, polystyrene particles, crosslinked polystyrene particles, polyvinyl chloride particles, and benzoguanamine-melamine formaldehyde particles.
  • so-called core-shell particles may be used.
  • core-shell particles may be organic-inorganic composite particles such as particles having an organic coating on the surface of the inorganic particles.
  • the above particles may be used alone or in combination of two or more. Smaller particles are preferable from the viewpoint of suppressing scattering. Therefore, the particle size is preferably 100 nm or less, more preferably 30 nm or less, and even more preferably 25 nm or less as the primary particle diameter. Moreover, it is preferable that a particle size is 1 nm or more as a primary particle diameter.
  • the primary particle size of the above-mentioned particles is a value obtained by measuring the particle size of 50 particles with a scanning electron microscope (SEM) and calculating the number average value.
  • the particle content in the layer containing the above-described particles is preferably set as appropriate so that the average refractive index in the above-mentioned range can be obtained.
  • the refractive index of the above-mentioned particles is preferably 2.00 or more and 3.00 or less, and preferably 2.05 or more and 2.50 or less from the viewpoint of adjusting the refractive index. More preferred.
  • the refractive index of the particles is a value measured by the following method. A resin material having a known refractive index is doped with particles to produce a resin material in which the particles are dispersed. The produced resin material is applied on a silicon substrate or a quartz substrate to form a resin film.
  • the refractive index of the formed resin film is measured with an ellipsometer, and the refractive index of the particles is determined from the resin material constituting the resin film and the volume fraction of the particles.
  • the refractive index of the titanium oxide particles used in Examples described later is a value obtained by the above-described method.
  • the light absorption layer absorbs the light reflected by the lens or the light reflection layer 19 or the like, or the light incident from the outside that repeats reflection in the first support 12 and suppresses stray light. Thereby, generation
  • the light absorption layer has a first opening for each lens.
  • the light absorption layer has a first opening on the optical axis of each of the plurality of lenses.
  • the light absorption layer and the light reflection layer have the same opening pattern, and the first opening of the light absorption layer and the second opening of the light reflection layer are aligned as described above.
  • the light reflection layer and the light absorption layer are arranged in a state where the two are aligned. If the aperture ratio of the first opening is too small, the light utilization efficiency is lowered. On the other hand, if it is too large, the directivity becomes worse. From this viewpoint, the aperture ratio of the first opening is 25% to 50%, preferably 25% to 45%.
  • the plurality of first openings in the light absorption layer are smaller than the plurality of second openings in the light reflection layer and have a size of 65 to 99%.
  • the first opening 18b and the second opening 19b are circular, for example, but are not limited to this, and may be rectangular.
  • the first opening 18b and the second opening 19b are defined by the width of the opening, regardless of whether the shape is a circle or a rectangle. In the case of a circle, the opening width corresponds to the diameter.
  • the opening width is obtained by acquiring an image including the light absorbing layer 18 including the first opening 18b and an image including the light reflecting layer 19 including the second opening 19b, and using each image, the first opening 18b, And it is obtained by calculating
  • the opening ratio of the first opening 18b of the light absorption layer 18 is defined by the opening width of the first opening 18b with respect to the pitch at which the first opening 18b is disposed. If the pitch is 100 ⁇ m and the opening width is 25 ⁇ m, the aperture ratio is 25% at 25/100. Also in the light reflection layer 19, as in the light absorption layer 18, the aperture ratio of the second opening 19b of the light absorption layer 13 is the second opening 19b with respect to the pitch at which the second opening 19b is disposed. Of the opening width. If the pitch is 100 ⁇ m and the opening width is 25 ⁇ m, the aperture ratio is 25% at 25/100.
  • the light absorption layer is not particularly limited.
  • carbon black, titanium nitride and silver ink can be used, and those used for black matrices such as LCD and organic EL (Electro Luminescence) are appropriately used. can do.
  • black matrices such as LCD and organic EL (Electro Luminescence) are appropriately used.
  • silver ink becomes a silver mirror after it becomes a black absorber in the heating process after ink application, after applying silver ink to the film, the ink surface is heated at a high temperature and the back surface is heated at a lower temperature.
  • the reflectance of the light absorption layer is preferably 20% or less, and in order to increase the light shielding property in the oblique direction, that is, to reduce the visibility in the oblique direction, 10% or less is better, and 7% or less is the best.
  • the reflectance of the light absorption layer is obtained as follows. Using a spectrophotometer (V-550 manufactured by JASCO Corporation), the material used for the light absorption layer is formed on a polyethylene terephthalate (PET) substrate, and light is incident from the formation surface to obtain a reflectance of 380 nm to 780 nm. Measure and obtain the average value. This average value is the reflectance of the light absorption layer.
  • the light reflection layer is made of, for example, white ink, metal foil, metal vapor deposition, or silver mirror ink. Similar to the light absorption layer, the light reflecting layer has a second opening for each lens. For example, the light reflecting layer has a second opening on the optical axis of each of the plurality of lenses. The light reflecting layer and the light absorbing layer have the same opening pattern. As described above, the light reflection layer and the light absorption layer are arranged in a state where the first opening of the light absorption layer and the second opening of the light reflection layer are aligned. If the aperture ratio of the second opening is too small, the light utilization efficiency is lowered. On the other hand, if it is too large, the directivity becomes worse.
  • the aperture ratio of the second opening of the light reflecting layer is defined by a ratio to the aperture ratio of the first opening of the light absorbing layer, and the aperture ratio of the first opening / the aperture ratio of the second opening. Is a ratio of 65% to 99%, preferably 70% to 99%. Since the opening ratio of the first opening is 25% to 50%, the opening ratio of the second opening is 25.25% to 76%.
  • the reflectance of the light reflecting layer is preferably 90% or more, more preferably 91% or more from the viewpoint of light utilization. More preferably, it is 92% or more.
  • the light utilization rate is defined by front luminance / maximum luminance.
  • the reflectance of the light reflecting layer is obtained as follows.
  • the material used for the light reflecting layer is formed on a polyethylene terephthalate (PET) substrate, and light is incident from the forming surface to obtain a reflectance of a wavelength of 380 nm to 780 nm. Measure and obtain the average value. This average value is the reflectance of the light reflecting layer.
  • the light absorption layer 18 and the light reflection layer 19 may have an integrated configuration or a separate configuration.
  • the surface of the light reflecting layer 19 functions as the light absorbing layer 18, and unlike the surface reflectance, it is less than 90% and absorbs light.
  • the reflectance of the surface functioning as the light absorption layer is preferably 20% or less as described above, more preferably 10% or less, and most preferably 7% or less.
  • the light absorption layer 18 and the light reflection layer 19 can be reduced in the number of parts in the integrated configuration compared to the separate configuration, and the configuration can be simplified.
  • a light absorption layer is not specifically limited,
  • the plate-shaped member used as a light absorption layer can be formed by an etching process or laser processing.
  • a light absorption layer can also be formed by forming a film to be a light absorption layer on a substrate using a vapor phase method such as vapor deposition or a liquid phase method such as coating.
  • the plurality of second openings of the light reflecting layer may be formed in a pattern that matches the arrangement of LED (light emitting diode) light sources used in the direct type backlight. That is, the plurality of second openings may not be provided immediately above the LED light source, and the opening ratio of the plurality of second openings may increase as the distance from the LED light source increases.
  • the lens diameter is changed in the plane so that the aperture ratio of the lens diameter and the second opening portion with respect to the lens diameter falls within the above-described preferable range. Thereby, an opening can be provided according to the light beam from the LED light source, and parallel light can be made while using light more efficiently. Further, at this time, it is easier to control the light beam by providing a mirror-like reflective layer on the back surface of the LED light source than from the case of providing a diffusive reflective layer.
  • the light reflecting layer may have a cholesteric liquid crystal layer.
  • the cholesteric liquid crystal layer includes a cholesteric liquid crystal phase and has wavelength selective reflectivity with respect to circularly polarized light in one turning direction (right circularly polarized light or left circularly polarized light) in a specific wavelength range.
  • the light reflecting layer includes, for example, a cholesteric liquid crystal layer that reflects the right circularly polarized light in the red wavelength range (620 nm to 750 nm) and the left side of the red wavelength range according to the configuration of the color filter of the liquid crystal display device described later.
  • a portion other than the second opening by having a cholesteric liquid crystal layer that reflects right circularly polarized light in a wavelength range of ⁇ 490 nm) and a cholesteric liquid crystal layer that reflects left circularly polarized light in a blue wavelength region , Red light, green light and blue light can be reflected.
  • the width of the selective reflection band can be controlled by adjusting ⁇ n.
  • ⁇ n can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer, the mixing ratio thereof, and the temperature during alignment. It is also known that the reflectance in the cholesteric liquid crystal phase depends on ⁇ n. When obtaining a similar reflectance, the larger the ⁇ n, the smaller the number of spiral pitches, that is, the thinner the film thickness. it can.
  • the reflected light of the cholesteric liquid crystal phase is circularly polarized. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction of the spiral in the cholesteric liquid crystal phase.
  • the selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the helical twist direction of the cholesteric liquid crystal phase is right, and reflects left circularly polarized light when the helical twist direction is left.
  • the direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the reflective region or the type of chiral agent added.
  • the selective reflection wavelength in the cholesteric liquid crystal layer can be set in any range of visible light (about 380 to 780 nm) and near infrared light (about 780 to 2000 nm), and the setting method is as described above. is there.
  • Examples of the material used for forming the cholesteric liquid crystal layer include a liquid crystal composition containing a liquid crystal compound.
  • the liquid crystal compound is preferably a polymerizable liquid crystal compound.
  • the liquid crystal composition containing a polymerizable liquid crystal compound may further contain a surfactant, a chiral agent, a polymerization initiator, and the like.
  • the surfactant, the chiral agent, and the polymerization initiator known liquid crystal compounds, surfactants, chiral agents, and polymerization initiators used for the cholesteric liquid crystal layer can be used.
  • the second opening may be physically formed, and a cholesteric liquid crystal phase may be formed in a region serving as the second opening.
  • a region having light transmittance may be formed as the second opening portion by not forming it and having no reflectivity.
  • a photoresist method may be used when producing the light reflecting layer.
  • a resist material is applied to the opposite surface of the lens, and light is irradiated and developed through a mask corresponding to the pattern of the reflective layer to be produced. Thereafter, for example, aluminum or silver is vapor-deposited, and then the resist material is washed and removed, whereby a reflective layer having a desired pattern can be produced.
  • a photomask is not used, parallel light can be irradiated from the lens side instead. The method of irradiating parallel light from the lens side is better than the case of using a photomask in that the alignment accuracy between the lens and the opening can be improved.
  • the light used for exposure includes ultraviolet rays such as g-line, h-line, i-line, and j-line, and i-line exposure is particularly preferable.
  • Drying (pre-baking) of the film with a photoresist material applied (preferably applied) on the substrate can be performed using a hot plate, oven, etc., at a temperature range of 50 to 140 ° C. for 10 to 300 seconds. it can.
  • the uncured part after exposure is eluted in the developer, leaving only the cured part.
  • the development temperature is usually 20 to 30 ° C., and the development time is 20 to 600 seconds. Any developer can be used as long as it dissolves the film of the photosensitive resin composition in the uncured portion while not dissolving the cured portion. Specifically, a combination of various organic solvents or an alkaline aqueous solution can be used.
  • organic solvent described above examples include those listed above as the solvents that can be used when preparing the photosensitive resin composition.
  • alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium oxalate, sodium metasuccinate, aqueous ammonia, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide.
  • An alkaline compound such as tetraethylammonium hydroxide (TMAH), choline, pyrrole, piperidine, 1,8-diazabicyclo- [5,4,0] -7-undecene, preferably in a concentration of 0.001 to 10% by mass, preferably Examples thereof include an alkaline aqueous solution dissolved so as to be 0.01 to 1% by mass. In the case where an alkaline aqueous solution is used as a developer, washing (rinsing) with water is generally performed after development.
  • the composition of the photoresist material includes (A) a photopolymerization initiator, (B) a solvent, (C) a polymerizable monomer and (D) an alkali-soluble resin, and (A) one or more photopolymerization initiators. Including an O-acyl oxime ester compound and one or more ⁇ -aminoacetophenone compounds, two or more independent patterns can be formed simultaneously. (D) At least one of the alkali-soluble resins has an acid value of 150 to 400 mgKOH / g. Furthermore, (E) a photosensitizer or a co-initiator is included.
  • the total addition amount of (A) photopolymerization initiator and (E) photosensitizer or co-initiator is 0.1 to 15.0% by mass in the total solid content of the photosensitive resin composition.
  • C) The polymerizable monomer has an acid group, and the acid value is 20 to 150 mgKOH / g.
  • the O-acyl oxime ester compound has an aromatic ring.
  • the O-acyl oxime ester compound has a condensed ring including an aromatic ring.
  • the O-acyl oxime ester compound has a condensed ring including a benzene ring and a hetero ring.
  • An O-acyl oxime ester compound and an ⁇ -aminoacetophenone compound are contained at a ratio of 10:90 to 80:20 (mass ratio).
  • D) The alkali-soluble resin is an acrylic resin.
  • the photosensitive resin composition of the present invention contains (A) a photopolymerization initiator, (B) a solvent, (C) a polymerizable monomer, and (D) an alkali-soluble resin. It includes the above O-acyloxime ester compound and one or more ⁇ -aminoacetophenone compounds, and is capable of forming two or more independent patterns simultaneously. By using the O-acyl oxime ester compound and the ⁇ -aminoacetophenone compound in combination, two or more kinds of independent patterns can be formed.
  • “two or more independent patterns can be formed simultaneously” means that two or more types of patterns having different heights are formed by one exposure. One exposure means exposure performed at the same time.
  • the exposure method is not limited, and examples thereof include a method using halftone masks having different transmittances, and a method in which exposure is performed by simultaneously irradiating two or more exposure amounts.
  • the pattern group (1) composed of a plurality of patterns having a high height and the pattern group (2 composed of a plurality of patterns having a low height) are provided.
  • the height difference between the pattern group (1) and the pattern group (2) is preferably 0.4 to 1.1 ⁇ m.
  • the height of the pattern group can be determined as an average value of each.
  • it is preferable that the height of each independent pattern group is constant, for example, it is preferable to set to ⁇ 0.1 ⁇ m with a standard deviation of 3 ⁇ .
  • Photopolymerization initiator In the present invention, an O-acyloxime ester compound and an ⁇ -aminoacetophenone compound are used as the photopolymerization initiator (A).
  • O-acyl oxime ester compound used in the present invention is not particularly defined as long as it has a —C ⁇ N—O—C ( ⁇ O) structure, but has an aromatic ring.
  • O-acyl oxime ester compound used in the present invention preferably has a structure in which the oxime ester group is directly bonded to the aforementioned condensed ring.
  • the condensed ring containing an aromatic ring should just be an aromatic ring at least 1 ring.
  • the O-acyl oxime ester compound can be appropriately selected from known photopolymerization initiators such as the O-acyl oxime ester compounds described in JP-A Nos. 2000-80068 and 2001-233842. Specifically, 1- (4-phenylsulfanyl-phenyl) -butane-1,2-dione 2-oxime-O-benzoate, 1- (4-phenylsulfanyl-phenyl) -octane-1,2-dione 2-oxime-O-benzoate, 1- (4-phenylsulfanyl-phenyl) -octane-1-one oxime-O-acetate, 1- (4-phenylsulfanyl-phenyl) -butan-1-one oxime-O-acetate Etc.
  • One type of O-acyl oxime ester compound may be used, or two or more types of compounds may be used in combination.
  • IRGACURE OXE01 or OXE02 manufactured by BASF can also be used as the oxime ester-based photopolymerization material.
  • ⁇ -Aminoacetophenone compound One ⁇ -aminoacetophenone compound may be used alone, or two or more types may be used in combination.
  • ⁇ -aminoacetophenone compound an acid adduct salt of the compound represented by the above general formula (4) can also be used.
  • ⁇ -aminoacetophenone compounds polymerization initiators available from Ciba Specialty Chemicals under the trade names Irgacure 907 (IRGACURE 907), Irgacure 369 (IRGACURE 369), and Irgacure 379 (IRGACURE 379) are available. It can be illustrated.
  • ⁇ -aminoacetophenone compounds include 2-dimethylamino-2-methyl-1-phenylpropan-1-one, 2-diethylamino-2-methyl-1-phenylpropan-1-one, and 2-methyl.
  • 2-morpholino-1-phenylpropan-1-one 2-dimethylamino-2-methyl-1- (4-methylphenyl) propan-1-one
  • 2-dimethylamino-1- (4-ethylphenyl) -2-Methylpropan-1-one 2-dimethylamino-1- (4-isopropylphenyl) -2-methylpropan-1-one
  • 1- (4-butylphenyl) -2-dimethylamino-2-methyl Propan-1-one 2-dimethylamino-1- (4-methoxyphenyl) -2-methylpropan-1-one
  • 2-dimethylamino-2-methyl -1- (4-methylthiophenyl) propan-1-one 2-methyl-1- (4-
  • the ⁇ -aminoacetophenone compound is preferably contained in a proportion of 0.1 to 10% by mass with respect to the total solid content excluding the solvent contained in the photosensitive resin composition of the present invention, and 0.3 to 8 More preferably, it is contained in a proportion of 0.5% by mass, and more preferably in a proportion of 0.5-5% by mass.
  • Photopolymerization Initiators in the present invention, other generally known photopolymerization initiators may be further used in combination as long as the effects of the combined use of the O-acyloxime ester compound and the ⁇ -aminoacetophenone compound are not impaired. it can.
  • the photopolymerization initiator that can be used in combination is not particularly limited, but the mass of the O-acyloxime ester compound and the ⁇ -aminoacetophenone compound with respect to the total photoinitiator mass is 80% or more from the viewpoint of halftone aptitude and sensitivity. Preferably, it is 90% or more. Even when other initiators are used in combination, the optimum addition mass ratio of the O-acyloxime ester compound and the ⁇ -aminoacetophenone compound is the same.
  • (B) Solvent The (B) solvent that can be used in the present invention is not particularly defined unless departing from the gist of the present invention, but is classified into esters, ethers, ketones, aromatic hydrocarbons, and the like. A solvent is mentioned.
  • esters used as a solvent include, for example, ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate,
  • alkyl esters methyl lactate, ethyl lactate, methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc.
  • 3-oxypropion 3-oxypropionic acid alkyl esters such as methyl acid and ethyl 3-oxypropionate; methyl 2-oxypropionate, ethyl 2-oxypropionate, propyl 2-
  • ethers include, for example, diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol methyl ether
  • Examples include acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate and the like.
  • ketones include methyl ethyl ketone, cyclohexanone, 2-heptanone, 3-heptanone and the like.
  • aromatic hydrocarbons include toluene, xylene, and the like.
  • methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, ethyl carbitol acetate Butyl carbitol acetate, propylene glycol methyl ether acetate and the like are preferable.
  • a solvent may be used independently and may be used in combination of 2 or more type.
  • the content of the solvent (B) in the photosensitive resin composition of the present invention is appropriately determined in consideration of the applicability of the photosensitive resin composition and the like.
  • the content of the solvent is 45 to 85% by mass.
  • (C) Polymerizable monomer In the photosensitive resin composition of this invention, 1 or more types of (C) polymerizable monomers are contained as a sclerosing
  • the polymerizable monomer a plurality of polymerizable monomers may be used in combination, or one or more of a polymerizable monomer containing an acid group and a polymerizable monomer having no acid group may be used in combination.
  • polymerizable monomers containing carboxyl groups include polyfunctional acrylates modified with carboxyl groups in addition to unsaturated fatty acids such as acrylic acid, methacrylic acid, phthalic acid, fumaric acid, maleic acid, itaconic acid, crotonic acid, and cinnamonic acid.
  • carboxyl group-modified polyfunctional acrylate compounds include succinic acid modified pentaerythritol triacrylate, succinic acid modified trimethylolpropane triacrylate, succinic acid modified pentaerythritol tetraacrylate, succinic acid modified dipentaerythritol pentaacrylate, and succinic acid modified dipenta.
  • Erythritol hexaacrylate adipic acid modified pentaerythritol triacrylate, adipic acid modified trimethylolpropane triacrylate, adipic acid modified pentaerythritol tetraacrylate, adipic acid modified dipentaerythritol pentaacrylate, adipic acid modified dipentaerythritol tetraacrylate, etc.
  • Aronix M-510, Aronix M-520, Aronix T -2349, Aronix TO-2359 can be preferably used commercially available compounds such as.
  • polymerizable monomers containing phenolic hydroxyl groups include p-hydroxystyrene, 3,4-dihydroxystyrene, 3,5-dihydroxystyrene, 2,4,6-trihydroxystyrene, (p-hydroxy) benzyl acrylate, and salicylic acid.
  • Modified pentaerythritol triacrylate, salicylic acid modified trimethylolpropane triacrylate, salicylic acid modified pentaerythritol tetraacrylate, salicylic acid modified dipentaerythritol pentaacrylate, salicylic acid modified dipentaerythritol hexaacrylate, etc. are preferred, salicylic acid modified dipentaerythritol Hexaacrylate, salicylic acid-modified dipentaerythritol pentaacrylate.
  • Examples of the polymerizable monomer containing a sulfonic acid group include vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, and butyl sulfonic acid-modified acrylamide.
  • Examples of the polymerizable monomer containing a phosphoric acid group include vinyl phosphoric acid, styrene phosphoric acid, and butyl phosphoric acid-modified acrylamide. Of these, butylsulfonic acid-modified acrylamide is preferable, and a commercially available compound is ATBS (manufactured by Toagosei Co., Ltd.).
  • a polymerizable monomer having a carboxyl group and a polymerizable monomer having a phenolic hydroxyl group are preferable, and a polymerizable monomer having a carboxyl group is more preferable, from the viewpoint of production suitability and cost.
  • the polymerizable monomer having no acid group that can be used in combination with the polymerizable monomer having an acid group is not particularly limited as long as it can be polymerized, and is a low molecular compound having at least one ethylenic double bond, dimer Compounds capable of addition polymerization such as isomers, trimers, and oligomers can be preferably used.
  • Examples of the ethylenic compound include an ester of an unsaturated carboxylic acid and a monohydroxy compound, an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, an ester of an aromatic polyhydroxy compound and an unsaturated carboxylic acid, and an unsaturated carboxylic acid. Reaction of ester, polyisocyanate compound and (meth) acryloyl-containing hydroxy compound obtained by esterification reaction of acid with polyhydric carboxylic acid and polyhydric hydroxy compound such as fatty acid polyhydroxy compound and aromatic polyhydroxy compound described above And an ethylenic compound having a urethane skeleton.
  • Specific polymerizable monomers can be classified and listed according to the number of polymerizable groups in one molecule as shown below, but are not limited thereto.
  • Compound having one polymerizable group in one molecule examples include, for example, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, Stearyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-n-butylcyclohexyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, 2-ethylhexyl glycol (meth) Acrylate, butoxyethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, cyanoethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 2,2, 2-tetraflu
  • Examples of a compound having two polymerizable groups in one molecule include two (meth) acryloyl groups in the same molecule as the polymerizable group.
  • Examples of the compound having three polymerizable groups in one molecule include, for example, trimethylolpropane tri (meth) acrylate, trimethylolethanetri ( (Meth) acrylate, trimethylolpropane alkylene oxide modified tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, trimethylolpropane tri ((meth) acryloyloxypropyl) ether, isocyanuric acid Alkylene oxide modified tri (meth) acrylate, dipentaerythritol propionate tri (meth) acrylate, tri ((meth) acryloyloxyethyl) isocyanurate, hydroxypivalaldehyde modified dimethylol group
  • Examples include lopantri (meth) acrylate, sorbitol tri (meth) acryl
  • (meth) acrylate monomers having two or more (meth) acryloyl groups in the same molecule are preferable, and three or more The (meth) acrylate monomer having a (meth) acryloyl group is more preferable.
  • (meth) acrylate monomers having 4 or more (meth) acryloyl groups are advantageous.
  • the total of the polymerizable monomer having an acid group and the polymerizable monomer having no acid group is preferably 100 parts by mass.
  • the addition ratio is not particularly limited as long as it is within the preferable acid value range shown above.
  • the content of the polymerizable monomer is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, based on the total solid content excluding the solvent of the photosensitive resin composition. %, More preferably in the range of 20 to 60% by mass.
  • (D) Alkali-soluble resin As the (D) alkali-soluble resin applicable to the present invention, any polymer compound that is soluble in a solvent can be used. Each of the alkali-soluble resins may be used as a single compound or a plurality of compounds may be used in combination. As a preferable alkali-soluble resin, a resin having an acid group (hereinafter, appropriately referred to as “alkali-soluble resin”) is preferable in view of alkali developability by a photolithography method.
  • alkali-soluble resin a resin having an acid group
  • the alkali-soluble resin is preferably a linear organic polymer, and an alkali-soluble polymer having at least one alkali-soluble group (for example, a carboxyl group, a phosphate group, a sulfonate group, etc.) therein. More preferably, it is soluble in an organic solvent and can be developed with a weak alkaline aqueous solution.
  • alkali-soluble group for example, a carboxyl group, a phosphate group, a sulfonate group, etc.
  • a known radical polymerization method can be applied to the production of the alkali-soluble resin.
  • Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by radical polymerization can be easily set by those skilled in the art, and the conditions are determined experimentally. It can also be done.
  • a polymer having a carboxyl group in the side chain is preferable.
  • JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, JP-A-59-71048 As described, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially esterified maleic acid copolymer, etc., and side chain Examples thereof include acidic cellulose derivatives having a carboxylic acid, polymers obtained by adding an acid anhydride to a polymer having a hydroxyl group, and high molecular polymers having a (meth) acryloyl group in the side chain.
  • a benzyl (meth) acrylate / (meth) acrylic acid copolymer or a multi-component copolymer composed of benzyl (meth) acrylate / (meth) acrylic acid / other monomers is particularly preferable.
  • those obtained by copolymerizing 2-hydroxyethyl methacrylate are also useful.
  • the aforementioned polymers can be mixed and used in an arbitrary amount.
  • 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer 2-hydroxy-3-phenoxypropyl acrylate / polymethyl described in JP-A-7-140654 Methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer Etc.
  • alkali-soluble resins examples include JP-A-7-207211, JP-A-8-259876, JP-A-10-300922, JP-A-11-140144, JP-A-11-174224, and JP-A-11-174224.
  • Known polymer compounds described in JP 2000-56118 A, JP 2003-233179 A, JP 2009-52020 A, and the like can be used.
  • the specific structural unit of the alkali-soluble resin in particular, a copolymer of (meth) acrylic acid and other monomers copolymerizable therewith can be easily obtained, and adjustment of alkali solubility and the like is easy. Therefore, it is preferably used.
  • Examples of other monomers copolymerizable with the above-mentioned (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, vinyl compounds and the like.
  • the hydrogen atom of the alkyl group and the aryl group may be substituted with a substituent.
  • alkyl (meth) acrylate and aryl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl.
  • vinyl compound examples include styrene, ⁇ -methylstyrene, vinyl toluene, glycidyl (meth) acrylate, acrylonitrile, vinyl acetate, N-vinylpyrrolidone, tetrahydrofurfuryl (meth) acrylate, polystyrene macromonomer, polymethyl methacrylate.
  • R 31 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 33 represents an alkyl group having 1 to 8 carbon atoms or 6 carbon atoms. Represents -12 aralkyl groups. ], Etc. can be mentioned.
  • copolymerizable monomers can be used singly or in combination of two or more.
  • Preferred other copolymerizable monomers are selected from CH 2 ⁇ CR 31 R 32 , CH 2 ⁇ C (R 31 ) (COOR 33 ), phenyl (meth) acrylate, benzyl (meth) acrylate and styrene. At least one, and particularly preferably CH 2 ⁇ CR 31 R 32 and / or CH 2 ⁇ C (R 31 ) (COOR 33 ). These R 31 , R 32 and R 33 are as defined above.
  • the content of the alkali-soluble resin in the photosensitive resin composition is preferably 5 to 60% by mass, more preferably 10%, based on the total solid content excluding the solvent contained in the photosensitive resin composition. It is -55 mass%, Most preferably, it is 15-50 mass%.
  • the alkali-soluble resin used in the present invention preferably has a weight average molecular weight (Mw) of 1,000 to 100,000, more preferably 5,000 to 50,000.
  • the acid value of the alkali-soluble resin used in the present invention is preferably 150 to 400 mgKOH / g, more preferably 180 to 380 mgKOH / g, and further preferably 200 to 350 mgKOH / g. By setting it as such a range, the photosensitive composition excellent in the halftone aptitude etc. is obtained.
  • Photosensitizer or co-initiator may be further added to the photosensitive resin composition of the present invention. By adding these, spectral sensitivity can be moved or expanded, and photopolymerization of the photosensitive resin composition of the present invention can be promoted. As the above-described photosensitizer or co-initiator, it is particularly preferable to use an aromatic compound.
  • thioxanthone examples include thioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-dodecylthioxanthone, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 1- Methoxycarbonylthioxanthone, 2-ethoxycarbonylthioxanthone, 3- (2-methoxyethoxycarbonyl) thioxanthone, 4-butoxycarbonylthioxanthone, 3-butoxycarbonyl-7-methylthioxanthone, 1-cyano-3-chlorothioxanthone, 1-ethoxycarbonyl -3-chlorothioxanthone, 1-ethoxycarbonyl-3-ethoxythioxanthone, 1-ethoxycarbonyl-3-aminothioxanthone, 1-ethoxy Carbon
  • benzophenone examples include benzophenone, 4-phenylbenzophenone, 4-methoxybenzophenone, 4,4′-dimethoxybenzophenone, 4,4′-dimethylbenzophenone, 4,4′-dichlorobenzophenone, and 4,4′-bis.
  • Examples of the coumarin include coumarin 1, coumarin 2, coumarin 6, coumarin 7, coumarin 30, coumarin 102, coumarin 106, coumarin 138, coumarin 152, coumarin 153, coumarin 307, coumarin 314, coumarin 314T, coumarin 334, Coumarin 337, Coumarin 500, 3-Benzoylcoumarin, 3-benzoyl-7-methoxycoumarin, 3-benzoyl-5,7-dimethoxycoumarin, 3-benzoyl-5,7-dipropoxycoumarin, 3-benzoyl-6,8 -Dichlorocoumarin, 3-benzoyl-6-chlorocoumarin, 3,3'-carbonyl-bis [5,7-di (propoxy) coumarin], 3,3'-carbonyl-bis (7-diethylaminocoumarin), 3- Isobutyroylcoumarin, 3-benzoyl 5,7-dimethoxycoumarin, 3-benzoyl-5,7-diethoxy
  • 3- (aroylmethylene) thiazoline examples include 3-methyl-2-benzoylmethylene- ⁇ -naphthothiazoline, 3-methyl-2-benzoylmethylene-benzothiazoline, 3-ethyl-2-propionylmethylene- ⁇ -. Naphthiazoline is mentioned.
  • rhodanine examples include 4-dimethylaminobenzalrhodanine, 4-diethylaminobenzalrhodanine, 3-ethyl-5- (3-octyl-2-benzothiazolinylidene) rhodanine, JP-A-8-305, And rhodanine derivatives represented by the formulas [1], [2] and [7] disclosed in Japanese Patent No. 019.
  • the photosensitizer or co-initiator (E) to be added to the photosensitive resin composition of the present invention is selected from benzophenone and derivatives thereof, thioxanthone and derivatives thereof, anthraquinone and derivatives thereof, and coumarin derivatives among the above.
  • Preferred is at least one photosensitizer compound.
  • the content of (E) photosensitizer or co-initiator in the photosensitive resin composition is 0.5 to 15 with respect to the total solid content excluding the solvent contained in the photosensitive resin composition. % By mass is preferable, more preferably 1 to 12% by mass, and particularly preferably 2 to 10% by mass. Further, the total amount of addition of (A) photopolymerization initiator and (E) photosensitizer or co-initiator is 0.1 to 15.0% by mass in the total solid content of the photosensitive resin composition. It is preferably 0.1 to 12.0% by mass.
  • a radical scavenger In the photosensitive resin composition of the present invention, if necessary, a radical scavenger, a light stabilizer, a curing aid, a thermal polymerization initiator, a surfactant, an adhesion assistant, a development accelerator, a thermal polymerization inhibitor, Various additives such as a dispersant and other additives (filler, ultraviolet absorber, anti-aggregation agent, etc.) can be contained.
  • Light stabilizer Various light stabilizers may be added to the present invention to improve light resistance.
  • the kind of the light stabilizer is not particularly limited, but from the viewpoint of versatility, a hindered amine light stabilizer; for example, bis (2,2,6,6-tetramethyl-4-piperidyl) adipate, bis (1,2,2) , 6,6-pentamethyl-4-piperidyl) adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) Sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-tetraacrylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl)- 1,2,3,4-tetraacrylate, hindered phenol light stabilizer; for example, pentaerythritol-tetrakis (3- (3 ′
  • the content of the light stabilizer in the present invention is preferably about 0.1 to 5.0% by mass, and preferably 0.2 to 4.0% by mass with respect to the total solid content of the photosensitive resin composition. More preferably, it is 0.5 to 2.0% by mass. If it is 0.1% by mass or less, the desired light resistance cannot be obtained, and if it is 5.0% by mass or more, the sensitivity decreases, which is not preferable.
  • a compound having an epoxy ring may be used in order to increase the strength of the formed coating film.
  • the use of a compound having an epoxy ring is preferable because thermal polymerization proceeds, solvent resistance is improved, and ITO sputtering suitability is improved.
  • the compound having an epoxy ring is a compound having two or more epoxy rings in the molecule such as bisphenol A type, cresol novolac type, biphenyl type, and alicyclic epoxy compound.
  • bisphenol A type includes Epototo YD-115, YD-118T, YD-127, YD-128, YD-134, YD-8125, YD-7011R, ZX-1059, YDF-8170, YDF-170, etc.
  • bisphenol F type and bisphenol S type similar to these can also be mentioned.
  • Epoxy acrylates such as Ebecryl 3700, 3701, and 600 (manufactured by Daicel UCB) can also be used.
  • cresol novolak type examples include Epototo YDPN-638, YDPN-701, YDPN-702, YDPN-703, YDPN-704, etc. (above, manufactured by Tohto Kasei), Denacol EM-125, etc.
  • Examples of the biphenyl type include 3,5,3 ′, 5′-tetramethyl-4,4′-diglycidylbiphenyl
  • examples of the alicyclic epoxy compound include Celoxide 2021, 2081, 2083, 2085, Epolide GT-301, GT-302, GT-401, GT-403, EHPE-3150 (above, manufactured by Daicel Chemical Co., Ltd.), Santo Tote ST-3000, ST-4000, ST-5080, ST-5100, etc. (above, manufactured by Tohto Kasei Co., Ltd.) Epilon 430, 673, 695, 850S, 4032 (above DIC) ), And the like.
  • 1,1,2,2-tetrakis (p-glycidyloxyphenyl) ethane, tris (p-glycidyloxyphenyl) methane, triglycidyltris (hydroxyethyl) isocyanurate, o-phthalic acid diglycidyl ester, terephthalic acid Diglycidyl ester, amine type epoxy resins such as Epototo YH-434 and YH-434L (manufactured by Nagase Kasei Co., Ltd.), glycidyl ester in which dimer acid is modified in the skeleton of bisphenol A type epoxy resin, and the like can also be used.
  • “molecular weight / number of epoxy rings” is preferably 100 or more, and more preferably 130 to 500. If the “molecular weight / number of epoxy rings” is small, the curability is high, the shrinkage during curing is large, and if it is too large, the curability is insufficient, the reliability is poor, and the flatness is poor.
  • Preferred compounds include Epototo YD-115, 118T, 127, YDF-170, YDPN-638, YDPN-701 (manufactured by Nagase Kasei Co., Ltd.), Plaxel GL-61, GL-62, 3, 5, 3 ′, Examples thereof include 5′-tetramethyl-4,4′diglycidylbiphenyl, ceroxide 2021, 2081, epolide GT-302, GT-403, and EHPE-3150 (manufactured by Daicel Chemical Industries, Ltd.).
  • the content of the curing aid in the present invention is preferably about 0.1 to 5.0% by mass, and preferably 0.2 to 4.0% by mass with respect to the total solid content of the photosensitive resin composition. More preferably, it is 0.5 to 2.0% by mass. If it is 0.1% by mass or less, the effect of promoting the curing cannot be obtained, and if it is 5.0% by mass or more, the light resistance is deteriorated, which is a problem.
  • thermal polymerization initiator It is also effective to contain a thermal polymerization initiator in the photosensitive resin composition of the present invention.
  • thermal polymerization initiator include various azo compounds and peroxide compounds.
  • azo compounds include azobis compounds.
  • peroxide compounds include Ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, peroxydicarbonates, and the like.
  • the photosensitive resin composition of the present invention is preferably constituted using various surfactants from the viewpoint of improving coating properties.
  • the surfactant can improve the liquid properties (particularly fluidity) when used as a coating liquid, and can improve the uniformity of the coating thickness and the liquid-saving property. In other words, the interfacial tension between the substrate and the coating liquid is lowered to improve the wettability to the substrate and the coating property to the substrate is improved. This is also effective in that a film having a uniform thickness with small thickness unevenness can be formed. It is also effective in slit coating that easily causes liquid breakage.
  • nonionic, cationic and anionic surfactants can be used.
  • a nonionic surfactant and a fluorosurfactant having a perfluoroalkyl group are preferable.
  • the fluorine content of the fluorosurfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass.
  • the fluorine content is in the above-described range, it is effective in terms of coating thickness uniformity and liquid-saving properties, and the solubility in the composition is also good.
  • fluorosurfactant examples include Megafac F171, F172, F173, F173, F177, F141, F142, F143, F144, R30, F437 (above, manufactured by DIC), Florad FC430. FC431, FC171 (Sumitomo 3M), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC1068, SC-381, SC -383, S393, KH-40 (above, manufactured by AGC) and the like.
  • surfactants other than fluorine-based surfactants include phthalocyanine derivatives (commercially available product EFKA-745 (manufactured by Morishita Sangyo)), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid-based (co) heavy Combined polyflow no. 75, no. 90, no.
  • Cationic surfactants such as 95 (manufactured by Kyoeisha Yushi Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.); Oxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester (manufactured by BASF Pluronic L10, L31, L61, L62, 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 901, 904, Nonionic surfactants such as 150R1; anionic surfactants such as W004, W005, and W017 (manufactured by Yusho Co., Ltd.).
  • the addition amount of the surfactant is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 1.0% by mass with respect to the total mass of the photosensitive resin composition.
  • the development accelerator is used as the photosensitive resin composition.
  • an organic carboxylic acid preferably a low molecular weight organic carboxylic acid having a molecular weight of 1000 or less is preferable.
  • aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid, caproic acid, diethyl acetic acid, enanthic acid, caprylic acid; oxalic acid, malonic acid, succinic acid, Aliphatic dicarboxylic acids such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, brassic acid, methylmalonic acid, ethylmalonic acid, dimethylmalonic acid, methylsuccinic acid, tetramethylsuccinic acid, citraconic acid; Aliphatic tricarboxylic acids such as tricarballylic acid, aconitic acid, and camphoric acid; aromatic monocarboxylic acids such as benzoic acid, toluic acid, cumic acid, hemelitic acid, and mesitylene acid; phthalic acid
  • thermal polymerization inhibitor it is preferable to further add a thermal polymerization inhibitor to the photosensitive resin composition of the present invention.
  • a thermal polymerization inhibitor for example, hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, Benzoquinone, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2-mercaptobenzimidazole and the like are useful.
  • fillers such as glass and alumina; ultraviolet absorbers such as 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole and alkoxybenzophenone; and sodium polyacrylate And the like.
  • the photosensitive resin composition of the present invention comprises the components described above, that is, (A) a photopolymerization initiator, (B) a solvent, (C) a polymerizable monomer, (D) an alkali-soluble resin, and (E ) It can be prepared by adding and mixing other additives such as photosensitizers or co-initiators.
  • the thickness is preferably 30 ⁇ m or less from the viewpoint of not deteriorating brittleness. More preferably, it is 10 ⁇ m or less, and more preferably around 1 ⁇ m.
  • the refractive index of the second support is preferably 1.30 or more, more preferably 1.4 or more, and further preferably 1.6 or more, from the viewpoint of preventing generation of side bands. It is preferably 1.80 or more, most preferably 1.9 or more.
  • the refractive index is preferably 2.50 or less, more preferably 2.20 or less, and even more preferably less than 2.10. More preferably, it is 2.05 or less.
  • the refractive index of the second support can be adjusted by the type of components used for forming the layer in the same manner as the first support.
  • a component used for forming a layer it can form using the polymeric composition containing a polymeric compound and a polymerization initiator similarly to a 1st support body.
  • the resin layer which has resin as a main component similarly to a 1st support body may be sufficient.
  • particles may be contained in the same manner as the first support.
  • the particles are not particularly limited, and may be inorganic particles or organic particles.
  • One kind of the above-mentioned particles may be used, or two or more kinds may be mixed and used. Smaller particles are preferable from the viewpoint of suppressing scattering. Therefore, the particle size is preferably 100 nm or less, more preferably 30 nm or less, and even more preferably 25 nm or less as the primary particle diameter.
  • a particle size is 1 nm or more as a primary particle diameter.
  • the primary particle size of the above-mentioned particles is a value obtained by measuring the particle size of 50 particles with a scanning electron microscope (SEM) and calculating the number average value.
  • the particle content in the layer containing the above-mentioned particles is preferably set as appropriate so that the average refractive index in the above-mentioned range can be obtained.
  • the refractive index of the above-mentioned particles is preferably 2.00 or more and 3.00 or less, and preferably 2.05 or more and 2.50 or less from the viewpoint of adjusting the refractive index. More preferred.
  • the refractive index of the particles is a value measured by the following method. A resin material having a known refractive index is doped with particles to produce a resin material in which the particles are dispersed. The produced resin material is applied on a silicon substrate or a quartz substrate to form a resin film.
  • the refractive index of the formed resin film is measured with an ellipsometer, and the refractive index of the particles is determined from the resin material constituting the resin film and the volume fraction of the particles.
  • the refractive index of the titanium oxide particles used in Examples described later is a value obtained by the above-described method.
  • a surface light source device includes at least the above-described louver film and a light source.
  • the configuration of the surface light source device includes at least a light source and a light guide plate, and optionally an edge light system including a reflection plate, a diffusion plate, and the like, and at least a plurality of light sources and diffusion plates arranged on the reflection plate, the reflection plate There are direct type including.
  • the surface light source device described above may have any configuration. Details are described in publications such as Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, and Japanese Patent No. 3448626, and the contents of these publications are incorporated in the present invention.
  • the light source may be a white light source or a monochromatic light source using a blue LED or an ultraviolet LED.
  • a white light source it is preferable that color conversion is not necessary and a simple configuration can be achieved.
  • a monochromatic light source is preferable in that the directivity of light can be controlled without chromatic aberration.
  • a wavelength conversion film using quantum dot particles or a phosphor may be provided between the louver film and the light source.
  • a color filter containing quantum dot particles or phosphors may be provided in the liquid crystal panel. Light that has passed through the liquid crystal layer of the liquid crystal panel with high directivity is color-converted into quantum dot particles, and the converted light is diffused, so that the viewing angle can be widened.
  • the surface light source device may have an optical film such as a reflective polarizer, a prism sheet, a diffusion sheet, and a wavelength conversion film.
  • the reflective polarizer 20 is provided between the louver film 2 and the diffusion plate 14, that is, between the louver film 2 and the light source 16. With the configuration having the reflective polarizer 20, light utilization efficiency can be improved by light recycling.
  • the various louver films 2 shown in FIGS. 2 and 5 can be used.
  • the reflective polarizer 20 a general reflective polarizer can be used.
  • the product name: DBEF manufactured by 3M may be used.
  • a liquid crystal display device includes at least the surface light source device described above and a liquid crystal panel.
  • the liquid crystal panel usually includes at least a viewing side polarizer, a liquid crystal cell, and a backlight side polarizer.
  • a liquid crystal cell having a liquid crystal layer sandwiched between substrates provided with electrodes on at least one opposite side, the liquid crystal cell is arranged between two polarizers.
  • the liquid crystal display device includes a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates, and displays an image by changing the alignment state of the liquid crystal by applying a voltage. Furthermore, it has an accompanying functional layer such as a polarizing plate protective film, an optical compensation member that performs optical compensation, and an adhesive layer as necessary.
  • a color filter substrate thin layer transistor substrate, lens film, diffusion sheet, hard coat layer, antireflection layer, low reflection layer, antiglare layer, etc., forward scattering layer, primer layer, antistatic layer And a surface layer such as an undercoat layer may be disposed.
  • the above-described color filter containing quantum dot particles or phosphor or a lens film light on the viewing side of the viewing side polarizer You may provide the functional layer which eases the directivity of light, such as a diffusion sheet and a diffraction film.
  • the surface light source device included in the liquid crystal display device is as described above.
  • liquid crystal cell polarizing plate, polarizing plate protective film, and the like constituting the liquid crystal display device according to one embodiment of the present invention
  • those prepared by known methods and commercially available products can be used without any limitation. it can. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers.
  • a louver film 2 may be arranged between the liquid crystal cell 32 and the backlight side polarizer 34 as in the liquid crystal display device 30 shown in FIG.
  • the louver film 2 may be arranged between the backlight side polarizer 34 and the diffuser plate 14.
  • the backlight side polarizer may not be provided, and the viewing side polarizer 36 may be provided on the opposite side of the liquid crystal cell 32 from the light source 16 side.
  • various louver films 2 shown in FIGS. 2 to 5 can be used.
  • the arrangement position of the louver film 2 is not limited to being on the light source side with respect to the liquid crystal cell 32.
  • the louver film 2 is disposed between the liquid crystal cell 32 and the backlight side polarizer 34, but the louver film 2 is placed on the surface 32 a of the liquid crystal cell 32, that is, You may arrange
  • the louver film 2 is disposed between the backlight side polarizer 34 and the diffusion plate 14, but the louver film 2 is placed on the surface 32 a of the liquid crystal cell 32, that is, the display surface. You may arrange on top.
  • the louver film 2 is disposed between the backlight side polarizer 34 and the diffusion plate 14, but the louver film 2 is placed on the surface 32 a of the liquid crystal cell 32, that is, the display surface. You may arrange on top.
  • the louver film 2 is disposed between the backlight side polarizer 34 and the diffusion plate 14, but the louver film 2 is placed on the surface 32 a of the liquid crystal cell 32, that is, the
  • the louver film 2 is disposed between the liquid crystal cell 32 and the diffusion plate 14, but the louver film 2 is formed on the viewing side polarizer 36 provided on the liquid crystal cell 32. You may arrange
  • the louver film 2 can also be disposed on the outermost surface side of the liquid crystal display device 30. Even at such an arrangement position of the louver film 2, the directivity regarding further visibility can be improved while maintaining the light use efficiency, and reflection in an area that is not desired to be displayed can be suppressed.
  • the lenses of the louver film are two-dimensionally arranged as described above.
  • the lens arrangement is, for example, square when viewed from the optical axis direction, and the plurality of lenses are arranged in a square lattice. ing.
  • Moire prevention points are formed at the intersections of the arranged lenses, and the arrangement direction of the lenses is preferably inclined by 25 ° to 65 ° with respect to the arrangement direction of the pixels of the liquid crystal panel. This point will be described with reference to FIGS.
  • FIG. 10 is a schematic view showing a part of the louver film 2 and a part of the liquid crystal cell 32 as viewed from the optical axis direction of the lens while the relative positions are shifted in the plane direction.
  • 11 is a cross-sectional view taken along line BB in FIG. 12 is a cross-sectional view taken along the line CC of FIG. 13 is a cross-sectional view taken along the line DD of FIG.
  • the lens 11 is a two-dimensional lens array in which the shape of the lens 11 viewed from the optical axis direction is a square shape.
  • the plurality of lenses 11 are arranged in a square lattice shape.
  • the arrangement direction of the lenses 11 is inclined by about 45 ° with respect to the arrangement direction of the pixels 33 of the liquid crystal cell 32.
  • concave portions are formed as moiré prevention points 22 at the apexes (four corners in the surface direction) of the plurality of lenses 11 arranged in a square lattice pattern.
  • the arrangement of the lenses 11 may be two-dimensionally arranged, and the two-dimensional arrangement is not particularly limited, and may be arranged in a hexagonal manner other than the square arrangement. By arranging the lenses 11 in a hexagonal shape, the light utilization efficiency is improved and the luminance is improved.
  • moire may occur due to the relationship with other members having a regular arrangement.
  • moire may occur when a liquid crystal cell having a plurality of regularly arranged pixels and a louver film are arranged in an overlapping manner.
  • the moiré is reduced by tilting the arrangement direction of the lenses 11 with respect to the arrangement direction of the pixels of the liquid crystal panel by 25 ° to 65 ° and further forming the moire prevention point 22 at the apex portion of the lens 11.
  • moire occurs at a difference frequency between a plurality of regularly arranged pixel patterns of liquid crystal cells and a shadow (boundary line) pattern between the plurality of lenses 11.
  • the arrangement direction of the lenses 11 is inclined by about 45 ° with respect to the arrangement direction of the pixels 33 of the liquid crystal cell 32, a shadow (boundary line) pattern between the plurality of lenses 11 is represented by the pixels 33 of the liquid crystal cell 32.
  • Moire occurs at the difference frequency from the pattern that appears when integration is performed in the arrangement direction.
  • a pattern that appears when the pattern of shadows (boundary lines) between the plurality of lenses 11 is integrated in the arrangement direction of the pixels 33 of the liquid crystal cell 32 is a pattern on the lattice points of the plurality of lenses 11 arranged in a square lattice pattern.
  • the intensity is weak, and it appears because the pattern intensity is high except on the lattice points.
  • the pattern intensities on the lattice points and the portions other than the lattice points can be made equal, and the louver film
  • the side pattern can be erased. For this reason, it can be considered that a plurality of regularly arranged pixel patterns of liquid crystal cells and a pattern that can take a difference frequency disappear, and moire is less likely to occur.
  • the size (area) of the moire prevention point 22 is preferably 0.01% to 10% with respect to the size (area) of the lens 11 arranged two-dimensionally.
  • the depth of the moire prevention point 22 is preferably 0.1% to 40% with respect to the lens pitch.
  • the planar shape of the moire prevention point 22 is a square shape, but is not limited thereto, and may be various shapes such as a rectangular shape, a triangular shape, a polygonal shape, a circular shape, and an indefinite shape. it can. Further, the planar shape of the moire prevention point 22 may be symmetric or asymmetric.
  • the moire prevention point 22 is a recess, but the invention is not limited to this, and it is sufficient that the amount of light transmission can be changed.
  • the moire prevention point 22 may be a convex portion. Or what printed the dot with the ink may be used.
  • the method of forming the moire prevention point 22 formed of a recess there is no particular limitation on the method of forming the moire prevention point 22 formed of a recess.
  • a mold that forms the moire prevention point 22 at the same time as the formation of the lens 11 may be used.
  • the present invention is basically configured as described above. As described above, the louver film, the surface light source device, and the liquid crystal display device of the present invention have been described in detail. However, the present invention is not limited to the above-described embodiment, and various improvements or modifications can be made without departing from the gist of the present invention. Of course.
  • Example 1 In Example 1, a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 38 ⁇ m, refractive index 1.57) was prepared as the first support. On the surface of the first support, the following 1. A titanium oxide particle-containing polymerizable composition (composition type 1) prepared so as to have a refractive index of 1.57 was applied by a bar coater, and a hemispherical arc (lens) having a radius of curvature of 50 ⁇ m was square with a pitch of 100 ⁇ m.
  • composition type 1 A titanium oxide particle-containing polymerizable composition prepared so as to have a refractive index of 1.57 was applied by a bar coater, and a hemispherical arc (lens) having a radius of curvature of 50 ⁇ m was square with a pitch of 100 ⁇ m.
  • a UV exposure machine (EXECURE 3000W manufactured by HOYA CANDEO OPTRONICS) was used while pressing a concavo-convex roller having a surface shape obtained by reversing the shape to be formed in a nitrogen atmosphere at 5 J / After being exposed and cured at cm 2 , it was peeled off from the uneven roller to produce an uneven shape on the surface. Thereafter, the following K pigment dispersion 1 is applied to the surface of the first support opposite to the surface on which the concavo-convex shape is formed through a mask having a plurality of openings with a pitch of 100 ⁇ m and a width of 32 ⁇ m and dried, and the pitch is 100 ⁇ m.
  • a light absorption layer having an aperture width of 32 ⁇ m, an aperture ratio of 32%, and a film thickness of 2 ⁇ m was formed so that the center in the aperture width direction was aligned with the apex of the lens convex portion.
  • Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings having a pitch of 100 ⁇ m and a width of 33 ⁇ m, and a light reflection layer having a pitch of 100 ⁇ m, an opening width of 33 ⁇ m, and an aperture ratio of 33% is formed.
  • the louver film A was produced by forming the center of the opening width direction so as to match the position of the apex of the lens convex portion.
  • the light absorption layer contains carbon black, and “CB” in the column of the material of the light absorption layer in Table 1 is carbon black.
  • K pigment dispersion 1 Carbon black, a dispersant, a polymer and a solvent were mixed so that the composition of the following K pigment dispersion 1 was obtained.
  • Titanium Oxide Particle-Containing Polymerizable Composition (Composition Type 1) Trimethylolpropane triacrylate 18.2 parts by mass, lauryl methacrylate 80.8 parts by mass, and photopolymerization initiator (Irgacure (registered trademark) 819 manufactured by BASF) ) 1 part by mass was mixed.
  • TiO 2 titanium oxide particles (primary particle diameter of 100 nm or less) are dispersed in the above mixture (hereinafter also referred to as a binder),
  • the mixture was sufficiently stirred to prepare a polymerizable composition containing titanium oxide particles.
  • the titanium oxide particles described above are titanium oxide particles that are surface-treated with aluminum oxide in order to suppress the photoactivity of titanium oxide, and have a refractive index of 2.40.
  • Example 2 In Example 2, in order to form on the surface a shape in which hemispherical arcs (lenses) having a radius of curvature of 50 ⁇ m are arranged in a hexagonal shape at a pitch of 100 ⁇ m, except for changing to a concavo-convex roller having a surface shape obtained by inverting the shape to be formed.
  • a louver film B was produced in the same manner as in Example 1.
  • Example 3 Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings with a pitch of 100 ⁇ m and a width of 47 ⁇ m, and light having a pitch of 100 ⁇ m, an opening width of 47 ⁇ m, and an aperture ratio of 47%.
  • a louver film C was produced in the same manner as in Example 1 except that the reflective layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion.
  • Example 4 Ag was deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings with a pitch of 100 ⁇ m and a width of 32.32 ⁇ m, and the pitch was 100 ⁇ m, the opening width was 32.32 ⁇ m, and the opening ratio.
  • a louver film D was produced in the same manner as in Example 1 except that a 32.32% light reflecting layer was formed so that the center in the opening width direction was aligned with the apex of the lens convex portion.
  • Example 5 In Example 5, the above-mentioned K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 ⁇ m and a width of 25 ⁇ m, and light having a pitch of 100 ⁇ m, an opening width of 25 ⁇ m, an opening ratio of 25%, and a film thickness of 2 ⁇ m.
  • the absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion.
  • a louver film E was produced in the same manner as in Example 1 except that the center in the opening width direction was formed so as to match the position of the apex of the lens convex portion.
  • Example 6 the K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 ⁇ m and a width of 40 ⁇ m, and light having a pitch of 100 ⁇ m, an opening width of 40 ⁇ m, an opening ratio of 40%, and a film thickness of 2 ⁇ m.
  • the absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion.
  • Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings with a pitch of 100 ⁇ m and a width of 47 ⁇ m.
  • a louver film F was produced in the same manner as in Example 1 except that the center in the opening width direction was formed so as to match the position of the apex of the lens convex portion.
  • Example 7 the K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 ⁇ m and a width of 47 ⁇ m, and light having a pitch of 100 ⁇ m, an opening width of 47 ⁇ m, an aperture ratio of 47%, and a film thickness of 2 ⁇ m.
  • the absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion.
  • Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings with a pitch of 100 ⁇ m and a width of 50 ⁇ m.
  • the center of the opening width direction is formed so as to match the position of the apex of the lens convex portion.
  • a polyethylene terephthalate film (trade name: Lumirror (registered trademark) T60, thickness 25 ⁇ m, refractive index 1.57) manufactured by Toray Industries, Inc. was prepared as the first support. Film G was produced.
  • Example 8 In Example 8, a louver film H was produced in the same manner as in Example 5 except that the thickness of the first support was 55 ⁇ m.
  • Example 9 a louver film I was produced in the same manner as in Example 4 except that the light reflecting layer formed on the light absorbing layer formed on the first support was composed of a cholesteric liquid crystal layer.
  • the cholesteric liquid crystal is expressed as “CLC”.
  • the following coating liquid was prepared as a composition for forming a cholesteric liquid crystal layer.
  • the surface of the first support opposite to the surface on which the uneven shape was formed was subjected to a rubbing treatment using a rubbing apparatus.
  • the longitudinal direction of the long film and the transport direction were parallel, and the rotation axis of the rubbing roller was set to a 45 ° clockwise direction with respect to the film longitudinal direction.
  • the coating liquid cholesteric liquid crystal layer forming composition was applied to the rubbing surface using a wire bar so as to have a film thickness of 3 ⁇ m to form a film made of a polymerizable liquid crystal composition.
  • this film was heated at 70 ° C. for 1 minute to give a cholesteric alignment treatment. Thereafter, the coating film cooled to 25 ° C.
  • UV irradiation apparatus EXECURE 3000-W manufactured by HOYA having a high-pressure mercury lamp, with a pitch of 100 ⁇ m and a width of 32.32 ⁇ m.
  • the OHP sheet on which black ink was printed in the same pattern as the light absorption layer having a plurality of openings was used as a mask to perform primary curing by irradiation from the coated surface side.
  • the above illuminance is the illuminance measured in the range of 300 nm to 390 nm using UVR-T1 (UD-T36; manufactured by TOPCON).
  • the film was secondarily cured by irradiating with ultraviolet rays from the coating surface side through a mask at 50 mW / cm 2 for 30 seconds under a nitrogen atmosphere. Thereafter, the mask is removed and the isotropic phase portion is irradiated with ultraviolet rays from the coating surface side at 50 mW / cm 2 in a nitrogen atmosphere for 40 seconds using a UV irradiation device while heating at 130 °.
  • a louver film I having a cholesteric liquid crystal layer having a cholesteric liquid crystal phase portion in one layer as a light reflecting layer was obtained.
  • Example 10 a louver film O was produced in the same manner as in Example 8 except that the light absorption layer formed on the first support was formed as follows without using a mask.
  • the following K pigment in which a chemically amplified positive photoresist (APEX-X: manufactured by Dow Chemical Co., Ltd.) and a black pigment were mixed on the surface opposite to the surface on which the uneven shape of the first support was formed.
  • Dispersion 2 was applied. Then, UV light was irradiated from the surface side where the concavo-convex shape was formed, and the coating layer of the K pigment dispersion 2 was exposed.
  • the UV light used for the exposure was a wavelength of 365 nm, and parallel UV light was diffused by 10 ° with a lens diffusion plate LSD10ACUVT30 (manufactured by Luminit).
  • the resist is exposed at the portion where the UV light is condensed by the lens function of the formed hemispherical arc (lens) with a radius of curvature of 50 ⁇ m, and in the subsequent development processing, the pitch is 100 ⁇ m, the opening width is 25 ⁇ m, the opening ratio is 25%, and the film A light-absorbing layer having a thickness of 2 ⁇ m was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion.
  • Ag is vapor-deposited on the light absorption layer through a light absorption layer having a plurality of openings with a pitch of 100 ⁇ m and an opening width of 25 ⁇ m and a mask having a plurality of openings with a pitch of 100 ⁇ m and a width of 33 ⁇ m, and the pitch is 100 ⁇ m and the opening width is 33 ⁇ m.
  • a light reflecting layer having a rate of 33% was formed so that the center in the opening width direction was aligned with the position of the apex of the lens convex portion, and a louver film O was produced.
  • Comparative Example 1 In Comparative Example 1, the K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 ⁇ m and a width of 32 ⁇ m, and light having a pitch of 100 ⁇ m, an opening width of 32 ⁇ m, an opening ratio of 32%, and a film thickness of 2 ⁇ m. The absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion.
  • a louver film J was prepared in the same manner as in Example 1 except that the center in the opening width direction was aligned with the position of the apex of the lens convex portion.
  • Comparative Example 2 In Comparative Example 2, the K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 ⁇ m and a width of 32 ⁇ m, and light having a pitch of 100 ⁇ m, an opening width of 32 ⁇ m, an opening ratio of 32%, and a film thickness of 2 ⁇ m. The absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion.
  • Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings having a pitch of 100 ⁇ m and a width of 50 ⁇ m, and a light reflection layer having a pitch of 100 ⁇ m, an opening width of 50 ⁇ m, and an aperture ratio of 50% is formed.
  • a louver film K was produced in the same manner as in Example 1 except that the center in the opening width direction was formed so as to match the position of the apex of the lens convex portion.
  • Comparative Example 3 In Comparative Example 3, the above-mentioned K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 ⁇ m and a width of 20 ⁇ m, and light having a pitch of 100 ⁇ m, an opening width of 20 ⁇ m, an aperture ratio of 20%, and a film thickness of 2 ⁇ m. The absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion.
  • Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings having a pitch of 100 ⁇ m and a width of 25 ⁇ m, and a light reflection layer having a pitch of 100 ⁇ m, an opening width of 25 ⁇ m, and an aperture ratio of 25% is formed.
  • a louver film L was produced in the same manner as in Example 1 except that the center in the opening width direction was formed so as to match the position of the apex of the lens convex portion.
  • Comparative Example 4 In Comparative Example 4, the above-mentioned K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 ⁇ m and a width of 53 ⁇ m, and light having a pitch of 100 ⁇ m, an opening width of 53 ⁇ m, an aperture ratio of 53%, and a film thickness of 2 ⁇ m. The absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion.
  • a louver film M was produced in the same manner as in Example 1 except that the center in the opening width direction was aligned with the position of the apex of the lens convex portion.
  • Comparative Example 5 In Comparative Example 5, in order to form a hexagonal arc (lens) with a radius of curvature of 50 ⁇ m arranged in a hexagonal shape at a pitch of 100 ⁇ m on the surface, the shape is changed to an uneven roller having a surface shape obtained by reversing the shape, and The above K pigment dispersion 1 is applied and dried through a mask having a plurality of openings with a pitch of 100 ⁇ m and a width of 32 ⁇ m, and a light absorption layer having a pitch of 100 ⁇ m, an opening width of 32 ⁇ m, an opening ratio of 32%, and a film thickness of 2 ⁇ m is opened.
  • the center of the direction was formed so as to match the position of the apex of the lens convex portion.
  • Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings having a pitch of 100 ⁇ m and a width of 32 ⁇ m, and a light reflection layer having a pitch of 100 ⁇ m, an opening width of 32 ⁇ m, and an opening ratio of 32% is formed.
  • a louver film N was produced in the same manner as in Example 1 except that the center in the opening width direction was aligned with the position of the apex of the lens convex portion.
  • Example 1 to Comparative Example 4 are lenses arranged in a square
  • Example 2 and Comparative Example 5 are lenses arranged in a hexagon. It is.
  • the numerical value of the aperture ratio is shown as, for example, “25/5”, but the previous numerical value is a numerical value expressed by the opening width / pitch.
  • the latter numerical value is a numerical value represented by (opening area) / (square area with one side of the pitch).
  • a larger value of the maximum luminance ratio thus obtained means that the light use efficiency of the surface light source device is higher.
  • the measurement results are shown in Table 1. ⁇ Evaluation criteria> AA: 1.3 or more A: 1.25 or more and less than 1.3 B: 0.8 or more and less than 1.25 C: 0.65 or more and less than 0.8 D: Less than 0.65
  • the opening ratio in Table 1 is a ratio represented by the opening ratio of the plurality of first openings / the opening ratio of the plurality of second openings.
  • Comparative Example 1 and Comparative Example 5 have a large aperture ratio and a poor SN ratio.
  • the aperture ratio is small, the result of the maximum luminance ratio is poor, and the light utilization efficiency is poor.
  • the aperture ratio of the light absorption layer is small, the result of the maximum luminance ratio is poor, and the light utilization efficiency is poor.
  • Comparative Example 4 the aperture ratio of the light absorption layer is large, the result of the SN ratio is bad, and light leakage on the wide angle side cannot be suppressed.
  • the evaluation of the maximum luminance ratio is the same in Example 1 and Example 2, but the numerical value of the maximum luminance ratio is higher in Example 2, and the lens The hexagonal arrangement is preferred.
  • the larger the aperture ratio of the light absorption layer the higher the evaluation of the maximum luminance ratio.
  • Example 5 and Example 8 the thinner the first support, the better the SN ratio.
  • the larger the aperture ratio the higher the maximum luminance ratio.

Abstract

Provided are a louver film in which light utilization efficiency is maintained and light leakage on a wide-angle side is suppressed, and a surface light source device and a liquid crystal display device provided with the louver film. This louver film has: a plurality of lenses arranged at a constant pitch on the emission side of a light source; a first support body for supporting the plurality of lenses, the first support body being disposed further toward a light source than the lenses, and the thickness of the first support body being less than the constant pitch; a light-absorbing layer provided with a plurality of first openings corresponding to the plurality of lenses, the light-absorbing layer being disposed further toward the light source than the first support body; and a light-reflecting layer provided with a plurality of second openings corresponding to the plurality of lenses; the light-absorbing layer and the light-reflecting layer being disposed so that the positions of the first openings and the second openings are matched, the open area ratio of the first openings in the light-absorbing layer being 25% to 50%, the reflectance of the light-reflecting layer being 90% or greater, and the ratio expressed as the open area ratio of the first openings/the open area ratio of the second openings being 65% to 99%.

Description

ルーバーフィルム、面光源装置および液晶表示装置Louver film, surface light source device and liquid crystal display device
 本発明は、ルーバーフィルムならびにルーバーフィルムを備えた面光源装置および液晶表示装置に関する。 The present invention relates to a louver film, a surface light source device including the louver film, and a liquid crystal display device.
 液晶表示装置(以下、LCD(Liquid Crystal Display)とも言う。)は、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。液晶表示装置は、通常、面光源装置と液晶パネルとから構成される。また、有機EL(Electro Luminescence)表示装置も、液晶表示装置と同様に、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。上述の各種の画像表示装置は、一般的には視野角特性として、広い視野角が要求されている。
 しかしながら、画像表示装置は設置場所によっては、画像表示装置の表示画像が、本来、映したくない場所に映されてしまうことがある。この場合には、画像表示装置の視野角を制限する必要がある。例えば、機密性が高い文書および画像、ならびに個人情報、およびパスワード等の秘匿性の高い情報を含む表示画像を画像表示装置に表示する場合、他者に見られないようにするために視野角を制限する必要がある。このように画像表示装置の用途によっては視野角を制限する必要がある。
Liquid crystal display devices (hereinafter also referred to as LCDs (Liquid Crystal Displays)) have low power consumption and are increasingly used as space-saving image display devices year by year. A liquid crystal display device is usually composed of a surface light source device and a liquid crystal panel. In addition, the organic EL (Electro Luminescence) display device, like the liquid crystal display device, has a low power consumption, and its application is expanding year by year as a space-saving image display device. The various image display devices described above are generally required to have a wide viewing angle as viewing angle characteristics.
However, depending on the installation location of the image display device, the display image of the image display device may be displayed in a place where it is not desired to be displayed. In this case, it is necessary to limit the viewing angle of the image display device. For example, when a display image including highly confidential documents and images, and personal information and highly confidential information such as passwords is displayed on an image display device, the viewing angle is set so as not to be seen by others. Need to be restricted. Thus, it is necessary to limit the viewing angle depending on the application of the image display apparatus.
 上述の視野角を制限する方法としては、例えば、特許文献1に示されるディスプレイ用バックライトユニットにおける照明光路制御に使用される光学シートがある。特許文献1の光学シートは、凸シリンドリカルレンズ群が並列形成されてなるレンズ部とレンズ部の反対側の表面とを有するレンチキュラーシートの表面に、レンズ部による非集光面を含む領域に光反射部を、光反射部以外の領域に光透過部をそれぞれ備え、レンチキュラーシートは、互いに隣接する単位レンズの境界において、隣接する単位レンズ同士の谷部における接線が35~60°の範囲にある。特許文献1では、サイドバンドを低減するために開口部の開口率、開口部からレンズ部までの距離が式を用いて規定されている。 As a method for limiting the viewing angle described above, for example, there is an optical sheet used for illumination light path control in a display backlight unit disclosed in Patent Document 1. The optical sheet of Patent Document 1 reflects light on a surface of a lenticular sheet having a lens portion in which convex cylindrical lens groups are formed in parallel and a surface on the opposite side of the lens portion, and a region including a non-condensing surface by the lens portion. The lenticular sheet has a tangent line at a valley between adjacent unit lenses in a range of 35 to 60 ° at a boundary between adjacent unit lenses. In Patent Document 1, in order to reduce the sideband, the aperture ratio of the opening and the distance from the opening to the lens are defined using equations.
特許第4389938号明細書Japanese Patent No. 4389938
 特許文献1では、上述のようにサイドバンドを低減するために開口部の開口率、開口部からレンズ部までの距離が式を用いて規定されている。しかしながら、ルーバーフィルムの用途が車載モニターの場合、サイドバンドの低減のみならず、広角側の光漏れを低減する必要がある。上述の特許文献1では、サイドバンドを低減し、かつ広角側の光漏れを減らすことができない。 In Patent Document 1, as described above, the aperture ratio of the aperture and the distance from the aperture to the lens are defined using equations in order to reduce the sideband. However, when the use of the louver film is a vehicle-mounted monitor, it is necessary to reduce not only the sideband but also the light leakage on the wide angle side. In Patent Document 1 described above, the sideband cannot be reduced and the light leakage on the wide angle side cannot be reduced.
 本発明の目的は、前述の従来技術に基づく問題点を解消し、光利用効率を保ち、かつ広角側の光漏れを抑制したルーバーフィルムならびにルーバーフィルムを備えた面光源装置および液晶表示装置を提供することにある。 An object of the present invention is to provide a louver film, a surface light source device including the louver film, and a liquid crystal display device that eliminate the above-mentioned problems based on the prior art, maintain light utilization efficiency, and suppress light leakage on the wide-angle side. There is to do.
 本発明者らは、上述の目的を達成するために鋭意検討を重ねた結果、以下のルーバーフィルム:
 面光源装置に用いられ、
 光源の出射側に一定のピッチで配列された、複数のレンズと、
 レンズよりも光源側に配置されて複数のレンズを支持し、厚みが一定のピッチよりも小さい、第一の支持体と、
 第一の支持体よりも光源側に配置され、複数のレンズに対応する複数の第1の開口部を備える光吸収層と、
 光吸収層よりも光源側に配置され、複数のレンズに対応する複数の第2の開口部を備える光反射層を有し、
 複数の第1の開口部と複数の第2の開口部とが位置合せされた状態で光吸収層と光反射層とが配置されており、
 光吸収層は、複数の第1の開口部の開口率が25%~50%であり、
 光反射層は、反射率が90%以上であり、かつ光反射層の複数の第2の開口部の開口率は、光吸収層の複数の第1の開口部の開口率よりも大きく、複数の第1の開口部の開口率/複数の第2の開口部の開口率で表される比が65%~99%であるルーバーフィルム、
を新たに見出し、本発明を完成させた。
As a result of intensive studies to achieve the above object, the present inventors have obtained the following louver film:
Used in surface light source devices,
A plurality of lenses arranged at a constant pitch on the light output side of the light source;
A first support that is disposed closer to the light source than the lens and supports a plurality of lenses, the thickness being smaller than a certain pitch; and
A light absorption layer that is disposed on the light source side of the first support and includes a plurality of first openings corresponding to the plurality of lenses;
A light reflecting layer that is disposed closer to the light source than the light absorbing layer and includes a plurality of second openings corresponding to a plurality of lenses;
The light absorption layer and the light reflection layer are arranged in a state where the plurality of first openings and the plurality of second openings are aligned,
The light absorption layer has an opening ratio of the plurality of first openings of 25% to 50%,
The light reflection layer has a reflectance of 90% or more, and the opening ratios of the plurality of second openings of the light reflection layer are larger than the opening ratios of the plurality of first openings of the light absorption layer. A louver film having a ratio represented by the opening ratio of the first opening / the opening ratio of the plurality of second openings of 65% to 99%,
Was newly found and the present invention was completed.
 ここでルーバーフィルムとは、指向性を向上したフィルムであり、このフィルムを含む面光源装置を備えた液晶表示装置において、このフィルムがない場合と比べて視認性に関する指向性を改善し、例えば、斜め方向からの視認を抑制できるフィルムである。また、視野角を制限し、表示させたくない領域への映り込みを改善したフィルムである。
 視野角の制限は、ルーバーフィルム表面に対して、ある角度範囲で視認できることである。例えば、ルーバーフィルムの表面に垂直な方向の輝度を基準とした場合、ルーバーフィルムの表面に垂直な線を基準にして、45°傾いた方向の輝度が、基準の輝度よりも低い。この場合、視野角は、ルーバーフィルムの正面付近に制限されている。逆に、45°傾いた方向の輝度が基準の輝度より高い場合、視野角は、ルーバーフィルムの斜め方向に制限されている。
Here, the louver film is a film with improved directivity, and in a liquid crystal display device provided with a surface light source device including this film, the directivity related to visibility is improved as compared with the case without this film, for example, It is a film that can suppress visual recognition from an oblique direction. In addition, the film has a limited viewing angle and improved reflection in areas that are not desired to be displayed.
The limitation on the viewing angle is that the viewing angle is visible in a certain angle range with respect to the louver film surface. For example, when the luminance in a direction perpendicular to the surface of the louver film is used as a reference, the luminance in a direction inclined by 45 ° with respect to a line perpendicular to the surface of the louver film is lower than the reference luminance. In this case, the viewing angle is limited near the front of the louver film. On the other hand, when the luminance in the direction inclined by 45 ° is higher than the reference luminance, the viewing angle is limited to the oblique direction of the louver film.
 また、上述の光利用効率とは、以下の方法により測定される値をいう。
 面光源装置の光の出射面において、測定機”EZ-Contrast XL88”(ELDIM社製)を用いて、極角度0°(正面方向)から極角度88°までの1°刻みの輝度(Y0)を測定し、輝度値の最大値を最大輝度とする。この最大輝度を面光源装置にルーバーフィルムを配置していない状態(T0)と、配置した状態(T)とで測定し、その比(T/T0)を算出し、最大輝度比が求められる。最大輝度比が大きい程、光利用効率が高い。
The light utilization efficiency mentioned above refers to a value measured by the following method.
On the light exit surface of the surface light source device, using the measuring device “EZ-Contrast XL88” (ELDIM), brightness in 1 ° increments from 0 ° (front direction) to 88 ° polar angle (Y0) Is measured, and the maximum luminance value is defined as the maximum luminance. This maximum luminance is measured in a state where the louver film is not disposed on the surface light source device (T0) and in a state where the louver film is disposed (T), and the ratio (T / T0) is calculated to obtain the maximum luminance ratio. The larger the maximum luminance ratio, the higher the light utilization efficiency.
 また、上述の指向性とは、以下の方法により評価される値をいう。
 面光源装置について、測定機”EZ-Contrast XL88”(ELDIM社製)を用いて、極角度0°(正面方向)から極角度88°までの1°刻みの輝度(Y0)を測定し、正面方向の輝度値と極角60°の輝度最小値の比をとり、SN比(=正面方向の輝度/極角60°の輝度最小値)とする。SN比を裾切れとして評価する。SN比が大きい程、裾切れが良く指向性が高い。SN比が大きい程、広角側の光漏れが小さいことを意味する。
The directivity mentioned above refers to a value evaluated by the following method.
Using a measuring instrument “EZ-Contrast XL88” (manufactured by ELDIM), measure the luminance (Y0) in 1 ° increments from a polar angle of 0 ° (front direction) to a polar angle of 88 °. The ratio of the luminance value in the direction and the minimum luminance value at the polar angle of 60 ° is taken as the SN ratio (= luminance in the front direction / minimum luminance value at the polar angle of 60 °). The S / N ratio is evaluated as a hem. The larger the S / N ratio, the better the hem and the higher the directivity. The larger the S / N ratio, the smaller the light leakage on the wide angle side.
 一態様では、複数のレンズは、2次元状に配列されている。
 一態様では、第一の支持体は、厚みが一定のピッチに対して50%以下である。
In one aspect, the plurality of lenses are arranged two-dimensionally.
In one embodiment, the first support has a thickness of 50% or less with respect to a constant pitch.
 本発明の更なる態様は、上述のルーバーフィルムと、光源とを含む面光源装置に関する。
 一態様では、ルーバーフィルムと光源との間に配置される反射型偏光子を有する。
 本発明の更なる態様は、上述のルーバーフィルムと、面光源装置と、液晶パネルと、を含む液晶表示装置に関する。
The further aspect of this invention is related with the surface light source device containing the above-mentioned louver film and a light source.
In one mode, it has a reflective type polarizer arranged between a louver film and a light source.
The further aspect of this invention is related with the liquid crystal display device containing the above-mentioned louver film, a surface light source device, and a liquid crystal panel.
 本発明によれば、光利用効率を保ち、かつ広角側の光漏れを抑制することができるルーバーフィルム、ならびに、このルーバーフィルムを備えた面光源装置、および液晶表示装置を提供することができる。 According to the present invention, it is possible to provide a louver film capable of maintaining light utilization efficiency and suppressing light leakage on the wide-angle side, a surface light source device including the louver film, and a liquid crystal display device.
本発明の第一の態様の一実施形態の面光源装置の概略構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows schematic structure of the surface light source device of one Embodiment of the 1st aspect of this invention. ルーバーフィルムの第1の例を模式的に示す断面模式図である。It is a cross-sectional schematic diagram which shows typically the 1st example of a louver film. ルーバーフィルムの第1の例を模式的に示す平面図である。It is a top view which shows typically the 1st example of a louver film. ルーバーフィルムの第1の例を模式的に示す平面図である。It is a top view which shows typically the 1st example of a louver film. ルーバーフィルムの第2の例を模式的に示す断面模式図である。It is a cross-sectional schematic diagram which shows the 2nd example of a louver film typically. 面光源装置の他の一例を模式的に示す断面模式図である。It is a cross-sectional schematic diagram which shows typically another example of a surface light source device. 液晶表示装置の一例を模式的に示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of a liquid crystal display device typically. 液晶表示装置の他の一例を模式的に示す断面模式図である。It is a cross-sectional schematic diagram which shows typically another example of a liquid crystal display device. 液晶表示装置の他の一例を模式的に示す断面模式図である。It is a cross-sectional schematic diagram which shows typically another example of a liquid crystal display device. 集光レンズおよび液晶セルを光軸方向から見た模式図である。It is the schematic diagram which looked at the condensing lens and the liquid crystal cell from the optical axis direction. 図10のB-B線断面図である。FIG. 11 is a sectional view taken along line BB in FIG. 10. 図10のC-C線断面図である。It is CC sectional view taken on the line of FIG. 図10のD-D線断面図である。It is the DD sectional view taken on the line of FIG.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明のルーバーフィルム、面光源装置および液晶表示装置を詳細に説明する。
 なお、以下に説明する図は、本発明を説明するための例示的なものであり、以下に示す図に本発明が限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
 「具体的な数値で表された角度」、および「平行」の角度は、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。また、「同一」とは、該当する技術分野で一般的に許容される誤差範囲を含む。
Hereinafter, a louver film, a surface light source device, and a liquid crystal display device of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
In addition, the figure demonstrated below is an illustration for demonstrating this invention, and this invention is not limited to the figure shown below.
In the following, “to” indicating a numerical range includes numerical values written on both sides. For example, when ε is a numerical value α to a numerical value β, the range of ε is a range including the numerical value α and the numerical value β, and expressed by mathematical symbols, α ≦ ε ≦ β.
Unless otherwise specified, the “angle represented by specific numerical values” and the “parallel” angle include an error range generally allowed in the corresponding technical field. Further, “same” includes an error range generally allowed in the corresponding technical field.
[ルーバーフィルム]
 図1は本発明の第一の態様の一実施形態の面光源装置の概略構成を示す断面模式図である。図1に示す面光源装置1はルーバーフィルム2を有する。
 本発明のルーバーフィルムは、面光源装置に用いられ、光源16の出射側に一定のピッチで配列された、複数のレンズ11と、複数のレンズ11よりも光源16側に配置されて複数のレンズを支持し、厚みが一定のピッチよりも小さい、第一の支持体12と、第一の支持体12よりも光源16側に配置され、複数のレンズ11に対応する複数の第1の開口部18bを備える光吸収層18と、光吸収層18よりも光源16側に配置され、複数のレンズ11に対応する複数の第2の開口部19bを備える光反射層19を有し、複数の第1の開口部18bと複数の第2の開口部19bとが位置合せされた状態で光吸収層18と光反射層19とが配置されており、光吸収層18は、複数の第1の開口部18bの開口率が25%~50%であり、光反射層19は、反射率が90%以上であり、かつ光反射層19の複数の第2の開口部19bの開口率は、光吸収層18の複数の第1の開口部18bの開口率よりも大きく、複数の第1の開口部の開口率/複数の第2の開口部の開口率で表される比が65%~99%であるルーバーフィルム2に関する。
 複数の第1の開口部の開口率/複数の第2の開口部の開口率で表される比のことを開口比率という。
[Louvre film]
FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a surface light source device according to an embodiment of the first aspect of the present invention. A surface light source device 1 shown in FIG. 1 has a louver film 2.
The louver film of the present invention is used in a surface light source device, and is arranged at a constant pitch on the emission side of the light source 16 and a plurality of lenses arranged on the light source 16 side of the plurality of lenses 11. And a plurality of first openings corresponding to the plurality of lenses 11 disposed on the light source 16 side of the first support 12 and having a thickness smaller than a certain pitch. A light-absorbing layer 18 including 18b, a light-reflecting layer 19 disposed on the light source 16 side of the light-absorbing layer 18 and including a plurality of second openings 19b corresponding to the plurality of lenses 11. The light absorption layer 18 and the light reflection layer 19 are disposed in a state where the one opening 18b and the plurality of second openings 19b are aligned, and the light absorption layer 18 includes the plurality of first openings. The aperture ratio of the portion 18b is 25% to 50%, and light reflection 19 has a reflectance of 90% or more, and the aperture ratios of the plurality of second openings 19b of the light reflection layer 19 are larger than the aperture ratios of the plurality of first openings 18b of the light absorption layer 18. The present invention relates to a louver film 2 having a ratio expressed by an aperture ratio of a plurality of first openings / an aperture ratio of a plurality of second openings of 65% to 99%.
The ratio represented by the aperture ratio of the plurality of first openings / the aperture ratio of the plurality of second openings is referred to as an aperture ratio.
 面光源装置1は、上述のルーバーフィルム2と、ルーバーフィルム2の光反射層19側に配置される拡散板14と、光源16と、反射板15とをこの順に有する。ルーバーフィルム2では、例えば、第1の開口部18bおよび第2の開口部19bが各レンズ11に対して設けられており、1つのレンズ11に第1の開口部18bおよび第2の開口部19bが設けられる構成である。 The surface light source device 1 includes the louver film 2 described above, a diffusion plate 14 disposed on the light reflection layer 19 side of the louver film 2, a light source 16, and a reflection plate 15 in this order. In the louver film 2, for example, a first opening 18 b and a second opening 19 b are provided for each lens 11, and the first opening 18 b and the second opening 19 b are provided in one lens 11. Is provided.
 以下は、本発明を何ら限定するものではないが、上述の態様のルーバーフィルム2により、光利用効率を保ったまま更なる視認性に関する指向性の向上を可能にする理由を、本発明者らは次のように考えている。
 第一の支持体12の厚みがレンズ11のピッチよりも小さい場合には、レンズ11の光軸CL上にある開口部以外の隣接する開口部からの光が導波されにくくなり、サイドバンドを低減できる。
 また、光吸収層18により、レンズもしくは光反射層19等で反射した光、または外部から入射する光が第一の支持体12内で反射を繰り返す光が吸収され、迷光の発生を抑制できる。これにより、サイドバンドの発生を抑制できる。
The following is not intended to limit the present invention, but the reason why the louver film 2 of the above-described aspect enables further improvement in directivity with respect to visibility while maintaining the light utilization efficiency. Thinks as follows.
When the thickness of the first support 12 is smaller than the pitch of the lenses 11, light from adjacent openings other than the openings on the optical axis CL of the lenses 11 is less likely to be guided, and the sidebands are reduced. Can be reduced.
Further, the light absorbing layer 18 absorbs the light reflected by the lens or the light reflecting layer 19 or the like, or the light in which the light incident from the outside is repeatedly reflected in the first support 12, and the generation of stray light can be suppressed. Thereby, generation | occurrence | production of a side band can be suppressed.
 さらに、広角側の光漏れを消すために光吸収層18を光反射層19のレンズ面側に設ける。これにより、レンズ11と光反射層19間で発生する迷光を吸収でき、広角側の光漏れを低減することができる。しかしながら、光反射層19の開口率と光吸収層18の開口率が完全に同じである場合、光反射層19の縁部での反射光がレンズ11へ入光し、迷光の原因になっていた。光吸収層18の開口率を光反射層19の開口率よりも小さくすることにより、完全に迷光を消すことができる。すなわち、光反射層19の開口率を光吸収層18の開口率よりも大きくすることにより、完全に迷光を消すことができる。
 上述のことから結果として、ルーバーフィルム2は、サイドバンドを低減でき、光利用効率を保ち、かつ広角側の光漏れを抑制し、更なる視認性に関する指向性向上を実現できる。例えば、ルーバーフィルムを車載モニターに用いた場合、フロントガラスおよびサイドガラスへの画像の映り込みを抑制することができる。
 ただし、以上は本発明者らによる推察を含むものであり、本発明を何ら限定するものではない。
Further, a light absorption layer 18 is provided on the lens surface side of the light reflection layer 19 in order to eliminate light leakage on the wide angle side. As a result, stray light generated between the lens 11 and the light reflecting layer 19 can be absorbed, and light leakage on the wide angle side can be reduced. However, when the aperture ratio of the light reflection layer 19 and the aperture ratio of the light absorption layer 18 are completely the same, the reflected light at the edge of the light reflection layer 19 enters the lens 11 and causes stray light. It was. By making the aperture ratio of the light absorption layer 18 smaller than the aperture ratio of the light reflection layer 19, stray light can be completely extinguished. That is, stray light can be completely extinguished by making the aperture ratio of the light reflection layer 19 larger than the aperture ratio of the light absorption layer 18.
As a result, the louver film 2 can reduce sidebands, maintain light utilization efficiency, suppress light leakage on the wide-angle side, and realize further improvement in directivity regarding visibility. For example, when a louver film is used for an in-vehicle monitor, reflection of an image on a windshield and a side glass can be suppressed.
However, the above includes inference by the present inventors and does not limit the present invention.
 以下、上述のルーバーフィルムについて、更に詳細に説明する。
 図2はルーバーフィルムの第1の例を模式的に示す断面模式図であり、図3はルーバーフィルムの第1の例を模式的に示す平面図であり、図4はルーバーフィルムの第1の例を模式的に示す平面図である。図3はレンズ11側から見た平面図であり、図4は光反射層19側から見た平面図である。
Hereinafter, the above-described louver film will be described in more detail.
2 is a schematic cross-sectional view schematically showing a first example of the louver film, FIG. 3 is a plan view schematically showing a first example of the louver film, and FIG. 4 is a first view of the louver film. It is a top view which shows an example typically. 3 is a plan view seen from the lens 11 side, and FIG. 4 is a plan view seen from the light reflecting layer 19 side.
 <ルーバーフィルムの構成>
 ルーバーフィルムの構成としては、面光源装置に用いられた場合、光源の出射側に配列された複数のレンズと、レンズよりも光源側に配置される第一の支持体、前述の第一の支持体よりも光源側に配置される前述の複数のレンズの光軸上に第1の開口部を備える光吸収層と、前述の複数のレンズの光軸上に第2の開口部を備える光反射層とを有する。
 ルーバーフィルムでは、例えば、図2に示すように、レンズ11は半球状の凸レンズである。図3に示すように、複数のレンズ11が、一定のピッチLpで2次元状に配列されている。また、例えば、図4に示すように、1つのレンズ11に対して、光吸収層18の第1の開口部18bと光反射層19の第2の開口部19bとが位置を合わせて設けられている。なお、光吸収層18の第1の開口部18bの中心および光反射層の13の第2の開口部19bの中心がレンズ11の光軸CL(図2参照)に一致しているが、これに限定されるものではない。
<Configuration of louver film>
When used in a surface light source device, the configuration of the louver film includes a plurality of lenses arranged on the light emission side of the light source, a first support disposed on the light source side of the lens, and the first support described above. A light-absorbing layer having a first opening on the optical axes of the plurality of lenses arranged on the light source side of the body, and a light reflection having a second opening on the optical axes of the plurality of lenses. With layers.
In the louver film, for example, as shown in FIG. 2, the lens 11 is a hemispherical convex lens. As shown in FIG. 3, a plurality of lenses 11 are two-dimensionally arranged at a constant pitch Lp. Further, for example, as shown in FIG. 4, the first opening 18 b of the light absorption layer 18 and the second opening 19 b of the light reflection layer 19 are provided in alignment with respect to one lens 11. ing. The center of the first opening 18b of the light absorption layer 18 and the center of the second opening 19b of the light reflecting layer 13 coincide with the optical axis CL (see FIG. 2) of the lens 11, but this It is not limited to.
 光吸収層18は、第一の支持体12よりも光源16側に配置され、複数のレンズに対応する複数の第1の開口部18bを備える。光吸収層18は、複数の第1の開口部18bの開口率が25%~50%である。
 光反射層19は、光吸収層18よりも光源16側に配置され、光吸収層18の第一の支持体12の反対側の裏面18cに設けられており、複数のレンズに対応する複数の第2の開口部19bを備える。
 光反射層19は、反射率90%以上である。光反射層19の第2の開口部19bの開口率は光吸収層18の複数の第1の開口部18bの開口率よりも大きく、複数の第1の開口部の開口率/複数の第2の開口部の開口率で表される比が65%~99%である。
 光吸収層18と光反射層19とは開口部のパターンが同じである。光吸収層18の複数の第1の開口部18bと光反射層19の複数の第2の開口部19bとが位置合せされた状態で、光反射層19と光吸収層18とが配置されている。
 図5に示すように、光反射層19よりも光源16側に第二の支持体17を配置してもよい。
The light absorption layer 18 is disposed closer to the light source 16 than the first support 12 and includes a plurality of first openings 18b corresponding to a plurality of lenses. In the light absorption layer 18, the aperture ratio of the plurality of first openings 18b is 25% to 50%.
The light reflection layer 19 is disposed on the light source 16 side of the light absorption layer 18 and is provided on the back surface 18c of the light absorption layer 18 on the opposite side of the first support 12 and includes a plurality of lenses corresponding to the plurality of lenses. A second opening 19b is provided.
The light reflection layer 19 has a reflectance of 90% or more. The aperture ratio of the second opening 19b of the light reflecting layer 19 is larger than the aperture ratio of the plurality of first openings 18b of the light absorption layer 18, and the aperture ratio of the plurality of first openings / the plurality of second openings. The ratio represented by the opening ratio of the opening is 65% to 99%.
The light absorption layer 18 and the light reflection layer 19 have the same opening pattern. The light reflection layer 19 and the light absorption layer 18 are arranged in a state where the plurality of first openings 18b of the light absorption layer 18 and the plurality of second openings 19b of the light reflection layer 19 are aligned. Yes.
As shown in FIG. 5, the second support 17 may be disposed closer to the light source 16 than the light reflecting layer 19.
 図2~図4に示すルーバーフィルム2では、図5に示すルーバーフィルム2のように、光吸収層18の第1の開口部18bの中心および光反射層の13の第2の開口部19bの中心がレンズ11の光軸CLから外れている構成としてもよい。開口部の中心位置をレンズの光軸CLからずれた位置にすることにより、指向性の方向を調整できる。
 なお、レンズ11の光軸CL上から外れているとは、光吸収層18の第1の開口部18bの中心を光軸CLが通らないことをいう。光軸CLと第1の開口部18bの中心および第2の開口部19bとのずれ量が、レンズのピッチに対して5%以上であれば、レンズ11の光軸CL上から外れているとする。
 また、レンズ11の光軸CL上に一致しているとは、光軸CLと第1の開口部18bの中心および第2の開口部19bとのずれ量が、レンズのピッチに対して5%未満である。
 上述の図5に示すルーバーフィルム2は、いずれも全ての開口部の中心がレンズ11の光軸CL上から外れている構成であるが、これに限定されるものではない。例えば、開口部とレンズの光軸との関係に基づき、指向性の方向等に応じて、どの開口部をレンズの光軸から外す等を予め決定しておいてもよい。
In the louver film 2 shown in FIG. 2 to FIG. 4, like the louver film 2 shown in FIG. 5, the center of the first opening 18b of the light absorption layer 18 and the 13 second openings 19b of the light reflection layer are formed. The center may be deviated from the optical axis CL of the lens 11. The direction of directivity can be adjusted by setting the center position of the opening to a position shifted from the optical axis CL of the lens.
Note that being off the optical axis CL of the lens 11 means that the optical axis CL does not pass through the center of the first opening 18 b of the light absorption layer 18. If the amount of deviation between the optical axis CL and the center of the first opening 18b and the second opening 19b is 5% or more with respect to the pitch of the lens, it is deviated from the optical axis CL of the lens 11. To do.
Further, “matching on the optical axis CL of the lens 11” means that the deviation amount between the optical axis CL and the center of the first opening 18b and the second opening 19b is 5% with respect to the pitch of the lens. Is less than.
All of the louver films 2 shown in FIG. 5 described above have a configuration in which the centers of all the openings are deviated from the optical axis CL of the lens 11, but are not limited thereto. For example, based on the relationship between the opening and the optical axis of the lens, which opening to remove from the optical axis of the lens may be determined in advance according to the direction of directivity or the like.
 (レンズ)
 上述のルーバーフィルムにおいて、レンズは、上述の半球状の凸レンズに限定されるものではなく、非球面レンズであってもよい。
 レンズの屈折率は、指向性の観点から1.4~1.6であることが好ましく、より好ましくは1.45~1.6である。
 2次元状に配列された複数のレンズのピッチLp(図2参照)および曲率半径の大きさは、一定であってもランダムであってもよい。
 レンズのピッチLpは、レンズの曲率半径の2倍であることが好ましい。これにより、レンズ形状が半球になり、レンズの頂部と第一の支持体との距離が大きくなるため、第一の支持体の厚みDt(図2参照)を薄くできる。第一の支持体の厚みDtを薄くすることにより、サイドバンドを低減することができる。
(lens)
In the louver film described above, the lens is not limited to the hemispherical convex lens described above, and may be an aspheric lens.
The refractive index of the lens is preferably 1.4 to 1.6, more preferably 1.45 to 1.6 from the viewpoint of directivity.
The pitch Lp (see FIG. 2) and the radius of curvature of the two-dimensionally arranged lenses may be constant or random.
The lens pitch Lp is preferably twice the radius of curvature of the lens. As a result, the lens shape becomes a hemisphere, and the distance between the top of the lens and the first support increases, so the thickness Dt (see FIG. 2) of the first support can be reduced. By reducing the thickness Dt of the first support, the sideband can be reduced.
 (第一の支持体)
 第一の支持体の厚みDt(図2参照)は、レンズのピッチLp(図2参照)よりも小さい。上述のように、レンズのピッチLp(図2参照)は一定であり、第一の支持体の厚みDt(図2参照)は、レンズのピッチLp(図2参照)に対して50%以下であることが好ましい。第一の支持体の厚みを薄くすることにより、サイドバンドを低減することができる。
 第一の支持体として高屈折率素材を用いた場合は、脆性を悪化させない観点から、厚みは30μm以下が好ましい。より好ましくは10μm以下が良く、より好ましくは1μm前後が良い。
 第一の支持体の屈折率は、指向性の観点から1.4~1.6であることが好ましく、より好ましくは1.45~1.6である。
(First support)
The thickness Dt (see FIG. 2) of the first support is smaller than the lens pitch Lp (see FIG. 2). As described above, the lens pitch Lp (see FIG. 2) is constant, and the thickness Dt (see FIG. 2) of the first support is 50% or less with respect to the lens pitch Lp (see FIG. 2). Preferably there is. By reducing the thickness of the first support, the sideband can be reduced.
When a high refractive index material is used as the first support, the thickness is preferably 30 μm or less from the viewpoint of not deteriorating brittleness. More preferably, it is 10 μm or less, and more preferably around 1 μm.
The refractive index of the first support is preferably 1.4 to 1.6, more preferably 1.45 to 1.6 from the viewpoint of directivity.
 屈折率は、公知の屈折率測定装置によって測定することができる。屈折率測定装置の一例としては、アタゴ社製多波長アッベ屈折計DR-M2を挙げることができる。また、本発明における屈折率とは、波長550nmの光に対する屈折率をいうものとする。 The refractive index can be measured by a known refractive index measuring device. As an example of the refractive index measuring apparatus, there is a multi-wavelength Abbe refractometer DR-M2 manufactured by Atago Co., Ltd. In addition, the refractive index in the present invention refers to a refractive index with respect to light having a wavelength of 550 nm.
 第一の支持体の屈折率は、層を形成するために用いる成分の種類により調整することができる。層を形成するために用いる成分としては、重合性化合物および重合開始剤を含む重合性組成物を用いて形成することができる。または、樹脂を主成分とする樹脂層であってもよい。ここで主成分とするとは、層を構成する成分の中で最も多くを樹脂が占めることをいう。含まれる樹脂は一種でもよく二種以上であってもよい。樹脂層における樹脂量は、樹脂層の総質量に対して、例えば50質量%以上であり、好ましくは70質量%以上である、また、樹脂層における樹脂量は、樹脂層の総質量に対して、例えば99質量%以下、または95質量%以下であるが、100質量%であってもよい。樹脂層の具体例としては、熱可塑性樹脂層を挙げることができる。熱可塑性樹脂としては、例えば、ポリメチルメタクリレート樹脂(PMMA)、ポリカーボネート樹脂、ポリスチレン樹脂、ポリメタクリルスチレン(MS)樹脂、アクリロニトリルスチレン(AS)樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂、ポリ塩化ビニル樹脂(PVC)、セルロースアシレート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースダイアセテート、熱可塑性エラストマー、またはこれらの共重合体、シクロオレフィンポリマー等を挙げることができる。このような樹脂層は、層の形成の容易性の観点からは、重合性組成物を用いて、この組成物に重合処理(硬化処理)を施し形成された硬化層であることが好ましい。重合性組成物としては、光照射により硬化する光重合性組成物であっても、加熱により硬化する熱重合性組成物であってもよい。生産性向上の観点からは、短時間で硬化処理を終了可能である点から、光重合性組成物が好ましい。 The refractive index of the first support can be adjusted according to the type of components used to form the layer. As a component used in order to form a layer, it can form using the polymeric composition containing a polymeric compound and a polymerization initiator. Or the resin layer which has resin as a main component may be sufficient. Here, the main component means that the resin occupies most of the components constituting the layer. The resin contained may be one kind or two or more kinds. The resin amount in the resin layer is, for example, 50% by mass or more, preferably 70% by mass or more, with respect to the total mass of the resin layer. The resin amount in the resin layer is based on the total mass of the resin layer. For example, it is 99 mass% or less, or 95 mass% or less, but may be 100 mass%. Specific examples of the resin layer include a thermoplastic resin layer. Examples of the thermoplastic resin include polymethyl methacrylate resin (PMMA), polycarbonate resin, polystyrene resin, polymethacryl styrene (MS) resin, acrylonitrile styrene (AS) resin, polypropylene resin, polyethylene resin, polyethylene terephthalate resin, polyvinyl chloride. Examples thereof include resins (PVC), cellulose acylates, cellulose triacetates, cellulose acetate propionates, cellulose diacetates, thermoplastic elastomers, copolymers thereof, and cycloolefin polymers. Such a resin layer is preferably a cured layer formed by subjecting this composition to a polymerization treatment (curing treatment) using a polymerizable composition, from the viewpoint of ease of layer formation. The polymerizable composition may be a photopolymerizable composition that is cured by light irradiation or a thermopolymerizable composition that is cured by heating. From the viewpoint of improving productivity, a photopolymerizable composition is preferable because the curing treatment can be completed in a short time.
 第一の支持体の屈折率調整のために粒子が含まれていてもよい。粒子としては、特に限定されるものではなく、無機粒子であっても有機粒子であってもよい。
 上述の粒子の具体例としては、ZrO2、TiO2、Al23、In23、ZnO、SnO2、Sb23等の無機粒子、ポリメチルメタクリレート粒子、架橋ポリメチルメタクリレート粒子、アクリル-スチレン共重合体粒子、メラミン粒子、ポリカーボネート粒子、ポリスチレン粒子、架橋ポリスチレン粒子、ポリ塩化ビニル粒子、ベンゾグアナミン-メラミンホルムアルデヒド粒子等の有機粒子等が挙げられる。また、上述の粒子としては、粒子表面の活性抑制および層内での分散性向上等のために表面処理され、表面に被覆層が形成された粒子、いわゆるコア-シェル粒子を用いてもよい。そのような粒子については、例えば、特開2013-251067号公報の段落0022~0025を参照できる。また、上述の粒子は、無機粒子の表面に有機被膜を有する粒子のような有機無機複合粒子であってもよい。
Particles may be included for adjusting the refractive index of the first support. The particles are not particularly limited, and may be inorganic particles or organic particles.
Specific examples of the above-mentioned particles include inorganic particles such as ZrO 2 , TiO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , polymethyl methacrylate particles, crosslinked polymethyl methacrylate particles, Examples thereof include organic particles such as acrylic-styrene copolymer particles, melamine particles, polycarbonate particles, polystyrene particles, crosslinked polystyrene particles, polyvinyl chloride particles, and benzoguanamine-melamine formaldehyde particles. Further, as the above-mentioned particles, particles whose surface is treated for the purpose of suppressing the activity of the particle surface, improving the dispersibility in the layer, and the like, so-called core-shell particles may be used. For such particles, reference can be made, for example, to paragraphs 0022 to 0025 of JP2013-251067A. The particles described above may be organic-inorganic composite particles such as particles having an organic coating on the surface of the inorganic particles.
 上述の粒子は、一種用いてもよく、二種以上を混合して用いてもよい。粒子が小さいほど、散乱性を抑えられる観点で好ましい。よって、粒子サイズは、一次粒子径として、100nm以下であることが好ましく、30nm以下であることがより好ましく、25nm以下であることが更に好ましい。また、粒子サイズは、一次粒子径として、1nm以上であることが好ましい。上述の粒子の一次粒子径とは、走査型電子顕微鏡(SEM)で50個の粒子について粒径を測定し、数平均値として算出したものである。上述の粒子を含む層における粒子含有量は、好ましくは上述の範囲の平均屈折率が得られるように、適宜設定すればよい。 The above particles may be used alone or in combination of two or more. Smaller particles are preferable from the viewpoint of suppressing scattering. Therefore, the particle size is preferably 100 nm or less, more preferably 30 nm or less, and even more preferably 25 nm or less as the primary particle diameter. Moreover, it is preferable that a particle size is 1 nm or more as a primary particle diameter. The primary particle size of the above-mentioned particles is a value obtained by measuring the particle size of 50 particles with a scanning electron microscope (SEM) and calculating the number average value. The particle content in the layer containing the above-described particles is preferably set as appropriate so that the average refractive index in the above-mentioned range can be obtained.
 一般に粒子サイズが小さくなるほど樹脂への分散性が悪くなるが、例えば、富士フイルム 研究報告No.58 2013年研究報告書「熱可塑性ナノコンポジット光学材料の開発」に記載の片末端吸着性樹脂による微粒子グラフト化等により、透明性を保ったまま分散することができる。 In general, the smaller the particle size, the worse the dispersibility in the resin. For example, the fine particles by the one-end adsorptive resin described in Fujifilm research report No. 58, 2013 research report “Development of thermoplastic nanocomposite optical materials” It can be dispersed while maintaining transparency by grafting or the like.
 上述の粒子の屈折率(波長550nmの光に対する屈折率)は、屈折率調整の観点から、2.00以上3.00以下であることが好ましく、2.05以上2.50以下であることがより好ましい。ここで、粒子の屈折率とは、以下の方法により測定される値とする。屈折率既知の樹脂材料に粒子をドープし、この粒子が分散された樹脂材料を作製する。作製した樹脂材料を、シリコン基板、または石英基板上に塗布し樹脂膜を形成する。形成した樹脂膜の屈折率をエリプソメーターで測定し、樹脂膜を構成する樹脂材料と粒子の体積分率から、粒子の屈折率を求める。後述の実施例で用いた酸化チタン粒子の屈折率は、上述の方法により求めた値である。 The refractive index of the above-mentioned particles (refractive index for light having a wavelength of 550 nm) is preferably 2.00 or more and 3.00 or less, and preferably 2.05 or more and 2.50 or less from the viewpoint of adjusting the refractive index. More preferred. Here, the refractive index of the particles is a value measured by the following method. A resin material having a known refractive index is doped with particles to produce a resin material in which the particles are dispersed. The produced resin material is applied on a silicon substrate or a quartz substrate to form a resin film. The refractive index of the formed resin film is measured with an ellipsometer, and the refractive index of the particles is determined from the resin material constituting the resin film and the volume fraction of the particles. The refractive index of the titanium oxide particles used in Examples described later is a value obtained by the above-described method.
 (光吸収層)
 光吸収層は、レンズもしくは光反射層19等で反射した光、または外部から入射する光が第一の支持体12内で反射を繰り返す光を吸収し、迷光を抑制するものである。これにより、サイドバンド発生を抑制することができ、光利用効率を更に向上させることができる。
 光吸収層は、各レンズに対して第1の開口部を有し、例えば、複数の各レンズの光軸上に、それぞれ第1の開口部を有する。光吸収層と光反射層とは開口部のパターンが同じであり、上述のように開口部の位置合せをして、光吸収層の第1の開口部と光反射層の第2の開口部とが位置合せされた状態で光反射層と光吸収層とが配置されている。
 第1の開口部の開口率は、小さすぎると光利用効率が低下してしまう。また、大きすぎると指向性が悪くなる。この観点から、第1の開口部の開口率が25%~50%であり、好ましくは25%~45%である。
 なお、光吸収層の複数の第1の開口部は、光反射層の複数の第2の開口部よりも小さく、65~99%の大きさである。
(Light absorption layer)
The light absorption layer absorbs the light reflected by the lens or the light reflection layer 19 or the like, or the light incident from the outside that repeats reflection in the first support 12 and suppresses stray light. Thereby, generation | occurrence | production of a side band can be suppressed and light utilization efficiency can further be improved.
The light absorption layer has a first opening for each lens. For example, the light absorption layer has a first opening on the optical axis of each of the plurality of lenses. The light absorption layer and the light reflection layer have the same opening pattern, and the first opening of the light absorption layer and the second opening of the light reflection layer are aligned as described above. The light reflection layer and the light absorption layer are arranged in a state where the two are aligned.
If the aperture ratio of the first opening is too small, the light utilization efficiency is lowered. On the other hand, if it is too large, the directivity becomes worse. From this viewpoint, the aperture ratio of the first opening is 25% to 50%, preferably 25% to 45%.
The plurality of first openings in the light absorption layer are smaller than the plurality of second openings in the light reflection layer and have a size of 65 to 99%.
 第1の開口部18bおよび第2の開口部19bは、例えば、円形状であるが、これに限定されるものではなく、矩形状であってもよい。第1の開口部18bおよび第2の開口部19bは、形状が円でも矩形でも、開口幅で、その大きさが規定される。円の場合には、開口幅は直径に相当する。
 開口幅は、光吸収層18を第1の開口部18bを含む画像、および光反射層19を第2の開口部19bを含む画像を取得し、各画像を用いて第1の開口部18b、および第2の開口部19bの開口幅に相当する位置の長さを求めることにより得られる。
 光吸収層18の第1の開口部18bの開口率は、第1の開口部18bが配置されるピッチに対する第1の開口部18bの開口幅で規定される。ピッチが100μmで、開口幅が25μmであれば、25/100で、開口率は25%となる。
 光反射層19においても、光吸収層18と同様に、光吸収層13の第2の開口部19bの開口率とは、第2の開口部19bが配置されるピッチに対する第2の開口部19bの開口幅で規定される。ピッチが100μmで、開口幅が25μmであれば、25/100で、開口率は25%となる。
The first opening 18b and the second opening 19b are circular, for example, but are not limited to this, and may be rectangular. The first opening 18b and the second opening 19b are defined by the width of the opening, regardless of whether the shape is a circle or a rectangle. In the case of a circle, the opening width corresponds to the diameter.
The opening width is obtained by acquiring an image including the light absorbing layer 18 including the first opening 18b and an image including the light reflecting layer 19 including the second opening 19b, and using each image, the first opening 18b, And it is obtained by calculating | requiring the length of the position corresponded to the opening width of the 2nd opening part 19b.
The opening ratio of the first opening 18b of the light absorption layer 18 is defined by the opening width of the first opening 18b with respect to the pitch at which the first opening 18b is disposed. If the pitch is 100 μm and the opening width is 25 μm, the aperture ratio is 25% at 25/100.
Also in the light reflection layer 19, as in the light absorption layer 18, the aperture ratio of the second opening 19b of the light absorption layer 13 is the second opening 19b with respect to the pitch at which the second opening 19b is disposed. Of the opening width. If the pitch is 100 μm and the opening width is 25 μm, the aperture ratio is 25% at 25/100.
 光吸収層は、特に限定されるものではないが、例えば、カーボンブラック、窒化チタンおよび銀インク等を利用でき、LCD、有機EL(Electro Luminescence)等のブラックマトリクスに利用されているものを適宜利用することができる。
 銀インクはインク塗布後の加熱過程で、黒吸収体になった後、銀ミラーになるため、フィルムへ銀インク塗布後、インク表面を高い温度で加熱、裏面をより低い温度で加熱すると、表面が反射層の役割を果たす鏡面ミラー、裏面が黒吸収体とすることができ、プロセス上簡便に反射層と黒吸収層を作製することができる。
The light absorption layer is not particularly limited. For example, carbon black, titanium nitride and silver ink can be used, and those used for black matrices such as LCD and organic EL (Electro Luminescence) are appropriately used. can do.
Since silver ink becomes a silver mirror after it becomes a black absorber in the heating process after ink application, after applying silver ink to the film, the ink surface is heated at a high temperature and the back surface is heated at a lower temperature. Can be a mirror mirror that plays the role of a reflective layer, and the back surface can be a black absorber, so that the reflective layer and the black absorber layer can be easily produced in the process.
 光吸収層の反射率は20%以下がよく、斜め方向の遮光性を高めるため、すなわち、斜め方向の視認性を下げるためには、10%以下が更によく、7%以下が最もよい。
 光吸収層の反射率は以下のように得られるものである。分光光度計(日本分光社製V-550)にて、光吸収層に使用する素材をポリエチレンテレフタレート(PET)基材上に形成し、形成面から光を入射し波長380nm~780nmの反射率を測定し、その平均値を求める。この平均値が光吸収層の反射率である。
The reflectance of the light absorption layer is preferably 20% or less, and in order to increase the light shielding property in the oblique direction, that is, to reduce the visibility in the oblique direction, 10% or less is better, and 7% or less is the best.
The reflectance of the light absorption layer is obtained as follows. Using a spectrophotometer (V-550 manufactured by JASCO Corporation), the material used for the light absorption layer is formed on a polyethylene terephthalate (PET) substrate, and light is incident from the formation surface to obtain a reflectance of 380 nm to 780 nm. Measure and obtain the average value. This average value is the reflectance of the light absorption layer.
 (光反射層)
 光反射層は、例えば、白インキ、金属箔、金属蒸着または銀ミラーインクからなる。光反射層は、光吸収層と同様に、各レンズに対して第2の開口部を有し、例えば、複数の各レンズの光軸上に、それぞれ第2の開口部を有する。光反射層と光吸収層とは開口部のパターンが同じである。上述のように光吸収層の第1の開口部と光反射層の第2の開口部とが位置合せされた状態で光反射層と光吸収層とが配置されている。
 第2の開口部の開口率は、小さすぎると光利用効率が低下してしまう。また、大きすぎると指向性が悪くなる。
 光反射層の第2の開口部の開口率は、光吸収層の第1の開口部の開口率に対する比で規定さており、第1の開口部の開口率/第2の開口部の開口率で表される比が65%~99%であり、好ましくは70%~99%である。第1の開口部の開口率が25%~50%であるから、第2の開口部の開口率は、25.25%~76%である。
 光反射層の反射率は、光利用率の観点から90%以上が好ましく、91%以上がより好ましい。更に好ましくは、92%以上がよい。なお、光利用率は、正面輝度/最大輝度で規定されるものである。
 光反射層の反射率は、以下のように得られるものである。分光光度計(日本分光社製V-550)にて、光反射層に使用する素材をポリエチレンテレフタレート(PET)基材上に形成し、形成面から光を入射し波長380nm~780nmの反射率を測定し、その平均値を求める。この平均値が光反射層の反射率である。
(Light reflecting layer)
The light reflection layer is made of, for example, white ink, metal foil, metal vapor deposition, or silver mirror ink. Similar to the light absorption layer, the light reflecting layer has a second opening for each lens. For example, the light reflecting layer has a second opening on the optical axis of each of the plurality of lenses. The light reflecting layer and the light absorbing layer have the same opening pattern. As described above, the light reflection layer and the light absorption layer are arranged in a state where the first opening of the light absorption layer and the second opening of the light reflection layer are aligned.
If the aperture ratio of the second opening is too small, the light utilization efficiency is lowered. On the other hand, if it is too large, the directivity becomes worse.
The aperture ratio of the second opening of the light reflecting layer is defined by a ratio to the aperture ratio of the first opening of the light absorbing layer, and the aperture ratio of the first opening / the aperture ratio of the second opening. Is a ratio of 65% to 99%, preferably 70% to 99%. Since the opening ratio of the first opening is 25% to 50%, the opening ratio of the second opening is 25.25% to 76%.
The reflectance of the light reflecting layer is preferably 90% or more, more preferably 91% or more from the viewpoint of light utilization. More preferably, it is 92% or more. The light utilization rate is defined by front luminance / maximum luminance.
The reflectance of the light reflecting layer is obtained as follows. Using a spectrophotometer (V-550 manufactured by JASCO Corporation), the material used for the light reflecting layer is formed on a polyethylene terephthalate (PET) substrate, and light is incident from the forming surface to obtain a reflectance of a wavelength of 380 nm to 780 nm. Measure and obtain the average value. This average value is the reflectance of the light reflecting layer.
 なお、光吸収層18と光反射層19とは、一体構成でもよく、別体構成でもよい。一体構成の場合、光反射層19の表面が光吸収層18として機能し、表面の反射率とは異なり、90%未満であり、光を吸収する。この場合、光吸収層として機能する表面の反射率は、上述のように20%以下がよく、10%以下が更によく、7%以下が最もよい。
 光吸収層18と光反射層19とは、一体構成の方が別体構成に比して部品数を減らすことができ、構成を簡素化できる。また、別体構成の場合、光吸収層18の複数の第1の開口部18bと、光反射層19の複数の第2の開口部19bとの位置合せが必要であるが、一体構成の場合、上述の位置合せが不要であるため、製造工程を簡素化できる。
 光吸収層の製造方法は、特に限定されるものではなく、例えば、光吸収層となる板状の部材を、エッチング加工またはレーザ加工等により形成することができる。これ以外に、蒸着等の気相法、または塗布等の液相法を用いて光吸収層となる膜を基材に形成して、光吸収層を形成することもできる。
In addition, the light absorption layer 18 and the light reflection layer 19 may have an integrated configuration or a separate configuration. In the case of an integral configuration, the surface of the light reflecting layer 19 functions as the light absorbing layer 18, and unlike the surface reflectance, it is less than 90% and absorbs light. In this case, the reflectance of the surface functioning as the light absorption layer is preferably 20% or less as described above, more preferably 10% or less, and most preferably 7% or less.
The light absorption layer 18 and the light reflection layer 19 can be reduced in the number of parts in the integrated configuration compared to the separate configuration, and the configuration can be simplified. In the case of a separate configuration, alignment of the plurality of first openings 18b of the light absorption layer 18 and the plurality of second openings 19b of the light reflection layer 19 is necessary. Since the above alignment is unnecessary, the manufacturing process can be simplified.
The manufacturing method of a light absorption layer is not specifically limited, For example, the plate-shaped member used as a light absorption layer can be formed by an etching process or laser processing. In addition, a light absorption layer can also be formed by forming a film to be a light absorption layer on a substrate using a vapor phase method such as vapor deposition or a liquid phase method such as coating.
 光反射層の複数の第2の開口部は、直下型バックライトに用いられるLED(light emitting diode)光源の配置に合わせたパターンにしても良い。すなわち、LED光源の直上には複数の第2の開口部を設けず、LED光源から距離が離れるにつれて、複数の第2の開口部の開口率が大きくなるようにしても良い。この場合、レンズの径と第2の開口部のレンズの径に対する開口率が前述の好ましい範囲に入るよう、レンズの径を面内で変化させる。これにより、LED光源からの光線に合わせて開口を設けることができ、光をより効率よく利用しながら、平行光化することができる。また、この際、LED光源の背面に鏡面の反射層を設けたほうが、拡散性の反射層を設けるより、光線を制御しやすく、光利用率の観点でよい。 The plurality of second openings of the light reflecting layer may be formed in a pattern that matches the arrangement of LED (light emitting diode) light sources used in the direct type backlight. That is, the plurality of second openings may not be provided immediately above the LED light source, and the opening ratio of the plurality of second openings may increase as the distance from the LED light source increases. In this case, the lens diameter is changed in the plane so that the aperture ratio of the lens diameter and the second opening portion with respect to the lens diameter falls within the above-described preferable range. Thereby, an opening can be provided according to the light beam from the LED light source, and parallel light can be made while using light more efficiently. Further, at this time, it is easier to control the light beam by providing a mirror-like reflective layer on the back surface of the LED light source than from the case of providing a diffusive reflective layer.
 また、光反射層は、コレステリック液晶層を有するものであってもよい。
 コレステリック液晶層は、コレステリック液晶相を含み、特定の波長域の一方の旋回方向(右円偏光または左円偏光)の円偏光に対して波長選択反射性を有するものである。
 従って、光反射層は、後述する液晶表示装置のカラーフィルターの構成に応じて、例えば、赤色の波長域(620nm~750nm)の右円偏光を反射するコレステリック液晶層と、赤色の波長域の左円偏光を反射するコレステリック液晶層と、緑色の波長域(495nm~570nm)の右円偏光を反射するコレステリック液晶層と、緑色の波長域の左円偏光を反射するコレステリック液晶層と、青色(420nm~490nm)の波長域の右円偏光を反射するコレステリック液晶層と、青色の波長域の左円偏光を反射するコレステリック液晶層と、を有する構成とすることで、第2の開口部以外の部分において、赤色光、緑色光および青色光を反射することができる。
The light reflecting layer may have a cholesteric liquid crystal layer.
The cholesteric liquid crystal layer includes a cholesteric liquid crystal phase and has wavelength selective reflectivity with respect to circularly polarized light in one turning direction (right circularly polarized light or left circularly polarized light) in a specific wavelength range.
Accordingly, the light reflecting layer includes, for example, a cholesteric liquid crystal layer that reflects the right circularly polarized light in the red wavelength range (620 nm to 750 nm) and the left side of the red wavelength range according to the configuration of the color filter of the liquid crystal display device described later. A cholesteric liquid crystal layer that reflects circularly polarized light, a cholesteric liquid crystal layer that reflects right circularly polarized light in the green wavelength range (495 nm to 570 nm), a cholesteric liquid crystal layer that reflects left circularly polarized light in the green wavelength range, and blue (420 nm) A portion other than the second opening by having a cholesteric liquid crystal layer that reflects right circularly polarized light in a wavelength range of ˜490 nm) and a cholesteric liquid crystal layer that reflects left circularly polarized light in a blue wavelength region , Red light, green light and blue light can be reflected.
 コレステリック液晶相の選択反射波長λは、コレステリック液晶相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶相の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋構造のピッチを調節することによって、選択反射波長を調節することができる。コレステリック液晶相のピッチは、重合性液晶化合物とともに用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調節することによって所望のピッチを得ることができる。
 また、選択反射を示す選択反射帯域(円偏光反射帯域)の半値幅Δλ(nm)は、コレステリック液晶相の屈折率異方性Δnと螺旋のピッチPとに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯域の幅の制御は、Δnを調節して行うことができる。Δnは、コレステリック液晶層を形成する液晶化合物の種類およびその混合比率、ならびに、配向時の温度により調節できる。なお、コレステリック液晶相における反射率はΔnに依存することも知られており、同程度の反射率を得る場合に、Δnが大きいほど、螺旋ピッチの数を少なく、すなわち膜厚を薄くすることができる。
 螺旋のセンスおよびピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。
The selective reflection wavelength λ of the cholesteric liquid crystal phase depends on the pitch P (= spiral period) of the helical structure in the cholesteric liquid crystal phase, and follows the relationship between the average refractive index n of the cholesteric liquid crystal phase and λ = n × P. Therefore, the selective reflection wavelength can be adjusted by adjusting the pitch of the spiral structure. Since the pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent, the desired pitch can be obtained by adjusting these.
Further, the half-value width Δλ (nm) of the selective reflection band (circular polarization reflection band) indicating selective reflection depends on the refractive index anisotropy Δn of the cholesteric liquid crystal phase and the helical pitch P, and Δλ = Δn × P Follow the relationship. Therefore, the width of the selective reflection band can be controlled by adjusting Δn. Δn can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer, the mixing ratio thereof, and the temperature during alignment. It is also known that the reflectance in the cholesteric liquid crystal phase depends on Δn. When obtaining a similar reflectance, the larger the Δn, the smaller the number of spiral pitches, that is, the thinner the film thickness. it can.
For the measurement of spiral sense and pitch, it is possible to use the method described in “Introduction to Liquid Crystal Chemistry Experiments”, edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, page 46, and “Liquid Crystal Handbook”, Liquid Crystal Handbook Editorial Committee Maruzen 196 pages. it can.
 コレステリック液晶相の反射光は円偏光である。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相は螺旋の捩れ方向による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶相の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
 なお、コレステリック液晶相の旋回の方向は、反射領域を形成する液晶化合物の種類または添加されるキラル剤の種類によって調節できる。
The reflected light of the cholesteric liquid crystal phase is circularly polarized. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction of the spiral in the cholesteric liquid crystal phase. The selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the helical twist direction of the cholesteric liquid crystal phase is right, and reflects left circularly polarized light when the helical twist direction is left.
The direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the reflective region or the type of chiral agent added.
 コレステリック液晶層における選択反射波長は、可視光(380~780nm程度)および近赤外光(780~2000nm程度)のいずれの範囲にも設定することが可能であり、その設定方法は上述した通りである。 The selective reflection wavelength in the cholesteric liquid crystal layer can be set in any range of visible light (about 380 to 780 nm) and near infrared light (about 780 to 2000 nm), and the setting method is as described above. is there.
 コレステリック液晶層の形成に用いる材料としては、液晶化合物を含む液晶組成物等が挙げられる。液晶化合物は重合性液晶化合物であることが好ましい。
 重合性液晶化合物を含む液晶組成物はさらに界面活性剤、キラル剤、重合開始剤等を含んでいてもよい。
 液晶化合物、界面活性剤、キラル剤および重合開始剤としては、コレステリック液晶層に用いられる公知の液晶化合物、界面活性剤、キラル剤および重合開始剤を用いることができる。
Examples of the material used for forming the cholesteric liquid crystal layer include a liquid crystal composition containing a liquid crystal compound. The liquid crystal compound is preferably a polymerizable liquid crystal compound.
The liquid crystal composition containing a polymerizable liquid crystal compound may further contain a surfactant, a chiral agent, a polymerization initiator, and the like.
As the liquid crystal compound, the surfactant, the chiral agent, and the polymerization initiator, known liquid crystal compounds, surfactants, chiral agents, and polymerization initiators used for the cholesteric liquid crystal layer can be used.
 ここで、光反射層がコレステリック液晶層を有するものである場合には、第2の開口部は物理的に形成されていてもよいし、第2の開口部となる領域にはコレステリック液晶相を形成せずに反射性を有さないものとすることで、第2の開口部として光透過性を有する領域を形成してもよい。 Here, in the case where the light reflecting layer has a cholesteric liquid crystal layer, the second opening may be physically formed, and a cholesteric liquid crystal phase may be formed in a region serving as the second opening. A region having light transmittance may be formed as the second opening portion by not forming it and having no reflectivity.
 また、光反射層を作製する際、フォトレジスト法を使用しても良い。レンズ反対面にレジスト材料を塗布し、作製したい反射層のパターンに応じたマスクを介して、光を照射し、現像する。その後、例えば、アルミニウムまたは銀の蒸着を行い、続いて、レジスト材料を洗浄、除去することで、所望のパターンの反射層を作製できる。フォトマスクを使わない場合は、代わりにレンズ側から平行光を照射することもできる。レンズ側から平行光を照射する方法のほうが、レンズと開口部の位置合わせ精度を高められる点で、フォトマスクを使用する場合より良い。 Also, a photoresist method may be used when producing the light reflecting layer. A resist material is applied to the opposite surface of the lens, and light is irradiated and developed through a mask corresponding to the pattern of the reflective layer to be produced. Thereafter, for example, aluminum or silver is vapor-deposited, and then the resist material is washed and removed, whereby a reflective layer having a desired pattern can be produced. When a photomask is not used, parallel light can be irradiated from the lens side instead. The method of irradiating parallel light from the lens side is better than the case of using a photomask in that the alignment accuracy between the lens and the opening can be improved.
 この際、露光に用いる光としては、g線、h線、i線、j線等の紫外線があるが、特にi線での露光が好ましい。 In this case, the light used for exposure includes ultraviolet rays such as g-line, h-line, i-line, and j-line, and i-line exposure is particularly preferable.
 基板上に付与(好ましくは塗布)されたフォトレジスト材料による膜の乾燥(プリベーク)は、ホットプレート、オーブン等を用いて50~140℃の温度範囲で10~300秒の条件にて行なうことができる。 Drying (pre-baking) of the film with a photoresist material applied (preferably applied) on the substrate can be performed using a hot plate, oven, etc., at a temperature range of 50 to 140 ° C. for 10 to 300 seconds. it can.
 現像では、露光後の未硬化部を現像液に溶出させ、硬化部のみを残存させる。現像温度としては、通常20~30℃であり、現像時間としては20~600秒である。現像液としては、未硬化部における感光性樹脂組成物の膜を溶解する一方、硬化部を溶解しないものであれば、いずれのものも用いることができる。具体的には、種々の有機溶剤の組合せまたはアルカリ性の水溶液を用いることができる。 In development, the uncured part after exposure is eluted in the developer, leaving only the cured part. The development temperature is usually 20 to 30 ° C., and the development time is 20 to 600 seconds. Any developer can be used as long as it dissolves the film of the photosensitive resin composition in the uncured portion while not dissolving the cured portion. Specifically, a combination of various organic solvents or an alkaline aqueous solution can be used.
 前述の有機溶剤としては、感光性樹脂組成物を調製する際に使用できる既述の溶剤として列挙したものが挙げられる。 Examples of the organic solvent described above include those listed above as the solvents that can be used when preparing the photosensitive resin composition.
 前述のアルカリ性の水溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、硅酸ナトリウム、メタ硅酸ナトリウム、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド(TMAH)、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ-[5,4,0]-7-ウンデセン等のアルカリ性化合物を、濃度が0.001~10質量%、好ましくは0.01~1質量%となるように溶解したアルカリ性水溶液が挙げられる。
 なお、アルカリ性水溶液を現像液として使用した場合には、一般に現像後に水で洗浄(リンス)が行なわれる。
Examples of the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium oxalate, sodium metasuccinate, aqueous ammonia, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide. An alkaline compound such as tetraethylammonium hydroxide (TMAH), choline, pyrrole, piperidine, 1,8-diazabicyclo- [5,4,0] -7-undecene, preferably in a concentration of 0.001 to 10% by mass, preferably Examples thereof include an alkaline aqueous solution dissolved so as to be 0.01 to 1% by mass.
In the case where an alkaline aqueous solution is used as a developer, washing (rinsing) with water is generally performed after development.
 フォトレジスト材料の構成としては、(A)光重合開始剤、(B)溶剤、(C)重合性モノマーおよび(D)アルカリ可溶性樹脂を含み、(A)光重合開始剤として、1種以上のO-アシルオキシムエステル化合物と、1種以上のα-アミノアセトフェノン化合物を含み、同時に2種以上の独立したパターンの形成が可能である。(D)アルカリ可溶性樹脂のうち少なくとも1種が、酸価150~400mgKOH/gである。さらに、(E)光増感剤または助開始剤を含む。
 (A)光重合開始剤と(E)光増感剤または助開始剤との添加量の総和が、感光性樹脂組成物の全固形分中の0.1~15.0質量%である。(C)重合性モノマーが酸基を有し、かつ、酸価が20~150mgKOH/gである。O-アシルオキシムエステル化合物が、芳香環を有している。O-アシルオキシムエステル化合物が、芳香環を含む縮合環を有する。O-アシルオキシムエステル化合物が、ベンゼン環とヘテロ環を含む縮合環を有している。O-アシルオキシムエステル化合物と、α-アミノアセトフェノン化合物とを、10:90~80:20(質量比)で含んでいる。(D)アルカリ可溶性樹脂が、アクリル系樹脂である。
The composition of the photoresist material includes (A) a photopolymerization initiator, (B) a solvent, (C) a polymerizable monomer and (D) an alkali-soluble resin, and (A) one or more photopolymerization initiators. Including an O-acyl oxime ester compound and one or more α-aminoacetophenone compounds, two or more independent patterns can be formed simultaneously. (D) At least one of the alkali-soluble resins has an acid value of 150 to 400 mgKOH / g. Furthermore, (E) a photosensitizer or a co-initiator is included.
The total addition amount of (A) photopolymerization initiator and (E) photosensitizer or co-initiator is 0.1 to 15.0% by mass in the total solid content of the photosensitive resin composition. (C) The polymerizable monomer has an acid group, and the acid value is 20 to 150 mgKOH / g. The O-acyl oxime ester compound has an aromatic ring. The O-acyl oxime ester compound has a condensed ring including an aromatic ring. The O-acyl oxime ester compound has a condensed ring including a benzene ring and a hetero ring. An O-acyl oxime ester compound and an α-aminoacetophenone compound are contained at a ratio of 10:90 to 80:20 (mass ratio). (D) The alkali-soluble resin is an acrylic resin.
 本発明の感光性樹脂組成物は、(A)光重合開始剤、(B)溶剤、(C)重合性モノマーおよび(D)アルカリ可溶性樹脂を含み、(A)光重合開始剤として、1種以上のO-アシルオキシムエステル化合物と、1種以上のα-アミノアセトフェノン化合物を含み、同時に2種以上の独立したパターンの形成が可能であることを特徴とする。O-アシルオキシムエステル化合物とα-アミノアセトフェノン化合物を併用することにより、2種類以上の独立したパターンが形成可能になる。
 ここで、「同時に2種以上の独立したパターンの形成が可能な」とは、一度の露光によって、2種類以上の高さの異なるパターンを形成することをいう。一度の露光とは、同時期に行う露光を意味する。同時期に行う露光として、その露光方法は限定されないが、たとえば、透過率の異なるハーフトーンマスクを用いる方法、同時に2種類以上の露光量を照射して露光する方法等が挙げられる。
 2種類以上の高さの異なるパターンは、例えば、2種類のパターンがある場合、高さの高い複数のパターンからなるパターン群(1)と、高さの低い複数のパターンからなるパターン群(2)が存在していることをいう。そして、パターン群(1)とパターン群(2)の間の高さの差は、0.4~1.1μmであることが好ましい。パターン群の高さは、それぞれの平均値として定めることができる。また、それぞれの独立したパターン群の高さは一定であることが好ましく、例えば、標準偏差3σで±0.1μmとすることが好ましい。
 以下、本発明の各成分について詳細に説明する。
The photosensitive resin composition of the present invention contains (A) a photopolymerization initiator, (B) a solvent, (C) a polymerizable monomer, and (D) an alkali-soluble resin. It includes the above O-acyloxime ester compound and one or more α-aminoacetophenone compounds, and is capable of forming two or more independent patterns simultaneously. By using the O-acyl oxime ester compound and the α-aminoacetophenone compound in combination, two or more kinds of independent patterns can be formed.
Here, “two or more independent patterns can be formed simultaneously” means that two or more types of patterns having different heights are formed by one exposure. One exposure means exposure performed at the same time. As the exposure performed at the same time, the exposure method is not limited, and examples thereof include a method using halftone masks having different transmittances, and a method in which exposure is performed by simultaneously irradiating two or more exposure amounts.
For example, when there are two types of patterns, the pattern group (1) composed of a plurality of patterns having a high height and the pattern group (2 composed of a plurality of patterns having a low height) are provided. ) Exists. The height difference between the pattern group (1) and the pattern group (2) is preferably 0.4 to 1.1 μm. The height of the pattern group can be determined as an average value of each. Moreover, it is preferable that the height of each independent pattern group is constant, for example, it is preferable to set to ± 0.1 μm with a standard deviation of 3σ.
Hereinafter, each component of the present invention will be described in detail.
 (A)光重合開始剤
 本発明では、(A)光重合開始剤として、O-アシルオキシムエステル化合物とα-アミノアセトフェノン化合物を用いる。
(A) Photopolymerization initiator In the present invention, an O-acyloxime ester compound and an α-aminoacetophenone compound are used as the photopolymerization initiator (A).
 O-アシルオキシムエステル化合物
 本発明で用いるO-アシルオキシムエステル化合物は、-C=N-O-C(=O)構造を有するものであれば、特に定めるものではないが、芳香環を有するものが好ましく、芳香環を含む縮合環を有するものがより好ましく、ベンゼン環とヘテロ環を含む縮合環を有することがさらに好ましい。また、本発明で用いるO-アシルオキシムエステル化合物は、オキシムエステル基が、前述の縮合環に直接に結合した構造であることが好ましい。ここで、芳香環を含む縮合環とは、少なくとも1つの環が芳香環であればよい。
 O-アシルオキシムエステル化合物は、特開2000-80068号公報、特開2001-233842号公報等に記載のO-アシルオキシムエステル化合物等の公知である光重合開始剤の中から適宜選択できる。具体的には、1-(4-フェニルスルファニル-フェニル)-ブタン-1,2-ジオン2-オキシム-O-ベンゾアート、1-(4-フェニルスルファニル-フェニル)-オクタン-1,2-ジオン2-オキシム-O-ベンゾアート、1-(4-フェニルスルファニル-フェニル)-オクタン-1-オンオキシム-O-アセタート、1-(4-フェニルスルファニル-フェニル)-ブタン-1-オンオキシム-O-アセタート等が挙げられる。O-アシルオキシムエステル化合物は、一種のみ用いてもよいし、二種以上の化合物を併用してもよい。
O-acyl oxime ester compound The O-acyl oxime ester compound used in the present invention is not particularly defined as long as it has a —C═N—O—C (═O) structure, but has an aromatic ring. Are preferred, those having a condensed ring containing an aromatic ring are more preferred, and those having a fused ring containing a benzene ring and a heterocycle are more preferred. Further, the O-acyl oxime ester compound used in the present invention preferably has a structure in which the oxime ester group is directly bonded to the aforementioned condensed ring. Here, the condensed ring containing an aromatic ring should just be an aromatic ring at least 1 ring.
The O-acyl oxime ester compound can be appropriately selected from known photopolymerization initiators such as the O-acyl oxime ester compounds described in JP-A Nos. 2000-80068 and 2001-233842. Specifically, 1- (4-phenylsulfanyl-phenyl) -butane-1,2-dione 2-oxime-O-benzoate, 1- (4-phenylsulfanyl-phenyl) -octane-1,2-dione 2-oxime-O-benzoate, 1- (4-phenylsulfanyl-phenyl) -octane-1-one oxime-O-acetate, 1- (4-phenylsulfanyl-phenyl) -butan-1-one oxime-O-acetate Etc. One type of O-acyl oxime ester compound may be used, or two or more types of compounds may be used in combination.
 また、オキシムエステル系光重合材として、BASF社製のIRGACURE OXE01またはOXE02を使用することもできる。 Further, IRGACURE OXE01 or OXE02 manufactured by BASF can also be used as the oxime ester-based photopolymerization material.
 α-アミノアセトフェノン化合物
 α-アミノアセトフェノン化合物は、1種を単独で使用してもよいし、2種以上を併用することもできる。
α-Aminoacetophenone compound One α-aminoacetophenone compound may be used alone, or two or more types may be used in combination.
 さらに、α-アミノアセトフェノン化合物として、前述の一般式(4)で表される化合物の酸付加物塩を使用することもできる。
 また、市販のα-アミノアセトフェノン化合物として、チバ・スペシャルティ・ケミカルズ社製からイルガキュア907(IRGACURE 907)、イルガキュア369(IRGACURE 369)、イルガキュア379(IRGACURE 379)の商品名で入手可能な重合開始剤が例示できる。
Furthermore, as the α-aminoacetophenone compound, an acid adduct salt of the compound represented by the above general formula (4) can also be used.
Further, as commercially available α-aminoacetophenone compounds, polymerization initiators available from Ciba Specialty Chemicals under the trade names Irgacure 907 (IRGACURE 907), Irgacure 369 (IRGACURE 369), and Irgacure 379 (IRGACURE 379) are available. It can be illustrated.
 α-アミノアセトフェノン化合物として、具体的には、2-ジメチルアミノ-2-メチル-1-フェニルプロパン-1-オン、2-ジエチルアミノ-2-メチル-1-フェニルプロパン-1-オン、2-メチル-2-モルホリノ-1-フェニルプロパン-1-オン、2-ジメチルアミノ-2-メチル-1-(4-メチルフェニル)プロパン-1-オン、2-ジメチルアミノ-1-(4-エチルフェニル)-2-メチルプロパン-1-オン、2-ジメチルアミノ-1-(4-イソプロピルフェニル)-2-メチルプロパン-1-オン、1-(4-ブチルフェニル)-2-ジメチルアミノ-2-メチルプロパン-1-オン、2-ジメチルアミノ-1-(4-メトキシフェニル)-2-メチルプロパン-1-オン、2-ジメチルアミノ-2-メチル-1-(4-メチルチオフェニル)プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(IRGACURE 907)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン(IRGACURE 369)、2-ベンジル-2-ジメチルアミノ-1-(4-ジメチルアミノフェニル)-ブタン-1-オン、2-ジメチルアミノ-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォルニル)フェニル]-1-ブタノン(IRGACURE 379)等が挙げられる。 Specific examples of α-aminoacetophenone compounds include 2-dimethylamino-2-methyl-1-phenylpropan-1-one, 2-diethylamino-2-methyl-1-phenylpropan-1-one, and 2-methyl. -2-morpholino-1-phenylpropan-1-one, 2-dimethylamino-2-methyl-1- (4-methylphenyl) propan-1-one, 2-dimethylamino-1- (4-ethylphenyl) -2-Methylpropan-1-one, 2-dimethylamino-1- (4-isopropylphenyl) -2-methylpropan-1-one, 1- (4-butylphenyl) -2-dimethylamino-2-methyl Propan-1-one, 2-dimethylamino-1- (4-methoxyphenyl) -2-methylpropan-1-one, 2-dimethylamino-2-methyl -1- (4-methylthiophenyl) propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (IRGACURE 907), 2-benzyl-2-dimethylamino -1- (4-morpholinophenyl) -butan-1-one (IRGACURE 369), 2-benzyl-2-dimethylamino-1- (4-dimethylaminophenyl) -butan-1-one, 2-dimethylamino -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (IRGACURE 379) and the like.
 α-アミノアセトフェノン化合物は、本発明の感光性樹脂組成物に含有される溶剤を除いた総固形分に対し、0.1~10質量%の割合で含まれることが好ましく、0.3~8質量%の割合で含まれることがより好ましく、0.5~5質量%の割合で含まれることがさらに好ましい。 The α-aminoacetophenone compound is preferably contained in a proportion of 0.1 to 10% by mass with respect to the total solid content excluding the solvent contained in the photosensitive resin composition of the present invention, and 0.3 to 8 More preferably, it is contained in a proportion of 0.5% by mass, and more preferably in a proportion of 0.5-5% by mass.
 その他の光重合開始剤
 本発明においては、O-アシルオキシムエステル化合物およびα-アミノアセトフェノン化合物の併用における効果を阻害しない範囲で、一般的に公知な他の光重合開始剤をさらに併用することもできる。併用できる光重合開始剤は特に限定されないが、全光開始剤質量に対する、O-アシルオキシムエステル化合物およびα-アミノアセトフェノン化合物の質量が、80%以上であることがハーフトーン適性および感度の面から好ましく、90%以上であることがより好ましい。他の開始剤を併用する場合においても、O-アシルオキシムエステル化合物およびα-アミノアセトフェノン化合物の最適な添加質量比は同一である。
Other Photopolymerization Initiators In the present invention, other generally known photopolymerization initiators may be further used in combination as long as the effects of the combined use of the O-acyloxime ester compound and the α-aminoacetophenone compound are not impaired. it can. The photopolymerization initiator that can be used in combination is not particularly limited, but the mass of the O-acyloxime ester compound and the α-aminoacetophenone compound with respect to the total photoinitiator mass is 80% or more from the viewpoint of halftone aptitude and sensitivity. Preferably, it is 90% or more. Even when other initiators are used in combination, the optimum addition mass ratio of the O-acyloxime ester compound and the α-aminoacetophenone compound is the same.
 (B)溶剤
 本発明に使用できる(B)溶剤としては、本発明の趣旨を逸脱しない限り特に定めるものではないが、エステル類、エーテル類、ケトン類、芳香族炭化水素類等に分類される溶剤が挙げられる。
 (B)溶剤として用いられるエステル類の例としては、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、アルキルエステル類、乳酸メチル、乳酸エチル、オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等の他に、3-オキシプロピオン酸メチルおよび3-オキシプロピオン酸エチル等の3-オキシプロピオン酸アルキルエステル類;2-オキシプロピオン酸メチル、2-オキシプロピオン酸エチル、2-オキシプロピオン酸プロピル、2-オキシ-2-メチルプロピオン酸メチル、2-オキシ-2-メチルプロピオン酸エチル等の2-オキシプロピオン酸アルキルエステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等のアルコキシプロピオン酸アルキルエステル;ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が挙げられる。
(B) Solvent The (B) solvent that can be used in the present invention is not particularly defined unless departing from the gist of the present invention, but is classified into esters, ethers, ketones, aromatic hydrocarbons, and the like. A solvent is mentioned.
(B) Examples of esters used as a solvent include, for example, ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, In addition to alkyl esters, methyl lactate, ethyl lactate, methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc., 3-oxypropion 3-oxypropionic acid alkyl esters such as methyl acid and ethyl 3-oxypropionate; methyl 2-oxypropionate, ethyl 2-oxypropionate, propyl 2-oxypropionate, 2-oxy-2-methylpropionic acid Methyl, 2-oxy -2-alkyl 2-hydroxypropionates such as ethyl 2-methylpropionate; methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, 2-methoxypropionate Acid methyl, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-methoxy-2-methylpropionate, 2-ethoxy-2-methylpropion Examples include alkyl propionate alkyl esters such as ethyl acetate; methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate and the like.
 エーテル類の例としては、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート等が挙げられる。
 ケトン類の例としては、例えば、メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等が挙げられる。
 芳香族炭化水素類の例としては、例えば、トルエン、キシレン、等が挙げられる。
Examples of ethers include, for example, diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol methyl ether Examples include acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate and the like.
Examples of ketones include methyl ethyl ketone, cyclohexanone, 2-heptanone, 3-heptanone and the like.
Examples of aromatic hydrocarbons include toluene, xylene, and the like.
 これらの溶剤のうち、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテルアセテート等が好適である。
 溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明の感光性樹脂組成物中の(B)溶剤の含有量は、感光性樹脂組成物の塗布性等を考慮して適宜決められるが、一般的には、感光性樹脂組成物中の(B)溶剤の含有量は45~85質量%である。
Among these solvents, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, ethyl carbitol acetate Butyl carbitol acetate, propylene glycol methyl ether acetate and the like are preferable.
A solvent may be used independently and may be used in combination of 2 or more type.
The content of the solvent (B) in the photosensitive resin composition of the present invention is appropriately determined in consideration of the applicability of the photosensitive resin composition and the like. B) The content of the solvent is 45 to 85% by mass.
 (C)重合性モノマー
 本発明の感光性樹脂組成物においては、硬化性成分として、(C)重合性モノマーを1種以上含有する。重合性モノマーとしては、複数の重合性モノマーを併用してもよく、酸基を含有する重合性モノマーと酸基を有しない重合性モノマーをそれぞれ1種以上を併用してもよい。
(C) Polymerizable monomer In the photosensitive resin composition of this invention, 1 or more types of (C) polymerizable monomers are contained as a sclerosing | hardenable component. As the polymerizable monomer, a plurality of polymerizable monomers may be used in combination, or one or more of a polymerizable monomer containing an acid group and a polymerizable monomer having no acid group may be used in combination.
 カルボキシル基を含有する重合性モノマーとしては、アクリル酸、メタクリル酸、フタル酸、フマル酸、マレイン酸、イタコン酸、クロトン酸、シナモン酸等の不飽和脂肪酸の他に、カルボキシル基変性した多官能アクリレート化合物が挙げられる。カルボキシル基変性した多官能アクリレート化合物としては、コハク酸変性ペンタエリスリトールトリアクリレート、コハク酸変性トリメチロールプロパントリアクリレート、コハク酸変性ペンタエリスリトールテトラアクリレート、コハク酸変性ジペンタエリスリトールペンタアクリレート、コハク酸変性ジペンタエリスリトールヘキサアクリレート、アジピン酸変性ペンタエリスリトールトリアクリレート、アジピン酸変性トリメチロールプロパントリアクリレート、アジピン酸変性ペンタエリスリトールテトラアクリレート、アジピン酸変性ジペンタエリスリトールペンタアクリレート、アジピン酸変性ジペンタエリスリトールテトラアクリレート、等が挙げられ、アロニックスM-510、アロニックスM-520、アロニックスTO-2349、アロニックスTO-2359(以上、東亞合成社製)等の市販の化合物を好適に用いることができる。 Examples of polymerizable monomers containing carboxyl groups include polyfunctional acrylates modified with carboxyl groups in addition to unsaturated fatty acids such as acrylic acid, methacrylic acid, phthalic acid, fumaric acid, maleic acid, itaconic acid, crotonic acid, and cinnamonic acid. Compounds. Examples of the carboxyl group-modified polyfunctional acrylate compounds include succinic acid modified pentaerythritol triacrylate, succinic acid modified trimethylolpropane triacrylate, succinic acid modified pentaerythritol tetraacrylate, succinic acid modified dipentaerythritol pentaacrylate, and succinic acid modified dipenta. Erythritol hexaacrylate, adipic acid modified pentaerythritol triacrylate, adipic acid modified trimethylolpropane triacrylate, adipic acid modified pentaerythritol tetraacrylate, adipic acid modified dipentaerythritol pentaacrylate, adipic acid modified dipentaerythritol tetraacrylate, etc. Aronix M-510, Aronix M-520, Aronix T -2349, Aronix TO-2359 (manufactured by Toagosei Co., Ltd.) can be preferably used commercially available compounds such as.
 フェノール性水酸基を含有する重合性モノマーとしては、p-ヒドロキシスチレン、3,4-ジヒドロキシスチレン、3,5-ジヒドロキシスチレン、2,4,6-トリヒドロキシスチレン、(p-ヒドロキシ)ベンジルアクリレート、サリチル酸変性ペンタエリスリトールトリアクリレート、サリチル酸変性トリメチロールプロパントリアクリレート、サリチル酸変性ペンタエリスリトールテトラアクリレート、サリチル酸変性ジペンタエリスリトールペンタアクリレート、サリチル酸変性ジペンタエリスリトールヘキサアクリレート、等が挙げられ、好ましいものはサリチル酸変性ジペンタエリスリトールヘキサアクリレート、サリチル酸変性ジペンタエリスリトールペンタアクリレートである。 Examples of polymerizable monomers containing phenolic hydroxyl groups include p-hydroxystyrene, 3,4-dihydroxystyrene, 3,5-dihydroxystyrene, 2,4,6-trihydroxystyrene, (p-hydroxy) benzyl acrylate, and salicylic acid. Modified pentaerythritol triacrylate, salicylic acid modified trimethylolpropane triacrylate, salicylic acid modified pentaerythritol tetraacrylate, salicylic acid modified dipentaerythritol pentaacrylate, salicylic acid modified dipentaerythritol hexaacrylate, etc. are preferred, salicylic acid modified dipentaerythritol Hexaacrylate, salicylic acid-modified dipentaerythritol pentaacrylate.
 スルホン酸基を含有する重合性モノマーとしては、ビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸、ブチルスルホン酸変性アクリルアミド、等がある。リン酸基を含有する重合性モノマーとしては、ビニルリン酸、スチレンリン酸、ブチルリン酸変性アクリルアミド、等が挙げられる。これらのうちで好ましいものはブチルスルホン酸変性アクリルアミドであり、市販の化合物としてはATBS(東亞合成社製)がある。 Examples of the polymerizable monomer containing a sulfonic acid group include vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, and butyl sulfonic acid-modified acrylamide. Examples of the polymerizable monomer containing a phosphoric acid group include vinyl phosphoric acid, styrene phosphoric acid, and butyl phosphoric acid-modified acrylamide. Of these, butylsulfonic acid-modified acrylamide is preferable, and a commercially available compound is ATBS (manufactured by Toagosei Co., Ltd.).
 これらの酸基を有する重合性モノマーの中で、製造適性およびコストの観点から、カルボキシル基を有する重合性モノマー、フェノール性水酸基を有する重合性モノマーが好ましく、カルボキシル基を有する重合性モノマーがより好ましい。 Among these polymerizable monomers having an acid group, a polymerizable monomer having a carboxyl group and a polymerizable monomer having a phenolic hydroxyl group are preferable, and a polymerizable monomer having a carboxyl group is more preferable, from the viewpoint of production suitability and cost. .
 (酸基を有しない重合性モノマー)
 本発明において酸基を有する重合性モノマーと併用されうる酸基を有しない重合性モノマーは、重合可能であれば特に制限はなく、エチレン性二重結合を少なくとも1つ有する低分子化合物、二量体、三量体、オリゴマー等の付加重合可能な化合物を好適に使用することができる。
 エチレン性化合物としては、例えば、不飽和カルボン酸とモノヒドロキシ化合物とのエステル、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸のエステル、芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル、不飽和カルボン酸と多価カルボン酸および前述の脂肪酸ポリヒドロキシ化合物、芳香族ポリヒドロキシ化合物等の多価ヒドロキシ化合物とのエステル化反応により得られるエステル、ポリイソシアナート化合物と(メタ)アクリロイル含有ヒドロキシ化合物とを反応させたウレタン骨格を有するエチレン性化合物等が挙げられる。
(Polymerizable monomer having no acid group)
In the present invention, the polymerizable monomer having no acid group that can be used in combination with the polymerizable monomer having an acid group is not particularly limited as long as it can be polymerized, and is a low molecular compound having at least one ethylenic double bond, dimer Compounds capable of addition polymerization such as isomers, trimers, and oligomers can be preferably used.
Examples of the ethylenic compound include an ester of an unsaturated carboxylic acid and a monohydroxy compound, an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, an ester of an aromatic polyhydroxy compound and an unsaturated carboxylic acid, and an unsaturated carboxylic acid. Reaction of ester, polyisocyanate compound and (meth) acryloyl-containing hydroxy compound obtained by esterification reaction of acid with polyhydric carboxylic acid and polyhydric hydroxy compound such as fatty acid polyhydroxy compound and aromatic polyhydroxy compound described above And an ethylenic compound having a urethane skeleton.
 具体的な重合性モノマーは、以下に示すように、1分子中の重合性基の数で分類して挙げることができるが、これに限定されるものではない。 Specific polymerizable monomers can be classified and listed according to the number of polymerizable groups in one molecule as shown below, but are not limited thereto.
 (1)1分子中に1個の重合性基を有する化合物
 1分子中に1個の重合性基を有する化合物の例としては、例えば、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-n-ブチルシクロヘキシル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エチヘキシルジグリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2-クロロエチル(メタ)アクリレート、シアノエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-(2-メトキシエトキシ)エチル(メタ)アクリレート、2,2,2-テトラフルオロエチル(メタ)アクリレート、1H,1H,2H,2Hパーフルオロデシル(メタ)アクリレート、フェニル(メタ)アクリレート、2,4,5-テトラメチルフェニル(メタ)アクリレート、4-クロロフェニル(メタ)アクリレート、フェノキシメチル(メタ)アクリレート、グリシジル(メタ)アクリレート、グリシジロキシブチル(メタ)アクリレート、グリシジロキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、ポリエチレンオキシドモノメチルエーテル(メタ)アクリレート、オリゴエチレンオキシドモノメチルエーテル(メタ)アクリレート、ポリエチレンオキシド(メタ)アクリレート、オリゴエチレンオキシド(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、EO変性フェノール(メタ)アクリレート、EO変性クレゾール(メタ)アクリレート、EO変性ノニルフェノール(メタ)アクリレート、PO変性ノニルフェノール(メタ)アクリレート、EO変性-2-エチルヘキシル(メタ)アクリレート等が挙げられる。
(1) Compound having one polymerizable group in one molecule Examples of the compound having one polymerizable group in one molecule include, for example, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, Stearyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-n-butylcyclohexyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, 2-ethylhexyl glycol (meth) Acrylate, butoxyethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, cyanoethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 2,2, 2-tetrafluoro Ethyl (meth) acrylate, 1H, 1H, 2H, 2H perfluorodecyl (meth) acrylate, phenyl (meth) acrylate, 2,4,5-tetramethylphenyl (meth) acrylate, 4-chlorophenyl (meth) acrylate, phenoxy Methyl (meth) acrylate, glycidyl (meth) acrylate, glycidyloxybutyl (meth) acrylate, glycidyloxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2- Hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, polyethylene oxide monomethyl ether ( ) Acrylate, oligoethylene oxide monomethyl ether (meth) acrylate, polyethylene oxide (meth) acrylate, oligoethylene oxide (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, EO modified phenol (meth) acrylate, EO modified Examples include cresol (meth) acrylate, EO-modified nonylphenol (meth) acrylate, PO-modified nonylphenol (meth) acrylate, and EO-modified-2-ethylhexyl (meth) acrylate.
 (2)1分子中に2個の重合性基を有する化合物
 1分子中に2個の重合性基を有する化合物の例としては、重合性基として同一分子内に2個の(メタ)アクリロイル基を有する化合物が挙げられ、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシジエトキシ)フェニル]プロパン、ビスフェノールAのビス(アクリロイロキシエチル)エーテル、ビスフェノールA型エポキシ樹脂の(メタ)アクリル酸変性物、3-メチルペンタンジオールジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート等が挙げられ、好ましくはジメチロール-トリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、ビスフェノールA型エポキシ樹脂の(メタ)アクリル酸変性物等が挙げられる。
(2) Compound having two polymerizable groups in one molecule Examples of a compound having two polymerizable groups in one molecule include two (meth) acryloyl groups in the same molecule as the polymerizable group. For example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) ) Acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) ) Acrylate, tripropylene glycol Di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, 2,2-bis [ 4- (acryloxydiethoxy) phenyl] propane, bis (acryloyloxyethyl) ether of bisphenol A, (meth) acrylic acid modified product of bisphenol A type epoxy resin, 3-methylpentanediol di (meth) acrylate, 2 -Hydroxy-3-acryloyloxypropyl methacrylate, dimethylol-tricyclodecane di (meth) acrylate and the like, preferably dimethylol-tricyclodecane di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethoxylation Bisfe Lumpur A di (meth) acrylate, (meth) acrylic acid-modified product of bisphenol A type epoxy resins.
 (3)1分子中に3個の重合性基を有する化合物
 一分子中に三個の重合性基を有する化合物の例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパンのアルキレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、イソシアヌル酸アルキレンオキサイド変性トリ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールトリ(メタ)アクリレート、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、ヒドロキシピバルアルデヒド変性ジメチロールプロパントリ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化グリセリントリアクリレート等が挙げられる。
(3) Compound having three polymerizable groups in one molecule Examples of the compound having three polymerizable groups in one molecule include, for example, trimethylolpropane tri (meth) acrylate, trimethylolethanetri ( (Meth) acrylate, trimethylolpropane alkylene oxide modified tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, trimethylolpropane tri ((meth) acryloyloxypropyl) ether, isocyanuric acid Alkylene oxide modified tri (meth) acrylate, dipentaerythritol propionate tri (meth) acrylate, tri ((meth) acryloyloxyethyl) isocyanurate, hydroxypivalaldehyde modified dimethylol group Examples include lopantri (meth) acrylate, sorbitol tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, and ethoxylated glycerin triacrylate.
 (4)1分子中に4個以上の重合性基を有する化合物
 1分子中に4個以上の重合性基を有する化合物としては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、フォスファゼンのアルキレンオキサイド変性ヘキサ(メタ)アクリレート、カプトラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、共栄社化学社製のUA-306H、UA-306T、UA-306I等のウレタンアクリレートが挙げられる。
(4) Compound having four or more polymerizable groups in one molecule Examples of the compound having four or more polymerizable groups in one molecule include pentaerythritol tetra (meth) acrylate and sorbitol tetra (meth) acrylate. , Ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol propionate tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, sorbitol Penta (meth) acrylate, sorbitol hexa (meth) acrylate, phosphazene alkylene oxide modified hexa (meth) acrylate, captolactone modified dipentaerythritol hexa (me And urethane acrylates such as UA-306H, UA-306T, and UA-306I manufactured by Kyoeisha Chemical Co., Ltd.
 これらの中でも、溶剤耐性およびITO(Indium Tin Oxide)スパッタ適性を好適に保つという観点からは、同一分子内に2個以上の(メタ)アクリロイル基を有する(メタ)アクリレートモノマーが好ましく、3個以上の(メタ)アクリロイル基を有する(メタ)アクリレートモノマーがより好ましい。
 特に、4個以上の(メタ)アクリロイル基を有する(メタ)アクリレートモノマーは有利であり、例えば、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートが、溶剤耐性およびITOスパッタ適性の観点で好ましく、これらの混合物(質量換算の混合比率は、ジペンタエリスリトールペンタアクリレート:ジペンタエリスリトールヘキサアクリレート=2~4:8~6)の混合物が好適に使用される。
Among these, from the viewpoint of suitably maintaining solvent resistance and ITO (Indium Tin Oxide) sputtering suitability, (meth) acrylate monomers having two or more (meth) acryloyl groups in the same molecule are preferable, and three or more The (meth) acrylate monomer having a (meth) acryloyl group is more preferable.
In particular, (meth) acrylate monomers having 4 or more (meth) acryloyl groups are advantageous. For example, dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate are preferable from the viewpoint of solvent resistance and suitability for ITO sputtering. (The mixing ratio in terms of mass is dipentaerythritol pentaacrylate: dipentaerythritol hexaacrylate = 2-4: 8-6) is preferably used.
 酸基を有する重合性モノマーと酸基を有しない重合性モノマーとを併用する場合、酸基を有する重合性モノマーと酸基を有しない重合性モノマーとの合計を100質量部としたときの好ましい添加比は、先に示した好ましい酸価の範囲内であれば特に限定されない。 When a polymerizable monomer having an acid group and a polymerizable monomer having no acid group are used in combination, the total of the polymerizable monomer having an acid group and the polymerizable monomer having no acid group is preferably 100 parts by mass. The addition ratio is not particularly limited as long as it is within the preferable acid value range shown above.
 本発明の感光性樹脂組成物中、重合性モノマーの好ましい含有量は、感光性樹脂組成物の溶剤を除いた総固形分に対し、5~80質量%が好ましく、より好ましくは10~70質量%、さらに好ましくは20~60質量%の範囲である。 In the photosensitive resin composition of the present invention, the content of the polymerizable monomer is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, based on the total solid content excluding the solvent of the photosensitive resin composition. %, More preferably in the range of 20 to 60% by mass.
 (D)アルカリ可溶性樹脂
 本発明に適用しうる(D)アルカリ可溶性樹脂としては、溶剤に可溶な高分子化合物であれば、いずれでも使用できる。アルカリ可溶性樹脂は、それぞれ、単一化合物で用いても複数の化合物を併用してもよい。好ましいアルカリ可溶性樹脂としては、フォトリソ法によるアルカリ現像性を考えると酸基を有する樹脂(以下、適宜「アルカリ可溶性樹脂」と称する。)が好ましい。
(D) Alkali-soluble resin As the (D) alkali-soluble resin applicable to the present invention, any polymer compound that is soluble in a solvent can be used. Each of the alkali-soluble resins may be used as a single compound or a plurality of compounds may be used in combination. As a preferable alkali-soluble resin, a resin having an acid group (hereinafter, appropriately referred to as “alkali-soluble resin”) is preferable in view of alkali developability by a photolithography method.
 アルカリ可溶性樹脂としては、線状有機高分子重合体であって、その中に、少なくとも1つのアルカリ可溶性基(例えばカルボキシル基、リン酸基、スルホン酸基等)を有するアルカリ可溶性高分子が好ましく、さらに好ましくは、有機溶剤に可溶で弱アルカリ水溶液により現像可能なものである。 The alkali-soluble resin is preferably a linear organic polymer, and an alkali-soluble polymer having at least one alkali-soluble group (for example, a carboxyl group, a phosphate group, a sulfonate group, etc.) therein. More preferably, it is soluble in an organic solvent and can be developed with a weak alkaline aqueous solution.
 アルカリ可溶性樹脂の製造には、例えば公知のラジカル重合法による方法を適用することができる。
 ラジカル重合法でアルカリ可溶性樹脂を製造する際の温度、圧力、ラジカル開始剤の種類およびその量、溶媒の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めるようにすることもできる。
For example, a known radical polymerization method can be applied to the production of the alkali-soluble resin.
Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by radical polymerization can be easily set by those skilled in the art, and the conditions are determined experimentally. It can also be done.
 アルカリ可溶性樹脂として適用される線状有機高分子重合体としては、側鎖にカルボキシル基を有するポリマーが好ましい。
 例えば、特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭59-53836号、特開昭59-71048号の各公報に記載されているような、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等、並びに側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの等が挙げられ、さらに側鎖に(メタ)アクリロイル基を有する高分子重合体も好ましいものとして挙げられる。
As the linear organic polymer used as the alkali-soluble resin, a polymer having a carboxyl group in the side chain is preferable.
For example, JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, JP-A-59-71048 As described, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially esterified maleic acid copolymer, etc., and side chain Examples thereof include acidic cellulose derivatives having a carboxylic acid, polymers obtained by adding an acid anhydride to a polymer having a hydroxyl group, and high molecular polymers having a (meth) acryloyl group in the side chain.
 これらの中では、特に、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体またはベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が好適である。 このほか、メタクリル酸2-ヒドロキシエチルを共重合したもの等も有用なものとして挙げられる。
 前述のポリマーは任意の量で混合して用いることができる。
Among these, a benzyl (meth) acrylate / (meth) acrylic acid copolymer or a multi-component copolymer composed of benzyl (meth) acrylate / (meth) acrylic acid / other monomers is particularly preferable. In addition, those obtained by copolymerizing 2-hydroxyethyl methacrylate are also useful.
The aforementioned polymers can be mixed and used in an arbitrary amount.
 上述の以外に、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体等が挙げられる。 In addition to the above, 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxy-3-phenoxypropyl acrylate / polymethyl described in JP-A-7-140654 Methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer Etc.
 その他のアルカリ可溶性樹脂としては、特開平7-207211号公報、特開平8-259876号公報、特開平10-300922号公報、特開平11-140144号公報、特開平11-174224号公報、特開2000-56118号公報、特開2003-233179号公報、特開2009-52020号公報等に記載の公知の高分子化合物を使用することができる。 Examples of other alkali-soluble resins include JP-A-7-207211, JP-A-8-259876, JP-A-10-300922, JP-A-11-140144, JP-A-11-174224, and JP-A-11-174224. Known polymer compounds described in JP 2000-56118 A, JP 2003-233179 A, JP 2009-52020 A, and the like can be used.
 アルカリ可溶性樹脂の具体的な構成単位については、特に、(メタ)アクリル酸およびこれと共重合可能な他の単量体の共重合体が、簡便に入手でき、アルカリ溶解性等の調整が容易なことから、好適に使用されている。 Regarding the specific structural unit of the alkali-soluble resin, in particular, a copolymer of (meth) acrylic acid and other monomers copolymerizable therewith can be easily obtained, and adjustment of alkali solubility and the like is easy. Therefore, it is preferably used.
 前述の(メタ)アクリル酸と共重合可能な他の単量体としては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物等が挙げられる。ここで、アルキル基およびアリール基の水素原子は、置換基で置換されていてもよい。 Examples of other monomers copolymerizable with the above-mentioned (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, vinyl compounds and the like. Here, the hydrogen atom of the alkyl group and the aryl group may be substituted with a substituent.
 前述のアルキル(メタ)アクリレートおよびアリール(メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジルアクリレート、トリルアクリレート、ナフチルアクリレート、シクロヘキシルアクリレート等を挙げることができる。 Specific examples of the aforementioned alkyl (meth) acrylate and aryl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl. (Meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl acrylate, tolyl acrylate, naphthyl acrylate, cyclohexyl acrylate, and the like.
 前述のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、グリシジル(メタ)アクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリル(メタ)アクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー、CH2=CR3132〔ここで、R31は水素原子または炭素数1~5のアルキル基を表し、R32は炭素数6~10の芳香族炭化水素環を表す。〕、CH2=C(R31)(COOR33)〔ここで、R31は水素原子または炭素数1~5のアルキル基を表し、R33は炭素数1~8のアルキル基または炭素数6~12のアラルキル基を表す。〕、等を挙げることができる。 Examples of the vinyl compound include styrene, α-methylstyrene, vinyl toluene, glycidyl (meth) acrylate, acrylonitrile, vinyl acetate, N-vinylpyrrolidone, tetrahydrofurfuryl (meth) acrylate, polystyrene macromonomer, polymethyl methacrylate. Macromonomer, CH 2 = CR 31 R 32 [wherein R 31 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 32 represents an aromatic hydrocarbon ring having 6 to 10 carbon atoms. CH 2 ═C (R 31 ) (COOR 33 ) [wherein R 31 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 33 represents an alkyl group having 1 to 8 carbon atoms or 6 carbon atoms. Represents -12 aralkyl groups. ], Etc. can be mentioned.
 これら共重合可能な他の単量体は、1種単独であるいは2種以上を組み合わせて用いることができる。
 好ましい共重合可能な他の単量体は、CH2=CR3132、CH2=C(R31)(COOR33)、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートおよびスチレンから選択される少なくとも1種であり、特に好ましくは、CH2=CR3132および/またはCH2=C(R31)(COOR33)である。これらの、R31、R32およびR33はそれぞれ前述のしたのと同義である。
These other copolymerizable monomers can be used singly or in combination of two or more.
Preferred other copolymerizable monomers are selected from CH 2 ═CR 31 R 32 , CH 2 ═C (R 31 ) (COOR 33 ), phenyl (meth) acrylate, benzyl (meth) acrylate and styrene. At least one, and particularly preferably CH 2 ═CR 31 R 32 and / or CH 2 ═C (R 31 ) (COOR 33 ). These R 31 , R 32 and R 33 are as defined above.
 また、感光性樹脂組成物中におけるアルカリ可溶性樹脂の含有量としては、感光性樹脂組成物に含有される溶剤を除いた総固形分に対して、5~60質量%が好ましく、より好ましくは10~55質量%であり、特に好ましくは15~50質量%である。
 本発明で用いるアルカリ可溶性樹脂の重量平均分子量(Mw)は1000~100000が好ましく、5000~50000がより好ましい。
The content of the alkali-soluble resin in the photosensitive resin composition is preferably 5 to 60% by mass, more preferably 10%, based on the total solid content excluding the solvent contained in the photosensitive resin composition. It is -55 mass%, Most preferably, it is 15-50 mass%.
The alkali-soluble resin used in the present invention preferably has a weight average molecular weight (Mw) of 1,000 to 100,000, more preferably 5,000 to 50,000.
 本発明で用いるアルカリ可溶性樹脂の酸価は150~400mgKOH/gが好ましく、180~380mgKOH/gがより好ましく、200~350mgKOH/gがさらに好ましい。このような範囲とすることにより、ハーフトーン適性等に優れた感光性組成物が得られる。 The acid value of the alkali-soluble resin used in the present invention is preferably 150 to 400 mgKOH / g, more preferably 180 to 380 mgKOH / g, and further preferably 200 to 350 mgKOH / g. By setting it as such a range, the photosensitive composition excellent in the halftone aptitude etc. is obtained.
 (E)光増感剤または助開始剤
 本発明の感光性樹脂組成物には、(E)光増感剤または助開始剤をさらに加えることもできる。これらを添加することにより、スペクトル感度を移動または拡大して、本発明の感光性樹脂組成物の光重合を促進することができる。
 前述の光増感剤または助開始剤としては、芳香族化合物を用いるのが特に好ましく、例えば、ベンゾフェノンおよびその誘導体、チオキサントンおよびその誘導体、アントラキノンおよびその誘導体、クマリンまたはフェノチアジンおよびその誘導体、3-(アロイルメチレン)チアゾリン、ローダニン、カンファーキノン、エオシン、ローダミン、エリスロシン、キサンテン、チオキサンテン、アクリジン(例えば、9-フェニルアクリジン)、1,7-ビス(9-アクリジニル)ヘプタン、1,5-ビス(9-アクリジニル)ペンタン、シアニン、メロシアニン染料が挙げられる。
(E) Photosensitizer or co-initiator (E) A photosensitizer or co-initiator may be further added to the photosensitive resin composition of the present invention. By adding these, spectral sensitivity can be moved or expanded, and photopolymerization of the photosensitive resin composition of the present invention can be promoted.
As the above-described photosensitizer or co-initiator, it is particularly preferable to use an aromatic compound. For example, benzophenone and derivatives thereof, thioxanthone and derivatives thereof, anthraquinone and derivatives thereof, coumarin or phenothiazine and derivatives thereof, 3- ( Aroylmethylene) thiazoline, rhodanine, camphorquinone, eosin, rhodamine, erythrosine, xanthene, thioxanthene, acridine (eg 9-phenylacridine), 1,7-bis (9-acridinyl) heptane, 1,5-bis ( 9-Acridinyl) pentane, cyanine, merocyanine dyes.
 前述のチオキサントンとしては、例えば、チオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-ドデシルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジメチルチオキサントン、1-メトキシカルボニルチオキサントン、2-エトキシカルボニルチオキサントン、3-(2-メトキシエトキシカルボニル)チオキサントン、4-ブトキシカルボニルチオキサントン、3-ブトキシカルボニル-7-メチルチオキサントン、1-シアノ-3-クロロチオキサントン、1-エトキシカルボニル-3-クロロチオキサントン、1-エトキシカルボニル-3-エトキシチオキサントン、1-エトキシカルボニル-3-アミノチオキサントン、1-エトキシカルボニル-3-フェニルスルフリルチオキサントン、3,4-ジ-〔2-(2-メトキシエトキシ)エトキシカルボニル〕チオキサントン、1,3-ジメチル-2-ヒドロキシ-9H-チオキサンテン-9-オン、
 2-エチルヘキシルエーテル、1-エトキシカルボニル-3-(1-メチル-1-モルホリノエチル)チオキサントン、2-メチル-6-ジメトキシメチルチオキサントン、2-メチル-6-(1,1-ジメトキシベンジル)チオキサントン、2-モルホリノメチルチオキサントン、2-メチル-6-モルホリノメチルチオキサントン、N-アリルチオキサントン-3,4-ジカルボキシイミド、N-オクチルチオキサントン-3,4-ジカルボキシイミド、N-(1,1,3,3-テトラメチルブチル)チオキサントン-3,4-ジカルボキシイミド、1-フェノキシチオキサントン、6-エトキシカルボニル-2-メトキシチオキサントン、6-エトキシカルボニル-2-メチルチオキサントン、チオキサントン-2-カルボン酸ポリエチレングリコールエステル、2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イルオキシ)-N,N,N-トリメチル-1-プロパンアミニウムクロリドが挙げられる。
Examples of the thioxanthone include thioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-dodecylthioxanthone, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 1- Methoxycarbonylthioxanthone, 2-ethoxycarbonylthioxanthone, 3- (2-methoxyethoxycarbonyl) thioxanthone, 4-butoxycarbonylthioxanthone, 3-butoxycarbonyl-7-methylthioxanthone, 1-cyano-3-chlorothioxanthone, 1-ethoxycarbonyl -3-chlorothioxanthone, 1-ethoxycarbonyl-3-ethoxythioxanthone, 1-ethoxycarbonyl-3-aminothioxanthone, 1-ethoxy Carbonyl-3-phenyl sulfuryl thioxanthone, 3,4-di - [2- (2-methoxyethoxy) ethoxycarbonyl] thioxanthone, 1,3-dimethyl-2-hydroxy -9H- thioxanthene-9-one,
2-ethylhexyl ether, 1-ethoxycarbonyl-3- (1-methyl-1-morpholinoethyl) thioxanthone, 2-methyl-6-dimethoxymethylthioxanthone, 2-methyl-6- (1,1-dimethoxybenzyl) thioxanthone, 2-morpholinomethylthioxanthone, 2-methyl-6-morpholinomethylthioxanthone, N-allylthioxanthone-3,4-dicarboximide, N-octylthioxanthone-3,4-dicarboximide, N- (1,1,3 , 3-tetramethylbutyl) thioxanthone-3,4-dicarboximide, 1-phenoxythioxanthone, 6-ethoxycarbonyl-2-methoxythioxanthone, 6-ethoxycarbonyl-2-methylthioxanthone, thioxanthone-2-carboxylic acid polyester Glycol esters, 2-hydroxy-3- (3,4-dimethyl-9-oxo -9H- thioxanthone-2-yloxy) -N, N, include N- trimethyl-1-propanaminium chloride.
 前述のベンゾフェノンとしては、例えば、ベンゾフェノン、4-フェニルベンゾフェノン、4-メトキシベンゾフェノン、4,4'-ジメトキシベンゾフェノン、4,4'-ジメチルベンゾフェノン、4,4'-ジクロロベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、4,4'-ビス(ジエチルアミノ)ベンゾフェノン、4,4'-ビス(メチルエチルアミノ)ベンゾフェノン、4,4'-ビス(p-イソプロピルフェノキシ)ベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-(4-メチルチオフェニル)ベンゾフェノン、3,3'-ジメチル-4-メトキシベンゾフェノン、メチル-2-ベンゾイルベンゾアート、4-(2-ヒドロキシエチルチオ)ベンゾフェノン、4-(4-トリルチオ)ベンゾフェノン、1-〔4-(4-ベンゾイルフェニルスルファニル)フェニル〕-2-メチル-2-(トルエン-4-スルホニル)プロパン-1-オン、4-ベンゾイル-N,N,N-トリメチルベンゼンメタナミニウムクロリド、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロパナミニウムクロリド一水和物、4-(13-アクリロイル-1,4,7,10,13-ペンタオキサトリデシル)ベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-〔2-(1-オキソ-2-プロペニル)オキシ〕エチルベンゼンメタナミニウムクロリドが挙げられる。 Examples of the benzophenone include benzophenone, 4-phenylbenzophenone, 4-methoxybenzophenone, 4,4′-dimethoxybenzophenone, 4,4′-dimethylbenzophenone, 4,4′-dichlorobenzophenone, and 4,4′-bis. (Dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (methylethylamino) benzophenone, 4,4′-bis (p-isopropylphenoxy) benzophenone, 4-methylbenzophenone, 2 , 4,6-trimethylbenzophenone, 4- (4-methylthiophenyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone, methyl-2-benzoylbenzoate, 4- (2-hydroxyethylthio) benzophenone, 4 -(4- Rilthio) benzophenone, 1- [4- (4-benzoylphenylsulfanyl) phenyl] -2-methyl-2- (toluene-4-sulfonyl) propan-1-one, 4-benzoyl-N, N, N-trimethylbenzene Metanaminium chloride, 2-hydroxy-3- (4-benzoylphenoxy) -N, N, N-trimethyl-1-propanaminium chloride monohydrate, 4- (13-acryloyl-1,4,7, 10,13-pentaoxatridecyl) benzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyl) oxy] ethylbenzenemethananium chloride.
 前述のクマリンとしては、例えば、クマリン1、クマリン2、クマリン6、クマリン7、クマリン30、クマリン102、クマリン106、クマリン138、クマリン152、クマリン153、クマリン307、クマリン314、クマリン314T、クマリン334、クマリン337、クマリン500、3-ベンゾイルクマリン、3-ベンゾイル-7-メトキシクマリン、3-ベンゾイル-5,7-ジメトキシクマリン、3-ベンゾイル-5,7-ジプロポキシクマリン、3-ベンゾイル-6,8-ジクロロクマリン、3-ベンゾイル-6-クロロクマリン、3,3'-カルボニル-ビス〔5,7-ジ(プロポキシ)クマリン〕、3,3'-カルボニル-ビス(7-ジエチルアミノクマリン)、3-イソブチロイルクマリン、3-ベンゾイル-5,7-ジメトキシクマリン、3-ベンゾイル-5,7-ジエトキシクマリン、3-ベンゾイル-5,7-ジブトキシクマリン、3-ベンゾイル-5,7-ジ(メトキシエトキシ)クマリン、3-ベンゾイル-5,7-ジ(アリルオキシ)クマリン、3-ベンゾイル-7-ジメチルアミノクマリン、3-ベンゾイル-7-ジエチルアミノクマリン、3-イソブチロイル-7-ジメチルアミノクマリン、5,7-ジメトキシ-3-(1-ナフトイル)クマリン、5,7-ジエトキシ-3-(1-ナフトイル)クマリン、3-ベンゾイルベンゾ〔f〕クマリン、7-ジエチルアミノ-3-チエノイルクマリン、3-(4-シアノベンゾイル)-5,7-ジメトキシクマリン、3-(4-シアノベンゾイル)-5,7-ジプロポキシクマリン、7-ジメチルアミノ-3-フェニルクマリン、7-ジエチルアミノ-3-フェニルクマリン、特開平9-179,299号公報および第9-325,209号公報に開示されたクマリン誘導体、例えば7-〔{4-クロロ-6-(ジエチルアミノ)-S-トリアジン-2-イル}アミノ〕-3-フェニルクマリンが挙げられる。 Examples of the coumarin include coumarin 1, coumarin 2, coumarin 6, coumarin 7, coumarin 30, coumarin 102, coumarin 106, coumarin 138, coumarin 152, coumarin 153, coumarin 307, coumarin 314, coumarin 314T, coumarin 334, Coumarin 337, Coumarin 500, 3-Benzoylcoumarin, 3-benzoyl-7-methoxycoumarin, 3-benzoyl-5,7-dimethoxycoumarin, 3-benzoyl-5,7-dipropoxycoumarin, 3-benzoyl-6,8 -Dichlorocoumarin, 3-benzoyl-6-chlorocoumarin, 3,3'-carbonyl-bis [5,7-di (propoxy) coumarin], 3,3'-carbonyl-bis (7-diethylaminocoumarin), 3- Isobutyroylcoumarin, 3-benzoyl 5,7-dimethoxycoumarin, 3-benzoyl-5,7-diethoxycoumarin, 3-benzoyl-5,7-dibutoxycoumarin, 3-benzoyl-5,7-di (methoxyethoxy) coumarin, 3-benzoyl- 5,7-di (allyloxy) coumarin, 3-benzoyl-7-dimethylaminocoumarin, 3-benzoyl-7-diethylaminocoumarin, 3-isobutyroyl-7-dimethylaminocoumarin, 5,7-dimethoxy-3- (1- Naphthoyl) coumarin, 5,7-diethoxy-3- (1-naphthoyl) coumarin, 3-benzoylbenzo [f] coumarin, 7-diethylamino-3-thienoylcoumarin, 3- (4-cyanobenzoyl) -5,7 -Dimethoxycoumarin, 3- (4-cyanobenzoyl) -5,7-dipropoxycoumarin, 7- Dimethylamino-3-phenylcoumarin, 7-diethylamino-3-phenylcoumarin, coumarin derivatives disclosed in JP-A-9-179,299 and 9-325,209, such as 7-[{4-chloro -6- (diethylamino) -S-triazin-2-yl} amino] -3-phenylcoumarin.
 前述の3-(アロイルメチレン)チアゾリンとしては、3-メチル-2-ベンゾイルメチレン-β-ナフトチアゾリン、3-メチル-2-ベンゾイルメチレン-ベンゾチアゾリン、3-エチル-2-プロピオニルメチレン-β-ナフトチアゾリンが挙げられる。 Examples of 3- (aroylmethylene) thiazoline include 3-methyl-2-benzoylmethylene-β-naphthothiazoline, 3-methyl-2-benzoylmethylene-benzothiazoline, 3-ethyl-2-propionylmethylene-β-. Naphthiazoline is mentioned.
 前述のローダニンとしては、4-ジメチルアミノベンザルローダニン、4-ジエチルアミノベンザルローダニン、3-エチル-5-(3-オクチル-2-ベンゾチアゾリニリデン)ローダニン、特開平8-305,019号公報に開示された、式〔1〕、〔2〕、〔7〕で表されるローダニン誘導体が挙げられる。 Examples of the aforementioned rhodanine include 4-dimethylaminobenzalrhodanine, 4-diethylaminobenzalrhodanine, 3-ethyl-5- (3-octyl-2-benzothiazolinylidene) rhodanine, JP-A-8-305, And rhodanine derivatives represented by the formulas [1], [2] and [7] disclosed in Japanese Patent No. 019.
 前述の化合物の他にも、アセトフェノン、3-メトキシアセトフェノン、4-フェニルアセトフェノン、ベンジル、4,4'-ビス(ジメチルアミノ)ベンジル、2-アセチルナフタレン、2-ナフトアルデヒド、ダンシル酸誘導体、9,10-アントラキノン、アントラセン、ピレン、アミノピレン、ペリレン、フェナトレン、フェントレンキノン、9-フルオレノン、ジベンゾスベロン、クルクミン、キサントン、チオミヒラーケトン、α-(4-ジメチルアミノベンジリデン)ケトン、2,5-ビス(4-ジエチルアミノベンジリデンシクロペンタノン、2-(4-ジメチルアミノベンジリデン)インダン-1-オン、3-(4-ジメチルアミノフェニル)-1-インダン-5-イルプロペノン、3-フェニルチオフタルイミド、N-メチル-3,5-ジ(エチルチオ)フタルイミド、N-メチル-3,5-ジ(エチルチオ)フタルイミド、フェノチアジン、メチルフェノチアジン、アミン、N-フェニルグリシン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸ブトキシエチル、4-ジメチルアミノアセトフェノン、トリエタノールアミン、メチルジエタノールアミン、ジメチルアミノエタノール、2-(ジメチルアミノ)エチルベンゾアート、ポリ(プロピレングリコール)-4-(ジメチルアミノ)ベンゾアート等を用いることができる。 In addition to the aforementioned compounds, acetophenone, 3-methoxyacetophenone, 4-phenylacetophenone, benzyl, 4,4′-bis (dimethylamino) benzyl, 2-acetylnaphthalene, 2-naphthaldehyde, dansylic acid derivative, 9, 10-anthraquinone, anthracene, pyrene, aminopyrene, perylene, phenatrene, phentolenquinone, 9-fluorenone, dibenzosuberone, curcumin, xanthone, thiomichlerketone, α- (4-dimethylaminobenzylidene) ketone, 2,5- Bis (4-diethylaminobenzylidenecyclopentanone, 2- (4-dimethylaminobenzylidene) indan-1-one, 3- (4-dimethylaminophenyl) -1-indan-5-ylpropenone, 3-phenylthiophthalimide, N - Tyl-3,5-di (ethylthio) phthalimide, N-methyl-3,5-di (ethylthio) phthalimide, phenothiazine, methylphenothiazine, amine, N-phenylglycine, ethyl 4-dimethylaminobenzoate, 4-dimethylamino Use butoxyethyl benzoate, 4-dimethylaminoacetophenone, triethanolamine, methyldiethanolamine, dimethylaminoethanol, 2- (dimethylamino) ethylbenzoate, poly (propylene glycol) -4- (dimethylamino) benzoate, etc. Can do.
 本発明の感光性樹脂組成物に添加する光増感剤または助開始剤(E)としては、前述の中でも、ベンゾフェノンおよびその誘導体、チオキサントンおよびその誘導体、アントラキノンおよびその誘導体、クマリン誘導体から選択される少なくとも1種の光増感剤化合物が好ましく挙げられる。 The photosensitizer or co-initiator (E) to be added to the photosensitive resin composition of the present invention is selected from benzophenone and derivatives thereof, thioxanthone and derivatives thereof, anthraquinone and derivatives thereof, and coumarin derivatives among the above. Preferred is at least one photosensitizer compound.
 また、感光性樹脂組成物中における(E)光増感剤または助開始剤含有量としては、感光性樹脂組成物に含有される溶剤を除いた総固形分に対して、0.5~15質量%が好ましく、より好ましくは1~12質量%であり、特に好ましくは2~10質量%である。
 また、(A)光重合開始剤と(E)光増感剤または助開始剤との添加量の総和が、感光性樹脂組成物の全固形分中の0.1~15.0質量%であることが好ましく、0.1~12.0質量%であることがより好ましい。
The content of (E) photosensitizer or co-initiator in the photosensitive resin composition is 0.5 to 15 with respect to the total solid content excluding the solvent contained in the photosensitive resin composition. % By mass is preferable, more preferably 1 to 12% by mass, and particularly preferably 2 to 10% by mass.
Further, the total amount of addition of (A) photopolymerization initiator and (E) photosensitizer or co-initiator is 0.1 to 15.0% by mass in the total solid content of the photosensitive resin composition. It is preferably 0.1 to 12.0% by mass.
 (その他の成分)
 本発明の感光性樹脂組成物には、必要に応じて、ラジカル捕捉剤、光安定剤、硬化助剤、熱重合開始剤、界面活性剤、密着助剤、現像促進剤、熱重合防止剤、分散剤、その他の添加剤(充填剤、紫外線吸収剤、凝集防止剤等)の各種添加剤を含有することができる。
(Other ingredients)
In the photosensitive resin composition of the present invention, if necessary, a radical scavenger, a light stabilizer, a curing aid, a thermal polymerization initiator, a surfactant, an adhesion assistant, a development accelerator, a thermal polymerization inhibitor, Various additives such as a dispersant and other additives (filler, ultraviolet absorber, anti-aggregation agent, etc.) can be contained.
 (光安定剤)
 本発明には、耐光性向上のため各種の光安定剤を添加してもよい。光安定剤の種類については特に限定されないが、汎用性の面からヒンダードアミン系光安定剤;例えばビス(2,2,6,6-テトラメチル-4-ピペリジル)アジペート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-テトラアクリレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-テトラアクリレート、ヒンダードフェノール系光安定剤;例えばペンタエリスリトール-テトラキス(3-(3',5'-ジ-tert-ブチル-4'-ヒドロキシフェニル)プロピオナート等が好適に使用される。
(Light stabilizer)
Various light stabilizers may be added to the present invention to improve light resistance. The kind of the light stabilizer is not particularly limited, but from the viewpoint of versatility, a hindered amine light stabilizer; for example, bis (2,2,6,6-tetramethyl-4-piperidyl) adipate, bis (1,2,2) , 6,6-pentamethyl-4-piperidyl) adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) Sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-tetraacrylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl)- 1,2,3,4-tetraacrylate, hindered phenol light stabilizer; for example, pentaerythritol-tetrakis (3- (3 ′, 5′-di-tert-butyl-4′- Hydroxyphenyl) propionate and the like are preferably used.
 本発明における光安定剤の含有量は、感光性樹脂組成物の全固形分に対して、0.1~5.0質量%程度が好ましく、0.2~4.0質量%であることがさらに好ましく、0.5~2.0質量%であることがより好ましい。0.1質量%以下であると所望の耐光性が得られず、5.0質量%以上であると感度が減少し好ましくない。 The content of the light stabilizer in the present invention is preferably about 0.1 to 5.0% by mass, and preferably 0.2 to 4.0% by mass with respect to the total solid content of the photosensitive resin composition. More preferably, it is 0.5 to 2.0% by mass. If it is 0.1% by mass or less, the desired light resistance cannot be obtained, and if it is 5.0% by mass or more, the sensitivity decreases, which is not preferable.
 (硬化助剤)
 硬化助剤として、形成された塗布膜の強度を上げるために、エポキシ環を有する化合物を用いてもよい。エポキシ環を有する化合物を使用することによって、熱重合が進行し、溶剤耐性が向上したり、ITOスパッタ適性が向上したりして好ましい。
(Curing aid)
As a curing aid, a compound having an epoxy ring may be used in order to increase the strength of the formed coating film. The use of a compound having an epoxy ring is preferable because thermal polymerization proceeds, solvent resistance is improved, and ITO sputtering suitability is improved.
 エポキシ環を有する化合物としては、ビスフェノールA型、クレゾールノボラック型、ビフェニル型、脂環式エポキシ化合物等のエポキシ環を分子中に2個以上有する化合物である。
 例えば、ビスフェノールA型としては、エポトートYD-115、YD-118T、YD-127、YD-128、YD-134、YD-8125、YD-7011R、ZX-1059、YDF-8170、YDF-170等(以上、東都化成社製)、デナコールEX-1101、EX-1102、EX-1103等(以上、ナガセ化成社製)、プラクセルGL-61、GL-62、G101、G102(以上、ダイセル化学社製)の他に、これらの類似のビスフェノールF型、ビスフェノールS型も挙げることができる。また、Ebecryl 3700、3701、600(以上、ダイセルユーシービー社製)等のエポキシアクリレートも使用可能である。
The compound having an epoxy ring is a compound having two or more epoxy rings in the molecule such as bisphenol A type, cresol novolac type, biphenyl type, and alicyclic epoxy compound.
For example, bisphenol A type includes Epototo YD-115, YD-118T, YD-127, YD-128, YD-134, YD-8125, YD-7011R, ZX-1059, YDF-8170, YDF-170, etc. As described above, manufactured by Toto Kasei Co., Ltd.), Denacol EX-1101, EX-1102, EX-1103, etc. Besides these, bisphenol F type and bisphenol S type similar to these can also be mentioned. Epoxy acrylates such as Ebecryl 3700, 3701, and 600 (manufactured by Daicel UCB) can also be used.
 クレゾールノボラック型としては、エポトートYDPN-638、YDPN-701、YDPN-702、YDPN-703、YDPN-704等(以上、東都化成社製)、デナコールEM-125等(以上、ナガセ化成社製)、ビフェニル型としては、3,5,3',5'-テトラメチル-4,4'-ジグリシジルビフェニル等、脂環式エポキシ化合物としては、セロキサイド2021、2081、2083、2085、エポリードGT-301、GT-302、GT-401、GT-403、EHPE-3150(以上、ダイセル化学社製)、サントートST-3000、ST-4000、ST-5080、ST-5100等(以上、東都化成社製)、Epiclon430、同673、同695、同850S、同4032(以上、DIC社製)等を挙げることができる。
 また、1,1,2,2-テトラキス(p-グリシジルオキシフェニル)エタン、トリス(p-グリシジルオキシフェニル)メタン、トリグリシジルトリス(ヒドロキシエチル)イソシアヌレート、o-フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、他にアミン型エポキシ樹脂であるエポトートYH-434、YH-434L(以上、ナガセ化成社製)、ビスフェノールA型エポキシ樹脂の骨格中にダイマー酸を変性したグリシジルエステル等も使用できる。
Examples of the cresol novolak type include Epototo YDPN-638, YDPN-701, YDPN-702, YDPN-703, YDPN-704, etc. (above, manufactured by Tohto Kasei), Denacol EM-125, etc. Examples of the biphenyl type include 3,5,3 ′, 5′-tetramethyl-4,4′-diglycidylbiphenyl, and examples of the alicyclic epoxy compound include Celoxide 2021, 2081, 2083, 2085, Epolide GT-301, GT-302, GT-401, GT-403, EHPE-3150 (above, manufactured by Daicel Chemical Co., Ltd.), Santo Tote ST-3000, ST-4000, ST-5080, ST-5100, etc. (above, manufactured by Tohto Kasei Co., Ltd.) Epilon 430, 673, 695, 850S, 4032 (above DIC) ), And the like.
1,1,2,2-tetrakis (p-glycidyloxyphenyl) ethane, tris (p-glycidyloxyphenyl) methane, triglycidyltris (hydroxyethyl) isocyanurate, o-phthalic acid diglycidyl ester, terephthalic acid Diglycidyl ester, amine type epoxy resins such as Epototo YH-434 and YH-434L (manufactured by Nagase Kasei Co., Ltd.), glycidyl ester in which dimer acid is modified in the skeleton of bisphenol A type epoxy resin, and the like can also be used.
 この中で好ましいのは「分子量/エポキシ環の数」が100以上であり、より好ましいものは130~500である。「分子量/エポキシ環の数」が小さいと硬化性が高く、硬化時の収縮が大きく、また、大きすぎると硬化性が不足し、信頼性に欠けたり、平坦性が悪くなる。好ましい化合物としては、エポトートYD-115、118T、127、YDF-170、YDPN-638、YDPN-701(以上、ナガセ化成社製)、プラクセルGL-61、GL-62、3,5,3',5'-テトラメチル-4,4'ジグリシジルビフェニル、セロキサイド2021、2081、エポリードGT-302、GT-403、EHPE-3150(以上、ダイセル化学社製)等が挙げられる。 Among these, “molecular weight / number of epoxy rings” is preferably 100 or more, and more preferably 130 to 500. If the “molecular weight / number of epoxy rings” is small, the curability is high, the shrinkage during curing is large, and if it is too large, the curability is insufficient, the reliability is poor, and the flatness is poor. Preferred compounds include Epototo YD-115, 118T, 127, YDF-170, YDPN-638, YDPN-701 (manufactured by Nagase Kasei Co., Ltd.), Plaxel GL-61, GL-62, 3, 5, 3 ′, Examples thereof include 5′-tetramethyl-4,4′diglycidylbiphenyl, ceroxide 2021, 2081, epolide GT-302, GT-403, and EHPE-3150 (manufactured by Daicel Chemical Industries, Ltd.).
 本発明における硬化助剤の含有量は、感光性樹脂組成物の全固形分に対して、0.1~5.0質量%程度が好ましく、0.2~4.0質量%であることがさらに好ましく、0.5~2.0質量%であることがより好ましい。0.1質量%以下では硬化促進効果が得られず、5.0質量%以上では耐光性が悪化して問題である。 The content of the curing aid in the present invention is preferably about 0.1 to 5.0% by mass, and preferably 0.2 to 4.0% by mass with respect to the total solid content of the photosensitive resin composition. More preferably, it is 0.5 to 2.0% by mass. If it is 0.1% by mass or less, the effect of promoting the curing cannot be obtained, and if it is 5.0% by mass or more, the light resistance is deteriorated, which is a problem.
 (熱重合開始剤)
 本発明の感光性樹脂組成物には、熱重合開始剤を含有させることも有効である。熱重合開始剤としては、例えば、各種のアゾ系化合物、過酸化物系化合物が挙げられ、前述のアゾ系化合物としては、アゾビス系化合物を挙げることができ、前述の過酸化物系化合物としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート等を挙げることができる。
(Thermal polymerization initiator)
It is also effective to contain a thermal polymerization initiator in the photosensitive resin composition of the present invention. Examples of the thermal polymerization initiator include various azo compounds and peroxide compounds. Examples of the azo compounds include azobis compounds. Examples of the peroxide compounds include Ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, peroxydicarbonates, and the like.
 (界面活性剤)
 本発明の感光性樹脂組成物には、塗布性を改良する観点から、各種の界面活性剤を用いて構成することが好ましい。界面活性剤により、塗布液としたときの液特性(特に流動性)を改善でき、塗布厚の均一性および省液性を改善することができる。すなわち、基板と塗布液との界面張力を低下させて基板への濡れ性が改善され、基板への塗布性が向上するので、少量の液量で数μm程度の薄膜を形成した場合であっても、厚みムラの小さい均一厚の膜形成が可能である点で有効である。また、液切れを起こしやすいスリット塗布においても効果的である。
(Surfactant)
The photosensitive resin composition of the present invention is preferably constituted using various surfactants from the viewpoint of improving coating properties. The surfactant can improve the liquid properties (particularly fluidity) when used as a coating liquid, and can improve the uniformity of the coating thickness and the liquid-saving property. In other words, the interfacial tension between the substrate and the coating liquid is lowered to improve the wettability to the substrate and the coating property to the substrate is improved. This is also effective in that a film having a uniform thickness with small thickness unevenness can be formed. It is also effective in slit coating that easily causes liquid breakage.
 界面活性剤としては、ノニオン系、カチオン系、アニオン系の各種界面活性剤を使用できる。中でも、ノニオン系界面活性剤でパーフルオロアルキル基を有するフッ素系界面活性剤が好ましい。 As the surfactant, various nonionic, cationic and anionic surfactants can be used. Among these, a nonionic surfactant and a fluorosurfactant having a perfluoroalkyl group are preferable.
 フッ素系界面活性剤のフッ素含有率は3~40質量%が好適であり、より好ましくは5~30質量%であり、特に好ましくは7~25質量%である。フッ素含有率が前述の範囲内であると、塗布厚均一性および省液性の点で効果的であり、組成物中への溶解性も良好である。 The fluorine content of the fluorosurfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass. When the fluorine content is in the above-described range, it is effective in terms of coating thickness uniformity and liquid-saving properties, and the solubility in the composition is also good.
 フッ素系界面活性剤としては、例えば、メガファックF171、同F172、同F173、同F177、同F141、同F142、同F143、同F144、同R30、同F437(以上、DIC社製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム社製)、サーフロンS-382、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S393、同KH-40(以上、AGC社製)等が挙げられる。 Examples of the fluorosurfactant include Megafac F171, F172, F173, F173, F177, F141, F142, F143, F144, R30, F437 (above, manufactured by DIC), Florad FC430. FC431, FC171 (Sumitomo 3M), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC1068, SC-381, SC -383, S393, KH-40 (above, manufactured by AGC) and the like.
 フッ素系以外の界面活性剤の例としては、フタロシアニン誘導体(市販品EFKA-745(森下産業社製))、オルガノシロキサンポリマーKP341(信越化学工業社製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社油脂化学工業社製)、W001(裕商社製)等のカチオン系界面活性剤;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル(BASF社製 プルロニックL10、L31、L61、L62、10R5、17R2、25R2、テトロニック304、701、704、901、904、150R1等のノニオン系界面活性剤;W004、W005、W017(裕商社製)等のアニオン系界面活性剤;が挙げられる。 Examples of surfactants other than fluorine-based surfactants include phthalocyanine derivatives (commercially available product EFKA-745 (manufactured by Morishita Sangyo)), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid-based (co) heavy Combined polyflow no. 75, no. 90, no. Cationic surfactants such as 95 (manufactured by Kyoeisha Yushi Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.); Oxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester (manufactured by BASF Pluronic L10, L31, L61, L62, 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 901, 904, Nonionic surfactants such as 150R1; anionic surfactants such as W004, W005, and W017 (manufactured by Yusho Co., Ltd.).
 界面活性剤の添加量は、感光性樹脂組成物の全質量に対して、0.001~2.0質量%が好ましく、より好ましくは0.005~1.0質量%である。 The addition amount of the surfactant is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 1.0% by mass with respect to the total mass of the photosensitive resin composition.
 現像促進剤
 また、感光性樹脂組成物層の未硬化部のアルカリ溶解性を促進し、感光性樹脂組成物の現像性の更なる向上を図る場合には、現像促進剤を感光性樹脂組成物に使用することができる。
 このような現像促進剤としては、有機カルボン酸、好ましくは分子量1000以下の低分子量有機カルボン酸が好ましい。具体的には、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ピバル酸、カプロン酸、ジエチル酢酸、エナント酸、カプリル酸等の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ブラシル酸、メチルマロン酸、エチルマロン酸、ジメチルマロン酸、メチルコハク酸、テトラメチルコハク酸、シトラコン酸等の脂肪族ジカルボン酸;トリカルバリル酸、アコニット酸、カンホロン酸等の脂肪族トリカルボン酸;安息香酸、トルイル酸、クミン酸、ヘメリト酸、メシチレン酸等の芳香族モノカルボン酸;フタル酸、イソフタル酸、テレフタル酸、トリメリト酸、トリメシン酸、メロファン酸、ピロメリト酸等の芳香族ポリカルボン酸;フェニル酢酸、ヒドロアトロパ酸、ヒドロケイ皮酸、マンデル酸、フェニルコハク酸、アトロパ酸、ケイ皮酸、ケイ皮酸メチル、ケイ皮酸ベンジル、シンナミリデン酢酸、クマル酸、ウンベル酸等のその他のカルボン酸が挙げられる。
Development accelerator In addition, when the alkali solubility of the uncured portion of the photosensitive resin composition layer is promoted to further improve the developability of the photosensitive resin composition, the development accelerator is used as the photosensitive resin composition. Can be used for
As such a development accelerator, an organic carboxylic acid, preferably a low molecular weight organic carboxylic acid having a molecular weight of 1000 or less is preferable. Specifically, for example, aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid, caproic acid, diethyl acetic acid, enanthic acid, caprylic acid; oxalic acid, malonic acid, succinic acid, Aliphatic dicarboxylic acids such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, brassic acid, methylmalonic acid, ethylmalonic acid, dimethylmalonic acid, methylsuccinic acid, tetramethylsuccinic acid, citraconic acid; Aliphatic tricarboxylic acids such as tricarballylic acid, aconitic acid, and camphoric acid; aromatic monocarboxylic acids such as benzoic acid, toluic acid, cumic acid, hemelitic acid, and mesitylene acid; phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, Aromatic polycarboxylic acids such as trimesic acid, melophanoic acid, pyromellitic acid; phenylacetic acid Hydratropic acid, hydrocinnamic acid, mandelic acid, phenyl succinic acid, atropic acid, cinnamic acid, methyl cinnamate, benzyl cinnamate, cinnamylidene acetic acid, coumaric acid, other carboxylic acids such as umbellic acid.
 (熱重合防止剤)
 本発明の感光性樹脂組成物には、さらに熱重合防止剤を加えておくことが好ましく、例えば、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4'-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2-メルカプトベンゾイミダゾール等が有用である。
(Thermal polymerization inhibitor)
It is preferable to further add a thermal polymerization inhibitor to the photosensitive resin composition of the present invention. For example, hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, Benzoquinone, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2-mercaptobenzimidazole and the like are useful.
 (その他添加剤)
 上述のほか、ガラス、アルミナ等の充填剤;2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、アルコキシベンゾフェノン等の紫外線吸収剤;およびポリアクリル酸ナトリウム等の凝集防止剤を挙げることができる。
(Other additives)
In addition to the above, fillers such as glass and alumina; ultraviolet absorbers such as 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole and alkoxybenzophenone; and sodium polyacrylate And the like.
 本発明の感光性樹脂組成物は、以上述べた各成分、即ち(A)光重合開始剤、(B)溶剤、(C)重合性モノマー、(D)アルカリ可溶性樹脂、必要に応じ、(E)光増感剤または助開始剤等のその他の添加剤を添加し混合することによって調製することができる。 The photosensitive resin composition of the present invention comprises the components described above, that is, (A) a photopolymerization initiator, (B) a solvent, (C) a polymerizable monomer, (D) an alkali-soluble resin, and (E ) It can be prepared by adding and mixing other additives such as photosensitizers or co-initiators.
 (第二の支持体)
 第二の支持体として高屈折率素材を用いた場合は、脆性を悪化させない観点から、厚みは30μm以下が好ましい。より好ましくは10μm以下が良く、より好ましくは1μm前後が良い。
 第二の支持体の屈折率は、サイドバンドを発生させない観点から、好ましくは1.30以上であることが好ましく、1.4以上であることがより好ましく、1.6以上であることが更に好ましく、1.80以上であることが特に好ましく、1.9以上が最も好ましい。また、第二の支持体の脆性を悪化させない観点からは、屈折率は2.50以下であることが好ましく、2.20以下であることがより好ましく、2.10未満であることが更に好ましく、2.05以下であることが一層好ましい。
(Second support)
In the case where a high refractive index material is used as the second support, the thickness is preferably 30 μm or less from the viewpoint of not deteriorating brittleness. More preferably, it is 10 μm or less, and more preferably around 1 μm.
The refractive index of the second support is preferably 1.30 or more, more preferably 1.4 or more, and further preferably 1.6 or more, from the viewpoint of preventing generation of side bands. It is preferably 1.80 or more, most preferably 1.9 or more. Further, from the viewpoint of not deteriorating the brittleness of the second support, the refractive index is preferably 2.50 or less, more preferably 2.20 or less, and even more preferably less than 2.10. More preferably, it is 2.05 or less.
 第二の支持体の屈折率は、第一の支持体と同様に層を形成するために用いる成分の種類により調整することができる。層を形成するために用いる成分としては、第一の支持体と同様に重合性化合物および重合開始剤を含む重合性組成物を用いて形成することができる。または、第一の支持体と同様に樹脂を主成分とする樹脂層であってもよい。 The refractive index of the second support can be adjusted by the type of components used for forming the layer in the same manner as the first support. As a component used for forming a layer, it can form using the polymeric composition containing a polymeric compound and a polymerization initiator similarly to a 1st support body. Or the resin layer which has resin as a main component similarly to a 1st support body may be sufficient.
 第二の支持体の屈折率調整のために、第一の支持体と同様に粒子が含まれていてもよい。粒子としては、特に限定されるものではなく、無機粒子であっても有機粒子であってもよい。
 上述の粒子は、一種用いてもよく、二種以上を混合して用いてもよい。粒子が小さいほど、散乱性を抑えられる観点で好ましい。よって、粒子サイズは、一次粒子径として、100nm以下であることが好ましく、30nm以下であることがより好ましく、25nm以下であることが更に好ましい。また、粒子サイズは、一次粒子径として、1nm以上であることが好ましい。上述の粒子の一次粒子径とは、走査型電子顕微鏡(SEM)で50個の粒子について粒径を測定し、数平均値として算出したものである。上述の粒子を含む層における粒子含有量は、好ましくは上述の範囲の平均屈折率が得られるように、適宜設定すればよい。
In order to adjust the refractive index of the second support, particles may be contained in the same manner as the first support. The particles are not particularly limited, and may be inorganic particles or organic particles.
One kind of the above-mentioned particles may be used, or two or more kinds may be mixed and used. Smaller particles are preferable from the viewpoint of suppressing scattering. Therefore, the particle size is preferably 100 nm or less, more preferably 30 nm or less, and even more preferably 25 nm or less as the primary particle diameter. Moreover, it is preferable that a particle size is 1 nm or more as a primary particle diameter. The primary particle size of the above-mentioned particles is a value obtained by measuring the particle size of 50 particles with a scanning electron microscope (SEM) and calculating the number average value. The particle content in the layer containing the above-mentioned particles is preferably set as appropriate so that the average refractive index in the above-mentioned range can be obtained.
 上述の粒子の屈折率(波長550nmの光に対する屈折率)は、屈折率調整の観点から、2.00以上3.00以下であることが好ましく、2.05以上2.50以下であることがより好ましい。ここで、粒子の屈折率とは、以下の方法により測定される値とする。屈折率既知の樹脂材料に粒子をドープし、この粒子が分散された樹脂材料を作製する。作製した樹脂材料を、シリコン基板、または石英基板上に塗布し樹脂膜を形成する。形成した樹脂膜の屈折率をエリプソメーターで測定し、樹脂膜を構成する樹脂材料と粒子の体積分率から、粒子の屈折率を求める。後述の実施例で用いた酸化チタン粒子の屈折率は、上述の方法により求めた値である。 The refractive index of the above-mentioned particles (refractive index for light having a wavelength of 550 nm) is preferably 2.00 or more and 3.00 or less, and preferably 2.05 or more and 2.50 or less from the viewpoint of adjusting the refractive index. More preferred. Here, the refractive index of the particles is a value measured by the following method. A resin material having a known refractive index is doped with particles to produce a resin material in which the particles are dispersed. The produced resin material is applied on a silicon substrate or a quartz substrate to form a resin film. The refractive index of the formed resin film is measured with an ellipsometer, and the refractive index of the particles is determined from the resin material constituting the resin film and the volume fraction of the particles. The refractive index of the titanium oxide particles used in Examples described later is a value obtained by the above-described method.
[面光源装置]
 本発明の一態様にかかる面光源装置は、上述のルーバーフィルムと光源とを少なくとも含む。
 <面光源装置の構成>
 面光源装置の構成としては、少なくとも光源と導光板とを含み、任意に反射板、拡散板等を含むエッジライト方式と、反射板、反射板上に配置された複数の光源および拡散板を少なくとも含む直下型とがある。上述の面光源装置は、いずれの構成であってもよい。詳細については、特許第3416302号、特許第3363565号、特許第4091978号、特許第3448626号等の公報に記載されており、これらの公報の内容は本発明に組み込まれる。また、光源は白色光源でも良いし、青色LEDまたは紫外LEDを用いた単色光源でも良い。白色光源の場合、色変換する必要が無くシンプルな構成にできる点で好ましい。単色光源の場合、色収差なく光の指向性を制御できる点で好ましい。また、青色または紫外光源の場合、量子ドット粒子または蛍光体を用いた波長変換フィルムをルーバーフィルムと光源の間に設けても良い。波長変換フィルムの代わりに、液晶パネルに量子ドット粒子または蛍光体を含有させたカラーフィルターを設けても良い。液晶パネルの液晶層を指向性高く通過した光が量子ドット粒子に色変換され、更に、変換光が拡散されるため、視野角の広げることが可能になる。
[Surface light source device]
A surface light source device according to an aspect of the present invention includes at least the above-described louver film and a light source.
<Configuration of surface light source device>
The configuration of the surface light source device includes at least a light source and a light guide plate, and optionally an edge light system including a reflection plate, a diffusion plate, and the like, and at least a plurality of light sources and diffusion plates arranged on the reflection plate, the reflection plate There are direct type including. The surface light source device described above may have any configuration. Details are described in publications such as Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, and Japanese Patent No. 3448626, and the contents of these publications are incorporated in the present invention. The light source may be a white light source or a monochromatic light source using a blue LED or an ultraviolet LED. In the case of a white light source, it is preferable that color conversion is not necessary and a simple configuration can be achieved. A monochromatic light source is preferable in that the directivity of light can be controlled without chromatic aberration. In the case of a blue or ultraviolet light source, a wavelength conversion film using quantum dot particles or a phosphor may be provided between the louver film and the light source. Instead of the wavelength conversion film, a color filter containing quantum dot particles or phosphors may be provided in the liquid crystal panel. Light that has passed through the liquid crystal layer of the liquid crystal panel with high directivity is color-converted into quantum dot particles, and the converted light is diffused, so that the viewing angle can be widened.
 また、面光源装置は、反射型偏光子、プリズムシート、拡散シート、および波長変換フィルム等の光学フィルムを有していてもよい。
 例えば、図6に示す例では、ルーバーフィルム2と拡散板14との間に、すなわち、ルーバーフィルム2と光源16との間に反射型偏光子20を有する。
 反射型偏光子20を有する構成とすることで、光リサイクルにより光利用効率を向上させることができる。なお、図6に示す例でも、上述の図2および図5に示す各種のルーバーフィルム2を用いることができる。
 反射型偏光子20としては、一般的な反射型偏光子が利用可能である。例えば、スリーエム社製の商品名:DBEF等を用いることができる。
The surface light source device may have an optical film such as a reflective polarizer, a prism sheet, a diffusion sheet, and a wavelength conversion film.
For example, in the example shown in FIG. 6, the reflective polarizer 20 is provided between the louver film 2 and the diffusion plate 14, that is, between the louver film 2 and the light source 16.
With the configuration having the reflective polarizer 20, light utilization efficiency can be improved by light recycling. In the example shown in FIG. 6, the various louver films 2 shown in FIGS. 2 and 5 can be used.
As the reflective polarizer 20, a general reflective polarizer can be used. For example, the product name: DBEF manufactured by 3M may be used.
[液晶表示装置]
 本発明の一態様にかかる液晶表示装置は、上述の面光源装置と、液晶パネルと、を少なくとも含む。
[Liquid Crystal Display]
A liquid crystal display device according to one embodiment of the present invention includes at least the surface light source device described above and a liquid crystal panel.
<液晶表示装置の構成>
 液晶パネルは、通常、視認側偏光子、液晶セルおよびバックライト側偏光子を少なくとも含む。
<Configuration of liquid crystal display device>
The liquid crystal panel usually includes at least a viewing side polarizer, a liquid crystal cell, and a backlight side polarizer.
 液晶表示装置の一実施形態では、対向する少なくとも一方に電極を設けた基板間に液晶層を挟持した液晶セルを有し、この液晶セルは2枚の偏光子の間に配置して構成される。液晶表示装置は、上下基板間に液晶が封入された液晶セルを備え、電圧印加により液晶の配向状態を変化させて画像の表示を行う。さらに必要に応じて偏光板保護フィルムおよび光学補償を行う光学補償部材、接着層等の付随する機能層を有する。また、カラーフィルター基板、薄層トランジスタ基板、レンズフィルム、拡散シート、ハードコート層、反射防止層、低反射層、アンチグレア層等とともに(またはそれに替えて)、前方散乱層、プライマー層、帯電防止層、および下塗り層等の表面層が配置されていてもよい。 In one embodiment of the liquid crystal display device, a liquid crystal cell having a liquid crystal layer sandwiched between substrates provided with electrodes on at least one opposite side, the liquid crystal cell is arranged between two polarizers. . The liquid crystal display device includes a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates, and displays an image by changing the alignment state of the liquid crystal by applying a voltage. Furthermore, it has an accompanying functional layer such as a polarizing plate protective film, an optical compensation member that performs optical compensation, and an adhesive layer as necessary. Along with (or instead of) a color filter substrate, thin layer transistor substrate, lens film, diffusion sheet, hard coat layer, antireflection layer, low reflection layer, antiglare layer, etc., forward scattering layer, primer layer, antistatic layer And a surface layer such as an undercoat layer may be disposed.
 また、液晶パネルの液晶層を指向性高く通過した後の光の視野角の広げるために、前述の量子ドット粒子もしくは蛍光体含有のカラーフィルターまたは、視認側偏光子の視認側にレンズフィルム、光拡散シート、回折フィルム等光の指向性を緩和する機能層を設けても良い。 In addition, in order to widen the viewing angle of light after passing through the liquid crystal layer of the liquid crystal panel with high directivity, the above-described color filter containing quantum dot particles or phosphor or a lens film, light on the viewing side of the viewing side polarizer You may provide the functional layer which eases the directivity of light, such as a diffusion sheet and a diffraction film.
 液晶表示装置が有する面光源装置については、先に記載した通りである。 The surface light source device included in the liquid crystal display device is as described above.
 本発明の一態様にかかる液晶表示装置を構成する液晶セル、偏光板、偏光板保護フィルム等については特に限定はなく、公知の方法で作製されるものおよび市販品を、何ら制限なく用いることができる。また、各層の間に、接着層等の公知の中間層を設けることも、もちろん可能である。 There are no particular limitations on the liquid crystal cell, polarizing plate, polarizing plate protective film, and the like constituting the liquid crystal display device according to one embodiment of the present invention, and those prepared by known methods and commercially available products can be used without any limitation. it can. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers.
 液晶表示装置としては、図7に示す液晶表示装置30のように、液晶セル32とバックライト側偏光子34との間にルーバーフィルム2を配置する構成としてもよい。あるいは、図8に示すように、バックライト側偏光子34と拡散板14との間にルーバーフィルム2を配置する構成としてもよい。あるいは、図9に示すように、バックライト側偏光子を有さず、液晶セル32の光源16側とは反対側に視認側偏光子36を有する構成としてもよい。なお、図7~図9に示す液晶表示装置においても、上述の図2~図5に示す各種のルーバーフィルム2を用いることができる。 As the liquid crystal display device, a louver film 2 may be arranged between the liquid crystal cell 32 and the backlight side polarizer 34 as in the liquid crystal display device 30 shown in FIG. Alternatively, as shown in FIG. 8, the louver film 2 may be arranged between the backlight side polarizer 34 and the diffuser plate 14. Alternatively, as shown in FIG. 9, the backlight side polarizer may not be provided, and the viewing side polarizer 36 may be provided on the opposite side of the liquid crystal cell 32 from the light source 16 side. In the liquid crystal display devices shown in FIGS. 7 to 9, various louver films 2 shown in FIGS. 2 to 5 can be used.
 また、ルーバーフィルム2の配置位置は、液晶セル32に対して光源側であることに限定されるものではない。例えば、図7に示す液晶表示装置30では、液晶セル32とバックライト側偏光子34との間にルーバーフィルム2が配置されているが、ルーバーフィルム2を液晶セル32の表面32a上、すなわち、表示面上に配置してもよい。
 図8に示す液晶表示装置30では、バックライト側偏光子34と拡散板14との間にルーバーフィルム2が配置されているが、ルーバーフィルム2を液晶セル32の表面32a上、すなわち、表示面上に配置してもよい。
 図9に示す液晶表示装置30でも、液晶セル32と拡散板14との間にルーバーフィルム2が配置されているが、ルーバーフィルム2を、液晶セル32上に設けられた視認側偏光子36の表面36a上に配置してもよい。このように、ルーバーフィルム2は、液晶表示装置30の最表面側に配置することもできる。このようなルーバーフィルム2の配置位置でも、光利用効率を保ったまま更なる視認性に関する指向性を向上させることができ、表示させたくない領域への映り込み等を抑制することができる。
Further, the arrangement position of the louver film 2 is not limited to being on the light source side with respect to the liquid crystal cell 32. For example, in the liquid crystal display device 30 shown in FIG. 7, the louver film 2 is disposed between the liquid crystal cell 32 and the backlight side polarizer 34, but the louver film 2 is placed on the surface 32 a of the liquid crystal cell 32, that is, You may arrange | position on a display surface.
In the liquid crystal display device 30 shown in FIG. 8, the louver film 2 is disposed between the backlight side polarizer 34 and the diffusion plate 14, but the louver film 2 is placed on the surface 32 a of the liquid crystal cell 32, that is, the display surface. You may arrange on top.
Also in the liquid crystal display device 30 shown in FIG. 9, the louver film 2 is disposed between the liquid crystal cell 32 and the diffusion plate 14, but the louver film 2 is formed on the viewing side polarizer 36 provided on the liquid crystal cell 32. You may arrange | position on the surface 36a. Thus, the louver film 2 can also be disposed on the outermost surface side of the liquid crystal display device 30. Even at such an arrangement position of the louver film 2, the directivity regarding further visibility can be improved while maintaining the light use efficiency, and reflection in an area that is not desired to be displayed can be suppressed.
 また、ルーバーフィルムのレンズは、上述のように2次元配列されており、レンズの配列は、例えば、光軸方向から見た形状が正方形状であり、複数のレンズは、正方格子状に配列されている。配列されたレンズ同士の交点にモアレ防止点が形成されており、レンズの配列方向は、液晶パネルの画素の配列方向に対して25°~65°傾いていることが好ましい。この点について図10~図13を用いて説明する。 Further, the lenses of the louver film are two-dimensionally arranged as described above. The lens arrangement is, for example, square when viewed from the optical axis direction, and the plurality of lenses are arranged in a square lattice. ing. Moire prevention points are formed at the intersections of the arranged lenses, and the arrangement direction of the lenses is preferably inclined by 25 ° to 65 ° with respect to the arrangement direction of the pixels of the liquid crystal panel. This point will be described with reference to FIGS.
 図10は、レンズの光軸方向から見たルーバーフィルム2の一部と液晶セル32の一部とを、面方向に相対位置をずらして表した模式図である。図11は、図10のB-B線断面図である。図12は、図10のC-C線断面図である。図13は、図10のD-D線断面図である。 FIG. 10 is a schematic view showing a part of the louver film 2 and a part of the liquid crystal cell 32 as viewed from the optical axis direction of the lens while the relative positions are shifted in the plane direction. 11 is a cross-sectional view taken along line BB in FIG. 12 is a cross-sectional view taken along the line CC of FIG. 13 is a cross-sectional view taken along the line DD of FIG.
 図10に示すように、レンズ11は、レンズ11の光軸方向から見た形状が正方形状である、2次元レンズアレイである。複数のレンズ11は正方格子状に配列されている。また、図10に示すように、レンズ11の配列方向は、液晶セル32の画素33の配列方向に対して約45°傾いている。
 ここで、図10および図11に示すように、正方格子状に配列された複数のレンズ11の頂点部(面方向の四隅)には、モアレ防止点22として凹部が形成されている。
 なお、レンズ11の配列は、2次元状に配列してもよく、2次元状の配列に関しては、特に限定されるものではなく、正方状の配列以外に、六方状に配列してもよい。レンズ11を六方状に配列することにより、光の利用効率が向上し、輝度が向上する。
As shown in FIG. 10, the lens 11 is a two-dimensional lens array in which the shape of the lens 11 viewed from the optical axis direction is a square shape. The plurality of lenses 11 are arranged in a square lattice shape. Further, as shown in FIG. 10, the arrangement direction of the lenses 11 is inclined by about 45 ° with respect to the arrangement direction of the pixels 33 of the liquid crystal cell 32.
Here, as shown in FIGS. 10 and 11, concave portions are formed as moiré prevention points 22 at the apexes (four corners in the surface direction) of the plurality of lenses 11 arranged in a square lattice pattern.
The arrangement of the lenses 11 may be two-dimensionally arranged, and the two-dimensional arrangement is not particularly limited, and may be arranged in a hexagonal manner other than the square arrangement. By arranging the lenses 11 in a hexagonal shape, the light utilization efficiency is improved and the luminance is improved.
 ルーバーフィルムの複数のレンズが規則的に配列される場合、他の、規則的な配列を有する部材との関係によってモアレが発生してしまうおそれがある。
 例えば、規則的に配列された複数の画素を有する液晶セルと、ルーバーフィルムとを重ねて配置した場合にモアレが発生してしまうおそれがある。
When a plurality of lenses of the louver film are regularly arranged, moire may occur due to the relationship with other members having a regular arrangement.
For example, when a liquid crystal cell having a plurality of regularly arranged pixels and a louver film are arranged in an overlapping manner, moire may occur.
 これに対して、レンズ11の配列方向を、液晶パネルの画素の配列方向に対して25°~65°傾けて、さらに、レンズ11の頂点部にモアレ防止点22を形成することでモアレを低減できることを見出した。通常、モアレは液晶セルの規則的に配列された複数の画素パターンと複数のレンズ11間の影(境界線)のパターンとの差周波で発生する。一方で、レンズ11の配列方向を、液晶セル32の画素33の配列方向に対して約45°傾けた場合は、複数のレンズ11間の影(境界線)のパターンを液晶セル32の画素33の配列方向に積算した際に現れるパターンとの差周波でモアレが発生する。複数のレンズ11間の影(境界線)のパターンを液晶セル32の画素33の配列方向に積算した際に現れるパターンは、正方格子状に配列された複数のレンズ11の格子点上では、パターン強度が弱く、格子点上以外では、パターン強度が強くなるために現れる。正方格子状に配列された複数のレンズ11の格子点上の影を濃くする、もしくは、太らせることにより、格子点上と格子点上以外の部分のパターン強度を等しくすることができ、ルーバーフィルム側のパターンを消すことができる。このため、液晶セルの規則的に配列された複数の画素パターンと差周波を取れるパターンが消滅したようになり、モアレが発生しにくくなったものと考えられる。 On the other hand, the moiré is reduced by tilting the arrangement direction of the lenses 11 with respect to the arrangement direction of the pixels of the liquid crystal panel by 25 ° to 65 ° and further forming the moire prevention point 22 at the apex portion of the lens 11. I found that I can do it. Usually, moire occurs at a difference frequency between a plurality of regularly arranged pixel patterns of liquid crystal cells and a shadow (boundary line) pattern between the plurality of lenses 11. On the other hand, when the arrangement direction of the lenses 11 is inclined by about 45 ° with respect to the arrangement direction of the pixels 33 of the liquid crystal cell 32, a shadow (boundary line) pattern between the plurality of lenses 11 is represented by the pixels 33 of the liquid crystal cell 32. Moire occurs at the difference frequency from the pattern that appears when integration is performed in the arrangement direction. A pattern that appears when the pattern of shadows (boundary lines) between the plurality of lenses 11 is integrated in the arrangement direction of the pixels 33 of the liquid crystal cell 32 is a pattern on the lattice points of the plurality of lenses 11 arranged in a square lattice pattern. The intensity is weak, and it appears because the pattern intensity is high except on the lattice points. By making the shadows on the lattice points of the plurality of lenses 11 arranged in a square lattice shape thicker or thicker, the pattern intensities on the lattice points and the portions other than the lattice points can be made equal, and the louver film The side pattern can be erased. For this reason, it can be considered that a plurality of regularly arranged pixel patterns of liquid crystal cells and a pattern that can take a difference frequency disappear, and moire is less likely to occur.
 モアレ防止点22の大きさ(面積)は、1つの2次元に配置されたレンズ11の大きさ(面積)に対して、0.01%~10%であるのが好ましい。
 また、モアレ防止点22の深さは、レンズのピッチに対して0.1%~40%であるのが好ましい。
The size (area) of the moire prevention point 22 is preferably 0.01% to 10% with respect to the size (area) of the lens 11 arranged two-dimensionally.
The depth of the moire prevention point 22 is preferably 0.1% to 40% with respect to the lens pitch.
 図10に示す例では、モアレ防止点22の平面形状は正方形状としたが、これに限定はされず、長方形状、三角形状、多角形状、円形状、不定形等種々の形状とすることができる。
 また、モアレ防止点22の平面形状は対称であってもよいし、非対称であってもよい。
In the example shown in FIG. 10, the planar shape of the moire prevention point 22 is a square shape, but is not limited thereto, and may be various shapes such as a rectangular shape, a triangular shape, a polygonal shape, a circular shape, and an indefinite shape. it can.
Further, the planar shape of the moire prevention point 22 may be symmetric or asymmetric.
 また、図11に示す例では、モアレ防止点22は凹部としたがこれに限定はされず、光の透過量を変えることができればよい。例えば、モアレ防止点22は、凸部であってもよい。あるいは、インクでドットを印刷したものであってもよい。 In the example shown in FIG. 11, the moire prevention point 22 is a recess, but the invention is not limited to this, and it is sufficient that the amount of light transmission can be changed. For example, the moire prevention point 22 may be a convex portion. Or what printed the dot with the ink may be used.
 凹部からなるモアレ防止点22の形成方法にも特に限定はない。例えば、レンズ11を型押しで形成する場合には、レンズ11の形成と同時にモアレ防止点22を形成する型を用いればよい。 There is no particular limitation on the method of forming the moire prevention point 22 formed of a recess. For example, when the lens 11 is formed by stamping, a mold that forms the moire prevention point 22 at the same time as the formation of the lens 11 may be used.
 本発明は、基本的に以上のように構成されるものである。以上、本発明のルーバーフィルム、面光源装置および液晶表示装置について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. As described above, the louver film, the surface light source device, and the liquid crystal display device of the present invention have been described in detail. However, the present invention is not limited to the above-described embodiment, and various improvements or modifications can be made without departing from the gist of the present invention. Of course.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、および、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples. The materials, reagents, substance amounts and ratios thereof, and operations shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the following examples.
[実施例1]
 実施例1では、第一の支持体として、ポリエチレンテレフタレートフィルム(東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ38μm 屈折率1.57)を準備した。第一の支持体表面に、下記1.で屈折率が1.57となるよう調製した酸化チタン粒子含有重合性組成物(組成物タイプ1)をバーコーターにより塗布し、曲率半径50μmの半球状の円弧(レンズ)を100μmピッチで正方状に配置した形状を表面に形成するため、形成する形状を反転した表面形状を有する凹凸ローラーを押し当てながら、UV露光機(HOYA CANDEO OPTRONICS社製EXECURE 3000W)を用いて、窒素雰囲気下で5J/cm2で露光して硬化させた後、凹凸ローラーから剥離し、表面に凹凸形状を作製した。
 その後、第一の支持体の凹凸形状を形成した面と反対側の面に、ピッチ100μm、幅32μmの開口を複数有するマスクを介して下記K顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅32μm、開口率32%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、ピッチ100μm、幅33μmの開口を複数有する光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅33μm、開口率33%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成し、ルーバーフィルムAを作製した。光吸収層は、カーボンブラックを含有するものであり、表1の光吸収層の素材の欄の「CB」はカーボンブラックである。
[Example 1]
In Example 1, a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 38 μm, refractive index 1.57) was prepared as the first support. On the surface of the first support, the following 1. A titanium oxide particle-containing polymerizable composition (composition type 1) prepared so as to have a refractive index of 1.57 was applied by a bar coater, and a hemispherical arc (lens) having a radius of curvature of 50 μm was square with a pitch of 100 μm. In order to form the shape arranged on the surface, a UV exposure machine (EXECURE 3000W manufactured by HOYA CANDEO OPTRONICS) was used while pressing a concavo-convex roller having a surface shape obtained by reversing the shape to be formed in a nitrogen atmosphere at 5 J / After being exposed and cured at cm 2 , it was peeled off from the uneven roller to produce an uneven shape on the surface.
Thereafter, the following K pigment dispersion 1 is applied to the surface of the first support opposite to the surface on which the concavo-convex shape is formed through a mask having a plurality of openings with a pitch of 100 μm and a width of 32 μm and dried, and the pitch is 100 μm. A light absorption layer having an aperture width of 32 μm, an aperture ratio of 32%, and a film thickness of 2 μm was formed so that the center in the aperture width direction was aligned with the apex of the lens convex portion. Thereafter, Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings having a pitch of 100 μm and a width of 33 μm, and a light reflection layer having a pitch of 100 μm, an opening width of 33 μm, and an aperture ratio of 33% is formed. The louver film A was produced by forming the center of the opening width direction so as to match the position of the apex of the lens convex portion. The light absorption layer contains carbon black, and “CB” in the column of the material of the light absorption layer in Table 1 is carbon black.
・K顔料分散物1
 以下のK顔料分散物1の組成となるようにカーボンブラック、分散剤、ポリマーおよび溶剤を混合し、K顔料分散物1を得た。
(K顔料分散物1)
・特許5320652号公報段落番号〔0036〕~〔0042〕の記載に従って作製した樹脂被覆カーボンブラック 3.4質量%
・分散剤1〔下記構造〕 0.13質量%
・ポリマー 16.47質量%
(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合体物、重量平均分子量3.7万)
・プロピレングリコールモノメチルエーテルアセテート 80.0質量%
・ K pigment dispersion 1
Carbon black, a dispersant, a polymer and a solvent were mixed so that the composition of the following K pigment dispersion 1 was obtained.
(K pigment dispersion 1)
・ Resin-coated carbon black prepared according to the description in paragraph Nos. [0036] to [0042] of Japanese Patent No. 5320652 3.4 mass%
-Dispersant 1 [the following structure] 0.13 mass%
・ Polymer 16.47% by mass
(Random copolymer of benzyl methacrylate / methacrylic acid = 72/28 molar ratio, weight average molecular weight 37,000)
Propylene glycol monomethyl ether acetate 80.0% by mass
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
1.酸化チタン粒子含有重合性組成物(組成物タイプ1)の調製
 トリメチロールプロパントリアクリレート18.2質量部、ラウリルメタクリレート80.8質量部、および光重合開始剤(BASF社製Irgacure(登録商標)819)1質量部を混合した。
 上述の混合物(以下、バインダとも記載する。)に、酸化チタン(TiO2)粒子(一次粒子径100nm以下)が分散されたスラリー(溶媒:メチルエチルケトン、酸化チタン粒子濃度30質量%)をドープし、十分に攪拌し酸化チタン粒子含有重合性組成物を調製した。上述の酸化チタン粒子は、酸化チタンの光活性を抑制するために酸化アルミニウムにより表面処理された酸化チタン粒子であり、屈折率は2.40である。後述の各層の平均屈折率を調整するために、質量基準で、バインダ:酸化チタン粒子スラリー=7:3~6:4の範囲で、バインダへの酸化チタン粒子スラリーの添加量を設定した。
1. Preparation of Titanium Oxide Particle-Containing Polymerizable Composition (Composition Type 1) Trimethylolpropane triacrylate 18.2 parts by mass, lauryl methacrylate 80.8 parts by mass, and photopolymerization initiator (Irgacure (registered trademark) 819 manufactured by BASF) ) 1 part by mass was mixed.
Dope a slurry (solvent: methyl ethyl ketone, titanium oxide particle concentration of 30% by mass) in which titanium oxide (TiO 2 ) particles (primary particle diameter of 100 nm or less) are dispersed in the above mixture (hereinafter also referred to as a binder), The mixture was sufficiently stirred to prepare a polymerizable composition containing titanium oxide particles. The titanium oxide particles described above are titanium oxide particles that are surface-treated with aluminum oxide in order to suppress the photoactivity of titanium oxide, and have a refractive index of 2.40. In order to adjust the average refractive index of each layer described later, the addition amount of the titanium oxide particle slurry to the binder was set in the range of binder: titanium oxide particle slurry = 7: 3 to 6: 4 on a mass basis.
[実施例2]
 実施例2では、曲率半径50μmの半球状の円弧(レンズ)を100μmピッチで六方状に配置した形状を表面に形成するため、形成する形状を反転した表面形状を有する凹凸ローラーへ変更した以外は実施例1と同様にして、ルーバーフィルムBを作製した。
[Example 2]
In Example 2, in order to form on the surface a shape in which hemispherical arcs (lenses) having a radius of curvature of 50 μm are arranged in a hexagonal shape at a pitch of 100 μm, except for changing to a concavo-convex roller having a surface shape obtained by inverting the shape to be formed. A louver film B was produced in the same manner as in Example 1.
[実施例3]
 実施例3では、ピッチ100μm、幅47μmの開口を複数有する光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅47μm、開口率47%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した以外は実施例1と同様にして、ルーバーフィルムCを作製した。
[Example 3]
In Example 3, Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings with a pitch of 100 μm and a width of 47 μm, and light having a pitch of 100 μm, an opening width of 47 μm, and an aperture ratio of 47%. A louver film C was produced in the same manner as in Example 1 except that the reflective layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion.
[実施例4]
 実施例4では、ピッチ100μm、幅32.32μmの開口を複数有する光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅32.32μm、開口率32.32%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した以外は実施例1と同様にして、ルーバーフィルムDを作製した。
[Example 4]
In Example 4, Ag was deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings with a pitch of 100 μm and a width of 32.32 μm, and the pitch was 100 μm, the opening width was 32.32 μm, and the opening ratio. A louver film D was produced in the same manner as in Example 1 except that a 32.32% light reflecting layer was formed so that the center in the opening width direction was aligned with the apex of the lens convex portion.
[実施例5]
 実施例5では、ピッチ100μm、幅25μmの開口を複数有するマスクを介して上述のK顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅25μm、開口率25%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、ピッチ100μm、幅33μmの開口を複数有する光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅33μm、開口率33%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した以外は実施例1と同様にして、ルーバーフィルムEを作製した。
[Example 5]
In Example 5, the above-mentioned K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 μm and a width of 25 μm, and light having a pitch of 100 μm, an opening width of 25 μm, an opening ratio of 25%, and a film thickness of 2 μm. The absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion. Thereafter, Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings having a pitch of 100 μm and a width of 33 μm, and a light reflection layer having a pitch of 100 μm, an opening width of 33 μm, and an aperture ratio of 33% A louver film E was produced in the same manner as in Example 1 except that the center in the opening width direction was formed so as to match the position of the apex of the lens convex portion.
[実施例6]
 実施例6では、ピッチ100μm、幅40μmの開口を複数有するマスクを介して上述のK顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅40μm、開口率40%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、ピッチ100μm、幅47μmの開口を複数有する光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅47μm、開口率47%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した以外は実施例1と同様にして、ルーバーフィルムFを作製した。
[Example 6]
In Example 6, the K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 μm and a width of 40 μm, and light having a pitch of 100 μm, an opening width of 40 μm, an opening ratio of 40%, and a film thickness of 2 μm. The absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion. Thereafter, Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings with a pitch of 100 μm and a width of 47 μm. A louver film F was produced in the same manner as in Example 1 except that the center in the opening width direction was formed so as to match the position of the apex of the lens convex portion.
[実施例7]
 実施例7では、ピッチ100μm、幅47μmの開口を複数有するマスクを介して上述のK顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅47μm、開口率47%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、ピッチ100μm、幅50μmの開口を複数有する光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅50μm、開口率50%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。そして、第一の支持体として、ポリエチレンテレフタレートフィルム(東レ社製、商品名:ルミラー(登録商標)T60、厚さ25μm 屈折率1.57)を準備した以外は実施例1と同様にして、ルーバーフィルムGを作製した。
[Example 7]
In Example 7, the K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 μm and a width of 47 μm, and light having a pitch of 100 μm, an opening width of 47 μm, an aperture ratio of 47%, and a film thickness of 2 μm. The absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion. Thereafter, Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings with a pitch of 100 μm and a width of 50 μm. The center of the opening width direction is formed so as to match the position of the apex of the lens convex portion. In the same manner as in Example 1 except that a polyethylene terephthalate film (trade name: Lumirror (registered trademark) T60, thickness 25 μm, refractive index 1.57) manufactured by Toray Industries, Inc. was prepared as the first support. Film G was produced.
[実施例8]
 実施例8では、第一の支持体の厚みを55μmとした以外は実施例5と同様にして、ルーバーフィルムHを作製した。
[Example 8]
In Example 8, a louver film H was produced in the same manner as in Example 5 except that the thickness of the first support was 55 μm.
[実施例9]
 実施例9では、第一の支持体に形成された光吸収層上に形成する光反射層を、コレステリック液晶層で構成した以外は実施例4と同様にして、ルーバーフィルムIを作製した。
 なお、表1では、コレステリック液晶を「CLC」と表記する。
 次に、光反射層であるコレステリック液晶層の形成方法について説明する。
 コレステリック液晶層形成用組成物として以下の塗布液を調製した。
――――――――――――――――――――――――――――――――――
 コレステリック液晶層形成用組成物
――――――――――――――――――――――――――――――――――
・下記の液晶化合物(LC1)             100質量部
・下記のカイラル剤(C1)              2.5質量部
・光重合開始剤(イルガキュア819;BASF社製)   0.75質量部
・下記の界面活性剤(W1)             0.05質量部
・下記の界面活性剤(W2)             0.01質量部
・メチルエチルケトン                 250質量部
・シクロヘキサノン                   50質量部
――――――――――――――――――――――――――――――――――
[Example 9]
In Example 9, a louver film I was produced in the same manner as in Example 4 except that the light reflecting layer formed on the light absorbing layer formed on the first support was composed of a cholesteric liquid crystal layer.
In Table 1, the cholesteric liquid crystal is expressed as “CLC”.
Next, a method for forming a cholesteric liquid crystal layer that is a light reflecting layer will be described.
The following coating liquid was prepared as a composition for forming a cholesteric liquid crystal layer.
――――――――――――――――――――――――――――――――――
Cholesteric liquid crystal layer forming composition ――――――――――――――――――――――――――――――――――
-100 parts by mass of the following liquid crystal compound (LC1)-2.5 parts by mass of the following chiral agent (C1)-Photopolymerization initiator (Irgacure 819; manufactured by BASF) 0.75 parts by mass-The following surfactant (W1 ) 0.05 parts by mass • The following surfactant (W2) 0.01 parts by mass • Methyl ethyl ketone 250 parts by mass • Cyclohexanone 50 parts by mass ――――――――――――――――――― ――――――――――――――
 液晶化合物(LC1)
Figure JPOXMLDOC01-appb-C000002
Liquid crystal compound (LC1)
Figure JPOXMLDOC01-appb-C000002
 カイラル剤(C1)
Figure JPOXMLDOC01-appb-C000003
Chiral agent (C1)
Figure JPOXMLDOC01-appb-C000003
 界面活性剤(W1)
Figure JPOXMLDOC01-appb-C000004
Surfactant (W1)
Figure JPOXMLDOC01-appb-C000004
 界面活性剤(W2)
Figure JPOXMLDOC01-appb-C000005
Surfactant (W2)
Figure JPOXMLDOC01-appb-C000005
 第一の支持体の凹凸形状を形成した面と反対側の面に、ラビング装置を用いてラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向に対して、ラビングローラーの回転軸は時計回りに45°の方向とした。
 ラビング処理面に、上述の塗布液コレステリック液晶層形成用組成物を膜厚3μmになるようにワイヤーバーを用いて塗布し、重合性液晶組成物からなる膜を形成した。次いでこの膜を70℃で1分間加熱し、コレステリック配向処理を施した。
 その後、25℃に冷却した塗布膜を、高圧水銀灯を有する紫外線照射装置EXECURE3000-W(HOYA社製)を用いて大気雰囲気下で10mW/cm2で10秒間紫外線を、ピッチ100μm、幅32.32μmの開口を複数有する光吸収層と同じパターンで黒インクが印刷されたOHPシートをマスクとして、塗布表面側から照射して一次硬化を行った。なお、上述の照度は、UVR-T1(UD-T36;TOPCON社製)を用いて300nm~390nmの範囲で測定した照度である。更に、窒素雰囲気下50mW/cm2で30秒間紫外線を塗布表面側からマスクを介して照射して、膜を二次硬化させた。
 その後、マスクを取り外し、130°に加熱しながら、紫外線照射装置を用いてコレステリック液晶用塗付液に窒素雰囲気下50mW/cm2で40秒間紫外線を塗布表面側から照射して、等方相部分とコレステリック液晶相部分とをひとつの層に有するコレステリック液晶層を、光反射層として有するルーバーフィルムIを得た。
The surface of the first support opposite to the surface on which the uneven shape was formed was subjected to a rubbing treatment using a rubbing apparatus. At this time, the longitudinal direction of the long film and the transport direction were parallel, and the rotation axis of the rubbing roller was set to a 45 ° clockwise direction with respect to the film longitudinal direction.
The coating liquid cholesteric liquid crystal layer forming composition was applied to the rubbing surface using a wire bar so as to have a film thickness of 3 μm to form a film made of a polymerizable liquid crystal composition. Next, this film was heated at 70 ° C. for 1 minute to give a cholesteric alignment treatment.
Thereafter, the coating film cooled to 25 ° C. was irradiated with ultraviolet rays for 10 seconds at 10 mW / cm 2 in an air atmosphere using an ultraviolet irradiation apparatus EXECURE 3000-W (manufactured by HOYA) having a high-pressure mercury lamp, with a pitch of 100 μm and a width of 32.32 μm. The OHP sheet on which black ink was printed in the same pattern as the light absorption layer having a plurality of openings was used as a mask to perform primary curing by irradiation from the coated surface side. The above illuminance is the illuminance measured in the range of 300 nm to 390 nm using UVR-T1 (UD-T36; manufactured by TOPCON). Furthermore, the film was secondarily cured by irradiating with ultraviolet rays from the coating surface side through a mask at 50 mW / cm 2 for 30 seconds under a nitrogen atmosphere.
Thereafter, the mask is removed and the isotropic phase portion is irradiated with ultraviolet rays from the coating surface side at 50 mW / cm 2 in a nitrogen atmosphere for 40 seconds using a UV irradiation device while heating at 130 °. A louver film I having a cholesteric liquid crystal layer having a cholesteric liquid crystal phase portion in one layer as a light reflecting layer was obtained.
[実施例10]
 実施例10では、第一の支持体に形成する光吸収層を、マスクを使わずに下記のように形成した以外は実施例8と同様にして、ルーバーフィルムOを作製した。
 実施例10では、第一の支持体の凹凸形状を形成した面と反対側の面に、化学増幅型ポジ型フォトレジスト(APEX-X:ダウケミカル社製)と黒色顔料を混合した下記K顔料分散物2を塗布した。その後、凹凸形状を形成した面側からUV光を照射しK顔料分散物2の塗布層を露光した。露光に使用したUV光は、波長365nmで、平行なUV光をレンズ拡散板LSD10ACUVT30(Luminit社製)で10°拡散させて使用した。形成した曲率半径50μmの半球状の円弧(レンズ)のレンズ機能によってUV光が集光された部分ではレジストが露光され、その後の現像処理で、ピッチ100μm、開口幅25μm、開口率25%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、ピッチ100μm、開口幅25μmの開口を複数有する光吸収層とピッチ100μm、幅33μmの開口を複数有するマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅33μm、開口率33%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成し、ルーバーフィルムOを作製した。
[Example 10]
In Example 10, a louver film O was produced in the same manner as in Example 8 except that the light absorption layer formed on the first support was formed as follows without using a mask.
In Example 10, the following K pigment in which a chemically amplified positive photoresist (APEX-X: manufactured by Dow Chemical Co., Ltd.) and a black pigment were mixed on the surface opposite to the surface on which the uneven shape of the first support was formed. Dispersion 2 was applied. Then, UV light was irradiated from the surface side where the concavo-convex shape was formed, and the coating layer of the K pigment dispersion 2 was exposed. The UV light used for the exposure was a wavelength of 365 nm, and parallel UV light was diffused by 10 ° with a lens diffusion plate LSD10ACUVT30 (manufactured by Luminit). The resist is exposed at the portion where the UV light is condensed by the lens function of the formed hemispherical arc (lens) with a radius of curvature of 50 μm, and in the subsequent development processing, the pitch is 100 μm, the opening width is 25 μm, the opening ratio is 25%, and the film A light-absorbing layer having a thickness of 2 μm was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion. Thereafter, Ag is vapor-deposited on the light absorption layer through a light absorption layer having a plurality of openings with a pitch of 100 μm and an opening width of 25 μm and a mask having a plurality of openings with a pitch of 100 μm and a width of 33 μm, and the pitch is 100 μm and the opening width is 33 μm. A light reflecting layer having a rate of 33% was formed so that the center in the opening width direction was aligned with the position of the apex of the lens convex portion, and a louver film O was produced.
・K顔料分散物2
 K顔料分散物1:60質量%
 化学増幅型ポジ型フォトレジスト:40質量%
K pigment dispersion 2
K pigment dispersion 1: 60% by mass
Chemically amplified positive photoresist: 40% by mass
[比較例1]
 比較例1では、ピッチ100μm、幅32μmの開口を複数有するマスクを介して上述のK顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅32μm、開口率32%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、ピッチ100μm、幅32μmの開口を複数有する光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅32μm、開口率32%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した以外は実施例1と同様にして、ルーバーフィルムJを作製した。
[Comparative Example 1]
In Comparative Example 1, the K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 μm and a width of 32 μm, and light having a pitch of 100 μm, an opening width of 32 μm, an opening ratio of 32%, and a film thickness of 2 μm. The absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion. Thereafter, Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings having a pitch of 100 μm and a width of 32 μm, and a light reflection layer having a pitch of 100 μm, an opening width of 32 μm, and an opening ratio of 32% A louver film J was prepared in the same manner as in Example 1 except that the center in the opening width direction was aligned with the position of the apex of the lens convex portion.
[比較例2]
 比較例2では、ピッチ100μm、幅32μmの開口を複数有するマスクを介して上述のK顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅32μm、開口率32%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、ピッチ100μm、幅50μmの開口を複数有する光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅50μm、開口率50%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した以外は実施例1と同様にして、ルーバーフィルムKを作製した。
[比較例3]
 比較例3は、ピッチ100μm、幅20μmの開口を複数有するマスクを介して上述のK顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅20μm、開口率20%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、ピッチ100μm、幅25μmの開口を複数有する光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅25μm、開口率25%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した以外は実施例1と同様にして、ルーバーフィルムLを作製した。
[Comparative Example 2]
In Comparative Example 2, the K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 μm and a width of 32 μm, and light having a pitch of 100 μm, an opening width of 32 μm, an opening ratio of 32%, and a film thickness of 2 μm. The absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion. Thereafter, Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings having a pitch of 100 μm and a width of 50 μm, and a light reflection layer having a pitch of 100 μm, an opening width of 50 μm, and an aperture ratio of 50% is formed. A louver film K was produced in the same manner as in Example 1 except that the center in the opening width direction was formed so as to match the position of the apex of the lens convex portion.
[Comparative Example 3]
In Comparative Example 3, the above-mentioned K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 μm and a width of 20 μm, and light having a pitch of 100 μm, an opening width of 20 μm, an aperture ratio of 20%, and a film thickness of 2 μm. The absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion. Thereafter, Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings having a pitch of 100 μm and a width of 25 μm, and a light reflection layer having a pitch of 100 μm, an opening width of 25 μm, and an aperture ratio of 25% is formed. A louver film L was produced in the same manner as in Example 1 except that the center in the opening width direction was formed so as to match the position of the apex of the lens convex portion.
[比較例4]
 比較例4は、ピッチ100μm、幅53μmの開口を複数有するマスクを介して上述のK顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅53μm、開口率53%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、ピッチ100μm、幅55μmの開口を複数有する光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅55μm、開口率55%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した以外は実施例1と同様にして、ルーバーフィルムMを作製した。
[比較例5]
 比較例5は、曲率半径50μmの半球状の円弧(レンズ)を100μmピッチで六方状に配置した形状を表面に形成するため、形成する形状を反転した表面形状を有する凹凸ローラーへ変更し、かつピッチ100μm、幅32μmの開口を複数有するマスクを介して上述のK顔料分散物1を塗布して乾燥し、ピッチ100μm、開口幅32μm、開口率32%、膜厚2μmの光吸収層を開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した。その後、ピッチ100μm、幅32μmの開口を複数有する光吸収層と同じパターンのマスクを介して、光吸収層上にAgを蒸着し、ピッチ100μm、開口幅32μm、開口率32%の光反射層を、開口幅方向の中心がレンズ凸部の頂点の位置と合うように形成した以外は実施例1と同様にして、ルーバーフィルムNを作製した。
[Comparative Example 4]
In Comparative Example 4, the above-mentioned K pigment dispersion 1 was applied and dried through a mask having a plurality of openings with a pitch of 100 μm and a width of 53 μm, and light having a pitch of 100 μm, an opening width of 53 μm, an aperture ratio of 53%, and a film thickness of 2 μm. The absorption layer was formed so that the center in the opening width direction matched the position of the apex of the lens convex portion. Thereafter, Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings having a pitch of 100 μm and a width of 55 μm, and a light reflection layer having a pitch of 100 μm, an opening width of 55 μm, and an aperture ratio of 55% is formed. A louver film M was produced in the same manner as in Example 1 except that the center in the opening width direction was aligned with the position of the apex of the lens convex portion.
[Comparative Example 5]
In Comparative Example 5, in order to form a hexagonal arc (lens) with a radius of curvature of 50 μm arranged in a hexagonal shape at a pitch of 100 μm on the surface, the shape is changed to an uneven roller having a surface shape obtained by reversing the shape, and The above K pigment dispersion 1 is applied and dried through a mask having a plurality of openings with a pitch of 100 μm and a width of 32 μm, and a light absorption layer having a pitch of 100 μm, an opening width of 32 μm, an opening ratio of 32%, and a film thickness of 2 μm is opened. The center of the direction was formed so as to match the position of the apex of the lens convex portion. Thereafter, Ag is vapor-deposited on the light absorption layer through a mask having the same pattern as the light absorption layer having a plurality of openings having a pitch of 100 μm and a width of 32 μm, and a light reflection layer having a pitch of 100 μm, an opening width of 32 μm, and an opening ratio of 32% is formed. A louver film N was produced in the same manner as in Example 1 except that the center in the opening width direction was aligned with the position of the apex of the lens convex portion.
 なお、上述の実施例1、および実施例3~実施例9ならびに比較例1~比較例4は、レンズを正方配置したものであり、実施例2および比較例5は、レンズを六方配置したものである。開口率の数値は、例えば、「25/5」と示されているが、先の数値は、開口幅/ピッチで表される数値である。後の数値は、(開口面積)/(ピッチを1辺とする正方形の面積)で表される数値である。 The above-mentioned Example 1, Example 3 to Example 9, and Comparative Example 1 to Comparative Example 4 are lenses arranged in a square, and Example 2 and Comparative Example 5 are lenses arranged in a hexagon. It is. The numerical value of the aperture ratio is shown as, for example, “25/5”, but the previous numerical value is a numerical value expressed by the opening width / pitch. The latter numerical value is a numerical value represented by (opening area) / (square area with one side of the pitch).
[評価]
 (最大輝度の評価)
 上述で作製した面光源装置の光の出射面において、測定機”EZ-Contrast XL88”(ELDIM社製)を用いて、極角度0°(正面方向)から極角度88°までの1°刻みの輝度(Y0)を測定し、輝度値の最大値を最大輝度とする。この最大輝度を面光源装置にルーバーフィルムを配置していない状態(T0)と、配置した状態(T)とで測定し、その比(T/T0)を算出し、最大輝度比を求めた。最大輝度比を下記4段階に分け、光利用効率として評価した。こうして求められる最大輝度比の値が大きい程、面光源装置の光利用効率が高いことを意味する。測定結果を表1に示す。
<評価基準>
AA:1.3以上
A:1.25以上1.3未満
B:0.8以上1.25未満
C:0.65以上0.8未満
D:0.65未満
[Evaluation]
(Evaluation of maximum brightness)
Using the measuring device “EZ-Contrast XL88” (manufactured by ELDIM) on the light exit surface of the surface light source device produced above, the polar angle is 0 ° (front direction) and the polar angle is 88 °. The luminance (Y0) is measured, and the maximum luminance value is set as the maximum luminance. This maximum luminance was measured in a state where the louver film was not disposed on the surface light source device (T0) and in a state where the louver film was disposed (T), and the ratio (T / T0) was calculated to obtain the maximum luminance ratio. The maximum luminance ratio was divided into the following four stages and evaluated as light utilization efficiency. A larger value of the maximum luminance ratio thus obtained means that the light use efficiency of the surface light source device is higher. The measurement results are shown in Table 1.
<Evaluation criteria>
AA: 1.3 or more A: 1.25 or more and less than 1.3 B: 0.8 or more and less than 1.25 C: 0.65 or more and less than 0.8 D: Less than 0.65
 (裾切れの評価)
 上述で作製した面光源装置の光の出射面において、測定機”EZ-Contrast XL88”(ELDIM社製)を用いて、極角度0°(正面方向)から極角度88°までの1°刻みの輝度(Y0)を測定し、正面方向の輝度値と極角60°の輝度最小値の比をとり、SN比(=正面方向の輝度/極角60°の輝度最小値)とし、下記3段階に分け、裾切れとして評価を行った。裾切れの評価結果を表1のSN比の欄に示す。
<評価基準>
A:50以上
B:25以上50未満
C:10以上25未満
D:10未満
(Evaluation of hem cut)
Using the measuring device “EZ-Contrast XL88” (manufactured by ELDIM) on the light exit surface of the surface light source device produced above, the polar angle is 0 ° (front direction) and the polar angle is 88 °. The luminance (Y0) is measured, and the ratio of the luminance value in the front direction and the minimum luminance value at the polar angle of 60 ° is taken as the SN ratio (= luminance in the front direction / minimum luminance value at the polar angle of 60 °). And was evaluated as a hem cut. The evaluation result of the tail cut is shown in the column of SN ratio in Table 1.
<Evaluation criteria>
A: 50 or more B: 25 or more and less than 50 C: 10 or more and less than 25 D: less than 10
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示す結果から、実施例1~10のルーバーフィルムは、比較例1~5のルーバーフィルムと比べて、光利用効率を維持したまま、SN比が向上していることを確認できる。
 表1の開口比率は、複数の第1の開口部の開口率/複数の第2の開口部の開口率で表される比のことである。
 比較例1および比較例5は、開口比率が大きくSN比が悪い。
 比較例2は、開口比率が小さく、最大輝度比の結果が悪く光利用効率が悪い。
 比較例3は、光吸収層の開口率が小さく、最大輝度比の結果が悪く光利用効率が悪い。
 比較例4は、光吸収層の開口率が大きく、SN比の結果が悪く広角側の光漏れを抑制できない。
 実施例1と実施例2との対比から、実施例1と実施例2は最大輝度比の評価は同じであるが、最大輝度比の数値としては実施例2の方が高い値であり、レンズは六方配置の方が好ましい。
 実施例1と実施例5との対比から、光吸収層の開口率は大きい方が、最大輝度比の評価が高くなる。
 実施例5と実施例8との対比から、第一の支持体は薄い方が、SN比の評価が良くなる。
 実施例3と実施例4との対比から、開口比率は大きい方が、最大輝度比が高くなる。
From the results shown in Table 1, it can be confirmed that the louver films of Examples 1 to 10 have an improved SN ratio while maintaining the light utilization efficiency as compared with the louver films of Comparative Examples 1 to 5.
The opening ratio in Table 1 is a ratio represented by the opening ratio of the plurality of first openings / the opening ratio of the plurality of second openings.
Comparative Example 1 and Comparative Example 5 have a large aperture ratio and a poor SN ratio.
In Comparative Example 2, the aperture ratio is small, the result of the maximum luminance ratio is poor, and the light utilization efficiency is poor.
In Comparative Example 3, the aperture ratio of the light absorption layer is small, the result of the maximum luminance ratio is poor, and the light utilization efficiency is poor.
In Comparative Example 4, the aperture ratio of the light absorption layer is large, the result of the SN ratio is bad, and light leakage on the wide angle side cannot be suppressed.
From the comparison between Example 1 and Example 2, the evaluation of the maximum luminance ratio is the same in Example 1 and Example 2, but the numerical value of the maximum luminance ratio is higher in Example 2, and the lens The hexagonal arrangement is preferred.
From the comparison between Example 1 and Example 5, the larger the aperture ratio of the light absorption layer, the higher the evaluation of the maximum luminance ratio.
From the comparison between Example 5 and Example 8, the thinner the first support, the better the SN ratio.
From the comparison between Example 3 and Example 4, the larger the aperture ratio, the higher the maximum luminance ratio.
 1 面光源装置
 2 ルーバーフィルム
 11 レンズ
 12 第一の支持体
 13a、32a、36a 表面
 14 拡散板
 15 反射板
 16 光源
 17 第二の支持体
 18 光吸収層
 18b 第1の開口部
 18c 裏面
 19 光反射層
 19b 第2の開口部
 20 反射型偏光子
 22 モアレ防止点
 30 液晶表示装置
 32 液晶セル
 33 画素
 34 バックライト側偏光子
 36 視認側偏光子
 CL 光軸
 Dt 厚み
 Lp ピッチ
DESCRIPTION OF SYMBOLS 1 Surface light source device 2 Louver film 11 Lens 12 1st support body 13a, 32a, 36a Surface 14 Diffusion plate 15 Reflection plate 16 Light source 17 2nd support body 18 Light absorption layer 18b 1st opening part 18c Back surface 19 Light reflection Layer 19b Second opening 20 Reflective polarizer 22 Moire prevention point 30 Liquid crystal display device 32 Liquid crystal cell 33 Pixel 34 Backlight side polarizer 36 Viewing side polarizer CL Optical axis Dt Thickness Lp Pitch

Claims (6)

  1.  面光源装置に用いられ、
     光源の出射側に一定のピッチで配列された、複数のレンズと、
     前記レンズよりも前記光源側に配置されて前記複数のレンズを支持し、厚みが前記一定のピッチよりも小さい、第一の支持体と、
     前記第一の支持体よりも前記光源側に配置され、前記複数のレンズに対応する複数の第1の開口部を備える光吸収層と、
     前記光吸収層よりも前記光源側に配置され、前記複数のレンズに対応する複数の第2の開口部を備える光反射層を有し、
     前記複数の第1の開口部と前記複数の第2の開口部とが位置合せされた状態で前記光吸収層と前記光反射層とが配置されており、
     前記光吸収層は、前記複数の第1の開口部の開口率が25%~50%であり、
     前記光反射層は、反射率が90%以上であり、かつ前記光反射層の前記複数の第2の開口部の開口率は、前記光吸収層の前記複数の第1の開口部の開口率よりも大きく、前記複数の第1の開口部の前記開口率/前記複数の第2の開口部の前記開口率で表される比が65%~99%であるルーバーフィルム。
    Used in surface light source devices,
    A plurality of lenses arranged at a constant pitch on the light output side of the light source;
    A first support that is disposed closer to the light source than the lens, supports the plurality of lenses, and has a thickness smaller than the fixed pitch;
    A light absorption layer that is disposed on the light source side of the first support and includes a plurality of first openings corresponding to the plurality of lenses;
    A light reflection layer that is disposed on the light source side of the light absorption layer and includes a plurality of second openings corresponding to the plurality of lenses;
    The light absorption layer and the light reflection layer are arranged in a state where the plurality of first openings and the plurality of second openings are aligned,
    The light absorption layer has an opening ratio of the plurality of first openings of 25% to 50%,
    The light reflecting layer has a reflectance of 90% or more, and the opening ratio of the plurality of second openings of the light reflecting layer is the opening ratio of the plurality of first openings of the light absorbing layer. And a ratio represented by the opening ratio of the plurality of first openings / the opening ratio of the plurality of second openings is 65% to 99%.
  2.  前記複数のレンズは、2次元状に配列されている請求項1に記載のルーバーフィルム。 The louver film according to claim 1, wherein the plurality of lenses are two-dimensionally arranged.
  3.  前記第一の支持体は、厚みが前記一定のピッチに対して50%以下である請求項1または2に記載のルーバーフィルム。 The louver film according to claim 1 or 2, wherein the first support has a thickness of 50% or less with respect to the constant pitch.
  4.  請求項1~3のいずれか1項に記載のルーバーフィルムと、前記光源とを含む面光源装置。 A surface light source device comprising the louver film according to any one of claims 1 to 3 and the light source.
  5.  前記ルーバーフィルムと前記光源との間に配置される反射型偏光子を有する請求項4に記載の面光源装置。 The surface light source device according to claim 4, further comprising a reflective polarizer disposed between the louver film and the light source.
  6.  請求項4または5に記載の面光源装置と、液晶パネルと、を含む液晶表示装置。 A liquid crystal display device comprising the surface light source device according to claim 4 or 5 and a liquid crystal panel.
PCT/JP2019/019486 2018-05-25 2019-05-16 Louver film, surface light source device, and liquid crystal display device WO2019225470A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-100670 2018-05-25
JP2018100670 2018-05-25
JP2019005360 2019-01-16
JP2019-005360 2019-01-16

Publications (1)

Publication Number Publication Date
WO2019225470A1 true WO2019225470A1 (en) 2019-11-28

Family

ID=68615742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019486 WO2019225470A1 (en) 2018-05-25 2019-05-16 Louver film, surface light source device, and liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2019225470A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305306A (en) * 2000-02-14 2001-10-31 Fuji Photo Film Co Ltd Collimating plate, lighting system and liquid crystal display
JP2009500662A (en) * 2005-06-29 2009-01-08 リフレキサイト・コーポレーション Collimating microlens array
JP2011064875A (en) * 2009-09-16 2011-03-31 Sekisui Chem Co Ltd Optical sheet and method for producing the same
US8177408B1 (en) * 2008-02-15 2012-05-15 Fusion Optix, Inc. Light filtering directional control element and light fixture incorporating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305306A (en) * 2000-02-14 2001-10-31 Fuji Photo Film Co Ltd Collimating plate, lighting system and liquid crystal display
JP2009500662A (en) * 2005-06-29 2009-01-08 リフレキサイト・コーポレーション Collimating microlens array
US8177408B1 (en) * 2008-02-15 2012-05-15 Fusion Optix, Inc. Light filtering directional control element and light fixture incorporating the same
JP2011064875A (en) * 2009-09-16 2011-03-31 Sekisui Chem Co Ltd Optical sheet and method for producing the same

Similar Documents

Publication Publication Date Title
US20200292878A1 (en) Louver film, planar light source device, and liquid crystal display device
KR100964425B1 (en) Composition for Anti-Glare Film, and Process for the Preparation of Anti-Glare Film
US20120262793A1 (en) Black curable composition for wafer - level lens, and wafer - level lens
TWI577750B (en) Colored composition, method for manufacturing color filter, method for manufacturing solid-state image sensing device, and method for manufacturing image display device
JP5631280B2 (en) Photosensitive resin composition for photospacer and photospacer using the same
JP6249530B2 (en) Curable resin composition, antireflection film using the same, solid-state imaging device, and camera module
TWI483067B (en) Black curable composition for wafer level lens and wafer level lens
JP2013041153A (en) Photosensitive resin composition for photospacer and photospacer using the same
KR20160102276A (en) Coloring composition, and cured film, color filter, pattern-forming method, method for producing color filter, solid state imaging element, image display device and dye polymer using coloring composition
JP6251067B2 (en) Coloring composition, cured film, method for producing color filter, color filter, solid-state imaging device, and image display device
JP6647381B2 (en) Near-infrared absorbing composition, cured film, near-infrared cut filter, solid-state imaging device, infrared sensor, and compound
WO2014192716A1 (en) Method for producing color filter, composition for forming base layer, and organic el display device
KR102561735B1 (en) Colored photosensitive resin composition
JP2015151530A (en) Composite and production method of the same, colored composition, cured film, color filter, production method of color filter, solid state imaging element, and image display device, as well as laminate
WO2019045098A1 (en) Functional film, surface light source device, and liquid crystal display device
JP5593174B2 (en) Colored curable composition, colored pattern, color filter, method for producing color filter, and liquid crystal display element
WO2019225470A1 (en) Louver film, surface light source device, and liquid crystal display device
TW201533535A (en) Radiation-sensitive composition, method for manufacturing radiation-sensitive composition, cured film, color filter, method for manufacturing color filter, method of forming patterns, solid-state imaging sensing device, and image display device
JP6225254B2 (en) Coloring composition, method for producing coloring composition, color filter, organic electroluminescence display element
WO2020049930A1 (en) Vehicular headlight unit, light-shielding film for headlight, and method for producing light-shielding film for headlight
JP6102219B2 (en) Color filter for liquid crystal display device with a display system that applies a horizontal electric field
KR20120109100A (en) Photosensitive resin composition for uv protection, uv protective film and display device including the film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP