WO2019225445A1 - Optical device using nanocarbon material - Google Patents

Optical device using nanocarbon material Download PDF

Info

Publication number
WO2019225445A1
WO2019225445A1 PCT/JP2019/019366 JP2019019366W WO2019225445A1 WO 2019225445 A1 WO2019225445 A1 WO 2019225445A1 JP 2019019366 W JP2019019366 W JP 2019019366W WO 2019225445 A1 WO2019225445 A1 WO 2019225445A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
waveguide
nanocarbon material
phase
Prior art date
Application number
PCT/JP2019/019366
Other languages
French (fr)
Japanese (ja)
Inventor
英之 牧
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2020521184A priority Critical patent/JP7454852B2/en
Publication of WO2019225445A1 publication Critical patent/WO2019225445A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure

Definitions

  • the present invention relates to an optical device using a nanocarbon material such as graphene, and more particularly to an optical device combining a nanocarbon material and silicon photonics technology.
  • a light emitting element, a light source, and a photocoupler using nanocarbon materials such as graphene and carbon nanotubes (CNT) have been proposed (for example, see Patent Document 1 and Patent Document 2).
  • the nanocarbon material can be heated by energization at high speed, and a continuous spectrum (white light) can be obtained in a wide wavelength range by black body radiation.
  • silicon photonics technology that integrates optical circuits with fine silicon waveguides on a substrate is attracting attention. Silicon photonics technology is used in various fields, and many compact optical modules and the like used in optical communication networks of the WDM (Wavelength-Division-Multiplexing) system have been developed.
  • WDM Widelength-Division-Multiplexing
  • An optical phased array is known in which heating efficiency is improved by directly arranging graphene nanoheaters in a silicon waveguide (see, for example, Non-Patent Document 1).
  • Patent No. 5747334 Japanese Patent No. 6155012
  • thermo-optic effect is generally performed using a metal or semiconductor heater.
  • a metal or semiconductor heater When a metal or semiconductor heater is used, the switching speed due to a temperature change in the heater is very slow, on the order of kilohertz (kHz), and the structure is complicated.
  • kHz kilohertz
  • the loss of the waveguide increases due to light absorption by the heater. Therefore, there is a problem that a certain distance is provided between the waveguide and the heater, the switching efficiency is low, and the power consumption is high.
  • An object of the present invention is to provide an optical device capable of high-speed operation with low power consumption.
  • an optical device using a nanocarbon material such as graphene or carbon nanotube comprises: A first optical waveguide connected to the incident optical port; A second optical waveguide connected to the first outgoing light port; A third optical waveguide connected to the second outgoing light port; An optical component that optically connects the first optical waveguide to at least one of the second optical waveguide and the third optical waveguide; A nanocarbon material disposed in an area where at least the optical component is provided; and An electrode pair for applying an electrical signal to the nanocarbon material; The optical path is switched between the first outgoing light port and the second outgoing light port by applying the electrical signal.
  • the optical device comprises: An optical coupler for branching incident light into a plurality of channels; A plurality of phase modulators respectively provided in the plurality of channels; A plurality of outgoing optical ports coupled to outputs of the plurality of phase modulators; Have The plurality of phase modulators have a coating region covered with a nanocarbon material, and the phase of light passing through the plurality of phase modulators is changed by an electrical signal applied to the nanocarbon material from the outside, The direction of outgoing light emitted from the plurality of outgoing light ports is determined by the phase difference given by the plurality of phase modulators.
  • the optical device comprises: An optical coupler for branching incident light into a plurality of channels, a plurality of phase modulators provided in each of the plurality of channels, and a nano that changes the phase of light passing through each channel by energization heating with an external electric signal
  • An array phase modulator having a carbon material
  • a plurality of arrayed waveguides connected to the output of the array phase modulator
  • a condensing waveguide that is connected to the plurality of arrayed waveguides and condenses output light from the plurality of arrayed waveguides at a predetermined position
  • An outgoing light port connected to the output of the condensing waveguide;
  • Have A phase change amount of the plurality of phase modulators is controlled by the electrical signal, and a condensing position at the output end of the condensing waveguide is determined.
  • the optical device comprises: A nanostructure having a periodic refractive index profile; A nanocarbon material covering the nanostructure; An electrode for inputting an electrical signal applied to the nanocarbon material; The refractive index of the nanostructure or the interaction with propagating light is modulated by energization heating of the nanocarbon material, and the emission direction of light incident on the nanostructure is changed.
  • An optical device capable of high-speed operation with low power consumption will be realized.
  • high-speed optical path switching and optical sweep can be realized.
  • an optical device using nanocarbon materials such as graphene and carbon nanotubes is provided.
  • the optical device is an integrated optical device in which a light transmitting material such as silicon, silicon oxide, or silicon nitride is finely processed, and includes an optical path converter, an optical sweep device, a spectrometer, a phase modulator, an optical antenna, and the like.
  • the refractive index can be controlled using the thermo-optic effect, and high-speed optical path switching and light sweeping can be controlled.
  • Nanocarbon material is a carbon material of atomic order in which carbon atoms are arranged on a plane with a six-membered ring structure. Nanocarbon has excellent thermal properties, and has a thermal conductivity about 10 times that of copper, which has a high thermal conductivity. In addition, since a device having a minute structure on the atomic order can be manufactured, the heat capacity, which is a physical quantity proportional to the volume, is extremely small. When a nanocarbon material is applied to an optical device, not only can a large temperature change be obtained with very small heat energy, but also the temperature change relaxation time can be reduced in proportion to the heat capacity, and the optical device operates at high speed. Can be developed.
  • Nanocarbon materials can increase heat conduction by using plasmons in nanocarbon and surface polar phonons of the substrate, and can provide greater heat conduction than semiconductors and metal materials. Using this characteristic, high-speed and high-efficiency temperature modulation is performed.
  • optical path control (routing), optical sweep, etc. using nanocarbon materials
  • high-speed modulation of several hundred kHz or more is possible, and modulation at a maximum speed of gigahertz (GHz) is possible.
  • GHz gigahertz
  • FIG. 1A shows a top view of an optical path changer 10A of the first embodiment as an example of an optical device
  • FIG. 1B shows a perspective view.
  • the optical path changer 10A includes a pair of optical waveguides 11 and 12 formed of a light transmission material such as silicon (Si) on the substrate 103, an optical resonator 13 disposed in the vicinity of the optical waveguides 11 and 12, It has a nanocarbon material 15 that covers the optical waveguides 11 and 12 and the optical resonator 13.
  • the nanocarbon material 15 is connected to the pair of electrodes 14 and 16.
  • the substrate 103 is, for example, a silicon substrate, an SOI (Silicon on Insulator) substrate, or the like.
  • optical waveguides 11 and 12 and an optical resonator 13 are formed on a substrate 103 on which a SiO 2 layer 102 is formed on a Si substrate 101.
  • the optical waveguides 11 and 12 and the optical resonator 13 can be formed by using a silicon oxide (SiO 2 ) layer as an insulating layer as a lower cladding layer and processing the Si layer.
  • the optical resonator 13 is a ring resonator.
  • the optical waveguide 11 of the optical path converter 10A When light is incident on the optical waveguide 11 of the optical path converter 10A from the incident light port Pin, the light traveling straight without passing through the optical resonator 13 is emitted from the transmitted light output port Pout1. The light coupled to the optical resonator 13 and circulated is then emitted from the branched light exit port Pout2.
  • the first waveguide from the incident light port Pin to the portion close to the optical resonator 13 and the second waveguide from the portion close to the optical resonator 13 to the transmitted light exit port Pout1 may be used. Good.
  • a portion of the optical waveguide 12 that is close to the optical resonator 13 to the branched light exit port Pout2 may be used as the second optical waveguide.
  • the optical resonator 13 is an example of an optical component that optically connects incident light from the incident light port Pin to the transmitted light output port Pout1 or the branched light output port Pout2.
  • the wavelength is selected so that light is output only from one of the transmitted light exit port Pout1 and the branched light exit port Pout2. It is possible. In other words, the exit of the emitted light can be selected by changing the wavelength of the laser light.
  • the nanocarbon material 15 is heated by energization.
  • the temperatures of the lower optical waveguides 11 and 12 and the optical resonator 13 also increase due to heat conduction. With this temperature rise, the effective refractive indexes of the optical waveguides 11 and 12 and the optical resonator 13 change, and the substantial optical path lengths of the optical waveguides 11 and 12 and the optical resonator 13 change.
  • the phase of light propagating through the optical waveguides 11 and 12 and the optical resonator 13 can be changed depending on whether or not the nanocarbon material 15 is energized. Using this phase change, the output destination of the light incident from the incident light port Pin can be selected between the transmitted light output port Pout1 and the branched light output port Pout2 depending on the presence or absence of energization.
  • the two optical paths can be switched by an external electrical signal.
  • Whether the light is emitted from the transmitted light exit port Pout1 or the branched light exit port Pout2 in a state where the nanocarbon material 15 is not energized can be set by determining the wavelength. In the state where no voltage is applied to the nanocarbon material 15, the temperature of the nanocarbon material 15 does not increase, and light is emitted only from the initially set emission port, for example, the transmitted light emission port Pout1.
  • the temperature of the nanocarbon material 15 rises due to energization heating.
  • the temperature of the lower optical waveguides 11 and 12 and the optical resonator 13 also rises due to heat conduction, and the refractive indexes of the optical waveguides 11 and 12 and the optical resonator 13 change due to the thermo-optic effect. Due to the change in refractive index, the phase of the propagating light is shifted and interference occurs, and the output port is switched to the branched light output port Pout2.
  • the optical path can be converted by an electrical signal applied to the nanocarbon material 15, and the optical path converter 10A operates.
  • FIG. 2A to 2C are microscopic images of the optical path changer 10A actually produced.
  • 2A is an optical microscope image before electrode formation
  • FIG. 2B is an optical microscope image after electrode formation
  • FIG. 2C is an electron microscope image of a waveguide structure in the vicinity of the optical resonator 13.
  • two optical waveguides 11 and 12 are arranged adjacent to the racetrack type optical resonator 13.
  • Graphene which is a nanocarbon material 15, is formed on a Si thin line optical circuit including the optical resonator 13 and the optical waveguides 11 and 12, and electrodes are disposed on both ends of the graphene.
  • An optical path changer 10A that operates at a high speed with a size of 10 ⁇ m ⁇ 10 ⁇ m can be realized by combining the nanocarbon material 15 and an optical circuit of Si thin wire.
  • FIG. 3A is a simulation result of a change in light transmittance when the wavelength of light incident from the incident light port Pin is changed in the manufactured optical path converter 10A.
  • the profile described as “transmitted light” is the wavelength dependence of the transmittance at the transmitted light output port Pout1
  • the profile described as “branched light” is the transmittance at the branched light output port Pout2.
  • the wavelength dependence of is shown.
  • the intensity of the transmitted light and the intensity of the branched light change periodically. When the transmitted light intensity is high, the branched light intensity is low, and when the transmitted light intensity is high, the transmitted light intensity is weak.
  • FIG. 3B shows the transmitted light emission state of FIG. 3A
  • FIG. 3C shows the branched light emission state.
  • the transmitted light emission state the input light travels straight through the waveguide toward the transmitted light output port Pout1.
  • incident light is coupled to the ring resonator, and is coupled to the other waveguide from the ring resonator toward the branched light emission port Pout2.
  • FIG. 4A is a diagram for explaining an experiment for actually performing an optical path conversion operation on the manufactured optical path converter 10A, and is an optical microscope image (including a partially enlarged image) after the electrodes of the optical path converter 10A are formed. .
  • the voltage application to the graphene that is the nanocarbon material 15 is switched to switch the exit port between Pout1 and Pout2.
  • the light incident from the incident light port Pin is divided into light that travels straight through the transmission optical waveguide and branch light that is coupled to the branch optical waveguide through the ring resonator.
  • the optical path is switched from the branched light side to the transmitted light side, and it is observed that light propagates to the transmitted light exit port. It has been demonstrated that an optical path converter 10A that operates at high speed is realized by using a graphene heater.
  • FIG. 5 shows the voltage dependence of the transmittance spectrum in the optical path converter 10A of the embodiment.
  • the peak of the transmittance spectrum is shifted to the longer wavelength side.
  • the effective optical path length changes due to the change in the effective refractive index of the Si waveguide due to the thermo-optic effect caused by the current heating to the graphene, and the interference condition of the light passing through the optical waveguides 11 and 12 and the optical resonator 13 changes. Change.
  • the transmittance spectrum changes due to the change in the interference condition, and the optical paths of the transmitted light and the branched light are switched.
  • FIG. 6A shows the change in the refractive index of the Si waveguide with the applied voltage to the graphene
  • FIG. 6B shows the change in the refractive index of the Si waveguide with the electric power.
  • the refractive index of the Si waveguide can be obtained from the transmittance spectrum of FIG.
  • the electric power is obtained by measuring a current when a voltage is applied.
  • the refractive index changes substantially linearly with respect to the power. Since how the refractive index of the optical waveguide changes depends on the material used for the optical device and the device structure, the dependence of the refractive index on the electrical external input can be designed according to the application.
  • FIG. 7 shows the measurement result of the transmitted light intensity at the transmitted light output port Pout1 when a modulation signal of 100 kHz is applied to the electrodes 14 and 16 of the optical path changer 10A produced in FIG. Graphene is used as the nanocarbon material, and the modulation signal is a rectangular wave signal that varies between 0V and 3.5V.
  • the change in transmitted light intensity was measured with an oscilloscope. Fast optical path selection or optical path switching is observed in real time.
  • FIG. 8 shows the results of time-resolved measurement of thermal radiation when a 1 GHz modulation signal is input to graphene.
  • the nanocarbon material 15 has a minute structure on the order of atoms, has a small heat capacity, and can perform temperature modulation at high speed.
  • the nanocarbon material 15 has a thermal conductivity about 10 times that of copper, which is said to have a high thermal conductivity, and further, using plasmons in the nanocarbon and surface polar phonons of the substrate, Furthermore, a larger thermal conductivity can be obtained.
  • a large temperature change can be obtained with small thermal energy.
  • even when a high-speed voltage signal of 1 GHz is input, the graphene temperature changes following the speed of the modulation signal even when the temperature change relaxation time is short.
  • optical path changer 10A of the embodiment can operate at a maximum speed of 1 GHz.
  • the optical path changer 10A can operate at a speed 100 to 1 million times higher than when a metal or semiconductor heater is used.
  • CNT carbon nanotubes
  • CVD chemical vapor deposition
  • HiPCO high pressure carbon monoxide
  • the CNT solution may be spin-coated or dip-coated, or transferred with a tape, gel, or polymer. Further, CNTs may be directly grown in the region including the optical waveguides 11 and 12 and the optical resonator 13 by the CVD method.
  • One CNT carbon nanotube may be used, but a larger change in refractive index can be obtained by using many CNTs. Therefore, it is effective to use a CNT thin film obtained by thinning CNTs into a network.
  • graphene is used for the nanocarbon material 15
  • the number of graphene layers is arbitrary, and may be any of a single layer, two layers, several layers, and multiple layers. Regardless of the growth method of graphene, any method such as CVD, mechanical peeling, transfer or direct growth can be used.
  • the nanocarbon material 15 can be electrically heated with a thinness of atomic order.
  • an atomic order thin film is formed using a normal metal material and energized and heated, the metal breaks due to heating or migration, and the optical device cannot be operated.
  • the nanocarbon material 15 has a covalent bond and is resistant to energization heating, the nanocarbon material 15 hardly breaks due to energization heating despite the atomic order structure, and has high durability.
  • the nanocarbon material 15 has a unique electronic state due to its minute structure, and this electronic state works favorably for an optical device.
  • the energy dispersion of electrons is linear, and light absorption can be controlled by an electric field or a doping state. Since light absorption can be suppressed by selecting an electric field and a doping state, even if the nanocarbon material 15 is disposed immediately above the optical waveguides 11 and 12 and the optical resonator 13, unlike an ordinary metal, light loss due to absorption is lost. Can be kept low.
  • CNT there is an effect similar to that of graphene. Light absorption can be controlled by an electric field or doping, and if semiconductor CNT is used, light absorption can be further suppressed.
  • the Si waveguide is formed as the light transmitting material.
  • the light transmitting material may be silicon oxide, silicon nitride, III-V group, or II-VI. Group semiconductor materials may also be used. Regardless of the type of light transmitting material, optical path switching control by applying a voltage to the nanocarbon material 15 is possible.
  • 9A to 9C show configuration examples of the optical resonator 13.
  • 9A shows a racetrack type ring resonator 131
  • FIG. 9B shows a circular ring resonator 132
  • FIG. 9C shows a disk type resonator 133.
  • a racetrack type ring resonator is used in FIG. 2C, it may have any shape as long as it functions as the optical resonator 13, and the circular ring resonator 132 shown in FIG. 9B or the disk type resonator 133 shown in FIG. 9C. Etc. may be used.
  • FIG. 10A shows an optical path converter 10B as a modification of the optical device of the first embodiment.
  • the optical path converter 10B switches the optical path using a Mach-Zehnder interferometer (MZ).
  • the Mach-Zehnder interferometer (MZ) has a pair of optical waveguides 11 and 12 extending between an optical coupler 17 and an optical coupler 19.
  • a nanocarbon material 15 ⁇ / b> A is disposed on the optical waveguide 11, and a voltage (or current) is applied to the nanocarbon material 15 ⁇ / b> A by the electrode 141 and the electrode 161.
  • the nanocarbon material 15B is disposed on the optical waveguide 12, and a voltage (or current) is applied to the nanocarbon material 15B by the electrode 142 and the electrode 162.
  • the Mach-Zehnder interferometer MZ is an optical component that optically connects incident light from the incident light port Pin to the transmitted light output port Pout1 or the branched light output port Pout2.
  • the optical waveguides 11 and 12 are heated by voltage application to the nanocarbon materials 15A and 15B.
  • the nanocarbon material 15A and the nanocarbon material 15B are controlled independently from each other, and either one of the nanocarbon materials 15A and 15B may be energized and heated, or both may be energized and heated.
  • the optical coupler 17 and the optical coupler 19 are configured such that two waveguides approach each other and are coupled by evanescent (near field), but any type of optical coupler can be used.
  • a multi-mode interference system MMI: Multi-Mode Interference
  • MMI Multi-Mode Interference
  • FIG. 10B shows an optical path changer 10C using a directional coupler 170 as a modification of the optical device of the first embodiment.
  • the directional coupler 170 has a structure in which two optical waveguides 171 and 172 are adjacent at predetermined positions.
  • the nanocarbon material 15 is disposed so as to cover the adjacent portion.
  • the light incident from the incident light port Pin interferes with each other in the evanescent field at the adjacent portion, and the light is distributed to the two output-side waveguides 171 and 172 connected to the output light ports Pout11 and Pout12, respectively.
  • the distribution ratio is adjusted by energization heating to the nanocarbon material 15 covering the adjacent portion.
  • the formed nanocarbon material 15 may have a structure that is symmetric with respect to the optical axis (propagation axis), or may have a temperature gradient with an asymmetric structure with respect to the optical axis by making the shape of graphene trapezoidal or the like. .
  • FIG. 10C shows an optical path changer 10C using a multimode coupler 180 as another modification of the optical device of the first embodiment.
  • the multimode coupler 180 is a 1-input 2-output multimode coupler. Instead of the multimode coupler 180, a Y splitter may be used.
  • the multimode coupler 180 has a structure in which one input waveguide 181 and two output waveguides 182 and 183 are connected to the slab portion 184.
  • the slab portion 184 is a coupling portion that couples light propagating through the input waveguide 181 to the output waveguide 182 or 183. In the slab portion 184 having a constant width, incident light is converted into a plurality of propagation modes and coupled to the output waveguide 182 or 183.
  • the waveguides 181, 182 and 183 are directly coupled.
  • the light incident from the incident light port Pin is distributed by optical interference in the slab part 184, and the ratio of the light intensity emitted from the outgoing light port Pout11 and the outgoing light port Pout12 varies depending on the interference state of the slab part 184. be able to.
  • the nanocarbon material 15 By disposing the nanocarbon material 15 on the slab portion 184 and energizing and heating, the interference state changes, and the light intensity of the two outgoing light ports Pout11 and Pout12 can be switched.
  • the nanocarbon material 15 to be formed may have a symmetric structure with respect to the optical axis, but the shape of the nanocarbon material 15 is trapezoidal as shown in FIG. Also good.
  • FIG. 11A to 11E show examples of arrangement of the nanocarbon material 15 with respect to an optical waveguide or an optical resonator (hereinafter abbreviated as “optical waveguide 111”).
  • the optical waveguide 111 is formed on the main surface of the substrate 110, and the nanocarbon material 15 is disposed so as to cover the upper surface and the side surface of the optical waveguide 111.
  • the optical waveguide 111 is a buried waveguide embedded in the substrate 110, and the nanocarbon material 15 directly covers the upper surface of the optical waveguide 111.
  • the substrate surface is flat, and the arrangement of the nanocarbon material 15 is easy.
  • 11A and 11B at least a part of the optical waveguide 111 may be in contact with the nanocarbon material 15.
  • the optical path control directly affects the temperature rise of the nanocarbon material 15 through the evanescent light generated around the optical waveguide 111. Can be used.
  • the nanocarbon material 15 is in contact with the optical waveguide 111, the heat of the nanocarbon material 15 is directly transmitted to the optical waveguide 111, so that the temperature of the optical waveguide 111 can be increased with high efficiency.
  • 11A and 11B realizes high-efficiency optical path switching control with low power consumption.
  • the cap layer 112 is disposed between the optical waveguide 111 and the nanocarbon material 15.
  • the lower cap layer 113 is disposed between the optical waveguide 111 and the nanocarbon material 15, and the upper cap layer 115 is disposed on the nanocarbon material 15.
  • the upper cap layer 115 may be referred to as a protective layer.
  • cap layer 112 or the lower cap layer 113 when the cap layer 112 or the lower cap layer 113 is inserted between the optical waveguide 111 and the nanocarbon material 15, these cap layers are formed of a material having a lower refractive index than that of the optical waveguide 111. Then, it may function as a cladding layer of the optical waveguide 111.
  • the cap layer 112 or the lower cap layer 113 By providing the cap layer 112 or the lower cap layer 113, the influence of scattering and light absorption due to the arrangement of the nanocarbon material 15 on the optical waveguide 111 is minimized, and the optical path converter 100A (or 100B) Loss can be reduced.
  • the thickness of the cap layer 112 or the lower cap layer 113 can be designed to an optimum thickness in consideration of the heating efficiency of the nanocarbon material 15 and the optical waveguide 111 and the loss due to the nanocarbon material 15.
  • the heat conduction from the nanocarbon material 15 to the optical waveguide 111 changes. Therefore, the optical path conversion performance is changed by selecting the material of the cap layer 112 or the lower cap layer 113.
  • the nanocarbon material 15 reacts with an atmosphere such as oxygen and is damaged when the nanocarbon material 15 is energized and heated. Can be prevented.
  • the cap layer 112, the lower cap layer 113, and the upper cap layer 115 are preferably made of a material having low electrical conductivity.
  • an inorganic material such as silicon oxide or aluminum oxide, a polymer material such as PMMA (polymethyl methacrylate), or the like can be used as the cap layer.
  • the lower cap layer 113 may be formed of aluminum oxide and the upper cap layer 115 may be formed of PMMA.
  • a thin film 116 of a substance (polar crystal) having a polarity such as oxide or nitride is formed at the contact portion of the nanocarbon material 15, the optical waveguide 111, the substrate 110, and the cap layer 115. May be.
  • the surface polar phonon of the polar substance allows the heat to escape quickly (see arrow h in the figure), enables a fast temperature change, and improves the switching speed.
  • a substance such as silicon oxide, silicon nitride, boron nitride, alumina, hafnium oxide, etc., that has polarity between atoms constituting the substance and can induce polar phonons can be selected. Since polar phonons generated on the surface are used, the polar substance to be formed may be very thin, and even if it is formed on the nanometer order, it functions sufficiently.
  • Second Embodiment 12A to 12E show phase modulators 20A to 20E using nanocarbon as optical devices of the second embodiment, respectively.
  • the phase modulator 20A in FIG. 12A applies a voltage or current to the optical waveguide 21 formed on the substrate 103 (see FIG. 1), the nanocarbon material 25 disposed on the optical waveguide 21, and the nanocarbon material 25. Electrodes 24 and 26.
  • the operating principle of the phase modulator 20A utilizes the change in the refractive index of the optical waveguide 21 caused by energizing and heating the nanocarbon material 25, as described in the first embodiment.
  • the change in the refractive index of the optical waveguide 21 changes the propagation speed of light and changes the phase.
  • the phase modulator 20B in FIG. 12B has one ring resonator 23 disposed adjacent to the optical waveguide 21 in addition to the configuration in FIG. 12A.
  • the nanocarbon material 25 covers the ring resonator 23 and the optical waveguide 21. A part of the light propagating through the optical waveguide 21 is coupled to the ring resonator 23 and circulates around the ring resonator 23.
  • the refractive index of the optical waveguide 21 and the ring resonator 23 changes due to current heating to the nanocarbon material 25, the interference state between the light passing through the ring resonator 23 and the light passing through the optical waveguide 21 changes, and the phase of the transmitted light is changed. Changes.
  • the phase modulator 20C in FIG. 12C includes a plurality of ring resonators 231 to 234 arranged along the optical waveguide 21.
  • the nanocarbon material 25 covers the optical waveguide 21 and the ring resonators 231 to 234. Similar to FIG. 12B, phase modulation occurs due to a change in the interference state of light traveling straight through the optical waveguide 21 and light sequentially transmitted through the ring resonators 231 to 234.
  • the phase modulator 20D of FIG. 12D includes an input-side optical waveguide 21, an output-side optical waveguide 22, and a plurality of ring resonators 231 to 234 arranged in series between the optical waveguide 21 and the optical waveguide 22. .
  • the nanocarbon material 25 is disposed so as to cover the coupling portion between the series of ring resonators 231 to 234 and the optical waveguides 21 and 22. Due to the change in the refractive index of the ring resonators 231 to 234, light sequentially transmitted through the ring resonators 231 to 234 undergoes phase modulation.
  • the 12E has a photonic crystal 27 and a nanocarbon material 25 that covers the photonic crystal 27.
  • the refractive index of the photonic crystal 27 changes, the strength of the interaction between light and the medium (slow light effect) changes, and the propagation light propagates.
  • the phase is modulated.
  • an arbitrary nanostructure having a periodic refractive index distribution may be used, and an organic or oriented nanostructure in which a periodic pattern is formed can be used.
  • the nanocarbon material 15 is minute and can be increased in density, and since the heat capacity is small, even if it is installed adjacent to an optical waveguide or an optical resonator, loss is small and high-speed temperature modulation is possible. In addition, the phase modulation operation with high efficiency and low power consumption is realized by good heat conduction characteristics.
  • FIG. 13 shows an optical sweep device 200A using the phase modulator 20 of the second embodiment as the optical device of the third embodiment.
  • the optical sweep device 200A includes an input waveguide 201, a slab waveguide 202, a plurality of waveguides 203-1 to 203-n connected to the slab waveguide 202, and connected to the waveguides 203-1 to 203-n.
  • Phase modulators 20-1 to 20-n Phase modulators 20-1 to 20-n.
  • An arrayed waveguide 204 is formed by the plurality of waveguides 203-1 to 203-n.
  • a phase modulator array 205A is configured by an array of a plurality of phase modulators 20-1 to 20-n.
  • any of the configurations shown in FIGS. 12A to 12E may be adopted.
  • the phase change amounts ⁇ 1 to ⁇ n can be given.
  • each phase modulator 20 constituting the phase modulator array 205A is emitted from the corresponding emission light ports P1 to Pn.
  • the light incident on the slab waveguide 202 from the input waveguide 201 is, for example, light having a single wavelength.
  • Incident light from the input waveguide 201 diverges in a fan shape in the slab waveguide 202 and is divided into n at the output side end face provided in accordance with the fracture surface, and is in phase with the waveguides 203-1 to 203-n. Incident at.
  • the light propagated through the waveguides 203-1 to 203-n is subjected to phase modulation by the phase modulators 20-1 to 20-n.
  • the slab waveguide 202 is an example of a multi-channel optical coupler, and an arbitrary optical coupler with one input and N outputs may be used instead of the slab waveguide 202.
  • the phase modulators 201-1 to 201-n By controlling the phase of the propagation light of each channel with the phase modulators 201-1 to 201-n, it is possible to emit light in an arbitrary direction by changing the angle of the wavefront. By continuously changing the phase change amounts ⁇ 1 to ⁇ n, the emitted light can be swept in a predetermined direction.
  • phase modulators 20-1 to 20-n having an optical waveguide formed by the nanocarbon material 15 and silicon photonics technology are suitable for high density.
  • the phase modulators 20-1 to 20-n using the nanocarbon material 15 can perform high-speed phase modulation and realize high-speed optical sweep.
  • FIG. 14 shows a configuration of a phase modulator array 205B as a modification of the phase modulator array.
  • the phase modulator array 205B includes a plurality of phase modulators 20-1 to 20-n having different sizes and a nanocarbon material 25 commonly used for the phase modulators 20-1 to 20-n.
  • the lengths of the phase modulators 20-1 to 20-n connected to the waveguides 203-1 to 203-n of the arrayed waveguide 204 are different.
  • different phase change amounts ⁇ 1 to ⁇ n can be obtained.
  • the plurality of phase modulators 20-1 to 20-n may have the same configuration (size or length).
  • the same effect as the configuration of FIG. 14 can be obtained by changing the size of the region covered with the nanocarbon material 25 in each phase modulator 20.
  • the interaction length is changed between channels, or the amount of heat generated by current heating of the nanocarbon material 25 is changed.
  • a phase difference can be given.
  • FIG. 15 shows an optical sweep device 200B having another configuration example.
  • the optical sweep device 200B uses a plurality of phase modulators 208 1 to 208 n connected in multiple stages (cascade) to increase the phase modulation efficiency.
  • phase modulators 208 1 to 208 n provide the same phase change amount ⁇ 0 .
  • the phase modulators 208 1 to 208 n may be called common phase modulators.
  • the phase modulators 208 1 to 208 n are collectively referred to as “phase modulator 208” as appropriate.
  • the phase modulator 208 may have any of the configurations shown in FIGS. 12A to 12E, and high-speed phase modulation is possible by energization heating of the nanocarbon material 25.
  • phase modulator 208 1 of the first stage is incident from the optical coupler 209-1 to the phase modulator 20-1 is outputted to the output port P1.
  • Some of the light passing through the phase modulator 208 2 of the second stage enters from the optical coupler 209-2 to the phase modulator 20-1 is outputted to the output port P2.
  • a part of the light is taken out by the optical coupler 209 and made incident on the phase modulator 20 and output to the arrayed output port P. To do.
  • the light that has passed through the n-th phase modulator 208 n enters the phase modulator 20-n as it is and is output to the output port Pn.
  • the phase change amount is cumulatively increased by common phase modulators 208 1 to 208 n connected in multiple stages, and each of the phase modulators 20-1 to 20 -n of the phase modulator array 205 is used.
  • the phase change amount is finely adjusted. Since the phase changes each time it passes through the multi-stage phase modulator 208, a large phase change can be obtained in total even if each phase change is small. Even if the modulation performance of each phase modulator 208 is not so high, the optical sweep device 200B as a whole can perform large phase modulation.
  • the phase modulator array 205 for fine phase adjustment is not essential, and only the multi-stage phase modulators 208 1 to 208 n operate as an optical sweep device. In this case, the light extracted by each optical coupler 209 is output from the corresponding emission port P as it is.
  • FIG. 16 is a schematic diagram of an optical path control device 300 that is the optical device of the fourth embodiment.
  • the optical path control device 300 performs optical path control or routing operation using arrayed phase modulation.
  • the optical path control device 300 includes an input waveguide 301, an array phase modulator 30, array waveguides 302-1 to 302-n connected to the output side of the array phase modulator 30, a slab waveguide 303, and a slab waveguide 303. It has arrayed waveguides 304-1 to 304-n connected to the output side. Each of the arrayed waveguides 304-1 to 304-n is connected to a corresponding output port P1 to Pn.
  • the array phase modulator 30 includes an array of a plurality of phase modulators using nanocarbon materials, and any of the phase modulator arrays used in the third embodiment may be adopted, or a multistage connection configuration is used. Also good.
  • the input waveguide 301 is coupled to each of a plurality of phase modulators constituting the array phase modulator 30 by a multi-channel optical coupler (not shown). The single incident light is divided into n and enters each phase modulator.
  • the phase difference of each channel is controlled by the array phase modulator 30, and light having phase change amounts ⁇ 1 to ⁇ n is output to the arrayed waveguides 302-1 to 302-n.
  • the shape of the slab waveguide 303 connected to the arrayed waveguides 302-1 to 302-n is controlled so that the entrance end and the exit end have a predetermined curvature.
  • the light incident on the slab waveguide 303 is condensed at one point having an emission end depending on the phase of the light, as indicated by a broken line. Propagation from the arrayed waveguide 304 coupled to the condensing point to the exit port P.
  • the condensing point on the emission side of the slab waveguide 303 can be swept to an arbitrary position.
  • the phase change amount of the array phase modulator 30 the light incident on the slab waveguide 303 can be coupled to the arrayed waveguide 304 of a desired channel.
  • Multi-channel optical path control (routing) for controlling the optical path by controlling the energization heating of the nanocarbon material used in the array phase modulator 30 by an external electric signal and coupling the incident light to an arbitrary output port P Is realized.
  • the emission port can be switched at a high speed of several hundred kHz to 1 GHz.
  • FIG. 17 is a schematic diagram of a spectroscope 310 that is an optical device according to the fifth embodiment.
  • the spectroscope 3101 extracts a desired wavelength from incident light in which a plurality of wavelengths are multiplexed, using arrayed phase modulation.
  • a spectroscope with a solid element can be manufactured.
  • the spectrometer 310 includes an input waveguide 301, an array phase modulator 30, array waveguides 302-1 to 302n connected to the output side of the array phase modulator 30, a slab waveguide 303, and an output side of the slab waveguide 303.
  • An output waveguide 306 is connected.
  • the output waveguide 306 is connected to the output port Pout.
  • the configuration of any phase modulator array described in the third embodiment may be adopted, or a multistage connection configuration may be used.
  • the array phase modulator 30 can perform high-speed phase modulation by energizing and heating the nanocarbon material 25.
  • Light incident on the array phase modulator 30 from the input waveguide 301 is divided into n according to the number of phase modulators constituting the array phase modulator 30, undergoes phase modulation by each phase modulator, and receives the array waveguide 302. -1 to 302-n.
  • the light that has entered the slab waveguide 303 from the arrayed waveguides 302-1 to 303-n spreads in the slab waveguide 303, but the focal position at the exit end differs depending on the wavelength.
  • the spectroscope 310 can be used for applications that require spectroscopy, such as selection of a specific wavelength in WDM (Wavelength-Division-Multiplexing) optical communication and spectroscopy in an analyzer.
  • WDM Widelength-Division-Multiplexing
  • spectroscopy in an analyzer.
  • FIG. 18 is a schematic diagram of a light detection and distance measuring apparatus to which the light sweep device described in the third embodiment is applied.
  • the object detection and ranging technique using light is called LiDAR (Light Detection and Ranging), and the apparatus shown in FIG.
  • the LiDAR device 400 includes a light projecting unit 410, a light receiving unit 420, and a control circuit 430.
  • the light projecting unit 410 includes a light source 411, a light source drive circuit 412, a light sweep device 413, and a light sweep drive circuit 414.
  • the optical sweep device 413 includes an array phase modulator composed of an array of a plurality of phase modulators. It is controlled by energization heating to the carbon material.
  • the light output from the light source 411 is coupled to the optical sweep device 413 using a coupling lens (not shown) or the like.
  • the optical sweep device 413 applies the drive signal input from the optical sweep drive circuit 414 to the nanocarbon material to control the phase change amount, and the light Lout output from the output light port Pout is indicated by a bidirectional arrow BS.
  • scanning is performed within a predetermined angle range.
  • the object 2 existing in the range of the beam scanning angle is detected, and the distance to the detected object 2 can be measured.
  • the light receiving unit 420 includes a light receiving element such as a photodiode (PD) and detects scattered light Lscatter reflected from the object 2.
  • the light projecting unit 410 and the light receiving unit 420 are arranged close to each other, and the optical axes of the light projecting unit 410 and the light receiving unit 420 can be regarded as having a coaxial relationship from a position several meters away. Since the optical sweep device 413 uses a nano-carbon material 25 and a phase modulator array miniaturized by silicon photonics technology, the light projecting unit 410 can be formed as a small chip.
  • a light component that returns along the same optical path as the light output from the light sweep device 413 is detected by the light receiving unit 420.
  • the control circuit 430 measures the angle ⁇ and the distance in the XY plane of the object 2 based on the detection result by the light receiving unit 420.
  • the distance to the object 2 can be obtained by, for example, a time-of-flight (TOF) method.
  • TOF time-of-flight
  • the three-dimensional position of the object 2 can be measured, and further, by combining the distances obtained by the time-of-flight method, The three-dimensional position can be measured with higher accuracy.
  • the LiDAR apparatus 400 uses an optical sweep device 413 that combines a nanocarbon material and silicon photonics technology, and can perform high-speed optical sweep with a fine configuration.
  • FIG. 19A and FIG. 19B show a configuration example of an optical antenna in which a nanostructure whose refractive index changes periodically and a nanocarbon material are combined as an application example of the optical device of the embodiment.
  • FIG. 19A shows an optical antenna 500A using a photonic crystal as a nanostructure whose refractive index changes periodically
  • FIG. 19B shows an optical antenna 500B using a grating.
  • the optical antenna 500A includes a photonic crystal 502 connected to the optical waveguide 501 and a nanocarbon material 15 covering the photonic crystal 502.
  • the nanocarbon material 15 is energized and heated by an electric signal input via the pair of electrodes 506 and 508, the slow light effect of the photonic crystal 502 is controlled, and the light emission direction in the YZ plane can be controlled. it can.
  • the optical antenna 500B includes a grating 503 connected to the optical waveguide 501 and a nanocarbon material 15 covering the grating 503.
  • the nanocarbon material 15 is energized and heated by an electric signal input via the pair of electrodes 506 and 508, and the refractive index of the grating 503 can be modulated to control the light emission direction in the YZ plane.
  • the optical antenna 500A or 500B can be used for the output port Pout of the optical device of the first to fifth embodiments. Further, the optical antenna 500A or 500B may be used as the emission port of the optical sweep device 413 of the LiDAR apparatus 400 of FIG.
  • the LiDAR device 400 of FIG. 18 is configured using the optical antenna 500A or 500B, not only the XY plane but also the position in the Z direction can be measured, so that the position of a three-dimensional object can be measured. Even when the TOF method is used, the position of a three-dimensional object can be measured by measuring the angle in the XYZ plane and its distance.
  • a coupling structure such as a spot size converter is provided on the end face of the output waveguide or the tip thereof as the output port of the optical device, and the in-plane direction of the substrate ( Light can be emitted in a direction parallel to the substrate surface.
  • the optical antenna 500A or 500B By using the optical antenna 500A or 500B, light can be emitted in the Z direction perpendicular to the substrate surface (XY plane). By optimizing the structure of the grating 503, light can be selectively emitted in a specific direction. When the refractive index and the slow light effect are continuously changed by energization heating of the nanocarbon material 15, light output from the emission port Pout can be swept.
  • the optical device according to the embodiment can be applied to various information communication devices such as an optical communication element, an optical interconnect, an integrated optical / electronic circuit, a quantum computer, and a quantum cryptography device. It can be applied not only to current optical communication and LiDAR technologies, but also to next-generation high-density information communication and quantum information technologies.
  • the arrayed waveguides used in FIG. 13 to FIG. 17 are depicted with the waveguide lengths of each channel being almost equal in the drawings for simplicity, but the waveguide lengths can be changed for each channel. Since the delay time and the phase difference can be changed by changing the optical path length between channels, for example, higher-order light can be used at the output port Pout.
  • the optical path control device 300 in FIG. 16 has been described on the assumption of incident light having a single wavelength, when the incident light is a WDM signal, it can also be used as a demultiplexer (demultiplexer) that separates the wavelengths.
  • the nanostructure having a periodic refractive index change is not limited to a photonic crystal or a grating, but an inorganic or organic material in which a periodic refractive index distribution is artificially formed. Materials may be used.
  • Optical path converter (optical device) 11, 12, 21: Optical waveguide 13: Optical resonator (optical component) 14, 16, 24, 26: electrodes 15, 25: nanocarbon materials 20, 20A to 20E, 20-1 to 20-n: phase modulator 23, 231 to 234: ring resonator 30: array phase modulator 170 Coupler (optical component) 180 Multi-mode coupler (optical components) 200A, 200B: optical sweep device (optical device) 201, 301: input waveguides 203-1 to 203-n: waveguides 204: arrayed waveguides 300: optical path control devices (optical devices) 306: Output waveguide 310: Spectrometer 400: LiDAR device (light detection and ranging device) 500A, 500B: Optical antenna (optical device) MZ Mach-Zehnder interferometer (optical components) Pin: incident light port Pout1: transmitted light exit port Pout2: branch light exit port Pout

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The present invention provides an optical device which is capable of operating at high speed. An optical device according to the present invention comprises: a first optical waveguide which is connected to an input light port; a second optical waveguide which is connected to a first output light port; a third optical waveguide which is connected to a second output light port; an optical component which optically connects the first optical waveguide to at least one of the second optical waveguide and the third optical waveguide; a nanocarbon material which is provided at least in an area where the optical component is arranged; and a pair of electrodes which apply an electrical signal to the nanocarbon material. The optical path is switched between the first output light port and the second output light port by means of application of an electrical signal.

Description

ナノカーボン材料を用いた光デバイスOptical devices using nanocarbon materials
 本発明は、グラフェンなどのナノカーボン材料を用いた光デバイスに関し、特にナノカーボン材料とシリコンフォトニクス技術を組み合わせた光デバイスに関する。 The present invention relates to an optical device using a nanocarbon material such as graphene, and more particularly to an optical device combining a nanocarbon material and silicon photonics technology.
 グラフェン、カーボンナノチューブ(CNT)といったナノカーボン材料を用いた発光素子、光源、及びフォトカプラが提案されている(たとえば、特許文献1及び特許文献2参照)。ナノカーボン材料は高速に通電加熱が可能であり、黒体放射により広い波長範囲で連続スペクトル(白色光)を得ることができる。 A light emitting element, a light source, and a photocoupler using nanocarbon materials such as graphene and carbon nanotubes (CNT) have been proposed (for example, see Patent Document 1 and Patent Document 2). The nanocarbon material can be heated by energization at high speed, and a continuous spectrum (white light) can be obtained in a wide wavelength range by black body radiation.
 一方、基板上に微細なシリコン導波路で光回路を集積するシリコンフォトニクス技術が注目を集めている。シリコンフォトニクス技術は多様な分野で利用されており、WDM(Wavelength Division Multiplexing:波長分割多重)方式の光通信ネットワークで用いられる小型の光モジュール等が多く開発されている。 On the other hand, silicon photonics technology that integrates optical circuits with fine silicon waveguides on a substrate is attracting attention. Silicon photonics technology is used in various fields, and many compact optical modules and the like used in optical communication networks of the WDM (Wavelength-Division-Multiplexing) system have been developed.
 シリコン導波路にグラフェンのナノヒータを直接配置することで加熱効率を高めた光フェーズドアレイが知られている(たとえば、非特許文献1参照)。 An optical phased array is known in which heating efficiency is improved by directly arranging graphene nanoheaters in a silicon waveguide (see, for example, Non-Patent Document 1).
特許第5747334号Patent No. 5747334 特許第6155012号Japanese Patent No. 6155012
 光集積デバイスにおける光スイッチや光路変換素子では、一般に金属や半導体のヒーターを用いて、熱光学効果によるスイッチングが行われている。金属や半導体のヒーターを用いた場合、ヒーターでの温度変化によるスイッチング速度はキロヘルツ(kHz)オーダーと非常に遅く、かつ構造が複雑である。素子の性能を上げるために光導波路にヒーターを接近させると、ヒーターによる光吸収によって導波路の損失が増大する。そのため、導波路とヒーターの間に一定の距離がおかれ、スイッチング効率が低い、消費電力が高い、等の問題がある。 In an optical switch and an optical path conversion element in an optical integrated device, switching by a thermo-optic effect is generally performed using a metal or semiconductor heater. When a metal or semiconductor heater is used, the switching speed due to a temperature change in the heater is very slow, on the order of kilohertz (kHz), and the structure is complicated. When a heater is brought close to the optical waveguide in order to improve the performance of the element, the loss of the waveguide increases due to light absorption by the heater. Therefore, there is a problem that a certain distance is provided between the waveguide and the heater, the switching efficiency is low, and the power consumption is high.
 本発明は、低消費電力で高速動作が可能な光デバイスを提供することを目的とする。 An object of the present invention is to provide an optical device capable of high-speed operation with low power consumption.
 実施形態では、グラフェンやカーボンナノチューブといったナノカーボン材料を用いた光デバイスを提供する。本発明の第1の態様では、光デバイスは、
 入射光ポートに接続される第1の光導波路と、
 第1の出射光ポートに接続される第2の光導波路と、
 第2の出射光ポートに接続される第3の光導波路と、
 前記第1の光導波路を、前記第2の光導波路と前記第3の光導波路の少なくとも一方に光学的に接続する光部品と、
 少なくとも前記光部品が設けられるエリアに配置されるナノカーボン材料と、
 前記ナノカーボン材料に電気信号を印加する電極対と、
を有し、前記電気信号の印加によって、前記第1の出射光ポートと前記第2の出射光ポートの間で光路が切り替えられる。
In the embodiment, an optical device using a nanocarbon material such as graphene or carbon nanotube is provided. In the first aspect of the present invention, the optical device comprises:
A first optical waveguide connected to the incident optical port;
A second optical waveguide connected to the first outgoing light port;
A third optical waveguide connected to the second outgoing light port;
An optical component that optically connects the first optical waveguide to at least one of the second optical waveguide and the third optical waveguide;
A nanocarbon material disposed in an area where at least the optical component is provided; and
An electrode pair for applying an electrical signal to the nanocarbon material;
The optical path is switched between the first outgoing light port and the second outgoing light port by applying the electrical signal.
 本発明の第2の態様では、光デバイスは、
 入射光を複数のチャンネルに分岐する光結合器と、
 前記複数のチャンネルにそれぞれ設けられる複数の位相変調器と、
 前記複数の位相変調器の出力に結合される複数の出射光ポートと、
を有し、
 前記複数の位相変調器はナノカーボン材料で覆われる被覆領域を有し、外部から前記ナノカーボン材料に印加される電気信号によって前記複数の位相変調器を通過する光の位相が変化し、
 前記複数の位相変調器で与えられる位相差によって、前記複数の出射光ポートから出射される出射光の方向が決まる。
In the second aspect of the present invention, the optical device comprises:
An optical coupler for branching incident light into a plurality of channels;
A plurality of phase modulators respectively provided in the plurality of channels;
A plurality of outgoing optical ports coupled to outputs of the plurality of phase modulators;
Have
The plurality of phase modulators have a coating region covered with a nanocarbon material, and the phase of light passing through the plurality of phase modulators is changed by an electrical signal applied to the nanocarbon material from the outside,
The direction of outgoing light emitted from the plurality of outgoing light ports is determined by the phase difference given by the plurality of phase modulators.
 本発明の第3の態様では、光デバイスは、
 入射光を複数のチャンネルに分岐する光結合器と、前記複数のチャンネルにそれぞれ設けられる複数の位相変調器と、外部からの電気信号による通電加熱によって各チャンネルを通過する光の位相を変化させるナノカーボン材料とを有するアレイ位相変調器と、
 前記アレイ位相変調器の出力に接続される複数のアレイ導波路と、
 前記複数のアレイ導波路に接続されて前記複数のアレイ導波路からの出力光を所定の位置に集光させる集光導波路と、
 前記集光導波路の出力に接続される出射光ポートと、
を有し、
 前記電気信号によって前記複数の位相変調器の位相変化量が制御されて、前記集光導波路の出射端での集光位置が決まる。
In the third aspect of the present invention, the optical device comprises:
An optical coupler for branching incident light into a plurality of channels, a plurality of phase modulators provided in each of the plurality of channels, and a nano that changes the phase of light passing through each channel by energization heating with an external electric signal An array phase modulator having a carbon material;
A plurality of arrayed waveguides connected to the output of the array phase modulator;
A condensing waveguide that is connected to the plurality of arrayed waveguides and condenses output light from the plurality of arrayed waveguides at a predetermined position;
An outgoing light port connected to the output of the condensing waveguide;
Have
A phase change amount of the plurality of phase modulators is controlled by the electrical signal, and a condensing position at the output end of the condensing waveguide is determined.
 本発明の第4の態様では、光デバイスは、
 周期的な屈折率分布を有するナノ構造体と、
 前記ナノ構造体を覆うナノカーボン材料と、
 前記ナノカーボン材料に印加される電気信号を入力する電極と、
を有し、前記ナノカーボン材料の通電加熱によって前記ナノ構造体の屈折率または伝搬光との相互作用が変調されて前記ナノ構造体に入射した光の出射方向が変化する。
In the fourth aspect of the present invention, the optical device comprises:
A nanostructure having a periodic refractive index profile;
A nanocarbon material covering the nanostructure;
An electrode for inputting an electrical signal applied to the nanocarbon material;
The refractive index of the nanostructure or the interaction with propagating light is modulated by energization heating of the nanocarbon material, and the emission direction of light incident on the nanostructure is changed.
 低消費電力で高速動作が可能な光デバイスが実現される。特に、高速の光路切り替えや光スイープを実現することができる。 An optical device capable of high-speed operation with low power consumption will be realized. In particular, high-speed optical path switching and optical sweep can be realized.
第1実施形態の光デバイスの一例である光路変換器の上面模式図である。It is an upper surface schematic diagram of the optical path changer which is an example of the optical device of 1st Embodiment. 図1Aの光路変換器の斜視図である。It is a perspective view of the optical path changer of FIG. 1A. 作製された光路変換器の電極形成前の顕微画像である。It is the microscopic image before the electrode formation of the produced optical path changer. 作製された光路変換器の電極形成後の顕微画像である。It is the microscopic image after the electrode formation of the produced optical path changer. 作製された光路変換器の導波路構造の顕微画像である。It is a microscopic image of the waveguide structure of the produced optical path converter. 実施形態の光路変換器の透過光及び分岐光の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the transmitted light and branched light of the optical path changer of embodiment. 光路変換器の透過光出射状態を示す図である。It is a figure which shows the transmitted light emission state of an optical path changer. 光路変換器の分岐光出射状態を示す図である。It is a figure which shows the branch light emission state of an optical path changer. 作製した光路変換器の光路切り替え動作の実験を示す画像である。It is an image which shows the experiment of the optical path switching operation | movement of the produced optical path converter. 電圧オフによる分岐光出射を示す画像である。It is an image which shows branch light emission by voltage off. 電圧オンによる透過光出射を示す画像である。It is an image which shows transmission light emission by voltage ON. グラフェンに印加する電圧に依存した透過光スペクトルの図である。It is a figure of the transmitted light spectrum depending on the voltage applied to a graphene. グラフェンに印加する電圧に対する屈折率の変化を示す図である。It is a figure which shows the change of the refractive index with respect to the voltage applied to a graphene. グラフェンに印加する電力に対する屈折率の変化を示す図である。It is a figure which shows the change of the refractive index with respect to the electric power applied to a graphene. グラフェンに100kHzの変調電圧信号を印加したときの透過光強度の時間変化を示す図である。It is a figure which shows the time change of the transmitted light intensity when a 100-kHz modulation voltage signal is applied to a graphene. グラフェンに1GHzの変調信号を印加したときの熱放射の時間分解測定結果を示す図である。It is a figure which shows the time-resolved measurement result of a thermal radiation when a 1 GHz modulation signal is applied to a graphene. 実施形態の光デバイスに利用可能な光共振器の構成例を示す図である。It is a figure which shows the structural example of the optical resonator which can be utilized for the optical device of embodiment. 実施形態の光デバイスに利用可能な光共振器の構成例を示す図である。It is a figure which shows the structural example of the optical resonator which can be utilized for the optical device of embodiment. 実施形態の光デバイスに利用可能な光共振器の構成例を示す図である。It is a figure which shows the structural example of the optical resonator which can be utilized for the optical device of embodiment. マッハツェンダ干渉計を用いた光路変換器の構成例を示す図である。It is a figure which shows the structural example of the optical path changer using a Mach-Zehnder interferometer. 方向性カプラを用いた光路変換器の構成例を示す図である。It is a figure which shows the structural example of the optical path changer using a directional coupler. マルチモードカプラを用いた光路変換器の構成例を示す図である。It is a figure which shows the structural example of the optical path changer using a multi mode coupler. 光導波路とナノカーボン材料の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of an optical waveguide and nanocarbon material. 光導波路とナノカーボン材料の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of an optical waveguide and nanocarbon material. 光導波路とナノカーボン材料の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of an optical waveguide and nanocarbon material. 光導波路とナノカーボン材料の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of an optical waveguide and nanocarbon material. 光導波路とナノカーボン材料の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of an optical waveguide and nanocarbon material. 第2実施形態の光デバイスの一例である位相変調器の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the phase modulator which is an example of the optical device of 2nd Embodiment. 第2実施形態の光デバイスの一例である位相変調器の構成例を示す図である。It is a figure which shows the structural example of the phase modulator which is an example of the optical device of 2nd Embodiment. 第2実施形態の光デバイスの一例である位相変調器の構成例を示す図である。It is a figure which shows the structural example of the phase modulator which is an example of the optical device of 2nd Embodiment. 第2実施形態の光デバイスの一例である位相変調器の構成例を示す図である。It is a figure which shows the structural example of the phase modulator which is an example of the optical device of 2nd Embodiment. 第2実施形態の光デバイスの一例である位相変調器の構成例を示す図である。It is a figure which shows the structural example of the phase modulator which is an example of the optical device of 2nd Embodiment. 第3実施形態の光デバイスの一例である光掃引デバイスの模式図である。It is a schematic diagram of the optical sweep device which is an example of the optical device of 3rd Embodiment. 光掃引デバイスで用いられる位相変調器アレイの構成例を示す図である。It is a figure which shows the structural example of the phase modulator array used with an optical sweep device. 光掃引デバイスの別の例を示す図である。It is a figure which shows another example of an optical sweep device. 第4実施形態の光デバイスである光路制御(ルーティング)デバイスの模式図である。It is a schematic diagram of the optical path control (routing) device which is an optical device of 4th Embodiment. 第5実施形態の光デバイスである分光器の模式図である。It is a schematic diagram of the spectrometer which is an optical device of 5th Embodiment. 実施形態の光掃引デバイスを適用した光検出及び測距装置の模式図である。It is a schematic diagram of the optical detection and ranging apparatus to which the optical sweep device of the embodiment is applied. その他の変形例として、光アンテナの構成例を示す図である。It is a figure which shows the structural example of an optical antenna as another modification. その他の変形例として、光アンテナの構成例を示す図である。It is a figure which shows the structural example of an optical antenna as another modification.
 実施形態では、グラフェン、カーボンナノチューブ等のナノカーボン材料を用いた光デバイスを提供する。光デバイスは、シリコン、酸化シリコン、窒化シリコンなどの光透過材料を微細に加工した集積光デバイスであり、光路変換器、光掃引デバイス、分光器、位相変調器、光アンテナなどを含む。 In the embodiment, an optical device using nanocarbon materials such as graphene and carbon nanotubes is provided. The optical device is an integrated optical device in which a light transmitting material such as silicon, silicon oxide, or silicon nitride is finely processed, and includes an optical path converter, an optical sweep device, a spectrometer, a phase modulator, an optical antenna, and the like.
 光透過材料を微細加工した光導波路や共振器に、通電加熱による熱源を設けることで、熱光学効果を利用して屈折率を制御し、高速の光路切り替えや光掃引などの制御が可能である。 By providing a heat source by energization heating in an optical waveguide or resonator that has been finely processed from a light-transmitting material, the refractive index can be controlled using the thermo-optic effect, and high-speed optical path switching and light sweeping can be controlled. .
 ナノカーボン材料は、炭素原子が六員環構造で平面上に配列した原子オーダーの炭素材料である。ナノカーボンは優れた熱的特性を有しており、熱伝導率が高いとされる銅と比べても10倍程度の大きな熱伝導率を有している。加えて、原子オーダーで微小な構造のデバイスが作製できるため、体積に比例した物理量である熱容量が極めて小さい。ナノカーボン材料を光デバイスに応用した場合、非常に小さな熱エネルギーで大きな温度変化が得られるだけではなく、熱容量に比例して温度変化の緩和時間を小さくすることができ、高速に動作する光デバイスを開発することができる。 Nanocarbon material is a carbon material of atomic order in which carbon atoms are arranged on a plane with a six-membered ring structure. Nanocarbon has excellent thermal properties, and has a thermal conductivity about 10 times that of copper, which has a high thermal conductivity. In addition, since a device having a minute structure on the atomic order can be manufactured, the heat capacity, which is a physical quantity proportional to the volume, is extremely small. When a nanocarbon material is applied to an optical device, not only can a large temperature change be obtained with very small heat energy, but also the temperature change relaxation time can be reduced in proportion to the heat capacity, and the optical device operates at high speed. Can be developed.
 ナノカーボン材料は、ナノカーボン内のプラズモンや基板の表面極性フォノンを利用して熱伝導を大きくすることが可能であり、半導体や金属材料と比べて大きな熱伝導が得られる。この特性を利用して、高速かつ高効率の温度変調を行う。 Nanocarbon materials can increase heat conduction by using plasmons in nanocarbon and surface polar phonons of the substrate, and can provide greater heat conduction than semiconductors and metal materials. Using this characteristic, high-speed and high-efficiency temperature modulation is performed.
 ナノカーボン材料により光路変換、光路制御(ルーティング)、光掃引等を行う場合、数百kHz以上の高速変調が可能であり、最大で、ギガヘルツ(GHz)オーダーの速度での変調が可能である。従来の金属や半導体のヒーターを用いた光デバイスと比べて、100倍~100万倍程度の高速動作が可能な光デバイスが実現できる。 When performing optical path conversion, optical path control (routing), optical sweep, etc. using nanocarbon materials, high-speed modulation of several hundred kHz or more is possible, and modulation at a maximum speed of gigahertz (GHz) is possible. Compared to conventional optical devices using metal or semiconductor heaters, optical devices capable of high-speed operation about 100 to 1 million times can be realized.
 <第1実施形態>
 図1Aは、光デバイスの一例として、第1実施形態の光路変換器10Aの上面図を示し、図1Bは斜視図を示す。光路変換器10Aは、基板103上にシリコン(Si)などの光透過材料で形成された一対の光導波路11及び12と、光導波路11及び12に近接して配置される光共振器13と、光導波路11及び12と光共振器13を覆うナノカーボン材料15を有する。ナノカーボン材料15は、一対の電極14、16に接続されている。
<First Embodiment>
FIG. 1A shows a top view of an optical path changer 10A of the first embodiment as an example of an optical device, and FIG. 1B shows a perspective view. The optical path changer 10A includes a pair of optical waveguides 11 and 12 formed of a light transmission material such as silicon (Si) on the substrate 103, an optical resonator 13 disposed in the vicinity of the optical waveguides 11 and 12, It has a nanocarbon material 15 that covers the optical waveguides 11 and 12 and the optical resonator 13. The nanocarbon material 15 is connected to the pair of electrodes 14 and 16.
 基板103は、たとえば、シリコン基板、SOI(Silicon on Insulator)基板などである。この例では、Si基板101上にSiO2層102が形成された基板103の上に光導波路11,12と光共振器13が形成されている。SOI基板を用いる場合は、絶縁層としてのシリコン酸化(SiO2)層を下部クラッド層として利用し、Si層を加工して、光導波路11、12と光共振器13を形成することができる。図1の例では、光共振器13はリング共振器である。 The substrate 103 is, for example, a silicon substrate, an SOI (Silicon on Insulator) substrate, or the like. In this example, optical waveguides 11 and 12 and an optical resonator 13 are formed on a substrate 103 on which a SiO 2 layer 102 is formed on a Si substrate 101. When an SOI substrate is used, the optical waveguides 11 and 12 and the optical resonator 13 can be formed by using a silicon oxide (SiO 2 ) layer as an insulating layer as a lower cladding layer and processing the Si layer. In the example of FIG. 1, the optical resonator 13 is a ring resonator.
 光路変換器10Aの光導波路11に、入射光ポートPinから光を入射した場合、光共振器13を経由せずにそのまま直進する光は、透過光出射ポートPout1から出射する。光共振器13に結合して周回し、その後、光導波路12に結合した光は、分岐光出射ポートPout2から出射する。光導波路11のうち、入射光ポートPinから光共振器13に近接する部分までを第1の導波路、光共振器13に近接する部分から透過光出射ポートPout1までを第2の導波路としてもよい。光導波路12のうち、光共振器13に近接する部分から分岐光出射ポートPout2までを、第2の光導波路としてもよい。光共振器13は、入射光ポートPinからの入射光を、透過光出射ポートPout1または分岐光出射ポートPout2に光学的に接続する光部品の一例である。 When light is incident on the optical waveguide 11 of the optical path converter 10A from the incident light port Pin, the light traveling straight without passing through the optical resonator 13 is emitted from the transmitted light output port Pout1. The light coupled to the optical resonator 13 and circulated is then emitted from the branched light exit port Pout2. Of the optical waveguide 11, the first waveguide from the incident light port Pin to the portion close to the optical resonator 13 and the second waveguide from the portion close to the optical resonator 13 to the transmitted light exit port Pout1 may be used. Good. A portion of the optical waveguide 12 that is close to the optical resonator 13 to the branched light exit port Pout2 may be used as the second optical waveguide. The optical resonator 13 is an example of an optical component that optically connects incident light from the incident light port Pin to the transmitted light output port Pout1 or the branched light output port Pout2.
 通常の動作では、特定の波長を有するレーザー光などの単色光を入射する場合に、波長を選択することで、透過光出射ポートPout1または分岐光出射ポートPout2のいずれか一方からだけ光を出力することが可能である。換言すると、レーザー光の波長を変えることにより、出射光の出口を選択することができる。 In normal operation, when monochromatic light such as laser light having a specific wavelength is incident, the wavelength is selected so that light is output only from one of the transmitted light exit port Pout1 and the branched light exit port Pout2. It is possible. In other words, the exit of the emitted light can be selected by changing the wavelength of the laser light.
 この状態で、電極14及び16を介してナノカーボン材料15に電圧または電流を印加すると、ナノカーボン材料15は通電により加熱される。ナノカーボン材料15の温度が上昇すると、熱伝導により、下方の光導波路11、12と、光共振器13の温度も上昇する。この温度上昇によって、光導波路11、12及び光共振器13の実効的な屈折率が変化し、光導波路11,12と光共振器13の実質的な光路長が変化する。 In this state, when voltage or current is applied to the nanocarbon material 15 via the electrodes 14 and 16, the nanocarbon material 15 is heated by energization. When the temperature of the nanocarbon material 15 increases, the temperatures of the lower optical waveguides 11 and 12 and the optical resonator 13 also increase due to heat conduction. With this temperature rise, the effective refractive indexes of the optical waveguides 11 and 12 and the optical resonator 13 change, and the substantial optical path lengths of the optical waveguides 11 and 12 and the optical resonator 13 change.
 ナノカーボン材料15への通電の有無によって、光導波路11、12や光共振器13を伝搬する光の位相を変化させることができる。この位相変化を利用し、通電の有無によって、入射光ポートPinから入射した光の出力先を、透過光出射ポートPout1と分岐光出射ポートPout2の間で選択することが可能になる。外部からの電気信号によって、2つの光経路を切り替えることができる。 The phase of light propagating through the optical waveguides 11 and 12 and the optical resonator 13 can be changed depending on whether or not the nanocarbon material 15 is energized. Using this phase change, the output destination of the light incident from the incident light port Pin can be selected between the transmitted light output port Pout1 and the branched light output port Pout2 depending on the presence or absence of energization. The two optical paths can be switched by an external electrical signal.
 ナノカーボン材料15への通電がない状態で、最初に透過光出射ポートPout1と分岐光出射ポートPout2のいずれから出射させるかは、波長を決めることで設定可能である。ナノカーボン材料15への電圧印加がない状態では、ナノカーボン材料15の温度は上昇せず、最初に設定された出射ポート、たとえば透過光出射ポートPout1からだけ光が出射する。 Whether the light is emitted from the transmitted light exit port Pout1 or the branched light exit port Pout2 in a state where the nanocarbon material 15 is not energized can be set by determining the wavelength. In the state where no voltage is applied to the nanocarbon material 15, the temperature of the nanocarbon material 15 does not increase, and light is emitted only from the initially set emission port, for example, the transmitted light emission port Pout1.
 ナノカーボン材料15に電圧が印加されると、通電加熱によりナノカーボン材料15の温度が上昇する。熱伝導により、下方の光導波路11、12と光共振器13の温度も上昇し、熱光学効果によって光導波路11、12と光共振器13の屈折率が変化する。屈折率の変化により、伝搬光の位相がずれて干渉が起こり、出射ポートが分岐光出射ポートPout2に切り替わる。ナノカーボン材料15に印加する電気信号によって、光の経路を変換することができ、光路変換器10Aとして動作する。 When a voltage is applied to the nanocarbon material 15, the temperature of the nanocarbon material 15 rises due to energization heating. The temperature of the lower optical waveguides 11 and 12 and the optical resonator 13 also rises due to heat conduction, and the refractive indexes of the optical waveguides 11 and 12 and the optical resonator 13 change due to the thermo-optic effect. Due to the change in refractive index, the phase of the propagating light is shifted and interference occurs, and the output port is switched to the branched light output port Pout2. The optical path can be converted by an electrical signal applied to the nanocarbon material 15, and the optical path converter 10A operates.
 図2A~図2Cは、実際に作製した光路変換器10Aの顕微画像である。図2Aは電極形成前の光学顕微鏡画像、図2Bは電極形成後の光学顕微鏡画像、図2Cは、光共振器13の近傍の導波路構造の電子顕微鏡画像である。ここでは、レーストラック型の光共振器13に隣接して2つの光導波路11、12を配置している。光共振器13と光導波路11,12を含むSi細線の光回路の上にナノカーボン材料15であるグラフェンを形成し、グラフェンの両端に電極を配置する。 2A to 2C are microscopic images of the optical path changer 10A actually produced. 2A is an optical microscope image before electrode formation, FIG. 2B is an optical microscope image after electrode formation, and FIG. 2C is an electron microscope image of a waveguide structure in the vicinity of the optical resonator 13. Here, two optical waveguides 11 and 12 are arranged adjacent to the racetrack type optical resonator 13. Graphene, which is a nanocarbon material 15, is formed on a Si thin line optical circuit including the optical resonator 13 and the optical waveguides 11 and 12, and electrodes are disposed on both ends of the graphene.
 ナノカーボン材料15とSi細線の光回路を組み合わせることで、10μm×10μmのサイズで高速動作する光路変換器10Aを実現することができる。 An optical path changer 10A that operates at a high speed with a size of 10 μm × 10 μm can be realized by combining the nanocarbon material 15 and an optical circuit of Si thin wire.
 図3Aは、作製した光路変換器10Aにおいて、入射光ポートPinから入射する光の波長を変えたときの光透過率の変化のシミュレーション結果である。図中、「透過光」と記載されているプロファイルは、透過光出射ポートPout1での透過率の波長依存性、「分岐光」と記載されているプロファイルは、分岐光出射ポートPout2での透過率の波長依存性を示す。入射光の波長に応じて、透過光の強度と分岐光の強度が周期的に変化している。透過光強度が高いときは分岐光強度が低く、分岐光強度が強いときは透過光強度が弱くなっている。この図から、波長に依存して光導波路11,12を通る光と光共振器13を通る光の干渉状態が周期的に変化していることがわかる。光の干渉状態を変えることで、光路変換器10Aとして制御可能であることが示される。図3Bは、図3Aの透過光出射状態を示し、図3Cは分岐光出射状態を示す。透過光出射状態では、入力光は導波路を直進して透過光出射ポートPout1に向かう。分岐光出射状態では、入射光はリング共振器に結合し、リング共振器から他方の導波路に結合して分岐光出射ポートPout2に向かう。 FIG. 3A is a simulation result of a change in light transmittance when the wavelength of light incident from the incident light port Pin is changed in the manufactured optical path converter 10A. In the figure, the profile described as “transmitted light” is the wavelength dependence of the transmittance at the transmitted light output port Pout1, and the profile described as “branched light” is the transmittance at the branched light output port Pout2. The wavelength dependence of is shown. Depending on the wavelength of the incident light, the intensity of the transmitted light and the intensity of the branched light change periodically. When the transmitted light intensity is high, the branched light intensity is low, and when the transmitted light intensity is high, the transmitted light intensity is weak. From this figure, it can be seen that the interference state between the light passing through the optical waveguides 11 and 12 and the light passing through the optical resonator 13 periodically changes depending on the wavelength. It is shown that the optical path changer 10A can be controlled by changing the light interference state. FIG. 3B shows the transmitted light emission state of FIG. 3A, and FIG. 3C shows the branched light emission state. In the transmitted light emission state, the input light travels straight through the waveguide toward the transmitted light output port Pout1. In the branched light emission state, incident light is coupled to the ring resonator, and is coupled to the other waveguide from the ring resonator toward the branched light emission port Pout2.
 図4Aは、作製した光路変換器10Aに対して、実際に光路変換動作を行う実験を説明する図であり、光路変換器10Aの電極形成後の光学顕微鏡画像(部分拡大画像を含む)である。ナノカーボン材料15であるグラフェンへの電圧印加を切り替えて、出射口をPout1とPout2の間で切り換える。図4Bは、電圧印加がない(V=0V)ときの赤外カメラ像、図4Cは、電圧印加時(V=3.5V)の赤外カメラ像である。 FIG. 4A is a diagram for explaining an experiment for actually performing an optical path conversion operation on the manufactured optical path converter 10A, and is an optical microscope image (including a partially enlarged image) after the electrodes of the optical path converter 10A are formed. . The voltage application to the graphene that is the nanocarbon material 15 is switched to switch the exit port between Pout1 and Pout2. 4B is an infrared camera image when no voltage is applied (V = 0V), and FIG. 4C is an infrared camera image when a voltage is applied (V = 3.5V).
 入射光ポートPinから入射される光は、透過光導波路を直進する光と、リング共振器を通って分岐光導波路に結合する分岐光に分かれる。この構成例では、グラフェンへの電圧印加がない状態(V=0V)で分岐光のみが得られる波長が選択されており、図4Bで分岐光出射ポートに向けて光が伝搬している様子が観察される。図4Cでは、グラフェンに電圧が印加されて(V=3.5V)、光路が分岐光側から透過光側に切り替わって、透過光出射ポートに光が伝搬している様子が観察される。グラフェンヒータを用いることで、高速動作する光路変換器10Aが実現することが実証されている。 The light incident from the incident light port Pin is divided into light that travels straight through the transmission optical waveguide and branch light that is coupled to the branch optical waveguide through the ring resonator. In this configuration example, a wavelength at which only branched light is obtained in a state where no voltage is applied to the graphene (V = 0V) is selected, and light is propagated toward the branched light exit port in FIG. 4B. Observed. In FIG. 4C, a voltage is applied to the graphene (V = 3.5 V), the optical path is switched from the branched light side to the transmitted light side, and it is observed that light propagates to the transmitted light exit port. It has been demonstrated that an optical path converter 10A that operates at high speed is realized by using a graphene heater.
 図5は、実施形態の光路変換器10Aにおける透過率スペクトルの電圧依存性を示す。ナノカーボン材料15であるグラフェンに印加する電圧を0V、1V、2V、3Vと変えることで、透過率スペクトルのピークが長波長側にシフトする。グラフェンへの通電加熱で生じる熱光学効果によって、Si導波路の実効的な屈折率が変化して実効光路長が変化し、光導波路11,12と光共振器13を通過する光の干渉条件が変化する。この干渉条件の変化により透過率スペクトルが変化し、透過光と分岐光の光路が切り替えられる。 FIG. 5 shows the voltage dependence of the transmittance spectrum in the optical path converter 10A of the embodiment. By changing the voltage applied to the graphene that is the nanocarbon material 15 to 0 V, 1 V, 2 V, and 3 V, the peak of the transmittance spectrum is shifted to the longer wavelength side. The effective optical path length changes due to the change in the effective refractive index of the Si waveguide due to the thermo-optic effect caused by the current heating to the graphene, and the interference condition of the light passing through the optical waveguides 11 and 12 and the optical resonator 13 changes. Change. The transmittance spectrum changes due to the change in the interference condition, and the optical paths of the transmitted light and the branched light are switched.
 図6Aは、グラフェンへの印加電圧にともなうSi導波路の屈折率の変化を示し、図6Bは電力にともなうSi導波路の屈折率の変化を示す。Si導波路の屈折率は、図5の透過率スペクトルから求めることができる。電力は、電圧印加の際の電流を計測することで求められる。図6A及び図6Bで用いたサンプルでは、電力に対して屈折率はほぼ線形に変化している。光導波路の屈折率がどのように変化するかは、光デバイスに使用する素材や、デバイス構造によって異なるため、電気的な外部入力に対する屈折率依存性を用途に合わせて設計することができる。 FIG. 6A shows the change in the refractive index of the Si waveguide with the applied voltage to the graphene, and FIG. 6B shows the change in the refractive index of the Si waveguide with the electric power. The refractive index of the Si waveguide can be obtained from the transmittance spectrum of FIG. The electric power is obtained by measuring a current when a voltage is applied. In the samples used in FIGS. 6A and 6B, the refractive index changes substantially linearly with respect to the power. Since how the refractive index of the optical waveguide changes depends on the material used for the optical device and the device structure, the dependence of the refractive index on the electrical external input can be designed according to the application.
 図7は、図2で作製した光路変換器10Aの電極14,16に100kHzの変調信号を印加したときの透過光出力ポートPout1での透過光強度の測定結果である。ナノカーボン材料としてグラフェンを用い、変調信号は0Vと3.5Vの間で変化する矩形波信号である。透過光の強度変化はオシロスコープで測定した。高速の光路選択または光路切り替えがリアルタイムで観測されている。 FIG. 7 shows the measurement result of the transmitted light intensity at the transmitted light output port Pout1 when a modulation signal of 100 kHz is applied to the electrodes 14 and 16 of the optical path changer 10A produced in FIG. Graphene is used as the nanocarbon material, and the modulation signal is a rectangular wave signal that varies between 0V and 3.5V. The change in transmitted light intensity was measured with an oscilloscope. Fast optical path selection or optical path switching is observed in real time.
 図8は、グラフェンに1GHzの変調信号を入力したときの熱放射の時間分解測定結果を示す。ナノカーボン材料15は、原子オーダーの微小な構造を有し、熱容量が小さく、高速に温度変調をすることができる。また、ナノカーボン材料15は、熱伝導率が高いとされる銅の10倍程度の高い熱伝導率を有しており、さらに、ナノカーボン内のプラズモンや基板の表面極性フォノンを利用して、さらに大きな熱伝導率を得ることができる。ナノカーボン材料15を用いることで、小さな熱エネルギーで大きな温度変化を得ることができる。また、温度変化の緩和時間が短く、1GHzという高速電圧信号を入力した場合でも、変調信号の速度に追随してグラフェンの温度が変化する。 FIG. 8 shows the results of time-resolved measurement of thermal radiation when a 1 GHz modulation signal is input to graphene. The nanocarbon material 15 has a minute structure on the order of atoms, has a small heat capacity, and can perform temperature modulation at high speed. In addition, the nanocarbon material 15 has a thermal conductivity about 10 times that of copper, which is said to have a high thermal conductivity, and further, using plasmons in the nanocarbon and surface polar phonons of the substrate, Furthermore, a larger thermal conductivity can be obtained. By using the nanocarbon material 15, a large temperature change can be obtained with small thermal energy. In addition, even when a high-speed voltage signal of 1 GHz is input, the graphene temperature changes following the speed of the modulation signal even when the temperature change relaxation time is short.
 図8の測定結果は、実施形態の光路変換器10Aは、最大で1GHzの速度で動作可能であることを示している。光路変換器10Aは、金属や半導体のヒーターを用いる場合と比較して、百倍~百万倍の高速動作が可能である。 8 shows that the optical path changer 10A of the embodiment can operate at a maximum speed of 1 GHz. The optical path changer 10A can operate at a speed 100 to 1 million times higher than when a metal or semiconductor heater is used.
 図7と図8の測定結果は、ナノカーボン材料15としてカーボンナノチューブ(CNT)を用いる場合にも当てはまる。CNTとして、単層CNTと多層CNTのいずれを用いてもよい。CNTには、その構造(カイラリティー)に依存して半導体ナノチューブと金属ナノチューブが存在するが、いずれも使用可能である。CNTは、化学気相成長(CVD)法、高圧一酸化炭素(HiPCO)法など、様々な方法で形成することができる。 7 and 8 are applicable to the case where carbon nanotubes (CNT) are used as the nanocarbon material 15. As the CNT, either single-wall CNT or multilayer CNT may be used. Depending on the structure (chirality) of CNT, there are semiconductor nanotubes and metal nanotubes, both of which can be used. CNTs can be formed by various methods such as a chemical vapor deposition (CVD) method and a high pressure carbon monoxide (HiPCO) method.
 CNTを光導波路11、12及び光共振器13の上に配置する場合、CNT溶液をスピンコートあるいはディップコートしてもよいし、テープ・ゲル・ポリマーで転写してもよい。また、光導波路11、12と光共振器13を含む領域に、CVD法によりCNTを直接成長してもよい。CNTカーボンナノチューブは、一本でもよいが、多くのCNTを用いるほうが大きな屈折率変化を得られることから、CNTをネットワーク状に薄膜化したCNT薄膜を用いるのが効果的である。ナノカーボン材料15にグラフェンを用いる場合も、グラフェンの層数は任意であり、単層、二層、数層、多層のいずれであってもよい。グラフェンの成長法も問わず、CVD、機械剥離、転写や直接成長など、任意の手法を用いることができる。 When the CNTs are arranged on the optical waveguides 11 and 12 and the optical resonator 13, the CNT solution may be spin-coated or dip-coated, or transferred with a tape, gel, or polymer. Further, CNTs may be directly grown in the region including the optical waveguides 11 and 12 and the optical resonator 13 by the CVD method. One CNT carbon nanotube may be used, but a larger change in refractive index can be obtained by using many CNTs. Therefore, it is effective to use a CNT thin film obtained by thinning CNTs into a network. Also when graphene is used for the nanocarbon material 15, the number of graphene layers is arbitrary, and may be any of a single layer, two layers, several layers, and multiple layers. Regardless of the growth method of graphene, any method such as CVD, mechanical peeling, transfer or direct growth can be used.
 ナノカーボン材料15は、原子オーダーの薄さで通電加熱が可能である。通常の金属材料を用いて原子オーダーの薄膜を形成して通電加熱する場合、加熱やマイグレーションにより金属が破断してしまい、光デバイスを動作させることができない。ナノカーボン材料15は、共有結合を有し通電加熱に強いため、原子オーダーの構造にもかかわらず通電加熱による破断が起きにくく、耐久性が高い。シリコンフォトニクス技術とナノカーボン材料を組み合わせることで、微細な構成の光路変換器を高密度に形成することができる。 The nanocarbon material 15 can be electrically heated with a thinness of atomic order. When an atomic order thin film is formed using a normal metal material and energized and heated, the metal breaks due to heating or migration, and the optical device cannot be operated. Since the nanocarbon material 15 has a covalent bond and is resistant to energization heating, the nanocarbon material 15 hardly breaks due to energization heating despite the atomic order structure, and has high durability. By combining silicon photonics technology and nanocarbon materials, it is possible to form optical path converters with fine structures at high density.
 ナノカーボン材料15は、その微小な構造により特異な電子状態を有し、この電子状態が光デバイスに有利に働く。例えば、グラフェンの場合は、電子のエネルギー分散は線形となっていることに加えて、電界やドーピング状態によって光吸収を制御することができる。電界やドーピング状態を選択することで光吸収を抑制できることから、通常の金属とは異なり、光導波路11、12や光共振器13の直上にナノカーボン材料15を配置しても、吸収による光ロスを低く抑えることができる。CNTの場合もグラフェンと同様の効果があり、電界やドーピングで光吸収が制御できるほか、半導体CNTを用いれば、光吸収をさらに抑制することも可能である。 The nanocarbon material 15 has a unique electronic state due to its minute structure, and this electronic state works favorably for an optical device. For example, in the case of graphene, the energy dispersion of electrons is linear, and light absorption can be controlled by an electric field or a doping state. Since light absorption can be suppressed by selecting an electric field and a doping state, even if the nanocarbon material 15 is disposed immediately above the optical waveguides 11 and 12 and the optical resonator 13, unlike an ordinary metal, light loss due to absorption is lost. Can be kept low. In the case of CNT, there is an effect similar to that of graphene. Light absorption can be controlled by an electric field or doping, and if semiconductor CNT is used, light absorption can be further suppressed.
 第1実施形態では、光透過材料としてSi導波路を形成しているが、屈折率コントラストによる光閉じ込めが可能であれば、光透過材料として酸化シリコン、窒化シリコン、III-V族またはII-VI族の半導体材料を用いてもよい。光透過材料の種類を問わず、ナノカーボン材料15への電圧印加による光路切り替え制御が可能である。 In the first embodiment, the Si waveguide is formed as the light transmitting material. However, if light confinement by refractive index contrast is possible, the light transmitting material may be silicon oxide, silicon nitride, III-V group, or II-VI. Group semiconductor materials may also be used. Regardless of the type of light transmitting material, optical path switching control by applying a voltage to the nanocarbon material 15 is possible.
 図9A~図9Cは、光共振器13の構成例を示す。図9Aはレーストラック型のリング共振器131、図9Bは円形のリング共振器132、図9Cはディスク型共振器133である。図2Cでは、レーストラック型のリング共振器を用いたが、光共振器13として機能すればどのような形状でもよく、図9Bに示す円形のリング共振器132や図9Cのディスク型共振器133などを用いてもよい。 9A to 9C show configuration examples of the optical resonator 13. 9A shows a racetrack type ring resonator 131, FIG. 9B shows a circular ring resonator 132, and FIG. 9C shows a disk type resonator 133. Although a racetrack type ring resonator is used in FIG. 2C, it may have any shape as long as it functions as the optical resonator 13, and the circular ring resonator 132 shown in FIG. 9B or the disk type resonator 133 shown in FIG. 9C. Etc. may be used.
 図10Aは、第1実施形態の光デバイスの変形例として、光路変換器10Bを示す。光路変換器10Bは、マッハツェンダ干渉計(MZ)を用いて光路を切り替える。マッハツェンダ干渉計(MZ)は、光結合器17と光結合器19の間に延びる一対の光導波路11及び12を有する。光導波路11の上にナノカーボン材料15Aが配置され、電極141と電極161によりナノカーボン材料15Aに電圧(または電流)が印加される。光導波路12の上にナノカーボン材料15Bが配置され、電極142と電極162によりナノカーボン材料15Bに電圧(または電流)が印加される。入射光ポートPinから光結合器17までを第1の光導波路、光結合器19から出射光ポートPoutAまでを第2の光導波路、光結合器19から出射光ポートPoutBまでを第3の光導波路としてもよい。マッハツェンダ干渉計MZは、入射光ポートPinからの入射光を、透過光出射ポートPout1または分岐光出射ポートPout2に光学的に接続する光部品である。 FIG. 10A shows an optical path converter 10B as a modification of the optical device of the first embodiment. The optical path converter 10B switches the optical path using a Mach-Zehnder interferometer (MZ). The Mach-Zehnder interferometer (MZ) has a pair of optical waveguides 11 and 12 extending between an optical coupler 17 and an optical coupler 19. A nanocarbon material 15 </ b> A is disposed on the optical waveguide 11, and a voltage (or current) is applied to the nanocarbon material 15 </ b> A by the electrode 141 and the electrode 161. The nanocarbon material 15B is disposed on the optical waveguide 12, and a voltage (or current) is applied to the nanocarbon material 15B by the electrode 142 and the electrode 162. The first optical waveguide from the incident optical port Pin to the optical coupler 17, the second optical waveguide from the optical coupler 19 to the outgoing optical port PoutA, and the third optical waveguide from the optical coupler 19 to the outgoing optical port PoutB It is good. The Mach-Zehnder interferometer MZ is an optical component that optically connects incident light from the incident light port Pin to the transmitted light output port Pout1 or the branched light output port Pout2.
 ナノカーボン材料15A及び15Bへの電圧印加により、光導波路11、12が加熱される。ナノカーボン材料15Aとナノカーボン材料15Bは、互いに独立して制御され、ナノカーボン材料15Aと15Bのいずれか一方を通電加熱してもよいし、両方を通電加熱してもよい。 The optical waveguides 11 and 12 are heated by voltage application to the nanocarbon materials 15A and 15B. The nanocarbon material 15A and the nanocarbon material 15B are controlled independently from each other, and either one of the nanocarbon materials 15A and 15B may be energized and heated, or both may be energized and heated.
 電圧が印加されると、熱光学効果による屈折率変化により、マッハツェンダ干渉計MZの2つの光導波路11、12で光の位相が変化し、出射光ポートPoutAと出射光ポートPoutBの間が切り替えられる。光結合器17と光結合器19は、それぞれ2本の導波路が接近してエバネッセント(近接場)で結合する構成となっているが、光結合器としてどのような形態のものを用いてもよく、たとえば、マルチモード干渉系(MMI:Multi-Mode Interference)を利用してもよい。 When a voltage is applied, the phase of light changes in the two optical waveguides 11 and 12 of the Mach-Zehnder interferometer MZ due to a change in refractive index due to the thermo-optic effect, and the output light port PoutA and the output light port PoutB are switched. . The optical coupler 17 and the optical coupler 19 are configured such that two waveguides approach each other and are coupled by evanescent (near field), but any type of optical coupler can be used. For example, a multi-mode interference system (MMI: Multi-Mode Interference) may be used.
 図10Bは、第1実施形態の光デバイスの変形例として、方向性カプラ170を用いた光路変換器10Cを示す。方向性カプラ170は、2本の光導波路171及び172が所定の箇所で隣接した構造を有している。ナノカーボン材料15は、隣接部を覆って配置される。入射光ポートPinから入射した光は、隣接部において、エバネッセント場で相互に干渉が起こり、出射光ポートPout11とPout12にそれぞれつながる出力側の2つの導波路171と172に光が分配される。その分配の比率を、隣接部を覆うナノカーボン材料15への通電加熱により調整する。ナノカーボン材料15への通電加熱により干渉状態が変化して、2つの出射光の光の強度が変わることから、出射光ポートPout11とPout12からの出力を、ナノカーボン材料15への通電で切り替えることができる。形成されるナノカーボン材料15は、光軸(伝搬軸)に対して対称な構造でもよいし、グラフェンの形状を台形などにして、光軸に対して非対称な構造で温度勾配をつけてもよい。 FIG. 10B shows an optical path changer 10C using a directional coupler 170 as a modification of the optical device of the first embodiment. The directional coupler 170 has a structure in which two optical waveguides 171 and 172 are adjacent at predetermined positions. The nanocarbon material 15 is disposed so as to cover the adjacent portion. The light incident from the incident light port Pin interferes with each other in the evanescent field at the adjacent portion, and the light is distributed to the two output- side waveguides 171 and 172 connected to the output light ports Pout11 and Pout12, respectively. The distribution ratio is adjusted by energization heating to the nanocarbon material 15 covering the adjacent portion. Since the interference state is changed by energizing and heating the nanocarbon material 15 and the intensity of the light of the two outgoing lights is changed, the output from the outgoing light ports Pout11 and Pout12 is switched by energizing the nanocarbon material 15. Can do. The formed nanocarbon material 15 may have a structure that is symmetric with respect to the optical axis (propagation axis), or may have a temperature gradient with an asymmetric structure with respect to the optical axis by making the shape of graphene trapezoidal or the like. .
 図10Cは、第1実施形態の光デバイスの別の変形例として、マルチモードカプラ180を用いた光路変換器10Cを示す。このマルチモードカプラ180は1入力2出力のマルチモードカプラである。マルチモードカプラ180に替えて、Yスプリッタを用いてもよい。マルチモードカプラ180は、スラブ部184に1つの入力導波路181と、2つの出力導波路182及び183が接続された構造を有する。スラブ部184は、入力導波路181を伝搬してきた光を出力導波路182または183に結合させる結合部である。一定の幅を持つスラブ部184では、入射光は複数の伝搬モードに変換されて、出力導波路182または183に結合する。Yスプリッタを用いる場合は、導波路181、182、及び183が直接結合される。 FIG. 10C shows an optical path changer 10C using a multimode coupler 180 as another modification of the optical device of the first embodiment. The multimode coupler 180 is a 1-input 2-output multimode coupler. Instead of the multimode coupler 180, a Y splitter may be used. The multimode coupler 180 has a structure in which one input waveguide 181 and two output waveguides 182 and 183 are connected to the slab portion 184. The slab portion 184 is a coupling portion that couples light propagating through the input waveguide 181 to the output waveguide 182 or 183. In the slab portion 184 having a constant width, incident light is converted into a plurality of propagation modes and coupled to the output waveguide 182 or 183. When using a Y-splitter, the waveguides 181, 182 and 183 are directly coupled.
 入射光ポートPinから入射した光は、スラブ部184で光干渉により分配されて、出射光ポートPout11と出射光ポートPout12から出射される、その光強度の割合は、スラブ部184の干渉状態で変えることができる。スラブ部184にナノカーボン材料15を配置して通電加熱することにより、干渉状態が変化して、2つの出射光ポートPout11とPout12の光強度を切り替えることができる。形成するナノカーボン材料15は、光軸に対して対称構造でも良いが、図10Cのようにナノカーボン材料15の形状を台形などにして、光軸に対して非対称な構造で温度勾配をつけても良い。 The light incident from the incident light port Pin is distributed by optical interference in the slab part 184, and the ratio of the light intensity emitted from the outgoing light port Pout11 and the outgoing light port Pout12 varies depending on the interference state of the slab part 184. be able to. By disposing the nanocarbon material 15 on the slab portion 184 and energizing and heating, the interference state changes, and the light intensity of the two outgoing light ports Pout11 and Pout12 can be switched. The nanocarbon material 15 to be formed may have a symmetric structure with respect to the optical axis, but the shape of the nanocarbon material 15 is trapezoidal as shown in FIG. Also good.
 <ナノカーボン材料の配置例>
 図11A~図11Eは、光導波路または光共振器(以下、「光導波路111」と略称する)に対するナノカーボン材料15の配置例を示す。図11Aでは、基板110の主面に光導波路111が形成され、光導波路111の上面と側面を覆ってナノカーボン材料15が配置されている。図11Bでは、光導波路111は基板110に埋め込まれた埋め込み導波路であり、ナノカーボン材料15は、光導波路111の上面を直接覆っている。埋め込み型の光導波路111の場合、基板表面がフラットで、ナノカーボン材料15の配置が容易である。図11Aと図11Bのいずれも、光導波路111の少なくとも一部がナノカーボン材料15と接触していてもよい。
<Arrangement example of nano carbon material>
11A to 11E show examples of arrangement of the nanocarbon material 15 with respect to an optical waveguide or an optical resonator (hereinafter abbreviated as “optical waveguide 111”). In FIG. 11A, the optical waveguide 111 is formed on the main surface of the substrate 110, and the nanocarbon material 15 is disposed so as to cover the upper surface and the side surface of the optical waveguide 111. In FIG. 11B, the optical waveguide 111 is a buried waveguide embedded in the substrate 110, and the nanocarbon material 15 directly covers the upper surface of the optical waveguide 111. In the case of the embedded optical waveguide 111, the substrate surface is flat, and the arrangement of the nanocarbon material 15 is easy. 11A and 11B, at least a part of the optical waveguide 111 may be in contact with the nanocarbon material 15.
 図11A及び図11Bのように、ナノカーボン材料15で光導波路111を覆う場合、光導波路111の周囲に発生しているエバネッセント光を介して、ナノカーボン材料15の温度上昇の影響をそのまま光路制御に利用することができる。ナノカーボン材料15が光導波路111に接触している場合は、ナノカーボン材料15の熱が直接、光導波路111に伝わることから、高効率に光導波路111の温度を上げることができる。図11A及び図11Bの構成により、低消費電力で、高効率の光路切り替え制御が実現される。 When the optical waveguide 111 is covered with the nanocarbon material 15 as shown in FIG. 11A and FIG. 11B, the optical path control directly affects the temperature rise of the nanocarbon material 15 through the evanescent light generated around the optical waveguide 111. Can be used. When the nanocarbon material 15 is in contact with the optical waveguide 111, the heat of the nanocarbon material 15 is directly transmitted to the optical waveguide 111, so that the temperature of the optical waveguide 111 can be increased with high efficiency. 11A and 11B realizes high-efficiency optical path switching control with low power consumption.
 図11Cでは、光導波路111とナノカーボン材料15の間に、キャップ層112が配置されている。図11Dでは、光導波路111とナノカーボン材料15の間に下部キャップ層113が配置され、ナノカーボン材料15の上に上部キャップ層115が配置されている。上部キャップ層115を保護層と呼んでもよい。 In FIG. 11C, the cap layer 112 is disposed between the optical waveguide 111 and the nanocarbon material 15. In FIG. 11D, the lower cap layer 113 is disposed between the optical waveguide 111 and the nanocarbon material 15, and the upper cap layer 115 is disposed on the nanocarbon material 15. The upper cap layer 115 may be referred to as a protective layer.
 図11C及び図11Dのように、光導波路111とナノカーボン材料15の間にキャップ層112または下部キャップ層113を挿入する場合、これらのキャップ層を光導波路111よりも屈折率の低い材料で形成して、光導波路111のクラッド層として機能させてもよい。キャップ層112または下部キャップ層113を設けることで、光導波路111の上にナノカーボン材料15を配置したことによる散乱や光吸収の影響を最小限に抑えて、光路変換器100A(または100B)の損失を小さくすることができる。 11C and 11D, when the cap layer 112 or the lower cap layer 113 is inserted between the optical waveguide 111 and the nanocarbon material 15, these cap layers are formed of a material having a lower refractive index than that of the optical waveguide 111. Then, it may function as a cladding layer of the optical waveguide 111. By providing the cap layer 112 or the lower cap layer 113, the influence of scattering and light absorption due to the arrangement of the nanocarbon material 15 on the optical waveguide 111 is minimized, and the optical path converter 100A (or 100B) Loss can be reduced.
 キャップ層112または下部キャップ層113の厚さは、ナノカーボン材料15と光導波路111の加熱の効率や、ナノカーボン材料15による損失を考慮して、最適な厚さに設計することができる。キャップ層112または下部キャップ層113の材質に依存してナノカーボン材料15から光導波路111への熱伝導が変わるため、キャップ層112または下部キャップ層113の材質を選択することで光路変換性能を変えることもできる。 The thickness of the cap layer 112 or the lower cap layer 113 can be designed to an optimum thickness in consideration of the heating efficiency of the nanocarbon material 15 and the optical waveguide 111 and the loss due to the nanocarbon material 15. Depending on the material of the cap layer 112 or the lower cap layer 113, the heat conduction from the nanocarbon material 15 to the optical waveguide 111 changes. Therefore, the optical path conversion performance is changed by selecting the material of the cap layer 112 or the lower cap layer 113. You can also
 図11Dのように、ナノカーボン材料15の上に上部キャップ層115を配置する場合は、ナノカーボン材料15を通電加熱する際に、ナノカーボン材料15が酸素等の雰囲気と反応して損傷することを防ぐことができる。 When the upper cap layer 115 is disposed on the nanocarbon material 15 as shown in FIG. 11D, the nanocarbon material 15 reacts with an atmosphere such as oxygen and is damaged when the nanocarbon material 15 is energized and heated. Can be prevented.
 キャップ層112、下部キャップ層113、及び上部キャップ層115は、電気伝導性の低い材料である方が好ましい。光導波路111をシリコンで形成する場合、キャップ層として酸化シリコン、酸化アルミニウムのような無機材料、PMMA(ポリメチルメタクリレート)などのポリマー材料などを用いることができる。図11Dの構成で、下部キャップ層113を酸化アルミニウム、上部キャップ層115をPMMAで形成してもよい。 The cap layer 112, the lower cap layer 113, and the upper cap layer 115 are preferably made of a material having low electrical conductivity. When the optical waveguide 111 is formed of silicon, an inorganic material such as silicon oxide or aluminum oxide, a polymer material such as PMMA (polymethyl methacrylate), or the like can be used as the cap layer. In the configuration of FIG. 11D, the lower cap layer 113 may be formed of aluminum oxide and the upper cap layer 115 may be formed of PMMA.
 図11A~図11Dのすべてにおいて、ナノカーボン材料15、光導波路111、基板110、及びキャップ層115の接触部分に、酸化物や窒化物などの極性を有する物質(極性結晶)の薄膜116を形成してもよい。この場合、極性物質の表面極性フォノンによって熱の逃げが早く(図中の矢印h参照)、高速な温度変化が可能となり、スイッチング速度が向上する。極性物質としては、酸化シリコン、窒化シリコン、窒化ボロン、アルミナ、酸化ハフニウムなど、物質を構成する原子同士に極性があり、極性フォノンを誘起できる物質を選択できる。表面に生じる極性フォノンを用いるため、形成する極性物質は、非常に薄くてよく、ナノメートルオーダーで形成されるだけでも十分に機能する。 In all of FIGS. 11A to 11D, a thin film 116 of a substance (polar crystal) having a polarity such as oxide or nitride is formed at the contact portion of the nanocarbon material 15, the optical waveguide 111, the substrate 110, and the cap layer 115. May be. In this case, the surface polar phonon of the polar substance allows the heat to escape quickly (see arrow h in the figure), enables a fast temperature change, and improves the switching speed. As the polar substance, a substance such as silicon oxide, silicon nitride, boron nitride, alumina, hafnium oxide, etc., that has polarity between atoms constituting the substance and can induce polar phonons can be selected. Since polar phonons generated on the surface are used, the polar substance to be formed may be very thin, and even if it is formed on the nanometer order, it functions sufficiently.
 <第2実施形態>
 図12A~図12Eは、第2実施形態の光デバイスとして、ナノカーボンを利用した位相変調器20A~20Eをそれぞれ示す。図12A位相変調器20Aは、基板103(図1参照)に形成された光導波路21と、光導波路21の上に配置されるナノカーボン材料25と、ナノカーボン材料25に電圧または電流を印加するための電極24及び26を有する。位相変調器20Aの動作原理は、第1実施形態で説明したのと同じく、ナノカーボン材料25を通電加熱することによる光導波路21の屈折率変化を利用するものである。光導波路21の屈折率の変化により光の伝搬速度が変化し、位相が変化する。
Second Embodiment
12A to 12E show phase modulators 20A to 20E using nanocarbon as optical devices of the second embodiment, respectively. The phase modulator 20A in FIG. 12A applies a voltage or current to the optical waveguide 21 formed on the substrate 103 (see FIG. 1), the nanocarbon material 25 disposed on the optical waveguide 21, and the nanocarbon material 25. Electrodes 24 and 26. The operating principle of the phase modulator 20A utilizes the change in the refractive index of the optical waveguide 21 caused by energizing and heating the nanocarbon material 25, as described in the first embodiment. The change in the refractive index of the optical waveguide 21 changes the propagation speed of light and changes the phase.
 図12Bの位相変調器20Bは、図12Aの構成に加えて、光導波路21に隣接して配置される1つのリング共振器23を有する。ナノカーボン材料25は、リング共振器23と光導波路21を覆っている。光導波路21を伝搬する光の一部はリング共振器23に結合してリング共振器23を周回する。ナノカーボン材料25への通電加熱により光導波路21とリング共振器23の屈折率が変わると、リング共振器23を通る光と光導波路21を通る光の干渉状態が変化して、透過光の位相が変化する。 The phase modulator 20B in FIG. 12B has one ring resonator 23 disposed adjacent to the optical waveguide 21 in addition to the configuration in FIG. 12A. The nanocarbon material 25 covers the ring resonator 23 and the optical waveguide 21. A part of the light propagating through the optical waveguide 21 is coupled to the ring resonator 23 and circulates around the ring resonator 23. When the refractive index of the optical waveguide 21 and the ring resonator 23 changes due to current heating to the nanocarbon material 25, the interference state between the light passing through the ring resonator 23 and the light passing through the optical waveguide 21 changes, and the phase of the transmitted light is changed. Changes.
 図12Cの位相変調器20Cは、光導波路21に沿って配置される複数のリング共振器231~234を有する。ナノカーボン材料25は、光導波路21とリング共振器231~234を覆っている。図12Bと同様に、光導波路21を直進する光と、リング共振器231~234を順次透過する光の干渉状態の変化により、位相変調が起きる。 The phase modulator 20C in FIG. 12C includes a plurality of ring resonators 231 to 234 arranged along the optical waveguide 21. The nanocarbon material 25 covers the optical waveguide 21 and the ring resonators 231 to 234. Similar to FIG. 12B, phase modulation occurs due to a change in the interference state of light traveling straight through the optical waveguide 21 and light sequentially transmitted through the ring resonators 231 to 234.
 図12Dの位相変調器20Dは、入力側の光導波路21と、出力側の光導波路22と、光導波路21と光導波路22の間に直列に配置される複数のリング共振器231~234を有する。ナノカーボン材料25は、一連のリング共振器231~234と、光導波路21、22との結合部を覆って配置されている。リング共振器231~234の屈折率変化により、リング共振器231~234を順次透過する光が位相変調を受ける。 The phase modulator 20D of FIG. 12D includes an input-side optical waveguide 21, an output-side optical waveguide 22, and a plurality of ring resonators 231 to 234 arranged in series between the optical waveguide 21 and the optical waveguide 22. . The nanocarbon material 25 is disposed so as to cover the coupling portion between the series of ring resonators 231 to 234 and the optical waveguides 21 and 22. Due to the change in the refractive index of the ring resonators 231 to 234, light sequentially transmitted through the ring resonators 231 to 234 undergoes phase modulation.
 図12Eの位相変調器20Eは、フォトニック結晶27と、フォトニック結晶27を覆うナノカーボン材料25を有する。電極24、26を介してナノカーボン材料25を通電加熱することで、フォトニック結晶27の屈折率が変化し、光と媒質の相互作用の強さ(スローライト効果)が変化して伝搬光の位相が変調される。フォトニック結晶27に替えて、周期的な屈折率分布を有する任意のナノ構造体を用いてもよく、周期的なパターンが形成された有機または向きのナノ構造体が使用可能である。 12E has a photonic crystal 27 and a nanocarbon material 25 that covers the photonic crystal 27. By energizing and heating the nanocarbon material 25 via the electrodes 24 and 26, the refractive index of the photonic crystal 27 changes, the strength of the interaction between light and the medium (slow light effect) changes, and the propagation light propagates. The phase is modulated. Instead of the photonic crystal 27, an arbitrary nanostructure having a periodic refractive index distribution may be used, and an organic or oriented nanostructure in which a periodic pattern is formed can be used.
 図12A~図12Eの位相変調器20A~20Eは、金属ヒーターを用いる位相変調器と比べて、高い性能と耐久性を有する。ナノカーボン材料15は微小で高密度化が可能であり、熱容量の小ささから、光導波路や光共振器に隣接して設置をしてもロスが小さく、高速な温度変調が可能である。また、良好な熱伝導特性により高効率かつ低消費電力の位相変調動作が実現する。 12A to 12E have higher performance and durability than the phase modulator using a metal heater. The nanocarbon material 15 is minute and can be increased in density, and since the heat capacity is small, even if it is installed adjacent to an optical waveguide or an optical resonator, loss is small and high-speed temperature modulation is possible. In addition, the phase modulation operation with high efficiency and low power consumption is realized by good heat conduction characteristics.
 <第3実施形態>
 図13は、第3実施形態の光デバイスとして、第2実施形態の位相変調器20を利用した光掃引デバイス200Aを示す。光掃引デバイス200Aは、入力導波路201と、スラブ導波路202と、スラブ導波路202に接続される複数の導波路203-1~203-nと、導波路203-1~203-nに接続される位相変調器20-1~20-nを有する。複数の導波路203-1~203-nでアレイ導波路204が形成される。複数の位相変調器20-1~20-nの配列で、位相変調器アレイ205Aが構成される。位相変調器20-1~20-nとしては、図12A~図12Eのいずれの構成を採用してもよい。各位相変調器20のナノカーボン材料25に印加する電圧を個別に制御することで、位相変化量Δφ1~Δφnを与えることができる。
<Third Embodiment>
FIG. 13 shows an optical sweep device 200A using the phase modulator 20 of the second embodiment as the optical device of the third embodiment. The optical sweep device 200A includes an input waveguide 201, a slab waveguide 202, a plurality of waveguides 203-1 to 203-n connected to the slab waveguide 202, and connected to the waveguides 203-1 to 203-n. Phase modulators 20-1 to 20-n. An arrayed waveguide 204 is formed by the plurality of waveguides 203-1 to 203-n. A phase modulator array 205A is configured by an array of a plurality of phase modulators 20-1 to 20-n. As the phase modulators 20-1 to 20-n, any of the configurations shown in FIGS. 12A to 12E may be adopted. By individually controlling the voltage applied to the nanocarbon material 25 of each phase modulator 20, the phase change amounts Δφ 1 to Δφ n can be given.
 位相変調器アレイ205Aを構成する各位相変調器20の出力光は、対応する出射光ポートP1~Pnから出射される。 The output light of each phase modulator 20 constituting the phase modulator array 205A is emitted from the corresponding emission light ports P1 to Pn.
 入力導波路201からスラブ導波路202に入射する光は、たとえば単一波長の光である。入力導波路201からの入射光はスラブ導波路202内で扇型に発散し、破面に合わせて設けられた出力側の端面でn分割されて、導波路203-1~203-nに同相で入射する。導波路203-1~203-nを伝搬した光は、位相変調器20-1~20-nで位相変調を受ける。スラブ導波路202は多チャンネル光結合器の一例であり、スラブ導波路202に替えて、1入力N出力の任意の光結合器を用いてもよい。 The light incident on the slab waveguide 202 from the input waveguide 201 is, for example, light having a single wavelength. Incident light from the input waveguide 201 diverges in a fan shape in the slab waveguide 202 and is divided into n at the output side end face provided in accordance with the fracture surface, and is in phase with the waveguides 203-1 to 203-n. Incident at. The light propagated through the waveguides 203-1 to 203-n is subjected to phase modulation by the phase modulators 20-1 to 20-n. The slab waveguide 202 is an example of a multi-channel optical coupler, and an arbitrary optical coupler with one input and N outputs may be used instead of the slab waveguide 202.
 光は、出射ポートPから波面(等位相面)と垂直な方向に出射する。位相変調器201-1~201-nで各チャンネルの伝搬光の位相を制御することで、波面の角度を変えて任意の方向に光を出射することができる。位相変化量Δφ1~Δφnを連続的に変えることで、出射光を所定の方向に掃引することができる。 The light exits from the exit port P in the direction perpendicular to the wavefront (equal phase plane). By controlling the phase of the propagation light of each channel with the phase modulators 201-1 to 201-n, it is possible to emit light in an arbitrary direction by changing the angle of the wavefront. By continuously changing the phase change amounts Δφ1 to Δφn, the emitted light can be swept in a predetermined direction.
 ナノカーボン材料15とシリコンフォトニクス技術で形成された光導波路を有する位相変調器20-1~20-nは、高密度化に適している。多チャンネルの光の位相を位相変調器20-1~20-nにより動的に変化させることで、任意の方向に光を出射することが可能となる。ナノカーボン材料15を用いた位相変調器20-1~20-nは高速の位相変調が可能であり、高速の光掃引が実現される。 The phase modulators 20-1 to 20-n having an optical waveguide formed by the nanocarbon material 15 and silicon photonics technology are suitable for high density. By dynamically changing the phase of multi-channel light by the phase modulators 20-1 to 20-n, light can be emitted in any direction. The phase modulators 20-1 to 20-n using the nanocarbon material 15 can perform high-speed phase modulation and realize high-speed optical sweep.
 図14は、位相変調器アレイの変形例として位相変調器アレイ205Bの構成を示す。位相変調器アレイ205Bは、異なるサイズの複数の位相変調器20-1~20-nと、位相変調器20-1~20-nに共通に用いられるナノカーボン材料25を有する。 FIG. 14 shows a configuration of a phase modulator array 205B as a modification of the phase modulator array. The phase modulator array 205B includes a plurality of phase modulators 20-1 to 20-n having different sizes and a nanocarbon material 25 commonly used for the phase modulators 20-1 to 20-n.
 図14の例では、アレイ導波路204の各導波路203-1~203-nに接続される位相変調器20-1~20-nの長さが異なる。電極24、26を介してナノカーボン材料25に電圧または電流を印加して通電加熱することで、異なる位相変化量Δφ1~Δφnが得られる。 In the example of FIG. 14, the lengths of the phase modulators 20-1 to 20-n connected to the waveguides 203-1 to 203-n of the arrayed waveguide 204 are different. By applying voltage or current to the nanocarbon material 25 through the electrodes 24 and 26 and conducting heating, different phase change amounts Δφ 1 to Δφ n can be obtained.
 複数の位相変調器20-1~20-nは、同一の構成(サイズまたは長さ)であってもよい。この場合は、各位相変調器20でナノカーボン材料25によって覆われる領域のサイズを異ならせることで、図14の構成と同じ効果が得られる。たとえば、チャンネルごとに位相変調器20を覆うグラフェンの長さまたは面積を変えることで、チャンネル間で相互作用長を変えたり、ナノカーボン材料25の通電加熱による発熱量を変えたりすることで、異なる位相差を与えることができる。 The plurality of phase modulators 20-1 to 20-n may have the same configuration (size or length). In this case, the same effect as the configuration of FIG. 14 can be obtained by changing the size of the region covered with the nanocarbon material 25 in each phase modulator 20. For example, by changing the length or area of the graphene covering the phase modulator 20 for each channel, the interaction length is changed between channels, or the amount of heat generated by current heating of the nanocarbon material 25 is changed. A phase difference can be given.
 図15は、別の構成例の光掃引デバイス200Bを示す。光掃引デバイス200Bは、位相変調器アレイ205に加えて、多段(カスケード)接続された複数の位相変調器2081~208nを用いて、位相変調効率を高める。 FIG. 15 shows an optical sweep device 200B having another configuration example. In addition to the phase modulator array 205, the optical sweep device 200B uses a plurality of phase modulators 208 1 to 208 n connected in multiple stages (cascade) to increase the phase modulation efficiency.
 位相変調器2081~208nは、同じ位相変化量Δφ0を与える。この意味で、位相変調器2081~208nを共通位相変調器と呼んでもよい。位相変調器2081~208nを、適宜「位相変調器208」と総称する。位相変調器208は、図12A~図12Eのどの構成を有していてもよく、ナノカーボン材料25の通電加熱により高速の位相変調が可能である。 The phase modulators 208 1 to 208 n provide the same phase change amount Δφ 0 . In this sense, the phase modulators 208 1 to 208 n may be called common phase modulators. The phase modulators 208 1 to 208 n are collectively referred to as “phase modulator 208” as appropriate. The phase modulator 208 may have any of the configurations shown in FIGS. 12A to 12E, and high-speed phase modulation is possible by energization heating of the nanocarbon material 25.
 一段目の位相変調器2081を通過した光の一部は、光結合器209-1から位相変調器20-1に入射し、出射ポートP1に出力される。二段目の位相変調器2082を通過した光の一部は、光結合器209-2から位相変調器20-1に入射し、出射ポートP2に出力される。以下、n-1段目まで、各位相変調器208を通過する度に、光結合器209により光の一部を取り出して、位相変調器20に入射させ、アレイ化された出射ポートPに出力する。n段目の位相変調器208nを通過した光は、そのまま位相変調器20-nに入射して出射ポートPnに出力される。 Some of the light passing through the phase modulator 208 1 of the first stage is incident from the optical coupler 209-1 to the phase modulator 20-1 is outputted to the output port P1. Some of the light passing through the phase modulator 208 2 of the second stage enters from the optical coupler 209-2 to the phase modulator 20-1 is outputted to the output port P2. Thereafter, every time the light passes through each phase modulator 208 up to the (n−1) th stage, a part of the light is taken out by the optical coupler 209 and made incident on the phase modulator 20 and output to the arrayed output port P. To do. The light that has passed through the n-th phase modulator 208 n enters the phase modulator 20-n as it is and is output to the output port Pn.
 この構成では、多段に接続された共通の位相変調器2081~208nによって、位相変化量を累積的に大きくし、位相変調器アレイ205の位相変調器20-1~20-nの各々で、位相変化量を微調整している。多段の位相変調器208を通るたびに位相が変わるため、それぞれの位相変化が小さくても、トータルでは大きな位相変化が得られる。各位相変調器208の変調性能はそれほど高くなくても、光掃引デバイス200Bの全体として大きな位相変調が可能である。なお、光掃引デバイス200Bでは、位相微調整の位相変調器アレイ205は必須ではなく、多段の位相変調器2081~208nだけでも光掃引デバイスとして動作する。この場合は、各光結合器209で取り出された光は、そのまま対応する出射ポートPから出力される。 In this configuration, the phase change amount is cumulatively increased by common phase modulators 208 1 to 208 n connected in multiple stages, and each of the phase modulators 20-1 to 20 -n of the phase modulator array 205 is used. The phase change amount is finely adjusted. Since the phase changes each time it passes through the multi-stage phase modulator 208, a large phase change can be obtained in total even if each phase change is small. Even if the modulation performance of each phase modulator 208 is not so high, the optical sweep device 200B as a whole can perform large phase modulation. In the optical sweep device 200B, the phase modulator array 205 for fine phase adjustment is not essential, and only the multi-stage phase modulators 208 1 to 208 n operate as an optical sweep device. In this case, the light extracted by each optical coupler 209 is output from the corresponding emission port P as it is.
 <第4実施形態>
 図16は、第4実施形態の光デバイスである光路制御デバイス300の模式図である。光路制御デバイス300は、アレイ化された位相変調を利用して、光路制御またはルーティング動作を行う。光路制御デバイス300は、入力導波路301、アレイ位相変調器30、アレイ位相変調器30の出力側に接続されるアレイ導波路302-1~302-n、スラブ導波路303、スラブ導波路303の出力側に接続されるアレイ導波路304-1~304-nを有する。アレイ導波路304-1~304-nのそれぞれは、対応する出射ポートP1~Pnに接続されている。
<Fourth embodiment>
FIG. 16 is a schematic diagram of an optical path control device 300 that is the optical device of the fourth embodiment. The optical path control device 300 performs optical path control or routing operation using arrayed phase modulation. The optical path control device 300 includes an input waveguide 301, an array phase modulator 30, array waveguides 302-1 to 302-n connected to the output side of the array phase modulator 30, a slab waveguide 303, and a slab waveguide 303. It has arrayed waveguides 304-1 to 304-n connected to the output side. Each of the arrayed waveguides 304-1 to 304-n is connected to a corresponding output port P1 to Pn.
 アレイ位相変調器30は、ナノカーボン材料を用いた複数の位相変調器の配列を含み、第3実施形態で用いたいずれの位相変調器アレイを採用してもよいし、多段接続構成を用いてもよい。入力導波路301は、図示しない多チャンネル光結合器によってアレイ位相変調器30を構成する複数の位相変調器のそれぞれに結合されている。単一の入射光は、n分割されて各位相変調器に入射する。 The array phase modulator 30 includes an array of a plurality of phase modulators using nanocarbon materials, and any of the phase modulator arrays used in the third embodiment may be adopted, or a multistage connection configuration is used. Also good. The input waveguide 301 is coupled to each of a plurality of phase modulators constituting the array phase modulator 30 by a multi-channel optical coupler (not shown). The single incident light is divided into n and enters each phase modulator.
 アレイ位相変調器30で各チャンネルの位相差が制御され、位相変化量Δφ1~Δφnを有する光がアレイ導波路302-1~302-nに出力される。アレイ導波路302-1~302-nに接続されるスラブ導波路303の形状は、入射端と出射端が所定の曲率を有するように制御されている。スラブ導波路303に入射した光は、破線で示すように、光の位相によって出射端のある一点に集光される。その集光点に結合されるアレイ導波路304から出射ポートPへと伝搬する。 The phase difference of each channel is controlled by the array phase modulator 30, and light having phase change amounts Δφ 1 to Δφ n is output to the arrayed waveguides 302-1 to 302-n. The shape of the slab waveguide 303 connected to the arrayed waveguides 302-1 to 302-n is controlled so that the entrance end and the exit end have a predetermined curvature. The light incident on the slab waveguide 303 is condensed at one point having an emission end depending on the phase of the light, as indicated by a broken line. Propagation from the arrayed waveguide 304 coupled to the condensing point to the exit port P.
 図中の双方向の矢印Aで示すように、アレイ位相変調器30で与えられる位相を制御するで、スラブ導波路303の出射側の集光点を任意の位置に掃引することができる。アレイ位相変調器30の位相変化量を制御することによって、スラブ導波路303に入射した光を所望のチャンネルのアレイ導波路304に結合させることができる。外部からの電気信号によってアレイ位相変調器30で用いられているナノカーボン材料の通電加熱を制御し、入射光を任意の出射ポートPに結合して光路を制御する多チャンネルの光路制御(ルーティング)が実現する。光路制御デバイス300を用いることで、数百kHz~1GHzの高速で出射ポートを切り替えることができる。 As shown by the two-way arrow A in the figure, by controlling the phase given by the array phase modulator 30, the condensing point on the emission side of the slab waveguide 303 can be swept to an arbitrary position. By controlling the phase change amount of the array phase modulator 30, the light incident on the slab waveguide 303 can be coupled to the arrayed waveguide 304 of a desired channel. Multi-channel optical path control (routing) for controlling the optical path by controlling the energization heating of the nanocarbon material used in the array phase modulator 30 by an external electric signal and coupling the incident light to an arbitrary output port P Is realized. By using the optical path control device 300, the emission port can be switched at a high speed of several hundred kHz to 1 GHz.
 <第5実施形態>
 図17は、第5実施形態の光デバイスである分光器310の模式図である。分光器3101は、アレイ化された位相変調を利用して、複数の波長が多重された入射光から所望の波長を取り出す。第3実施形態の位相変調器の配列を用いることで、固体素子での分光器を作製することができる。
<Fifth Embodiment>
FIG. 17 is a schematic diagram of a spectroscope 310 that is an optical device according to the fifth embodiment. The spectroscope 3101 extracts a desired wavelength from incident light in which a plurality of wavelengths are multiplexed, using arrayed phase modulation. By using the arrangement of the phase modulators of the third embodiment, a spectroscope with a solid element can be manufactured.
 分光器310は、入力導波路301、アレイ位相変調器30、アレイ位相変調器30の出力側に接続されるアレイ導波路302-1~302n、スラブ導波路303、スラブ導波路303の出力側に接続される出力導波路306を有する。出力導波路306は、出射ポートPoutに接続されている。 The spectrometer 310 includes an input waveguide 301, an array phase modulator 30, array waveguides 302-1 to 302n connected to the output side of the array phase modulator 30, a slab waveguide 303, and an output side of the slab waveguide 303. An output waveguide 306 is connected. The output waveguide 306 is connected to the output port Pout.
 アレイ位相変調器30として、第3実施形態で説明したいずれの位相変調器アレイの構成を採用してもよいし、多段接続構成を用いてもよい。アレイ位相変調器30は、ナノカーボン材料25への通電加熱による高速の位相変調が可能である。 As the array phase modulator 30, the configuration of any phase modulator array described in the third embodiment may be adopted, or a multistage connection configuration may be used. The array phase modulator 30 can perform high-speed phase modulation by energizing and heating the nanocarbon material 25.
 入力導波路301からアレイ位相変調器30に入射する光は、アレイ位相変調器30を構成する位相変調器の数に応じてn分割され、各位相変調器で位相変調を受けてアレイ導波路302-1~302-nに出力される。アレイ導波路302-1~303-nからスラブ導波路303に入射した光はスラブ導波路303で広がるが、波長によって出射端での焦点位置が異なる。 Light incident on the array phase modulator 30 from the input waveguide 301 is divided into n according to the number of phase modulators constituting the array phase modulator 30, undergoes phase modulation by each phase modulator, and receives the array waveguide 302. -1 to 302-n. The light that has entered the slab waveguide 303 from the arrayed waveguides 302-1 to 303-n spreads in the slab waveguide 303, but the focal position at the exit end differs depending on the wavelength.
 したがって、通常は、ある波長の光だけが出力導波路306に結合して出射ポートPoutから出力される。ここで、ナノカーボン材料25への通電を制御して、アレイ位相変調器30で各チャンネルの位相を制御すると、図中の双方向の矢印Bで示すように、波長に依存した焦点の位置が全体的にシフトする。アレイ位相変調器30で各チャンネルの位相を制御することによって、出射ポートPoutから出射される光の波長を任意に選択でき、特定の波長を取り出す分光器310として機能する。分光器310は、波長多重(WDM:Wavelength Division Multiplexing)方式の光通信での特定波長の選択、分析装置での分光など、分光が必要な用途に利用することができる。アレイ位相変調器30での位相変化量を順次変えることで、複数の波長の光を順番に出射ポートPoutから出力することができる。 Therefore, normally, only light of a certain wavelength is coupled to the output waveguide 306 and output from the output port Pout. Here, when energization to the nanocarbon material 25 is controlled and the phase of each channel is controlled by the array phase modulator 30, the position of the focal point depending on the wavelength is obtained as shown by the bidirectional arrow B in the figure. Shift overall. By controlling the phase of each channel with the array phase modulator 30, the wavelength of light emitted from the emission port Pout can be arbitrarily selected and functions as a spectrometer 310 that extracts a specific wavelength. The spectroscope 310 can be used for applications that require spectroscopy, such as selection of a specific wavelength in WDM (Wavelength-Division-Multiplexing) optical communication and spectroscopy in an analyzer. By sequentially changing the amount of phase change in the array phase modulator 30, light of a plurality of wavelengths can be sequentially output from the emission port Pout.
 <光検出及び測距装置への適用>
 図18は、第3実施形態で説明した光掃引デバイスを適用した光検出及び測距装置の模式図である。光を使った物体検知と測距技術はLiDAR(Light Detection and Ranging)と呼ばれており、図18の装置をLiDAR装置400と呼ぶ。
<Application to light detection and ranging device>
FIG. 18 is a schematic diagram of a light detection and distance measuring apparatus to which the light sweep device described in the third embodiment is applied. The object detection and ranging technique using light is called LiDAR (Light Detection and Ranging), and the apparatus shown in FIG.
 LiDAR装置400は、投光部410と、受光部420と、制御回路430とを有する。投光部410は、光源411、光源駆動回路412、光掃引デバイス413、光掃引駆動回路414を有する。光掃引デバイス413は、図13~図15を参照して説明したように、複数の位相変調器の配列で構成されるアレイ位相変調器を有し、各位相変調器の位相変化量は、ナノカーボン材料への通電加熱によって制御される。 The LiDAR device 400 includes a light projecting unit 410, a light receiving unit 420, and a control circuit 430. The light projecting unit 410 includes a light source 411, a light source drive circuit 412, a light sweep device 413, and a light sweep drive circuit 414. As described with reference to FIGS. 13 to 15, the optical sweep device 413 includes an array phase modulator composed of an array of a plurality of phase modulators. It is controlled by energization heating to the carbon material.
 光源411から出力される光は、図示しないカプリングレンズ等を用いて光掃引デバイス413に結合される。光掃引デバイス413は、光掃引駆動回路414から入力される駆動信号をナノカーボン材料に印加して位相変化量を制御し、出射光ポートPoutから出力される光Loutを、双方向矢印BSで示すように、所定の角度範囲内で走査(スイープ)する。ビーム走査によって、ビーム走査角の範囲に存在する物体2が検出され、検出された物体2までの距離を測定することができる。 The light output from the light source 411 is coupled to the optical sweep device 413 using a coupling lens (not shown) or the like. The optical sweep device 413 applies the drive signal input from the optical sweep drive circuit 414 to the nanocarbon material to control the phase change amount, and the light Lout output from the output light port Pout is indicated by a bidirectional arrow BS. In this manner, scanning (sweep) is performed within a predetermined angle range. By the beam scanning, the object 2 existing in the range of the beam scanning angle is detected, and the distance to the detected object 2 can be measured.
 受光部420は、フォトダイオード(PD)等の受光素子を有し、物体2から反射された散乱光Lscatterを検出する。投光部410と受光部420は近接して配置され、数メートル以上離れた位置からは、互いの光軸は同軸関係にあるとみなすことができる。光掃引デバイス413は、ナノカーボン材料25とシリコンフォトニクス技術により微細化された位相変調器アレイを用いるので、投光部410を小型のチップとして形成することができる。 The light receiving unit 420 includes a light receiving element such as a photodiode (PD) and detects scattered light Lscatter reflected from the object 2. The light projecting unit 410 and the light receiving unit 420 are arranged close to each other, and the optical axes of the light projecting unit 410 and the light receiving unit 420 can be regarded as having a coaxial relationship from a position several meters away. Since the optical sweep device 413 uses a nano-carbon material 25 and a phase modulator array miniaturized by silicon photonics technology, the light projecting unit 410 can be formed as a small chip.
 物体2からの散乱光Lscatterのうち、光掃引デバイス413から出力された光と同じ光路を辿って戻ってくる光成分が、受光部420で検出される。 Among the scattered light Lscatter from the object 2, a light component that returns along the same optical path as the light output from the light sweep device 413 is detected by the light receiving unit 420.
 制御回路430は、受光部420による検出結果に基づいて、物体2のXY平面内の角度θと距離を計測する。物体2との距離は、たとえば飛行時間(Time of Flight:TOF)法により求めることができる。XY面と直交するZ方向の角度φについては、図19を参照して後述する光アンテナを用いてYZ面内の角度φで光をスイープすることができる。XY平面内の出射角度θとZ方向の角度φを測定することで、物体2の3次元的な位置を計測することができ、さらに飛行時間法で求めた距離を合わせることで、物体2の3次元的な位置をより精度よく計測することができる。 The control circuit 430 measures the angle θ and the distance in the XY plane of the object 2 based on the detection result by the light receiving unit 420. The distance to the object 2 can be obtained by, for example, a time-of-flight (TOF) method. With respect to the angle φ in the Z direction perpendicular to the XY plane, light can be swept at an angle φ in the YZ plane using an optical antenna described later with reference to FIG. By measuring the emission angle θ in the XY plane and the angle φ in the Z direction, the three-dimensional position of the object 2 can be measured, and further, by combining the distances obtained by the time-of-flight method, The three-dimensional position can be measured with higher accuracy.
 一般的なLiDAR装置は、モータ駆動による光掃引が主流であるが、モータ駆動による光掃引は低速で大型であり、外部からの振動によって壊れやすい。光掃引デバイスとしてMEMS(Micro Electro Mechanical System)のようなチップ上の機械駆動素子を用いることもあるが、これも高価で振動によって素子が壊れやすいという問題がある。これに対し、実施形態のLiDAR装置400は、ナノカーボン材料とシリコンフォトニクス技術を組み合わせた光掃引デバイス413を用い、微細な構成で高速な光掃引が可能である。 In general LiDAR devices, light sweeping by motor drive is the mainstream, but light sweeping by motor drive is slow and large, and is easily broken by external vibration. A mechanical drive element on a chip such as MEMS (Micro Electro Mechanical System) may be used as the optical sweep device, but this also has a problem that the element is easily broken due to vibration. On the other hand, the LiDAR apparatus 400 according to the embodiment uses an optical sweep device 413 that combines a nanocarbon material and silicon photonics technology, and can perform high-speed optical sweep with a fine configuration.
 <光アンテナへの適用例>
 図19Aと図19Bは、実施形態の光デバイスの適用例として、屈折率が周期的に変化するナノ構造体とナノカーボン材料を組み合わせた光アンテナの構成例を示す。図19Aは、屈折率が周期的に変化するナノ構造としてフォトニック結晶を用いた光アンテナ500A、図19Bは、グレーティングを用いた光アンテナ500Bである。
<Application example to optical antenna>
FIG. 19A and FIG. 19B show a configuration example of an optical antenna in which a nanostructure whose refractive index changes periodically and a nanocarbon material are combined as an application example of the optical device of the embodiment. FIG. 19A shows an optical antenna 500A using a photonic crystal as a nanostructure whose refractive index changes periodically, and FIG. 19B shows an optical antenna 500B using a grating.
 図19Aで、光アンテナ500Aは、光導波路501に接続されるフォトニック結晶502と、フォトニック結晶502を覆うナノカーボン材料15を有する。一対の電極506と508を介して入力される電気信号によってナノカーボン材料15を通電加熱し、フォトニック結晶502のスローライト効果を制御して、YZ平面内の光の出射方向を制御することができる。 In FIG. 19A, the optical antenna 500A includes a photonic crystal 502 connected to the optical waveguide 501 and a nanocarbon material 15 covering the photonic crystal 502. The nanocarbon material 15 is energized and heated by an electric signal input via the pair of electrodes 506 and 508, the slow light effect of the photonic crystal 502 is controlled, and the light emission direction in the YZ plane can be controlled. it can.
 図19Bで、光アンテナ500Bは、光導波路501に接続されるグレーティング503と、グレーティング503を覆うナノカーボン材料15を有する。一対の電極506と508を介して入力される電気信号によってナノカーボン材料15を通電加熱し、グレーティング503の屈折率を変調してYZ平面内の光の出射方向を制御することができる。 19B, the optical antenna 500B includes a grating 503 connected to the optical waveguide 501 and a nanocarbon material 15 covering the grating 503. The nanocarbon material 15 is energized and heated by an electric signal input via the pair of electrodes 506 and 508, and the refractive index of the grating 503 can be modulated to control the light emission direction in the YZ plane.
 光アンテナ500Aまたは500Bは、第1~第5実施形態の光デバイスの出射ポートPoutに用いることができる。また、光アンテナ500Aまたは500Bを、図18のLiDAR装置400の光掃引デバイス413の出射ポートに用いてもよい。光アンテナ500Aまたは500Bを用いて図18のLiDAR装置400を構成した場合、XY面内だけではなく、Z方向の位置も計測できるため、3次元の物体の位置を計測することができる。TOF法を用いた場合も、XYZ面内の角度とその距離を測定することで、3次元の物体の位置を計測することができる。 The optical antenna 500A or 500B can be used for the output port Pout of the optical device of the first to fifth embodiments. Further, the optical antenna 500A or 500B may be used as the emission port of the optical sweep device 413 of the LiDAR apparatus 400 of FIG. When the LiDAR device 400 of FIG. 18 is configured using the optical antenna 500A or 500B, not only the XY plane but also the position in the Z direction can be measured, so that the position of a three-dimensional object can be measured. Even when the TOF method is used, the position of a three-dimensional object can be measured by measuring the angle in the XYZ plane and its distance.
 図19Aの光アンテナ500Aまたは図19Bの光アンテナ500Bを用いない場合、光デバイスの出射ポートとして、出力導波路の端面またはその先端にスポットサイズコンバータなどの結合構造を設け、基板の面内方向(基板表面と平行な方向)に光を出射することができる。 When the optical antenna 500A of FIG. 19A or the optical antenna 500B of FIG. 19B is not used, a coupling structure such as a spot size converter is provided on the end face of the output waveguide or the tip thereof as the output port of the optical device, and the in-plane direction of the substrate ( Light can be emitted in a direction parallel to the substrate surface.
 光アンテナ500Aまたは500Bを用いることで、基板表面(XY面)と垂直なZ方向に光を出射することができる。グレーティング503の構造を最適化することで、光を特定の方向に選択的に出射することも可能である。ナノカーボン材料15の通電加熱によって屈折率やスローライト効果を連続的に変える場合は、出射ポートPoutから出力される光を掃引することができる。 By using the optical antenna 500A or 500B, light can be emitted in the Z direction perpendicular to the substrate surface (XY plane). By optimizing the structure of the grating 503, light can be selectively emitted in a specific direction. When the refractive index and the slow light effect are continuously changed by energization heating of the nanocarbon material 15, light output from the emission port Pout can be swept.
 以上、特定の実施例に基づいて本発明を説明してきたが、本発明は種々の適用例、変形例を含む。実施形態の光デバイスは、光通信素子、光インターコネクト、集積光・電子回路、量子コンピューターや量子暗号デバイスといった、様々な情報通信デバイスへの応用が可能である。現在の光通信やLiDARの技術だけではなく、次世代の高密度情報通信や量子情報技術にも応用できる。 Although the present invention has been described based on the specific embodiments, the present invention includes various application examples and modifications. The optical device according to the embodiment can be applied to various information communication devices such as an optical communication element, an optical interconnect, an integrated optical / electronic circuit, a quantum computer, and a quantum cryptography device. It can be applied not only to current optical communication and LiDAR technologies, but also to next-generation high-density information communication and quantum information technologies.
 図13~図17で用いるアレイ導波路は、図中では簡単のために各チャンネルの導波路の長さがほぼ等しく描かれているが、導波路長はチャンネルごとに変えることもできる。チャンネル間で光路長を変えることで、遅延時間や位相差を変えることができるため、例えば出射ポートPoutにおいて高次光を利用することもできる。 The arrayed waveguides used in FIG. 13 to FIG. 17 are depicted with the waveguide lengths of each channel being almost equal in the drawings for simplicity, but the waveguide lengths can be changed for each channel. Since the delay time and the phase difference can be changed by changing the optical path length between channels, for example, higher-order light can be used at the output port Pout.
 図16の光路制御デバイス300は、単一波長の入射光を想定して説明したが、入射光がWDM信号の場合、各波長を分離する分波器(デマルチプレクサ)としても利用可能である。図19Aまたは図19Bの光アンテナで、周期的な屈折率変化を有するナノ構造体は、フォトニック結晶やグレーティングに限定されず、人工的に周期的な屈折率分布が形成された無機または有機の材料を用いてもよい。 Although the optical path control device 300 in FIG. 16 has been described on the assumption of incident light having a single wavelength, when the incident light is a WDM signal, it can also be used as a demultiplexer (demultiplexer) that separates the wavelengths. In the optical antenna of FIG. 19A or FIG. 19B, the nanostructure having a periodic refractive index change is not limited to a photonic crystal or a grating, but an inorganic or organic material in which a periodic refractive index distribution is artificially formed. Materials may be used.
 この出願は、2018年5月21日に出願された日本国特許出願第2018-097462号に基づきその優先権を主張するものであり、その全内容を含むものである。 This application claims priority based on Japanese Patent Application No. 2018-097462 filed on May 21, 2018, and includes the entire contents thereof.
10、10A、10B、10C,10D:光路変換器(光デバイス)
11、12、21:光導波路
13:光共振器(光部品)
14、16、24、26:電極
15、25:ナノカーボン材料
20、20A~20E、20-1~20-n:位相変調器
23、231~234:リング共振器
30:アレイ位相変調器
170 方向性カプラ(光部品)
180 マルチモードカプラ(光部品)
200A、200B:光掃引デバイス(光デバイス)
201、301:入力導波路
203-1~203-n:導波路
204:アレイ導波路
300:光路制御デバイス(光デバイス)
306:出力導波路
310:分光器
400:LiDAR装置(光検出及び測距装置)
500A、500B:光アンテナ(光デバイス)
MZ マッハツェンダ干渉計(光部品)
Pin:入射光ポート
Pout1:透過光出射ポート
Pout2:分岐光出射ポート
PoutA、PoutB、Pout11、Pout12、P1~Pn:出射光ポート
10, 10A, 10B, 10C, 10D: Optical path converter (optical device)
11, 12, 21: Optical waveguide 13: Optical resonator (optical component)
14, 16, 24, 26: electrodes 15, 25: nanocarbon materials 20, 20A to 20E, 20-1 to 20-n: phase modulator 23, 231 to 234: ring resonator 30: array phase modulator 170 Coupler (optical component)
180 Multi-mode coupler (optical components)
200A, 200B: optical sweep device (optical device)
201, 301: input waveguides 203-1 to 203-n: waveguides 204: arrayed waveguides 300: optical path control devices (optical devices)
306: Output waveguide 310: Spectrometer 400: LiDAR device (light detection and ranging device)
500A, 500B: Optical antenna (optical device)
MZ Mach-Zehnder interferometer (optical components)
Pin: incident light port Pout1: transmitted light exit port Pout2: branch light exit port PoutA, PoutB, Pout11, Pout12, P1 to Pn: exit light ports

Claims (15)

  1.  入射光ポートに接続される第1の光導波路と、
     第1の出射光ポートに接続される第2の光導波路と、
     第2の出射光ポートに接続される第3の光導波路と、
     前記第1の光導波路を伝搬する入射光を、前記第2の光導波路と前記第3の光導波路の少なくとも一方に光学的に結合する光部品と、
     少なくとも前記光部品が設けられるエリアに配置されるナノカーボン材料と、
     前記ナノカーボン材料に電気信号を印加する電極対と、
    を有し、前記電気信号の印加によって、前記第1の出射光ポートと前記第2の出射光ポートの間で光路が切り替えられることを特徴とする光デバイス。
    A first optical waveguide connected to the incident optical port;
    A second optical waveguide connected to the first outgoing light port;
    A third optical waveguide connected to the second outgoing light port;
    An optical component that optically couples incident light propagating through the first optical waveguide to at least one of the second optical waveguide and the third optical waveguide;
    A nanocarbon material disposed in an area where at least the optical component is provided; and
    An electrode pair for applying an electrical signal to the nanocarbon material;
    The optical device is characterized in that an optical path is switched between the first outgoing light port and the second outgoing light port by applying the electrical signal.
  2.  前記第1の光導波路と前記第2の光導波路は連続する一本の導波路であり、
     前記光部品は、前記一本の導波路と前記第3の光導波路の間に配置される光共振器であり、
     少なくとも前記光共振器を覆う前記ナノカーボン材料への前記電気信号の印加によって、前記第1の出射光ポートと前記第2の出射光ポートの間で光路が切り替えられることを特徴とする請求項1に記載の光デバイス。
    The first optical waveguide and the second optical waveguide are one continuous waveguide,
    The optical component is an optical resonator disposed between the one waveguide and the third optical waveguide;
    The optical path is switched between the first outgoing light port and the second outgoing light port by applying the electrical signal to at least the nanocarbon material covering the optical resonator. The optical device according to.
  3.  前記光部品はマッハツェンダ干渉計であり、
     前記入射光ポートは前記マッハツェンダ干渉計の一端に光学的に結合されており、
     前記第1の出射光ポートと前記第2の出射光ポートは、前記マッハツェンダ干渉計の他端に光学的に結合されており、
     前記マッハツェンダ干渉計の一方のアームに配置される第1のナノカーボン材料と、
     前記マッハツェンダ干渉計の他方のアームに配置される第2のナノカーボン材料と、
     を有し、
     前記電気信号によって前記第1のナノカーボン材料の通電状態と、前記第2のナノカーボン材料の通電状態が個別に制御されて、前記第1の出射光ポートと前記第2の出射光ポートの間で光路が切り替えられることを特徴とする請求項1に記載の光デバイス。
    The optical component is a Mach-Zehnder interferometer;
    The incident optical port is optically coupled to one end of the Mach-Zehnder interferometer;
    The first outgoing light port and the second outgoing light port are optically coupled to the other end of the Mach-Zehnder interferometer,
    A first nanocarbon material disposed on one arm of the Mach-Zehnder interferometer;
    A second nanocarbon material disposed on the other arm of the Mach-Zehnder interferometer;
    Have
    The current state of the first nanocarbon material and the current state of the second nanocarbon material are individually controlled by the electrical signal, so that the first output light port and the second output light port are connected. The optical device according to claim 1, wherein the optical path is switched.
  4.  前記光部品は方向性カプラ、マルチモードカプラ、またはYスプリッタであり、
     前記入射光ポートは、前記光部品の結合部の入力端に光学的に結合され、
     前記第1の出射光ポートと前記第2の出射光ポートは、前記結合部の出力端にそれぞれ光学的に結合され、
     少なくとも前記結合部を覆う前記ナノカーボン材料への前記電気信号の印加によって、前記結合部での干渉状態が変化して、前記第1の出射光ポートと前記第2の出射光ポートの間で光路が切り替えられることを特徴とする請求項1に記載の光デバイス。
    The optical component is a directional coupler, a multimode coupler, or a Y splitter,
    The incident light port is optically coupled to the input end of the coupling portion of the optical component;
    The first outgoing light port and the second outgoing light port are optically coupled to the output ends of the coupling parts, respectively.
    By applying the electrical signal to the nanocarbon material covering at least the coupling portion, an interference state in the coupling portion changes, and an optical path between the first emission light port and the second emission light port. The optical device according to claim 1, wherein the optical device is switched.
  5.  前記結合部を覆う前記ナノカーボン材料は、前記光部品の光軸に対して非対称な平面形状を有することを特徴とする請求項4に記載の光デバイス。 5. The optical device according to claim 4, wherein the nanocarbon material covering the coupling portion has a planar shape asymmetric with respect to the optical axis of the optical component.
  6.  入射光を複数のチャンネルに分岐する光結合器と、
     前記複数のチャンネルにそれぞれ設けられる複数の位相変調器と、
     前記複数の位相変調器の出力に結合される複数の出射光ポートと、
    を有し、
     前記複数の位相変調器はナノカーボン材料で覆われる被覆領域を有し、外部から前記ナノカーボン材料に印加される電気信号によって前記複数の位相変調器を通過する光の位相が変化し、
     前記複数の位相変調器で与えられる位相差によって、前記複数の出射光ポートから出射される出射光の方向が決まることを特徴とする光デバイス。
    An optical coupler for branching incident light into a plurality of channels;
    A plurality of phase modulators respectively provided in the plurality of channels;
    A plurality of outgoing optical ports coupled to outputs of the plurality of phase modulators;
    Have
    The plurality of phase modulators have a coating region covered with a nanocarbon material, and the phase of light passing through the plurality of phase modulators is changed by an electrical signal applied to the nanocarbon material from the outside,
    An optical device characterized in that a direction of outgoing light emitted from the plurality of outgoing light ports is determined by a phase difference given by the plurality of phase modulators.
  7.  前記複数の位相変調器は、並列またはアレイ状に配置され、
     各位相変調器は、前記ナノカーボン材料によって個別に覆われた前記被覆領域を有し、
     前記ナノカーボン材料への通電加熱によって前記複数の位相変調器の位相変化量が個別に制御されることを特徴とする請求項6に記載の光デバイス。
    The plurality of phase modulators are arranged in parallel or in an array,
    Each phase modulator has the covered region individually covered by the nanocarbon material;
    The optical device according to claim 6, wherein phase change amounts of the plurality of phase modulators are individually controlled by energization heating of the nanocarbon material.
  8.  前記複数の位相変調器は、並列またはアレイ状に配置され、
     前記ナノカーボン材料は、前記複数の位相変調器に共通に設けられており、
     各位相変調器が前記ナノカーボン材料で覆われる前記被覆領域の形状またはサイズは、前記複数のチャンネル間で異なることを特徴とする請求項6に記載の光デバイス。
    The plurality of phase modulators are arranged in parallel or in an array,
    The nanocarbon material is provided in common to the plurality of phase modulators,
    The optical device according to claim 6, wherein a shape or a size of the covering region in which each phase modulator is covered with the nanocarbon material is different among the plurality of channels.
  9.  前記複数の位相変調器は、直列または多段接続されて、同じ位相変化量を有し、
     各位相変調器の後段で前記入射光の一部が取り出されて前記複数の出射光ポートに結合されることを特徴とする請求項6に記載の光デバイス。
    The plurality of phase modulators are connected in series or in multiple stages and have the same amount of phase change,
    The optical device according to claim 6, wherein a part of the incident light is extracted after the phase modulator and coupled to the plurality of outgoing light ports.
  10.  前記複数の位相変調器の各々は、光導波路、1以上の光共振器、前記光導波路と前記光共振器の組み合わせ、または周期的な屈折率分布を有するナノ構造体で形成される位相変調部を有し、
     前記位相変調部が前記ナノカーボン材料で被覆されていることを特徴とする請求項6~9のいずれか1項に記載の光デバイス。
    Each of the plurality of phase modulators is an optical waveguide, one or more optical resonators, a combination of the optical waveguide and the optical resonator, or a phase modulator formed of a nanostructure having a periodic refractive index distribution Have
    The optical device according to any one of claims 6 to 9, wherein the phase modulation section is coated with the nanocarbon material.
  11.  入射光を複数のチャンネルに分岐する光結合器と、前記複数のチャンネルにそれぞれ設けられる複数の位相変調器と、外部からの電気信号による通電加熱によって各チャンネルを通過する光の位相を変化させるナノカーボン材料とを有するアレイ位相変調器と、
     前記アレイ位相変調器の出力に接続される複数のアレイ導波路と、
     前記複数のアレイ導波路に接続されて前記複数のアレイ導波路からの出力光を所定の位置に集光させる集光導波路と、
     前記集光導波路の出力に接続される出射光ポートと、
    を有し、
     前記電気信号によって前記複数の位相変調器の位相変化量が制御されて、前記集光導波路の出射端での集光位置が決まることを特徴とする光デバイス。
    An optical coupler for branching incident light into a plurality of channels, a plurality of phase modulators provided in each of the plurality of channels, and a nano that changes the phase of light passing through each channel by energization heating with an external electric signal An array phase modulator having a carbon material;
    A plurality of arrayed waveguides connected to the output of the array phase modulator;
    A condensing waveguide that is connected to the plurality of arrayed waveguides and condenses output light from the plurality of arrayed waveguides at a predetermined position;
    An outgoing light port connected to the output of the condensing waveguide;
    Have
    An optical device characterized in that a phase change amount of the plurality of phase modulators is controlled by the electrical signal, and a condensing position at an output end of the condensing waveguide is determined.
  12.  前記集光導波路の出射端に接続される複数の出力導波路、
    をさらに有し、
     前記出射光ポートは、前記複数の出力導波路のそれぞれに接続される複数の出射光ポートを含み、
     前記位相変化量の制御により、前記集光位置が前記複数の出力導波路のいずれかに合わせられて前記複数の出射光ポートから1つの出射光ポートが選択されることを特徴とする請求項11に記載の光デバイス。
    A plurality of output waveguides connected to an output end of the condensing waveguide;
    Further comprising
    The output light port includes a plurality of output light ports connected to each of the plurality of output waveguides,
    12. The output light port is selected from the plurality of output light ports by adjusting the phase change amount so that the condensing position is adjusted to one of the plurality of output waveguides. The optical device according to.
  13.  前記集光導波路の出射端に接続される単一の出力導波路、
    をさらに有し、
     前記出射光ポートは、前記出力導波路に接続される単一の出射光ポートであり、
     前記入射光は複数の波長を含み、
     前記位相変化量の制御により、波長に依存して前記集光位置がシフトして、前記出力導波路から特定の波長の光が取り出されることを特徴とする請求項11に記載の光デバイス。
    A single output waveguide connected to the output end of the condensing waveguide;
    Further comprising
    The outgoing light port is a single outgoing light port connected to the output waveguide;
    The incident light includes a plurality of wavelengths;
    The optical device according to claim 11, wherein the condensing position is shifted depending on a wavelength by controlling the phase change amount, and light having a specific wavelength is extracted from the output waveguide.
  14.  請求項7~10のいずれか1項の光デバイスを用いて前記複数の出射光ポートから出射する光を所定の角度範囲内で掃引する投光部と、
     前記所定の角度範囲内に存在する物体からの反射光を受光する受光部と、
     前記受光部での受光結果に基づいて前記物体の距離を計測する制御回路と、
    を有する光検出及び測距装置。
    A light projecting unit that sweeps light emitted from the plurality of outgoing light ports within a predetermined angle range using the optical device according to any one of claims 7 to 10;
    A light receiving unit that receives reflected light from an object existing within the predetermined angle range;
    A control circuit for measuring the distance of the object based on a light reception result in the light receiving unit;
    A light detection and ranging device.
  15.  周期的な屈折率分布を有するナノ構造体と、
     前記ナノ構造体を覆うナノカーボン材料と、
     前記ナノカーボン材料に印加される電気信号を入力する電極と、
    を有し、前記ナノカーボン材料の通電加熱によって前記ナノ構造体の屈折率または伝搬光との相互作用が変調されて前記ナノ構造体に入射した光の出射方向が変化することを特徴とする光デバイス。
    A nanostructure having a periodic refractive index profile;
    A nanocarbon material covering the nanostructure;
    An electrode for inputting an electrical signal applied to the nanocarbon material;
    And the nanocarbon material is heated by energization and heating, whereby the refractive index of the nanostructure or the interaction with propagating light is modulated to change the emission direction of light incident on the nanostructure. device.
PCT/JP2019/019366 2018-05-21 2019-05-15 Optical device using nanocarbon material WO2019225445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020521184A JP7454852B2 (en) 2018-05-21 2019-05-15 Optical devices using nanocarbon materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018097462 2018-05-21
JP2018-097462 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019225445A1 true WO2019225445A1 (en) 2019-11-28

Family

ID=68615718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019366 WO2019225445A1 (en) 2018-05-21 2019-05-15 Optical device using nanocarbon material

Country Status (2)

Country Link
JP (1) JP7454852B2 (en)
WO (1) WO2019225445A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993800A (en) * 2019-12-16 2020-04-10 北京元芯碳基集成电路研究院 Photoelectric detector and preparation method thereof
CN113405704A (en) * 2021-06-24 2021-09-17 中国矿业大学(北京) Graphene composite structure sensor for measuring pressure
WO2022164554A1 (en) * 2021-01-28 2022-08-04 Microsoft Technology Licensing, Llc Magneto-optical modulator-based system for transferring quantum information
WO2023062949A1 (en) * 2021-10-13 2023-04-20 ソニーセミコンダクタソリューションズ株式会社 Rangefinder
WO2023162181A1 (en) * 2022-02-25 2023-08-31 日本電信電話株式会社 Optical ring modulator
CN117269079A (en) * 2023-11-22 2023-12-22 天津工业大学 Runway type micro-ring glucose sensor based on SOI and sensing method thereof
EP4394394A1 (en) * 2022-12-29 2024-07-03 Airbus Operations, S.L.U. Electric voltage measuring device using a microelectromechanical system with graphene

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256552A (en) * 2009-04-23 2010-11-11 Nec Corp Optical circuit element
CN102662254A (en) * 2012-05-02 2012-09-12 浙江大学 Micro-ring optical switch based on electric absorption characteristics of graphene
JP2015068927A (en) * 2013-09-27 2015-04-13 日本電信電話株式会社 Phase array type optical switch
CN105044929A (en) * 2015-05-28 2015-11-11 苏州大学 Thermo-optic modulator based on graphene micro-ring structure and manufacturing method thereof
WO2017126386A1 (en) * 2016-01-22 2017-07-27 国立大学法人横浜国立大学 Light-deflecting device and lidar apparatus
JP2017161591A (en) * 2016-03-07 2017-09-14 株式会社豊田中央研究所 Refractive index control element, optical phase shifter, light switch and method for manufacturing refractive index control element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256552A (en) * 2009-04-23 2010-11-11 Nec Corp Optical circuit element
CN102662254A (en) * 2012-05-02 2012-09-12 浙江大学 Micro-ring optical switch based on electric absorption characteristics of graphene
JP2015068927A (en) * 2013-09-27 2015-04-13 日本電信電話株式会社 Phase array type optical switch
CN105044929A (en) * 2015-05-28 2015-11-11 苏州大学 Thermo-optic modulator based on graphene micro-ring structure and manufacturing method thereof
WO2017126386A1 (en) * 2016-01-22 2017-07-27 国立大学法人横浜国立大学 Light-deflecting device and lidar apparatus
JP2017161591A (en) * 2016-03-07 2017-09-14 株式会社豊田中央研究所 Refractive index control element, optical phase shifter, light switch and method for manufacturing refractive index control element

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TATOLI, T. ET AL.: "Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas", APPLIED OPTICS, vol. 55, no. 16, 1 June 2016 (2016-06-01), pages 4342 - 4349, XP055657766 *
WANG, Y. ET AL.: "Improved performance of optical phased arrays assisted by transparent graphene nanoheaters and air trenches", RSC ADV., vol. 8, 23 February 2018 (2018-02-23), pages 8442 - 8449, XP055653674, DOI: 10.1039/C7RA13154B *
YAN,SIQI: "Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides", NATURE, vol. 8, no. 1, 14411, 9 February 2017 (2017-02-09), pages 1 - 8, XP055657770 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993800A (en) * 2019-12-16 2020-04-10 北京元芯碳基集成电路研究院 Photoelectric detector and preparation method thereof
WO2022164554A1 (en) * 2021-01-28 2022-08-04 Microsoft Technology Licensing, Llc Magneto-optical modulator-based system for transferring quantum information
US11675222B2 (en) 2021-01-28 2023-06-13 Microsoft Technology Licensing, Llc Magneto-optical modulator-based system for transferring quantum information
CN113405704A (en) * 2021-06-24 2021-09-17 中国矿业大学(北京) Graphene composite structure sensor for measuring pressure
WO2023062949A1 (en) * 2021-10-13 2023-04-20 ソニーセミコンダクタソリューションズ株式会社 Rangefinder
WO2023162181A1 (en) * 2022-02-25 2023-08-31 日本電信電話株式会社 Optical ring modulator
EP4394394A1 (en) * 2022-12-29 2024-07-03 Airbus Operations, S.L.U. Electric voltage measuring device using a microelectromechanical system with graphene
CN117269079A (en) * 2023-11-22 2023-12-22 天津工业大学 Runway type micro-ring glucose sensor based on SOI and sensing method thereof
CN117269079B (en) * 2023-11-22 2024-02-27 天津工业大学 Runway type micro-ring glucose sensor based on SOI and sensing method thereof

Also Published As

Publication number Publication date
JP7454852B2 (en) 2024-03-25
JPWO2019225445A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP7454852B2 (en) Optical devices using nanocarbon materials
Fang et al. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits
Chong et al. Tuning of photonic crystal waveguide microcavity by thermooptic effect
Zhang et al. Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator
KR20130031598A (en) Optical waveguide
WO2015050602A1 (en) Integrated photonic devices based on waveguides patterned with optical antenna arrays
US8582929B2 (en) Ultra-sensitive electric field detection device
Sun et al. Design of plasmonic modulators with vanadium dioxide on silicon-on-insulator
Sabri et al. Broadband continuous beam-steering with time-modulated metasurfaces in the near-infrared spectral regime
Liu et al. Hybrid coupling between long-range surface plasmon polariton mode and dielectric waveguide mode
Lechago et al. All-silicon on-chip optical nanoantennas as efficient interfaces for plasmonic devices
Parra et al. Low-threshold power and tunable integrated optical limiter based on an ultracompact VO2/Si waveguide
Zhang et al. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities
Momeni et al. Silicon nanophotonic devices for integrated sensing
Alrayk et al. MIR optical modulator based on silicon-on-calcium fluoride platform with VO 2 material
Mishra et al. Comb-like hybrid plasmonic ring resonator for large and voltage tunable group delay
JP2008065030A (en) Optical control element and compound optical control element
CN107111169B (en) Stress tuning planar lighting circuit and method thereof
JP4890021B2 (en) OPTICAL ELEMENT AND OPTICAL MODULATOR HAVING OPTICAL ELEMENT
Zhu et al. A micromachined optical double well for thermo-optic switching via resonant tunneling effect
Jarrahi et al. High-speed optical beam-steering based on phase-arrayed waveguides
US11525959B2 (en) Tunable nanocircuit and waveguide system and method on optical fiber
Liu et al. Thermally tunable silicon nitride sampled gratings in polymer
Agarwal et al. Thermal design management of highly mechanically stable wavelength shifter using photonic crystal waveguide
Mynbaev et al. Plasmonic-based devices for optical communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521184

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807048

Country of ref document: EP

Kind code of ref document: A1