WO2019225438A1 - Complex catalyst used for hydrogenation of carbon dioxide, and method for producing methanol - Google Patents

Complex catalyst used for hydrogenation of carbon dioxide, and method for producing methanol Download PDF

Info

Publication number
WO2019225438A1
WO2019225438A1 PCT/JP2019/019310 JP2019019310W WO2019225438A1 WO 2019225438 A1 WO2019225438 A1 WO 2019225438A1 JP 2019019310 W JP2019019310 W JP 2019019310W WO 2019225438 A1 WO2019225438 A1 WO 2019225438A1
Authority
WO
WIPO (PCT)
Prior art keywords
integer
complex
different
same
ligand
Prior art date
Application number
PCT/JP2019/019310
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 姫田
尚弥 尾西
量一 兼賀
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to DE112019002674.7T priority Critical patent/DE112019002674T8/en
Publication of WO2019225438A1 publication Critical patent/WO2019225438A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • C07C29/158Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof containing rhodium or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • B01J2231/625Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2 of CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0216Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst used for hydrogenation of carbon dioxide and a method for producing methanol.
  • the present inventors have developed complex catalysts for synthesizing formate from carbon dioxide with high efficiency in an alkaline aqueous solution (Patent Documents 1 to 6, Non-Patent Documents 2 to 5).
  • methanol was successfully synthesized from formic acid under acidic conditions using these complex catalysts (Non-Patent Documents 6 to 7).
  • methanol synthesis via carbonic acid in water via formic acid has also been achieved using a complex catalyst (Patent Document 8, Non-Patent Document 7).
  • Non-Patent Documents 9 and 10 a complex catalyst is dissolved and reacted in a solvent, but there is little known a catalytic reaction in which a complex catalyst is reacted with a gas in a solid state without being dissolved in a medium.
  • Chemsuschem 2017, 10, 1071-1075 Kanega, R .; Onishi, N .; Szalda, D. J .; Ertem, M. Z .; Muckerman, J. T .; Fujita, E .; Himeda, Y., ACS Catalysis 2017, 7 (10), 6426-6429. Tsurusaki, A .; Murata, K .; Onishi, N .; Sordakis, K .; Laurenczy, G .; Himeda, Y., Acs Catalysis 2017, 7 (2), 1123-1131.
  • Methanol synthesis by hydrogenation of carbon dioxide has insufficient methanol synthesis efficiency under high temperature conditions due to extremely disadvantageous equilibrium limitations. Therefore, the development of a high performance catalyst that can be driven even under low temperature reaction conditions has been desired.
  • Homogeneous complex catalysts are known to produce methanol at a relatively low temperature (200 ° C or lower) compared to solid catalysts in order to show high catalytic performance, but because they are batch-type reactions in solution.
  • it was necessary to separate the product and the catalyst and it was difficult to construct a continuous methanol synthesis process.
  • conversion to the product by the equilibrium may be restricted.
  • a binuclear complex catalyst having a plurality of metal centers represented by any one of the following general formulas (1) to (6) is obtained in a solid state without being dissolved in a medium or the like.
  • the present invention has been found to be effective for producing methanol in a mixed gas of carbon dioxide and hydrogen under low-temperature reaction conditions of 0 ° C. or lower, and the present invention is composed of the following technical means.
  • a complex represented by the general formula (1) and capable of arranging any two adjacent metal atoms in a spherical space having a diameter of 2 nm, an isomer thereof, or a salt of the complex or the isomer is effective.
  • a complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in the solid state as a component M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium, or platinum, which may be the same or different
  • W is a ligand for coupling the n-number of the metal center M i through an appropriate space, and coordinated with a metal and monodentate or multidentate
  • L j is any ligand and may be the same or different;
  • n is an integer of 2 or more,
  • m is an integer of 1 to (n-1), i is an integer from 1 to n, j is an integer from 1 to m, k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer.
  • n is an integer of 2 or more, i is any integer from 1 to n; M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different; W is a ligand for bonding n metal centers M through an appropriate space, and is coordinated with a metal in a monodentate or multidentate manner.
  • a i and B i are arbitrary ligands, and may be the same or different, k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer.
  • n is an integer of 2 or more, i is any integer from 1 to n;
  • M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different;
  • a i and B i are arbitrary ligands, and may be the same or different,
  • X i and Y i are each nitrogen, oxygen, sulfur, phosphorus or carbon, and each coordinate to M i and may be the same or different;
  • U constitutes a ligand for bonding n metal centers through an appropriate space together with n sets of X i and Y i for coordination with the metal center,
  • k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer.
  • n is an integer of 2 or more, i is any integer from 1 to n;
  • M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different;
  • S i is an aromatic anion ligand or an aromatic ligand, and when it has a substituent, the substituent may be one or plural, and may be the same or different.
  • Each T i is an arbitrary ligand or not present, and may be the same or different
  • X i and Y i are each nitrogen, oxygen, sulfur, phosphorus or carbon, and each coordinate to M i and may be the same or different
  • Z i 1 and Z i 2 are carbon, nitrogen, oxygen, phosphorus or sulfur, and may be the same or different
  • G i 1 , G i 2 , G i 3 , and G i 4 are each an arbitrary substituent or not present, and may be the same or different, and may form a ring between them, may have a substituent on the ring, also through one or more of G i, is coupled with a ligand other metal center
  • the bond between X i , Z i 1 , Z i 2 , Y i and G i 1 and X i , G i 2 and Z i 1 , G i 3 and Z i 2 , G i 4 and Y i is Each may be a
  • ⁇ 5> a complex represented by the general formula (5), having a nitrogen bidentate ligand, and capable of arranging any two adjacent metal atoms in a spherical space having a diameter of 2 nm, or an isomer thereof, or A complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in a solid state, containing the complex or isomer salt as an active ingredient.
  • n is an integer of 2 or more, i is any integer from 1 to n;
  • M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different;
  • S i is an aromatic anion ligand or an aromatic ligand, and when it has a substituent, the substituent may be one or plural, and may be the same or different.
  • Each T i is an arbitrary ligand or not present, and may be the same or different
  • Z i 1 and Z i 2 are carbon, nitrogen, oxygen, phosphorus or sulfur, and may be the same or different
  • G i 5 and G i 6 are each an arbitrary substituent or are not present, and may be the same or different, may form a ring between them, and have a substituent on the ring.
  • the bond between G i 5 and N, N and Z i 1 , Z i 1 and G i 6 may be a single bond or a double bond, Q i is carbon, sulfur, oxygen or nitrogen; V represents n metal centers together with n sets of NZ i 2 (-Q i ) -Z i 1 (-G i 6 ) -N (-G i 5 ) for coordination with the metal centers. It constitutes a ligand for bonding through an appropriate space, k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer.
  • a complex represented by the general formula (6) having a nitrogen bidentate ligand having an amide moiety, and capable of arranging any two adjacent metal atoms in a spherical space having a diameter of 2 nm,
  • n is an integer of 2 or more, i is any integer from 1 to n; M i is, iridium, rhodium, ruthenium, and cobalt, which may be the same or different from each other, S i is an aromatic anion ligand or an aromatic ligand, and when it has a substituent, the substituent may be one or plural, and may be the same or different.
  • Each T i is an arbitrary ligand or not present, and may be the same or different
  • Z i 1 is carbon or nitrogen
  • the bond between G i 5 and N, N and Z i 1 , Z i 1 and G i 6 may be a single bond or a double bond
  • G i 5 and G i 6 are each an arbitrary substituent or absent, and may be the same or different, and may form a ring between them, or may have a substituent on the ring.
  • V is a suitable combination of n metal centers with n pairs of N—C ( ⁇ O) —Z i 1 ( ⁇ G i 6 ) —N (—G i 5 ) Constitutes a ligand for bonding through a space, k represents the charge of the complex catalyst and is a positive integer, 0, or a negative integer.
  • the complex catalyst according to any one of ⁇ 1> to ⁇ 6>, an isomer thereof, or a mixed gas of carbon dioxide and hydrogen gas containing the complex or a salt of the isomer as an active ingredient A supported catalyst in which a complex catalyst for producing methanol is mixed with another substance, or is physically adsorbed or chemically bonded.
  • a method for producing methanol by circulating a mixed gas of carbon dioxide and hydrogen gas through a reactor in which the complex catalyst according to any one of ⁇ 1> to ⁇ 6> is present.
  • methanol can be produced in a mixed gas of carbon dioxide and hydrogen at a low temperature of 100 ° C. or lower.
  • this method does not require separation of the catalyst from the reaction system, it can be easily applied to a continuous flow reaction suitable for practical use.
  • FIG. 1 is produced after standing for a predetermined time at 60 ° C. in a mixed gas of hydrogen: carbon dioxide (3: 1) of 4 MPa using a complex catalyst (4.5 ⁇ mol) represented by the formula (16). It is the graph which showed progress of the quantity of methanol.
  • indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • n is an integer of 2 or more, and indicates the number of catalytically active units.
  • i is any integer from 1 to n.
  • k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer.
  • W is a ligand for bonding n metal centers through an appropriate space, and is monodentate or multidentate.
  • Coordination is not limited to a covalent bond, but may be bound to other metal centers by an ionic bond or a bond via a coordinate bond with a metal, but is not limited thereto.
  • U is a part of a ligand for bonding n metal centers through an appropriate space, and n for coordinating with the metal center. It is bound to a pair of X i and Y i , which is not limited to a covalent bond, but may be bound to other metal centers by an ionic bond or a bond via a coordinate bond with a metal. It is not limited to.
  • V is a part of a ligand for bonding n metal centers through a suitable space, and this is a covalent bond.
  • the present invention is not limited to this, and it is conceivable to bond to other metal centers by ionic bonds or bonds through coordination bonds with metals, but is not limited thereto.
  • each metal center needs to be arranged at an appropriate distance for producing methanol via a ligand.
  • the metal centers are arranged in a flexible structure such as an alkyl chain, the metal centers approach each other and move away from each other. It is possible to produce methanol.
  • the metal centers are arranged at a certain distance in the case of a rigid structure such as an aromatic ring, the metal centers are arranged at a certain distance, but if the metal centers are always arranged at an appropriate distance range, methanol is efficiently used. However, if it cannot be disposed within an appropriate distance range, it is assumed that methanol is not produced or the production amount is small.
  • the ligand is not limited to a covalent bond, but is constituted by an ionic bond or a bond via a coordinate bond with a metal, but is not limited thereto.
  • Any two adjacent metal atoms in the same catalyst molecule or between molecules with another catalyst molecule are preferably arranged in a spherical space having a diameter of 2 nm. In particular, it is preferable to arrange any two adjacent metal atoms in a spherical space having a diameter of 1 nm.
  • the ligand represented by L is an arbitrary ligand and may or may not be.
  • the ligands represented by A i and B i are arbitrary ligands, and may or may not be present.
  • X i and Y i are any of carbon, nitrogen, oxygen, sulfur, and phosphorus, preferably carbon or nitrogen.
  • Z i 1 and Z i 2 are any one of carbon, nitrogen, oxygen, phosphorus and sulfur, and preferably carbon or nitrogen.
  • G i 1 , G i 2 , G i 3 , and G i 4 are each an arbitrary substituent or not present, and may be the same or different, A ring may be formed between each of them, may have a substituent on the ring, and is bonded to another metal center through an arbitrary bond.
  • a ring may be formed between each of them, may have a substituent on the ring, and is bonded to another metal center through an arbitrary bond.
  • G i 5 and G i 6 are each an optional substituent or may not be present, and may be the same or different.
  • a ring may be formed, and an arbitrary substituent may be present on the ring.
  • substituents may be present on the ligand.
  • the substituent on the ligand may be any, for example, an alkyl group, a hydroxy group (—OH), an ester group (—COOR), an amide group (—CONRR ′), a halogen (—X), Alkoxy group (—OR), alkylthio group (—SR), amino group (—NRR ′), acyl group, carboxylic acid group (—COOH), nitro group, sulfonic acid group (—SO 3 H), aromatic group, etc.
  • substituents when there are a plurality of substituents, they may be the same or different. Particularly preferred is pentamethylcyclopentadienyl or hexamethylbenzene all substituted with a methyl group.
  • the ligand represented by T i the water molecules, hydrogen atoms, hydrogen molecules, acetonitrile, alkoxide ion, hydroxide ion, It may be a ligand of carbonate ion, trifluoromethanesulfonate ion, sulfate ion, hydrogen sulfate ion, nitrate ion, formate ion, or acetate ion, or may be absent.
  • the alkoxide ion is not particularly limited, but for example, alkoxide ions derived from methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, etc. Can be mentioned. Further, it may be detached by light or heat. However, this description is only an example of a possible mechanism and does not limit the present invention.
  • Q i is any of carbon, nitrogen, oxygen, and sulfur, and preferably oxygen or nitrogen.
  • the counter ion is not particularly limited, but examples of the anion include hexafluorophosphate ion (PF 6 ⁇ ), tetra Fluoroborate ion (BF 4 ⁇ ), hydroxide ion (OH ⁇ ), acetate ion, carbonate ion, phosphate ion, sulfate ion, hydrogen sulfate ion, nitrate ion, hypohalite ion (for example, hypofluorite ion) , Hypochlorite ion, hypobromite ion, hypoiodite ion, etc.), halite ion (eg, fluorite ion, chlorite ion, bromite ion, iodate ion, etc.), halogen Acid ions (eg, fluoric acid ions, chlorate ions, bromate ions, iodate ions, etc.), halogen Acid ions (eg, fluoric acid
  • the cation is not particularly limited, but various metal ions such as lithium ion, magnesium ion, sodium ion, potassium ion, calcium ion, barium ion, strontium ion, yttrium ion, scandium ion, lanthanoid ion, hydrogen ion, etc. Can be mentioned. In addition, since halogen anions inhibit this reaction, it is better to eliminate them as much as possible. These counter ions may be one type, but two or more types may coexist. However, this description is only an example of a possible mechanism and does not limit the present invention.
  • the alkyl group is not particularly limited.
  • alkyl groups such as hydroxyalkyl groups, alkoxyalkyl groups, dialkylaminoalkyl groups, and atomic groups (alkoxy groups and the like).
  • alkyl group constituting the carboxylic acid ester group and the carboxylic acid alkylamide group.
  • alcohol and an alkoxide ion For example, the alcohol and alkoxide ion induced
  • halogen refers to any halogen element, and examples thereof include fluorine, chlorine, bromine and iodine.
  • any isomer may be used unless otherwise limited.
  • propyl group it may be either an n-propyl group or an isopropyl group.
  • butyl group any of n-butyl group, isobutyl group, sec-butyl group and tert-butyl group may be used.
  • this description is only an example of a possible mechanism and does not limit the present invention.
  • the complex catalyst of the present invention contains a complex catalyst represented by any one of the general formulas (1) to (6), an isomer thereof, or a complex or a salt of the isomer as an active ingredient, and carbon dioxide in a solid state. It is a complex catalyst for producing methanol in a mixed gas of hydrogen gas.
  • the active component of the catalyst is at least one selected from the group consisting of complex catalysts represented by any one of the general formulas (1) to (6), tautomers, stereoisomers, and salts thereof. Consists of compounds.
  • one or more kinds of ligands of the ligand component may be mixed with any of the metal components represented by the general formulas (1) to (6) as an active component, or the ligand component from the beginning.
  • an active ingredient may be synthesized and isolated by mixing a metal component with a metal component. Further, other components may be added as appropriate (preferably less than 10 wt%).
  • the complex catalyst of the present invention is separated and purified by distilling off the solvent from the reaction solution containing the complex catalyst prepared by mixing the metal salt portion and the ligand portion before the carbon dioxide hydrogenation reaction.
  • the hydrogenation reaction of carbon dioxide may be started as it is.
  • the method for hydrogenating carbon dioxide (or the method for producing methanol) of the present invention comprises the complex catalyst of the present invention, its isomer, or a complex or a salt of the isomer as an active ingredient, and the complex catalyst is a solvent or supercritical. It includes at least one step selected from the group consisting of a step of heating the reaction vessel in a solid state without being dissolved in a fluid or the like, or in a mixed gas of carbon dioxide and hydrogen.
  • the complex catalyst represented by any one of the general formulas (1) to (6) may be heated as necessary while flowing or flowing in a compressed mixed gas of carbon dioxide and hydrogen.
  • the reaction proceeds without causing decomposition of the complex catalyst and at a sufficient reaction rate.
  • the reaction can be carried out in the range of 0 ° C. to 300 ° C., preferably in the range of 40 ° C. or more and 100 ° C. or less.
  • the reaction time is not particularly limited.
  • the reaction is preferably carried out under hypoxic conditions or in the absence of oxygen.
  • the amount of the complex catalyst used is not limited to an upper limit and a lower limit, but depends on economics such as methanol production and reaction rate.
  • the pressure used for the reaction is not particularly limited in an upper limit and a lower limit, but generally an atmospheric pressure or higher is used. A higher pressure is preferred but depends on economic reasons such as equipment and operating costs.
  • the partial pressure of carbon dioxide and hydrogen may be a ratio of 1:99 to 99: 1, and preferably 1: 1 to 1: 6.
  • a flow type reaction apparatus in which a mixed gas is press-fitted into a closed reaction vessel or a mixed gas is continuously circulated may be used.
  • the method for hydrogenating carbon dioxide (or the method for producing methanol) of the present invention may be only the complex catalyst of the present invention, its isomer, or a complex catalyst containing the complex or a salt of the isomer as an active ingredient. It may be mixed with other substances that do not react with carbon and hydrogen gas, or may be physically adsorbed or chemically bonded. Although it will not specifically limit if it is a substance which does not react with carbon dioxide and hydrogen gas at all, you may use only 1 type or may use 2 or more types together. As said substance, the substance which diffuses gas homogeneously is preferable.
  • Examples thereof include glass, silica gel, alumina, zeolite, titania, mesoporous silica, graphene, carbon black, graphite, carbon nanotube, activated carbon and the like.
  • this description is only an example of a possible substance and does not limit the present invention.
  • methanol is produced by a hydrogenation reaction of carbon dioxide represented by the following formula (7).
  • methanol is considered to be produced via formic acid represented by formula (8), formaldehyde represented by formula (9), and formula (10).
  • the complex catalyst is dissolved in some medium (for example, water, an organic solvent, or supercritical carbon dioxide), and the complex catalyst and the substrate react under uniform system conditions.
  • the complex catalyst is reacted in a mixed gas of carbon dioxide and hydrogen gas in a solid state without being dissolved in a solvent or the like.
  • a binuclear complex catalyst having a plurality of metal centers is allowed to stand in a compressed hydrogen gas, the color of the complex catalyst changes, and it is considered that metal hydride is generated. It has been confirmed that methanol is produced by reacting carbon dioxide with the discolored complex catalyst.
  • the mononuclear complex catalyst having only one metal center produced only formic acid.
  • the reaction in an aqueous solution usually used formic acid was mainly produced, although the production of methanol was slightly detected. It is considered that under the condition in solution, the concerted reaction of the metal active species is inhibited by the solvent molecule, and the production of methanol is suppressed under the equilibrium condition between the substrate and the product.
  • the gas-solid reaction it is considered that the synthesis of methanol by hydrogenation of carbon dioxide progressed without the concerted reaction of a plurality of metal active species and the equilibrium limitation of the substrate / product.
  • the gas-solid reaction has an advantage that, unlike the homogeneous catalytic reaction, the catalyst and the product can be easily separated, and the reaction process can be easily designed.
  • reaction intermediate represented by the general formula (11) was estimated. That is, the complex catalyst is converted to metal-hydride in the presence of hydrogen, which reacts with carbon dioxide to form a formate complex.
  • a complex catalyst composed of two or more metal centers in which two metal centers are arranged in an appropriate space is considered to have promoted hydrogenation of carbon dioxide in concert.
  • the reaction intermediate shown by General formula (11) produces
  • Example 1 [Complex synthesis] The catalyst ligand and the corresponding amount of [Cp * Ir (H 2 O) 3 ] SO 4 were stirred in water at 30 ° C. for 12 hours. The reaction solution was concentrated under reduced pressure, and the resulting product was dried under reduced pressure for 12 hours to obtain a complex catalyst. The analysis values of the synthesized catalyst are shown below.
  • Example 2 A predetermined amount of the complex catalyst produced in Example 1 was placed in an autoclave and pressurized with 4 MPa of hydrogen: carbon dioxide (3: 1). After leaving at 60 ° C. for a predetermined time, the gas was collected in a gas collection bag containing water, and water was added to the reactor. Table 1 shows the result of measuring methanol by gas chromatography on the aqueous solution obtained from the gas collection bag and the reactor. In all cases, formic acid was hardly detected ( ⁇ 0.1 ⁇ mol). In addition, methanol was produced even in a binuclear catalyst in which the two metal centers could not be closer than about 1 nm by the rigid ligand represented by the formula (23).
  • Example 3 The complex catalyst (16) was pressurized with 4 MPa hydrogen: carbon dioxide (3: 1) in an autoclave and left at 60 ° C. After the set time, the gas was collected in a gas collection bag containing water, and water was added to the reactor. The aqueous solution obtained from the gas collection bag and the reactor was measured for formic acid and methanol, respectively, using high performance liquid chromatography and gas chromatography. The amount of methanol produced is shown in FIG. After 162 hours, 80 ⁇ mol of methanol was produced, and it was confirmed that this catalyst was functioning catalytically.
  • Example 4 A catalyst carrier in which Wako Gel C-200 was impregnated and supported with a complex catalyst (16) was packed in a reaction vessel, and 0.8 mL of hydrogen: carbon dioxide (1: 1) was passed at 80 ° C. at a flow rate of 5 mL / min and contained water. The gas was collected in a gas collection bag. After 8 hours, when the trap water was measured by gas chromatography, 1.5 ⁇ mol of MeOH was detected.
  • Example 5 The complex catalyst (16) was pressurized with 4 MPa hydrogen: carbon dioxide (3: 1) in an autoclave, heated to 60 ° C., and allowed to stand. After 24 hours, the gas was collected in a gas collection bag containing water. The amount of methanol produced from the aqueous solution obtained from the gas collection bag by gas chromatography was measured. The reaction vessel was again pressurized with 4 MPa hydrogen: carbon dioxide (3: 1) and the reaction was repeated. Table 2 shows the amount of methanol obtained in each cycle. It was confirmed that methanol was stably produced even after 10 reuses.
  • the conventional method for synthesizing methanol from carbon dioxide using a solid catalyst has a high reaction temperature and a low conversion rate to methanol due to equilibrium limitation. In addition, a by-product may be generated.
  • the methanol synthesis method of the present invention proceeds under a low temperature condition of 100 ° C. or lower by using a binuclear complex catalyst. Therefore, if the binuclear complex catalyst found in the present invention is used, it is thought that the conversion rate of hydrogenation of carbon dioxide is high and methanol is efficiently produced. Furthermore, since the reaction is performed in the gas phase using a normal solid catalyst in order to cause the complex catalyst to react in the gas phase in the solid state, it is easy to construct a continuous methanol synthesis process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a dinuclear complex catalyst used for synthesizing methanol through hydrogenation of carbon dioxide. This complex catalyst is represented by general formula (1), can cause two arbitrary adjacent metal atoms to be disposed inside a spherical space having a diameter of 2 nm, contains an isomer of the complex or a salt of the complex or an isomer as an active ingredient, and is used in a solid state to produce methanol in a mixed gas of carbon dioxide and hydrogen gas. (In the formula, Mi are iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, and can be the same as, or different from, each other, W is a ligand for bonding a number n of metal centers M via an appropriate space and coordinates with a metal as a monodentate or polydentate ligand, Lj are arbitrary ligands and may be the same as, or different from, each other, n is an integer of not less than 2, m is an integer that is not less than 1 and not more than (n-1), i is any integer of 1-n, j is any integer of 1-m, and k indicates the charge of the complex catalyst.)

Description

二酸化炭素の水素化に用いる錯体触媒、メタノール製造方法Complex catalyst for hydrogenation of carbon dioxide, methanol production method
 本発明は、二酸化炭素の水素化に用いる触媒、メタノール製造方法に関するものである。 The present invention relates to a catalyst used for hydrogenation of carbon dioxide and a method for producing methanol.
 二酸化炭素の排出を削減する技術の開発は喫緊の課題である。二酸化炭素を原料として、化成品、燃料など様々な用途に用いられるメタノールの製造を目指した研究が行われている。従来、Cu/Zn系の固体触媒等を用いた二酸化炭素の水素化によるメタノール合成では、一般に200℃以上の高温反応条件のため、多エネルギー消費プロセスであるとともに、平衡制限によりメタノールへの転化率が低い(非特許文献1)。 Develop technology that reduces carbon dioxide emissions is an urgent issue. Research aimed at producing methanol that uses carbon dioxide as a raw material for various uses such as chemical products and fuels is underway. Conventionally, methanol synthesis by hydrogenation of carbon dioxide using a Cu / Zn-based solid catalyst or the like is generally a high-energy consumption process due to high-temperature reaction conditions of 200 ° C. or more, and conversion to methanol due to equilibrium limitation. Is low (Non-patent Document 1).
 本発明者らは、アルカリ性水溶液中高効率に二酸化炭素からギ酸塩を合成するための錯体触媒を開発した(特許文献1~6、非特許文献2~5)。また、これらの錯体触媒を用いた酸性条件下でギ酸からのメタノール合成にも成功した(非特許文献6~7)。さらに、錯体触媒を用いて、水中での二酸化炭素からギ酸を経由したメタノール合成も達成している(特許文献8、非特許文献7)。 The present inventors have developed complex catalysts for synthesizing formate from carbon dioxide with high efficiency in an alkaline aqueous solution (Patent Documents 1 to 6, Non-Patent Documents 2 to 5). In addition, methanol was successfully synthesized from formic acid under acidic conditions using these complex catalysts (Non-Patent Documents 6 to 7). Furthermore, methanol synthesis via carbonic acid in water via formic acid has also been achieved using a complex catalyst (Patent Document 8, Non-Patent Document 7).
 一般的に錯体触媒は溶媒に溶解して反応させるが、錯体触媒を媒体に溶解させることなく固体状態のままガスと反応させた触媒反応はほとんど知られていない(非特許文献9、10)。 Generally, a complex catalyst is dissolved and reacted in a solvent, but there is little known a catalytic reaction in which a complex catalyst is reacted with a gas in a solid state without being dissolved in a medium (Non-Patent Documents 9 and 10).
特許3968431号公報Japanese Patent No. 3968431 特許4009728号公報Japanese Patent No. 4009728 特許4822253号公報Japanese Patent No. 4822253 特許5812290号公報Japanese Patent No. 5812290 WO2013/040013WO2013 / 040013 特願2017-104867号Japanese Patent Application No. 2017-104867 WO2017/093782WO2017 / 093782
 本発明は、水素と二酸化炭素の混合ガス中で、メタノールを製造するための比較的高性能な錯体触媒を提供することを課題とする。また、本発明は、該触媒を媒体等に溶解させることなく固体状態で用い、水素と二酸化炭素の混合ガス中で実施可能なメタノールの製造方法を提供することを課題とする。そのために、以下の試みを行い、本発明の完成に至った。 An object of the present invention is to provide a relatively high performance complex catalyst for producing methanol in a mixed gas of hydrogen and carbon dioxide. Another object of the present invention is to provide a method for producing methanol that can be used in a mixed gas of hydrogen and carbon dioxide, using the catalyst in a solid state without being dissolved in a medium or the like. For this purpose, the following attempts were made and the present invention was completed.
 二酸化炭素の水素化によるメタノール合成は、極めて不利な平衡制限のために、高温条件下メタノール合成効率は不十分であった。そのため、低温反応条件でも駆動可能な高性能触媒開発が望まれていた。均一系錯体触媒は高い触媒性能を示す為に、固体触媒に比べて、比較的低温(200℃以下)でメタノールが生成することが知られているが、溶液中でのバッチ式反応であるために、生成物と触媒の分離が必要であり、連続的なメタノール合成プロセスの構築は困難であった。さらに、基質と生成物との平衡がある場合、平衡による生成物への変換が制約される場合があった。これを回避するために、錯体触媒を固体等へ担体して、反応媒体を流通させながら、平衡制限を回避する方法を考えた。固体状態で反応が可能になれば、フロー反応が可能になる。
 また、二酸化炭素を6電子還元によりメタノールが生成するが、2電子還元の3回繰り返す段階的な反応では、強い平衡制限のために反応効率が低いと考えた。複核錯体触媒が協奏的に多電子還元を行うことができれば高い反応性が期待できるが、我々の知る限りこれまで複核錯体触媒による二酸化炭素の多電子還元によるメタノール合成の報告例はなかった。
Methanol synthesis by hydrogenation of carbon dioxide has insufficient methanol synthesis efficiency under high temperature conditions due to extremely disadvantageous equilibrium limitations. Therefore, the development of a high performance catalyst that can be driven even under low temperature reaction conditions has been desired. Homogeneous complex catalysts are known to produce methanol at a relatively low temperature (200 ° C or lower) compared to solid catalysts in order to show high catalytic performance, but because they are batch-type reactions in solution. In addition, it was necessary to separate the product and the catalyst, and it was difficult to construct a continuous methanol synthesis process. Furthermore, when there is an equilibrium between the substrate and the product, conversion to the product by the equilibrium may be restricted. In order to avoid this, a method of avoiding equilibrium limitation while allowing the complex catalyst to be supported on a solid and circulating the reaction medium was considered. If the reaction becomes possible in the solid state, the flow reaction becomes possible.
In addition, although methanol is generated by 6-electron reduction of carbon dioxide, it was considered that the reaction efficiency was low in the stepwise reaction of 2 electron reductions 3 times due to strong equilibrium limitation. High reactivity can be expected if the multinuclear complex catalyst can perform multi-electron reduction in concert. However, as far as we know, there has been no report of methanol synthesis by multi-electron reduction of carbon dioxide with a binuclear complex catalyst.
 前記課題を解決するために鋭意研究の結果、下記一般式(1)~(6)のいずれかで示される複数の金属中心を持つ複核錯体触媒を媒体等に溶解させることなく固体状態で、100℃以下の低温反応条件下、二酸化炭素と水素の混合ガス中でメタノールの製造に有効であることを見出し、完成に至ったものであり、本発明は、以下の技術手段から構成される。
<1>一般式(1)で表され、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
Figure JPOXMLDOC01-appb-C000007
(式中、Mは、イリジウム、ロジウム、ルテニウム、コバルト、オスミウム、ニッケル、鉄、パラジウムまたは白金であり、それぞれ同じでも異なっていてもよく、
Wは、n個の金属中心Mを適度な空間を介して結合させるための配位子であり、金属と単座あるいは多座で配位しており、
は、任意の配位子であり、同じでも異なっていてもよく、
nは、2以上の整数であり、
mは、1以上、(n-1)以下の整数であり、
iは、1~nのいずれかの整数であり、
jは、1~mのいずれかの整数であり、
kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
<2>一般式(2)で表され、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
Figure JPOXMLDOC01-appb-C000008
(式中、nは、2以上の整数であり、
iは、1~nまでのいずれかの整数であり、
は、イリジウム、ロジウム、ルテニウム、コバルト、オスミウム、ニッケル、鉄、パラジウムまたは白金であり、それぞれ同じでも異なっていてもよく、
Wは、n個の金属中心Mを適度な空間を介して結合させるための配位子であり、金属と単座あるいは多座で配位しており、
,Bは、それぞれ任意の配位子であり、同じでも異なっていてもよく、
kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
<3>一般式(3)で表され、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
Figure JPOXMLDOC01-appb-C000009
(式中、nは、2以上の整数であり、
iは、1~nまでのいずれかの整数であり、
は、イリジウム、ロジウム、ルテニウム、コバルト、オスミウム、ニッケル、鉄、パラジウムまたは白金であり、それぞれ同じでも異なっていてもよく、
,Bは、それぞれ任意の配位子であり、同じでも異なっていてもよく、
,Yは、それぞれ窒素、酸素、硫黄、リンまたは炭素で、それぞれMに配位し、同じでも異なっていてもよく、
Uは、金属中心と配位するためのn組のX,Yとともに、n個の金属中心を適度の空間を介して結合させるための配位子を構成するものであり、
kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
<4>一般式(4)で表され、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
Figure JPOXMLDOC01-appb-C000010
(式中、nは、2以上の整数であり、
iは、1~nまでのいずれかの整数であり、
は、イリジウム、ロジウム、ルテニウム、コバルト、オスミウム、ニッケル、鉄、パラジウムまたは白金であり、それぞれ同じでも異なっていてもよく、
は、芳香族性アニオン配位子、または芳香族性配位子であり、置換基を有している場合は、前記置換基は1つでも複数でもよく、同じでも異なっていてもよく、
は、それぞれ任意の配位子であるか存在せず、同じでも異なっていてもよく、
,Yは、それぞれ窒素、酸素、硫黄、リンまたは炭素で、それぞれMに配位し、同じでも異なっていてもよく、
,Z は、炭素、窒素、酸素、リンまたは硫黄であり、同じでも異なっていてもよく、
,G ,G ,G は、それぞれ任意の置換基であるか存在せず、同じでも異なっていてもよく、それぞれの間で環を構成してもよく、その環上に置換基を有してもよく、また、いずれかあるいは複数のGを通して、他の金属中心の配位子と連結しており、
, Z , Z , Yのそれぞれ間およびG とX、G とZ 、G とZ 、G とYの結合は、それぞれ単結合でも二重結合でもよく、
kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
<5>一般式(5)で表され、窒素二座配位子を有し、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
Figure JPOXMLDOC01-appb-C000011
(式中、nは、2以上の整数であり、
iは、1~nまでのいずれかの整数であり、
は、イリジウム、ロジウム、ルテニウム、コバルト、オスミウム、ニッケル、鉄、パラジウムまたは白金であり、それぞれ同じでも異なっていてもよく、
は、芳香族性アニオン配位子、または芳香族性配位子であり、置換基を有している場合は、前記置換基は1つでも複数でもよく、同じでも異なっていてもよく、
は、それぞれ任意の配位子であるか存在せず、同じでも異なっていてもよく、
,Z は、炭素、窒素、酸素、リンまたは硫黄であり、同じでも異なっていてもよく、
,G は、それぞれ任意の置換基であるか存在せず、同じでも異なっていてもよく、それぞれの間で環を構成してもよく、その環上に置換基を有してもよく、
とN、NとZ 、Z とG の間の結合は単結合でも二重結合でもよく、
は、炭素、硫黄、酸素あるいは窒素であり、
Vは、金属中心と配位するためのn組のN-Z (-Q)-Z (-G )-N(-G )とともに、n個の金属中心を適度の空間を介して結合させるための配位子を構成するものであり、
kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
<6>一般式(6)で表され、アミド部を有する窒素二座配位子を有し、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
Figure JPOXMLDOC01-appb-C000012
(式中、nは、2以上の整数であり、
iは、1~nまでのいずれかの整数であり、
は、イリジウム、ロジウム、ルテニウム、コバルトであり、それぞれ同じでも異なっていてもよく、
は、芳香族性アニオン配位子、または芳香族性配位子であり、置換基を有している場合は、前記置換基は1つでも複数でもよく、同じでも異なっていてもよく、
は、それぞれ任意の配位子であるか存在せず、同じでも異なっていてもよく、
は、炭素あるいは窒素であり、
とN、NとZ 、Z とG の間の結合は単結合でも二重結合でもよく、
,G は、それぞれ任意の置換基であるか存在せず、同じでも異なっていてもよく、この間で環を構成してもよく、その環上に置換基を有してもよく
Vは、金属中心と配位するためのn組のN-C(=O)-Z (-G )-N(-G )とともに、n個の金属中心を適度の空間を介して結合させるための配位子を構成するものであり、
kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
<7><1>~<6>のいずれか1項に記載の錯体触媒、その異性体、もしくは、前記錯体もしくは異性体の塩を有効成分として含む、二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒を、他の物質と混合、または物理的に吸着、または化学的に結合させた担持触媒。
<8><1>~<6>のいずれか1項に記載の錯体触媒が存在する反応器に、二酸化炭素と水素ガスの混合ガスを流通させて、メタノールを製造する方法。
As a result of diligent research to solve the above-mentioned problems, a binuclear complex catalyst having a plurality of metal centers represented by any one of the following general formulas (1) to (6) is obtained in a solid state without being dissolved in a medium or the like. The present invention has been found to be effective for producing methanol in a mixed gas of carbon dioxide and hydrogen under low-temperature reaction conditions of 0 ° C. or lower, and the present invention is composed of the following technical means.
<1> A complex represented by the general formula (1) and capable of arranging any two adjacent metal atoms in a spherical space having a diameter of 2 nm, an isomer thereof, or a salt of the complex or the isomer is effective. A complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in the solid state as a component.
Figure JPOXMLDOC01-appb-C000007
(Wherein, M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium, or platinum, which may be the same or different,
W is a ligand for coupling the n-number of the metal center M i through an appropriate space, and coordinated with a metal and monodentate or multidentate,
L j is any ligand and may be the same or different;
n is an integer of 2 or more,
m is an integer of 1 to (n-1),
i is an integer from 1 to n,
j is an integer from 1 to m,
k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer. )
<2> A complex represented by the general formula (2), in which any two adjacent metal atoms can be arranged in a spherical space having a diameter of 2 nm, an isomer thereof, or a salt of the complex or the isomer is effective. A complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in a solid state as a component.
Figure JPOXMLDOC01-appb-C000008
(In the formula, n is an integer of 2 or more,
i is any integer from 1 to n;
M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different;
W is a ligand for bonding n metal centers M through an appropriate space, and is coordinated with a metal in a monodentate or multidentate manner.
A i and B i are arbitrary ligands, and may be the same or different,
k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer. )
<3> A complex represented by the general formula (3), in which any two adjacent metal atoms can be arranged in a spherical space having a diameter of 2 nm, an isomer thereof, or a salt of the complex or isomer is effective. A complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in a solid state as a component.
Figure JPOXMLDOC01-appb-C000009
(In the formula, n is an integer of 2 or more,
i is any integer from 1 to n;
M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different;
A i and B i are arbitrary ligands, and may be the same or different,
X i and Y i are each nitrogen, oxygen, sulfur, phosphorus or carbon, and each coordinate to M i and may be the same or different;
U constitutes a ligand for bonding n metal centers through an appropriate space together with n sets of X i and Y i for coordination with the metal center,
k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer. )
<4> A complex represented by the general formula (4), in which any two adjacent metal atoms can be arranged in a spherical space having a diameter of 2 nm, an isomer thereof, or a salt of the complex or isomer is effective. A complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in a solid state as a component.
Figure JPOXMLDOC01-appb-C000010
(In the formula, n is an integer of 2 or more,
i is any integer from 1 to n;
M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different;
S i is an aromatic anion ligand or an aromatic ligand, and when it has a substituent, the substituent may be one or plural, and may be the same or different. ,
Each T i is an arbitrary ligand or not present, and may be the same or different,
X i and Y i are each nitrogen, oxygen, sulfur, phosphorus or carbon, and each coordinate to M i and may be the same or different;
Z i 1 and Z i 2 are carbon, nitrogen, oxygen, phosphorus or sulfur, and may be the same or different;
G i 1 , G i 2 , G i 3 , and G i 4 are each an arbitrary substituent or not present, and may be the same or different, and may form a ring between them, may have a substituent on the ring, also through one or more of G i, is coupled with a ligand other metal center,
The bond between X i , Z i 1 , Z i 2 , Y i and G i 1 and X i , G i 2 and Z i 1 , G i 3 and Z i 2 , G i 4 and Y i is Each may be a single bond or a double bond,
k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer. )
<5> a complex represented by the general formula (5), having a nitrogen bidentate ligand, and capable of arranging any two adjacent metal atoms in a spherical space having a diameter of 2 nm, or an isomer thereof, or A complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in a solid state, containing the complex or isomer salt as an active ingredient.
Figure JPOXMLDOC01-appb-C000011
(In the formula, n is an integer of 2 or more,
i is any integer from 1 to n;
M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different;
S i is an aromatic anion ligand or an aromatic ligand, and when it has a substituent, the substituent may be one or plural, and may be the same or different. ,
Each T i is an arbitrary ligand or not present, and may be the same or different,
Z i 1 and Z i 2 are carbon, nitrogen, oxygen, phosphorus or sulfur, and may be the same or different;
G i 5 and G i 6 are each an arbitrary substituent or are not present, and may be the same or different, may form a ring between them, and have a substituent on the ring. You can,
The bond between G i 5 and N, N and Z i 1 , Z i 1 and G i 6 may be a single bond or a double bond,
Q i is carbon, sulfur, oxygen or nitrogen;
V represents n metal centers together with n sets of NZ i 2 (-Q i ) -Z i 1 (-G i 6 ) -N (-G i 5 ) for coordination with the metal centers. It constitutes a ligand for bonding through an appropriate space,
k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer. )
<6> A complex represented by the general formula (6), having a nitrogen bidentate ligand having an amide moiety, and capable of arranging any two adjacent metal atoms in a spherical space having a diameter of 2 nm, A complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in a solid state, containing an isomer, or the complex or a salt of the isomer as an active ingredient.
Figure JPOXMLDOC01-appb-C000012
(In the formula, n is an integer of 2 or more,
i is any integer from 1 to n;
M i is, iridium, rhodium, ruthenium, and cobalt, which may be the same or different from each other,
S i is an aromatic anion ligand or an aromatic ligand, and when it has a substituent, the substituent may be one or plural, and may be the same or different. ,
Each T i is an arbitrary ligand or not present, and may be the same or different,
Z i 1 is carbon or nitrogen,
The bond between G i 5 and N, N and Z i 1 , Z i 1 and G i 6 may be a single bond or a double bond,
G i 5 and G i 6 are each an arbitrary substituent or absent, and may be the same or different, and may form a ring between them, or may have a substituent on the ring. Often V is a suitable combination of n metal centers with n pairs of N—C (═O) —Z i 1 (−G i 6 ) —N (—G i 5 ) Constitutes a ligand for bonding through a space,
k represents the charge of the complex catalyst and is a positive integer, 0, or a negative integer. )
<7> The complex catalyst according to any one of <1> to <6>, an isomer thereof, or a mixed gas of carbon dioxide and hydrogen gas containing the complex or a salt of the isomer as an active ingredient A supported catalyst in which a complex catalyst for producing methanol is mixed with another substance, or is physically adsorbed or chemically bonded.
<8> A method for producing methanol by circulating a mixed gas of carbon dioxide and hydrogen gas through a reactor in which the complex catalyst according to any one of <1> to <6> is present.
 本発明の複数の金属中心を有する複核錯体を用いると、二酸化炭素と水素の混合ガス中で、100℃以下低温条件でメタノールを製造することが可能である。また、本手法は、反応系から触媒を分離する必要がないために、実用に適した連続フロー反応への応用が容易である。 If the binuclear complex having a plurality of metal centers of the present invention is used, methanol can be produced in a mixed gas of carbon dioxide and hydrogen at a low temperature of 100 ° C. or lower. In addition, since this method does not require separation of the catalyst from the reaction system, it can be easily applied to a continuous flow reaction suitable for practical use.
図1は、式(16)で示される錯体触媒(4.5μmol)を用いて、4MPaの水素:二酸化炭素(3:1)の混合ガス中で、60℃で所定の時間放置後生成されたメタノールの量の経過を示したグラフである。FIG. 1 is produced after standing for a predetermined time at 60 ° C. in a mixed gas of hydrogen: carbon dioxide (3: 1) of 4 MPa using a complex catalyst (4.5 μmol) represented by the formula (16). It is the graph which showed progress of the quantity of methanol.
 本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。 In this specification, “˜” indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
 上記の一般式(1)~(6)のいずれかで表される錯体触媒において、Mで示される遷移金属としては、イリジウム、ロジウム、ルテニウム、コバルト、オスミウム、ニッケル、鉄、パラジウムまたは白金が挙げられるが、特にイリジウム、ルテニウムが好ましい。 In complex catalyst represented by any of the above general formula (1) to (6), the transition metal represented by M i, iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum Among them, iridium and ruthenium are particularly preferable.
 一般式(1)~(6)のいずれかで表される錯体触媒において、nは、2以上の整数であり、触媒活性中心のユニットの個数を示す。 In the complex catalyst represented by any one of the general formulas (1) to (6), n is an integer of 2 or more, and indicates the number of catalytically active units.
 一般式(1)~(6)のいずれかで表される錯体触媒において、iは、1~nまでのいずれかの整数である。 In the complex catalyst represented by any one of the general formulas (1) to (6), i is any integer from 1 to n.
 一般式(1)~(6)のいずれかで表される錯体触媒において、kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。 In the complex catalyst represented by any one of the general formulas (1) to (6), k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer.
 一般式(1)~(2)で表される錯体触媒において、Wは、n個の金属中心を適度な空間を介して結合させるための配位子であり、金属中心と単座あるいは多座で配位し、これは共有結合に限らず、イオン結合や金属との配位結合を介した結合により、他の金属中心と結合することも考えられるが、これらに限定されない。 In the complex catalyst represented by the general formulas (1) to (2), W is a ligand for bonding n metal centers through an appropriate space, and is monodentate or multidentate. Coordination is not limited to a covalent bond, but may be bound to other metal centers by an ionic bond or a bond via a coordinate bond with a metal, but is not limited thereto.
 一般式(3)で表される錯体触媒において、Uは、n個の金属中心を適度の空間を介して結合させるための配位子の一部であり、金属中心と配位するためのn組のX,Yと結合しており、これは共有結合に限らず、イオン結合や金属との配位結合を介した結合により、他の金属中心と結合することも考えられるが、これらに限定されない。 In the complex catalyst represented by the general formula (3), U is a part of a ligand for bonding n metal centers through an appropriate space, and n for coordinating with the metal center. It is bound to a pair of X i and Y i , which is not limited to a covalent bond, but may be bound to other metal centers by an ionic bond or a bond via a coordinate bond with a metal. It is not limited to.
 一般式(5)、(6)で表される錯体触媒において、Vは、n個の金属中心を適度の空間を介して結合させるための配位子の一部であり、これは共有結合に限らず、イオン結合や金属との配位結合を介した結合により、他の金属中心と結合することも考えられるが、これらに限定されない。 In the complex catalysts represented by the general formulas (5) and (6), V is a part of a ligand for bonding n metal centers through a suitable space, and this is a covalent bond. However, the present invention is not limited to this, and it is conceivable to bond to other metal centers by ionic bonds or bonds through coordination bonds with metals, but is not limited thereto.
 本願におけるn個の金属中心を有する錯体触媒において、それぞれの金属中心は配位子を介して、メタノールを生成するための適度な距離に配置される必要がある。例えば、アルキル鎖のような柔軟な構造で互いの金属中心を介する場合、互いの金属中心が近づいたり、離れたりするため、互いの金属中心が常に適切な距離範囲に配置できるわけではないが、メタノールを生成することが可能である。一方、芳香環等の剛直な構造で互いの金属中心を介する場合、互いの金属中心が一定の距離に配置されるが、互いの金属中心が常に適切な距離範囲に配置された場合メタノールを効率的に生成することが可能である一方、適切な距離範囲に配置できない場合メタノールが生成しないあるいは生成量が少ないことが想定される。また、配位子は、共有結合に限らず、イオン結合や金属との配位結合を介した結合等により、構成されるが、これらに限定されない。同じ触媒分子内あるいは、別の触媒分子との分子間の任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることが好ましい。特に、任意の隣接する2つの金属原子を直径1nmの球状空間内に配置させることが好ましい。 In the complex catalyst having n metal centers in the present application, each metal center needs to be arranged at an appropriate distance for producing methanol via a ligand. For example, when the metal centers are arranged in a flexible structure such as an alkyl chain, the metal centers approach each other and move away from each other. It is possible to produce methanol. On the other hand, when the metal centers are arranged at a certain distance in the case of a rigid structure such as an aromatic ring, the metal centers are arranged at a certain distance, but if the metal centers are always arranged at an appropriate distance range, methanol is efficiently used. However, if it cannot be disposed within an appropriate distance range, it is assumed that methanol is not produced or the production amount is small. In addition, the ligand is not limited to a covalent bond, but is constituted by an ionic bond or a bond via a coordinate bond with a metal, but is not limited thereto. Any two adjacent metal atoms in the same catalyst molecule or between molecules with another catalyst molecule are preferably arranged in a spherical space having a diameter of 2 nm. In particular, it is preferable to arrange any two adjacent metal atoms in a spherical space having a diameter of 1 nm.
 一般式(1)で表される錯体触媒において、Lで示される配位子として、任意の配位子であり、あってもなくてもよい。 In the complex catalyst represented by the general formula (1), the ligand represented by L is an arbitrary ligand and may or may not be.
 一般式(2)~(3)で表される錯体触媒において、A,Bで示される配位子として、任意の配位子であり、あってもなくてもよい。 In the complex catalysts represented by the general formulas (2) to (3), the ligands represented by A i and B i are arbitrary ligands, and may or may not be present.
 一般式(3)~(4)で表される錯体触媒において、X,Yは、炭素、窒素、酸素、硫黄、リンのいずれかであり、望ましくは、炭素あるいは窒素である。 In the complex catalysts represented by the general formulas (3) to (4), X i and Y i are any of carbon, nitrogen, oxygen, sulfur, and phosphorus, preferably carbon or nitrogen.
 一般式(4)~(5)で表される錯体触媒において、Z ,Z は、炭素、窒素、酸素、リンまたは硫黄のいずれかであり、望ましくは、炭素あるいは窒素である。 In the complex catalysts represented by the general formulas (4) to (5), Z i 1 and Z i 2 are any one of carbon, nitrogen, oxygen, phosphorus and sulfur, and preferably carbon or nitrogen.
 一般式(4)で表される錯体触媒において、G ,G ,G ,G は、それぞれ任意の置換基であるか存在せず、同じでも異なっていてもよく、それぞれの間で環を構成してもよく、その環上に置換基を有してもよく、任意の結合を介して他の金属中心と結合している。たとえば、一般的な有機物との結合に限らず、金属との配位結合を介した結合により、他の金属中心と結合することも考えられるが、これらに限定されない。 In the complex catalyst represented by the general formula (4), G i 1 , G i 2 , G i 3 , and G i 4 are each an arbitrary substituent or not present, and may be the same or different, A ring may be formed between each of them, may have a substituent on the ring, and is bonded to another metal center through an arbitrary bond. For example, it is conceivable not only to bond with a general organic substance but also to bond with another metal center by a bond via a coordinate bond with a metal, but is not limited thereto.
 一般式(5)~(6)で表される錯体触媒において、G ,G は、それぞれ任意の置換基であるか存在せず、同じでも異なっていてもよく、それぞれの間で環を構成してもよく、その環上に任意の置換基を有してもよい。 In the complex catalysts represented by the general formulas (5) to (6), G i 5 and G i 6 are each an optional substituent or may not be present, and may be the same or different. A ring may be formed, and an arbitrary substituent may be present on the ring.
 一般式(4)~(6)のいずれかで表される錯体触媒において、Sで示される配位子としては、芳香族性アニオン配位子、または芳香族性配位子であり、この配位子上に置換基を1つまたは複数有してもよい。この配位子上の置換基としては、任意のものでよく、例えば、アルキル基、ヒドロキシ基(-OH)、エステル基(-COOR)、アミド基(-CONRR’)、ハロゲン(-X)、アルコキシ基(-OR)、アルキルチオ基(-SR)、アミノ基(-NRR’)、アシル基、カルボン酸基(-COOH)、ニトロ基、スルホン酸基(-SOH)、芳香族基などが挙げられ、置換基が複数である場合、それらは同一でも異なってもよい。特に好ましくは、すべてメチル基で置換されたペンタメチルシクロペンタジエニルまたは、ヘキサメチルベンゼンが好ましい。 In the general formula (4) to complex catalyst represented by any one of (6), as the ligand represented by S i, an aromatic anion ligand or aromatic ligands, this One or more substituents may be present on the ligand. The substituent on the ligand may be any, for example, an alkyl group, a hydroxy group (—OH), an ester group (—COOR), an amide group (—CONRR ′), a halogen (—X), Alkoxy group (—OR), alkylthio group (—SR), amino group (—NRR ′), acyl group, carboxylic acid group (—COOH), nitro group, sulfonic acid group (—SO 3 H), aromatic group, etc. And when there are a plurality of substituents, they may be the same or different. Particularly preferred is pentamethylcyclopentadienyl or hexamethylbenzene all substituted with a methyl group.
 一般式(4)~(6)のいずれかで表される錯体触媒において、Tで示される配位子としては、水分子、水素原子、水素分子、アセトニトリル、アルコキシドイオン、水酸化物イオン、炭酸イオン、トリフルオロメタンスルホン酸イオン、硫酸イオン、硫酸水素イオン、硝酸イオン、ギ酸イオン、もしくは酢酸イオンの配位子であるか、または存在しなくてもよい。アルコキシドイオンとしては、特に限定されないが、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、イソブチルアルコール、またはtert-ブチルアルコール等から誘導されるアルコキシドイオンが挙げられる。また、光や熱により脱離する場合があり得る。ただし、この記述は、可能な機構の例示に過ぎず、本発明を限定するものではない。 In the general formula (4) to complex catalyst represented by any one of (6), as the ligand represented by T i, the water molecules, hydrogen atoms, hydrogen molecules, acetonitrile, alkoxide ion, hydroxide ion, It may be a ligand of carbonate ion, trifluoromethanesulfonate ion, sulfate ion, hydrogen sulfate ion, nitrate ion, formate ion, or acetate ion, or may be absent. The alkoxide ion is not particularly limited, but for example, alkoxide ions derived from methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, etc. Can be mentioned. Further, it may be detached by light or heat. However, this description is only an example of a possible mechanism and does not limit the present invention.
 一般式(5)で表される錯体触媒において、Qは、炭素、窒素、酸素、硫黄のいずれかであり、望ましくは、酸素あるいは窒素である。 In the complex catalyst represented by the general formula (5), Q i is any of carbon, nitrogen, oxygen, and sulfur, and preferably oxygen or nitrogen.
 一般式(1)~(6)のいずれかで表される錯体触媒において、そのカウンターイオンは、特に限定されないが、陰イオンとしては、例えば、六フッ化リン酸イオン(PF )、テトラフルオロほう酸イオン(BF )、水酸化物イオン(OH)、酢酸イオン、炭酸イオン、リン酸イオン、硫酸イオン、硫酸水素イオン、硝酸イオン、次亜ハロゲン酸イオン(例えば次亜フッ素酸イオン、次亜塩素酸イオン、次亜臭素酸イオン、次亜ヨウ素酸イオン等)、亜ハロゲン酸イオン(例えば亜フッ素酸イオン、亜塩素酸イオン、亜臭素酸イオン、亜ヨウ素酸イオン等)、ハロゲン酸イオン(例えばフッ素酸イオン、塩素酸イオン、臭素酸イオン、ヨウ素酸イオン等)、過ハロゲン酸イオン(例えば過フッ素酸イオン、過塩素酸イオン、過臭素酸イオン、過ヨウ素酸イオン等)、トリフルオロメタンスルホン酸イオン(OSOCF )、テトラフェニルボレートイオン[(BPh]、テトラキスペンタフルオロフェニルボレートイオン[B(C ]等が挙げられる。陽イオンとしては、特に限定されないが、リチウムイオン、マグネシウムイオン、ナトリウムイオン、カリウムイオン、カルシウムイオン、バリウムイオン、ストロンチウムイオン、イットリウムイオン、スカンジウムイオン、ランタノイドイオン、等の各種金属イオン、水素イオン等が挙げられる。なお、ハロゲンアニオンは、本反応を阻害するため、極力排除させたほうがよい。また、これらカウンターイオンは、一種類でもよいが、二種類以上が併存していてもよい。ただし、この記述は、可能な機構の例示に過ぎず、本発明を限定するものではない。 In the complex catalyst represented by any one of the general formulas (1) to (6), the counter ion is not particularly limited, but examples of the anion include hexafluorophosphate ion (PF 6 ), tetra Fluoroborate ion (BF 4 ), hydroxide ion (OH ), acetate ion, carbonate ion, phosphate ion, sulfate ion, hydrogen sulfate ion, nitrate ion, hypohalite ion (for example, hypofluorite ion) , Hypochlorite ion, hypobromite ion, hypoiodite ion, etc.), halite ion (eg, fluorite ion, chlorite ion, bromite ion, iodate ion, etc.), halogen Acid ions (eg, fluoric acid ions, chlorate ions, bromate ions, iodate ions, etc.), perhalogenate ions (eg, perfluorate ions, perchlorate ions, Bromate ion, periodate ion), trifluoromethanesulfonate ion (OSO 2 CF 3 -), tetraphenylborate ion [(BPh 4) -], tetrakis pentafluorophenyl borate ion [B (C 6 F 5) 4 -], and the like. The cation is not particularly limited, but various metal ions such as lithium ion, magnesium ion, sodium ion, potassium ion, calcium ion, barium ion, strontium ion, yttrium ion, scandium ion, lanthanoid ion, hydrogen ion, etc. Can be mentioned. In addition, since halogen anions inhibit this reaction, it is better to eliminate them as much as possible. These counter ions may be one type, but two or more types may coexist. However, this description is only an example of a possible mechanism and does not limit the present invention.
 なお、本発明において、アルキル基としては、特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が挙げられる。アルキル基から誘導される基、例えばヒドロキシアルキル基、アルコキシアルキル基、ジアルキルアミノアルキル基、や原子団(アルコキシ基等)についても同様である。カルボン酸エステル基、カルボン酸アルキルアミド基を構成するアルキル基も同様である。アルコールおよびアルコキシドイオンとしては、特に限定されないが、例えば、前記各アルキル基から誘導されるアルコールおよびアルコキシドイオンが挙げられる。また、本発明において、「ハロゲン」とは、任意のハロゲン元素を指すが、例えば、フッ素、塩素、臭素、ヨウ素が挙げられる。さらに、本発明において置換基等に異性体が存在する場合は、特に制限しない限り、どの異性体でもよい。例えば、単に「プロピル基」という場合はn-プロピル基およびイソプロピル基のどちらでもよい。単に「ブチル基」という場合は、n-ブチル基、イソブチル基、sec-ブチル基およびtert-ブチル基のいずれでもよい。ただし、この記述は、可能な機構の例示に過ぎず、本発明を限定するものではない。 In the present invention, the alkyl group is not particularly limited. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, Neopentyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl Etc. The same applies to groups derived from alkyl groups, such as hydroxyalkyl groups, alkoxyalkyl groups, dialkylaminoalkyl groups, and atomic groups (alkoxy groups and the like). The same applies to the alkyl group constituting the carboxylic acid ester group and the carboxylic acid alkylamide group. Although it does not specifically limit as alcohol and an alkoxide ion, For example, the alcohol and alkoxide ion induced | guided | derived from each said alkyl group are mentioned. In the present invention, “halogen” refers to any halogen element, and examples thereof include fluorine, chlorine, bromine and iodine. Furthermore, in the present invention, when an isomer is present in a substituent or the like, any isomer may be used unless otherwise limited. For example, when simply referring to “propyl group”, it may be either an n-propyl group or an isopropyl group. When simply referred to as “butyl group”, any of n-butyl group, isobutyl group, sec-butyl group and tert-butyl group may be used. However, this description is only an example of a possible mechanism and does not limit the present invention.
 本発明の錯体触媒は、一般式(1)~(6)のいずれかで表される錯体触媒、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒である。該触媒の有効成分は、一般式(1)~(6)のいずれかで表される錯体触媒、その互変異性体、立体異性体、およびそれらの塩からなる群から選択される少なくとも1の化合物からなる。例えば、該配位子成分の1または複数種の配位子を、一般式(1)~(6)のいずれかの金属成分と混合して有効成分としてもよいし、はじめから配位子成分と金属成分を混合して、有効成分を合成単離して用いてもよい。また、他の成分を適宜(好ましくは、10wt%未満)添加して用いてもよい。 The complex catalyst of the present invention contains a complex catalyst represented by any one of the general formulas (1) to (6), an isomer thereof, or a complex or a salt of the isomer as an active ingredient, and carbon dioxide in a solid state. It is a complex catalyst for producing methanol in a mixed gas of hydrogen gas. The active component of the catalyst is at least one selected from the group consisting of complex catalysts represented by any one of the general formulas (1) to (6), tautomers, stereoisomers, and salts thereof. Consists of compounds. For example, one or more kinds of ligands of the ligand component may be mixed with any of the metal components represented by the general formulas (1) to (6) as an active component, or the ligand component from the beginning. And an active ingredient may be synthesized and isolated by mixing a metal component with a metal component. Further, other components may be added as appropriate (preferably less than 10 wt%).
 本発明の錯体触媒は、二酸化炭素の水素化反応の前、金属塩部分と配位子部分を混合して調製した錯体触媒を含む反応溶液から溶媒を減圧下留去して、分離精製することなく、そのまま二酸化炭素の水素化反応を開始してもよい。 The complex catalyst of the present invention is separated and purified by distilling off the solvent from the reaction solution containing the complex catalyst prepared by mixing the metal salt portion and the ligand portion before the carbon dioxide hydrogenation reaction. Alternatively, the hydrogenation reaction of carbon dioxide may be started as it is.
 本発明の二酸化炭素の水素化方法(乃至メタノールの製造方法)は、本発明の錯体触媒、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、錯体触媒を溶媒あるいは超臨界流体等に溶解させることなく固体状態で、二酸化炭素と水素の混合ガス中、あるいは流通させながら、反応容器を加熱する工程からなる群から選択される少なくとも一つの工程を含む。例えば、一般式(1)~(6)のいずれかで表される錯体触媒を二酸化炭素と水素の圧縮混合ガス中あるいは流通させながら、必要に応じ加熱すればよい。 The method for hydrogenating carbon dioxide (or the method for producing methanol) of the present invention comprises the complex catalyst of the present invention, its isomer, or a complex or a salt of the isomer as an active ingredient, and the complex catalyst is a solvent or supercritical. It includes at least one step selected from the group consisting of a step of heating the reaction vessel in a solid state without being dissolved in a fluid or the like, or in a mixed gas of carbon dioxide and hydrogen. For example, the complex catalyst represented by any one of the general formulas (1) to (6) may be heated as necessary while flowing or flowing in a compressed mixed gas of carbon dioxide and hydrogen.
 本発明の二酸化炭素の水素化方法(乃至メタノールの製造方法)において、反応温度は、錯体触媒が分解することなく、かつ充分な反応速度で反応が進行する方が有利である。一般的には、0℃から300℃の範囲で反応を実施することができるが、好ましくは40℃以上100℃以下の範囲である。反応時間は特に制限はない。なお反応は、低酸素状態または酸素が存在しない条件下で実施するのが好ましい。 In the method for hydrogenating carbon dioxide (or the method for producing methanol) of the present invention, it is advantageous that the reaction proceeds without causing decomposition of the complex catalyst and at a sufficient reaction rate. In general, the reaction can be carried out in the range of 0 ° C. to 300 ° C., preferably in the range of 40 ° C. or more and 100 ° C. or less. The reaction time is not particularly limited. The reaction is preferably carried out under hypoxic conditions or in the absence of oxygen.
 本発明の二酸化炭素の水素化方法(乃至メタノールの製造方法)において、上記の錯体触媒の使用量については、上限及び下限はないが、メタノール生産量、反応速度等の経済性などに依存する。 In the carbon dioxide hydrogenation method of the present invention (or methanol production method), the amount of the complex catalyst used is not limited to an upper limit and a lower limit, but depends on economics such as methanol production and reaction rate.
 本発明の二酸化炭素の水素化方法(乃至メタノールの製造方法)において、反応に用いられる圧力は、特に上限および下限はないが、一般に常圧以上が用いられる。圧力は高いほうが好ましいが、装置および運転コスト等の経済的な理由に依存する。また、二酸化炭素と水素の分圧は1:99~99:1の比であればよく、好ましくは1:1~1:6である。また、密閉系反応容器に混合ガスを圧入、あるいは連続的に混合ガスを流通させるフロー型反応装置でもよい。 In the method for hydrogenating carbon dioxide (or the method for producing methanol) of the present invention, the pressure used for the reaction is not particularly limited in an upper limit and a lower limit, but generally an atmospheric pressure or higher is used. A higher pressure is preferred but depends on economic reasons such as equipment and operating costs. The partial pressure of carbon dioxide and hydrogen may be a ratio of 1:99 to 99: 1, and preferably 1: 1 to 1: 6. Further, a flow type reaction apparatus in which a mixed gas is press-fitted into a closed reaction vessel or a mixed gas is continuously circulated may be used.
 本発明の二酸化炭素の水素化方法(乃至メタノールの製造方法)は、本発明の錯体触媒、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含む錯体触媒のみでもよいが、二酸化炭素および水素ガスと何ら反応しない他の物質と混合、あるいは物理的に吸着、あるいは化学的に結合させてもよい。二酸化炭素および水素ガスと何ら反応しない物質であれば、特に限定されないが、一種類のみ用いても二種類以上併用してもよい。前記物質として、ガスを均質に拡散させる物質が好ましい。例えば、ガラス、シリカゲル、アルミナ、ゼオライト、チタニア、メソポーラスシリカ、グラフェン、カーボンブラック、グラファイト、カーボンナノチューブ、活性炭等が挙げられる。ただし、この記述は、可能な物質の例示に過ぎず、本発明を限定するものではない。 The method for hydrogenating carbon dioxide (or the method for producing methanol) of the present invention may be only the complex catalyst of the present invention, its isomer, or a complex catalyst containing the complex or a salt of the isomer as an active ingredient. It may be mixed with other substances that do not react with carbon and hydrogen gas, or may be physically adsorbed or chemically bonded. Although it will not specifically limit if it is a substance which does not react with carbon dioxide and hydrogen gas at all, you may use only 1 type or may use 2 or more types together. As said substance, the substance which diffuses gas homogeneously is preferable. Examples thereof include glass, silica gel, alumina, zeolite, titania, mesoporous silica, graphene, carbon black, graphite, carbon nanotube, activated carbon and the like. However, this description is only an example of a possible substance and does not limit the present invention.
 本発明において、下記式(7)に示される二酸化炭素の水素化反応によって、メタノールを製造する。一般にメタノールは、式(8)で示すギ酸、式(9)で示すホルムアルデヒド、式(10)を経由して生成していると考えている。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
In the present invention, methanol is produced by a hydrogenation reaction of carbon dioxide represented by the following formula (7). In general, methanol is considered to be produced via formic acid represented by formula (8), formaldehyde represented by formula (9), and formula (10).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 通常、錯体触媒は、何らかの媒体(例えば、水、有機溶媒、あるいは超臨界二酸化炭素等)に溶解して、錯体触媒と基質が均一系条件で反応する。本発明では、錯体触媒を溶媒等に溶解させることなく固体状態で、二酸化炭素と水素ガスの混合ガス中で反応させる。実際、複数の金属中心を持つ複核錯体触媒を圧縮水素ガス中に放置させると、錯体触媒の色が変化しており、金属ヒドリドが生成しているものと考えている。この変色した錯体触媒に二酸化炭素を反応させることでメタノールが生成することを確認している。一方、金属中心が1つしかない単核錯体触媒では、ギ酸のみしか生成しなかった。さらに、通常用いられる水溶液中での反応では、メタノールの生成はわずかに検出されるものの、主としてギ酸が生成した。これは、溶液中条件では、金属活性種の協奏的反応が溶媒分子によって阻害されるとともに、基質/生成物間の平衡条件下メタノールの生成が抑制されたと考えている。これに対し、気固反応は、複数の金属活性種の協奏反応と基質/生成物の平衡制限によることなく、二酸化炭素の水素化によるメタノール合成が進行したものと考えている。さらに、気固反応は、均一系触媒反応と異なり、触媒と生成物の分離が容易になり、反応プロセスの設計が容易になる利点を有している。 Usually, the complex catalyst is dissolved in some medium (for example, water, an organic solvent, or supercritical carbon dioxide), and the complex catalyst and the substrate react under uniform system conditions. In the present invention, the complex catalyst is reacted in a mixed gas of carbon dioxide and hydrogen gas in a solid state without being dissolved in a solvent or the like. In fact, when a binuclear complex catalyst having a plurality of metal centers is allowed to stand in a compressed hydrogen gas, the color of the complex catalyst changes, and it is considered that metal hydride is generated. It has been confirmed that methanol is produced by reacting carbon dioxide with the discolored complex catalyst. On the other hand, the mononuclear complex catalyst having only one metal center produced only formic acid. Furthermore, in the reaction in an aqueous solution usually used, formic acid was mainly produced, although the production of methanol was slightly detected. It is considered that under the condition in solution, the concerted reaction of the metal active species is inhibited by the solvent molecule, and the production of methanol is suppressed under the equilibrium condition between the substrate and the product. On the other hand, in the gas-solid reaction, it is considered that the synthesis of methanol by hydrogenation of carbon dioxide progressed without the concerted reaction of a plurality of metal active species and the equilibrium limitation of the substrate / product. Furthermore, the gas-solid reaction has an advantage that, unlike the homogeneous catalytic reaction, the catalyst and the product can be easily separated, and the reaction process can be easily designed.
 これらの結果から、一般式(11)で示される反応中間体を推定した。すなわち、錯体触媒は水素存在下、金属-ヒドリドに変化し、これが二酸化炭素と反応し、ホルマト錯体が生成する。2つの金属中心が適切な空間に配置された2つ以上の金属中心から構成されている錯体触媒は、協奏的に二酸化炭素の水素化が進行したと考えている。その際、一般式(11)で示される反応中間体が、分子内(場合によっては、分子間)の2つの金属中心間で生成すると推定される。その後、ホルムアルデヒド(メタンジオール)が生成し、還元容易なホルムアルデヒドが水素化されて、メタノールが生成したと考えている。一方、単核錯体では、ホルマト錯体から更なる水素化が進行せず、ギ酸のみしか生成しなかったと考えられる。また、2つ以上の金属中心から構成されている錯体触媒でも、水中の場合は、ホルマト錯体において水分子の配位との競争反応になり、結果としてメタノール生成より、ギ酸生成が優先したと考えている。
Figure JPOXMLDOC01-appb-C000017
From these results, the reaction intermediate represented by the general formula (11) was estimated. That is, the complex catalyst is converted to metal-hydride in the presence of hydrogen, which reacts with carbon dioxide to form a formate complex. A complex catalyst composed of two or more metal centers in which two metal centers are arranged in an appropriate space is considered to have promoted hydrogenation of carbon dioxide in concert. In that case, it is estimated that the reaction intermediate shown by General formula (11) produces | generates between two metal centers in a molecule | numerator (in some cases, between molecules). Thereafter, formaldehyde (methane diol) is produced, and formaldehyde which is easily reduced is hydrogenated to produce methanol. On the other hand, in the mononuclear complex, further hydrogenation did not proceed from the formate complex, and only formic acid was produced. Even in the case of a complex catalyst composed of two or more metal centers, in the case of water, formate complex has a competitive reaction with the coordination of water molecules, and as a result, formic acid production is considered to have priority over methanol production. ing.
Figure JPOXMLDOC01-appb-C000017
 以下、本発明の実施例についてさらに具体的に説明するが、本発明は、以下の実施例のみには限定されない。 Hereinafter, examples of the present invention will be described more specifically. However, the present invention is not limited to the following examples.
[実施例1]
[錯体合成]
 触媒配位子と相当する量の[CpIr(HO)]SOを水中30℃で12時間撹拌した。反応溶液を減圧下濃縮し、得られた生成物を減圧下12時間乾燥し、錯体触媒を得た。以下、合成した触媒の分析値を示す。
[Example 1]
[Complex synthesis]
The catalyst ligand and the corresponding amount of [Cp * Ir (H 2 O) 3 ] SO 4 were stirred in water at 30 ° C. for 12 hours. The reaction solution was concentrated under reduced pressure, and the resulting product was dried under reduced pressure for 12 hours to obtain a complex catalyst. The analysis values of the synthesized catalyst are shown below.
Figure JPOXMLDOC01-appb-C000018
1H NMR (500 MHz, D2O) δ: 8.97 (ddd, J = 5.5, 1.4, 0.7 Hz, 3H), 8.21 (td, J = 7.8, 1.4 Hz, 3H), 8.03 (ddd, J = 7.8, 1.5, 0.7 Hz, 3H), 7.83 (ddd, J = 7.8, 5.6, 1.5 Hz, 3H), 7.11 (s, 3H), 1.48 (s, 45H). 13C NMR (126 MHz, D2O) δ 153.97, 151.75, 147.52, 141.55, 130.23, 126.58, 87.69, 8.45. ESI-MS (m/z): [M - HSO4 - 3H2O]2+ calcd for C54H62Ir3N6O11S2 2+, 1611.28; found, 1611.
Figure JPOXMLDOC01-appb-C000019
1H NMR (400 MHz, D2O) δ: 8.70 (d, J = 6.5 Hz, 2H), 7.55-7.44 (m, 3H), 7.28 (dd, J = 6.5, 2.9 Hz, 2H), 7.11-6.99 (m, 3H), 3.97 (s, 6H), 1.37 (s, 30H). 13C NMR (126 MHz, D2O) δ: 172.62, 169.31, 155.51, 152.45, 147.53, 130.14, 124.68, 123.43, 115.36, 112.70, 87.46, 57.02, 8.17. ESI-MS (m/z): [M - HSO4 - 2H2O]+ calcd for C40H47Ir2N4O8S+, 1127.23; found, 1127.
Figure JPOXMLDOC01-appb-C000020
1H NMR (400 MHz, D2O) δ: 7.54-7.51 (m, 2H), 7.50-7.45 (m, 1H), 7.44-7.38 (m, 2H), 7.10-7.02 (m, 3H), 1.44 (s, 30H). 13C NMR (126 MHz, D2O) δ 164.23, 146.92, 146.87, 129.66, 126.50, 124.37, 123.51, 121.54, 86.87, 8.44. ESI-MS (m/z): [M - HSO4 - 2H2O]+ calcd for C34H41Ir2N6O6S+, 1047.21; found, 1047.
Figure JPOXMLDOC01-appb-C000021
1H NMR (400 MHz, D2O) δ: 8.88 (d, J = 5.4 Hz, 2H), 8.00 (td, J = 7.8, 1.5 Hz, 2H), 7.85-7.78 (m, 2H), 7.68 (ddd, J = 7.5, 5.6, 1.5 Hz, 2H), 7.50-7.42 (m, 2H), 7.42-7.30 (m, 2H), 1.30 (s, 30H). 13C NMR (126 MHz, D2O) δ: 151.23, 141.79, 141.10, 129.90, 127.47, 127.35, 88.33, 7.93. ESI-MS (m/z): [M - HSO4 - 2H2O]+ calcd for C38H43Ir2N4O6S+, 1067.21; found, 1067.
Figure JPOXMLDOC01-appb-C000022
1H NMR (400 MHz, D2O) δ: 8.93 (d, J = 5.4 Hz, 2H), 8.18 (t, J = 7.8 Hz, 2H), 7.97 (d, J = 7.9 Hz, 2H), 7.82-7.74 (m, 2H), 7.51 (t, J = 8.0 Hz, 1H), 7.11 (s, 1H), 7.08-7.01 (m, 2H), 1.38 (s, 30H). 13C NMR (126 MHz, D2O) δ: 172.71, 153.83, 151.66, 147.46, 141.54, 130.22, 130.02, 126.42, 124.75, 123.45, 87.81, 8.15. ESI-MS (m/z): [M - HSO4 - 2H2O]+ calcd for C38H43Ir2N4O6S+, 1067.21; found, 1067.
Figure JPOXMLDOC01-appb-C000023
1H NMR (400 MHz, D2O) δ: 8.95 (ddd, J = 5.6, 1.5, 0.8 Hz, 2H), 8.19 (td, J = 7.8, 1.4 Hz, 2H), 8.00 (ddd, J = 7.9, 1.6, 0.7 Hz, 2H), 7.79 (ddd, J = 7.7, 5.5, 1.5 Hz, 2H), 7.29 (s, 4H), 1.43 (s, 30H). 13C NMR (126 MHz, D2O) δ: 173.20, 153.83, 151.40, 144.37, 141.56, 129.97, 127.05, 126.60, 87.79, 8.32. ESI-MS (m/z): [M - HSO4 - 2H2O]+ calcd for C38H43Ir2N4O6S+, 1067.21; found, 1067.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000018
1 H NMR (500 MHz, D 2 O) δ: 8.97 (ddd, J = 5.5, 1.4, 0.7 Hz, 3H), 8.21 (td, J = 7.8, 1.4 Hz, 3H), 8.03 (ddd, J = 7.8 , 1.5, 0.7 Hz, 3H), 7.83 (ddd, J = 7.8, 5.6, 1.5 Hz, 3H), 7.11 (s, 3H), 1.48 (s, 45H). 13 C NMR (126 MHz, D 2 O) . δ 153.97, 151.75, 147.52, 141.55, 130.23, 126.58, 87.69, 8.45 ESI-MS (m / z): [M - HSO 4 - 3H 2 O] 2+ calcd for C 54 H 62 Ir 3 N 6 O 11 S 2 2+ , 1611.28; found, 1611.
Figure JPOXMLDOC01-appb-C000019
1 H NMR (400 MHz, D 2 O) δ: 8.70 (d, J = 6.5 Hz, 2H), 7.55-7.44 (m, 3H), 7.28 (dd, J = 6.5, 2.9 Hz, 2H), 7.11- 6.99 (m, 3H), 3.97 (s, 6H), 1.37 (s, 30H) 13 C NMR (126 MHz, D 2 O) δ:. 172.62, 169.31, 155.51, 152.45, 147.53, 130.14, 124.68, 123.43, . 115.36, 112.70, 87.46, 57.02 , 8.17 ESI-MS (m / z): [M - HSO 4 - 2H 2 O] + calcd for C 40 H 47 Ir 2 N 4 O 8 S +, 1127.23; found, 1127 .
Figure JPOXMLDOC01-appb-C000020
1 H NMR (400 MHz, D 2 O) δ: 7.54-7.51 (m, 2H), 7.50-7.45 (m, 1H), 7.44-7.38 (m, 2H), 7.10-7.02 (m, 3H), 1.44 (s, 30H). 13 C NMR (126 MHz, D 2 O) δ 164.23, 146.92, 146.87, 129.66, 126.50, 124.37, 123.51, 121.54, 86.87, 8.44. ESI-MS (m / z): [M − HSO 4 -2H 2 O] + calcd for C 34 H 41 Ir 2 N 6 O 6 S + , 1047.21; found, 1047.
Figure JPOXMLDOC01-appb-C000021
1 H NMR (400 MHz, D 2 O) δ: 8.88 (d, J = 5.4 Hz, 2H), 8.00 (td, J = 7.8, 1.5 Hz, 2H), 7.85-7.78 (m, 2H), 7.68 ( ddd, J = 7.5, 5.6, 1.5 Hz, 2H), 7.50-7.42 (m, 2H), 7.42-7.30 (m, 2H), 1.30 (s, 30H). 13 C NMR (126 MHz, D 2 O) . δ: 151.23, 141.79, 141.10 , 129.90, 127.47, 127.35, 88.33, 7.93 ESI-MS (m / z): [M - HSO 4 - 2H 2 O] + calcd for C 38 H 43 Ir 2 N 4 O 6 S + , 1067.21; found, 1067.
Figure JPOXMLDOC01-appb-C000022
1 H NMR (400 MHz, D 2 O) δ: 8.93 (d, J = 5.4 Hz, 2H), 8.18 (t, J = 7.8 Hz, 2H), 7.97 (d, J = 7.9 Hz, 2H), 7.82 -7.74 (m, 2H), 7.51 (t, J = 8.0 Hz, 1H), 7.11 (s, 1H), 7.08-7.01 (m, 2H), 1.38 (s, 30H). 13 C NMR (126 MHz, . D 2 O) δ: 172.71 , 153.83, 151.66, 147.46, 141.54, 130.22, 130.02, 126.42, 124.75, 123.45, 87.81, 8.15 ESI-MS (m / z): [M - HSO 4 - 2H 2 O] + calcd for C 38 H 43 Ir 2 N 4 O 6 S + , 1067.21; found, 1067.
Figure JPOXMLDOC01-appb-C000023
1 H NMR (400 MHz, D 2 O) δ: 8.95 (ddd, J = 5.6, 1.5, 0.8 Hz, 2H), 8.19 (td, J = 7.8, 1.4 Hz, 2H), 8.00 (ddd, J = 7.9 , 1.6, 0.7 Hz, 2H), 7.79 (ddd, J = 7.7, 5.5, 1.5 Hz, 2H), 7.29 (s, 4H), 1.43 (s, 30H). 13 C NMR (126 MHz, D 2 O) . δ: 173.20, 153.83, 151.40 , 144.37, 141.56, 129.97, 127.05, 126.60, 87.79, 8.32 ESI-MS (m / z): [M - HSO 4 - 2H 2 O] + calcd for C 38 H 43 Ir 2 N 4 O 6 S + , 1067.21; found, 1067.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
[実施例2]
 実施例1で製造した錯体触媒を、所定の量をオートクレーブにいれ、4MPaの水素:二酸化炭素(3:1)で加圧した。60℃で所定の時間放置後、水を含んだガス捕集袋にガスを回収すると共に、反応器に水を加えた。ガス捕集袋及び反応器から得られた水溶液をガスクロマトグラフィで、メタノールを測定した結果を表1に示す。なお、ギ酸は、いずれの場合も、ほとんど検出(<0.1μmol)されなかった。また、式(23)に示される剛直な配位子によって、2つの金属中心が約1nm程度より近接できない複核触媒においても、メタノールが生成した。
[Example 2]
A predetermined amount of the complex catalyst produced in Example 1 was placed in an autoclave and pressurized with 4 MPa of hydrogen: carbon dioxide (3: 1). After leaving at 60 ° C. for a predetermined time, the gas was collected in a gas collection bag containing water, and water was added to the reactor. Table 1 shows the result of measuring methanol by gas chromatography on the aqueous solution obtained from the gas collection bag and the reactor. In all cases, formic acid was hardly detected (<0.1 μmol). In addition, methanol was produced even in a binuclear catalyst in which the two metal centers could not be closer than about 1 nm by the rigid ligand represented by the formula (23).
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
[実施例3]
 錯体触媒(16)を、オートクレーブ中4MPaの水素:二酸化炭素(3:1)で加圧し、60℃で放置した。設定時間後、水を含んだガス捕集袋にガスを回収すると共に、反応器に水を加えた。ガス捕集袋及び反応器から得られた水溶液を高速液体クロマトグラフィーおよびガスクロマトグラフィを用いて、それぞれギ酸とメタノールを測定した。生成したメタノールの量を図1に示す。162時間後に80μmolのメタノールが生成し、本触媒が触媒的に機能していることが確認できた。
[Example 3]
The complex catalyst (16) was pressurized with 4 MPa hydrogen: carbon dioxide (3: 1) in an autoclave and left at 60 ° C. After the set time, the gas was collected in a gas collection bag containing water, and water was added to the reactor. The aqueous solution obtained from the gas collection bag and the reactor was measured for formic acid and methanol, respectively, using high performance liquid chromatography and gas chromatography. The amount of methanol produced is shown in FIG. After 162 hours, 80 μmol of methanol was produced, and it was confirmed that this catalyst was functioning catalytically.
[実施例4]
 錯体触媒(16)をワコーゲルC-200に含浸担持させた触媒担体を反応容器につめ、80℃で0.8MPaの水素:二酸化炭素(1:1)を5mL/分流通させ、水を含んだガス捕集袋にガスを回収した。8時間後、トラップ水をガスクロマトグラフィで測定したところ、MeOHが1.5μmol検出された。
[Example 4]
A catalyst carrier in which Wako Gel C-200 was impregnated and supported with a complex catalyst (16) was packed in a reaction vessel, and 0.8 mL of hydrogen: carbon dioxide (1: 1) was passed at 80 ° C. at a flow rate of 5 mL / min and contained water. The gas was collected in a gas collection bag. After 8 hours, when the trap water was measured by gas chromatography, 1.5 μmol of MeOH was detected.
[実施例5]
 錯体触媒(16)を、オートクレーブ中4MPaの水素:二酸化炭素(3:1)で加圧し、60℃に加温し、放置した。24時間後、水を含んだガス捕集袋にガスを回収した。ガス捕集袋から得られた水溶液を、ガスクロマトグラフィで生成したメタノールの量を測定した。反応容器は再び4MPaの水素:二酸化炭素(3:1)で加圧し、反応を繰り返した。各サイクルに得られたメタノールの量を表2に示す。10回再利用しても、メタノールが安定的に生成していることが確認できた。
[Example 5]
The complex catalyst (16) was pressurized with 4 MPa hydrogen: carbon dioxide (3: 1) in an autoclave, heated to 60 ° C., and allowed to stand. After 24 hours, the gas was collected in a gas collection bag containing water. The amount of methanol produced from the aqueous solution obtained from the gas collection bag by gas chromatography was measured. The reaction vessel was again pressurized with 4 MPa hydrogen: carbon dioxide (3: 1) and the reaction was repeated. Table 2 shows the amount of methanol obtained in each cycle. It was confirmed that methanol was stably produced even after 10 reuses.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
[比較例1]
 式(24)で表されるイリジウム単核錯体触媒を用いて、オートクレーブ中4MPaの水素:二酸化炭素(3:1)で加圧した。60℃で15時間放置後、水を含んだガス捕集袋にガスを回収すると共に、反応器に水を加えた。ガス捕集袋及び反応器から得られた水溶液を高速液体クロマトグラフィーとガスクロマトグラフィで、それぞれギ酸とメタノールを測定した。その結果、ギ酸は0.1μmol検出されたが、MeOHは全く検出されなかった。
Figure JPOXMLDOC01-appb-C000032
[Comparative Example 1]
Using an iridium mononuclear complex catalyst represented by the formula (24), the autoclave was pressurized with 4 MPa of hydrogen: carbon dioxide (3: 1). After being left at 60 ° C. for 15 hours, the gas was collected in a gas collection bag containing water, and water was added to the reactor. The aqueous solution obtained from the gas collection bag and the reactor was measured for formic acid and methanol by high performance liquid chromatography and gas chromatography, respectively. As a result, 0.1 μmol of formic acid was detected, but MeOH was not detected at all.
Figure JPOXMLDOC01-appb-C000032
[比較例2]
 錯体触媒(12)(3μmol)を溶解した水溶液を、オートクレーブ中4MPaの水素:二酸化炭素(3:1)で加圧し、60℃で攪拌した。15時間後、水を含んだガス捕集袋にガスを回収した。ガス捕集袋から得られた水溶液および反応溶液を高速液体クロマトグラフィーとガスクロマトグラフィで、それぞれギ酸とメタノールを測定した。その結果、ギ酸は6.0μmol、MeOHは0.5μmol検出された。
[Comparative Example 2]
An aqueous solution in which the complex catalyst (12) (3 μmol) was dissolved was pressurized with 4 MPa of hydrogen: carbon dioxide (3: 1) in an autoclave and stirred at 60 ° C. After 15 hours, the gas was collected in a gas collection bag containing water. Formic acid and methanol were measured for the aqueous solution and reaction solution obtained from the gas collection bag by high performance liquid chromatography and gas chromatography, respectively. As a result, 6.0 μmol of formic acid and 0.5 μmol of MeOH were detected.
 従来の固体触媒を用いた二酸化炭素からのメタノール合成法は、反応温度が高く、平衡制限により、メタノールへの転化率が低い。また、副生成物が生成することがあった。本発明のメタノール合成法は、複核錯体触媒を用いることで、100℃以下の低温条件下で進行する。そのため、本発明で見出された複核錯体触媒を用いれば、二酸化炭素の水素化の転化率が高く、効率よくメタノールを生成すると考えている。さらに、錯体触媒を固体状態のままガス相で反応させるために、通常の固体触媒を用いたガス相での反応プロセスであるため、連続的なメタノール合成プロセスの構築が容易である。 The conventional method for synthesizing methanol from carbon dioxide using a solid catalyst has a high reaction temperature and a low conversion rate to methanol due to equilibrium limitation. In addition, a by-product may be generated. The methanol synthesis method of the present invention proceeds under a low temperature condition of 100 ° C. or lower by using a binuclear complex catalyst. Therefore, if the binuclear complex catalyst found in the present invention is used, it is thought that the conversion rate of hydrogenation of carbon dioxide is high and methanol is efficiently produced. Furthermore, since the reaction is performed in the gas phase using a normal solid catalyst in order to cause the complex catalyst to react in the gas phase in the solid state, it is easy to construct a continuous methanol synthesis process.

Claims (8)

  1.  一般式(1)で表され、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Mは、イリジウム、ロジウム、ルテニウム、コバルト、オスミウム、ニッケル、鉄、パラジウムまたは白金であり、それぞれ同じでも異なっていてもよく、
    Wは、n個の金属中心Mを適度な空間を介して結合させるための配位子であり、金属と単座あるいは多座で配位しており、
    は、任意の配位子であり、同じでも異なっていてもよく、
    nは、2以上の整数であり、
    mは、1以上、(n-1)以下の整数であり、
    iは、1~nのいずれかの整数であり、
    jは、1~mのいずれかの整数であり、
    kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
    A complex represented by the general formula (1) and capable of arranging any two adjacent metal atoms in a spherical space having a diameter of 2 nm, an isomer thereof, or a salt of the complex or isomer as an active ingredient A complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in the solid state.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium, or platinum, which may be the same or different,
    W is a ligand for coupling the n-number of the metal center M i through an appropriate space, and coordinated with a metal and monodentate or multidentate,
    L j is any ligand and may be the same or different;
    n is an integer greater than or equal to 2,
    m is an integer of 1 to (n-1),
    i is an integer from 1 to n,
    j is an integer from 1 to m,
    k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer. )
  2.  一般式(2)で表され、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは、2以上の整数であり、
    iは、1~nまでのいずれかの整数であり、
    は、イリジウム、ロジウム、ルテニウム、コバルト、オスミウム、ニッケル、鉄、パラジウムまたは白金であり、それぞれ同じでも異なっていてもよく、
    Wは、n個の金属中心Mを適度な空間を介して結合させるための配位子であり、金属と単座あるいは多座で配位しており、
    ,Bは、それぞれ任意の配位子であり、同じでも異なっていてもよく、
    kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
    A complex represented by the general formula (2), in which any two adjacent metal atoms can be arranged in a spherical space having a diameter of 2 nm, an isomer thereof, or a complex or a salt of the isomer as an active ingredient A complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in the solid state.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, n is an integer of 2 or more,
    i is any integer from 1 to n;
    M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different;
    W is a ligand for bonding n metal centers M through an appropriate space, and is coordinated with a metal in a monodentate or multidentate manner.
    A i and B i are arbitrary ligands, and may be the same or different,
    k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer. )
  3.  一般式(3)で表され、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
    Figure JPOXMLDOC01-appb-C000003
    (式中、nは、2以上の整数であり、
    iは、1~nまでのいずれかの整数であり、
    は、イリジウム、ロジウム、ルテニウム、コバルト、オスミウム、ニッケル、鉄、パラジウムまたは白金であり、それぞれ同じでも異なっていてもよく、
    ,Bは、それぞれ任意の配位子であり、同じでも異なっていてもよく、
    ,Yは、それぞれ窒素、酸素、硫黄、リンまたは炭素で、それぞれMに配位し、同じでも異なっていてもよく、
    Uは、金属中心と配位するためのn組のX,Yとともに、n個の金属中心を適度の空間を介して結合させるための配位子を構成するものであり、
    kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
    A complex represented by the general formula (3) and capable of arranging any two adjacent metal atoms in a spherical space having a diameter of 2 nm, an isomer thereof, or a salt of the complex or isomer as an active ingredient A complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in the solid state.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, n is an integer of 2 or more,
    i is any integer from 1 to n;
    M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different;
    A i and B i are arbitrary ligands, and may be the same or different,
    X i and Y i are each nitrogen, oxygen, sulfur, phosphorus or carbon, and each coordinate to M i and may be the same or different;
    U constitutes a ligand for bonding n metal centers through an appropriate space together with n sets of X i and Y i for coordination with the metal center,
    k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer. )
  4.  一般式(4)で表され、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
    Figure JPOXMLDOC01-appb-C000004
    (式中、nは、2以上の整数であり、
    iは、1~nまでのいずれかの整数であり、
    は、イリジウム、ロジウム、ルテニウム、コバルト、オスミウム、ニッケル、鉄、パラジウムまたは白金であり、それぞれ同じでも異なっていてもよく、
    は、芳香族性アニオン配位子、または芳香族性配位子であり、置換基を有している場合は、前記置換基は1つでも複数でもよく、同じでも異なっていてもよく、
    は、それぞれ任意の配位子であるか存在せず、同じでも異なっていてもよく、
    ,Yは、それぞれ窒素、酸素、硫黄、リンまたは炭素で、それぞれMに配位し、同じでも異なっていてもよく、
    ,Z は、炭素、窒素、酸素、リンまたは硫黄であり、同じでも異なっていてもよく、
    ,G ,G ,G は、それぞれ任意の置換基であるか存在せず、同じでも異なっていてもよく、それぞれの間で環を構成してもよく、その環上に置換基を有してもよく、また、いずれかあるいは複数のGを通して、他の金属中心の配位子と連結しており、
    , Z , Z , Yのそれぞれ間およびG とX、G とZ 、G とZ 、G とYの結合は、それぞれ単結合でも二重結合でもよく、
    kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
    A complex represented by the general formula (4) and capable of arranging any two adjacent metal atoms in a spherical space having a diameter of 2 nm, its isomer, or a salt of the complex or isomer as an active ingredient A complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in the solid state.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, n is an integer of 2 or more,
    i is any integer from 1 to n;
    M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different;
    S i is an aromatic anion ligand or an aromatic ligand, and when it has a substituent, the substituent may be one or plural, and may be the same or different. ,
    Each T i is an arbitrary ligand or not present, and may be the same or different,
    X i and Y i are each nitrogen, oxygen, sulfur, phosphorus or carbon, and each coordinate to M i and may be the same or different;
    Z i 1 and Z i 2 are carbon, nitrogen, oxygen, phosphorus or sulfur, and may be the same or different;
    G i 1 , G i 2 , G i 3 , and G i 4 are each an arbitrary substituent or not present, and may be the same or different, and may form a ring between them, may have a substituent on the ring, also through one or more of G i, is coupled with a ligand other metal center,
    The bond between X i , Z i 1 , Z i 2 , Y i and G i 1 and X i , G i 2 and Z i 1 , G i 3 and Z i 2 , G i 4 and Y i is Each may be a single bond or a double bond,
    k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer. )
  5.  一般式(5)で表され、窒素二座配位子を有し、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
    Figure JPOXMLDOC01-appb-C000005
    (式中、nは、2以上の整数であり、
    iは、1~nまでのいずれかの整数であり、
    は、イリジウム、ロジウム、ルテニウム、コバルト、オスミウム、ニッケル、鉄、パラジウムまたは白金であり、それぞれ同じでも異なっていてもよく、
    は、芳香族性アニオン配位子、または芳香族性配位子であり、置換基を有している場合は、前記置換基は1つでも複数でもよく、同じでも異なっていてもよく、
    は、それぞれ任意の配位子であるか存在せず、同じでも異なっていてもよく、
    ,Z は、炭素、窒素、酸素、リンまたは硫黄であり、同じでも異なっていてもよく、
    ,G は、それぞれ任意の置換基であるか存在せず、同じでも異なっていてもよく、それぞれの間で環を構成してもよく、その環上に置換基を有してもよく、
    とN、NとZ 、Z とG の間の結合は単結合でも二重結合でもよく、
    は、炭素、硫黄、酸素あるいは窒素であり、
    Vは、金属中心と配位するためのn組のN-Z (-Q)-Z (-G )-N(-G )とともに、n個の金属中心を適度の空間を介して結合させるための配位子を構成するものであり、
    kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
    A complex represented by the general formula (5), having a nitrogen bidentate ligand, and capable of arranging any two adjacent metal atoms in a spherical space having a diameter of 2 nm, an isomer thereof, or the complex Alternatively, a complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in a solid state containing an isomer salt as an active ingredient.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, n is an integer of 2 or more,
    i is any integer from 1 to n;
    M i is iridium, rhodium, ruthenium, cobalt, osmium, nickel, iron, palladium or platinum, each of which may be the same or different;
    S i is an aromatic anion ligand or an aromatic ligand, and when it has a substituent, the substituent may be one or plural, and may be the same or different. ,
    Each T i is an arbitrary ligand or not present, and may be the same or different,
    Z i 1 and Z i 2 are carbon, nitrogen, oxygen, phosphorus or sulfur, and may be the same or different;
    G i 5 and G i 6 are each an arbitrary substituent or are not present, and may be the same or different, may form a ring between them, and have a substituent on the ring. You can,
    The bond between G i 5 and N, N and Z i 1 , Z i 1 and G i 6 may be a single bond or a double bond,
    Q i is carbon, sulfur, oxygen or nitrogen;
    V represents n metal centers together with n sets of NZ i 2 (-Q i ) -Z i 1 (-G i 6 ) -N (-G i 5 ) for coordination with the metal centers. It constitutes a ligand for bonding through an appropriate space,
    k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer. )
  6.  一般式(6)で表され、アミド部を有する窒素二座配位子を有し、任意の隣接する2つの金属原子を直径2nmの球状空間内に配置させることができる錯体、その異性体、または、前記錯体もしくは異性体の塩を有効成分として含み、固体状態で二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒。
    Figure JPOXMLDOC01-appb-C000006
    (式中、nは、2以上の整数であり、
    iは、1~nまでのいずれかの整数であり、
    は、イリジウム、ロジウム、ルテニウム、コバルトであり、それぞれ同じでも異なっていてもよく、
    は、芳香族性アニオン配位子、または芳香族性配位子であり、置換基を有している場合は、前記置換基は1つでも複数でもよく、同じでも異なっていてもよく、
    は、それぞれ任意の配位子であるか存在せず、同じでも異なっていてもよく、
    は、炭素あるいは窒素であり、
    とN、NとZ 、Z とG の間の結合は単結合でも二重結合でもよく、
    ,G は、それぞれ任意の置換基であるか存在せず、同じでも異なっていてもよく、この間で環を構成してもよく、その環上に置換基を有してもよく
    Vは、金属中心と配位するためのn組のN-C(=O)-Z (-G )-N(-G )とともに、n個の金属中心を適度の空間を介して結合させるための配位子を構成するものであり、
    kは、錯体触媒の電荷を表し、正の整数、0、または負の整数である。)
    A complex represented by the general formula (6), having a nitrogen bidentate ligand having an amide moiety, and capable of arranging any two adjacent metal atoms in a spherical space having a diameter of 2 nm, an isomer thereof, Alternatively, a complex catalyst for producing methanol in a mixed gas of carbon dioxide and hydrogen gas in a solid state, containing the complex or isomer salt as an active ingredient.
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, n is an integer of 2 or more,
    i is any integer from 1 to n;
    M i is, iridium, rhodium, ruthenium, and cobalt, which may be the same or different from each other,
    S i is an aromatic anion ligand or an aromatic ligand, and when it has a substituent, the substituent may be one or plural, and may be the same or different. ,
    Each T i is an arbitrary ligand or not present, and may be the same or different,
    Z i 1 is carbon or nitrogen,
    The bond between G i 5 and N, N and Z i 1 , Z i 1 and G i 6 may be a single bond or a double bond,
    G i 5 and G i 6 are each an arbitrary substituent or are not present, and may be the same or different, and may form a ring between them, or may have a substituent on the ring. Often, V is a suitable combination of n metal centers with n sets of N—C (═O) —Z i 1 (−G i 6 ) —N (—G i 5 ) Constitutes a ligand for bonding through a space,
    k represents the charge of the complex catalyst, and is a positive integer, 0, or a negative integer. )
  7.  請求項1~6のいずれか1項に記載の錯体触媒、その異性体、もしくは、前記錯体もしくは異性体の塩を有効成分として含む、二酸化炭素と水素ガスの混合ガス中でメタノールを製造するための錯体触媒を、他の物質と混合、または物理的に吸着、または化学的に結合させた担持触媒。 A process for producing methanol in a mixed gas of carbon dioxide and hydrogen gas comprising the complex catalyst according to any one of claims 1 to 6, its isomer, or a salt of the complex or isomer as an active ingredient. A supported catalyst in which the complex catalyst is mixed with another substance, or is physically adsorbed or chemically bonded.
  8.  請求項1~6のいずれか1項に記載の錯体触媒が存在する反応器に、二酸化炭素と水素ガスの混合ガスを流通させて、メタノールを製造する方法。 A method for producing methanol by circulating a mixed gas of carbon dioxide and hydrogen gas through a reactor in which the complex catalyst according to any one of claims 1 to 6 is present.
PCT/JP2019/019310 2018-05-25 2019-05-15 Complex catalyst used for hydrogenation of carbon dioxide, and method for producing methanol WO2019225438A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019002674.7T DE112019002674T8 (en) 2018-05-25 2019-05-15 COMPLEX CATALYST FOR HYDROGENATION OF CARBON DIOXIDE AND PROCESS FOR THE PRODUCTION OF METHANOL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018100929A JP7082401B2 (en) 2018-05-25 2018-05-25 Complex catalyst used for hydrogenation of carbon dioxide, method for producing methanol
JP2018-100929 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225438A1 true WO2019225438A1 (en) 2019-11-28

Family

ID=68616709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019310 WO2019225438A1 (en) 2018-05-25 2019-05-15 Complex catalyst used for hydrogenation of carbon dioxide, and method for producing methanol

Country Status (3)

Country Link
JP (1) JP7082401B2 (en)
DE (1) DE112019002674T8 (en)
WO (1) WO2019225438A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441291A (en) * 1977-09-09 1979-04-02 Sagami Chem Res Center Cluster fixed substance, production thereof and catalyst
WO2013111860A1 (en) * 2012-01-27 2013-08-01 独立行政法人産業技術総合研究所 Dehydrogenation catalyst for formic acid, method for producing hydrogen, and method for producing deuterium gas or deuterated hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441291A (en) * 1977-09-09 1979-04-02 Sagami Chem Res Center Cluster fixed substance, production thereof and catalyst
WO2013111860A1 (en) * 2012-01-27 2013-08-01 独立行政法人産業技術総合研究所 Dehydrogenation catalyst for formic acid, method for producing hydrogen, and method for producing deuterium gas or deuterated hydrogen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUMAR, P. ET AL.: "Photocatalytic reduction of carbon dioxide to methanol using a ruthenium trinuclear polyazine complex immobilized on graphene oxide under visible light irradiation", JOURNAL OF MATERIALS CHEMISTRY A, vol. 2, no. 29, 2014, pages 11246 - 11253, XP055657095 *

Also Published As

Publication number Publication date
JP7082401B2 (en) 2022-06-08
JP2019202301A (en) 2019-11-28
DE112019002674T5 (en) 2021-02-18
DE112019002674T8 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
Lee et al. A highly active, robust photocatalyst heterogenized in discrete cages of metal–organic polyhedra for CO 2 reduction
JP5812290B2 (en) Catalyst for use in carbon dioxide hydrogenation or formic acid dehydrogenation, carbon dioxide hydrogenation method using the catalyst, formic acid dehydrogenation method, hydrogen storage and production method
WO2013111860A1 (en) Dehydrogenation catalyst for formic acid, method for producing hydrogen, and method for producing deuterium gas or deuterated hydrogen
JP6071079B2 (en) Bimetallic catalyst for CO2 hydrogenation and H2 production from formic acid and / or its salts
US7619125B2 (en) Hydrogenation promoter, hydrogenation catalyst, and process for producing alkene compound
JP2009078200A (en) Catalyst and method for decomposing formic acid, method for producing hydrogen, apparatus for producing and decomposing formic acid and method for absorbing and generating hydrogen
JP6461396B2 (en) Catalyst used for formic acid dehydrogenation, formic acid dehydrogenation method, hydrogen production method
Bello et al. Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol
CA2900427C (en) Direct carbon dioxide hydrogenation to formic acid in acidic media
JP7370040B2 (en) dehydrogenation catalyst
Peringer et al. Modified lanthanum catalysts for oxidative chlorination of methane
Bankar et al. Iridium supported on spinal cubic cobalt oxide catalyst for the selective hydrogenation of CO2 to formic acid
Zhang et al. Catalytic C (sp)-H carboxylation with CO2
WO2019225438A1 (en) Complex catalyst used for hydrogenation of carbon dioxide, and method for producing methanol
WO2017093782A1 (en) Method for producing methanol from carbon dioxide and hydrogen gas in homogeneously catalyzed reactions and in an aqueous medium
JP6890320B2 (en) Catalyst used for hydrogenation of carbon dioxide, formic acid production method, hydrogen storage method
WO2017085986A1 (en) Method for producing γ-valerolactone
Bankar et al. Hydrogenation of CO2 to formic acid over efficient heterogeneous ruthenium oxide supported on cubic phase zirconium oxide catalyst
Lai et al. Multivacant polyoxometalate-stabilizing palladium nanoparticles catalyze the N-formylation of amines with CO 2 and H 2
Luo et al. In situ-grown active transition metal-functionalized MOF via solvent-free mechanochemical conditions as effective catalyst for the preparation of carbamates from organic azides with amines and anilines
Burrows et al. Tuning the Properties of Metal–Organic Frameworks by Post‐synthetic Modification
JP6345531B2 (en) Carbon monoxide production method
WO2024158054A1 (en) Formic acid production method
Guo et al. Gram-Scale Synthesis of Heterogeneous Cu-MOFs Catalyst with Dual Functionalities for Late-stage Dicarbofunctionalization of Alkenes
Takeuchi et al. Direct use of low-concentration CO2 in the synthesis of dialkyl carbonates, carbamate acid esters, and urea derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807324

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19807324

Country of ref document: EP

Kind code of ref document: A1