WO2019225360A1 - Photomask inspection device and photomask inspection method - Google Patents

Photomask inspection device and photomask inspection method Download PDF

Info

Publication number
WO2019225360A1
WO2019225360A1 PCT/JP2019/018788 JP2019018788W WO2019225360A1 WO 2019225360 A1 WO2019225360 A1 WO 2019225360A1 JP 2019018788 W JP2019018788 W JP 2019018788W WO 2019225360 A1 WO2019225360 A1 WO 2019225360A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
light
diffraction pattern
inspection apparatus
photomask inspection
Prior art date
Application number
PCT/JP2019/018788
Other languages
French (fr)
Japanese (ja)
Inventor
良 岸本
真吾 山本
直人 中島
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020207033118A priority Critical patent/KR102546388B1/en
Publication of WO2019225360A1 publication Critical patent/WO2019225360A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting

Definitions

  • the present invention relates to a photomask inspection apparatus and a photomask inspection method.
  • phase shift mask has been used to transfer a pattern with high resolution to a substrate such as a semiconductor substrate or a display display substrate.
  • This phase shift mask is formed with a phase shift film that delays the phase of light by a half wavelength.
  • Patent Document 1 describes a photomask inspection apparatus that measures a phase delay (phase difference) caused by a phase shift film.
  • this photomask inspection apparatus light is irradiated onto a photomask through a variable aperture stop, and the light transmitted through the photomask forms an image on a photoelectric converter (sensor) through a Fourier transform lens. Thereby, the photoelectric converter detects a Fourier transform image (diffraction pattern).
  • the photomask inspection apparatus first irradiates light in a region where no phase difference occurs in the photomask (region only in the transparent portion or region only in the phase member (phase shift film)), and Fourier in the case where no phase difference occurs.
  • the converted image is stored as a reference image.
  • the photomask inspection apparatus irradiates both the transparent portion of the photomask and the phase member with light, and based on the comparison between the Fourier transform image obtained by this irradiation and the reference image, the phase difference due to the phase member is calculated. Calculated.
  • Patent Document 1 cannot always detect a Fourier transform image (diffraction pattern) suitable for calculating the phase difference. This is because they cannot always be positioned so that the relative position between the variable aperture stop and the photomask is optimal. Since the required accuracy of positioning increases as the pattern width becomes narrower, it is difficult to obtain an optimal Fourier transform image (diffraction pattern) particularly for a photomask having a fine pattern.
  • an object of the present invention is to provide a photomask inspection apparatus and a photomask inspection method that can detect a diffraction pattern more suitable for measurement.
  • a first aspect of the photomask inspection apparatus includes a light-transmitting part that transmits light, a light-blocking part that blocks light, and a light-transmitting part that is provided between the light-transmitting part and the light-blocking part.
  • a photomask inspection apparatus for measuring a pattern characteristic of a phase shift mask of a phase shift mask in which a phase shift section for shifting a phase with respect to light transmitted through an optical section is formed in a predetermined pattern, wherein the phase shift A holding unit that holds a mask, an irradiation unit that irradiates light to a region including the light transmitting unit and the phase shift unit, a slit, a part in the width direction of the light transmitting unit, and the phase shift unit A slit mask disposed at a position where the light transmitted through the whole in the width direction passes through the slit, a Fourier transform lens into which the light that has passed through the slit is incident, and the Fourier transform lens.
  • a first optical sensor for
  • a second aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the first aspect, further comprising a moving mechanism that relatively moves the slit mask and the phase shift mask in plan view,
  • the first optical sensor detects a diffraction pattern at a plurality of timings while the moving mechanism relatively moves the slit mask and the phase shift mask.
  • a third aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the second aspect, wherein the moving mechanism is configured to move the slit mask and the phase shift along a direction inclined with respect to the width direction. Move relative to the mask.
  • a fourth aspect of the photomask inspection apparatus is a photomask inspection apparatus according to any one of the first to third aspects, wherein a plurality of diffraction patterns detected by the first optical sensor are at a central position.
  • the diffraction pattern having the smallest light intensity is selected as the selected diffraction pattern, and at least one of the width of the phase shift unit and the phase difference by the phase shift unit is obtained as the pattern characteristic based on the selected diffraction pattern.
  • An arithmetic processing unit is further provided.
  • a fifth aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the fourth aspect, wherein the arithmetic processing unit is configured to perform the phase shift based on a pitch of intensity of light in the selected diffraction pattern. The width of the part is calculated.
  • a sixth aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the fourth or fifth aspect, wherein the arithmetic processing unit includes a plurality of peak values or a plurality of light intensity values in the selected diffraction pattern. Based on the difference between the two of the bottom values, the phase difference by the phase shift unit is calculated.
  • a seventh aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the fourth aspect, wherein the arithmetic processing unit is configured to transmit the intensity distribution of the light transmitted through the light transmitting unit and the phase shift unit, and the phase.
  • a first step of setting a width of the shift unit and a phase difference by the phase shift unit; and a second step of calculating a calculation diffraction pattern using a fast Fourier transform based on the intensity distribution, the width and the phase difference A step, a third step of determining whether the calculated diffraction pattern is similar to the selected diffraction pattern, and a determination in the third step that the calculated diffraction pattern is not similar to the selected diffraction pattern If so, a fourth step is executed in which the second step and the third step are executed by changing the width and the phase difference.
  • An eighth aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the seventh aspect, wherein the arithmetic processing section transmits each of the phase shift section and the light transmitting section in the first step.
  • the intensity distribution is set so that the intensity of light to be emitted is constant.
  • a ninth aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the seventh aspect, wherein the arithmetic processing section is a boundary portion between the phase shift section and the light transmitting section in the first step.
  • the intensity distribution is set so that the intensity of light gradually increases from the phase shift portion toward the light transmitting portion.
  • a tenth aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the seventh aspect, provided between the second optical sensor, the slit mask, and the phase shift mask, and the phase shift mask.
  • An eleventh aspect of the photomask inspection method is provided with a light-transmitting portion that transmits light, a light-shielding portion that blocks light, and provided between the light-transmitting portion and the light-shielding portion.
  • the relative position between the slit mask and the phase shift mask actually fluctuates slightly.
  • a plurality of diffraction patterns corresponding to a plurality of relative positions can be detected. Therefore, it is easier to detect a diffraction pattern suitable for calculating the pattern characteristics of the phase shift unit than when detecting the diffraction pattern only once.
  • the optimum relative position can be included in the movement range. Therefore, the first optical sensor can easily detect a diffraction pattern more suitable for specific calculation of the phase shift unit.
  • the relative velocity component in the width direction can be set low. Therefore, the first optical sensor can easily detect the diffraction pattern at the relative position close to the optimum relative position.
  • At least one of the width of the phase shift unit and the phase difference by the phase shift unit can be calculated with high accuracy.
  • the width of the phase shift unit can be calculated by a simple calculation.
  • the phase difference by the phase shift unit can be calculated with a simple calculation.
  • the width of the phase shift unit and the phase difference by the phase shift unit can be calculated with higher accuracy.
  • the intensity distribution can be easily set.
  • the width of the phase shift unit and the phase difference by the phase shift unit can be calculated with higher accuracy.
  • the width of the phase shift unit and the phase difference due to the phase shift unit can be calculated with higher accuracy.
  • FIG. 1 is a perspective view schematically showing an example of the configuration of the photomask inspection apparatus 1
  • FIG. 2 is a diagram schematically showing an example of the configuration of the photomask inspection apparatus 1.
  • the photomask inspection apparatus 1 is an apparatus for inspecting the phase shift mask 80.
  • an example of the phase shift mask 80 to be inspected will be described.
  • the phase shift mask 80 is a photomask used in an exposure apparatus (not shown).
  • the exposure apparatus can transfer the pattern to the predetermined substrate by performing an exposure process on the predetermined substrate using the phase shift mask 80.
  • the predetermined substrate is, for example, a semiconductor substrate or a flat panel display substrate.
  • the phase shift mask 80 includes a base material 81, a phase shift film 82, and a light shielding film 83.
  • the base material 81 has translucency with respect to light for exposure (for example, ultraviolet rays such as i-line), and is formed of, for example, quartz glass.
  • the base material 81 has a plate-like shape, and has, for example, a rectangular shape in plan view (that is, viewed along the thickness direction).
  • the length of one side of the phase shift mask 80 is set to about several [m], for example.
  • the phase shift film 82 is formed in a predetermined pattern on one main surface of the substrate 81. Although the phase shift film 82 has translucency with respect to light for exposure, the transmittance is smaller than the transmittance of the substrate 81.
  • the transmittance of the phase shift film 82 is, for example, about several [%] (more specifically, 5 [%]).
  • the phase shift film 82 shifts the phase of the light transmitted through itself by about 180 degrees with respect to the phase of the light transmitted through the light transmitting portion 8a.
  • Such a phase shift film 82 is formed of tantalum oxide or the like, for example.
  • the light shielding film 83 is formed in a predetermined pattern on the phase shift film 82, for example.
  • the light shielding film 83 is formed in a region inside the outline of the phase shift film 82 in plan view.
  • the light shielding film 83 has a light shielding property for exposure light, and is formed of, for example, chromium or chromium oxide.
  • phase shift mask 80 a region where the phase shift film 82 is not formed in plan view is referred to as a light transmitting portion 8a, and a region where the light shielding film 83 is formed in plan view is referred to as a light shielding portion 8c.
  • a region between the light portion 8a and the light shielding portion 8c is referred to as a phase shift portion 8b.
  • the light transmitting portion 8a, the phase shift portion 8b, and the light shielding portion 8c are each formed in a predetermined pattern in plan view.
  • the width of the light transmitting portion 8a (width along the X-axis direction in FIG. 2) is set to about 2 to 4 [ ⁇ m], for example, and the width of the phase shift portion 8b (width along the X-axis direction in FIG. 2) is, for example, 0 It is set to about 3 to 0.5 [ ⁇ m].
  • the exposure apparatus can transfer the pattern to a predetermined substrate with a higher resolution by using the phase shift mask 80 than when the phase shift mask 80 is not used.
  • the pattern shape of the phase shift portion 8b is directly linked to the transfer capability. For example, when the thickness of the phase shift film 82 in the phase shift unit 8b deviates from the design value, the phase difference due to the phase shift unit 8b deviates from 180 degrees. This reduces the effect of interference, lowers the resolution, and also causes unstable pattern resolution on the transferred substrate, which ultimately reduces manufacturing yield and product quality. It will cause many troubles such as damage. Even if the width of the phase shift unit 8b deviates from the design value, the same trouble occurs.
  • the phase shift mask 80 in order to determine whether the phase shift mask 80 is good or bad, the pattern characteristics of the phase shift portion 8b formed on the phase shift mask 80 (specifically, the width of the phase shift portion 8b and the phase difference due to the phase shift portion 8b). It is preferable to correctly manage the mask manufacturing process.
  • the phase shift film 82 changes with time due to oxidation, and due to this change, the phase difference due to the phase shift film 82 can also change with time. Therefore, the phase shift mask 80 is preferably inspected periodically.
  • the photomask inspection apparatus 1 measures the pattern characteristics of the phase shift unit 8 b formed on the phase shift mask 80. As illustrated in FIGS. 1 and 2, the photomask inspection apparatus 1 includes an irradiation unit 10, a detection unit 20, a moving mechanism 40, a control unit 50, a lifting mechanism 60, a display unit 70, and a holding unit 90.
  • the holding unit 90 is a member that holds the phase shift mask 80.
  • the holding unit 90 holds the phase shift mask 80 so that the thickness direction of the phase shift mask 80 is along the Z-axis direction. In the example of FIG. 1, the holding unit 90 holds only the peripheral portion of the phase shift mask 80. Note that the holding unit 90 may support the entire lower surface of the phase shift mask 80 with a translucent member.
  • the irradiation unit 10 and the detection unit 20 are provided on opposite sides of the phase shift mask 80 in the Z-axis direction.
  • the irradiation unit 10 is provided on the ⁇ Z side with respect to the phase shift mask 80
  • the detection unit 20 is provided on the + Z side with respect to the phase shift mask 80.
  • the irradiation unit 10 irradiates light along the Z-axis direction and causes the light to enter a part of the phase shift mask 80.
  • the light for example, light having a wavelength comparable to that of exposure light (for example, i-line) is employed.
  • the irradiation unit 10 includes, for example, a light source 11, a condenser lens 12, a band pass filter 13, a relay lens 14, a pinhole plate 15, a reflection plate 16, and a condenser lens 17.
  • the light source 11 emits light.
  • the light source 11 is, for example, an ultraviolet irradiator.
  • a mercury lamp can be used as the ultraviolet irradiator.
  • the light irradiation / stop of the light source 11 is controlled by the control unit 50.
  • the condensing lens 12, the band pass filter 13, the relay lens 14, the pinhole plate 15, the reflecting plate 16, and the condenser lens 17 are arranged in this order between the light source 11 and the phase shift mask 80.
  • the condensing lens 12 is a convex lens and is disposed so that its focal point is located at the light source 11.
  • the light emitted from the light source 11 becomes collimated light or light having a small divergence angle by the condenser lens 12, and this light is incident on the band pass filter 13.
  • the bandpass filter 13 transmits only light having a predetermined wavelength band (transmission band) among the light.
  • a wavelength band of light for exposure for example, a wavelength band including i-line
  • the wavelength band of the bandpass filter 13 is set to be narrow, and substantially single wavelength light (so-called monochromatic light) is transmitted through the bandpass filter 13.
  • the light transmitted through the bandpass filter 13 is incident on the relay lens 14.
  • the relay lens 14 is a convex lens and condenses incident light in the pinhole 151 of the pinhole plate 15.
  • the pinhole 151 penetrates the pinhole plate 15 in the thickness direction.
  • the pinhole plate 15 is disposed at a position where the pinhole 151 becomes the focal point of the relay lens 14.
  • the light that has passed through the pinhole 151 substantially becomes light emitted from the point light source, and is incident on the reflection surface of the reflection plate 16.
  • the reflecting plate 16 is provided to change the traveling direction of light, and makes the light incident on the condenser lens 17.
  • the condenser lens 17 is a convex lens, and is disposed at a position where the focal point is substantially the pinhole 151.
  • the condenser lens 17 converts the incident light into collimated light or light with a small divergence angle.
  • the NA (numerical aperture) of light from the condenser lens 17 is set to an appropriate value by the condenser lens 17 and the pinhole 151.
  • the irradiation unit 10 irradiates a part of the phase shift mask 80 with this light along the Z-axis direction.
  • the detection unit 20 detects the light transmitted through the phase shift mask 80 and detects a diffraction pattern by the light.
  • the detection unit 20 includes, for example, an objective lens 21, an imaging lens 22, a prism 23, a slit mask 24, a Fourier transform lens 25, a relay lens 26, and image sensors (optical sensors) 27 and 28.
  • the objective lens 21, imaging lens 22, prism 23, slit mask 24, Fourier transform lens 25, and image sensor 27 are arranged in this order as they move away from the phase shift mask 80 in the Z-axis direction.
  • the light transmitted through the part of the phase shift mask 80 is magnified through the objective lens 21 and the imaging lens 22. Part of the light from the imaging lens 22 is reflected by the prism 23 toward the image sensor 28 side. That is, the prism 23 is an optical element that guides part of the light from the phase shift mask 80 to the image sensor 28. This optical element is not limited to the prism 23 but may be a mirror or a half mirror.
  • the slit mask 24 is disposed at the focal point of the imaging lens 22. Light incident on the slit mask 24 from the imaging lens 22 passes through a slit 24 a formed in the slit mask 24. Since the slit mask 24 blocks light in a region other than the slit 24a and allows light to pass through only the slit 24a, it functions as a field stop for narrowing the field of view. The slit 24a is wide enough to transmit only light from a region including only the phase shift portion 8b and its vicinity.
  • the slit mask 24 has a base material 241 and a light shielding film 242.
  • the base material 241 has translucency with respect to light for exposure, and is formed of, for example, quartz glass.
  • the base material 241 has a plate shape, and has, for example, a rectangular shape in plan view.
  • the base material 241 is provided such that its thickness direction is along the Z-axis direction.
  • the light shielding film 242 is formed on one main surface of the base material 241.
  • the light shielding film 242 has a light shielding property for exposure light, and is formed of, for example, chromium or chromium oxide.
  • the light shielding film 242 is formed to avoid a part of the base material 241 in a plan view.
  • the partial area forms a slit 24a that allows light to pass therethrough.
  • the slit 24a has a long shape in plan view.
  • FIG. 3 is a plan view schematically showing an example of the configuration of the slit mask 24.
  • the light transmission part 8a and the phase shift part 8b are also shown with the dashed-two dotted line virtually. That is, the two-dot chain line indicates a projected image in which the light transmitting portion 8 a and the phase shift portion 8 b are projected onto the slit mask 24 via the objective lens 21 and the imaging lens 22.
  • a projection image obtained by projecting the translucent portion 8a onto the slit mask 24 is referred to as a translucent portion image 80a
  • a projection image obtained by projecting the phase shift portion 8b onto the slit mask 24 is referred to as a phase shift portion image 80b.
  • the longitudinal direction of the slit 24a is along the extending direction of the light transmitting portion 8a, and the slit 24a faces the phase shift portion 8b. More specifically, inside the slit 24a, the entire phase direction image 80b in the width direction (here, the X-axis direction) and the translucent image 80a adjacent to the one phase shift image 80b. And a part in the width direction. In other words, the light transmitted through the entire width direction of the phase shift portion 8b and a part of the light transmission portion 8a adjacent to the phase shift portion 8b in the width direction passes through the slit 24a.
  • the light passing through slit 24a is imaged on the imaging surface of image sensor 27 via Fourier transform lens 25.
  • the image sensor 27 is arranged such that its imaging surface is located at the focal point of the Fourier transform lens 25.
  • the image sensor 27 is a CCD image sensor, for example, and generates a captured image IM1 based on light imaged on its imaging surface, and outputs the captured image IM1 to the control unit 50. Since the light forms an image on the image sensor 27 through the Fourier transform lens 25, the captured image IM1 includes a diffraction pattern caused by the light transmitted through the light transmitting portion 8a and the light transmitted through the phase shift portion 8b. .
  • the image sensor 27 is not limited to an image sensor having pixels arranged two-dimensionally, and may be a line sensor having pixels arranged one-dimensionally. In short, the image sensor 27 may be any optical sensor that can convert the luminance distribution of the light intensity pattern (diffraction pattern) formed in the X-axis direction into digital data.
  • the control unit 50 calculates the pattern characteristics (width and phase difference) of the phase shift unit 8b based on this diffraction pattern.
  • a specific example of the diffraction pattern and a specific example of the calculation method will be described in detail later.
  • the light from the prism 23 via the relay lens 26 forms an image on the imaging surface of the image sensor 28.
  • the image sensor 28 is arranged so that its imaging surface is located at the focal point of the relay lens 26.
  • the image sensor 28 is a CCD image sensor, for example, and generates a captured image IM2 based on the light imaged on its imaging surface, and outputs the captured image IM2 to the control unit 50.
  • the measurement target region of the phase shift mask 80 appears in the captured image IM2.
  • the control unit 50 may cause the display unit 70 to display the captured image IM2. Thereby, it is possible to visually recognize which region of the phase shift mask 80 the operator is measuring.
  • the moving mechanism 40 moves the holding unit 90 in the XY plane.
  • the phase shift mask 80 held by the holding unit 90 also moves in the XY plane.
  • the moving mechanism 40 has, for example, a ball screw mechanism and is controlled by the control unit 50.
  • the control unit 50 By moving the phase shift mask 80 in the XY plane, the irradiation unit 10 and the detection unit 20 can be scanned with respect to the phase shift mask 80. Therefore, the pattern characteristics of the phase shift unit 8 b can be measured in a plurality of measurement regions of the phase shift mask 80.
  • the moving mechanism 40 only needs to have a function and a structure for moving the phase shift mask 80 relative to the irradiation unit 10 and the detection unit 20. For example, the irradiation unit 10 and the detection unit 20 are integrated with each other. It may be moved.
  • the elevating mechanism 60 raises and lowers the holding unit 90 in the Z-axis direction. As a result, the phase shift mask 80 held by the holding unit 90 also moves up and down.
  • the lifting mechanism 60 has, for example, a ball screw mechanism and is controlled by the control unit 50. The lifting mechanism 60 moves the phase shift mask 80 up and down, so that the phase shift mask 80 can be moved to the focal point of the objective lens 21.
  • the raising / lowering mechanism 60 only needs to have a function and a structure for raising and lowering the phase shift mask 80 relative to the detection unit 20. For example, the detection unit 20 may be raised and lowered.
  • the display unit 70 is a display device such as a liquid crystal display or an organic EL display, and the display content is controlled by the control unit 50.
  • the control unit 50 outputs an image signal including the measurement result to the display unit 70.
  • the display unit 70 displays the measurement result based on the image signal. Further, as described above, the display unit 70 may display the captured image IM2 under the control of the control unit 50.
  • the prism 23, the slit mask 24, the Fourier transform lens 25, the relay lens 26, and the image sensors 27 and 28 are built in the optical head 30 of FIG.
  • the slit mask 24 may be rotatably provided so that the longitudinal direction of the slit 24a extends along the extending direction of the light transmitting portion 8a at each position on the XY plane.
  • the optical head 30 may include an upper member 31 and a lower member 32 that are rotatably connected to each other, and the above-described optical element built in the optical head 30 may be built in the upper member 31.
  • the lower member 32 may be fixed to the housing of the photomask inspection apparatus 1 so as not to rotate, and the upper member 31 may be rotatably connected to the lower member 32. According to this, the longitudinal direction of the slit 24a of the slit mask 24 built in the upper member 31 can be adjusted by rotating the upper member 31 in the XY plane.
  • a rotation drive mechanism (for example, a motor) that rotates the upper member 31 relative to the lower member 32 may be provided. This rotation drive mechanism is controlled by the control unit 50.
  • the control unit 50 can control the photomask inspection apparatus 1 as a whole. For example, as described above, the control unit 50 controls the irradiation by the irradiation unit 10, the movement by the movement mechanism 40, the elevation by the elevation mechanism 60, and the rotation of the optical head 30.
  • the control unit 50 also functions as an arithmetic processing unit that calculates the pattern characteristics of the phase shift unit 8b based on the captured image IM1 generated by the image sensor 27.
  • the control unit 50 is an electronic circuit device, and may include, for example, an arithmetic processing unit and a storage medium.
  • the arithmetic processing device may be an arithmetic processing device such as a CPU (Central Processor Unit).
  • the storage unit may include a non-temporary storage medium (for example, ROM (Read Only Memory) or a hard disk) and a temporary storage medium (for example, RAM (Random Access Memory)).
  • the non-temporary storage medium may store a program that defines the processing executed by the control unit 50. When the processing device executes this program, the control unit 50 can execute the processing defined in the program.
  • part or all of the processing executed by the control unit 50 may be executed by hardware.
  • FIG. 4 is a graph schematically showing an example of the plurality of diffraction patterns DP1 to DP5.
  • the vertical axis indicates the intensity of light
  • the horizontal axis indicates the position in the X-axis direction. Therefore, it can be said that the diffraction pattern is a luminance profile.
  • the diffraction patterns DP1 to DP5 are diffraction patterns obtained when the relative positions of the slit 24a and the phase shift mask 80 in plan view are changed.
  • a distance d (see FIG. 3) is introduced as a parameter indicating the relative position.
  • the translucent part image 80a and the phase shift part image 80b are located inside the slit 24a in plan view. Specifically, inside the slit 24a, the translucent image 80a is positioned on the ⁇ X side, and the phase shift image 80b is positioned on the + X side.
  • the distance d is the distance from the ⁇ X side end of the slit 24a to the boundary between the translucent part image 80a and the phase shift part image 80b. The greater this distance d, the greater the proportion of the translucent part image 80a in the slit 24a. That is, most of the light transmitted through the slit 24a is occupied by the light from the light transmitting portion 8a.
  • the diffraction patterns DP1 to DP5 are diffraction patterns obtained when the distance d is changed.
  • the distance d corresponding to the diffraction patterns DP1 to DP5 is shorter as the number at the end of the code of the diffraction pattern is smaller. That is, the diffraction pattern DP1 is a diffraction pattern corresponding to the shortest distance d, and the diffraction pattern DP5 is a diffraction pattern corresponding to the longest distance d.
  • the range of change of the distance d is set as follows. That is, the change range is set so that the whole of the phase shift portion image 80b in the width direction is included in the slit 24a. That is, the change range of the distance d is set so that a part of the phase shift portion image 80b does not protrude from the slit 24a in the width direction.
  • the width of the slit 24a (the width along the X-axis direction) is set so that the entire phase shift portion image 80b in the width direction is included in the slit 24a when the distance d is changed within the change range. Is done.
  • the diffraction patterns DP ⁇ b> 1 and DP ⁇ b> 2 have an upwardly convex shape (that is, a single mountain shape). This is because when the distance d is short, the light from the translucent part 8a is shielded by the slit 24a, so that only the light from the phase shift part 8b passes through the slit 24a. Therefore, the diffraction pattern becomes a diffraction pattern with a simple rectangular opening, and has such a distribution shape. Further, in the diffraction patterns DP1 and DP2, the peak value of the light intensity is relatively small. This is because the aperture is small and the transmittance of the phase shift portion 8b is low.
  • the diffraction patterns DP3 to DP5 have a two-peak shape having two peaks. This is due to the fact that not only the light from the phase shift unit 8b but also the light from the light transmission unit 8a sufficiently passes through the slit 24a and the phase thereof is shifted by approximately 180 degrees as the distance d increases. This is because an interference pattern is generated.
  • a double peak shape is shown, but when the horizontal axis region is made wider, new peaks appear on both sides (see also FIG. 5).
  • the position where the light intensity takes the bottom value between the highest peak value and the next highest peak value is referred to as the center position x0.
  • the peak values of the diffraction patterns DP3 to DP5 and the bottom value at the center position x0 increase as the distance d increases. This is because in the light passing through the slit 24a, the light increases from the light transmitting portion 8a having a high transmittance.
  • the light intensity (bottom value) at the center position x0 is zero.
  • the complex amplitude of the light beam that passes through the light transmitting portion 8a and the slit 24a in this order is equal to the complex amplitude of the light beam that passes through the phase shift portion 8b and the slit 24a in this order. That is, when both complex amplitudes are equal to each other, the light is weakened by the same amount at the center position x0, so that the light intensity (bottom value) becomes zero.
  • ws ′ w ′ ⁇ ⁇ t (1)
  • ws ′ indicates the width (that is, distance d) of the region located inside the slit 24 a in the translucent portion image 80 a
  • w ′ indicates the width of the phase shift portion image 80 b
  • t indicates the transmittance of the phase shift unit 8b.
  • equation (2) is derived from equation (1).
  • the light transmitting portion 8a corresponding to the slit 24a.
  • the width ws is 0.089 [ ⁇ m]. That is, if the slit mask 24 can be positioned with respect to the phase shift mask 80 so that the width ws becomes 0.089 [ ⁇ m], the image sensor 27 can generate the captured image IM1 including the diffraction pattern DP3. That is, the diffraction pattern DP3 can be detected.
  • the strong and weak pitch (for example, the distance between the peak positions of the light intensity) ⁇ dx in the diffraction pattern DP3 is the distance (pitch) ⁇ x between the centers of the translucent part image 80a and the phase shift part image 80b inside the slit 24a. '(See also Fig. 3).
  • the pitch ⁇ dx is theoretically proportional to the center-to-center distance ⁇ x ′.
  • the proportionality coefficient ⁇ 1 can be obtained in advance by simulation or experiment. Therefore, if the pitch ⁇ dx is obtained from the diffraction pattern DP3, the center-to-center distance ⁇ x ′ can be obtained based on the pitch ⁇ dx.
  • FIG. 5 is a graph schematically showing an example of the plurality of diffraction patterns DP3, DP31 to DP34.
  • the diffraction patterns DP3, DP31 to DP34 are diffraction patterns obtained when the phase difference ⁇ is changed in a state where the formula (2) is satisfied. Since equation (2) holds, the bottom value at the center position x0 is zero in any of the diffraction patterns DP3 and DP31 to DP34.
  • the waveforms of the diffraction patterns DP3, DP31 to DP34 are different depending on the phase difference ⁇ .
  • the phase difference ⁇ can be obtained based on the detected waveform of the diffraction pattern.
  • the center position x0 varies according to the phase difference ⁇ . Specifically, the center position x0 moves to the + X side as the phase difference ⁇ increases. Therefore, the center position x0 when the phase difference ⁇ is 180 degrees is set as a reference position in advance, and the relationship between the difference between each center position x0 and the reference position and the phase difference ⁇ is determined by simulation or experiment, for example. Set in advance. If the difference between the center position x0 of the detected diffraction pattern and the reference position is obtained, the phase difference ⁇ can be obtained based on the obtained difference and the above relationship.
  • the phase difference ⁇ may be obtained based on each peak value or each bottom value instead of the center position x0. For example, in the region on the + X side from the center position x0, each peak value decreases as the phase difference ⁇ increases, and each bottom value decreases as the phase difference ⁇ increases. On the other hand, in the region on the ⁇ X side from the center position x0, each peak value increases as the phase difference ⁇ increases, and each bottom value increases as the phase difference ⁇ increases.
  • the peak value closest to the center position x0 in the + X side region is referred to as a primary peak value
  • the peak value closest to the center position x0 in the ⁇ X side region is referred to as a ⁇ 1st order peak value.
  • FIG. 5 shows the peak difference ⁇ p for the diffraction pattern DP34 as an example.
  • This peak difference ⁇ p increases as the phase difference ⁇ increases.
  • the peak difference ⁇ p in the diffraction pattern DP3 is zero
  • the peak difference ⁇ p in the diffraction patterns DP31 and DP32 has a negative value
  • the peak difference ⁇ p in the diffraction pattern DP31 is smaller than the peak difference ⁇ p in the diffraction pattern DP32.
  • the peak difference ⁇ p in the diffraction patterns DP33 and DP34 has a positive value, and the peak difference ⁇ p in the diffraction pattern DP34 is larger than the peak difference ⁇ p in the diffraction pattern DP33.
  • the relationship between the peak difference ⁇ p and the phase difference ⁇ can be set in advance by, for example, simulation or experiment. Therefore, if the peak difference ⁇ p of the detected diffraction pattern is obtained, the phase difference ⁇ can be calculated based on the peak difference ⁇ p.
  • the phase difference ⁇ can be obtained with high accuracy.
  • the bottom value may be adopted instead of the peak value. Specifically, a difference between a plurality of bottom values may be adopted. However, since the fluctuation amount of the difference between the bottom values with respect to the phase difference ⁇ is smaller than the peak difference ⁇ p, it is desirable to employ the peak difference ⁇ p from the viewpoint of improving accuracy.
  • the width w of the phase shift unit 8b and the position by the phase shift unit 8b can be calculated.
  • the interference pattern due to the two light beams respectively transmitted through the light transmitting portion 8a and the phase shift portion 8b appears remarkably. It is necessary to position the slit mask 24 with respect to the phase shift mask 80.
  • the required accuracy of this positioning is higher as the width ws is smaller. For example, when the width ws is 0.089 [ ⁇ m], an accuracy of about several to several tens [nm] is required.
  • the width ws also depends on the width w of the phase shift portion 8b (Equation (2)), and it can be said that the phase shift mask 80 having a finer pattern width has a higher required positioning accuracy.
  • the calculated width w of the phase shift unit 8b has the slit mask 24 and the phase shift.
  • a calculation error (measurement error) approximately 0.8 times as large as an error in positioning with the mask 80 (several to several tens [nm]) occurs. That is, a maximum calculation error of about 16 [nm] may occur.
  • the entire line width including the phase shift portion 8b is directly controlled by the resist process and is strictly controlled. Therefore, a measurement accuracy of about 5 to 10 [nm] is required. Is done.
  • the required accuracy of the individual width w of the phase shift unit 8b is not as high as the entire line width, and the above positioning accuracy (several to several tens [nm]) is sufficient for practical use.
  • the image sensor 27 repeatedly detects diffraction patterns at different timings while changing the relative position between the slit mask 24 and the phase shift mask 80 with the passage of time. Thereby, the diffraction pattern corresponding to the optimal relative position or its vicinity is detected.
  • the photomask inspection apparatus 1 a specific example of the operation of the photomask inspection apparatus 1 will be described.
  • FIG. 6 is a flowchart showing an example of the operation of the photomask inspection apparatus 1.
  • the control unit 50 initially irradiates the irradiation unit 10 with light.
  • step S1 the control unit 50 controls the moving mechanism 40 to perform rough alignment with the phase shift mask 80 on the XY plane. Specifically, the moving mechanism 40 moves the phase shift mask 80 in the XY plane so that the irradiation unit 10 and the detection unit 20 face the measurement target region of the phase shift mask 80 in the Z-axis direction.
  • This measurement target region includes both the translucent part 8a and the phase shift part 8b.
  • This alignment is not an alignment with such an accuracy that a diffraction pattern with a bottom value of zero at the center position x0 can always be detected, but a coarse alignment.
  • the control unit 50 controls the rotation driving mechanism of the optical head 30 to rotate the optical head 30 so that the longitudinal direction of the slit 24a is along the extending direction of the light transmitting unit 8a in the measurement target region.
  • step S2 the control unit 50 controls the elevating mechanism 60 to perform autofocus processing. Specifically, the elevating mechanism 60 adjusts the position of the phase shift mask 80 in the Z-axis direction so that the distance between the objective lens 21 and the phase shift mask 80 becomes the focal length.
  • step S ⁇ b> 3 the image sensor 27 captures the diffraction pattern at a plurality of timings while the slit mask 24 and the phase shift mask 80 are relatively finely moved, and outputs the captured image IM ⁇ b> 1 to the control unit 50.
  • the image sensor 27 detects the diffraction pattern at a plurality of timings while changing the relative position of the slit mask 24 and the phase shift mask 80 in plan view with time.
  • the control unit 50 controls the moving mechanism 40 to move the phase shift mask 80 relative to the slit mask 24 along the width direction of the slit 24a (here, the X-axis direction).
  • the moving direction D1 of the phase shift mask 80 is schematically indicated by a block arrow.
  • this movement range includes the optimum relative position where the width ws becomes the optimum value (for example, 0.089 [ ⁇ m]) or the vicinity thereof with a high probability. Therefore, in step S3, there is a timing at which the relative position between the slit mask 24 and the phase shift mask 80 is optimal or in the vicinity thereof. Therefore, any one of the plurality of captured images IM1 generated by the image sensor 27 includes a diffraction pattern corresponding to a relative position close to the optimum relative position.
  • the relative speed between the phase shift mask 80 and the slit mask 24 during imaging (relative speed in step S3) is preferably low, and is set lower than the relative speed in step S1, for example. According to this, it is easy to detect the diffraction pattern corresponding to the relative position close to the optimum relative position.
  • step S4 the control unit 50 selects a diffraction pattern used for measurement from a plurality of diffraction patterns respectively included in the plurality of captured images IM1.
  • the selected diffraction pattern is also referred to as a selective diffraction pattern SP1. More specifically, the control unit 50 selects the diffraction pattern having the smallest light intensity (bottom value) at the center position x0 as the selected diffraction pattern SP1.
  • step S5 the control unit 50 calculates the pattern characteristics (width w and phase difference ⁇ ) of the phase shift unit 8b based on the selected diffraction pattern SP1.
  • FIG. 7 is a flowchart showing a specific example of a pattern characteristic calculation method of the phase shift unit 8b.
  • step S51 the control unit 50 obtains the pitch ⁇ dx of the intensity of light in the selected diffraction pattern SP1. For example, in the selected diffraction pattern SP1, the control unit 50 uses the difference between the position when the light intensity takes the first-order peak value and the position when the light intensity takes the ⁇ 1st-order peak value as the pitch ⁇ dx. calculate.
  • step S52 the control unit 50 calculates the width w of the phase shift unit 8b based on the pitch ⁇ dx calculated in step S51. More specifically, the control unit 50 obtains the center-to-center distance ⁇ x based on the pitch ⁇ dx calculated in step S51, and sets the width w of the phase shift unit 8b based on the center-to-center distance ⁇ x and Expression (4). calculate.
  • the relationship between the pitch ⁇ dx and the center-to-center distance ⁇ x is preset by, for example, simulation or experiment, and is stored in, for example, a storage medium of the control unit 50.
  • step S53 the control unit 50 obtains the peak difference ⁇ p of the selected diffraction pattern SP1.
  • the control unit 50 calculates a value obtained by subtracting the first-order peak value from the ⁇ 1st-order peak value as the peak difference ⁇ p.
  • step S54 the control unit 50 calculates the phase difference ⁇ by the phase shift unit 8b based on the peak difference ⁇ p calculated in step S53.
  • the relationship between the peak difference ⁇ p and the phase difference ⁇ is preset by, for example, simulation or experiment, and is stored in, for example, a storage medium of the control unit 50.
  • the control unit 50 obtains the phase difference ⁇ by the phase shift unit 8b based on the peak difference ⁇ p calculated in step S53 and the relationship.
  • the series of calculations may be performed based on one selected diffraction pattern SP1, or may be performed based on a plurality of diffraction patterns near the position where the relative position is optimal.
  • the upper N (N is 2 or more and less than M) diffraction patterns having a small bottom value at the center position x0 are selectively diffracted. It may be selected as the pattern SP1.
  • N diffraction patterns whose bottom value at the center position is equal to or less than a predetermined reference value may be selected as the selected diffraction pattern SP1. According to this, it is possible to use N diffraction patterns in which the effect of interference appears relatively strongly.
  • pattern characteristics may be obtained statistically from the results of the selected N selected diffraction patterns SP1. For example, an average or regression analysis can be adopted as the statistics. As a specific example, one selected diffraction pattern SP1 may be averaged to calculate one diffraction pattern, and the pattern characteristics of the phase shift unit 8b may be obtained based on the diffraction pattern as described above.
  • step S6 the control unit 50 causes the display unit 70 to display the calculated pattern characteristics (width w and phase difference ⁇ ) of the phase shift unit 8b. Thereby, the worker can judge the quality of the phase shift part 8b of the phase shift mask 80.
  • the control unit 50 may determine whether or not the calculated pattern characteristic of the phase shift unit 8b is within a preset good range and display the determination result on the display unit 70. According to this, the worker can quickly know the quality of the phase shift unit 8b.
  • steps S1 to S6 may be repeatedly executed while sequentially changing the measurement target region. Thereby, the entire surface of the phase shift mask 80 can be inspected.
  • the diffraction pattern is detected at a plurality of timings while changing the relative positions of the slit mask 24 and the phase shift mask 80 in plan view. Therefore, the detected plurality of diffraction patterns include a diffraction pattern corresponding to a relative position close to the optimum relative position. Therefore, the pattern characteristics of the phase shift unit 8b can be calculated based on a more suitable diffraction pattern.
  • Patent Document 1 a reference image (reference diffraction pattern) detected when light is irradiated to a region having no phase difference is used.
  • this reference diffraction pattern it is necessary to measure the diffraction pattern in the measurement target region at a time different from the measurement time of the reference diffraction pattern. Since each measurement time is different, a difference (for example, an optical axis shift or the like) may occur in the state of the optical system at each measurement time due to heat generated in the apparatus during that period. That is, the optical conditions at both measurement times may be different from each other. Thus, if the optical conditions are different, a measurement error occurs in the pattern characteristics of the phase shift unit 8b.
  • the photomask inspection apparatus 1 it is not necessary to use such a reference diffraction pattern. Therefore, the occurrence of the measurement error can be avoided, and the pattern characteristics of the phase shift unit 8b can be calculated with high accuracy.
  • control unit 50 selects the diffraction pattern with the smallest light intensity at the center position x0 among the plurality of diffraction patterns as the selected diffraction pattern SP1. According to this, the diffraction pattern corresponding to the relative position closest to the optimum position can be selected. Therefore, the pattern characteristics of the phase shift unit 8b can be calculated with higher accuracy than when other diffraction patterns are used.
  • the width w of the phase shift unit 8b is calculated based on the strong and weak pitches in the selected diffraction pattern SP1. According to this, the width w of the phase shift unit 8b can be calculated by a simple process.
  • the phase difference ⁇ by the phase shift unit 8b is calculated based on the peak value difference in the selected diffraction pattern SP1. Accordingly, the phase difference ⁇ by the phase shift unit 8b can be calculated with a simple process.
  • the width w and the phase difference ⁇ are calculated by analyzing the diffraction pattern of the light transmitted through one slit 24a. Therefore, compared to the case where the pattern characteristics of the phase shift part are calculated based on the interference of light transmitted through the slits using two slits, the distance between the translucent parts 8a (distance between patterns) is smaller. It is easy to apply to a narrow phase shift mask 80. That is, the photomask inspection apparatus 1 can also be applied to a phase shift mask 80 for a line and space pattern or a hole pattern array with a narrow interval.
  • the image sensor 27 generates the captured image IM1 at a plurality of timings while the moving mechanism 40 moves the phase shift mask 80 relative to the slit mask 24 (step S3).
  • the movement by the moving mechanism 40 is not always necessary.
  • the amount of fine movement required in the present embodiment is constantly generated due to bending of the device structural material (for example, the moving mechanism 40).
  • the diffraction pattern may be detected during this period. That is, a plurality of diffraction patterns respectively corresponding to a plurality of relative positions may be detected using this residual vibration.
  • the image sensor 27 can operate at a plurality of timings while the relative position varies over time.
  • the diffraction pattern may be detected sequentially. That is, in step S3, the image sensor 27 may sequentially generate captured images IM1 at a plurality of timings and detect a plurality of diffraction patterns in a state where the moving mechanism 40 is not performing a moving operation.
  • the image sensor 27 can easily detect a diffraction pattern more suitable for calculating the pattern characteristics of the phase shift unit 8b. Then, by selecting a diffraction pattern more suitable for measurement from a plurality of diffraction patterns, the pattern characteristics of the phase shift unit 8b can be calculated with higher accuracy.
  • the fluctuation range of the relative position depends on the surrounding environment and the like, and it is not known whether the optimum relative position is included in the fluctuation range.
  • the movement mechanism 40 moves the phase shift mask 80 relative to the slit mask 24, the phase shift mask 80 is slit so that the optimum relative position is included in the movement range. It can be moved relative to the mask 24. Therefore, a plurality of detected diffraction patterns can include a diffraction pattern closer to the optimum relative position, and as a result, the pattern characteristics of the phase shift unit 8b can be calculated with higher accuracy.
  • the positioning accuracy between the slit mask 24 and the phase shift mask 80 may be required to be several tens [nm] or less. Therefore, in order to appropriately detect the diffraction pattern at a timing when the relative position between the slit mask 24 and the phase shift mask 80 is within the accuracy, it is desirable that the relative speed between the phase shift mask 80 and the slit mask 24 is low.
  • the moving mechanism 40 may move the phase shift mask 80 relative to the slit mask 24 along a direction inclined with respect to the width direction of the slit 24a (in other words, the width direction of the phase shift portion 8b).
  • FIG. 8 is a diagram for explaining the moving direction D1 of the phase shift mask 80 with respect to the slit mask 24.
  • the moving direction D1 is schematically indicated by a block arrow.
  • the moving direction D1 intersects the width direction of the slit 24a within a range of about 30 to 60 degrees, for example. If the phase shift mask 80 is moved relative to the slit mask 24 along the moving direction D1, the relative velocity component along the width direction of the slit 24a can be reduced. According to this, it is easy to detect a diffraction pattern corresponding to a more optimal relative position.
  • the control unit 50 sets respective initial values as values of the unknown width w and the phase difference ⁇ , and calculates a diffraction pattern (hereinafter referred to as a calculation diffraction pattern) using the initial values. Then, the control unit 50 determines whether or not the calculated diffraction pattern is similar to the selected diffraction pattern SP1. In other words, the control unit 50 determines whether or not the difference between the calculated diffraction pattern and the selected diffraction pattern SP1 is large.
  • the control unit 50 changes the value of the width w and the value of the phase difference ⁇ and calculates the calculated diffraction pattern again.
  • the controller 50 repeatedly executes the above operation until the calculated diffraction pattern is similar to the selected diffraction pattern, that is, until the difference becomes smaller than the reference value.
  • the value of the width w and the value of the phase difference ⁇ when the arithmetic circuit pattern is similar to the selected diffraction pattern indicate measured values.
  • FIG. 9 is a diagram schematically showing an example of a simulation model M1 for calculating a calculation diffraction pattern.
  • the simulation model M1 shows the light intensity distribution in the region corresponding to the slit 24a in the phase shift mask 80.
  • the intensity of light in the light transmitting portion 8a, the phase shift portion 8b, and the light shielding portion 8c is set in advance based on the respective transmittances (for example, pattern design values).
  • the light intensity in each of the light transmitting portion 8a, the phase shift portion 8b, and the light shielding portion 8c is set to be constant. Therefore, the light intensity steeply rises at the boundary between the light transmitting portion 8a and the phase shift portion 8b.
  • the light intensity sharply increases at the boundary between the phase shift portion 8b and the light shielding portion 8c.
  • the widths w and ws satisfy Expression (2), and the width w is an unknown number.
  • the phase difference ⁇ in the phase shift unit 8b is also an unknown number.
  • FIG. 10 is a graph schematically showing the calculated diffraction patterns AP1 to AP4.
  • the calculated diffraction patterns AP1 to AP4 are calculated diffraction patterns obtained when the phase difference ⁇ is changed.
  • an example of the selective diffraction pattern SP1 is also shown for reference.
  • the selected diffraction pattern SP1 is similar to the calculated diffraction pattern AP3.
  • FIG. 11 is a flowchart illustrating an example of the operation of the control unit 50. This flow corresponds to a specific example of step S5 in FIG.
  • the control unit 50 sets the value of the width w of the phase shift unit 8b and the value of the phase difference ⁇ by the phase shift unit 8b to respective initial values.
  • the initial value may be set in advance, for example.
  • step S502 the control unit 50 calculates a calculation diffraction pattern based on the values of the width w and the phase difference ⁇ . Specifically, the control unit 50 calculates a calculation diffraction pattern by applying a simulator using fast Fourier transform to the simulation model M1.
  • step S503 the control unit 50 determines whether or not the calculated diffraction pattern calculated in step S502 is similar to the selected diffraction pattern SP1. For example, the control unit 50 generates difference information indicating a difference between the calculated diffraction pattern and the selected diffraction pattern SP1, and determines whether the difference is smaller than a reference value.
  • the difference information need not be particularly limited, for example, the sum of absolute values of the differences in light intensity at each position of the calculated diffraction pattern and the selected diffraction pattern SP1 can be employed. The smaller the sum, the smaller the difference.
  • difference information for example, a first difference between the pitch ⁇ dx in the calculated diffraction pattern and the pitch ⁇ dx in the selected diffraction pattern SP1, and a second difference between the peak difference ⁇ p in the calculated diffraction pattern and the peak difference ⁇ p in the selected diffraction pattern SP1. Differences may be employed. The smaller the difference, the smaller the difference between the calculated diffraction pattern and the selected diffraction pattern SP1.
  • step S504 the control unit 50 changes at least one of the value of the width w and the phase difference ⁇ , and updates the simulation model M1. To do.
  • the control unit 50 executes Step S503. That is, when the calculated diffraction pattern is not similar to the selected diffraction pattern SP1, it is considered that at least one of the width w and the phase difference ⁇ is still separated from the measured value. Then, the calculated diffraction pattern is calculated again (step S503), and it is determined whether or not the calculated calculated diffraction pattern is similar to the selected diffraction pattern SP1 (step S504). By repeating steps S502 to S504, the calculated diffraction pattern will eventually be similar to the selected diffraction pattern SP1.
  • step S503 When it is determined in step S503 that the calculated diffraction pattern is similar to the selected diffraction pattern SP1, in step S6, the control unit 50 uses the latest width w and the phase difference ⁇ as the measured values, and displays the display unit 70. To display.
  • the operation diffraction pattern similar to the selected diffraction pattern SP1 is calculated using the fast Fourier transform on the simulation model M1. According to this, the width w of the phase shift unit 8b and the phase difference ⁇ by the phase shift unit 8b can be obtained with higher accuracy.
  • the light intensity of each of the light transmitting portion 8a and the phase shift portion 8b is set to be constant. Therefore, setting of the intensity distribution is simple and the calculation process can be simplified.
  • the control unit 50 may determine the values of the width w and the phase difference ⁇ based on the difference information in step S504. That is, the control unit 50 may determine the values of the width w and the phase difference ⁇ so that the difference between the calculated diffraction pattern and the selected diffraction pattern SP1 is reduced. For example, consider the case where the first difference and the second difference are adopted as the difference information. In this case, the control unit 50 changes the value of the width w so that the first difference becomes small, and changes the value of the phase difference ⁇ so that the second difference becomes small.
  • the control unit 50 increases the width w to reduce the pitch ⁇ dx in the next calculated diffraction pattern. Change to a smaller value.
  • the control unit 50 reduces the phase difference ⁇ to reduce the peak difference ⁇ p in the next calculated diffraction calculation pattern. Change to a value.
  • the calculation diffraction pattern calculated next can be brought close to the selected diffraction pattern SP1. Therefore, a calculation diffraction pattern similar to the selected diffraction pattern SP1 can be calculated earlier.
  • the light intensity is set to be constant in each of the light transmitting portion 8a and the phase shift portion 8b.
  • the light intensity gradually increases with an inclination from the phase shift portion 8b toward the light transmitting portion 8a. It is done.
  • the boundary portion between the light shielding portion 8c and the phase shift portion 8b Therefore, such a simulation model may be utilized.
  • FIG. 12 is a diagram schematically showing an example of the simulation model M2.
  • the light intensity increases at the boundary between the light shielding unit 8c and the phase shift unit 8b as it goes from the light shielding unit 8c to the phase shift unit 8b, and the inclination thereof is on the phase shift unit 8b side. It is steep enough.
  • the light intensity increases at the boundary between the phase shift unit 8b and the translucent unit 8a as it goes from the phase shift unit 8b to the translucent unit 8a. It is steep.
  • Such light intensity distribution may be preset, for example.
  • the width of the phase shift unit 8b in this case, the width from the position where the light intensity becomes a preset first predetermined value to the position where the preset second predetermined value can be adopted. .
  • control unit 50 can calculate the calculation diffraction pattern more in accordance with the actual situation, and calculates the width w of the phase shift unit 8b and the phase difference ⁇ by the phase shift unit 8b with higher accuracy. can do.
  • the simulation model M2 may be set in advance.
  • the control unit 50 uses a predetermined image simulator based on the pattern design values of the phase shift mask 80 (transmittance of the light transmitting unit 8a, transmittance of the phase shift unit 8b, width w of the phase shift unit 8b, etc.). Then, a simulation model M2 (light intensity distribution) may be generated.
  • the photomask inspection apparatus 1 includes an image sensor 28.
  • the image sensor 28 images a measurement target region of the phase shift mask 80, and generates a captured image IM2. Therefore, the control unit 50 may set the light intensity distribution of the simulation model based on the captured image IM2.
  • the pixel value of each pixel in the measurement target region included in the captured image IM2 may be employed in the light intensity distribution of the simulation model. According to this, it is possible to set a simulation model that is more realistic.
  • the light transmission portion 8a and the phase shift portion 8b in the vicinity of the measurement target region.
  • the pixel value of each pixel may be adopted. For example, when it is difficult to specify the measurement target region in the captured image IM2 due to a shift of the optical system or the like, or the measurement target region is not included in the captured image IM2, and a region in the vicinity thereof is included. In some cases, a pixel value in a nearby region may be employed. As a more specific example, the pixel value of each pixel of the light transmitting portion 8a and the phase shift portion 8b located on the extension of the measurement target region may be adopted as the light intensity distribution of the simulation model.
  • FIG. 13 is a flowchart showing an example of the operation of the photomask inspection apparatus 1.
  • the controller 50 controls the moving mechanism 40 to perform step movement. This step movement indicates movement to a position suitable for the image sensor 28 to image the measurement target area (or an area in the vicinity thereof).
  • step S12 as in step S2, the control unit 50 controls the lifting mechanism 60 to perform autofocus processing.
  • step S13 the image sensor 28 generates the captured image IM2, and outputs the captured image IM2 to the control unit 50.
  • step S14 the control unit 50 stores in the storage medium an image corresponding to the measurement target region (or an image in the vicinity thereof) in the captured image IM2.
  • a preset region of the captured image IM2 is extracted as a measurement target region (or a nearby region), and the image is stored in a storage medium.
  • step S15 similarly to step S1, the control unit 50 controls the moving mechanism 40 to move the phase shift mask 80 with respect to the slit mask 24 so that the slit 24a faces the measurement target region. Then, alignment in the XY plane is performed.
  • step S16 as in step S3, the image sensor 27 generates the captured image IM1 at a plurality of timings with the slit mask 24 and the phase shift mask 80 relatively finely moved, and the captured image IM1. Is output to the control unit 50.
  • step S17 as in step S4, the control unit 50 selects a diffraction pattern (selected diffraction pattern SP1) from a plurality of diffraction patterns.
  • step S18 the control unit 50 calculates the pattern characteristics of the phase shift unit 8b based on the selected diffraction pattern SP1.
  • FIG. 14 is a flowchart showing a specific example of this calculation method.
  • the control unit 50 sets the light intensity distribution of the simulation model based on the captured image IM2.
  • each pixel value of the image stored in step S14 is adopted as the light intensity distribution of the simulation model.
  • the phase difference ⁇ may be set constant at each position of the phase shift unit 8b, or may be set at the same inclination as the light intensity distribution at each boundary.
  • Steps S512 to S515 are the same as steps S501 to S504, respectively, and repeated description is avoided.
  • step S514 When it is determined in step S514 that the calculated diffraction pattern is similar to the selected diffraction pattern SP1, in step S19, as in step S6, the control unit 50 displays the latest width w and phase difference ⁇ on the display unit 70 as measured values. Display.
  • the light intensity distribution of the simulation model is set based on the captured image IM2, it is possible to calculate the calculation diffraction pattern in accordance with the actual situation, and the width w and the phase difference ⁇ with higher accuracy. Can be calculated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Provided is a photomask inspection device capable of detecting a diffraction pattern more suitable for measurement. The photomask inspection device measures the pattern characteristics of the phase shift portion of a phase shift mask. The photomask inspection device includes a retainer, an irradiation part, a slit mask, a Fourier transformation lens, and a first optical sensor. The retainer retains the phase shift mask. The irradiation part irradiates a region including a transmissive portion and the phase shift portion with light. The slit mask has a slit and is arranged at a position that allows the light that passes through a portion of the transmissive portion in the width direction and the entire phase shift portion in the width direction to pass through the slit. The light passing through the slit is incident on the Fourier transformation lens. The first optical sensor detects the diffraction pattern of the light from the Fourier transformation lens at multiple times.

Description

フォトマスク検査装置およびフォトマスク検査方法Photomask inspection apparatus and photomask inspection method
 この発明は、フォトマスク検査装置およびフォトマスク検査方法に関する。 The present invention relates to a photomask inspection apparatus and a photomask inspection method.
 近年では、半導体基板または表示ディスプレイ用の基板などの基板に対して高い解像度でパターンを転写するために、位相シフトマスクが利用されている。この位相シフトマスクには、半波長だけ光の位相を遅らせる位相シフト膜が形成されている。 In recent years, a phase shift mask has been used to transfer a pattern with high resolution to a substrate such as a semiconductor substrate or a display display substrate. This phase shift mask is formed with a phase shift film that delays the phase of light by a half wavelength.
 特許文献1には、位相シフト膜による位相の遅れ(位相差)を測定するフォトマスク検査装置が記載されている。このフォトマスク検査装置においては、可変開口絞りを介して光がフォトマスクに照射され、フォトマスクを透過した光はフーリエ変換レンズを介して光電変換器(センサ)に結像する。これにより、光電変換器はフーリエ変換像(回折パターン)を検出する。 Patent Document 1 describes a photomask inspection apparatus that measures a phase delay (phase difference) caused by a phase shift film. In this photomask inspection apparatus, light is irradiated onto a photomask through a variable aperture stop, and the light transmitted through the photomask forms an image on a photoelectric converter (sensor) through a Fourier transform lens. Thereby, the photoelectric converter detects a Fourier transform image (diffraction pattern).
 フォトマスク検査装置は、まず、フォトマスクにおいて位相差が生じない領域(透明部だけの領域または位相部材(位相シフト膜)だけの領域)に光を照射して、位相差が生じない場合のフーリエ変換像を基準像として記憶しておく。そして、フォトマスク検査装置はフォトマスクの透明部と位相部材との両方に光を照射し、この照射によって得られたフーリエ変換像と、基準像との比較に基づいて、位相部材による位相差を算出している。 The photomask inspection apparatus first irradiates light in a region where no phase difference occurs in the photomask (region only in the transparent portion or region only in the phase member (phase shift film)), and Fourier in the case where no phase difference occurs. The converted image is stored as a reference image. Then, the photomask inspection apparatus irradiates both the transparent portion of the photomask and the phase member with light, and based on the comparison between the Fourier transform image obtained by this irradiation and the reference image, the phase difference due to the phase member is calculated. Calculated.
特開平4-229863号公報Japanese Patent Laid-Open No. 4-229863
 しかしながら、特許文献1の技術では、位相差の算出に適切なフーリエ変換像(回折パターン)を検出できるとは限らない。なぜなら、可変開口絞りとフォトマスクとの相対位置が最適となるように、これらを位置決めできるとは限らないからである。この位置決めの要求精度はパターンの幅が狭くなるほど高まるので、特に、微細なパターンを有するフォトマスクに対して、最適なフーリエ変換像(回折パターン)を得ることは難しい。 However, the technique of Patent Document 1 cannot always detect a Fourier transform image (diffraction pattern) suitable for calculating the phase difference. This is because they cannot always be positioned so that the relative position between the variable aperture stop and the photomask is optimal. Since the required accuracy of positioning increases as the pattern width becomes narrower, it is difficult to obtain an optimal Fourier transform image (diffraction pattern) particularly for a photomask having a fine pattern.
 そこで、本発明は、より測定に適した回折パターンを検出できるフォトマスク検査装置およびフォトマスク検査方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a photomask inspection apparatus and a photomask inspection method that can detect a diffraction pattern more suitable for measurement.
 フォトマスク検査装置の第1の態様は、光を透過させる透光部、光を遮断する遮光部、および、前記透光部と前記遮光部との間に設けられ、光を透過させるとともに前記透光部を透過した光に対して位相をシフトさせる位相シフト部が所定のパターンで形成された位相シフトマスクの、前記位相シフト部のパターン特性を測定するフォトマスク検査装置であって、前記位相シフトマスクを保持する保持部と、前記透光部と前記位相シフト部とを含む領域に光を照射する照射部と、スリットを有し、前記透光部の幅方向における一部および前記位相シフト部の幅方向における全体を透過した光が前記スリットを通過する位置に配置されるスリットマスクと、前記スリットを通過した光が入射されるフーリエ変換レンズと、前記フーリエ変換レンズからの光の回折パターンを複数のタイミングで検出する第1光学センサとを備える。 A first aspect of the photomask inspection apparatus includes a light-transmitting part that transmits light, a light-blocking part that blocks light, and a light-transmitting part that is provided between the light-transmitting part and the light-blocking part. A photomask inspection apparatus for measuring a pattern characteristic of a phase shift mask of a phase shift mask in which a phase shift section for shifting a phase with respect to light transmitted through an optical section is formed in a predetermined pattern, wherein the phase shift A holding unit that holds a mask, an irradiation unit that irradiates light to a region including the light transmitting unit and the phase shift unit, a slit, a part in the width direction of the light transmitting unit, and the phase shift unit A slit mask disposed at a position where the light transmitted through the whole in the width direction passes through the slit, a Fourier transform lens into which the light that has passed through the slit is incident, and the Fourier transform lens. And a first optical sensor for detecting the diffraction pattern of light from's at a plurality of timings.
 フォトマスク検査装置の第2の態様は、第1の態様にかかるフォトマスク検査装置であって、平面視における前記スリットマスクと前記位相シフトマスクとを相対的に移動させる移動機構を更に備え、前記第1光学センサは、前記移動機構が前記スリットマスクと前記位相シフトマスクとを相対的に移動させている最中に、複数のタイミングで回折パターンを検出する。 A second aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the first aspect, further comprising a moving mechanism that relatively moves the slit mask and the phase shift mask in plan view, The first optical sensor detects a diffraction pattern at a plurality of timings while the moving mechanism relatively moves the slit mask and the phase shift mask.
 フォトマスク検査装置の第3の態様は、第2の態様にかかるフォトマスク検査装置であって、前記移動機構は、前記幅方向に対して傾斜した方向に沿って、前記スリットマスクと前記位相シフトマスクと相対的に移動させる。 A third aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the second aspect, wherein the moving mechanism is configured to move the slit mask and the phase shift along a direction inclined with respect to the width direction. Move relative to the mask.
 フォトマスク検査装置の第4の態様は、第1から第3のいずれか一つの態様にかかるフォトマスク検査装置であって、前記第1光学センサによって検出された複数の回折パターンのうち中央位置における光の強度が最も小さい回折パターンを、選択回折パターンとして選択し、前記選択回折パターンに基づいて前記位相シフト部の幅および前記位相シフト部による位相差の少なくともいずれか一方を、前記パターン特性として求める演算処理部を更に備える。 A fourth aspect of the photomask inspection apparatus is a photomask inspection apparatus according to any one of the first to third aspects, wherein a plurality of diffraction patterns detected by the first optical sensor are at a central position. The diffraction pattern having the smallest light intensity is selected as the selected diffraction pattern, and at least one of the width of the phase shift unit and the phase difference by the phase shift unit is obtained as the pattern characteristic based on the selected diffraction pattern. An arithmetic processing unit is further provided.
 フォトマスク検査装置の第5の態様は、第4の態様にかかるフォトマスク検査装置であって、前記演算処理部は、前記選択回折パターンにおける光の強度の強弱のピッチに基づいて、前記位相シフト部の幅を算出する。 A fifth aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the fourth aspect, wherein the arithmetic processing unit is configured to perform the phase shift based on a pitch of intensity of light in the selected diffraction pattern. The width of the part is calculated.
 フォトマスク検査装置の第6の態様は、第4または第5の態様にかかるフォトマスク検査装置であって、前記演算処理部は、前記選択回折パターンにおける光の強度の複数のピーク値または複数のボトム値のうち二者の差に基づいて、前記位相シフト部による位相差を算出する。 A sixth aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the fourth or fifth aspect, wherein the arithmetic processing unit includes a plurality of peak values or a plurality of light intensity values in the selected diffraction pattern. Based on the difference between the two of the bottom values, the phase difference by the phase shift unit is calculated.
 フォトマスク検査装置の第7の態様は、第4の態様にかかるフォトマスク検査装置であって、前記演算処理部は、前記透光部および前記位相シフト部を透過する光の強度分布、前記位相シフト部の幅、および、前記位相シフト部による位相差を設定する第1工程と、前記強度分布、前記幅および前記位相差に基づいて、高速フーリエ変換を用いて演算回折パターンを算出する第2工程と、前記演算回折パターンが前記選択回折パターンに類似しているか否かを判定する第3工程と、前記第3工程おいて、前記演算回折パターンが前記選択回折パターンに類似していないと判定したときには、前記幅および前記位相差を変更して前記第2工程及び前記第3工程を実行する第4工程とを実行する。 A seventh aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the fourth aspect, wherein the arithmetic processing unit is configured to transmit the intensity distribution of the light transmitted through the light transmitting unit and the phase shift unit, and the phase. A first step of setting a width of the shift unit and a phase difference by the phase shift unit; and a second step of calculating a calculation diffraction pattern using a fast Fourier transform based on the intensity distribution, the width and the phase difference A step, a third step of determining whether the calculated diffraction pattern is similar to the selected diffraction pattern, and a determination in the third step that the calculated diffraction pattern is not similar to the selected diffraction pattern If so, a fourth step is executed in which the second step and the third step are executed by changing the width and the phase difference.
 フォトマスク検査装置の第8の態様は、第7の態様にかかるフォトマスク検査装置であって、前記演算処理部は、前記第1工程において、前記位相シフト部および前記透光部の各々を透過する光の強度が一定となるように前記強度分布を設定する。 An eighth aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the seventh aspect, wherein the arithmetic processing section transmits each of the phase shift section and the light transmitting section in the first step. The intensity distribution is set so that the intensity of light to be emitted is constant.
 フォトマスク検査装置の第9の態様は、第7の態様にかかるフォトマスク検査装置であって、前記演算処理部は、前記第1工程において、前記位相シフト部と前記透光部との境界部にて、光の強度が、前記位相シフト部から前記透光部に向かうにしたがって徐々に増大するように、前記強度分布を設定する。 A ninth aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the seventh aspect, wherein the arithmetic processing section is a boundary portion between the phase shift section and the light transmitting section in the first step. The intensity distribution is set so that the intensity of light gradually increases from the phase shift portion toward the light transmitting portion.
 フォトマスク検査装置の第10の態様は、第7の態様にかかるフォトマスク検査装置であって、第2光学センサと、前記スリットマスクと前記位相シフトマスクとの間に設けられ、前記位相シフトマスクからの光の一部を前記第2光学センサへ導く光学素子とを更に備え、前記演算処理部は、前記第1工程において、前記第2光学センサによって撮像された画像に基づいて、前記強度分布を設定する。 A tenth aspect of the photomask inspection apparatus is the photomask inspection apparatus according to the seventh aspect, provided between the second optical sensor, the slit mask, and the phase shift mask, and the phase shift mask. An optical element that guides part of the light from the second optical sensor to the second optical sensor, wherein the arithmetic processing unit is configured to calculate the intensity distribution based on the image captured by the second optical sensor in the first step. Set.
 フォトマスク検査方法の第11の態様は、光を透過させる透光部、光を遮断する遮光部、および、前記透光部と前記遮光部との間に設けられ、光を透過させるとともに前記透光部を透過した光に対して位相をシフトさせる位相シフト部が所定のパターンで形成された位相シフトマスクの、前記位相シフト部のパターン特性を測定するフォトマスク検査方法であって、照射部が前記透光部と前記位相シフト部とを含む領域に光を照射する工程と、第1光学センサが、スリットマスクに形成されたスリット、および、フーリエ変換レンズを介して、前記透光部の幅方向における一部および前記位相シフト部の幅方向における全体を透過した光の回折パターンを複数のタイミングで検出する工程とを備える。 An eleventh aspect of the photomask inspection method is provided with a light-transmitting portion that transmits light, a light-shielding portion that blocks light, and provided between the light-transmitting portion and the light-shielding portion. A photomask inspection method for measuring a pattern characteristic of the phase shift portion of a phase shift mask in which a phase shift portion for shifting a phase with respect to light transmitted through the light portion is formed in a predetermined pattern, wherein the irradiation portion is The step of irradiating light to the region including the translucent part and the phase shift part, and the first optical sensor through the slit formed in the slit mask and the Fourier transform lens, the width of the translucent part Detecting a diffraction pattern of light transmitted through a part in the direction and the whole in the width direction of the phase shift unit at a plurality of timings.
 フォトマスク検査装置の第1の態様およびフォトマスク検査方法の第11の態様によれば、スリットマスクと位相シフトマスクとの相対位置は実際には微小に変動するので、第1光学センサが複数のタイミングで回折パターンを検出することにより、複数の相対位置に対応した複数の回折パターンを検出することができる。したがって、1回しか回折パターンを検出しない場合に比べて、位相シフト部のパターン特性の算出に適した回折パターンを検出しやすい。 According to the first aspect of the photomask inspection apparatus and the eleventh aspect of the photomask inspection method, the relative position between the slit mask and the phase shift mask actually fluctuates slightly. By detecting the diffraction pattern at the timing, a plurality of diffraction patterns corresponding to a plurality of relative positions can be detected. Therefore, it is easier to detect a diffraction pattern suitable for calculating the pattern characteristics of the phase shift unit than when detecting the diffraction pattern only once.
 フォトマスク検査装置の第2の態様によれば、移動機構によって、スリットマスクと位相シフトマスクとの相対位置を制御できるので、その移動範囲に最適な相対位置を含めることができる。よって、第1光学センサは位相シフト部の特定の算出により適した回折パターンを検出しやすい。 According to the second aspect of the photomask inspection apparatus, since the relative position between the slit mask and the phase shift mask can be controlled by the movement mechanism, the optimum relative position can be included in the movement range. Therefore, the first optical sensor can easily detect a diffraction pattern more suitable for specific calculation of the phase shift unit.
 フォトマスク検査装置の第3の態様によれば、幅方向における相対速度成分を低く設定することができる。よって、第1光学センサは最適な相対位置に近い相対位置での回折パターンを検出しやすい。 According to the third aspect of the photomask inspection apparatus, the relative velocity component in the width direction can be set low. Therefore, the first optical sensor can easily detect the diffraction pattern at the relative position close to the optimum relative position.
 フォトマスク検査装置の第4の態様によれば、高い精度で位相シフト部の幅および位相シフト部による位相差の少なくともいずれか一方を算出できる。 According to the fourth aspect of the photomask inspection apparatus, at least one of the width of the phase shift unit and the phase difference by the phase shift unit can be calculated with high accuracy.
 フォトマスク検査装置の第5の態様によれば、簡易な演算で位相シフト部の幅を算出できる。 According to the fifth aspect of the photomask inspection apparatus, the width of the phase shift unit can be calculated by a simple calculation.
 フォトマスク検査装置の第6の態様によれば、簡易な演算で位相シフト部による位相差を算出できる。 According to the sixth aspect of the photomask inspection apparatus, the phase difference by the phase shift unit can be calculated with a simple calculation.
 フォトマスク検査装置の第7の態様によれば、さらに高い精度で位相シフト部の幅および位相シフト部による位相差を算出できる。 According to the seventh aspect of the photomask inspection apparatus, the width of the phase shift unit and the phase difference by the phase shift unit can be calculated with higher accuracy.
 フォトマスク検査装置の第8の態様によれば、簡易に強度分布を設定できる。 According to the eighth aspect of the photomask inspection apparatus, the intensity distribution can be easily set.
 フォトマスク検査装置の第9の態様によれば、さらに高い精度で位相シフト部の幅および位相シフト部による位相差を算出できる。 According to the ninth aspect of the photomask inspection apparatus, the width of the phase shift unit and the phase difference by the phase shift unit can be calculated with higher accuracy.
 フォトマスク検査装置の第10の態様によれば、さらに高い精度で位相シフト部の幅および位相シフト部による位相差を算出できる。 According to the tenth aspect of the photomask inspection apparatus, the width of the phase shift unit and the phase difference due to the phase shift unit can be calculated with higher accuracy.
フォトマスク検査装置の構成の一例を概略的に示す斜視図である。It is a perspective view which shows roughly an example of a structure of a photomask inspection apparatus. フォトマスク検査装置の構成の一例を概略的に示す図である。It is a figure which shows schematically an example of a structure of a photomask inspection apparatus. スリットマスクの構成の一例を概略的に示す平面図である。It is a top view which shows an example of a structure of a slit mask roughly. 複数の回折パターンの一例を概略的に示すグラフである。It is a graph which shows roughly an example of a plurality of diffraction patterns. 複数の回折パターンの一例を概略的に示すグラフである。It is a graph which shows roughly an example of a plurality of diffraction patterns. フォトマスク検査装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of a photomask inspection apparatus. パターン特性の算出方法の一例を示すフローチャートである。It is a flowchart which shows an example of the calculation method of a pattern characteristic. スリットマスクと位相シフトマスクとの相対的な移動方向の一例を説明するための図である。It is a figure for demonstrating an example of the relative moving direction of a slit mask and a phase shift mask. シミュレーションモデルの一例を概略的に示す図である。It is a figure which shows an example of a simulation model schematically. 演算回折パターンの一例を概略的に示すグラフである。It is a graph which shows an example of a calculation diffraction pattern roughly. パターン特性の算出方法の一例を示すフローチャートである。It is a flowchart which shows an example of the calculation method of a pattern characteristic. シミュレーションモデルの一例を概略的に示す図である。It is a figure which shows an example of a simulation model schematically. フォトマスク検査装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of a photomask inspection apparatus. パターン特性の算出方法の一例を示すフローチャートである。It is a flowchart which shows an example of the calculation method of a pattern characteristic.
 以下、図面を参照しつつ実施の形態について詳細に説明する。なお図面においては、理解容易の目的で、必要に応じて各部の寸法や数を誇張または簡略化して描いている。また同様な構成及び機能を有する部分については同じ符号が付されており、下記説明では重複説明が省略される。また図面においては、各構成の位置関係を示すべく、XYZ直交座標が適宜に示されている。例えば、Z軸は鉛直方向に沿って配置されており、X軸およびY軸は水平方向に沿って配置されている。また下記説明では、Z軸方向の一方側を+Z側とも呼び、他方側を-Z側とも呼ぶ。X軸およびY軸についても同様である。 Hereinafter, embodiments will be described in detail with reference to the drawings. In the drawings, the size and number of each part are exaggerated or simplified as necessary for easy understanding. Moreover, the same code | symbol is attached | subjected about the part which has the same structure and function, and duplication description is abbreviate | omitted in the following description. In the drawings, XYZ orthogonal coordinates are shown as appropriate in order to show the positional relationship of each component. For example, the Z axis is arranged along the vertical direction, and the X axis and the Y axis are arranged along the horizontal direction. In the following description, one side in the Z-axis direction is also referred to as + Z side, and the other side is also referred to as −Z side. The same applies to the X axis and the Y axis.
 図1は、フォトマスク検査装置1の構成の一例を概略的に示す斜視図であり、図2は、フォトマスク検査装置1の構成の一例を概略的に示す図である。このフォトマスク検査装置1は、位相シフトマスク80を検査する装置である。ここではまず、検査対象となる位相シフトマスク80の一例について説明する。 FIG. 1 is a perspective view schematically showing an example of the configuration of the photomask inspection apparatus 1, and FIG. 2 is a diagram schematically showing an example of the configuration of the photomask inspection apparatus 1. The photomask inspection apparatus 1 is an apparatus for inspecting the phase shift mask 80. Here, first, an example of the phase shift mask 80 to be inspected will be described.
 <位相シフトマスク>
 位相シフトマスク80は不図示の露光装置に用いられるフォトマスクである。当該露光装置は位相シフトマスク80を用いて所定の基板に対して露光処理を行うことにより、当該所定の基板にパターンを転写することができる。所定の基板は、例えば、半導体基板またはフラットパネルディスプレイ用の基板などである。
<Phase shift mask>
The phase shift mask 80 is a photomask used in an exposure apparatus (not shown). The exposure apparatus can transfer the pattern to the predetermined substrate by performing an exposure process on the predetermined substrate using the phase shift mask 80. The predetermined substrate is, for example, a semiconductor substrate or a flat panel display substrate.
 図2に例示するように、位相シフトマスク80は基材81と位相シフト膜82と遮光膜83とを有している。基材81は露光用の光(例えばi線などの紫外線)についての透光性を有しており、例えば石英ガラス等によって形成される。基材81は板状の形状を有しており、平面視において(つまり厚み方向に沿って見て)、例えば矩形状の形状を有している。位相シフトマスク80の一辺の長さは例えば数[m]程度に設定される。 As illustrated in FIG. 2, the phase shift mask 80 includes a base material 81, a phase shift film 82, and a light shielding film 83. The base material 81 has translucency with respect to light for exposure (for example, ultraviolet rays such as i-line), and is formed of, for example, quartz glass. The base material 81 has a plate-like shape, and has, for example, a rectangular shape in plan view (that is, viewed along the thickness direction). The length of one side of the phase shift mask 80 is set to about several [m], for example.
 位相シフト膜82は基材81の一主面の上に所定のパターンで形成されている。位相シフト膜82は露光用の光についての透光性を有しているものの、その透過率は基材81の透過率よりも小さい。位相シフト膜82の透過率は例えば数[%](より具体的には5[%])程度である。位相シフト膜82は、自身を透過した光の位相を、透光部8aを透過した光の位相に対しておよそ180度だけシフトさせる。このような位相シフト膜82は例えばタンタルオキサイド等によって形成される。 The phase shift film 82 is formed in a predetermined pattern on one main surface of the substrate 81. Although the phase shift film 82 has translucency with respect to light for exposure, the transmittance is smaller than the transmittance of the substrate 81. The transmittance of the phase shift film 82 is, for example, about several [%] (more specifically, 5 [%]). The phase shift film 82 shifts the phase of the light transmitted through itself by about 180 degrees with respect to the phase of the light transmitted through the light transmitting portion 8a. Such a phase shift film 82 is formed of tantalum oxide or the like, for example.
 遮光膜83は、例えば、位相シフト膜82の上に所定のパターンで形成されている。この遮光膜83は平面視において位相シフト膜82の輪郭よりも内側の領域に形成されている。遮光膜83は露光用の光についての遮光性を有しており、例えばクロムまたは酸化クロム等によって形成される。 The light shielding film 83 is formed in a predetermined pattern on the phase shift film 82, for example. The light shielding film 83 is formed in a region inside the outline of the phase shift film 82 in plan view. The light shielding film 83 has a light shielding property for exposure light, and is formed of, for example, chromium or chromium oxide.
 以下では、位相シフトマスク80のうち、平面視において位相シフト膜82が形成されていない領域を透光部8aと呼び、平面視において遮光膜83が形成された領域を遮光部8cと呼び、透光部8aと遮光部8cとの間の領域を位相シフト部8bと呼ぶ。透光部8a、位相シフト部8bおよび遮光部8cは平面視においてそれぞれ所定のパターンで形成される。透光部8aの幅(図2ではX軸方向に沿う幅)は例えば2~4[μm]程度に設定され、位相シフト部8bの幅(図2ではX軸方向に沿う幅)は例えば0.3~0.5[μm]程度に設定される。 Hereinafter, in the phase shift mask 80, a region where the phase shift film 82 is not formed in plan view is referred to as a light transmitting portion 8a, and a region where the light shielding film 83 is formed in plan view is referred to as a light shielding portion 8c. A region between the light portion 8a and the light shielding portion 8c is referred to as a phase shift portion 8b. The light transmitting portion 8a, the phase shift portion 8b, and the light shielding portion 8c are each formed in a predetermined pattern in plan view. The width of the light transmitting portion 8a (width along the X-axis direction in FIG. 2) is set to about 2 to 4 [μm], for example, and the width of the phase shift portion 8b (width along the X-axis direction in FIG. 2) is, for example, 0 It is set to about 3 to 0.5 [μm].
 この位相シフトマスク80を用いて露光装置で露光が行われると、基板上では、透光部8aを透過した光と位相シフト部8bを透過した光がその境界部で干渉し、干渉縞(暗)を生ずる。その結果として透光部8aの投影像のコントラストを高くすることができる。したがって、露光装置はこの位相シフトマスク80を用いることで、この位相シフトマスク80を用いない場合に比べて、より高い解像度でパターンを所定の基板に転写することができる。 When exposure is performed by the exposure apparatus using the phase shift mask 80, the light transmitted through the light transmitting portion 8a and the light transmitted through the phase shift portion 8b interfere with each other at the boundary portion on the substrate, resulting in interference fringes (dark darkness). ) Is generated. As a result, the contrast of the projected image of the light transmitting portion 8a can be increased. Therefore, the exposure apparatus can transfer the pattern to a predetermined substrate with a higher resolution by using the phase shift mask 80 than when the phase shift mask 80 is not used.
 この位相シフトマスク80において、位相シフト部8bのパターン形状は転写能力に直結する。例えば位相シフト部8bにおける位相シフト膜82の厚みが設計値からずれる場合には、位相シフト部8bによる位相差が180度からずれる。これは、干渉の効果が減り、解像度が低下、さらには、転写された基板上のパターンの解像が不安定となって、最終的には、製造の歩留まりが低下したり、製品の品質が損なわれるなど、多くの支障を生じてしまう。また、位相シフト部8bの幅が設計値からずれても、同様の支障が生じる。そこで、位相シフトマスク80の良否を判定すべく、この位相シフトマスク80に形成された位相シフト部8bのパターン特性(具体的には、位相シフト部8bの幅および位相シフト部8bによる位相差)を測定し、マスク製造プロセスを正しく管理することが好ましい。また位相シフト膜82は酸化により経時的に変化し、この変化に起因して、位相シフト膜82による位相差も経時的に変化し得る。よって、位相シフトマスク80は定期的に検査されることが好ましい。 In this phase shift mask 80, the pattern shape of the phase shift portion 8b is directly linked to the transfer capability. For example, when the thickness of the phase shift film 82 in the phase shift unit 8b deviates from the design value, the phase difference due to the phase shift unit 8b deviates from 180 degrees. This reduces the effect of interference, lowers the resolution, and also causes unstable pattern resolution on the transferred substrate, which ultimately reduces manufacturing yield and product quality. It will cause many troubles such as damage. Even if the width of the phase shift unit 8b deviates from the design value, the same trouble occurs. Therefore, in order to determine whether the phase shift mask 80 is good or bad, the pattern characteristics of the phase shift portion 8b formed on the phase shift mask 80 (specifically, the width of the phase shift portion 8b and the phase difference due to the phase shift portion 8b). It is preferable to correctly manage the mask manufacturing process. The phase shift film 82 changes with time due to oxidation, and due to this change, the phase difference due to the phase shift film 82 can also change with time. Therefore, the phase shift mask 80 is preferably inspected periodically.
 <フォトマスク検査装置>
 フォトマスク検査装置1は、この位相シフトマスク80に形成された位相シフト部8bのパターン特性を測定する。図1および図2に例示するように、フォトマスク検査装置1は照射部10と検出部20と移動機構40と制御部50と昇降機構60と表示部70と保持部90とを備えている。
<Photomask inspection system>
The photomask inspection apparatus 1 measures the pattern characteristics of the phase shift unit 8 b formed on the phase shift mask 80. As illustrated in FIGS. 1 and 2, the photomask inspection apparatus 1 includes an irradiation unit 10, a detection unit 20, a moving mechanism 40, a control unit 50, a lifting mechanism 60, a display unit 70, and a holding unit 90.
 保持部90は位相シフトマスク80を保持する部材である。この保持部90は位相シフトマスク80の厚み方向がZ軸方向に沿うように、位相シフトマスク80を保持する。図1の例では、保持部90は位相シフトマスク80の周縁部のみを保持している。なお、保持部90は、透光性の部材によって位相シフトマスク80の下面を全体的に支持しても構わない。 The holding unit 90 is a member that holds the phase shift mask 80. The holding unit 90 holds the phase shift mask 80 so that the thickness direction of the phase shift mask 80 is along the Z-axis direction. In the example of FIG. 1, the holding unit 90 holds only the peripheral portion of the phase shift mask 80. Note that the holding unit 90 may support the entire lower surface of the phase shift mask 80 with a translucent member.
 照射部10および検出部20はZ軸方向において位相シフトマスク80に対して互いに反対側に設けられている。図1および図2の例では、照射部10は位相シフトマスク80に対して-Z側に設けられ、検出部20は位相シフトマスク80に対して+Z側に設けられている。 The irradiation unit 10 and the detection unit 20 are provided on opposite sides of the phase shift mask 80 in the Z-axis direction. In the example of FIGS. 1 and 2, the irradiation unit 10 is provided on the −Z side with respect to the phase shift mask 80, and the detection unit 20 is provided on the + Z side with respect to the phase shift mask 80.
 照射部10は光をZ軸方向に沿って照射して、当該光を位相シフトマスク80の一部へ入射させる。当該光としては、例えば露光用の光(例えばi線)と同程度の波長を有する光を採用する。照射部10は例えば光源11と集光レンズ12とバンドパスフィルタ13とリレーレンズ14とピンホール板15と反射板16とコンデンサレンズ17とを備えている。 The irradiation unit 10 irradiates light along the Z-axis direction and causes the light to enter a part of the phase shift mask 80. As the light, for example, light having a wavelength comparable to that of exposure light (for example, i-line) is employed. The irradiation unit 10 includes, for example, a light source 11, a condenser lens 12, a band pass filter 13, a relay lens 14, a pinhole plate 15, a reflection plate 16, and a condenser lens 17.
 光源11は光を照射する。光源11は例えば紫外線照射器である。この紫外線照射器としては例えば水銀ランプを採用することができる。光源11の光の照射/停止は制御部50によって制御される。 The light source 11 emits light. The light source 11 is, for example, an ultraviolet irradiator. For example, a mercury lamp can be used as the ultraviolet irradiator. The light irradiation / stop of the light source 11 is controlled by the control unit 50.
 集光レンズ12、バンドパスフィルタ13、リレーレンズ14、ピンホール板15、反射板16およびコンデンサレンズ17は、光源11と位相シフトマスク80との間において、この順で配置されている。 The condensing lens 12, the band pass filter 13, the relay lens 14, the pinhole plate 15, the reflecting plate 16, and the condenser lens 17 are arranged in this order between the light source 11 and the phase shift mask 80.
 集光レンズ12は凸レンズであって、その焦点が光源11に位置するように配置されている。光源11から照射された光は集光レンズ12によって、コリメート光または広がり角の小さい光になり、この光はバンドパスフィルタ13に入射される。バンドパスフィルタ13は当該光のうち所定の波長帯域(透過帯域)を有する光のみを透過させる。この波長帯域としては露光用の光の波長帯域(例えばi線を含む波長帯域)を採用できる。バンドパスフィルタ13の波長帯域は狭く設定されており、実質的に単波長の光(いわゆる単色光)がバンドパスフィルタ13を透過する。バンドパスフィルタ13を透過した光はリレーレンズ14に入射される。 The condensing lens 12 is a convex lens and is disposed so that its focal point is located at the light source 11. The light emitted from the light source 11 becomes collimated light or light having a small divergence angle by the condenser lens 12, and this light is incident on the band pass filter 13. The bandpass filter 13 transmits only light having a predetermined wavelength band (transmission band) among the light. As this wavelength band, a wavelength band of light for exposure (for example, a wavelength band including i-line) can be adopted. The wavelength band of the bandpass filter 13 is set to be narrow, and substantially single wavelength light (so-called monochromatic light) is transmitted through the bandpass filter 13. The light transmitted through the bandpass filter 13 is incident on the relay lens 14.
 リレーレンズ14は凸レンズであって、入射された光をピンホール板15のピンホール151に集光させる。ピンホール151はピンホール板15をその厚み方向に貫通している。ピンホール板15はピンホール151がリレーレンズ14の焦点となる位置に配置されている。ピンホール151を通過した光は、実質的に点光源から照射された光となり、反射板16の反射面に入射される。反射板16は光の進行方向を変更するために設けられており、当該光をコンデンサレンズ17に入射させる。コンデンサレンズ17は凸レンズであって、その焦点が実質的にピンホール151となる位置に配置される。コンデンサレンズ17は入射された光をコリメート光または広がり角の小さい光に変換する。コンデンサレンズ17からの光のNA(開口数)はコンデンサレンズ17とピンホール151により適度な値に設定される。照射部10はこの光をZ軸方向に沿って位相シフトマスク80の一部に照射する。 The relay lens 14 is a convex lens and condenses incident light in the pinhole 151 of the pinhole plate 15. The pinhole 151 penetrates the pinhole plate 15 in the thickness direction. The pinhole plate 15 is disposed at a position where the pinhole 151 becomes the focal point of the relay lens 14. The light that has passed through the pinhole 151 substantially becomes light emitted from the point light source, and is incident on the reflection surface of the reflection plate 16. The reflecting plate 16 is provided to change the traveling direction of light, and makes the light incident on the condenser lens 17. The condenser lens 17 is a convex lens, and is disposed at a position where the focal point is substantially the pinhole 151. The condenser lens 17 converts the incident light into collimated light or light with a small divergence angle. The NA (numerical aperture) of light from the condenser lens 17 is set to an appropriate value by the condenser lens 17 and the pinhole 151. The irradiation unit 10 irradiates a part of the phase shift mask 80 with this light along the Z-axis direction.
 検出部20は位相シフトマスク80を透過した光を検出して、当該光による回折パターンを検出する。検出部20は例えば対物レンズ21と結像レンズ22とプリズム23とスリットマスク24とフーリエ変換レンズ25とリレーレンズ26とイメージセンサ(光学センサ)27,28とを備えている。 The detection unit 20 detects the light transmitted through the phase shift mask 80 and detects a diffraction pattern by the light. The detection unit 20 includes, for example, an objective lens 21, an imaging lens 22, a prism 23, a slit mask 24, a Fourier transform lens 25, a relay lens 26, and image sensors (optical sensors) 27 and 28.
 対物レンズ21、結像レンズ22、プリズム23、スリットマスク24、フーリエ変換レンズ25およびイメージセンサ27はZ軸方向において位相シフトマスク80から離れるにしたがってこの順で配置されている。 The objective lens 21, imaging lens 22, prism 23, slit mask 24, Fourier transform lens 25, and image sensor 27 are arranged in this order as they move away from the phase shift mask 80 in the Z-axis direction.
 位相シフトマスク80の当該一部を透過した光は対物レンズ21および結像レンズ22を介して拡大される。結像レンズ22からの光の一部はプリズム23によってイメージセンサ28側へと反射される。つまり、プリズム23は位相シフトマスク80からの光の一部をイメージセンサ28へと導く光学素子である。この光学素子はプリズム23に限らず、ミラーまたはハーフミラーなどであってもよい。 The light transmitted through the part of the phase shift mask 80 is magnified through the objective lens 21 and the imaging lens 22. Part of the light from the imaging lens 22 is reflected by the prism 23 toward the image sensor 28 side. That is, the prism 23 is an optical element that guides part of the light from the phase shift mask 80 to the image sensor 28. This optical element is not limited to the prism 23 but may be a mirror or a half mirror.
 スリットマスク24は結像レンズ22の焦点に配置される。結像レンズ22からスリットマスク24に入射された光は、スリットマスク24に形成されたスリット24aを通過する。このスリットマスク24はスリット24a以外の領域において光を遮断し、スリット24aのみで光を通過させるので、視野を絞る視野絞りの機能を発揮する。このスリット24aは、位相シフト部8bとその近傍のみを含む領域からの光のみを透過させる程度の広さを有している。 The slit mask 24 is disposed at the focal point of the imaging lens 22. Light incident on the slit mask 24 from the imaging lens 22 passes through a slit 24 a formed in the slit mask 24. Since the slit mask 24 blocks light in a region other than the slit 24a and allows light to pass through only the slit 24a, it functions as a field stop for narrowing the field of view. The slit 24a is wide enough to transmit only light from a region including only the phase shift portion 8b and its vicinity.
 図2に例示するように、スリットマスク24は基材241と遮光膜242とを有している。基材241は露光用の光についての透光性を有しており、例えば石英ガラス等によって形成される。基材241は板状の形状を有しており、平面視において例えば矩形状の形状を有している。基材241はその厚み方向がZ軸方向に沿う姿勢で設けられている。 As illustrated in FIG. 2, the slit mask 24 has a base material 241 and a light shielding film 242. The base material 241 has translucency with respect to light for exposure, and is formed of, for example, quartz glass. The base material 241 has a plate shape, and has, for example, a rectangular shape in plan view. The base material 241 is provided such that its thickness direction is along the Z-axis direction.
 遮光膜242は基材241の一方の主面の上に形成されている。遮光膜242は露光用の光についての遮光性を有しており、例えばクロムまたは酸化クロム等によって形成される。この遮光膜242は平面視において基材241の一部の領域を避けて形成される。当該一部の領域は、光を通過させるスリット24aを形成することとなる。スリット24aは平面視において長尺状の形状を有している。 The light shielding film 242 is formed on one main surface of the base material 241. The light shielding film 242 has a light shielding property for exposure light, and is formed of, for example, chromium or chromium oxide. The light shielding film 242 is formed to avoid a part of the base material 241 in a plan view. The partial area forms a slit 24a that allows light to pass therethrough. The slit 24a has a long shape in plan view.
 図3は、スリットマスク24の構成の一例を概略的に示す平面図である。図3では、スリットマスク24に対する位相シフトマスク80の光学的な位置関係の一例を示すべく、仮想的に二点鎖線で透光部8aおよび位相シフト部8bも示されている。つまり、この二点鎖線は、透光部8aおよび位相シフト部8bが対物レンズ21および結像レンズ22を介してスリットマスク24に投影された投影像を示している。以下では、透光部8aをスリットマスク24に投影した投影像を透光部像80aと呼び、位相シフト部8bをスリットマスク24に投影した投影像を位相シフト部像80bと呼ぶ。 FIG. 3 is a plan view schematically showing an example of the configuration of the slit mask 24. In FIG. 3, in order to show an example of the optical positional relationship of the phase shift mask 80 with respect to the slit mask 24, the light transmission part 8a and the phase shift part 8b are also shown with the dashed-two dotted line virtually. That is, the two-dot chain line indicates a projected image in which the light transmitting portion 8 a and the phase shift portion 8 b are projected onto the slit mask 24 via the objective lens 21 and the imaging lens 22. Hereinafter, a projection image obtained by projecting the translucent portion 8a onto the slit mask 24 is referred to as a translucent portion image 80a, and a projection image obtained by projecting the phase shift portion 8b onto the slit mask 24 is referred to as a phase shift portion image 80b.
 図3の例では、スリット24aの長手方向が透光部8aの延在方向に沿っており、スリット24aは位相シフト部8bと対向している。より具体的には、スリット24aの内部には、一つの位相シフト部像80bの幅方向(ここではX軸方向)における全体と、その一つの位相シフト部像80bに隣接する透光部像80aの幅方向における一部とが含まれている。言い換えれば、位相シフト部8bの幅方向における全体、および、その位相シフト部8bに隣接する透光部8aの幅方向における一部を透過した光が、スリット24aを通過する。 In the example of FIG. 3, the longitudinal direction of the slit 24a is along the extending direction of the light transmitting portion 8a, and the slit 24a faces the phase shift portion 8b. More specifically, inside the slit 24a, the entire phase direction image 80b in the width direction (here, the X-axis direction) and the translucent image 80a adjacent to the one phase shift image 80b. And a part in the width direction. In other words, the light transmitted through the entire width direction of the phase shift portion 8b and a part of the light transmission portion 8a adjacent to the phase shift portion 8b in the width direction passes through the slit 24a.
 再び図2を参照して、スリット24aを通過した光はフーリエ変換レンズ25を介してイメージセンサ27の撮像面に結像される。イメージセンサ27は、その撮像面がフーリエ変換レンズ25の焦点に位置するように配置されている。 Referring to FIG. 2 again, the light passing through slit 24a is imaged on the imaging surface of image sensor 27 via Fourier transform lens 25. The image sensor 27 is arranged such that its imaging surface is located at the focal point of the Fourier transform lens 25.
 イメージセンサ27は例えばCCDイメージセンサなどであって、自身の撮像面に結像された光に基づいて、撮像画像IM1を生成し、その撮像画像IM1を制御部50に出力する。光がフーリエ変換レンズ25を介してイメージセンサ27に結像するので、この撮像画像IM1には、透光部8aを透過した光と位相シフト部8bを透過した光とに起因した回折パターンが写る。なおイメージセンサ27は2次元に配置された画素を有する撮像センサに限らず、1次元に配置された画素を有するラインセンサであってもよい。要するに、イメージセンサ27は、X軸方向に形成される光の強度パターン(回折パターン)の輝度分布をデジタルデータに変換できる光学センサであればよい。 The image sensor 27 is a CCD image sensor, for example, and generates a captured image IM1 based on light imaged on its imaging surface, and outputs the captured image IM1 to the control unit 50. Since the light forms an image on the image sensor 27 through the Fourier transform lens 25, the captured image IM1 includes a diffraction pattern caused by the light transmitted through the light transmitting portion 8a and the light transmitted through the phase shift portion 8b. . The image sensor 27 is not limited to an image sensor having pixels arranged two-dimensionally, and may be a line sensor having pixels arranged one-dimensionally. In short, the image sensor 27 may be any optical sensor that can convert the luminance distribution of the light intensity pattern (diffraction pattern) formed in the X-axis direction into digital data.
 制御部50はこの回折パターンに基づいて位相シフト部8bのパターン特性(幅および位相差)を算出する。回折パターンの具体例および算出方法の具体例については後に詳述する。 The control unit 50 calculates the pattern characteristics (width and phase difference) of the phase shift unit 8b based on this diffraction pattern. A specific example of the diffraction pattern and a specific example of the calculation method will be described in detail later.
 プリズム23からリレーレンズ26を経由した光はイメージセンサ28の撮像面に結像される。イメージセンサ28は、その撮像面がリレーレンズ26の焦点に位置するように配置されている。イメージセンサ28は例えばCCDイメージセンサなどであって、自身の撮像面に結像された光に基づいて、撮像画像IM2を生成し、その撮像画像IM2を制御部50へと出力する。撮像画像IM2には、位相シフトマスク80の測定対象領域が写る。制御部50はこの撮像画像IM2を表示部70に表示させてもよい。これにより、作業員が位相シフトマスク80のどの領域を測定しているのかを視認することができる。 The light from the prism 23 via the relay lens 26 forms an image on the imaging surface of the image sensor 28. The image sensor 28 is arranged so that its imaging surface is located at the focal point of the relay lens 26. The image sensor 28 is a CCD image sensor, for example, and generates a captured image IM2 based on the light imaged on its imaging surface, and outputs the captured image IM2 to the control unit 50. The measurement target region of the phase shift mask 80 appears in the captured image IM2. The control unit 50 may cause the display unit 70 to display the captured image IM2. Thereby, it is possible to visually recognize which region of the phase shift mask 80 the operator is measuring.
 移動機構40は保持部90をXY平面内で移動させる。これにより、保持部90に保持された位相シフトマスク80もXY平面内で移動する。移動機構40は例えばボールねじ機構を有しており、制御部50によって制御される。位相シフトマスク80がXY平面内で移動することにより、照射部10および検出部20を位相シフトマスク80に対して走査させることができる。よって、位相シフトマスク80の複数の測定領域で位相シフト部8bのパターン特性を測定することができる。なお移動機構40は、照射部10および検出部20に対して位相シフトマスク80を相対的に移動させる機能および構造を有していればよく、例えば、照射部10および検出部20を一体的に移動させてもよい。 The moving mechanism 40 moves the holding unit 90 in the XY plane. As a result, the phase shift mask 80 held by the holding unit 90 also moves in the XY plane. The moving mechanism 40 has, for example, a ball screw mechanism and is controlled by the control unit 50. By moving the phase shift mask 80 in the XY plane, the irradiation unit 10 and the detection unit 20 can be scanned with respect to the phase shift mask 80. Therefore, the pattern characteristics of the phase shift unit 8 b can be measured in a plurality of measurement regions of the phase shift mask 80. The moving mechanism 40 only needs to have a function and a structure for moving the phase shift mask 80 relative to the irradiation unit 10 and the detection unit 20. For example, the irradiation unit 10 and the detection unit 20 are integrated with each other. It may be moved.
 昇降機構60は保持部90をZ軸方向に昇降させる。これにより、保持部90に保持された位相シフトマスク80も昇降する。昇降機構60は例えばボールねじ機構を有しており、制御部50によって制御される。昇降機構60が位相シフトマスク80を昇降させることにより、位相シフトマスク80を対物レンズ21の焦点に移動させることができる。なお昇降機構60は、検出部20に対して位相シフトマスク80を相対的に昇降させる機能および構造を有していればよく、例えば、検出部20を昇降させてもよい。 The elevating mechanism 60 raises and lowers the holding unit 90 in the Z-axis direction. As a result, the phase shift mask 80 held by the holding unit 90 also moves up and down. The lifting mechanism 60 has, for example, a ball screw mechanism and is controlled by the control unit 50. The lifting mechanism 60 moves the phase shift mask 80 up and down, so that the phase shift mask 80 can be moved to the focal point of the objective lens 21. The raising / lowering mechanism 60 only needs to have a function and a structure for raising and lowering the phase shift mask 80 relative to the detection unit 20. For example, the detection unit 20 may be raised and lowered.
 表示部70は例えば液晶ディスプレイまたは有機ELディスプレイなどの表示装置であって、その表示内容が制御部50によって制御される。例えば制御部50は、測定結果を含んだ画像信号を表示部70に出力する。表示部70は画像信号に基づいて測定結果を表示する。また上述のように、表示部70は制御部50の制御によって撮像画像IM2を表示してもよい。 The display unit 70 is a display device such as a liquid crystal display or an organic EL display, and the display content is controlled by the control unit 50. For example, the control unit 50 outputs an image signal including the measurement result to the display unit 70. The display unit 70 displays the measurement result based on the image signal. Further, as described above, the display unit 70 may display the captured image IM2 under the control of the control unit 50.
 プリズム23、スリットマスク24、フーリエ変換レンズ25、リレーレンズ26およびイメージセンサ27,28は図1の光学ヘッド30に内蔵されている。 The prism 23, the slit mask 24, the Fourier transform lens 25, the relay lens 26, and the image sensors 27 and 28 are built in the optical head 30 of FIG.
 ところで、位相シフトマスク80に形成される透光部8aのパターンは基板の設計によって適宜に設定されるので、その透光部8aの延在方向はパターンの測定対象位置により相違する。そこで、XY平面の各位置において、スリット24aの長手方向を透光部8aの延在方向に沿わせるべく、スリットマスク24は回転可能に設けられていてもよい。 Incidentally, since the pattern of the light transmitting portion 8a formed on the phase shift mask 80 is appropriately set depending on the design of the substrate, the extending direction of the light transmitting portion 8a differs depending on the position where the pattern is measured. Therefore, the slit mask 24 may be rotatably provided so that the longitudinal direction of the slit 24a extends along the extending direction of the light transmitting portion 8a at each position on the XY plane.
 例えば光学ヘッド30は、互いに回転可能に連結される上部材31および下部材32を有しており、光学ヘッド30に内蔵される上記の光学素子が上部材31に内蔵されていてもよい。下部材32はフォトマスク検査装置1の筐体に対して回転不能に固定され、上部材31がこの下部材32に対して回転可能に連結されていてもよい。これによれば、上部材31をXY平面において回転させることにより、この上部材31に内蔵されたスリットマスク24のスリット24aの長手方向を調整することができる。なお上部材31を下部材32に対して回転させる回転駆動機構(例えばモータ)が設けられてもよい。この回転駆動機構は制御部50によって制御される。 For example, the optical head 30 may include an upper member 31 and a lower member 32 that are rotatably connected to each other, and the above-described optical element built in the optical head 30 may be built in the upper member 31. The lower member 32 may be fixed to the housing of the photomask inspection apparatus 1 so as not to rotate, and the upper member 31 may be rotatably connected to the lower member 32. According to this, the longitudinal direction of the slit 24a of the slit mask 24 built in the upper member 31 can be adjusted by rotating the upper member 31 in the XY plane. A rotation drive mechanism (for example, a motor) that rotates the upper member 31 relative to the lower member 32 may be provided. This rotation drive mechanism is controlled by the control unit 50.
 制御部50はフォトマスク検査装置1を全体的に統括することができる。例えば制御部50は上述のように、照射部10による照射、移動機構40による移動、昇降機構60による昇降および光学ヘッド30の回転を制御する。また制御部50は、イメージセンサ27によって生成された撮像画像IM1に基づいて位相シフト部8bのパターン特性を算出する演算処理部としても機能する。 The control unit 50 can control the photomask inspection apparatus 1 as a whole. For example, as described above, the control unit 50 controls the irradiation by the irradiation unit 10, the movement by the movement mechanism 40, the elevation by the elevation mechanism 60, and the rotation of the optical head 30. The control unit 50 also functions as an arithmetic processing unit that calculates the pattern characteristics of the phase shift unit 8b based on the captured image IM1 generated by the image sensor 27.
 制御部50は電子回路機器であって、例えば演算処理装置および記憶媒体を有していてもよい。演算処理装置は例えばCPU(Central Processor Unit)などの演算処理装置であってもよい。記憶部は非一時的な記憶媒体(例えばROM(Read Only Memory)またはハードディスク)および一時的な記憶媒体(例えばRAM(Random Access Memory))を有していてもよい。非一時的な記憶媒体には、例えば制御部50が実行する処理を規定するプログラムが記憶されていてもよい。処理装置がこのプログラムを実行することにより、制御部50が、プログラムに規定された処理を実行することができる。もちろん、制御部50が実行する処理の一部または全部がハードウェアによって実行されてもよい。 The control unit 50 is an electronic circuit device, and may include, for example, an arithmetic processing unit and a storage medium. The arithmetic processing device may be an arithmetic processing device such as a CPU (Central Processor Unit). The storage unit may include a non-temporary storage medium (for example, ROM (Read Only Memory) or a hard disk) and a temporary storage medium (for example, RAM (Random Access Memory)). For example, the non-temporary storage medium may store a program that defines the processing executed by the control unit 50. When the processing device executes this program, the control unit 50 can execute the processing defined in the program. Of course, part or all of the processing executed by the control unit 50 may be executed by hardware.
 <回折パターンに基づく測定方法>
 図4は、複数の回折パターンDP1~DP5の一例を概略的に示すグラフである。図4において、縦軸は光の強度を示し、横軸はX軸方向の位置を示すことから、回折パターンは輝度プロファイルである、とも言える。
<Measurement method based on diffraction pattern>
FIG. 4 is a graph schematically showing an example of the plurality of diffraction patterns DP1 to DP5. In FIG. 4, the vertical axis indicates the intensity of light, and the horizontal axis indicates the position in the X-axis direction. Therefore, it can be said that the diffraction pattern is a luminance profile.
 回折パターンDP1~DP5は、スリット24aと位相シフトマスク80との平面視における相対位置を変化させたときの回折パターンである。ここで、相対位置を示すパラメータとして、距離d(図3参照)を導入する。図3の例では、平面視においてスリット24aの内部に透光部像80aおよび位相シフト部像80bが位置している。具体的には、スリット24aの内部において、-X側に透光部像80aが位置しており、+X側に位相シフト部像80bが位置している。距離dは、スリット24aの-X側の端辺から、透光部像80aと位相シフト部像80bとの間の境界までの距離である。この距離dが大きいほど、スリット24aにおいて透光部像80aが占める割合が大きい。つまり、スリット24aを透過する光の多くを、透光部8aからの光が占める。 The diffraction patterns DP1 to DP5 are diffraction patterns obtained when the relative positions of the slit 24a and the phase shift mask 80 in plan view are changed. Here, a distance d (see FIG. 3) is introduced as a parameter indicating the relative position. In the example of FIG. 3, the translucent part image 80a and the phase shift part image 80b are located inside the slit 24a in plan view. Specifically, inside the slit 24a, the translucent image 80a is positioned on the −X side, and the phase shift image 80b is positioned on the + X side. The distance d is the distance from the −X side end of the slit 24a to the boundary between the translucent part image 80a and the phase shift part image 80b. The greater this distance d, the greater the proportion of the translucent part image 80a in the slit 24a. That is, most of the light transmitted through the slit 24a is occupied by the light from the light transmitting portion 8a.
 回折パターンDP1~DP5は、距離dを変化させたときに得られる回折パターンである。回折パターンDP1~DP5に対応する距離dはその回折パターンの符号の末尾の数字が小さいほど短い。つまり、回折パターンDP1は最も短い距離dに対応する回折パターンであり、回折パターンDP5は最も長い距離dに対応する回折パターンである。 The diffraction patterns DP1 to DP5 are diffraction patterns obtained when the distance d is changed. The distance d corresponding to the diffraction patterns DP1 to DP5 is shorter as the number at the end of the code of the diffraction pattern is smaller. That is, the diffraction pattern DP1 is a diffraction pattern corresponding to the shortest distance d, and the diffraction pattern DP5 is a diffraction pattern corresponding to the longest distance d.
 なお、距離dの変化範囲は次のように設定される。即ち、位相シフト部像80bの幅方向における全体がスリット24aの内部に含まれているように、変化範囲が設定される。つまり、位相シフト部像80bの一部が幅方向においてスリット24aからはみ出さないように、距離dの変化範囲が設定される。言い換えれば、スリット24aの幅(X軸方向に沿う幅)は、距離dを変化範囲内で変化させたときに位相シフト部像80bの幅方向における全体がスリット24aの内部に含まれるように設定される。 Note that the range of change of the distance d is set as follows. That is, the change range is set so that the whole of the phase shift portion image 80b in the width direction is included in the slit 24a. That is, the change range of the distance d is set so that a part of the phase shift portion image 80b does not protrude from the slit 24a in the width direction. In other words, the width of the slit 24a (the width along the X-axis direction) is set so that the entire phase shift portion image 80b in the width direction is included in the slit 24a when the distance d is changed within the change range. Is done.
 図4に例示するように、回折パターンDP1,DP2は、上に凸となる形状(つまり一山形状)を有している。これは距離dが短いときには、透光部8aからの光はスリット24aで遮蔽されるので、スリット24aを通過するのは、位相シフト部8bからの光のみとなるからである。よって、回折パターンは、単純な矩形開口による回折パターンとなり、このような分布形状となる。また、回折パターンDP1,DP2において、光の強度のピーク値は比較的小さい。これは、開口が小さく、かつ、位相シフト部8bの透過率が低いからである。 As illustrated in FIG. 4, the diffraction patterns DP <b> 1 and DP <b> 2 have an upwardly convex shape (that is, a single mountain shape). This is because when the distance d is short, the light from the translucent part 8a is shielded by the slit 24a, so that only the light from the phase shift part 8b passes through the slit 24a. Therefore, the diffraction pattern becomes a diffraction pattern with a simple rectangular opening, and has such a distribution shape. Further, in the diffraction patterns DP1 and DP2, the peak value of the light intensity is relatively small. This is because the aperture is small and the transmittance of the phase shift portion 8b is low.
 図4の例示では、回折パターンDP3~DP5は2つのピークを有する二山形状を有している。これは、距離dが長くなることによって、位相シフト部8bからの光のみならず透光部8aからの光も十分にスリット24aを通過し、これらの位相がほぼ180度ずれている2光束による干渉パターンが生成されるからである。なお図4の例では、二山形状が示されているものの、横軸の領域をより広くとると、その両側に新たなピークが現れる(図5も参照)。 In the illustration of FIG. 4, the diffraction patterns DP3 to DP5 have a two-peak shape having two peaks. This is due to the fact that not only the light from the phase shift unit 8b but also the light from the light transmission unit 8a sufficiently passes through the slit 24a and the phase thereof is shifted by approximately 180 degrees as the distance d increases. This is because an interference pattern is generated. In the example of FIG. 4, a double peak shape is shown, but when the horizontal axis region is made wider, new peaks appear on both sides (see also FIG. 5).
 以下では、最も高いピーク値と次に高いピーク値との間で光の強度がボトム値をとるときの位置を中心位置x0と呼ぶ。 Hereinafter, the position where the light intensity takes the bottom value between the highest peak value and the next highest peak value is referred to as the center position x0.
 回折パターンDP3~DP5の各ピーク値および中心位置x0におけるボトム値は距離dが長くなるほど増大する。これは、スリット24aを通過する光において、透過率の高い透光部8aから光が増大するからである。 The peak values of the diffraction patterns DP3 to DP5 and the bottom value at the center position x0 increase as the distance d increases. This is because in the light passing through the slit 24a, the light increases from the light transmitting portion 8a having a high transmittance.
 回折パターンDP3では、中心位置x0における光の強度(ボトム値)は零である。これは、透光部8aおよびスリット24aをこの順に通過する光束の複素振幅と、位相シフト部8bおよびスリット24aをこの順に通過する光束の複素振幅とが互いに等しいことを意味している。つまり、両複素振幅が互いに等しい場合には、光は中心位置x0において互いに同量で弱め合うので、光の強度(ボトム値)が零となるのである。 In the diffraction pattern DP3, the light intensity (bottom value) at the center position x0 is zero. This means that the complex amplitude of the light beam that passes through the light transmitting portion 8a and the slit 24a in this order is equal to the complex amplitude of the light beam that passes through the phase shift portion 8b and the slit 24a in this order. That is, when both complex amplitudes are equal to each other, the light is weakened by the same amount at the center position x0, so that the light intensity (bottom value) becomes zero.
 上記複素振幅が互いに一致する場合には、以下の式が成立する。 When the complex amplitudes match each other, the following formula is established.
 ws’=w’・√t   ・・・(1)
 ここで、図3も参照して、ws’は、透光部像80aのうちスリット24aの内部に位置する領域の幅(つまり距離d)を示し、w’は、位相シフト部像80bの幅を示し、tは、位相シフト部8bの透過率を示す。
ws ′ = w ′ · √t (1)
Here, referring also to FIG. 3, ws ′ indicates the width (that is, distance d) of the region located inside the slit 24 a in the translucent portion image 80 a, and w ′ indicates the width of the phase shift portion image 80 b. And t indicates the transmittance of the phase shift unit 8b.
 対物レンズ21および結像レンズ22による拡大率αを考慮して、実際の位相シフト部8bの幅w(=w’/α)と、スリット24aに対応する透光部8aの幅ws(=ws’/α)とを導入すると、式(1)から式(2)が導かれる。 In consideration of the magnification α by the objective lens 21 and the imaging lens 22, the actual width w (= w ′ / α) of the phase shift portion 8b and the width ws (= ws) of the light transmitting portion 8a corresponding to the slit 24a. '/ Α) is introduced, equation (2) is derived from equation (1).
 ws=w・√t   ・・・(2)
 例えば位相シフト部8bの幅wが0.4[μm]であり、位相シフト部8bの透過率tが0.05(=5[%])である場合、スリット24aに対応する透光部8aの幅wsは0.089[μm]である。つまり、幅wsが0.089[μm]となるようにスリットマスク24を位相シフトマスク80に対して位置決めできれば、イメージセンサ27は、回折パターンDP3を含んだ撮像画像IM1を生成することができる。つまり、回折パターンDP3を検出できる。
ws = w · √t (2)
For example, when the width w of the phase shift portion 8b is 0.4 [μm] and the transmittance t of the phase shift portion 8b is 0.05 (= 5 [%]), the light transmitting portion 8a corresponding to the slit 24a. The width ws is 0.089 [μm]. That is, if the slit mask 24 can be positioned with respect to the phase shift mask 80 so that the width ws becomes 0.089 [μm], the image sensor 27 can generate the captured image IM1 including the diffraction pattern DP3. That is, the diffraction pattern DP3 can be detected.
 ところで、回折パターンDP3における強弱のピッチ(例えば光の強度のピーク位置の間の距離)Δdxは、スリット24aの内部における透光部像80aと位相シフト部像80bとの中心間距離(ピッチ)Δx’(図3も参照)に依存する。具体的には、ピッチΔdxは理論的には中心間距離Δx’に比例する。その比例係数β1は予めシミュレーションまたは実験等により求めることができる。よって、回折パターンDP3からピッチΔdxを求めれば、そのピッチΔdxに基づいて中心間距離Δx’を求めることができる。 By the way, the strong and weak pitch (for example, the distance between the peak positions of the light intensity) Δdx in the diffraction pattern DP3 is the distance (pitch) Δx between the centers of the translucent part image 80a and the phase shift part image 80b inside the slit 24a. '(See also Fig. 3). Specifically, the pitch Δdx is theoretically proportional to the center-to-center distance Δx ′. The proportionality coefficient β1 can be obtained in advance by simulation or experiment. Therefore, if the pitch Δdx is obtained from the diffraction pattern DP3, the center-to-center distance Δx ′ can be obtained based on the pitch Δdx.
 また、この中心間距離Δx’は幾何学的に以下の関係式を満たす(図3も参照)。 Further, this center-to-center distance Δx ′ geometrically satisfies the following relational expression (see also FIG. 3).
 w’+ws’=2・Δx’  ・・・(3)
 式(3)はスリットマスク24における各透光部像80aおよび位相シフト部像80bについてのパラメータであるので、これらを透光部8aおよび位相シフト部8bについてのパラメータに変換する。具体的には、w=w’/α、ws=ws’/αおよびΔx=Δx’/αを式(3)に代入すると、以下の式を導くことができる。
w ′ + ws ′ = 2 · Δx ′ (3)
Since the expression (3) is a parameter for each translucent portion image 80a and phase shift portion image 80b in the slit mask 24, these are converted into parameters for the translucent portion 8a and the phase shift portion 8b. Specifically, substituting w = w ′ / α, ws = ws ′ / α and Δx = Δx ′ / α into Equation (3), the following equation can be derived.
 w+ws=2・Δx  ・・・(4)
 式(2)および式(4)から以下の式を導くことができる。
w + ws = 2 · Δx (4)
The following equations can be derived from equations (2) and (4).
 w=2・Δx/(1+√t)   ・・・(5)
 位相シフト部8bの透過率tが膜の設計値または近傍のテストパターンの透過率t^にほぼ等しいとすると、中心間距離Δx(=Δx’/α)を求めることができれば、式(5)に基づいて位相シフト部8bの幅wを算出することができる。
w = 2 · Δx / (1 + √t) (5)
Assuming that the transmittance t of the phase shift unit 8b is substantially equal to the design value of the film or the transmittance t ^ of the adjacent test pattern, if the center-to-center distance Δx (= Δx ′ / α) can be obtained, the equation Can be used to calculate the width w of the phase shift unit 8b.
 また回折パターンに基づいて位相シフト部8bによる位相差θを求めることもできる。図5は、複数の回折パターンDP3,DP31~DP34の一例を概略的に示すグラフである。回折パターンDP3,DP31~DP34は、式(2)が成立する状態で位相差θを変化させたときに得られる回折パターンである。式(2)が成立しているので、回折パターンDP3,DP31~DP34のいずれにおいても、中心位置x0におけるボトム値は零である。回折パターンDP3は位相差θが180度であるときの回折パターンを示しており、回折パターンDP31~DP34はそれぞれ位相差θが144(=360×0.4)度、162(=360×0.45)度、198(=360×0.55)度および216(=360×0.6)度であるときの回折パターンを示している。 Also, the phase difference θ by the phase shift unit 8b can be obtained based on the diffraction pattern. FIG. 5 is a graph schematically showing an example of the plurality of diffraction patterns DP3, DP31 to DP34. The diffraction patterns DP3, DP31 to DP34 are diffraction patterns obtained when the phase difference θ is changed in a state where the formula (2) is satisfied. Since equation (2) holds, the bottom value at the center position x0 is zero in any of the diffraction patterns DP3 and DP31 to DP34. The diffraction pattern DP3 shows a diffraction pattern when the phase difference θ is 180 degrees, and the diffraction patterns DP31 to DP34 have a phase difference θ of 144 (= 360 × 0.4) degrees and 162 (= 360 × 0. The diffraction patterns at 45), 198 (= 360 × 0.55) and 216 (= 360 × 0.6) are shown.
 図5に例示するように、位相差θに応じて回折パターンDP3,DP31~DP34の波形が相違する。逆に言えば、検出した回折パターンの波形に基づいて位相差θを求めることができる。例えば中心位置x0は位相差θに応じて変動する。具体的には、中心位置x0は位相差θが大きいほど+X側に移動する。そこで、位相差θが180度であるときの中心位置x0を基準位置として予め設定するとともに、各中心位置x0と基準位置との差と、位相差θとの関係を、例えばシミュレーションまたは実験等により予め設定する。そして、検出した回折パターンの中心位置x0と基準位置との差を求めれば、求めた差と、上記関係とに基づいて、位相差θを求めることができる。 As illustrated in FIG. 5, the waveforms of the diffraction patterns DP3, DP31 to DP34 are different depending on the phase difference θ. In other words, the phase difference θ can be obtained based on the detected waveform of the diffraction pattern. For example, the center position x0 varies according to the phase difference θ. Specifically, the center position x0 moves to the + X side as the phase difference θ increases. Therefore, the center position x0 when the phase difference θ is 180 degrees is set as a reference position in advance, and the relationship between the difference between each center position x0 and the reference position and the phase difference θ is determined by simulation or experiment, for example. Set in advance. If the difference between the center position x0 of the detected diffraction pattern and the reference position is obtained, the phase difference θ can be obtained based on the obtained difference and the above relationship.
 また回折パターンにおける各ピーク値および各ボトム値は位相差θに応じた値をとるので、中心位置x0に替えて、各ピーク値または各ボトム値に基づいて位相差θを求めてもよい。例えば中心位置x0よりも+X側の領域においては、各ピーク値は位相差θが大きいほど低減し、各ボトム値も位相差θが大きいほど低減する。これに対して、中心位置x0よりも-X側の領域においては、各ピーク値は位相差θが大きいほど増大し、各ボトム値も位相差θが大きいほど増大する。 Further, since each peak value and each bottom value in the diffraction pattern take a value corresponding to the phase difference θ, the phase difference θ may be obtained based on each peak value or each bottom value instead of the center position x0. For example, in the region on the + X side from the center position x0, each peak value decreases as the phase difference θ increases, and each bottom value decreases as the phase difference θ increases. On the other hand, in the region on the −X side from the center position x0, each peak value increases as the phase difference θ increases, and each bottom value increases as the phase difference θ increases.
 以下では、+X側の領域のうち最も中心位置x0に近いピーク値を1次のピーク値と呼び、-X側の領域のうち最も中心位置x0に近いピーク値を-1次のピーク値と呼ぶ。 Hereinafter, the peak value closest to the center position x0 in the + X side region is referred to as a primary peak value, and the peak value closest to the center position x0 in the −X side region is referred to as a −1st order peak value. .
 ここでは、位相差θを算出するためのパラメータの一例として、-1次のピーク値から1次のピーク値を減算して得られるピーク差Δpを採用する。図5では、一例として回折パターンDP34についてのピーク差Δpを示している。このピーク差Δpは位相差θが大きいほど大きくなる。例えば回折パターンDP3におけるピーク差Δpは零であり、回折パターンDP31,DP32におけるピーク差Δpは負の値を有し、回折パターンDP31におけるピーク差Δpは回折パターンDP32におけるピーク差Δpよりも小さい。また回折パターンDP33,DP34におけるピーク差Δpは正の値を有し、回折パターンDP34におけるピーク差Δpは回折パターンDP33におけるピーク差Δpよりも大きい。このピーク差Δpと位相差θとの関係は例えばシミュレーションまたは実験等により、予め設定できる。よって、検出した回折パターンのピーク差Δpを求めれば、当該ピーク差Δpに基づいて位相差θを算出することができる。 Here, as an example of a parameter for calculating the phase difference θ, a peak difference Δp obtained by subtracting the primary peak value from the negative primary peak value is employed. FIG. 5 shows the peak difference Δp for the diffraction pattern DP34 as an example. This peak difference Δp increases as the phase difference θ increases. For example, the peak difference Δp in the diffraction pattern DP3 is zero, the peak difference Δp in the diffraction patterns DP31 and DP32 has a negative value, and the peak difference Δp in the diffraction pattern DP31 is smaller than the peak difference Δp in the diffraction pattern DP32. Further, the peak difference Δp in the diffraction patterns DP33 and DP34 has a positive value, and the peak difference Δp in the diffraction pattern DP34 is larger than the peak difference Δp in the diffraction pattern DP33. The relationship between the peak difference Δp and the phase difference θ can be set in advance by, for example, simulation or experiment. Therefore, if the peak difference Δp of the detected diffraction pattern is obtained, the phase difference θ can be calculated based on the peak difference Δp.
 なお、必ずしも1次のピーク値と-1次のピーク値とのピーク差Δpを採用する必要はなく、複数のピーク値のうちいずれか二者の差を採用すればよい。ただし、1次と-1次とのピーク値のピーク差Δpの位相差θに対する変動量は他の二者の差に比べて大きいので、高い精度で位相差θを求めることができる。 Note that it is not always necessary to adopt the peak difference Δp between the first-order peak value and the −1st-order peak value, and the difference between any two of the plurality of peak values may be employed. However, since the fluctuation amount of the peak difference Δp between the peak values of the primary and −1st order with respect to the phase difference θ is larger than the difference between the other two, the phase difference θ can be obtained with high accuracy.
 またピーク値に替えてボトム値を採用してもよい。具体的には、複数のボトム値の二者の差を採用してもよい。ただし、ボトム値同士の差の位相差θに対する変動量はピーク差Δpに比して小さいので、精度向上という観点では、ピーク差Δpを採用することが望ましい。 Also, the bottom value may be adopted instead of the peak value. Specifically, a difference between a plurality of bottom values may be adopted. However, since the fluctuation amount of the difference between the bottom values with respect to the phase difference θ is smaller than the peak difference Δp, it is desirable to employ the peak difference Δp from the viewpoint of improving accuracy.
 以上のように、中心位置x0におけるボトム値が零であるときの回折パターン(例えば回折パターンDP3,DP31~DP34など)の波形に基づいて、位相シフト部8bの幅wおよび位相シフト部8bによる位相差θを算出することができる。 As described above, based on the waveform of the diffraction pattern (for example, the diffraction patterns DP3, DP31 to DP34, etc.) when the bottom value at the center position x0 is zero, the width w of the phase shift unit 8b and the position by the phase shift unit 8b. The phase difference θ can be calculated.
 しかしながら、この回折パターンを検出するためには、透光部8aおよび位相シフト部8bをそれぞれ透過した2光束による干渉パターンが顕著に表れるように、幅wsが最適な値となる位置あるいはその近傍にスリットマスク24を位相シフトマスク80に対して位置決めする必要がある。この位置決めの要求精度は幅wsが狭いほど高く、例えば幅wsが0.089[μm]である場合には、数~十数[nm]程度の精度が要求される。幅wsは位相シフト部8bの幅wにも依存しており(式(2))、より微細なパターン幅を有する位相シフトマスク80ほど、位置決めの要求精度が高くなるといえる。 However, in order to detect this diffraction pattern, at the position where the width ws becomes an optimum value or in the vicinity thereof, the interference pattern due to the two light beams respectively transmitted through the light transmitting portion 8a and the phase shift portion 8b appears remarkably. It is necessary to position the slit mask 24 with respect to the phase shift mask 80. The required accuracy of this positioning is higher as the width ws is smaller. For example, when the width ws is 0.089 [μm], an accuracy of about several to several tens [nm] is required. The width ws also depends on the width w of the phase shift portion 8b (Equation (2)), and it can be said that the phase shift mask 80 having a finer pattern width has a higher required positioning accuracy.
 さて、上述の条件(透過率t=0.05)では、当業者であれば式(5)から理解できるように、算出された位相シフト部8bの幅wには、スリットマスク24と位相シフトマスク80との間の位置決めの誤差(数~十数[nm])の約0.8倍の計算誤差(測定誤差)が生じる。つまり、最大で約16[nm]程度の計算誤差が生じ得る。ところで、線幅の要求精度が特に高いパターンでは、位相シフト部8bも含めた全体の線幅はレジストプロセスに直結していて厳しく管理されるので、5~10[nm]程度の測定精度が要求される。しかしながら、位相シフト部8bの個々の幅wについては、全体の線幅ほど要求精度が高くなく、上記位置決め精度(数~十数[nm])で十分実用に足りる。 Now, under the above condition (transmittance t = 0.05), as can be understood by those skilled in the art from the equation (5), the calculated width w of the phase shift unit 8b has the slit mask 24 and the phase shift. A calculation error (measurement error) approximately 0.8 times as large as an error in positioning with the mask 80 (several to several tens [nm]) occurs. That is, a maximum calculation error of about 16 [nm] may occur. By the way, in a pattern with particularly high required line width accuracy, the entire line width including the phase shift portion 8b is directly controlled by the resist process and is strictly controlled. Therefore, a measurement accuracy of about 5 to 10 [nm] is required. Is done. However, the required accuracy of the individual width w of the phase shift unit 8b is not as high as the entire line width, and the above positioning accuracy (several to several tens [nm]) is sufficient for practical use.
 そこで、フォトマスク検査装置1では、スリットマスク24と位相シフトマスク80との間の相対位置を時間の経過とともに変化させながら、イメージセンサ27が互いに異なるタイミングで回折パターンを繰り返し検出する。これにより、最適な相対位置あるいはその近傍に対応した回折パターンを検出する。以下、具体的なフォトマスク検査装置1の動作の一例について述べる。 Therefore, in the photomask inspection apparatus 1, the image sensor 27 repeatedly detects diffraction patterns at different timings while changing the relative position between the slit mask 24 and the phase shift mask 80 with the passage of time. Thereby, the diffraction pattern corresponding to the optimal relative position or its vicinity is detected. Hereinafter, a specific example of the operation of the photomask inspection apparatus 1 will be described.
 <フォトマスク検査装置の動作の一例>
 図6は、フォトマスク検査装置1の動作の一例を示すフローチャートである。ここでは初期的に制御部50は照射部10に光を照射させているものとする。
<Example of operation of photomask inspection apparatus>
FIG. 6 is a flowchart showing an example of the operation of the photomask inspection apparatus 1. Here, it is assumed that the control unit 50 initially irradiates the irradiation unit 10 with light.
 まずステップS1にて、制御部50は移動機構40を制御して、XY平面において位相シフトマスク80に対する粗い位置合わせを行う。具体的には、移動機構40は照射部10および検出部20が位相シフトマスク80の測定対象領域とZ軸方向において対向するように、位相シフトマスク80をXY平面内で移動させる。この測定対象領域には、透光部8aおよび位相シフト部8bの両方が含まれる。なおこの位置合わせは、中心位置x0におけるボトム値が零となる回折パターンを常に検出できるような精度での位置合わせではなく、より粗い位置合わせである。また制御部50は光学ヘッド30の回転駆動機構を制御して、スリット24aの長手方向が測定対象領域内の透光部8aの延在方向に沿うように、光学ヘッド30を回転させる。 First, in step S1, the control unit 50 controls the moving mechanism 40 to perform rough alignment with the phase shift mask 80 on the XY plane. Specifically, the moving mechanism 40 moves the phase shift mask 80 in the XY plane so that the irradiation unit 10 and the detection unit 20 face the measurement target region of the phase shift mask 80 in the Z-axis direction. This measurement target region includes both the translucent part 8a and the phase shift part 8b. This alignment is not an alignment with such an accuracy that a diffraction pattern with a bottom value of zero at the center position x0 can always be detected, but a coarse alignment. Further, the control unit 50 controls the rotation driving mechanism of the optical head 30 to rotate the optical head 30 so that the longitudinal direction of the slit 24a is along the extending direction of the light transmitting unit 8a in the measurement target region.
 次にステップS2にて、制御部50は昇降機構60を制御して、オートフォーカス処理を行う。具体的には、昇降機構60は、対物レンズ21と位相シフトマスク80との間の距離が焦点距離となるように、位相シフトマスク80の位置をZ軸方向で調整する。 Next, in step S2, the control unit 50 controls the elevating mechanism 60 to perform autofocus processing. Specifically, the elevating mechanism 60 adjusts the position of the phase shift mask 80 in the Z-axis direction so that the distance between the objective lens 21 and the phase shift mask 80 becomes the focal length.
 次にステップS3にて、スリットマスク24と位相シフトマスク80とが相対的に微動した状態で、イメージセンサ27が複数のタイミングで回折パターンを撮像し、撮像した撮像画像IM1を制御部50に出力する。言い換えれば、スリットマスク24と位相シフトマスク80との平面視における相対位置を時間の経過とともに変化させながら、イメージセンサ27が複数のタイミングで回折パターンを検出する。より具体的には、制御部50が移動機構40を制御して、スリット24aの幅方向(ここではX軸方向)に沿って位相シフトマスク80をスリットマスク24に対して相対的に移動させる。図3には、位相シフトマスク80の移動方向D1が模式的にブロック矢印で示されている。 Next, in step S <b> 3, the image sensor 27 captures the diffraction pattern at a plurality of timings while the slit mask 24 and the phase shift mask 80 are relatively finely moved, and outputs the captured image IM <b> 1 to the control unit 50. To do. In other words, the image sensor 27 detects the diffraction pattern at a plurality of timings while changing the relative position of the slit mask 24 and the phase shift mask 80 in plan view with time. More specifically, the control unit 50 controls the moving mechanism 40 to move the phase shift mask 80 relative to the slit mask 24 along the width direction of the slit 24a (here, the X-axis direction). In FIG. 3, the moving direction D1 of the phase shift mask 80 is schematically indicated by a block arrow.
 なお、この移動範囲には、高い確率で幅wsが最適値(例えば0.089[μm])となる最適な相対位置あるいはその近傍が含まれる。よって、ステップS3において、スリットマスク24と位相シフトマスク80との相対位置が最適となる、あるいは、その近傍となるタイミングが存在する。したがって、イメージセンサ27によって生成された複数の撮像画像IM1のいずれかには、最適な相対位置に近い相対位置に対応した回折パターンが含まれる。 Note that this movement range includes the optimum relative position where the width ws becomes the optimum value (for example, 0.089 [μm]) or the vicinity thereof with a high probability. Therefore, in step S3, there is a timing at which the relative position between the slit mask 24 and the phase shift mask 80 is optimal or in the vicinity thereof. Therefore, any one of the plurality of captured images IM1 generated by the image sensor 27 includes a diffraction pattern corresponding to a relative position close to the optimum relative position.
 なお撮像中の位相シフトマスク80とスリットマスク24との相対速度(ステップS3における相対速度)は低いことが望ましく、例えばステップS1における相対速度よりも低く設定される。これによれば、最適な相対位置に近い相対位置に対応した回折パターンを検出しやすい。 Note that the relative speed between the phase shift mask 80 and the slit mask 24 during imaging (relative speed in step S3) is preferably low, and is set lower than the relative speed in step S1, for example. According to this, it is easy to detect the diffraction pattern corresponding to the relative position close to the optimum relative position.
 次にステップS4にて、制御部50は、複数の撮像画像IM1にそれぞれ含まれた複数の回折パターンから、測定に用いる回折パターンを選択する。以下では、選択された回折パターンを選択回折パターンSP1とも呼ぶ。より具体的には、制御部50は中心位置x0における光の強度(ボトム値)が複数の回折パターンのうちで最も小さい回折パターンを、選択回折パターンSP1として選択する。 Next, in step S4, the control unit 50 selects a diffraction pattern used for measurement from a plurality of diffraction patterns respectively included in the plurality of captured images IM1. Hereinafter, the selected diffraction pattern is also referred to as a selective diffraction pattern SP1. More specifically, the control unit 50 selects the diffraction pattern having the smallest light intensity (bottom value) at the center position x0 as the selected diffraction pattern SP1.
 次にステップS5にて、制御部50は選択回折パターンSP1に基づいて位相シフト部8bのパターン特性(幅wおよび位相差θ)を算出する。図7は、位相シフト部8bのパターン特性の算出方法の具体的な一例を示すフローチャートである。 Next, in step S5, the control unit 50 calculates the pattern characteristics (width w and phase difference θ) of the phase shift unit 8b based on the selected diffraction pattern SP1. FIG. 7 is a flowchart showing a specific example of a pattern characteristic calculation method of the phase shift unit 8b.
 ステップS51にて、制御部50は選択回折パターンSP1における光の強度の強弱のピッチΔdxを求める。例えば制御部50は、選択回折パターンSP1において、光の強度が1次のピーク値をとるときの位置と、光の強度が-1次のピーク値をとるときの位置との差をピッチΔdxとして算出する。 In step S51, the control unit 50 obtains the pitch Δdx of the intensity of light in the selected diffraction pattern SP1. For example, in the selected diffraction pattern SP1, the control unit 50 uses the difference between the position when the light intensity takes the first-order peak value and the position when the light intensity takes the −1st-order peak value as the pitch Δdx. calculate.
 次にステップS52にて、制御部50は、ステップS51において算出したピッチΔdxに基づいて位相シフト部8bの幅wを算出する。より具体的には、制御部50は、ステップS51において算出したピッチΔdxに基づいて中心間距離Δxを求め、この中心間距離Δxと式(4)とに基づいて位相シフト部8bの幅wを算出する。なおピッチΔdxと中心間距離Δxとの関係は例えばシミュレーションまたは実験等により予め設定されており、例えば制御部50の記憶媒体等に記憶される。 Next, in step S52, the control unit 50 calculates the width w of the phase shift unit 8b based on the pitch Δdx calculated in step S51. More specifically, the control unit 50 obtains the center-to-center distance Δx based on the pitch Δdx calculated in step S51, and sets the width w of the phase shift unit 8b based on the center-to-center distance Δx and Expression (4). calculate. The relationship between the pitch Δdx and the center-to-center distance Δx is preset by, for example, simulation or experiment, and is stored in, for example, a storage medium of the control unit 50.
 次にステップS53にて、制御部50は、選択回折パターンSP1のピーク差Δpを求める。例えば制御部50は、選択回折パターンSP1において、-1次のピーク値から1次のピーク値を減算した値をピーク差Δpとして算出する。 Next, in step S53, the control unit 50 obtains the peak difference Δp of the selected diffraction pattern SP1. For example, in the selected diffraction pattern SP1, the control unit 50 calculates a value obtained by subtracting the first-order peak value from the −1st-order peak value as the peak difference Δp.
 次にステップS54にて、制御部50はステップS53において算出したピーク差Δpに基づいて位相シフト部8bによる位相差θを算出する。なおピーク差Δpと位相差θとの関係は例えばシミュレーションまたは実験等により予め設定されており、例えば制御部50の記憶媒体等に記憶される。制御部50はステップS53において算出したピーク差Δpと、当該関係とに基づいて、位相シフト部8bによる位相差θを求める。 Next, in step S54, the control unit 50 calculates the phase difference θ by the phase shift unit 8b based on the peak difference Δp calculated in step S53. Note that the relationship between the peak difference Δp and the phase difference θ is preset by, for example, simulation or experiment, and is stored in, for example, a storage medium of the control unit 50. The control unit 50 obtains the phase difference θ by the phase shift unit 8b based on the peak difference Δp calculated in step S53 and the relationship.
 なお、これら一連の計算は、一つの選択回折パターンSP1を元に行っても良く、また、相対位置が最適となる位置の近傍にある複数の回折パターンを元に行ってもよい。具体的な一例として、検出されたM(Mは3以上)個の回折パターンのうち、中心位置x0におけるボトム値が小さい上位のN(Nは2以上M未満)個の回折パターンを、選択回折パターンSP1として選択するとよい。あるいは、中央位置におけるボトム値が、予め決められた基準値以下となるN個の回折パターンを、選択回折パターンSP1として選択してもよい。これによれば、干渉の効果が比較的強く現れたN個の回折パターンを用いることができる。そして、選択されたN個の選択回折パターンSP1の結果より、統計的にパターン特性を求めても良い。例えば、統計としては、平均または回帰分析を採用できる。具体的な一例として、N個の選択回折パターンSP1を平均して一つの回折パターンを算出し、その回折パターンに基づいて上述のように位相シフト部8bのパターン特性を求めてもよい。 The series of calculations may be performed based on one selected diffraction pattern SP1, or may be performed based on a plurality of diffraction patterns near the position where the relative position is optimal. As a specific example, among the detected M (M is 3 or more) diffraction patterns, the upper N (N is 2 or more and less than M) diffraction patterns having a small bottom value at the center position x0 are selectively diffracted. It may be selected as the pattern SP1. Alternatively, N diffraction patterns whose bottom value at the center position is equal to or less than a predetermined reference value may be selected as the selected diffraction pattern SP1. According to this, it is possible to use N diffraction patterns in which the effect of interference appears relatively strongly. Then, pattern characteristics may be obtained statistically from the results of the selected N selected diffraction patterns SP1. For example, an average or regression analysis can be adopted as the statistics. As a specific example, one selected diffraction pattern SP1 may be averaged to calculate one diffraction pattern, and the pattern characteristics of the phase shift unit 8b may be obtained based on the diffraction pattern as described above.
 次にステップS6にて、制御部50は、算出した位相シフト部8bのパターン特性(幅wおよび位相差θ)を表示部70に表示させる。これにより、作業員は位相シフトマスク80の位相シフト部8bの良否を判断することができる。なお、制御部50は、算出した位相シフト部8bのパターン特性が予め設定された良好範囲内であるか否かを判定し、その判定結果を表示部70に表示させてもよい。これによれば、作業員は位相シフト部8bの良否を速やかに了知できる。 Next, in step S6, the control unit 50 causes the display unit 70 to display the calculated pattern characteristics (width w and phase difference θ) of the phase shift unit 8b. Thereby, the worker can judge the quality of the phase shift part 8b of the phase shift mask 80. Note that the control unit 50 may determine whether or not the calculated pattern characteristic of the phase shift unit 8b is within a preset good range and display the determination result on the display unit 70. According to this, the worker can quickly know the quality of the phase shift unit 8b.
 なおステップS1~S6の処理は、測定対象領域を順次に変化させながら繰り返し実行されるとよい。これにより、位相シフトマスク80の全面を検査できる。 Note that the processing in steps S1 to S6 may be repeatedly executed while sequentially changing the measurement target region. Thereby, the entire surface of the phase shift mask 80 can be inspected.
 以上のように、フォトマスク検査装置1によれば、スリットマスク24と位相シフトマスク80との平面視における相対位置を変化させながら、複数のタイミングで回折パターンを検出している。よって、その検出された複数の回折パターンには、最適な相対位置に近い相対位置に対応した回折パターンが含まれる。したがって、より適した回折パターンに基づいて位相シフト部8bのパターン特性を算出することができる。 As described above, according to the photomask inspection apparatus 1, the diffraction pattern is detected at a plurality of timings while changing the relative positions of the slit mask 24 and the phase shift mask 80 in plan view. Therefore, the detected plurality of diffraction patterns include a diffraction pattern corresponding to a relative position close to the optimum relative position. Therefore, the pattern characteristics of the phase shift unit 8b can be calculated based on a more suitable diffraction pattern.
 ところで、特許文献1では、位相差がない領域に対して光を照射したときに検出される基準像(基準回折パターン)を用いている。この基準回折パターンを用いる場合には、その基準回折パターンの測定時刻とは異なる時刻で、測定対象領域の回折パターンを測定する必要がある。各測定時刻が相違するので、その期間で装置に生じる熱等に起因して、各測定時刻における光学系の状態に差異(例えば光軸のずれ等)が生じることがある。つまり、両測定時刻における光学条件が互いに相違することがある。このように光学条件が相違すれば、位相シフト部8bのパターン特性について測定誤差が生じる。これに対して、フォトマスク検査装置1では、そのような基準回折パターンを用いる必要がない。したがって、上記測定誤差の発生を回避することができ、高い精度で位相シフト部8bのパターン特性を算出できる。 By the way, in Patent Document 1, a reference image (reference diffraction pattern) detected when light is irradiated to a region having no phase difference is used. When this reference diffraction pattern is used, it is necessary to measure the diffraction pattern in the measurement target region at a time different from the measurement time of the reference diffraction pattern. Since each measurement time is different, a difference (for example, an optical axis shift or the like) may occur in the state of the optical system at each measurement time due to heat generated in the apparatus during that period. That is, the optical conditions at both measurement times may be different from each other. Thus, if the optical conditions are different, a measurement error occurs in the pattern characteristics of the phase shift unit 8b. On the other hand, in the photomask inspection apparatus 1, it is not necessary to use such a reference diffraction pattern. Therefore, the occurrence of the measurement error can be avoided, and the pattern characteristics of the phase shift unit 8b can be calculated with high accuracy.
 また上述の例では、制御部50は選択回折パターンSP1として、複数の回折パターンのうち中心位置x0における光の強度が最も小さい回折パターンを選択している。これによれば、最適位置に最も近い相対位置に対応する回折パターンを選択することができる。よって、他の回折パターンを用いる場合に比して、高い精度で位相シフト部8bのパターン特性を算出できる。 In the above example, the control unit 50 selects the diffraction pattern with the smallest light intensity at the center position x0 among the plurality of diffraction patterns as the selected diffraction pattern SP1. According to this, the diffraction pattern corresponding to the relative position closest to the optimum position can be selected. Therefore, the pattern characteristics of the phase shift unit 8b can be calculated with higher accuracy than when other diffraction patterns are used.
 また上述の例では、選択回折パターンSP1における強弱のピッチに基づいて位相シフト部8bの幅wを算出している。これによれば、簡単な処理で位相シフト部8bの幅wを算出できる。 In the above example, the width w of the phase shift unit 8b is calculated based on the strong and weak pitches in the selected diffraction pattern SP1. According to this, the width w of the phase shift unit 8b can be calculated by a simple process.
 また上述の例では、選択回折パターンSP1におけるピーク値の差に基づいて位相シフト部8bによる位相差θを算出している。これによれば、簡単な処理で位相シフト部8bによる位相差θを算出できる。 In the above-described example, the phase difference θ by the phase shift unit 8b is calculated based on the peak value difference in the selected diffraction pattern SP1. Accordingly, the phase difference θ by the phase shift unit 8b can be calculated with a simple process.
 また上述の例では、一つのスリット24aを透過した光の回折パターンを解析して幅wおよび位相差θを算出している。よって、2つのスリットを用い、そのスリットを透過した光の干渉に基づいて位相シフト部のパターン特性を算出する場合に比して、透光部8a同士の間の距離(パターン間の距離)が狭い位相シフトマスク80にも適用しやすい。つまり、フォトマスク検査装置1は、間隔の狭いラインアンドスペースパターンまたはホールパターンアレイ用の位相シフトマスク80にも適用できる。 In the above example, the width w and the phase difference θ are calculated by analyzing the diffraction pattern of the light transmitted through one slit 24a. Therefore, compared to the case where the pattern characteristics of the phase shift part are calculated based on the interference of light transmitted through the slits using two slits, the distance between the translucent parts 8a (distance between patterns) is smaller. It is easy to apply to a narrow phase shift mask 80. That is, the photomask inspection apparatus 1 can also be applied to a phase shift mask 80 for a line and space pattern or a hole pattern array with a narrow interval.
 <移動機構の制御の有無>
 上述の例では、移動機構40が位相シフトマスク80をスリットマスク24に対して相対的に移動させている最中に、イメージセンサ27が複数のタイミングで撮像画像IM1を生成した(ステップS3)。しかしながら、移動機構40による移動は必ずしも必要ではない。本実施例で必要な微動量程度の揺れは、装置構造材(例えば移動機構40など)の撓み等に起因して恒常的に生じている。あるいは、位相シフトマスク80のスリットマスク24に対する相対的な移動後の装置が静定するまでの期間では残留振動が生じているので、この期間中に回折パターンを検出してもよい。つまり、この残留振動を利用して複数の相対位置にそれぞれ対応した複数の回折パターンを検出してもよい。
<Presence or absence of movement mechanism control>
In the above example, the image sensor 27 generates the captured image IM1 at a plurality of timings while the moving mechanism 40 moves the phase shift mask 80 relative to the slit mask 24 (step S3). However, the movement by the moving mechanism 40 is not always necessary. The amount of fine movement required in the present embodiment is constantly generated due to bending of the device structural material (for example, the moving mechanism 40). Alternatively, since residual vibration occurs during the period until the apparatus after the relative movement of the phase shift mask 80 with respect to the slit mask 24 is settled, the diffraction pattern may be detected during this period. That is, a plurality of diffraction patterns respectively corresponding to a plurality of relative positions may be detected using this residual vibration.
 要するに、スリットマスク24と位相シフトマスク80との相対位置が可制御の下で変動しているのか否かは問わず、当該相対位置が時間の経過とともに変動する状態でイメージセンサ27が複数のタイミングで順次に回折パターンを検出すればよい。つまり、ステップS3において、移動機構40が移動動作を行っていない状態で、イメージセンサ27が複数のタイミングで順次に撮像画像IM1を生成して、複数の回折パターンを検出してもよい。 In short, regardless of whether or not the relative position between the slit mask 24 and the phase shift mask 80 varies under controllable conditions, the image sensor 27 can operate at a plurality of timings while the relative position varies over time. The diffraction pattern may be detected sequentially. That is, in step S3, the image sensor 27 may sequentially generate captured images IM1 at a plurality of timings and detect a plurality of diffraction patterns in a state where the moving mechanism 40 is not performing a moving operation.
 これによっても、複数の相対位置にそれぞれ対応した複数の回折パターンを検出することができる。つまり、1回しか回折パターンを検出しない場合に比べて、イメージセンサ27は、位相シフト部8bのパターン特性の算出により適した回折パターンを検出しやすい。そして、複数の回折パターンのうちから、より測定に適した回折パターンを選択することによって、より高い精度で位相シフト部8bのパターン特性を算出することができる。 Also by this, it is possible to detect a plurality of diffraction patterns respectively corresponding to a plurality of relative positions. That is, as compared with the case where the diffraction pattern is detected only once, the image sensor 27 can easily detect a diffraction pattern more suitable for calculating the pattern characteristics of the phase shift unit 8b. Then, by selecting a diffraction pattern more suitable for measurement from a plurality of diffraction patterns, the pattern characteristics of the phase shift unit 8b can be calculated with higher accuracy.
 その一方で、移動機構40による制御がない場合には、その相対位置の変動範囲は周囲の環境等に依存するので、その変動範囲に最適な相対位置が含まれるかどうかは分からない。これに対して、移動機構40が位相シフトマスク80をスリットマスク24に対して相対的に移動させる場合には、その移動範囲内に最適な相対位置が含まれるように、位相シフトマスク80をスリットマスク24に対して相対的に移動させることができる。よって、検出された複数の回折パターンには、最適な相対位置により近い回折パターンを含めることができ、ひいては、より高い精度で位相シフト部8bのパターン特性を算出することができる。 On the other hand, when there is no control by the moving mechanism 40, the fluctuation range of the relative position depends on the surrounding environment and the like, and it is not known whether the optimum relative position is included in the fluctuation range. On the other hand, when the movement mechanism 40 moves the phase shift mask 80 relative to the slit mask 24, the phase shift mask 80 is slit so that the optimum relative position is included in the movement range. It can be moved relative to the mask 24. Therefore, a plurality of detected diffraction patterns can include a diffraction pattern closer to the optimum relative position, and as a result, the pattern characteristics of the phase shift unit 8b can be calculated with higher accuracy.
 <移動方向>
 上述のように、スリットマスク24と位相シフトマスク80との位置決めの精度は数十[nm]以下の精度が要求される場合がある。よって、スリットマスク24と位相シフトマスク80との相対位置が当該精度内となるタイミングで回折パターンを適切に検出するには、位相シフトマスク80とスリットマスク24との相対速度は低いことが望ましい。
<Moving direction>
As described above, the positioning accuracy between the slit mask 24 and the phase shift mask 80 may be required to be several tens [nm] or less. Therefore, in order to appropriately detect the diffraction pattern at a timing when the relative position between the slit mask 24 and the phase shift mask 80 is within the accuracy, it is desirable that the relative speed between the phase shift mask 80 and the slit mask 24 is low.
 そこで、移動機構40はスリット24aの幅方向(言い換えれば、位相シフト部8bの幅方向)に対して傾斜する方向に沿って位相シフトマスク80をスリットマスク24に対して移動させてもよい。図8は、位相シフトマスク80のスリットマスク24に対する移動方向D1を説明するための図である。図8では、移動方向D1が模式的にブロック矢印で示されている。この移動方向D1はスリット24aの幅方向に対して例えば30度~60度程度の範囲内で交差している。この移動方向D1に沿って位相シフトマスク80をスリットマスク24に対して移動させれば、スリット24aの幅方向に沿う相対速度成分を低減することができる。これによれば、より最適な相対位置に対応した回折パターンを検出しやすい。 Therefore, the moving mechanism 40 may move the phase shift mask 80 relative to the slit mask 24 along a direction inclined with respect to the width direction of the slit 24a (in other words, the width direction of the phase shift portion 8b). FIG. 8 is a diagram for explaining the moving direction D1 of the phase shift mask 80 with respect to the slit mask 24. FIG. In FIG. 8, the moving direction D1 is schematically indicated by a block arrow. The moving direction D1 intersects the width direction of the slit 24a within a range of about 30 to 60 degrees, for example. If the phase shift mask 80 is moved relative to the slit mask 24 along the moving direction D1, the relative velocity component along the width direction of the slit 24a can be reduced. According to this, it is easy to detect a diffraction pattern corresponding to a more optimal relative position.
 <位相シフト部8bのパターン特性の算出方法の他の例>
 次に、選択回折パターンSP1に基づいた位相シフト部8bのパターン特性の算出方法の他の一例を説明する。ここではまず、その概要を説明する。制御部50は未知の幅wおよび位相差θの値としてそれぞれの初期値を設定し、その初期値を用いて回折パターン(以下、演算回折パターンと呼ぶ)を算出する。そして制御部50は、その演算回折パターンが選択回折パターンSP1に類似しているか否かを判定する。言い換えれば、制御部50は演算回折パターンと選択回折パターンSP1との差異が大きいか否かを判断する。制御部50はこれらが類似していない、つまり、差異が大きいと判定したときには、幅wの値および位相差θの値を変更して再び演算回折パターンを算出する。制御部50は、演算回折パターンが選択回折パターンと類似するまで、つまり、差異が基準値よりも小さくなるまで、上記の動作を繰り返し実行する。演算回路パターンが選択回折パターンと類似したときの幅wの値および位相差θの値は測定値を示すこととなる。
<Another Example of Calculation Method of Pattern Characteristic of Phase Shift Unit 8b>
Next, another example of the method for calculating the pattern characteristics of the phase shift unit 8b based on the selected diffraction pattern SP1 will be described. First, the outline will be described. The control unit 50 sets respective initial values as values of the unknown width w and the phase difference θ, and calculates a diffraction pattern (hereinafter referred to as a calculation diffraction pattern) using the initial values. Then, the control unit 50 determines whether or not the calculated diffraction pattern is similar to the selected diffraction pattern SP1. In other words, the control unit 50 determines whether or not the difference between the calculated diffraction pattern and the selected diffraction pattern SP1 is large. When it is determined that they are not similar, that is, the difference is large, the control unit 50 changes the value of the width w and the value of the phase difference θ and calculates the calculated diffraction pattern again. The controller 50 repeatedly executes the above operation until the calculated diffraction pattern is similar to the selected diffraction pattern, that is, until the difference becomes smaller than the reference value. The value of the width w and the value of the phase difference θ when the arithmetic circuit pattern is similar to the selected diffraction pattern indicate measured values.
 <シミュレーションモデル>
 図9は、演算回折パターンを算出するためのシミュレーションモデルM1の一例を概略的に示す図である。このシミュレーションモデルM1は、位相シフトマスク80のうちスリット24aに対応する領域における光の強度分布を示している。透光部8a、位相シフト部8bおよび遮光部8cにおける光の強度は、それぞれの透過率(例えばパターン設計値)に基づいて予め設定される。図9のシミュレーションモデルM1では、透光部8a、位相シフト部8bおよび遮光部8cの各々における光の強度は一定に設定されている。よって、透光部8aと位相シフト部8bとの間の境界において光の強度は急峻に立ち上がっており、同様に、位相シフト部8bと遮光部8cとの間の境界において光の強度は急峻に立ち上がっている。このシミュレーションモデルM1において、幅w,wsは式(2)を満足しており、幅wが未知数となる。また、このシミュレーションモデルM1において、位相シフト部8bにおける位相差θも未知数となる。
<Simulation model>
FIG. 9 is a diagram schematically showing an example of a simulation model M1 for calculating a calculation diffraction pattern. The simulation model M1 shows the light intensity distribution in the region corresponding to the slit 24a in the phase shift mask 80. The intensity of light in the light transmitting portion 8a, the phase shift portion 8b, and the light shielding portion 8c is set in advance based on the respective transmittances (for example, pattern design values). In the simulation model M1 of FIG. 9, the light intensity in each of the light transmitting portion 8a, the phase shift portion 8b, and the light shielding portion 8c is set to be constant. Therefore, the light intensity steeply rises at the boundary between the light transmitting portion 8a and the phase shift portion 8b. Similarly, the light intensity sharply increases at the boundary between the phase shift portion 8b and the light shielding portion 8c. Standing up. In this simulation model M1, the widths w and ws satisfy Expression (2), and the width w is an unknown number. In the simulation model M1, the phase difference θ in the phase shift unit 8b is also an unknown number.
 <演算回折パターン>
 制御部50はシミュレーションモデルM1に対応する回折パターンを、公知なシミュレータを用いて計算する。この計算は、高速フーリエ変換にて容易に行うことができるのは自明である。図10は、演算回折パターンAP1~AP4を概略的に示すグラフである。演算回折パターンAP1~AP4は、位相差θを変更したときに得られる演算回折パターンである。具体的には、演算回折パターンAP1~AP4はそれぞれ位相差が180度、208.8度(=360×0.58)、216度(=360×0.6)および223.2度(=360×0.62)であるときの演算回路パターンである。図10の例では、参考のために選択回折パターンSP1の一例も示されている。図10の例では、選択回折パターンSP1は演算回折パターンAP3に類似している。
<Calculated diffraction pattern>
The control unit 50 calculates a diffraction pattern corresponding to the simulation model M1 using a known simulator. It is obvious that this calculation can be easily performed by a fast Fourier transform. FIG. 10 is a graph schematically showing the calculated diffraction patterns AP1 to AP4. The calculated diffraction patterns AP1 to AP4 are calculated diffraction patterns obtained when the phase difference θ is changed. Specifically, the calculated diffraction patterns AP1 to AP4 have phase differences of 180 degrees, 208.8 degrees (= 360 × 0.58), 216 degrees (= 360 × 0.6), and 223.2 degrees (= 360), respectively. This is an arithmetic circuit pattern when × 0.62). In the example of FIG. 10, an example of the selective diffraction pattern SP1 is also shown for reference. In the example of FIG. 10, the selected diffraction pattern SP1 is similar to the calculated diffraction pattern AP3.
 <制御部の動作>
 図11は、制御部50の上記動作の一例を示すフローチャートである。このフローは図6のステップS5の具体例に相当する。まずステップS501にて、制御部50は位相シフト部8bの幅wの値および位相シフト部8bによる位相差θの値を、それぞれの初期値に設定する。初期値は例えば予め設定されていてもよい。
<Operation of control unit>
FIG. 11 is a flowchart illustrating an example of the operation of the control unit 50. This flow corresponds to a specific example of step S5 in FIG. First, in step S501, the control unit 50 sets the value of the width w of the phase shift unit 8b and the value of the phase difference θ by the phase shift unit 8b to respective initial values. The initial value may be set in advance, for example.
 次にステップS502にて、制御部50は幅wおよび位相差θの値に基づいて演算回折パターンを算出する。具体的には、制御部50はシミュレーションモデルM1に対して高速フーリエ変換を用いたシミュレータを適用して、演算回折パターンを算出する。 Next, in step S502, the control unit 50 calculates a calculation diffraction pattern based on the values of the width w and the phase difference θ. Specifically, the control unit 50 calculates a calculation diffraction pattern by applying a simulator using fast Fourier transform to the simulation model M1.
 次にステップS503にて、制御部50は、ステップS502にて算出した演算回折パターンが選択回折パターンSP1に類似しているか否かを判断する。例えば制御部50は演算回折パターンと選択回折パターンSP1との差異を示す差異情報を生成し、当該差異が基準値よりも小さいか否かを判断する。当該差異情報は特に限定される必要は無いものの、例えば、演算回折パターンと選択回折パターンSP1の各位置における光の強度の差の絶対値の総和を採用することができる。当該総和が小さいほど、差異は小さい。あるいは、差異情報として、例えば、演算回折パターンにおけるピッチΔdxと選択回折パターンSP1におけるピッチΔdxとの第1差、および、演算回折パターンにおけるピーク差Δpと選択回折パターンSP1におけるピーク差Δpとの第2差を採用してもよい。これらの差が小さいほど、演算回折パターンと選択回折パターンSP1との差異は小さい。 Next, in step S503, the control unit 50 determines whether or not the calculated diffraction pattern calculated in step S502 is similar to the selected diffraction pattern SP1. For example, the control unit 50 generates difference information indicating a difference between the calculated diffraction pattern and the selected diffraction pattern SP1, and determines whether the difference is smaller than a reference value. Although the difference information need not be particularly limited, for example, the sum of absolute values of the differences in light intensity at each position of the calculated diffraction pattern and the selected diffraction pattern SP1 can be employed. The smaller the sum, the smaller the difference. Alternatively, as the difference information, for example, a first difference between the pitch Δdx in the calculated diffraction pattern and the pitch Δdx in the selected diffraction pattern SP1, and a second difference between the peak difference Δp in the calculated diffraction pattern and the peak difference Δp in the selected diffraction pattern SP1. Differences may be employed. The smaller the difference, the smaller the difference between the calculated diffraction pattern and the selected diffraction pattern SP1.
 演算回折パターンが選択回折パターンSP1に類似していないと判断したときには、ステップS504にて、制御部50は幅wおよび位相差θの値の少なくともいずれか一方を変更して、シミュレーションモデルM1を更新する。次に制御部50はステップS503を実行する。つまり、演算回折パターンが選択回折パターンSP1に類似していないときには、その幅wおよび位相差θの値少なくともいずれか一方は未だ測定値とは離れていると考えられるので、その値を変更して、再び演算回折パターンを算出し(ステップS503)、算出した演算回折パターンが選択回折パターンSP1に類似しているか否かを判断する(ステップS504)。ステップS502~S504を繰り返すことで、いずれ演算回折パターンが選択回折パターンSP1に類似する。 When it is determined that the calculated diffraction pattern is not similar to the selected diffraction pattern SP1, in step S504, the control unit 50 changes at least one of the value of the width w and the phase difference θ, and updates the simulation model M1. To do. Next, the control unit 50 executes Step S503. That is, when the calculated diffraction pattern is not similar to the selected diffraction pattern SP1, it is considered that at least one of the width w and the phase difference θ is still separated from the measured value. Then, the calculated diffraction pattern is calculated again (step S503), and it is determined whether or not the calculated calculated diffraction pattern is similar to the selected diffraction pattern SP1 (step S504). By repeating steps S502 to S504, the calculated diffraction pattern will eventually be similar to the selected diffraction pattern SP1.
 ステップS503にて、演算回折パターンが選択回折パターンSP1に類似していると判定したときには、ステップS6にて、制御部50は、最新の幅wおよび位相差θをそれぞれの測定値として表示部70に表示する。 When it is determined in step S503 that the calculated diffraction pattern is similar to the selected diffraction pattern SP1, in step S6, the control unit 50 uses the latest width w and the phase difference θ as the measured values, and displays the display unit 70. To display.
 以上のように、選択回折パターンSP1に類似する演算回折パターンを、シミュレーションモデルM1に対する高速フーリエ変換を用いて算出している。これによれば、より高い精度で位相シフト部8bの幅wおよび位相シフト部8bによる位相差θを求めることができる。 As described above, the operation diffraction pattern similar to the selected diffraction pattern SP1 is calculated using the fast Fourier transform on the simulation model M1. According to this, the width w of the phase shift unit 8b and the phase difference θ by the phase shift unit 8b can be obtained with higher accuracy.
 しかもシミュレーションモデルM1において、透光部8aおよび位相シフト部8bの各々の光の強度が一定に設定されている。よって、強度分布の設定が簡易であり、また演算処理も簡易にできる。 Moreover, in the simulation model M1, the light intensity of each of the light transmitting portion 8a and the phase shift portion 8b is set to be constant. Therefore, setting of the intensity distribution is simple and the calculation process can be simplified.
 <位相シフト部の幅および位相シフト部による位相差の決定方法>
 効率よく選択回折パターンSP1に類似した演算回折パターンを算出するためには、制御部50はステップS504にて、差異情報に基づいて幅wおよび位相差θの値を決定するとよい。即ち、制御部50は演算回折パターンと選択回折パターンSP1との差異が小さくなるように、幅wおよび位相差θの値を決定するとよい。例えば差異情報として、第1差および第2差を採用する場合について考慮する。この場合、制御部50は当該第1差が小さくなるように幅wの値を変更し、当該第2差が小さくなるように位相差θの値を変更する。
<Method for Determining Width of Phase Shift Section and Phase Difference by Phase Shift Section>
In order to efficiently calculate a calculation diffraction pattern similar to the selected diffraction pattern SP1, the control unit 50 may determine the values of the width w and the phase difference θ based on the difference information in step S504. That is, the control unit 50 may determine the values of the width w and the phase difference θ so that the difference between the calculated diffraction pattern and the selected diffraction pattern SP1 is reduced. For example, consider the case where the first difference and the second difference are adopted as the difference information. In this case, the control unit 50 changes the value of the width w so that the first difference becomes small, and changes the value of the phase difference θ so that the second difference becomes small.
 より具体的には、演算回折パターンにおけるピッチΔdxが選択回折パターンにおけるピッチΔdxよりも大きい場合には、次に算出される演算回折パターンにおけるピッチΔdxを低減すべく、制御部50は幅wをより小さな値に変更する。また演算回折パターンにおけるピーク差Δpが選択回折パターンにおけるピーク差Δpよりも大きい場合には、次に算出される回折演算パターンにおけるピーク差Δpを低減すべく、制御部50は位相差θをより小さな値に変更する。 More specifically, when the pitch Δdx in the calculated diffraction pattern is larger than the pitch Δdx in the selected diffraction pattern, the control unit 50 increases the width w to reduce the pitch Δdx in the next calculated diffraction pattern. Change to a smaller value. When the peak difference Δp in the calculated diffraction pattern is larger than the peak difference Δp in the selected diffraction pattern, the control unit 50 reduces the phase difference θ to reduce the peak difference Δp in the next calculated diffraction calculation pattern. Change to a value.
 これによれば、次に算出される演算回折パターンを選択回折パターンSP1に近づけることができる。したがって、選択回折パターンSP1に類似した演算回折パターンをより早期に算出することができる。 According to this, the calculation diffraction pattern calculated next can be brought close to the selected diffraction pattern SP1. Therefore, a calculation diffraction pattern similar to the selected diffraction pattern SP1 can be calculated earlier.
 <シミュレーションモデルの他の一例>
 シミュレーションモデルM1では、透光部8aおよび位相シフト部8bの各々において光の強度は一定に設定された。しかしながら、実際には、透光部8aと位相シフト部8bとの境界部において、光の強度は位相シフト部8bから透光部8aに向かうにしたがって傾斜を有して徐々に増大する、と考えられる。遮光部8cと位相シフト部8bとの境界部も同様である。よって、そのようなシミュレーションモデルを活用してもよい。
<Another example of simulation model>
In the simulation model M1, the light intensity is set to be constant in each of the light transmitting portion 8a and the phase shift portion 8b. However, in practice, at the boundary between the light transmitting portion 8a and the phase shift portion 8b, it is considered that the light intensity gradually increases with an inclination from the phase shift portion 8b toward the light transmitting portion 8a. It is done. The same applies to the boundary portion between the light shielding portion 8c and the phase shift portion 8b. Therefore, such a simulation model may be utilized.
 図12は、シミュレーションモデルM2の一例を概略的に示す図である。シミュレーションモデルM2においては、光の強度は、遮光部8cと位相シフト部8bとの境界部において、遮光部8cから位相シフト部8bに向かうにしたがって増大しており、その傾斜は位相シフト部8b側ほど急峻になっている。同様に、光の強度は、位相シフト部8bと透光部8aとの境界部において、位相シフト部8bから透光部8aに向かうにしたがって増大しており、その傾斜は透光部8a側ほど急峻になっている。このような光の強度分布は例えば予め設定されてもよい。なおこの場合の位相シフト部8bの幅としては、光の強度が予め設定された第1所定値となる位置から、予め設定された第2所定値となる位置までの幅を採用することができる。 FIG. 12 is a diagram schematically showing an example of the simulation model M2. In the simulation model M2, the light intensity increases at the boundary between the light shielding unit 8c and the phase shift unit 8b as it goes from the light shielding unit 8c to the phase shift unit 8b, and the inclination thereof is on the phase shift unit 8b side. It is steep enough. Similarly, the light intensity increases at the boundary between the phase shift unit 8b and the translucent unit 8a as it goes from the phase shift unit 8b to the translucent unit 8a. It is steep. Such light intensity distribution may be preset, for example. As the width of the phase shift unit 8b in this case, the width from the position where the light intensity becomes a preset first predetermined value to the position where the preset second predetermined value can be adopted. .
 シミュレーションモデルM2を採用すれば、制御部50はより実態に即して演算回折パターンを算出することができ、位相シフト部8bの幅wおよび位相シフト部8bによる位相差θをより高い精度で算出することができる。 If the simulation model M2 is adopted, the control unit 50 can calculate the calculation diffraction pattern more in accordance with the actual situation, and calculates the width w of the phase shift unit 8b and the phase difference θ by the phase shift unit 8b with higher accuracy. can do.
 このシミュレーションモデルM2は予め設定されてもよい。あるいは、制御部50が位相シフトマスク80のパターン設計値(透光部8aの透過率、位相シフト部8bの透過率、位相シフト部8bの幅wなど)に基づいて、所定のイメージシミュレータを用いてシミュレーションモデルM2(光の強度分布)を生成してもよい。 The simulation model M2 may be set in advance. Alternatively, the control unit 50 uses a predetermined image simulator based on the pattern design values of the phase shift mask 80 (transmittance of the light transmitting unit 8a, transmittance of the phase shift unit 8b, width w of the phase shift unit 8b, etc.). Then, a simulation model M2 (light intensity distribution) may be generated.
 <シミュレーションモデルの他の一例>
 図2を参照して、フォトマスク検査装置1はイメージセンサ28を備えており、このイメージセンサ28は位相シフトマスク80の測定対象領域を撮像して、撮像画像IM2を生成している。そこで、制御部50は、撮像画像IM2に基づいてシミュレーションモデルの光の強度分布を設定してもよい。具体的な一例として、撮像画像IM2に含まれた測定対象領域の各画素の画素値をシミュレーションモデルの光の強度分布に採用してもよい。これによれば、より実態に即したシミュレーションモデルを設定することができる。
<Another example of simulation model>
Referring to FIG. 2, the photomask inspection apparatus 1 includes an image sensor 28. The image sensor 28 images a measurement target region of the phase shift mask 80, and generates a captured image IM2. Therefore, the control unit 50 may set the light intensity distribution of the simulation model based on the captured image IM2. As a specific example, the pixel value of each pixel in the measurement target region included in the captured image IM2 may be employed in the light intensity distribution of the simulation model. According to this, it is possible to set a simulation model that is more realistic.
 なお、透光部8aおよび位相シフト部8bを透過する光の強度分布は測定対象領域とその延長上の近傍においてほとんど同じであるので、測定対象領域の近傍における透光部8aおよび位相シフト部8bの各画素の画素値を採用してもよい。例えば、光学系のズレ等により撮像画像IM2において測定対象領域を特定することが困難である場合、または、撮像画像IM2に測定対象領域が含まれておらず、その近傍の領域が含まれている場合などには、その近傍の領域における画素値が採用されてもよい。より具体的な一例として、測定対象領域の延長上に位置する透光部8aおよび位相シフト部8bの各画素の画素値をシミュレーションモデルの光の強度分布に採用してもよい。 Since the intensity distribution of the light transmitted through the light transmitting portion 8a and the phase shift portion 8b is almost the same in the vicinity of the measurement target region and its extension, the light transmission portion 8a and the phase shift portion 8b in the vicinity of the measurement target region. The pixel value of each pixel may be adopted. For example, when it is difficult to specify the measurement target region in the captured image IM2 due to a shift of the optical system or the like, or the measurement target region is not included in the captured image IM2, and a region in the vicinity thereof is included. In some cases, a pixel value in a nearby region may be employed. As a more specific example, the pixel value of each pixel of the light transmitting portion 8a and the phase shift portion 8b located on the extension of the measurement target region may be adopted as the light intensity distribution of the simulation model.
 <フォトマスク検査装置の動作>
 図13は、フォトマスク検査装置1の動作の一例を示すフローチャートである。まずステップS11にて、制御部50は移動機構40を制御してステップ移動を行う。このステップ移動はイメージセンサ28が測定対象領域(またはその近傍の領域)を撮像するのに適した位置への移動を示している。次にステップS12にて、ステップS2と同様に、制御部50は昇降機構60を制御してオートフォーカス処理を行う。
<Operation of photomask inspection apparatus>
FIG. 13 is a flowchart showing an example of the operation of the photomask inspection apparatus 1. First, in step S11, the controller 50 controls the moving mechanism 40 to perform step movement. This step movement indicates movement to a position suitable for the image sensor 28 to image the measurement target area (or an area in the vicinity thereof). Next, in step S12, as in step S2, the control unit 50 controls the lifting mechanism 60 to perform autofocus processing.
 次にステップS13にて、イメージセンサ28は撮像画像IM2を生成し、その撮像画像IM2を制御部50に出力する。 Next, in step S13, the image sensor 28 generates the captured image IM2, and outputs the captured image IM2 to the control unit 50.
 次にステップS14にて、制御部50は撮像画像IM2のうち測定対象領域に相当する画像(あるいはその近傍の画像)を記憶媒体に記憶する。例えば撮像画像IM2のうち予め設定された領域を測定対象領域(あるいは近傍領域)として抽出し、その画像を記憶媒体に記憶する。 Next, in step S14, the control unit 50 stores in the storage medium an image corresponding to the measurement target region (or an image in the vicinity thereof) in the captured image IM2. For example, a preset region of the captured image IM2 is extracted as a measurement target region (or a nearby region), and the image is stored in a storage medium.
 次にステップS15にて、ステップS1と同様に、制御部50は移動機構40を制御して、スリット24aが測定対象領域と対向するように、位相シフトマスク80をスリットマスク24に対して移動させて、XY平面における位置合わせを行う。 Next, in step S15, similarly to step S1, the control unit 50 controls the moving mechanism 40 to move the phase shift mask 80 with respect to the slit mask 24 so that the slit 24a faces the measurement target region. Then, alignment in the XY plane is performed.
 次にステップS16にて、ステップS3と同様に、スリットマスク24と位相シフトマスク80とが相対的に微動した状態で、イメージセンサ27が複数のタイミングで撮像画像IM1を生成し、その撮像画像IM1を制御部50に出力する。 In step S16, as in step S3, the image sensor 27 generates the captured image IM1 at a plurality of timings with the slit mask 24 and the phase shift mask 80 relatively finely moved, and the captured image IM1. Is output to the control unit 50.
 次にステップS17にて、ステップS4と同様に、制御部50は複数の回折パターンから回折パターン(選択回折パターンSP1)を選択する。 Next, in step S17, as in step S4, the control unit 50 selects a diffraction pattern (selected diffraction pattern SP1) from a plurality of diffraction patterns.
 次にステップS18にて、制御部50は選択回折パターンSP1に基づいて位相シフト部8bのパターン特性を算出する。図14は、この算出方法の具体的な一例を示すフローチャートである。まずステップS511にて、制御部50は撮像画像IM2に基づいてシミュレーションモデルの光の強度分布を設定する。より具体的な一例として、ステップS14において記憶した画像の各画素値をシミュレーションモデルの光の強度分布に採用する。位相差θは位相シフト部8bの各位置において一定に設定されてもよく、あるいは、各境界部において光の強度分布と同様の傾斜で設定されてもよい。 Next, in step S18, the control unit 50 calculates the pattern characteristics of the phase shift unit 8b based on the selected diffraction pattern SP1. FIG. 14 is a flowchart showing a specific example of this calculation method. First, in step S511, the control unit 50 sets the light intensity distribution of the simulation model based on the captured image IM2. As a more specific example, each pixel value of the image stored in step S14 is adopted as the light intensity distribution of the simulation model. The phase difference θ may be set constant at each position of the phase shift unit 8b, or may be set at the same inclination as the light intensity distribution at each boundary.
 次に制御部50はステップS512~ステップS515を実行する。ステップS512~S515はそれぞれステップS501~S504と同様であるので、繰り返しの説明を避ける。 Next, the control unit 50 executes steps S512 to S515. Steps S512 to S515 are the same as steps S501 to S504, respectively, and repeated description is avoided.
 ステップS514において演算回折パターンが選択回折パターンSP1に類似すると判断されたときには、ステップS19にて、ステップS6と同様に、制御部50は最新の幅wおよび位相差θを測定値として表示部70に表示させる。 When it is determined in step S514 that the calculated diffraction pattern is similar to the selected diffraction pattern SP1, in step S19, as in step S6, the control unit 50 displays the latest width w and phase difference θ on the display unit 70 as measured values. Display.
 これによれば、撮像画像IM2に基づいてシミュレーションモデルの光の強度分布が設定されるので、より実態に即して演算回折パターンを算出することができ、より高い精度で幅wおよび位相差θを算出できる。 According to this, since the light intensity distribution of the simulation model is set based on the captured image IM2, it is possible to calculate the calculation diffraction pattern in accordance with the actual situation, and the width w and the phase difference θ with higher accuracy. Can be calculated.
 以上のように、フォトマスク検査装置およびフォトマスク検査方法は詳細に説明されたが、上記した説明は、全ての局面において例示であって、この開示がそれに限定されるものではない。また、上述した各種変形例は、相互に矛盾しない限り組み合わせて適用可能である。そして、例示されていない多数の変形例が、この開示の範囲から外れることなく想定され得るものと解される。 As described above, the photomask inspection apparatus and the photomask inspection method have been described in detail, but the above description is illustrative in all aspects, and the present disclosure is not limited thereto. The various modifications described above can be applied in combination as long as they do not contradict each other. And it is understood that many modifications which are not illustrated may be assumed without departing from the scope of this disclosure.
 1 フォトマスク検査装置
 8a 透光部
 8b 位相シフト部
 8c 遮光部
 10 照射部
 24 スリットマスク
 24a スリット
 25 フーリエ変換レンズ
 27 第1光学センサ(イメージセンサ)
 28 第2光学センサ(イメージセンサ)
 40 移動機構
 50 演算処理部(制御部)
 80 位相シフトマスク
DESCRIPTION OF SYMBOLS 1 Photomask inspection apparatus 8a Light transmission part 8b Phase shift part 8c Light-shielding part 10 Irradiation part 24 Slit mask 24a Slit 25 Fourier transform lens 27 1st optical sensor (image sensor)
28 Second optical sensor (image sensor)
40 moving mechanism 50 arithmetic processing unit (control unit)
80 Phase shift mask

Claims (11)

  1.  光を透過させる透光部、光を遮断する遮光部、および、前記透光部と前記遮光部との間に設けられ、光を透過させるとともに前記透光部を透過した光に対して位相をシフトさせる位相シフト部が所定のパターンで形成された位相シフトマスクの、前記位相シフト部のパターン特性を測定するフォトマスク検査装置であって、
     前記位相シフトマスクを保持する保持部と、
     前記透光部と前記位相シフト部とを含む領域に光を照射する照射部と、
     スリットを有し、前記透光部の幅方向における一部および前記位相シフト部の幅方向における全体を透過した光が前記スリットを通過する位置に配置されるスリットマスクと、
     前記スリットを通過した光が入射されるフーリエ変換レンズと、
     前記フーリエ変換レンズからの光の回折パターンを複数のタイミングで検出する第1光学センサと
    を備える、フォトマスク検査装置。
    A light transmitting part that transmits light, a light blocking part that blocks light, and a phase between the light transmitted through the light transmitting part and provided between the light transmitting part and the light blocking part. A phase shift mask in which a phase shift portion to be shifted is formed in a predetermined pattern, a photomask inspection apparatus for measuring pattern characteristics of the phase shift portion,
    A holding unit for holding the phase shift mask;
    An irradiating unit that irradiates light to a region including the translucent unit and the phase shift unit;
    A slit mask that has a slit and is arranged at a position where light that has passed through a part of the translucent part in the width direction and the whole of the phase shift part in the width direction passes through the slit;
    A Fourier transform lens into which light that has passed through the slit is incident;
    A photomask inspection apparatus comprising: a first optical sensor that detects a diffraction pattern of light from the Fourier transform lens at a plurality of timings.
  2.  請求項1に記載のフォトマスク検査装置であって、
     平面視における前記スリットマスクと前記位相シフトマスクとを相対的に移動させる移動機構を更に備え、
     前記第1光学センサは、前記移動機構が前記スリットマスクと前記位相シフトマスクとを相対的に移動させている最中に、複数のタイミングで回折パターンを検出する、フォトマスク検査装置。
    The photomask inspection apparatus according to claim 1,
    A moving mechanism that relatively moves the slit mask and the phase shift mask in plan view;
    The first optical sensor detects a diffraction pattern at a plurality of timings while the moving mechanism relatively moves the slit mask and the phase shift mask.
  3.  請求項2に記載のフォトマスク検査装置であって、
     前記移動機構は、前記幅方向に対して傾斜した方向に沿って、前記スリットマスクと前記位相シフトマスクと相対的に移動させる、フォトマスク検査装置。
    The photomask inspection apparatus according to claim 2,
    The photomask inspection apparatus, wherein the moving mechanism moves the slit mask and the phase shift mask relative to each other along a direction inclined with respect to the width direction.
  4.  請求項1から請求項3のいずれか一つに記載のフォトマスク検査装置であって、
     前記第1光学センサによって検出された複数の回折パターンのうち中央位置における光の強度が最も小さい回折パターンを、選択回折パターンとして選択し、前記選択回折パターンに基づいて前記位相シフト部の幅および前記位相シフト部による位相差の少なくともいずれか一方を、前記パターン特性として求める演算処理部を更に備える、フォトマスク検査装置。
    The photomask inspection apparatus according to any one of claims 1 to 3,
    A diffraction pattern having the smallest light intensity at a central position among the plurality of diffraction patterns detected by the first optical sensor is selected as a selected diffraction pattern, and the width of the phase shift unit and the width are selected based on the selected diffraction pattern. A photomask inspection apparatus further comprising an arithmetic processing unit that obtains at least one of the phase differences by the phase shift unit as the pattern characteristics.
  5.  請求項4に記載のフォトマスク検査装置であって、
     前記演算処理部は、前記選択回折パターンにおける光の強度の強弱のピッチに基づいて、前記位相シフト部の幅を算出する、フォトマスク検査装置。
    The photomask inspection apparatus according to claim 4,
    The said arithmetic processing part is a photomask inspection apparatus which calculates the width | variety of the said phase shift part based on the pitch of the intensity of the light in the said selective diffraction pattern.
  6.  請求項4または請求項5に記載のフォトマスク検査装置であって、
     前記演算処理部は、前記選択回折パターンにおける光の強度の複数のピーク値または複数のボトム値のうち二者の差に基づいて、前記位相シフト部による位相差を算出する、フォトマスク検査装置。
    The photomask inspection apparatus according to claim 4 or 5, wherein
    The said arithmetic processing part is a photomask inspection apparatus which calculates the phase difference by the said phase shift part based on the difference of two among the some peak value or the some bottom value of the light intensity in the said selected diffraction pattern.
  7.  請求項4に記載のフォトマスク検査装置であって、
     前記演算処理部は、
     前記透光部および前記位相シフト部を透過する光の強度分布、前記位相シフト部の幅、および、前記位相シフト部による位相差を設定する第1工程と、
     前記強度分布、前記幅および前記位相差に基づいて、高速フーリエ変換を用いて演算回折パターンを算出する第2工程と、
     前記演算回折パターンが前記選択回折パターンに類似しているか否かを判定する第3工程と、
     前記第3工程おいて、前記演算回折パターンが前記選択回折パターンに類似していないと判定したときには、前記幅および前記位相差を変更して前記第2工程及び前記第3工程を実行する第4工程と
    を実行する、フォトマスク検査装置。
    The photomask inspection apparatus according to claim 4,
    The arithmetic processing unit includes:
    A first step of setting an intensity distribution of light transmitted through the light transmitting part and the phase shift part, a width of the phase shift part, and a phase difference by the phase shift part;
    A second step of calculating an operational diffraction pattern using a fast Fourier transform based on the intensity distribution, the width, and the phase difference;
    A third step of determining whether the computed diffraction pattern is similar to the selected diffraction pattern;
    In the third step, when it is determined that the calculated diffraction pattern is not similar to the selected diffraction pattern, the width and the phase difference are changed, and the second step and the third step are executed. A photomask inspection apparatus that executes the process.
  8.  請求項7に記載のフォトマスク検査装置であって、
     前記演算処理部は、前記第1工程において、前記位相シフト部および前記透光部の各々を透過する光の強度が一定となるように前記強度分布を設定する、フォトマスク検査装置。
    The photomask inspection apparatus according to claim 7,
    The said arithmetic processing part is a photomask inspection apparatus which sets the said intensity distribution so that the intensity | strength of the light which permeate | transmits each of the said phase shift part and the said light transmission part may become fixed in the said 1st process.
  9.  請求項7に記載のフォトマスク検査装置であって、
     前記演算処理部は、前記第1工程において、前記位相シフト部と前記透光部との境界部にて、光の強度が、前記位相シフト部から前記透光部に向かうにしたがって徐々に増大するように、前記強度分布を設定する、フォトマスク検査装置。
    The photomask inspection apparatus according to claim 7,
    In the first step, the arithmetic processing unit gradually increases the light intensity at the boundary between the phase shift unit and the translucent unit from the phase shift unit toward the translucent unit. A photomask inspection apparatus for setting the intensity distribution as described above.
  10.  請求項7に記載のフォトマスク検査装置であって、
     第2光学センサと、
     前記スリットマスクと前記位相シフトマスクとの間に設けられ、前記位相シフトマスクからの光の一部を前記第2光学センサへ導く光学素子と
    を更に備え、
     前記演算処理部は、前記第1工程において、前記第2光学センサによって撮像された画像に基づいて、前記強度分布を設定する、フォトマスク検査装置。
    The photomask inspection apparatus according to claim 7,
    A second optical sensor;
    An optical element that is provided between the slit mask and the phase shift mask and guides a part of light from the phase shift mask to the second optical sensor;
    The said arithmetic processing part is a photomask inspection apparatus which sets the said intensity distribution based on the image imaged by the said 2nd optical sensor in the said 1st process.
  11.  光を透過させる透光部、光を遮断する遮光部、および、前記透光部と前記遮光部との間に設けられ、光を透過させるとともに前記透光部を透過した光に対して位相をシフトさせる位相シフト部が所定のパターンで形成された位相シフトマスクの、前記位相シフト部のパターン特性を測定するフォトマスク検査方法であって、
     照射部が前記透光部と前記位相シフト部とを含む領域に光を照射する工程と、
     第1光学センサが、スリットマスクに形成されたスリット、および、フーリエ変換レンズを介して、前記透光部の幅方向における一部および前記位相シフト部の幅方向における全体を透過した光の回折パターンを複数のタイミングで検出する工程と
    を備える、フォトマスク検査方法。
    A light transmitting part that transmits light, a light blocking part that blocks light, and a phase between the light transmitted through the light transmitting part and provided between the light transmitting part and the light blocking part. A phase shift mask in which a phase shift portion to be shifted is formed in a predetermined pattern, a photomask inspection method for measuring pattern characteristics of the phase shift portion,
    A step of irradiating light to a region where the irradiating unit includes the translucent unit and the phase shift unit;
    A diffraction pattern of light transmitted by the first optical sensor through a slit formed in the slit mask and a part in the width direction of the light transmitting part and the whole in the width direction of the phase shift part via a Fourier transform lens. And a step of detecting at a plurality of timings.
PCT/JP2019/018788 2018-05-22 2019-05-10 Photomask inspection device and photomask inspection method WO2019225360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207033118A KR102546388B1 (en) 2018-05-22 2019-05-10 Photomask Inspection Device and Photomask Inspection Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018097619A JP7023790B2 (en) 2018-05-22 2018-05-22 Photomask inspection device and photomask inspection method
JP2018-097619 2018-05-22

Publications (1)

Publication Number Publication Date
WO2019225360A1 true WO2019225360A1 (en) 2019-11-28

Family

ID=68617137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018788 WO2019225360A1 (en) 2018-05-22 2019-05-10 Photomask inspection device and photomask inspection method

Country Status (4)

Country Link
JP (1) JP7023790B2 (en)
KR (1) KR102546388B1 (en)
TW (1) TWI696887B (en)
WO (1) WO2019225360A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04229864A (en) * 1990-12-27 1992-08-19 Nikon Corp Photomask tester
JPH04229863A (en) * 1990-12-27 1992-08-19 Nikon Corp Photomask tester
JPH05142755A (en) * 1991-11-26 1993-06-11 Nikon Corp Phase shift quantity measuring instrument
JP2015187573A (en) * 2014-03-27 2015-10-29 株式会社Screenホールディングス Phase difference measurement device
JP2017129500A (en) * 2016-01-21 2017-07-27 株式会社ブイ・テクノロジー Phase shift amount measurement device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142755A (en) * 1974-10-09 1976-04-12 Kanai Hiroyuki GOSEIJUSHITORABERANO SEIZOHOHOHO
KR100562190B1 (en) * 2001-08-23 2006-03-20 에이에스엠엘 네델란즈 비.브이. Method of measuring aberration of projection system of a lithographic apparatus, device manufacturing method, and device manufactured thereby
EP1286223B1 (en) * 2001-08-23 2006-03-08 ASML Netherlands B.V. Method of measuring the aberration of a lithographic projection system
JP2010181473A (en) * 2009-02-03 2010-08-19 Toppan Printing Co Ltd Phase type diffraction element, manufacturing method thereof, and image capture device
SG10201406276WA (en) * 2011-04-25 2015-01-29 Ultratech Inc Phase-shift mask with assist phase regions
TWI607277B (en) * 2012-03-28 2017-12-01 Hoya Corp Photomask substrate substrate, substrate with multilayer reflection film, transmission type photomask substrate, reflection type photomask substrate, transmission type photomask, reflection type photomask, and method for manufacturing semiconductor device
KR101948912B1 (en) * 2014-07-09 2019-02-15 에이에스엠엘 네델란즈 비.브이. Inspection apparatus, inspection method and device manufacturing method
JP6640482B2 (en) * 2015-07-31 2020-02-05 株式会社ニューフレアテクノロジー Pattern inspection apparatus and pattern inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04229864A (en) * 1990-12-27 1992-08-19 Nikon Corp Photomask tester
JPH04229863A (en) * 1990-12-27 1992-08-19 Nikon Corp Photomask tester
JPH05142755A (en) * 1991-11-26 1993-06-11 Nikon Corp Phase shift quantity measuring instrument
JP2015187573A (en) * 2014-03-27 2015-10-29 株式会社Screenホールディングス Phase difference measurement device
JP2017129500A (en) * 2016-01-21 2017-07-27 株式会社ブイ・テクノロジー Phase shift amount measurement device

Also Published As

Publication number Publication date
TWI696887B (en) 2020-06-21
KR102546388B1 (en) 2023-06-21
TW202004333A (en) 2020-01-16
KR20200141510A (en) 2020-12-18
JP2019203942A (en) 2019-11-28
JP7023790B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
US9140998B2 (en) Metrology method and inspection apparatus, lithographic system and device manufacturing method
US9535338B2 (en) Metrology method and apparatus, substrate, lithographic system and device manufacturing method
US10107621B2 (en) Image based overlay measurement with finite gratings
JP6723269B2 (en) System and method for focus determination using a focus sensitive overlay target
US9222897B2 (en) Method for characterizing a feature on a mask and device for carrying out the method
US10809632B2 (en) Metrology apparatus and a method of determining a characteristic of interest
JPH08272070A (en) Method and apparatus for monitoring of lithographic exposure
JP2012504859A (en) Lithographic focus and dose measurement using a two-dimensional target
US7408646B2 (en) Method and apparatus for determining local variation of the reflection or transmission behavior over a mask surface
US20090274963A1 (en) Measurement apparatus, measurement method, exposure apparatus, and device manufacturing method
TWI672569B (en) Method for monitoring a characteristic of illumination from a metrology apparatus
CN108548490B (en) Method and device for determining a shift of a grating image in an imaging plane and method and device for determining an object height
JP2014235365A (en) Focus control method and optical device
WO2019225360A1 (en) Photomask inspection device and photomask inspection method
TWI505040B (en) Lithographic apparatus, method for measuring radiation beam spot focus and device manufacturing method
EP3499312A1 (en) Metrology apparatus and a method of determining a characteristic of interest
JP4565248B2 (en) Position detection apparatus and adjustment method thereof
CN108333880B (en) Photoetching exposure device and focal plane measuring device and method thereof
JP2009163185A (en) Method for measuring pattern dimension of photomask and photomask
US11360403B2 (en) Bandwidth calculation system and method for determining a desired wavelength bandwidth for a measurement beam in a mark detection system
JP5777068B2 (en) Mask evaluation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207033118

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808255

Country of ref document: EP

Kind code of ref document: A1