WO2019225272A1 - Injection device for die casting machine, die casting machine, vacuum pipe structure for die casting machine, and casting method - Google Patents

Injection device for die casting machine, die casting machine, vacuum pipe structure for die casting machine, and casting method Download PDF

Info

Publication number
WO2019225272A1
WO2019225272A1 PCT/JP2019/017391 JP2019017391W WO2019225272A1 WO 2019225272 A1 WO2019225272 A1 WO 2019225272A1 JP 2019017391 W JP2019017391 W JP 2019017391W WO 2019225272 A1 WO2019225272 A1 WO 2019225272A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
sleeve
section
plunger
vacuum
Prior art date
Application number
PCT/JP2019/017391
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 石橋
祐一郎 釼
悠生 宮本
Original Assignee
宇部興産機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018237978A external-priority patent/JP7127526B2/en
Application filed by 宇部興産機械株式会社 filed Critical 宇部興産機械株式会社
Priority to KR1020207028333A priority Critical patent/KR102677364B1/en
Priority to CN201980024271.1A priority patent/CN111971135B/en
Publication of WO2019225272A1 publication Critical patent/WO2019225272A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity

Definitions

  • the present invention relates to an injection device that injects a molten metal toward a cavity of a die casting machine by a plunger that can advance and retreat inside a sleeve, a die casting machine including the injection device, a structure of vacuum piping for the die casting machine, and an injection of the die casting machine
  • the present invention relates to a casting method using the apparatus.
  • Patent Document 1 describes a die casting machine that sucks the inside of a sleeve using a vacuum pump.
  • a die casting machine includes first to fourth suction devices for sucking the inside of the sleeve and the cavity of the mold.
  • a first suction device and a second suction device are used for suction inside the sleeve.
  • the first suction device sucks the inside of the sleeve through a hole located in the vicinity of the pouring port into which a molten metal such as an aluminum alloy is poured and in front of the pouring port.
  • the second suction device sucks a closed space formed between the constricted portion between the plunger tip and the flange of the plunger rod and the inner peripheral surface of the sleeve, thereby forming the inner constriction of the tip constricted portion and the sleeve.
  • the inside of the sleeve is sucked through a gap between the surface.
  • the suction of the closed space formed by the constricted portion is performed through a through hole formed in the flange of the plunger rod along the axial direction.
  • Patent Document 1 after the molten metal is injected into the sleeve, when the plunger advances to a position where the pouring port is closed by the plunger tip, first, the first suction device passes through the hole in the vicinity of the pouring port from the tip in the sleeve. Also sucks the gas in the front space. At this time, the gas in the cavity is also sucked through the space in front of the sleeve. Next, when the plunger advances to a position where the hole in the vicinity of the pouring port is closed by the tip, the suction moves to the second suction device.
  • the second suction device sucks the closed space defined between the constricted portion of the plunger and the inner peripheral surface of the sleeve through the axial through-hole of the flange of the plunger rod, so that the second suction device is in front of the tip in the sleeve. Aspirate the space. After the suction by the second suction device is started, the suction in the cavity is started by the third suction device. According to the description of Patent Document 1, since the inside of the cavity is sucked through the sleeve by the first suction device, the degree of vacuum in the cavity is prevented from becoming higher than the degree of vacuum in the sleeve. Is suppressed.
  • “Melting metal melt” means, for example, that the outside air blows forward from the tip through the radial gap between the plunger and the sleeve from the rear end of the sleeve, and the molten metal bubbles and scatters or the molten metal surface vibrates violently. say.
  • an object of the present invention is to realize stable suction in the sleeve by preventing the inflow of outside air into the sucked sleeve and suppressing the rampage of the molten metal.
  • the present invention is an injection device that includes a sleeve to which molten metal is supplied and a plunger that can advance and retreat inside the sleeve, and injects the molten metal toward the cavity of the die casting machine by the plunger. Is retracted inward in the radial direction with respect to the inner peripheral portion of the sleeve, and a suction concave portion that is continuous in the circumferential direction is defined so that the space ahead of the front end of the chip and the inner side of the suction concave portion can be sucked.
  • the position of the plunger that is configured and is formed in the sleeve so that two or more suction ports that penetrate the sleeve from the inner side to the outer side and that can suck the inner side of the sleeve are aligned in the forward and backward direction of the plunger. Accordingly, at least one of the two or more suction ports selectively communicates with the space in front, and at least one of the two or more suction ports is selectively disposed in the suction recess. And wherein the communicating with. “Inside the suction recess” means a space defined between the tip and the sleeve.
  • the injection device is provided with a suction hole or path formed in a sleeve, a plunger tip or the like, and a vacuum suction system is provided for suction through the suction hole or path. Therefore, the inside of the sleeve is configured to be suckable.
  • the vacuum suction system includes, for example, piping, valves, a vacuum pump, a vacuum tank, and the like.
  • the two or more suction ports are arranged at predetermined intervals in the advancing / retreating direction, and the tip is positioned on the first large diameter portion located on the front side in the advancing / retreating direction and on the rear side in the advancing / retreating direction And a second large-diameter portion that divides a suction recess with the first large-diameter portion, the number of suction ports is n, the dimension of the suction port in the advancing / retreating direction is Ls2, and suction is adjacent in the advancing / retreating direction.
  • the dimension in the advancing / retreating direction of the suction recess is Lp0
  • the dimension in the advancing / retreating direction of the first large diameter part is Lp1
  • the dimension in the advancing / retreating direction of the second large diameter part is Lp2
  • Lp1 ⁇ n ⁇ Ls2 + (n ⁇ 1) ⁇ Ls3 is preferable.
  • Ls1 is a distance in the advancing and retracting direction from the pouring port of the sleeve to the suction port closest to the pouring port.
  • the injection device for a die casting machine of the present invention includes a sliding seal that is continuous in the circumferential direction along the outer peripheral portion of the tip of the plunger and slides on the inner peripheral portion of the sleeve as the plunger moves forward and backward. Is preferably located in a portion of the chip other than the suction recess.
  • a seal member that is disposed inside the sliding seal in the radial direction and seals a gap between the sliding seal and the chip.
  • the sliding seal is preferably configured using a metal material
  • the seal member is preferably configured using a rubber-based material
  • the injection device of the die casting machine of the present invention comprises two or more sliding seals arranged in the forward and backward direction of the plunger, and a sealing member is disposed between at least one sliding seal and the tip.
  • the sliding seal is formed in an annular shape including a discontinuous portion which is a discontinuous portion in a part in the circumferential direction, and the inner peripheral portion of the sleeve toward the radially outer side. It is preferable that the chip and the sleeve are mounted in a state of pressing, and the seal member is formed in an annular shape and is bent between the sliding seal and the chip to seal the gap.
  • the discontinuous portion of the sliding seal connects the first gap and the second gap that are shifted from each other in the circumferential direction and in the forward and backward direction of the plunger, and the first gap and the second gap.
  • the divided portion is preferably sealed from the inside in the radial direction by a seal member.
  • the injection device for a die casting machine of the present invention includes two or more sliding seals adjacent to each other in the plunger advance / retreat direction, and the discontinuous portions of the slide seals adjacent to each other in the plunger advance / retreat direction are shifted from each other in the circumferential direction.
  • the boundary between adjacent sliding seals is preferably sealed from the inside in the radial direction by a sealing member.
  • the injection device for a die casting machine includes two or more sliding seals arranged in the advance / retreat direction of the plunger, and the discontinuous portions of the slide seals adjacent in the advance / retreat direction of the plunger are separated from each other in the circumferential direction. It is preferable.
  • An injection device for a die casting machine includes a tip for suction between an outer peripheral portion of a first large-diameter portion located on the front side in the forward / backward direction and a rear side in the forward / backward direction and the first large-diameter portion.
  • a sealant supply device capable of supplying a sealant to the outer peripheral part of the second large-diameter part that divides the recess is provided, and the inner peripheral part of the sleeve, and the outer peripheral part of each of the first large-diameter part and the second large-diameter part It is preferable that the gap between the two is sealed with a sealant.
  • a collecting structure for collecting the molten metal mixed in the gas is provided in the course of the suction path through which the gas is sucked from the inside of the sleeve through the suction port.
  • a second section of the suction path that continues to the section connecting section at a position where the first section is surrounded by the section connecting section, and the first section and the second section are: It is preferable to communicate via the inside of a section connection part.
  • the first section extends downward toward the collecting portion, and the height of the outlet in the first section is equal to or lower than the height of the inlet in the second section. It is preferable.
  • the section connection portion includes a backflow prevention portion having a small opening cross-sectional area with respect to the collection portion.
  • the collection structure is provided with a collection port provided in the collection unit, through which the molten metal can pass, and a valve capable of opening and closing the collection port.
  • a collecting unit that is provided in the course of a suction path through which gas is sucked from the inside of the sleeve through the suction port, and that collects molten metal mixed in the gas, and at least one of the suction paths.
  • a cleaning section extending from the upstream side of the collecting section toward the collecting section, and the cleaning section has a curved shape from a plurality of pipes in which flanges are connected by a connecting member, It is preferable that the connecting member has a grip portion exposed outside the pipe and is detachable from the flange by the grip portion.
  • the cleaning section extends from the vicinity of the suction port to the vicinity of the collecting portion.
  • the connecting member includes a center ring disposed between the flanges, and a clamp that restrains the flanges against each other via the center ring. It is preferable to include two or more clamp bodies arranged around the flange, and a grip part capable of tightening or loosening the clamp body with respect to the flange.
  • the present invention also relates to a die casting machine having a suction path for vacuum suction of a space formed in communication from the internal space of the sleeve to the cavity of the mold, and a cavity suction port formed in the mold
  • a collecting structure for collecting the molten metal debris mixed in the gas is provided, and the collecting structure is connected to the suction path and receives the molten metal debris and
  • a first section of the suction path extending from the upstream side of the suction path toward the collection section, a section connection section that surrounds the first section from the outside and reaches the collection section beyond the first section, and a section connection section
  • a second section of the suction path that is continuous with the section connection portion at a position where the first section is surrounded by the first section, and the first section and the second section communicate with each other via the inside of the section connection section.
  • the present invention relates to a vacuum piping structure of a die casting machine for vacuum-sucking the space formed in communication from the internal space of the sleeve to the cavity of the mold, and suctioning the cavity formed in the mold Provided in the course of a suction path through which gas is sucked from the cavity through the mouth, and collecting part for collecting molten waste mixed in the gas, and at least part of the suction path, from the upstream side of the collecting part
  • a cleaning section extending toward the collecting portion, the cleaning section having a curved shape from a plurality of pipes that are connected to each other by a connecting member, and the connecting member is exposed to the outside of the pipe It has a portion and can be attached to and detached from the flange by a gripping portion.
  • the present invention is a casting method using an injection device that injects a molten metal toward a cavity of a die casting machine by a plunger that can be advanced and retracted inside a sleeve to which the molten metal is supplied inside.
  • a suction recess that is continuous in the circumferential direction
  • the sleeve penetrates the sleeve from the inner side to the outer side and can suck the inner side of the sleeve
  • Two or more suction ports are formed side by side in the advancing and retreating direction of the plunger, and for suction while reducing the space ahead of the front end of the tip by suction through at least one suction port communicating with the space ahead of the front end of the tip.
  • the inside of the suction recess is decompressed by suction through at least one suction port communicating with the inside of the recess.
  • the sliding is continued radially along the outer peripheral portion of the tip of the plunger and radially inside the sliding seal that slides on the inner peripheral portion of the sleeve as the plunger moves forward and backward.
  • the seal member sealing the gap between the dynamic seal and the tip, the sliding seal and seal member are attached to the plunger and the sleeve, and the front space and the inside of the suction recess are sucked. It is preferable to do.
  • a pressurized tank after the suction in the sleeve through the suction port is finished, and to blow air into the sleeve through the suction port.
  • the inflow of the outside air into the sucked sleeve is prevented and the molten metal is prevented from being disturbed. Suction can be realized.
  • the structure provided with the collection part of this invention inflow of the molten metal residue to a vacuum line can be suppressed, and a die-cast machine can be operated stably.
  • the vacuum piping structure that can be disassembled into a plurality of parts by hand using the grip portion, it is possible to contribute to improving the efficiency of the cleaning work for removing the molten metal debris.
  • a sliding seal and a seal member are attached to the plunger and the sleeve.
  • (B) is a sectional view taken along line IVb-IVb of (a).
  • (A) is a figure which shows typically the plunger simple substance shown to Fig.4 (a).
  • (B) is an enlarged view of the discontinuous part of the sliding seal shown to (a).
  • (C) is a figure which shows the example from which the position of the space
  • the illustration of the seal member is omitted. It is a perspective view which shows the sliding seal and seal member of the state removed from the plunger.
  • FIG. (A) is a cross-sectional view schematically showing a sleeve, a plunger, a sliding seal, and a seal member at a position corresponding to the line VIIa-VIIa in FIG.
  • (B) is an enlarged view of the VIIb part shown to (a).
  • (A)-(d) is a figure which shows the modification concerning a sliding seal
  • (A)-(e) is a figure for demonstrating the dimensional relationship of the advancing / retreating direction of the some suction opening provided in the sleeve, and each part of a plunger.
  • (A) is a partially broken side view which shows the principal part of the injection device of the die-casting machine which concerns on 2nd Embodiment of this invention.
  • (B) is a sectional view taken along line XIIIb-XIIIb of (a).
  • (A)-(c) is a figure which shows a series of steps of the sleeve vacuum suction by the die-casting machine shown in FIG. It is a figure explaining the injection apparatus provided with the sealing agent supply apparatus which concerns on one Embodiment of this invention.
  • FIG. (A) is a figure for demonstrating the effect
  • FIG. (B) is a figure which shows another example. It is a figure which shows the collection structure which concerns on the 1st modification of 3rd Embodiment. It is a longitudinal cross-sectional view which shows the collection structure which concerns on the 2nd modification of 3rd Embodiment. It is a figure which shows typically the collection structure of the molten metal waste concerning 4th Embodiment of this invention. It is a figure which shows typically a part (cleaning area) and collection part of the suction path which concerns on 5th Embodiment of this invention.
  • FIG. 1 is a schematic side view (partly including a sectional view) of a die casting machine 100 including an injection apparatus 1 according to an embodiment of the present invention.
  • the die casting machine 100 is directed to the movable platen 4 on which the movable mold 22 is installed, the fixed platen 5 on which the fixed mold 21 is installed, the machine base 8 that supports the movable platen 4 and the fixed platen 5, and the cavity 23.
  • the injection device 1 for injecting the molten metal 18 and the control device 3 for controlling the operation of each part of the die casting machine 100 are provided.
  • the die casting machine 100 evacuates the cavity 23 and the inside of the sleeve 11 of the injection device 1 in order to suppress the occurrence of a cast hole (entrapment nest) resulting from the entrainment of gas into the molten metal 18.
  • the die casting machine 100 is mainly characterized in that the injection device 1 has a structure capable of sufficiently suppressing the inflow of outside air into the sleeve 11 as will be described later in order to stably suck the inside of the sleeve 11. .
  • the movable platen 4 moves on the machine base 8 to the fixed platen 5 side by a mold opening / closing / clamping mechanism (not shown) such as a toggle link mechanism or a ball screw mechanism.
  • a mold opening / closing / clamping mechanism such as a toggle link mechanism or a ball screw mechanism.
  • the movable mold 22 and the fixed mold 21 are engaged and die clamped to form the cavity 23.
  • Four tie bars 7 are inserted through the insertion holes of the movable platen 4 and the fixed platen 5.
  • the movable platen 4 moves along the tie bar 7 so as to move forward and backward with respect to the fixed platen 5.
  • a cavity (product part) 23 is formed between them.
  • a cast 18 is manufactured by injecting and filling molten metal 18 such as aluminum or aluminum alloy into the cavity 23.
  • the fixed platen 5 is provided with an injection device 1.
  • the injection device 1 includes a sleeve 11 to which the molten metal 18 is supplied inside, and a plunger 12 that can move forward and backward with respect to the sleeve 11 inside the sleeve 11.
  • the injection device 1 injects the molten metal 18 toward the cavity 23 by the plunger 12.
  • the front of the plunger 12 in the movement direction when the molten metal 18 is injected that is, the side close to the cavity 23 is defined as “front”, and the side far from the cavity 23 is defined as “rear”. .
  • the plunger 12 generally includes a plunger rod 19 and a plunger tip 20 provided on the front side of the plunger rod 19.
  • the plunger tip 20 is also simply referred to as a tip 20.
  • the plunger rod 19 is also simply referred to as a rod 19.
  • the plunger rod 19 In order to drive the plunger 12 in the front-rear direction, the plunger rod 19 is provided with a hydraulic cylinder (not shown). The plunger rod 19 is connected to the piston rod of the hydraulic cylinder via a coupling (not shown). When the molten metal 18 is injected, the plunger 12 moves forward, and after the injection, it moves backward. The direction in which the plunger 12 moves forward and backward (front-rear direction) is defined as the “advance / retreat direction”.
  • the sleeve 11 is a cylindrical body that extends linearly. As shown in FIG. 4A, a tapered surface 11C whose diameter is increased rearward is formed on the rear end portion 11B of the sleeve 11 into which the plunger 12 is inserted. The axial direction of the sleeve 11 coincides with the forward / backward direction D1 of the plunger 12. As will be described later, the injection device 1 is configured to be able to suck the inside of the sleeve 11 by being provided with a vacuum suction system 2 (FIG. 2).
  • the sleeve 11 can store the molten metal 18 supplied from the pouring port 13 inside the sleeve 11.
  • a front end portion of the sleeve 11 passes through the fixed platen 5 and is fitted into a hole 10 provided in the fixed mold 21.
  • the rear end side of the sleeve 11 protrudes outside the fixed platen 5 and extends in the horizontal direction toward the rear.
  • a pouring port 13 into which the molten metal 18 is poured is provided on the rear end side of the sleeve 11.
  • a hot water storage chamber is formed including the inside of the sleeve 11 and the hole 10 of the fixed mold 21. This hot water storage chamber communicates with the cavity 23 via the runner 24 and the gate 25.
  • the control device 3 controls the drive of the hydraulic cylinder that moves the plunger 12 forward and backward while detecting the position of the plunger 12 in the forward / backward direction D1 with a sensor or the like.
  • the position of the plunger 12 is detected by detecting a mark provided on the piston rod corresponding to the stroke of the hydraulic cylinder with a non-contact sensor.
  • a switch lever provided on the plunger rod 19 and a plurality of fixed limit switches can be used.
  • the injection apparatus 1 is provided with a vacuum suction system 2 that sucks the inside of the sleeve 11.
  • the vacuum suction system 2 decompresses the inside of the sleeve 11 by suction using the vacuum pump 37 and the vacuum tank 36.
  • a specific configuration of the vacuum suction system 2 will be described later.
  • a plurality of suction ports 14 to 17 (four in this case) penetrating from the inside to the outside of the sleeve 11 are provided so that the gas inside the sleeve 11 can be sucked by the vacuum suction system 2.
  • These suction ports 14 to 17 are formed in the upper portion of the sleeve 11 so as to be positioned above the surface 18A (FIG. 4A) of the molten metal 18 supplied to the inside of the sleeve 11.
  • Providing the suction ports 14 to 17 penetrating the peripheral wall of the sleeve 11 in the thickness direction has a restriction on the opening area as compared with the case where the plunger tip 20 is opened in the axial direction for vacuum suction in the sleeve 11. small. Therefore, according to the suction ports 14 to 17, a large opening area can be secured. In the latter case, a narrow and long path is formed in the sleeve 11 which includes a hole formed in the plunger tip 20 in the axial direction and an axial hole of the rod 19 connected to the hole or a pipe along the rod 19.
  • a plurality of suction ports 14 to 17 are preferably used for vacuum suction.
  • suction from the front space 75 it is sufficient to have one suction port on the front end side of the sleeve 11.
  • the suction recess 120 is sequentially communicated with the plurality of suction ports 14 to 17 when the plunger 12 moves forward, so that both the front space 75 and the inside of the suction recess 120 are provided. Therefore, the runaway of the molten metal 18 due to the inflow of outside air into the front space 75 can be suppressed.
  • the plurality of suction ports 14 to 17 distributed in the advancing / retreating direction D1 after starting the vacuum suction in the sleeve 11, until the end of the vacuum suction in the sleeve 11,
  • the front space 75 can be sucked through the at least one suction port, and the inside of the suction recess 120 can be sucked through the at least one suction port.
  • the sleeve 11 has only one suction port, or only one suction port among a plurality of suction ports is used.
  • the number of suction ports can be set to an appropriate number in consideration of the length of the sleeve 11, the dimension of the suction port, the length of the plunger tip 20, and the like.
  • a single suction port that is long in the axial direction or circumferential direction may be formed in the sleeve 11, and a vacuum suction line may be connected to the suction port.
  • a suction pipe having a circular cross section is connected to a circular suction port.
  • the path used for sucking the inside of the sleeve 11 is not limited to a hole penetrating the peripheral wall of the sleeve 11 such as the suction ports 14 to 17, and the path between the outer peripheral portion of the plunger 12 and the inner peripheral portion of the sleeve 11. It may be a gap between them, or may be a hole formed in the plunger tip 20 in the axial direction.
  • the suction ports 14 to 17 penetrate the peripheral wall of the sleeve 11 in the thickness direction. These suction ports 14 to 17 are arranged at intervals in the forward / backward direction D1 of the plunger 12, and are arranged in the order of the suction ports 14, 15, 16, and 17 from the rear side to the front side of the sleeve 11. .
  • these suction ports 14 to 17 may be referred to as a first suction port 14, a second suction port 15, a third suction port 16, and a fourth suction port 17, respectively.
  • the first suction port 14 is located most rearward, and the fourth suction port 17 is located most forward.
  • the vacuum suction system 2 depressurizes the inside of the sleeve 11 to a predetermined degree of vacuum by removing the gas in the sleeve 11 through the suction ports 14 to 17. Since the inside of the sleeve 11 is depressurized by the vacuum suction system 2, the cavity 23 is also sucked through the sleeve 11, so that the vacuum suction system 2 can decompress the inside of the sleeve 11 and the cavity 23.
  • the die casting machine 100 typically includes another vacuum suction system (not shown) that directly depressurizes the cavity 23 through a suction path provided in the mold.
  • a vacuum suction system includes, for example, air or the like from the cavity 23 through one or more connection ports 28 provided in a chill vent 27 (Chill-Vent) provided at the boundary between the fixed mold 21 and the movable mold 22.
  • the gas is directly aspirated.
  • the sucked gas can include molten metal, mold release agent vapor, and the like.
  • the chill vent 27 formed of a metal material having a high thermal conductivity is exhausted from the cavity 23 through the connection port 28, that is, degassing facilitates filling of the molten metal 18 into the cavity 23 and cools the molten metal 18.
  • the chill vent 27 is divided into a block installed on the fixed mold 21 and a block installed on the movable mold 22.
  • a vacuum valve (not shown) may be installed at the boundary between the fixed mold 21 and the movable mold 22. In that case, gas can be directly sucked from the cavity 23 through the vacuum valve.
  • the control device 3 suctions the inside of the sleeve 11 and the cavity 23 by each system by opening and closing various valves provided in the vacuum suction system of the die casting machine 100 including the vacuum suction system 2 at an appropriate timing.
  • the state can be controlled.
  • the suction ports 14 to 17 as a whole are all of the suction openings provided to a vacuum suction system (not shown) provided in the mold.
  • An opening area larger than the area can be given to the vacuum suction system 2. Therefore, an effect of preventing a precipitating molten metal due to evacuation can be expected.
  • the start of suction by the vacuum suction system 2 using the suction ports 14 to 17 of the sleeve 11 is also prevented to prevent the hot water. can do. By preventing the hot water, it can contribute to the reduction of defects such as chipping, peeling, and stripping for shot blast.
  • FIGS. 3A to 3D are diagrams for explaining an example from the hot water supply process to the injection filling process. 3A to 3D, the illustration of the vacuum suction system 2 connected to the suction ports 14 to 17 is omitted.
  • the molten metal 18 is supplied in the sleeve 11 by inject
  • the molten metal 18 is ejected by pushing the molten metal 18 in the sleeve 11 to the outside of the sleeve 11 by the tip 20 of the plunger 12 moving forward, as shown in FIG. Then, the molten metal 18 is filled into the cavity 23 through the runner 24 and the gate 25 (injection filling process).
  • the speed at which the plunger 12 moves forward is variably controlled by giving a control command to the hydraulic cylinder that drives the plunger 12.
  • the advance speed of the plunger 12 is kept low until a predetermined time after the plunger 12 starts to advance, and increases thereafter. Specifically, in the process from when the plunger 12 starts to advance at the standby position near the rear end of the sleeve 11 to when it moves to the operating position near the front end of the sleeve 11, the plunger 12 is pushed out from the start of advancement of the plunger 12.
  • the time until the molten metal 18 reaches the gate 25 via the runner 24 corresponds to the low speed region. Thereafter, the time until the cavity 23 is filled with the molten metal 18 corresponds to the high speed region.
  • the control of the forward speed of the plunger 12 is not limited to the above.
  • the forward speed may be increased stepwise such as low speed, medium speed, and high speed.
  • the forward movement of the plunger 12 is controlled at the timing when the cavity 23 is filled with the molten metal 18 (speed / pressure switching point / VP (Velocity Pressure) switching point) from the above speed control to the pressure of the molten metal 18 in the cavity 23. It is switched to pressure control based on (holding pressure control / pressure increasing control). Thereafter, when the molten metal 18 in the cavity 23 is cooled and sufficiently solidified with the holding pressure (increased pressure) applied by the plunger 12, the molds 21 and 22 are opened by the movement of the movable platen 4. When the molds 21 and 22 are opened, the products are pushed out by driving the plurality of push pins 42 attached to the extrusion plate 41 (FIG. 1), so that the products can be taken out from the molds 21 and 22.
  • the vacuum suction system 2 includes a vacuum pump 37, a vacuum tank 36, a merging / distributing unit 34, and suction paths 51 that individually correspond to the suction ports 14 to 17 of the sleeve 11.
  • Each suction path 51 includes a vacuum filter 31 for evacuation, a pressure gauge for detecting the pressure in the suction path 51, a compound gauge, A pressure detection unit 32 such as a sensor and a selection valve 33 for selectively connecting the suction ports 14 to 17 to the vacuum tank 36 are provided in this order.
  • each of the suction ports 14 to 17 can be communicated with the vacuum tank 36 in a timely manner. Further, depending on the filling rate of the molten metal into the sleeve 11 or the like, all or some of the suction ports can be communicated with the vacuum tank 36.
  • the vacuum filter 31 suppresses entry of fine droplets of molten metal, solidified pieces, or foreign matters such as dust, which can be mixed into the sucked gas, into the suction path 51.
  • the various vacuum filters 31 can be appropriately selected. For example, a punching metal, a mesh-like or brush-like metal member or the like can be employed for the vacuum filter 31.
  • a collector that collects molten waste can also be installed.
  • the inside of the vacuum tank 36 is depressurized by evacuation performed by operating the vacuum pump 37.
  • the gas in the sleeve 11 can be intermittently sucked into the vacuum tank 36 at appropriate times due to a pressure difference with the vacuum tank 36 while the vacuum pump 37 is continuously operated.
  • the suction ports 14 to 17 are preferably selectively communicated with the vacuum tank 36 in accordance with the position of the plunger 12 in the forward / backward direction D1, the state of suction from the suction ports 14 to 17, and the like. Based on the pressure in the suction path 51 detected by the pressure detector 32, the predetermined selection valve 33 can be opened and closed.
  • the control device 3 controls the selection valve 33 based on the pressure detection signal from the pressure detection unit 32.
  • a control command can be sent to control the opening and closing of the selection valve 33.
  • the pressure detection unit 32 it is preferable to monitor the pressure (degree of vacuum) in the suction path 51 detected by the pressure detection unit 32 to confirm that vacuuming is normally performed. If the detected pressure deviates from the normal range, the abnormality can be notified by sound or light. For example, if some of the suction ports and the suction path 51 are blocked due to the molten metal, or if the opening is narrowed due to the accumulation of molten metal or the vacuum filter 31 is clogged until it is not blocked. The pressure detected by the pressure detector 32 deviates from the normal range to the higher side. In this case, it is preferable to clean the suction port or the suction path 51 in which an abnormality has occurred, clean the vacuum filter 31, or replace it.
  • the selection valve 33 corresponding to the suction port or the suction path 51 that is clogged or tends to be clogged by a preliminary test or the like is closed based on the detected pressure. Even if the use of the suction port and the suction path 51 is stopped or the use is not completely stopped, the use restriction such as the intermittent use is imposed on the suction port or the suction path 51. Good. In that case, the inside of the sleeve 11 can be evacuated efficiently by using only the remaining suction ports and the suction path 51. Therefore, it is possible to increase the degree of vacuum in the sleeve 11 by continuously sucking while suppressing the progress of clogging and preventing a reduction in suction efficiency.
  • the selection valve 33 is not only closed when the detected pressure deviates or when it is desired to suppress clogging, but is also opened and closed according to the position of the plunger 12 in the forward / backward direction D1, as will be described later. Can be controlled. Further, by selecting use / nonuse of the suction ports 14 to 17 by the selection valve 33 so as to suit the mold or product, the same sleeve 11 can cope with various manufacturing conditions. Since it is not necessary to prepare the sleeve 11 for each manufacturing condition, it is economical.
  • a pressurized air supply system 9 (FIG. 2) that performs air blow includes a compressed air source 39 that is a supply source of pressurized air, and a pressurized tank 38 that stores pressure by being supplied with air by the compressed air source 39. It has.
  • the vacuum suction system 2 and the pressurized air supply system 9 of the present embodiment are configured to include a vacuum / air blow switching valve 35 installed downstream of the merging / distributing unit 34 (downstream during vacuum suction).
  • the vacuum / air blow switching valve 35 switches between the vacuum suction and the air blow by switching the connection destination of the confluence / distribution unit 34 to the vacuum suction pipe 55 and the air blow pipe 56.
  • the suction path 51 upstream from the merging / distributing unit 34 (upstream during vacuum suction) is common during evacuation and air blow. Therefore, the air blow and the evacuation can be continuously performed without interrupting the production of the cast product by changing the piping to the suction ports 14 to 17.
  • the pressure detector 32 can detect not only the pressure at the time of evacuation but also the pressure at the time of air blowing.
  • the pressure detected during evacuation is lower than atmospheric pressure.
  • the pressure detected during air blow is higher than atmospheric pressure.
  • Air blows can also be focused on. Even during air blow, it is preferable to monitor the pressure in the suction path 51 by the pressure detector 32. Then, if the detected pressure is out of the normal range at the time of air blow, the air blow is continued, and if it is within the normal range, the air blow is terminated. Further, when the detected pressure is excessive with respect to the threshold value at the time of air blow, it can be notified by sound or light.
  • the air blowing through the suction ports 14 to 17 is performed in a state where the molten metal 18 is not stored in the sleeve 11, avoiding immediately before the hot water supply, so that the molten metal 18 is not disturbed by the air blow or the hot water supply is disturbed. it can.
  • FIG. 3D at the timing when the cavity 23 is filled with the molten metal 18 (speed / pressure switching point / VP (Velocity Pressure) switching point), air blow is performed on any of the suction ports 14 to 17. It is preferable to implement.
  • the plunger 12 is then retracted and returned to the original position as shown in FIG. This is because the molten metal residue can be reliably scraped out of the sleeve 11 mechanically by the rear end 20B of the chip 20. That is, the next injection cycle can be started with no molten metal in the sleeve 11.
  • the sleeve The air may be ejected to the small diameter portion 203 (FIG. 15) of the chip 20 through a pipe (not shown) provided in the vicinity of the rear end portion of the eleventh.
  • the inside of the sleeve 11 sucked by the vacuum suction system 2 (FIG. 2) is a negative pressure with respect to the atmospheric pressure. Therefore, based on the pressure difference between the outside air that is the atmosphere outside the sleeve 11 and the gas inside the sleeve 11, the outside air in the space 88 around the plunger rod 19 at the rear end of the sleeve 11 causes the plunger tip 20, the sleeve 11, and If the molten metal 18 in the sleeve 11 flows into the space 75 in which the molten metal 18 is stored through the gap between the molten metal 18, the molten metal 18 bubbles and scatters, or the molten metal surface 18 ⁇ / b> A shakes violently.
  • the suction ports 14 to 17 and the suction due to the molten metal are prevented by preventing the outside air from flowing into the space 75 in which the molten metal 18 in the sucked sleeve 11 is stored and suppressing the ramp of the molten metal 18.
  • the inside of the sleeve 11 is stably sucked while avoiding clogging of the path 51 and a decrease in suction efficiency.
  • production of an entrapment nest can be prevented.
  • the injection apparatus 1 includes only the sliding seal 70 of the sliding seal 70 and the seal member 79.
  • the injection device 1 includes the sliding seal 70 or includes the sliding seal 70 and the seal member 79, it is not always necessary to use a sealant.
  • the plunger 12 includes the plunger rod 19 and the plunger tip 20 provided on the front side thereof.
  • the radial direction of the plunger 12 and the sleeve 11 is referred to as a radial direction D2.
  • the radial direction D2 is orthogonal to the advance / retreat direction D1.
  • the circumferential direction of the plunger 12 and the sleeve 11 is referred to as a circumferential direction D3.
  • the circumferential direction of the cross section of the plunger 12 shown in FIG. 4B corresponds to the circumferential direction D3.
  • the plunger rod 19 is joined to the plunger tip 20 by a tip joint 20D.
  • a male screw (not shown) provided on the rear end side of the chip joint 20 ⁇ / b> D is fastened to the female screw portion of the rod 19.
  • a male screw (not shown) provided on the front end side of the chip joint 20 ⁇ / b> D is fastened to the female screw portion of the chip 20.
  • On the outer peripheral portion 203A of the small-diameter portion 203 of the chip 20, a two-sided width 203B (FIG. 4B) that engages with a fastening tool is formed.
  • the plunger tip 20 has a larger diameter than the plunger rod 19 and pushes the molten metal 18 stored in the sleeve 11 forward when the plunger 12 moves forward.
  • a mechanism (not shown) for circulating a cooling medium such as water is provided inside the plunger tip 20.
  • the plunger tip 20 is cooled by a cooling medium flowing through a flow path (not shown) formed inside the plunger tip 20.
  • the plunger tip 20 has an outer diameter corresponding to the inner diameter of the sleeve 11, and slides on the inner peripheral portion 11 ⁇ / b> A of the sleeve 11 as the plunger 12 advances and retreats. At this time, specifically, the sliding seal 70 provided on the plunger tip 20 slides on the inner peripheral portion 11 ⁇ / b> A of the sleeve 11. If the plunger tip 20 is worn out after long-term use of the injection device 1, the worn plunger tip 20 can be replaced with a new one. In the present embodiment, the rod 19 does not slide on the inner peripheral portion 11 ⁇ / b> A of the sleeve 11. Therefore, even if the plunger tip 20 is replaced, the rod 19 can be used continuously, which is economical.
  • the plunger tip 20 is located between the first large diameter portion 201 located on the front side in the advance / retreat direction D ⁇ b> 1 and the rear side in the advance / retreat direction D ⁇ b> 1. And a second large-diameter portion 202 that partitions the suction recess 120.
  • the diameter of the plunger tip 20 at the position of the suction recess 120 is smaller than the diameters of the first large diameter portion 201 and the second large diameter portion 202. Therefore, a section between the first large diameter portion 201 and the second large diameter portion 202 in the axial direction (D1) of the plunger tip 20 is referred to as a small diameter portion 203.
  • the plunger tip 20 can be divided into a plurality of members as appropriate.
  • the diameter of the first large diameter portion 201 and the diameter of the second large diameter portion 202 can be determined to be the same, but are not limited thereto.
  • the diameter of the first large-diameter portion 201 and the diameter of the second large-diameter portion 202 are slightly different, and the inner peripheral portion 11A of the sleeve 11, the outer peripheral portion of the first large-diameter portion 201, and the outer periphery of the second large-diameter portion 202 Different clearances may be set between each part.
  • the suction recess 120 is retracted inward in the radial direction D2 with respect to the inner peripheral portion 11A of the sleeve 11, and is continuous in the circumferential direction D3. Since the suction recess 120 is continuous over the entire circumference of the plunger tip 20, between the inner peripheral portion 11A of the sleeve 11 and the outer peripheral portion 203A of the small diameter portion 203 corresponding to the suction recess 120, A void having an annular cross section is formed.
  • the injection device 1 is mainly characterized in that the plunger tip 20 includes a sliding seal 70 and a seal member 79, as shown in FIGS. 4 (a), 4 (b), and 5 (a).
  • the plunger tip 20 includes a sliding seal 70 and a seal member 79, as shown in FIGS. 4 (a), 4 (b), and 5 (a).
  • the injection device 1 of the present embodiment includes two sliding seals 70 arranged in the advance / retreat direction D1, and two seal members 79 arranged in the advance / retreat direction D1.
  • the number of sliding seals 70 may be 1 or 3 or more.
  • the number of seal members 79 is the same.
  • both the two sliding seals 70 and the two seal members 79 are provided in the second large diameter portion 202 behind the suction recess 120.
  • the sliding seal 70 and the seal member 79 can be provided on one or both of the first large diameter portion 201 and the second large diameter portion 202.
  • the sliding seal 70 (FIGS. 4A, 4 ⁇ / b> B, and 5 ⁇ / b> A) is continuous in the circumferential direction D ⁇ b> 3 along the outer peripheral portion of the second large diameter portion 202 of the plunger tip 20.
  • the sliding seal 70 is formed in an annular shape including a discontinuous portion 71 that is a discontinuous portion in a part of the circumferential direction D3.
  • the sliding seal 70 is a member formed in a substantially annular ring shape.
  • the sliding seal 70 shown in FIG. 6 is outside the sleeve 11 and is not subjected to external force.
  • the outer diameter of the sliding seal 70 in an unloaded state is larger than the inner diameter of the sleeve 11.
  • this sliding seal 70 is provided around the second large diameter portion 202 of the plunger tip 20 and inserted into the sleeve 11 as shown in FIGS. 4A and 4B, the sliding seal 70 is The gap 71 of the discontinuous portion 71 is narrowed and elastically deformed so that the diameter of the sliding seal 70 is reduced.
  • the sliding seal 70 presses the inner peripheral portion 11A of the sleeve 11 toward the outside in the radial direction D2 by elastic force.
  • the elastic force of the sliding seal 70 seals between the outer peripheral portion 70B of the sliding seal 70 and the inner peripheral portion 11A of the sleeve 11.
  • the sliding seal 70 is made of a metal material such as carbon tool steel, hot tool steel (JIS440G4404 SKD61), copper alloy (for example, beryllium copper) having heat resistance and wear resistance required when the injection apparatus 1 is used. Configured.
  • the sliding seal 70 can be manufactured, for example, by cutting out the above metal material block. Alternatively, by performing a process such as punching from a plate material using the above-described metal material, a member in a form in which the sliding seal 70 is developed in a plate shape is obtained, and the member is bent to obtain a circle. An annularly shaped sliding seal 70 can be obtained.
  • the diameter, thickness (diameter D2 dimension), width (advancing / retracting dimension D1) of the sliding seal 70, and the dimension of the gap of the discontinuous portion 71 take into account the elasticity and rigidity necessary for sealing. It can be determined as appropriate.
  • the diameters of the plurality of sliding seals 70 are typically the same. However, this is not the case when the dimension of the gap between the mounting position of each sliding seal 70 on the plunger tip 20 and the inner peripheral portion 11A of the sleeve 11 is different.
  • the sliding seal 70 can be provided on the plunger tip 20 by an appropriate method.
  • the sliding seal 70 is provided on the plunger tip 20 using an annular seal holding member 72 that holds the sliding seal 70 on the second large diameter portion 202.
  • the seal holding member 72 is fixed to the plunger chip 20 so as to support the sliding seal 70 from the rear side.
  • the seal holding member 72 can be made of a metal material similar to the metal material that can be used for the sliding seal 70.
  • the seal holding member 72 may be an annular member that is continuous over the entire circumference, or may be composed of a plurality of members that are divided in the circumferential direction D3.
  • the seal holding member 72 can have an appropriate diameter so that the sliding seal 70 can be held.
  • a predetermined clearance can be provided between the outer peripheral portion 72 ⁇ / b> A of the seal holding member 72 and the inner peripheral portion 11 ⁇ / b> A of the sleeve 11. Reducing this clearance contributes to suppressing the outside air inflow into the front space 75. Note that the seal holding member 72 is allowed to contact the inner peripheral portion 11 ⁇ / b> A of the sleeve 11.
  • the sliding seal 70 is supported in a state of being sandwiched by members from both sides in the axial direction (D1).
  • the right sliding seal 70 is sandwiched between two seal holding members 72, and the left sliding seal 70 is attached to the seal holding member 72 and the front end of the second large diameter portion 202. It is sandwiched between the part 202A. Therefore, the position of the sliding seal 70 in the axial direction is restricted when the plunger 12 moves back and forth.
  • the discontinuous portion 71 has a first gap 711, a second gap 712, a first gap 711, and a first gap as shown in FIGS. It is preferable to include a dividing portion 715 that connects the two gaps 712.
  • the first gap 711 and the second gap 712 are shifted from each other in the circumferential direction D3 and are also shifted from each other in the forward / backward direction D1.
  • the sliding seal 70 is divided by the first gap 711, the second gap 712, and the dividing portion 715 so as to be separable into one end portion 701 and the other end portion 702 over the entire width direction (D1).
  • gap 712 may be arrange
  • the positions of the first gap 711 and the second gap 712 in the circumferential direction D3 are interchanged between FIG. 5B and FIG. 5C.
  • description will be given based on the example shown in FIG.
  • the one end portion 701 and the other end portion 702 of the sliding seal 70 are opposed to each other in the circumferential direction D3 with the first gap 711 and the second gap 712 interposed therebetween. Both the one end portion 701 and the other end portion 702 are formed in a bowl shape. On the front side of the one end portion 701, a front convex portion 701A that protrudes toward the other end portion 702 is formed. On the rear side of the other end portion 702, a rear convex portion 702A that protrudes toward the one end portion 701 is formed.
  • the one end portion 701 and the other end portion 702 of the sliding seal 70 do not necessarily have to be formed in a bowl shape, and may simply be formed linearly along the axial direction (D1). .
  • a configuration example (FIGS. 13A and 13B) suitable when the one end 701 and the other end 702 are formed linearly will be described later.
  • the first gap 711 is adjacent to the front side of the rear convex portion 702A and is partitioned between the front end of the front convex portion 701A and the other end portion 702.
  • the second gap 712 is adjacent to the rear side of the front convex portion 701A and is partitioned between the tip of the rear convex portion 702A and the one end portion 701.
  • the dividing portion 715 includes an edge of a region (702A) adjacent to the rear side of the first gap 711 and an edge of a region (701A) adjacent to the front side of the second gap 712.
  • the dividing portion 715 is formed along the front end surface 702B of the rear convex portion 702A and the rear end surface 701B of the front convex portion 701A.
  • the front convex portion 701A of the one end portion 701 and the rear convex portion 702A of the other end portion 702 are protruded by the end surfaces 701B and 702B on the inner side in the width direction (D1) while leaving the first gap 711 and the second gap 712. Arranged to be hit. It is preferable that there is no gap between the end surface 701B and the end surface 702B.
  • the length in the circumferential direction D3 of the front convex portion 701A and the rear convex portion 702A and the dimension in the circumferential direction D3 of the first and second gaps 711 and 712 are the sleeve 11 and the sliding seal 70 when the injection apparatus 1 is used. Even if the dimensions of the first and second gaps 711 and 712 are increased due to the thermal expansion, it is preferably determined appropriately so that the end faces 701B and 702B are maintained in contact with each other.
  • the division part 715 of this embodiment extends along the direction orthogonal to the width direction (D1) with respect to the center in the width direction of the sliding seal 70.
  • the dividing portion 715 may be shifted forward or backward from the center of the sliding seal 70 in the width direction.
  • the discontinuous portions 71 of the two sliding seals 70 are arranged in the circumferential direction D3 as shown in FIG. 4A and FIG. Preferably they are separated from each other. If the positions of the discontinuous portions 71 in the circumferential direction D3 are different, unlike the case where the discontinuous portions 71 are the same, the outside air cannot go straight between the discontinuous portions 71 and 71, and thus the resistance given to the outside air is large. is there. In the present embodiment, the discontinuous portions 71 of the two sliding seals 70 are separated from each other by 180 °.
  • the relative rotation of the two sliding seals 70 is restricted using a pin or the like so that the relative positional relationship between the discontinuous portions 71 of the two sliding seals 70 is maintained.
  • a seal holding member 72 positioned between the two sliding seals 70 can be used. In this case, even if the two sliding seals 70 and the seal holding member 72 are integrally rotated around the axis, the relative positional relationship between the discontinuous portions 71 of the two sliding seals 70 is not changed, and the discontinuous portions 71 are not changed. Can be maintained 180 ° shifted.
  • the seal member 79 (FIGS. 4A, 5A, and 6) is disposed inside the sliding seal 70 in the radial direction D2.
  • the seal member 79 is a so-called O-ring configured with a continuous annular shape using a rubber-based material.
  • the seal member 79 bends in the radial direction D2 between the sliding seal 70 and the second large diameter portion 202 of the plunger tip 20, and as shown in FIGS. 4B, 7A, and 7B.
  • the gap Gp between them is sealed.
  • the seal member 79 seals the gap Gp by being pressed by the inner peripheral portion 70A of the sliding seal 70 and the outer peripheral portion 20C of the second large diameter portion 202 by the elastic force in the radial direction D2.
  • the sealing member 79 has a sufficiently small elastic modulus as compared with the sliding seal 70. Therefore, even if the gap Gp expands due to the thermal expansion of the sleeve 11 and the sliding seal 70, a sufficient elastic deformation amount can be secured in the seal member 79 to close the gap Gp.
  • the sleeve 11 is typically configured using hot mold steel.
  • the seal member 79 Since the seal member 79 is not in direct contact with the inner peripheral portion 11A of the sleeve 11, the influence of frictional heat associated with the advancement and retraction of the plunger 12 is small, and further, the seal member 79 is located on the inner side in the radial direction D2 as compared with the sliding seal 70. Therefore, it is close to the inside of the plunger tip 20 that is typically water-cooled. Therefore, the heat resistance required for the seal member 79 is lower than that of the sliding seal 70. Therefore, a rubber-based material generally having a low heat resistance compared to a metal material can be used for the seal member 79.
  • the sliding seal 70 and the seal member 79 are formed on the second large diameter portion 202 of the chip 20 from the viewpoint of heat resistance. Is preferably provided.
  • the seal member 79 is made of, for example, an appropriate rubber system such as fluorine rubber, silicone rubber, chloroprene rubber, nitrile rubber, and acrylic rubber. Materials and resin materials such as polytetrafluoroethylene (PTFE) and polyamide (PA) can be used.
  • PTFE polytetrafluoroethylene
  • PA polyamide
  • fluororubber having a heat resistant temperature of about 200 ° C. is used.
  • the seal member 79 has dimensions such as an outer diameter, an inner diameter, and a cross-sectional diameter so that when the gap Gp is maximized, the seal member 79 maintains the sealed state of the gap Gp while reducing the amount of elastic deformation. Can be determined as appropriate.
  • the seal member 79 is held inside a seal holding groove 202 ⁇ / b> C that is recessed from the outer peripheral surface 202 ⁇ / b> B of the second large diameter portion 202.
  • the seal holding groove 202C is formed in an annular shape over the entire circumference of the second large diameter portion 202 along the circumferential direction D3. Since the seal member 79 is held in the seal holding groove 202C, displacement in the forward / backward direction D1 is restricted.
  • a sliding seal 70 is disposed around the seal member 79 held in the seal holding groove 202C.
  • the seal member 79 has a position (width direction) of the dividing portion 715 in the width direction (D1) of the sliding seal 70 so as to seal the dividing portion 715 in the discontinuous portion 71 of the sliding seal 70 from the inside in the radial direction D2. It is preferable to arrange in the center).
  • the outer end 79A having the largest diameter in the seal member 79 is abutted against and closely contacted with the divided portion 715 and the vicinity thereof along the circumferential direction D3 in which the divided portion 715 extends. doing.
  • the plunger 12 (FIG. 5 (a)) is manufactured by assembling the plunger tip 20 to which the seal member 79 and the sliding seal 70 are attached and the plunger rod 19.
  • the seal member 79 and the sliding seal 70 are attached to the plunger tip 20
  • the seal member 79 is held around the seal member 79 in a state where the seal member 79 is held in the seal holding groove 202 ⁇ / b> C of the second large diameter portion 202 of the plunger tip 20.
  • the sliding seal 70 and the seal holding member 72 are inserted in a predetermined order in the axial direction from the rear end side of the second large diameter portion 202.
  • the plunger 12 is inserted into the sleeve 11.
  • the sliding seal 70 is guided by the guiding tapered surface 11C (FIG. 4 (a)) formed at the rear end portion 11B of the sleeve 11, and in the radial direction D2.
  • the diameter of the sliding seal 70 is reduced by elastically deforming inward.
  • the seal member 79 is pressed between the inner peripheral portion 70A of the sliding seal 70 and the outer peripheral portion 20C of the plunger tip 20, and elastically deforms in the radial direction D2.
  • the sliding seal 70 presses the inner peripheral portion 11 ⁇ / b> A of the sleeve 11 in the radial direction D ⁇ b> 2, and the sliding seal 70.
  • the seal member 79 presses the inner peripheral portion 70 ⁇ / b> A and the outer peripheral portion 20 ⁇ / b> C of the plunger tip 20. For this reason, the gap between the inner peripheral portion 11A of the sleeve 11 and the outer peripheral portion 20C of the plunger tip 20 is sealed.
  • the injection device 1 is manufactured through the step of attaching the sliding seal 70 and the seal member 79 to the plunger 12 and the sleeve 11 in the above state.
  • the injection device 1 is not limited to a newly manufactured device, and may be obtained by a modification in which a sliding seal 70 and a seal member 79 are provided to an existing injection device. Even when the existing machine is refurbished, the injection device 1 including the sliding seal 70 and the seal member 79 is passed through the step of attaching the sliding seal 70 and the seal member 79 to the plunger 12 and the sleeve 11 as described above. Can be manufactured.
  • the sleeve 11 and the sliding seal 70 are thermally expanded by the heat of the molten metal 18 and the diameter is expanded.
  • the diameter of the sliding seal 70 increases following the sleeve 11 due to thermal expansion and elastic force outward in the radial direction D2.
  • the diameter of the seal member 79 also increases due to thermal expansion.
  • the plunger tip 20 is typically water-cooled, and heat is radiated from the rod 19 to the outside air when the plunger 12 is retracted with respect to the sleeve 11. Therefore, although the diameter of the plunger tip 20 is also expanded by thermal expansion, the amount of deformation due to the thermal expansion of the plunger tip 20 is small compared to the sleeve 11 and the sliding seal 70 and the like.
  • the end surface 701B of the front convex portion 701A and the end surface 702B of the rear convex portion 702A that constitute the dividing portion 715 are abutted with no gap, so that the rear of the front convex portion 701A. It is possible to prevent the outside air that has collided with the end surface 701B (wall) from flowing into the first gap 711 through the space between the end surfaces 701B and 702B which are the divided portions 715.
  • the dividing portion 715 is sealed from the inner side in the radial direction D2 by the seal member 79, the outside air that has flowed into the second gap 712 flows into the first gap 711 through the inner side in the radial direction D2. Can also be avoided.
  • the discontinuous portions 71 of the upstream sliding seal 70 and the downstream sliding seal 70 are separated in the circumferential direction D3, the outside air that has passed through the discontinuous portion 71 of the upstream sliding seal 70 is It does not go straight to the discontinuous portion 71 of the downstream sliding seal 70. Also in this respect, the effect of shielding the flow of outside air is improved.
  • the product between the outer peripheral portion 20C of the plunger tip 20 and the inner peripheral portion 11A of the sleeve 11 is continuously produced by casting. Both the outer side and the inner side in the radial direction D2 in the gap are sealed. Therefore, even if a pressure difference is generated between the inside of the sleeve 11 to be vented and the outside air, the outside air can be prevented from flowing in front of the sliding seal 70 and the seal member 79.
  • the melt 18 is prevented from being violated, the inside of the sleeve 11 is decompressed to a desired degree of vacuum while avoiding blockage of the suction ports 14 to 17 and the suction path 51 and a decrease in suction efficiency due to the molten metal debris. Can prevent the occurrence of entrapment.
  • the sliding seal 70 and the seal member 79 can improve the airtightness in the sleeve 11 and suppress the runaway of the molten metal 18. Therefore, it is not necessary to use an expensive plunger tip dedicated to high vacuum die casting in the injection apparatus 1 in order to improve the airtightness in the sleeve 11. Further, since the gap that changes in the radial direction D2 due to the thermal expansion of the sleeve 11 or the like is maintained by the sliding seal 70 and the seal member 79, the thermal expansion coefficient of the ceramic material, cermet, or the like is increased. There is no need to employ an expensive sleeve 11 made of a small material.
  • the sleeve 11 avoids the suction path being blocked and the suction efficiency is lowered. Stable suction can be realized.
  • the injection device 1 shown in FIG. 8A includes one sliding seal 70 and one seal member 79.
  • the injection device 1 illustrated in FIG. 8B includes three sliding seals 70 and two seal members 79.
  • the sealing members 79 do not necessarily have to be arranged inside the radial direction D2 of the sliding seal 70 for all the sliding seals 70.
  • the seal member 79 is allowed to be disposed only on the sliding seal 70 that needs to be sealed inside the radial direction D2.
  • the sliding seals 70 and the sealing members 79 do not necessarily have to be the same number.
  • the discontinuous portions 71 of the adjacent sliding seals 70 are preferably separated from each other in the circumferential direction D3 as shown in FIG. 8 (b). This is to prevent outside air from blowing through the discontinuous portion 71.
  • the discontinuous portion 71 may be formed in a staircase shape.
  • the discontinuous portion 71 includes a first gap 711, a second gap 712, a third gap 713, a first divided portion 715, and a second divided portion 716.
  • Each of the first divided portion 715 and the second divided portion 716 is sealed with a seal member 79 from the inside in the radial direction D2.
  • the first to third gaps 711 to 713 are arranged between the one end portion 701 in which the concave portion 717 is formed and the other end portion 702 in which the convex portion 718 is formed. May be.
  • the first divided portion 715 and the second divided portion 716 are sealed from the inside in the radial direction D2 by one seal member 791.
  • FIGS. 13A and 13B the sliding seals 81 and 82 formed in an annular shape including the linear discontinuous portion 80 will be described.
  • the step of sleeve vacuum suction by the injection device 6 having the configuration shown in FIGS. 13A and 13B will be described later with reference to FIGS. 14A to 14C.
  • the injection device 6 shown in FIG. 13A includes a first sliding seal 81 and a second sliding seal 82 that are adjacent to each other in the advance / retreat direction D1, and one seal member 79.
  • the discontinuous portions 80 of the adjacent first and second sliding seals 81 and 82 are linearly formed along the axial direction (D1). These discontinuous portions 80 are preferably shifted from each other in the circumferential direction D3.
  • the discontinuous portions 80 of the first and second sliding seals 81 and 82 are separated from each other by 180 °.
  • the boundary 80B of the 1st, 2nd sliding seals 81 and 82 is sealed from the inner side of radial direction D2 with the sealing member 79, as shown in FIG.13 (b).
  • the outer end 79A of the seal member 79 is abutted against and closely contacts the boundary 80B and its vicinity along the circumferential direction D3 in which the boundary 80B extends.
  • the discontinuous portion 80 of the first sliding seal 81 corresponds to the first gap 711 in the embodiment shown in FIGS.
  • the discontinuous portion 80 of the second sliding seal 82 corresponds to the second gap 712 in the above embodiment.
  • a boundary 80B in the axial direction (D1) between the first sliding seal 81 and the second sliding seal 82 corresponds to the dividing portion 715 in the above embodiment. Therefore, according to the configuration shown in FIGS. 13A and 13B, the sliding seals 81 and 82 by simple processing are used as compared with the sliding seal 70 of the above embodiment, but the same as in the above embodiment. The effect of preventing the outside air from flowing toward the front space 75 in the sleeve 11 can be obtained.
  • the suction is also performed from the inside of the suction recess 120 behind the front end 20A.
  • the space 75 and the inside of the suction recess 120 are depressurized with respect to the atmospheric pressure.
  • the inside of the suction recess 120 is sucked through the suction ports 14 to 17. Not limited to this, for example, it is allowed to suck the inside of the suction recess 120 through a hole formed in the second large diameter portion 202 in the axial direction.
  • the suction recess Since the axial hole is always in communication with the inside of the suction recess 120 regardless of the position of the plunger 12 in the advance / retreat direction D1, the suction recess always passes through the axial hole from the start to the end of the sleeve vacuum suction.
  • the inside of 120 can be aspirated.
  • the space in the sleeve 11 that is equivalent in pressure to the front space 75 behind the front space 75 (inside the suction recess 120).
  • the pressure difference (P1-P2) is the pressure in the atmospheric pressure P0 and the pressure in the front space 75. This is because the outside air is suppressed from flowing into the front space 75 through the inside of the suction recess 120 by being sufficiently smaller than the difference (P0 ⁇ P2) from P2.
  • the suction inside the front space 75 and the suction recess 120 can be performed by one vacuum suction system 2. Both the gas sucked from the front space 75 and the gas sucked from the inside of the suction recess 120 are sucked by the same vacuum pump 37 through the same vacuum tank 36. Therefore, compared with the case where a vacuum suction system is individually provided inside the front space 75 and the suction recess 120, the cost of the devices such as the vacuum pump 37 and the vacuum tank 36 can be reduced. In addition, since the number of vacuum suction systems is small, the number of inspection points for gas leakage (leakage) is small, so the inspection work efficiency is good.
  • the front space 75 and the inside of the suction recess 120 are allowed to be sucked through different systems.
  • the plunger tip 20 equipped with the sliding seal 70 and the seal member 79 described above is inserted into the sleeve 11 and sucked from the inside of the suction recess 120 in addition to the front space 75, thereby storing the melt 18. Inflow of outside air into the space 75 can be prevented more reliably.
  • the plunger 12 moves forward from the backward limit position shown in FIG. 11A to a position where the foremost fourth suction port 17 is closed by the tip 20 as shown in FIG. 11F.
  • the front end 20A of the plunger tip 20 passes through the positions of the suction ports 14 to 17 in the order of the first suction port 14, the second suction port 15, the third suction port 16, and the fourth suction port 17.
  • the plunger 12 is advanced with respect to the sleeve 11, and the front space 75 is sucked through at least one suction port communicating with the front space 75, and communicates with the inside of the suction recess 120.
  • the inside of the suction recess 120 is sucked through at least one suction port.
  • FIG. 9 shows a flowchart of a casting method by die casting. As shown in the flowchart, each process proceeds under the control of the control device 3 in the order of mold clamping, pouring, injection start, sleeve vacuum, starting from the start of die casting.
  • step S11 If the sleeve vacuum process is not performed (No in step S11), the process proceeds in the order of pressure increase switching command, cooling (solidification), mold opening, product removal, product detection, mold spray, injection retreat, and chip lubrication. The next cycle starts (in the case of Yes in step S12).
  • the processing by the circuit A (FIG. 10) is performed, and the pressure increase switching command, cooling (solidification), mold opening, product removal, product detection, mold
  • the process proceeds in the order of spray, reverse injection, and tip lubrication. A part of the processing by the circuit A (FIG.
  • steps S101 to S113 can be performed before the step of increasing pressure switching command
  • steps S114 to S118 can be performed in parallel with the steps after the pressure increasing switching command.
  • the processing by the circuit A as the control circuit is also performed under the control of the control device 3.
  • the sleeve vacuum process from step S104 to step S111 shown in FIG. 10 shows the basic operation of the selection valve 33 corresponding to each of the suction ports 14-17. It is assumed that all the suction ports 14 to 17 are open at the start of the sleeve vacuum. After the start of the sleeve vacuum, the suction ports 14 to 17 are sequentially closed by the tip 20 of the plunger 12 which has advanced. As the plunger 12 advances, the tip 20 passes through the suction port.
  • the suction port is not in communication with the front space 75 or the inside of the suction recess 120. It cannot be used for a sleeve vacuum sucked from the inside of the recess 120. Although such a suction port is not in communication with the front space 75 and the inside of the suction recess 120, the pressure increase in the vacuum tank 36 is suppressed to maintain the suction efficiency, and molten metal enters the suction port. Therefore, it is preferable to close the corresponding selection valve 33 after it cannot be used.
  • the suction is performed.
  • the selection valves 33 corresponding to the mouths are sequentially closed. That is, as the plunger 12 advances, the selection valves 33 corresponding to the suction ports 14 to 17 are sequentially closed.
  • the selection valve 33 is preferably closed while the corresponding suction port is closed by the second large diameter portion 202 of the chip 20.
  • the second large diameter portion 202 passes through the suction port and the suction port communicates with the space 88 in FIG. 4 around the plunger rod 19, if the selection valve 33 is open, the outside air is in the space 88. May flow into the vacuum tank 36 via the suction port 51 via the suction port. Since this is not intended, for example, in the step shown in FIG. 11 (d), the selection valve 33 corresponding to the suction port 14 closed by the chip 20 is closed.
  • the selection valve 33 described below is only an example. It is preferable that the selection valve 33 is appropriately closed not only based on the unusability based on the closing of the suction ports but also based on the unusability of the suction path 51 and the like caused by the molten metal as described above. Alternatively, the selection valves 33 corresponding to the suction ports 14 to 17 can be opened and closed based on the manufacturing conditions according to the mold and product.
  • step S101 it is confirmed that the inside of the vacuum tank 36 has reached a sufficient degree of vacuum, and a preparation completion signal is issued.
  • step S102 after pouring, the plunger 12 moves forward and exceeds the position where the pouring port 13 is closed, and then the vacuum suction system 2 starts to pull the sleeve 11 into a vacuum.
  • a predetermined position in the advance / retreat direction D1 of the plunger 12 can be determined as a vacuum start position at which vacuum suction is started. Detection of the arrival of the plunger 12 at the set vacuum start position is performed by detecting the stroke of the hydraulic cylinder that drives the plunger 12 with a non-contact sensor or the like. The arrival of the plunger 12 at each set position in the following steps is similarly detected.
  • step S103 the vacuum / air blow switching valve 35 is switched to vacuum suction.
  • step S104 the plunger 12 reaches a set position (FIG. 2 / first suction port closing position) where the first suction port 14 is closed.
  • step S105 the selection valve 33 corresponding to the first suction port 14 is closed.
  • step S106 the plunger 12 reaches a set position (FIG. 2 / second suction port closing position) where the second suction port 15 is closed.
  • step S107 the selection valve 33 corresponding to the second suction port 15 is closed.
  • step S108 the plunger 12 reaches a set position (FIG. 2 / third suction port closing position) where the third suction port 16 is closed.
  • step S109 the selection valve 33 corresponding to the third suction port 16 is closed.
  • step S110 the plunger 12 reaches a setting position (FIG. 2 / fourth suction port closing position) where the fourth suction port 17 is closed.
  • the degree of vacuum of the suction path 51 corresponding to the fourth suction port 17 is measured using the pressure detection unit 32.
  • the degree of vacuum of the fourth suction port 17 is managed by providing upper and lower limits. When the degree of vacuum is outside the set range, an alarm is issued by a lamp or buzzer.
  • the upper and lower limits are preferably ⁇ 90 to ⁇ 100 kPa.
  • the selection valve 33 corresponding to the fourth suction port 17 is closed.
  • step S112 the vacuum / air blow switching valve 35 is turned off (neutral position).
  • step S113 all the selection valves 33 of the suction ports 14 to 17 are opened.
  • step S114 the vacuum / air blow switching valve 35 is switched to air blow.
  • step S115 the air blow, which is a process of ejecting air into the sleeve 11 through the suction port, is performed using the pressurized tank 38 by the pressurized air supply system 9 that shares a part of the piping with the vacuum suction system 2. .
  • all the selection valves 33 of the suction ports 14 to 17 may be opened, or the selection valves 33 may be opened one by one in order.
  • step S116 the pressure of the suction passages 51 to 17 of the suction ports 14 to 17 is measured by the pressure detection unit 32 while air blow is being performed. Judgment is made. If clogging occurs, an alarm is issued by a lamp or buzzer (step S117).
  • the timing of performing the air blow in step S115 is after the plunger 12 moves forward in the sleeve 11 and reaches the suction port 17 farthest away from the pouring port 13 during the casting cycle. It may be after vacuum suction in the sleeve 11 through the mouth is finished. For example, after the plunger 12 reaches the speed / pressure switching point described above, the cast product is securely held on the movable mold 22 side having the product pushing mechanism when the mold is opened. As described above, air blow may be performed at the forward limit position of the plunger 12 in the operation of pushing the plunger 12 in contact with the cast product via the biscuit portion to the forward limit position. Also, when the operation mode is selected by operating a switch that switches the operation mode of the die casting machine (1 cycle automatic operation mode / full automatic operation mode at the start of casting) except during the casting cycle, The air blow in step S115 may be performed automatically.
  • the sleeve 11 is evacuated by using all of the suction ports 14 to 17 from the first suction port 14 to the fourth suction port 17, but in addition to this, the third suction port 16 and the second suction port Any combination of the four suction ports 17 or the second suction port 15, the third suction port 16, and the fourth suction port 17 may be used. There is no limit to the number of suction ports used.
  • the upper limit sleeve filling rate can be used for the control of opening and closing the selection valve 33 corresponding to each of the suction ports 14 to 17.
  • the “upper limit sleeve filling rate” is close to the cavity 23 from the suction port reached by the plunger 12 when the filling rate of the molten metal 18 in the sleeve 11 (referred to as sleeve filling rate) rises to a predetermined value (for example, 80%). This is the upper limit value of the sleeve filling rate when all the selection valves 33 belonging to the suction port are closed.
  • upper limit sleeve filling rate means that when the sleeve filling rate reaches a predetermined value, all the selection valves 33 belonging to the suction port close to the cavity 23 from the suction port reached by the plunger 12 are closed. To do. Note that the upper limit sleeve filling rate can be freely set before casting.
  • the purpose of using the upper limit sleeve filling rate is to prevent the molten metal debris from entering the suction path 51 from the suction ports 14 to 17 at the time of evacuation because the sleeve filling rate is increased. This is because the sleeve 11 is evacuated by the maximum number of suction ports from which molten metal debris does not enter the suction path 51 from .about.17.
  • FIGS. 11A to 11F are diagrams for explaining a series of steps of sleeve vacuum.
  • 11 (a) is a sleeve vacuum preparation step
  • FIG. 11 (b) is a sleeve vacuum start step
  • FIG. 11 (c) is a sleeve vacuum first step
  • FIG. 11 (d) is a sleeve vacuum second step
  • FIG. ) Shows a sleeve vacuum cavity side vacuum end step
  • FIG. 11 (f) shows a sleeve vacuum end step.
  • the sleeve vacuum step proceeds in the order of (a), (b), (c), (d), (e), and (f) in FIG.
  • FIGS. 12A to 12E the sliding seal 70, the seal member 79, and the seal holding member 72 are not shown. The same applies to FIGS. 12A to 12E.
  • Sleeve vacuum preparation steps In the sleeve vacuum preparation step shown in FIG. 11A, the plunger 12 is in a state of being stopped at the original position which is the position of the retreat limit. Since the pouring port 13 is opened, the molten metal 18 can be supplied from the pouring port 13 into the sleeve 11. At this time, the space 75 in front of the front end 20 ⁇ / b> A of the plunger tip 20 and the pouring port 13 communicate with each other.
  • the sleeve vacuum preparation step is a step for preparing to start the sleeve vacuum. At this time, vacuum suction is not performed for all of the suction ports 14 to 17.
  • the plunger 12 advances from the state shown in FIG. 11A to a position where the front end 20A of the tip 20 exceeds the pouring gate 13 (a position indicated by a one-dot chain line in FIG. 11A), the first of the plunger tip 20 is moved.
  • the pouring port 13 is closed by the large diameter portion 201, whereby the space 75 in front of the front end 20 ⁇ / b> A and the pouring port 13 are separated from each other by the chip 20.
  • the plunger 12 advances to a position where the front end of the second large diameter portion 202 exceeds the pouring port 13 (not shown)
  • the pouring port 13 is closed by the second large diameter portion 202, so that suction is performed.
  • the inside of the recess 120 for use and the pouring port 13 are separated by the chip 20. After this position, while the plunger 12 moves forward (including FIGS. 11B to 11F), the front space 75 and the inside of the suction recess 120 are separated from the pouring port 13 by the tip 20. It is kept in a state where it is partitioned in the sleeve 11. Thereafter, as shown in FIG. 11B, when the plunger 12 advances to a position where the inner side of the suction recess 120 communicates with the rearmost suction port 14, the suction recess 120 is moved into the front space 75. Since at least one suction port is in communication with each other, suction is possible from both the front space 75 in the sleeve 11 and the inside of the suction recess 120.
  • the position (vacuum start position) of the plunger 12 when starting the sleeve vacuum is at least one suction port on each of the inside of the suction recess 120 and the front space 75 as shown in FIG. It is preferable to set the position of the plunger 12 when the is in communication. As soon as the plunger 12 reaches such a position, it is preferable to immediately start suction inside the front space 75 and the suction recess 120. As a result, a sufficient suction time can be secured, and the inside of the front space 75 and the suction recess 120 can be raised to a sufficient degree of vacuum.
  • Sleeve vacuum start step In the sleeve vacuum start step shown in FIG. 11 (b), the sleeve vacuum is started through all the suction ports 14-17.
  • the plunger 12 starts to advance from the position of the retreat limit, and the end surface on the cavity 23 side of the second large diameter portion 202 passes through the pouring port 13.
  • the vacuum tank 36 evacuates the inside of the suction recess 120 and the front space 75 through all the suction ports 14 to 17 of the sleeve 11.
  • the first suction port 14 communicates with the inside of the suction recess 120, and the second to fourth suction ports are provided in the front space 75. 15 to 17 communicate. Therefore, vacuum suction inside the suction recess 120 is performed through the first suction port 14, and at the same time or at different timings, the second suction port 15, the third suction port 16, and the fourth suction port 17. Through this, vacuum suction of the front space 75 can be performed.
  • the selection valves 33 corresponding to the second suction port 15, the third suction port 16, and the fourth suction port 17 may be opened at the same time, or may be opened at different timings.
  • the vacuum suction inside the suction recess 120 is performed prior to the start of the vacuum suction of the front space 75. It is preferable to start.
  • Sleeve vacuum first step In the sleeve vacuum first step shown in FIG. 11 (c), the plunger 12 further advances, and the inside of the suction recess 120 is in communication with the first suction port 14 and the second suction port 15. Further, the front space 75 communicates with the third suction port 16 and the fourth suction port 17. Therefore, vacuum suction inside the suction recess 120 through the two suction ports (first suction port 14 and second suction port 15) and through the remaining suction ports (third suction port 16 and fourth suction port 17). Further, vacuum suction of the front space 75 can be performed.
  • Sleeve vacuum second step In the sleeve vacuum second step shown in FIG. 11 (d), the plunger 12 further advances, and the inside of the suction recess 120 is in communication with one suction port (second suction port 15). Further, the front space 75 communicates with the two suction ports (the third suction port 16 and the fourth suction port 17). At this time, when the second large diameter portion 202 of the plunger tip 20 faces the first suction port 14, the first suction port 14 is closed and becomes unusable. Therefore, the selection valve 33 corresponding to the first suction port 14 is closed, and the decompression by the first suction port 14 is finished.
  • the selection valve 33 is closed when the first suction port 14 is closed by the second large diameter portion 202 of the chip 20 and is not in communication with the external space 88.
  • “blocking” is added to the suction port where the corresponding selection valve 33 is blocked.
  • the remaining suction ports 15 to 17 whose corresponding selection valves 33 are not closed communicate with the front space 75 or the inside of the suction recess 120. Therefore, vacuum suction inside the suction recess 120 through one suction port (second suction port 15) and vacuum in the front space 75 through two suction ports (third suction port 16, fourth suction port 17). Aspiration can be performed.
  • Sleeve vacuum cavity side vacuum end step Thereafter, as shown in FIG. 11E, when the plunger 12 has advanced to a position where the foremost fourth suction port 17 is closed by the tip 20, the suction of the front space 75 is terminated. The front space 75 is sucked through the fourth suction port 17 until just before the fourth suction port 17 is closed, and is sucked also from the inside of the suction recess 120. As shown in FIG. 11 (e), when the plunger 12 moves forward to the position where the foremost fourth suction port 17 is closed by the first large diameter portion 201, the front space 75 has the first suction port 14 to the fourth suction port. It is in a state where it does not communicate with any of the mouths 17.
  • the vacuum suction from the front space 75 and the inside of the suction recess 120 can be terminated (sleeve vacuum cavity side vacuum termination step).
  • the selection valve 33 corresponding to the fourth suction port 17 and the selection valve 33 corresponding to the third suction port 16 at the position of the suction recess 120 may be closed.
  • the sleeve vacuum can be continued until the plunger 12 moves forward to the position shown in FIG. 11 (f) without ending the sleeve vacuum in the state shown in FIG. 11 (e). This will be described below.
  • the fourth suction port 17 is closed by the first large-diameter portion 201, so that no suction port communicates with the front space 75.
  • the third suction port 16 communicates with the inside. That is, vacuum suction inside the suction recess 120 through the third suction port 16 can be performed. Even if there is no suction port that directly communicates with the front space 75, the front space 75 is connected to the fourth suction port 17 via a gap 89 that exists between the first large diameter portion 201 and the inner peripheral portion 11 ⁇ / b> A of the sleeve 11. Leads to. Therefore, the front space 75 can be sucked through the gap 89 and the fourth suction port 17. Therefore, in the example shown in FIG. 11E, the selection valve 33 corresponding to the fourth suction port 17 is not closed. While sucking the front space 75 through the fourth suction port 17 and the gap 89, the inside of the suction recess 120 can be sucked through the third suction port 16.
  • the fourth suction port 17 communicates with both the gap 89 and the inside of the suction recess 120, so that the front space 75 and the inside of the suction recess 120 are connected through the fourth suction port 17. Vacuum suction can be performed.
  • Sleeve vacuum end step Further, as shown in FIG. 11 (f), when the plunger 12 moves forward to a position where the front end of the second large diameter portion 202 exceeds the fourth suction port 17, the suction recess 120 is moved by the inner wall of the sleeve 11. If closed, the sleeve vacuum is terminated (sleeve vacuum termination step). At this time, the selection valve 33 corresponding to the fourth suction port 17 is closed. The selection valve 33 is preferably closed in a state where the fourth suction port 17 is closed by the second large diameter portion 202 and is not in communication with the external space 88.
  • the inside of the suction recess 120 may be sucked through the gap 90 between the second large diameter portion 202 and the sleeve 11 and the suction port 17 communicating with the gap 90. If it does so, the front space 75 can also be attracted
  • any one of the suction ports 14 to 17 is selected at the beginning of the sleeve vacuum.
  • the mouth (for example, the first suction port 14) communicates with the front space 75, and communicates with the front space 75 until it is closed by the first large-diameter portion 201 of the advanced plunger 12.
  • the suction port communicates with the inside of the suction recess 120 by the advancement of the plunger 12.
  • the suction port communicates with the inside of the suction recess 120 until it is closed by the second large diameter portion 202 of the plunger 12 that has advanced.
  • the suction port After the arbitrary suction port is closed by the second large-diameter portion 202, the suction port does not communicate with the front space 75 or the inside of the suction recess 120, and therefore cannot be used for sleeve vacuum.
  • the selection valve 33 to be closed is closed.
  • At least one suction port communicates with the front space 75 and at least one suction port communicates with the inside of the suction recess 120. Then, the vacuum suction from the inside of the suction recess 120 can be continued until the vacuum suction from the front space 75 through the foremost suction port 17 is completed.
  • the suction in the sleeve 11 can be stably continued while preventing the molten metal 18 from being ramped up due to the inflow of outside air. Therefore, entrainment of gas into the molten metal 18 can be suppressed and the quality of the cast product can be improved.
  • the sleeve vacuum suction is continued even after the foremost suction port 17 is closed by the first large diameter portion 201, the first large diameter portion 201 and the sleeve 11 are maintained.
  • the front space 75 may be sucked using the gap 89 between the two.
  • the foremost suction port 17 is also used for suction inside the suction recess 120. In this way, the suction in the sleeve 11 can be continuously performed from the start of the sleeve vacuum to the end as much as possible in the injection filling process.
  • vacuum suction is simultaneously started with respect to the inside of the front space 75 and the suction recess 120, and suction is continuously performed from both sides from the start to the end of the vacuum suction, and the vacuum suction is simultaneously ended.
  • the inside of the suction recess 120 as a space having the same pressure as that of the front space 75 is surely always provided behind the front space 75 in which the molten metal 18 is stored during the sleeve vacuum suction. Therefore, it is preferable for suppressing the inflow of outside air.
  • the sliding seal 70 is provided between the outer peripheral portion 20C of the tip 20 of the plunger 12 and the inner peripheral portion 11A of the sleeve 11. Since the sealing member 79 seals the outside air, the outside air does not easily flow into the suction recess 120 or the front space 75. Furthermore, if the vacuum suction is interrupted for a short period of time that does not affect the occurrence of the entrapment nest due to the stagnation of the molten metal 18 or the blockage of the suction port or the like by the molten metal debris, the sliding seal 70 or the seal It is allowed with or without the member 79.
  • both the front space 75 and the inside of the suction recess 120 are sucked forward. Inflow of outside air into the space 75 can be suppressed.
  • FIG. 12D As will be described later, since the outside air flows into the suction recess 120, the effect of suppressing the inflow of outside air into the front space 75 is inferior to the other examples.
  • n be the number of suction ports 14-17.
  • n when suctioning the front space 75 and the inside of the suction recess 120 through separate suction ports, n may be 2 or more.
  • n when the front space 75 and the inside of the suction recess 120 are sucked through the same suction port, n may be 1 or more.
  • the dimensions and shapes of the suction ports in the advance / retreat direction D1 are the same. Further, when there are three or more suction ports (n ⁇ 3), the suction ports are arranged at equal intervals in the forward / backward direction D1.
  • the dimensions relating to each of the sleeve 11 and the plunger tip 20 are defined as follows.
  • Lp0 when the dimension of the advancing / retreating direction D1 at the inner end in the radial direction D2 and the dimension of the advancing / retreating direction D1 at the outer end of the radial direction D2 are different as in the suction recess 120 shown in FIG. It is assumed that the size is the dimension in the forward / backward direction D1 at the outer end. In this case, Lp1 and Lp2 are also the dimensions in the forward and backward direction D1 at the outer end in the radial direction D2.
  • the number n of the suction ports 14 to 17 is four.
  • Equation (4) is based on the premise that the pouring gate 13 is closed by the front end of the second large diameter portion 202. If it is taken into account that the pouring gate 13 is closed by a member other than the plunger 12, for example, a member inserted from behind in the sleeve 11, Lp0 is not limited to the equation (4).
  • the plunger 12 After the vacuum suction inside the front space 75 and the suction recess 120 is started at the position of the plunger 12 shown in FIG. 12B, the plunger 12 is stopped and the front space 75 and the suction recess 120 inside. It is possible to perform vacuum suction. Thereafter, the vacuum suction inside the front space 75 and the suction recess 120 can be continued until the plunger 12 is advanced and the suction port 17 is closed by the first large diameter portion 201.
  • the minimum value of Lp0 can be set based on the following condition 2. While the plunger 12 moves forward, both the front space 75 and the inside of the suction recess 120 are sucked through the suction holes (condition 2). As understood from the example shown in FIG. 12C, the minimum value (lower limit) of Lp0 that meets the above condition 2 is expressed by the following equation (5). Lp0> Ls3 (5) That is, the dimension Lp0 of the suction recess 120 is larger than the dimension Ls3 of the interval between the adjacent suction ports 14-17. For this reason, for example, as in the example shown in FIG.
  • the rear side in the axial direction of the suction recess 120 communicates with the suction port 14, and the front side in the axial direction of the suction recess 120 communicates with the suction port 15. .
  • at least one suction port always communicates with the inside of the suction recess 120 regardless of the position of the plunger tip 20 in the axial direction with respect to the section where the suction ports 14 to 17 of the sleeve 11 are arranged. . Therefore, Condition 2 is met.
  • Lp2 which is the dimension of the second large diameter portion 202 in the advance / retreat direction D1
  • Lp2 can be set based on the following condition 3.
  • the outside air is prevented from flowing into the suction recess 120 from behind the second large diameter portion 202 via the suction ports 14 to 17 closed by the second large diameter portion 202 (condition 3). This will be described with reference to FIGS. 12D and 12E.
  • Formula (6) corresponds to a requirement that is substantially necessary for reliably performing the sleeve vacuum suction while suppressing the inflow of the outside air into the front space 75.
  • the injection device 6 includes a sleeve 11 in which two suction ports 14 and 15 that are separated in the advance / retreat direction D1 of the plunger 12 are formed, two sliding seals 81 and 82, and one seal member 79. And a provided plunger 12.
  • the sliding seals 81 and 82 and the seal member 79 are provided on the second large diameter portion 202 of the plunger tip 20.
  • the configurations of the sliding seals 81 and 82 and the seal member 79 are as already described with reference to FIGS.
  • FIGS. 14 (a) to (c) the process of sleeve vacuum suction in the second embodiment will be described with reference to FIGS. 14 (a) to (c).
  • FIG. 14 (a) when the front end of the second large-diameter portion 202 passes through and closes the pouring port 13, and the inside of the suction recess 120 and the suction port 14 communicate with each other, the sleeve vacuum suction is started. It is preferable to do.
  • both the front space 75 and the inside of the suction recess 120 are partitioned in the sleeve 11 by the tip 20 so as not to communicate with the pouring port 13.
  • the second suction port 15 communicates with the front space 75
  • the first suction port 14 communicates with the inside of the suction recess 120. Therefore, as indicated by the solid arrow in FIG. 14A, the vacuum can be sucked from the front space 75 through the second suction port 15 by the vacuum suction system 2 (FIG. 2), and the broken arrow in FIG. As can be seen, the vacuum suction system 2 can suck from the inside of the suction recess 120 through the first suction port 14.
  • the gap 89 between the first large-diameter portion 201 and the sleeve 11 (FIG. 14C).
  • the front space 75 can be sucked from the second suction port 15 through the first suction port 14, and the inside of the suction recess 120 can also be sucked from the first suction port 14 through the gap 90.
  • the suction from the front space 75 is completed, the inflow of outside air into the front space 75 can be continuously suppressed by suction from the inside of the suction recess 120.
  • n> 2 as in the example shown in FIG. 11 or FIG. 12 described above, for example, the state shown in FIGS. 11C and 11D is alternately repeated as the plunger 12 advances, that is, the suction recess.
  • the inside of the front space 75 and the suction recess 120 may be continuously sucked while sequentially switching the suction ports communicating with the inside of the 120.
  • n 2
  • the first suction communicates directly with the inside of the suction recess 120. It is sufficient that the suction can be continued from the inside of the suction recess 120 through the mouth 14.
  • the second suction port 15 is closed by the first large diameter portion 201, at least vacuum suction performed through the second suction port 15 directly communicating with the front space 75. Ends.
  • the inside of the suction recess 120 does not necessarily need to communicate with the second suction recess 15.
  • the first suction port 14 that communicates with the inside of the suction recess 120 immediately before the end of the direct vacuum suction of the front space 75 is used.
  • the requirement shown in the equation (1) regarding the upper limit of Lp1 is essential.
  • the upper limit of Lp0 it is preferable to follow the requirements shown in Formula (4) mentioned above, and it is preferable to follow the requirements shown in Formula (6) mentioned above about the lower limit of Lp2.
  • the injection device 6A shown in FIG. 15 includes a sealing agent supply device 60 in order to interpose the sealing agent 61 between the inner peripheral portion of the sleeve 11 and the outer peripheral portion of the plunger tip 20.
  • the injection device 6A preferably includes the above-described sliding seal 70 and seal member 79 (FIG. 4).
  • the sealing agent supply device 60 is configured to be able to supply the sealing agent 61 to each of the outer peripheral portion of the first large diameter portion 201 and the outer peripheral portion of the second large diameter portion 202 in the plunger tip 20.
  • the sealant 61 for example, a lubricant used for lubricating the plunger tip 20 can be used. In general, the higher the viscosity of the sealant 61, the better the sealability. However, if the viscosity is too high, it is difficult to sufficiently spread the sealant 61 to a necessary region due to a decrease in fluidity. Therefore, it is preferable to use a sealing agent 61 having an appropriate viscosity in consideration of sealing properties and fluidity.
  • the sealant supply device 60 a known plunger lubricant supply device can be used.
  • the sealant supply device 60 includes a container 62 for storing the sealant 61, a first pipe 631 and a second pipe 632 connected to the container 62, and a valve (not shown) for supplying the sealant 61 in a timely manner. I have. It is preferable that the valve of the sealant supply device 60 is automatically opened and closed or the opening degree is adjusted by the control device 3 (FIG. 1) or the like. If such valves are individually provided in the first pipe 631 and the second pipe 632, the sealing agent 61 can be individually supplied to the first large diameter part 201 and the second large diameter part 202. It is also permitted to supply the sealing agent 61 to only one of the first large diameter portion 201 and the second large diameter portion 202.
  • the form of the first pipe 631 and the second pipe 632 is not limited to the example shown in FIG. 15, and the first pipe 631 and the second pipe 632 may be branched from one pipe connected to the container 62.
  • the sealing agent 61 is supplied to the outer peripheral portion of the first large-diameter portion 201 located in the sleeve 11 through the first pipe 631, and the outer peripheral portion of the second large-diameter portion 202 located outside the sleeve 11 is The sealing agent 61 can be supplied through the second pipe 632.
  • the sealing agent 61 is spread and filled in the gap 89 between the outer peripheral portion of the first large diameter portion 201 and the inner peripheral portion of the sleeve 11. Therefore, the space between the first large diameter portion 201 and the sleeve 11 is sealed with the sealant 61.
  • the sealing agent 61 is spread and filled in the gap 90 between the outer peripheral portion of the second large diameter portion 202 and the inner peripheral portion of the sleeve 11. Therefore, the space between the second large diameter portion 202 and the sleeve 11 is sealed with the sealant 61.
  • both the front space 75 and the inside of the suction recess 120 are vacuumed.
  • the sealing agent 61 present in the gap 90 suppresses the outside air from flowing into the suction recess 120, which is a negative pressure, through the space 88, while keeping the pressure inside the suction recess 120 low, Even if there is a pressure difference between the inside of the suction recess 120 and the front space 75 due to the sealing agent 61 present in the gap 89, the outside air flows into the front space 75 via the inside of the suction recess 120. Can be suppressed.
  • the end portion of the first pipe 631 is inserted into a sealant pipe hole 11 ⁇ / b> D that penetrates the wall behind the pouring port 13 of the sleeve 11 in the thickness direction. Since the outlet 631A of the first pipe 631 opened inside the sealant pipe hole 11D is close to the outer peripheral part of the first large diameter part 201 of the plunger tip 20 at the retreat limit position, the sealant 61 is discharged from the outlet 631A. It is reliably supplied to the outer peripheral portion of the first large diameter portion 201.
  • the second pipe 632 has an outlet 632A near the outer periphery of the second large diameter portion 202 exposed to the outside of the sleeve 11. Also from the outlet 632A, the sealing agent 61 is reliably supplied to the outer peripheral portion of the second large diameter portion 202.
  • the sealing agent 61 is reliably supplied to desired positions in the outer peripheral portions of the first large diameter portion 201 and the second large diameter portion 202.
  • the supply of the sealing agent 61 to the first and second large diameter portions 201 and 202 can be performed simultaneously or in parallel by the two pipes 631 and 632, so that the step of supplying the sealing agent can be performed quickly. Can finish.
  • the sealing agent supply device 60 is appropriately configured, and the plunger 12
  • the sealing agent 61 can be supplied to the outer peripheral portion of the chip 20 at an appropriate timing, not only when it is in the retreat limit position.
  • the supply of the sealing agent 61 to the first large diameter portion 201 and the supply of the sealing agent 61 to the second large diameter portion 202 may be performed at the same timing, or may be performed at different timings.
  • the end portion of the first pipe 631 is connected to the second pipe 632. Similarly to the above, it may be located outside the sleeve 11.
  • the end of the second piping 632 is the same as the first piping 631.
  • the part can be arranged inside the hole formed in the sleeve 11.
  • the sealing agent supply device 60 It is not always necessary for the sealing agent supply device 60 to have the two pipes 631 and 632. Even if the sealant supply device 60 has only one pipe 631 connected to the container 62, the sealant 61 is applied to the outer peripheral portion of the second large diameter portion 202 through the pipe 631 by the advancement of the chip 20. It can be supplied.
  • FIGS. A third embodiment, a modification of the third embodiment, and a fourth embodiment to be described next relate to measures for blocking the suction path 51.
  • Such a countermeasure against blockage can be applied to the die casting machine 100 including the injection devices 1 and 6 and the injection device 1 or 6 of the first and second embodiments.
  • the configuration disclosed in the third embodiment, the modified example of the third embodiment, and the fourth embodiment is also applied to an injection device including a plunger including a tip in which the suction recess 120 is not partitioned and a sleeve. be able to.
  • 3rd Embodiment shows the structure regarding the die-casting machine provided with the suction path 51 (FIG. 2) which vacuum-sucks the inside of the space formed in communication from the internal space of the sleeve 11 to the cavity 23.
  • FIG. Here, the suction path 51 for sucking the internal space of the sleeve 11 from each of the suction ports 14 to 17 which are a plurality of holes in the sleeve 11 will be described.
  • the suction path 51 is connected to other holes and openings provided in the sleeve 11 as long as the inside of the space communicating from the internal space of the sleeve 11 to the cavity 23 can be vacuum-sucked.
  • the suction path 51 may be connected to a suction port formed only in one sleeve.
  • the suction path 51 is not limited to the one connected to the hole or opening of the sleeve 11 or the plunger 12 of the injection device, but is connected to the connection port 28 (FIG. 2) provided at one place or a plurality of places of the mold. It may be.
  • the above description regarding the suction path 51 is the same for the fifth embodiment and the modified example of the fifth embodiment. A suction path for sucking the inside of the cavity 23 will be described later with reference to FIG.
  • FIG. 16 shows a collection structure 130 provided in the course of a suction path 51 through which gas is sucked from the inside of the sleeve 11 through the suction port 14.
  • the collection structure 130 separates and collects the molten scum S or the like mixed in the gas sucked toward the vacuum tank 36 through the suction path 51 constituting the vacuum suction system 2 (FIG. 2) described above.
  • the suction efficiency is reduced and the suction path 51 is prevented from being blocked by the stagnation of the molten scum S and the like in the suction path 51.
  • the collection structure 130 is provided on the upstream side of the vacuum filter 31 in the flow of gas sucked through the suction path 51. In that case, the trapping structure 130 prevents the vacuum filter 31 from being clogged.
  • the vacuum filter 31 can be omitted from the vacuum suction system 2 by using the collection structure 130 of the present embodiment.
  • the collection structure 130 can be provided in any of the suction paths 51 corresponding to the suction ports 15 to 17.
  • the collecting structure 130 can be provided only in at least one suction path 51 that is particularly easily blocked by the molten metal debris S or the like.
  • the collection structure 130 includes a first section 131 that is a part of the suction path 51, a second section 132 that is a part of the suction path 51, a section connection part 133, and a collection part 134.
  • the collection unit 134 is connected to the suction path 51 and receives molten metal droplets S or molten metal debris S that is a solidified piece.
  • the gas sucked from the inside of the sleeve 11 may contain foreign matters such as dust, and excess oily or water-soluble lubricant used for lubricating the plunger tip 20 in addition to the molten metal S.
  • molten residue In addition to the molten metal debris S, foreign matter such as dust, and excess oily or water-soluble release agent can be mixed in the gas sucked from the cavity 23.
  • the collection unit 134 receives and holds the molten metal S, foreign matter, lubricant, mold release agent, or the like, which has a large weight and density with respect to the gas.
  • the molten residue S, foreign matter, lubricant, mold release agent, and the like are referred to as “molten residue”.
  • the collection part 134 is formed in a cylindrical shape integrally with the section connection part 133, but this is not restrictive.
  • the collection part 134 and the area connection part 133 are separate bodies, and may be joined.
  • the collection part 134 may be in an appropriate shape as long as it can collect the molten metal debris S separated from the gas and keep it inside, for example, in a box shape having a rectangular cross section. Can be formed.
  • the section connection portion 133 is not limited to a cylindrical shape, and may have an appropriate shape.
  • an appropriate distance is secured between the accumulated molten scum S and the inlet 132A of the second section 132.
  • An appropriate volume can be given to the collection part 134 so that it can do.
  • the first section 131 is a part of a pipe extending from the upstream side of the collection unit 134, that is, from the suction port 14 side (or the suction ports 15 to 17 side), and extends downward toward the collection unit 134. Yes.
  • a region 51A between the suction port 14 (or 15 to 17) located on the upper portion of the sleeve 11 and the collection unit 134 is typically a suction port 14 (or 15 to 17). After rising upwards, it curves downward through a horizontal section. That is, the region 51A is curved in a convex state upward.
  • the first section 131 corresponds to a section extending downward toward the collection unit 134 in the region 51A.
  • the region 51A can be configured by assembling a plurality of pipes. In order to avoid the molten scum S or the like from staying on the inner wall of the pipe, it is preferable to use a pipe having a smooth inner wall in the region 51A.
  • the piping of the suction path 51 is appropriately routed according to the space allowed for installation of the piping, the position of a support that supports the piping, or the like, or in order to avoid interference between the piping. Therefore, the region 51A may be curved in a more complicated shape than the illustrated inverted U shape.
  • the section connection part 133 surrounds the first section 131 from the outside, reaches the collecting section 134 beyond the outlet 131A at the lower end of the first section 131 downward.
  • the section connection part 133 is sufficient if it surrounds at least the vicinity of the lower end of the first section 131.
  • the axis of the section connection part 133 and the axis of the first section 131 arranged inside the section connection part 133 do not necessarily have to coincide with each other.
  • the first section 131 may be eccentric to the left side in FIG. In this case, between the inner wall 133A and the side wall 131B on the right side of the section connecting portion 133 to which the second section 132 is connected, rather than between the inner wall 133A and the side wall 131B on the left side of the section connecting section 133 shown in FIG. Is wide.
  • the second section 132 is continuous with the section connecting section 133 at a position where the first section 131 is surrounded by the section connecting section 133.
  • the second section 132 is formed integrally with the section connection portion 133 and the collection portion 134, but is not limited thereto.
  • An inlet 132 ⁇ / b> A of the second section 132 is opened in the inner peripheral portion of the section connection section 133.
  • the inflow port 132A faces the side wall 131B of the first section 131.
  • the first section 131 and the second section 132 communicate with each other via the inside of the section connecting portion 133, and form a flow path 130F for the sucked gas.
  • the first section 131 extends in the vertical direction (vertical direction), and the second section 132 opens in the horizontal direction on the inner wall 133A of the section connecting portion 133.
  • the gas flow that flows downward from the first section 131 turns inside the section connection portion 133 and flows into the second section 132 that is continuous with the inner wall 133A of the section connection section 133. Therefore, a curved flow path 130 ⁇ / b> F is formed over the first section 131, the section connecting portion 133, and the second section 132.
  • the flow of gas flowing through the flow path 130F is schematically shown by arrows in FIG.
  • the second section 132 may be arranged at a position indicated by a two-dot chain line so that the gas flowing out of the first section 131 turns toward the left side of FIG. Also in this case, the same effect as that by the collection structure 130 of the present embodiment can be obtained.
  • first section 131 may be inclined with respect to the vertical direction, or the inlet 132A of the second section 132 may be opened in a direction inclined with respect to the horizontal direction on the inner wall 133A of the section connecting portion 133. Is also acceptable.
  • the second section 132 may extend obliquely upward or obliquely downward from the inner wall 133A.
  • the second section 132 shown in FIG. 16 extends in the horizontal direction.
  • the second section 132 is not necessarily limited to this, and the second section 132 extends in an arbitrary direction from the connection portion with the section connection portion 133. Good.
  • the height H1 of the outlet 131A of the first section 131 is preferably equal to or less than the height H2 of the inlet 132A (opening) of the second section 132, which is a connection portion between the section connecting portion 133 and the second section 132. (H1 ⁇ H2, L ⁇ 0). H1 and H2 are heights from the same reference position.
  • the height H2 of the inlet 132A means the height at the lower end of the inlet 132A. That is, it is preferable that the first section 131 extends to the position of the lower end of the inlet 132A of the second section 132 or extends below the position of the lower end of the inlet 132A.
  • the flow path 130 ⁇ / b> F flows downward from the outlet 131 ⁇ / b> A of the first section 131, then flows upward from the outlet 131 ⁇ / b> A inside the section connection portion 133, and further radially outward with respect to the axis of the first section 131. And flows into the inlet 132A of the second section 132.
  • the collection structure 130 is (1) a first section 131 that communicates with the suction port 14 (or 15 to 17) and that extends downward toward the collecting portion 134; (2) Molten waste box (section connection portion 133 and collection portion 134) communicating with the first section 131; (3) a second section 132 formed to communicate with the internal space of the molten metal box, It has. Furthermore, in the collection structure 130, the height H1 of the outlet 131A of the first section 131 is preferably equal to or less than the height H2 of the connection point (the inlet 132A) between the section connecting portion 133 and the second section 132. .
  • the distance L corresponding to the difference between the height H1 and the height H2 satisfies the relationship of the following formula (7).
  • L ⁇ 0 If L ⁇ 0, when the opening of the inlet 132A of the second section 132 is projected onto the side wall 131B of the first section 131, the upper end (12 o'clock position) and the lower end of the opening of the inlet 132A within the projection range R1. Both (6 o'clock position) will exist.
  • the molten metal residue S or the like mixed in the gas is also separated from the gas by the centrifugal force. That is, due to the centrifugal force acting on the gas flowing out from the first section 131 and turning toward the second section 132, the gas and the molten scum S are separated based on the difference in density between the gas and the molten scum S.
  • the first section 131 and the second section 132 are not in direct communication with each other, but are in communication with each other via a section connecting portion 133 that surrounds the first section 131.
  • the second section 132 is connected to the section connecting section 133 at a position where the first section 131 is surrounded by the section connecting section 133.
  • the side wall 131B of the first section 131 exists in the projection range R1 (FIG. 17A) of the inlet 132A of the second section 132 with respect to the first section 131.
  • the said structure is expanded and shown to Fig.17 (a).
  • the gas flows directly from the first section 131 to the second section 132 by the side wall 131B while securing a path for vacuum suction from the first section 131 to the second section 132. Can be prevented.
  • FIG. 17B as another example, even when the gas directly flows from the first section 131 to the second section 132, the molten metal separated from the gas by inertial force and centrifugal force. It has been confirmed by tests that S and the like are generally collected.
  • the second section 132 is arranged at the position indicated by the two-dot chain line, and the gas flowing out from the first section 131 turns toward the right side even when turning toward the left side in FIG. It showed the same collection efficiency.
  • FIG. 17B shows that the gas flows out from the first section 131 turns toward the right side even when turning toward the left side in FIG. It showed the same collection efficiency.
  • the second section 132 is connected to the section connecting portion 133 that surrounds the first section 131.
  • collection efficiency such as the molten metal debris S
  • 2nd area 132 such as the molten metal debris S
  • FIG. 17 (a) and FIG. 17 (b) which is another example, the operation of the collection structure 130 of this embodiment will be described.
  • the outlet 131A of the first section 131 is located above the inlet 132A of the second section 132.
  • the side wall 131B of the first section 131 does not exist in the projection area of the inflow port 132A.
  • the first section 131 since the first section 131 is longer than the example shown in FIG. 17B, the first section 131 is within the projection range R1 of the inlet 132A of the second section 132. Since the side wall 131 ⁇ / b> B exists, the gas flowing out from the first section 131 flows around the outer periphery of the first section 131 and then flows into the second section 132. On the other hand, in the example shown in FIG. 17B, the gas flowing out from the first section 131 flows directly into the second section 132. This is the same as the case where the first section 131 does not exist inside the section connection unit 133.
  • the air current bends at a plurality of locations from the outlet 131A to the inlet 132A. Specifically, the airflow is bent from the outlet 131 ⁇ / b> A to the outer periphery of the first section 131, and turns toward the second section 132 while being partially blown to the side wall 131 ⁇ / b> B of the first section 131.
  • the airflow collides with the vicinity of the lower end of the first section 131 and the peripheral edge of the inlet 132A of the second section 132. Then, while obtaining the separation effect of the molten scum S or the like from the gas due to inertial force and centrifugal force at each bent portion, the vicinity of the lower end portion of the first section 131 and the peripheral portion of the inlet 132A of the second section 132 are obtained. It is also possible to obtain an effect of separating the molten metal S and the like due to the collision of the airflow.
  • the gas flowing out from the outlet 131A flows into the side wall 131B.
  • the gas from which the molten metal residue S or the like is sufficiently separated flows into the second section 132 in the process of going around the outer periphery of the steel and reaching the inlet 132A. Therefore, it is possible to prevent the molten scum S and the like from flowing out toward the vacuum filter 31 and the selection valve 33 through the second section 132 and to promote the collection of the molten scum S and the like by the collecting unit 134.
  • the molten residue S or the like is more sufficiently separated from the sucked gas and collected in the collection unit 134. Since the outflow of the molten metal S or the like to the section 132 can be prevented, it is possible to prevent the suction efficiency of the suction path 51 from being lowered and blocked. Therefore, even if a pipe having a smooth inner wall is used in the first section 131 in order to prevent the stay of molten metal S or the like, it is installed in the second section 132 and the pipe closer to the vacuum tank 36 than that. It becomes possible to use a bellows-like pipe (bellows pipe) having a high degree of freedom. In addition, use of a bellows-like pipe for the region 51A is allowed.
  • the collection part 134 shall be cleaned regularly and the molten metal residue S etc. which accumulated in the inside shall be removed. Thereby, since the amount of the molten waste S or the like sucked into the second section 132 can be reduced, the cleaning frequency of the vacuum filter 31 can be lowered when the vacuum filter 31 is used, and the suction path 51 Stable operation can be performed while suppressing a reduction in suction efficiency.
  • the volume of the collection unit 134 may be appropriately determined in consideration of the degree of vacuum and the cleaning frequency.
  • the height H1 of the outlet 131A in the first section 131 is preferably equal to or lower than the height H2 of the inlet 132A in the second section 132 (H1 ⁇ H2). Then, the gas flowing out from the first section 131 flows around the outer periphery of the side wall 131B as a whole and flows into the second section 132 while colliding with the lower end of the first section 131 and the peripheral edge of the inflow port 132A. To do. Therefore, the molten scum S or the like mixed in the gas is separated and collected from the gas until the molten scum S or the like mixed in the gas reaches the inlet 132A from the outlet 131A. By suppressing the inflow, the effect of preventing the suction efficiency of the suction path 51 from being lowered and blocked is high.
  • H2-H1 distance L
  • H2 the separation and collection efficiency from the gas such as the molten metal S and the pressure loss applied to the airflow by the vicinity of the lower end of the first section 131 and the peripheral edge of the inlet 132A. It can be determined as appropriate in consideration.
  • the distance L can be set to 5 mm as an example.
  • a large number of slits can be formed in the vicinity of the lower end of the first section 131 by using a mesh or punching metal.
  • the opening of the slit may be set to a size that does not allow the molten metal residue S to pass through.
  • the first section 131 functions as a wall that prevents inflow of the molten waste S or the like into the second section 132, and the resistance given to the airflow flowing out from the first section 131 toward the second section 132 is given. Can be reduced.
  • the first section 131 provides resistance to the airflow while ensuring a long distance L and effectively preventing the molten residue S or the like from flowing into the second section 132. Pressure loss due to
  • the state of liquid phase such as the molten metal S mixed with gas, semi-solidification, and a solid phase shall be considered.
  • the molten metal debris S flies to the first section 131 together with the gas, it is possible to avoid clogging of the slit by the molten metal debris S.
  • the tip 20 provided with the suction recess 120 FIG. 4 (a)
  • the molten metal in the sleeve 11 is prevented from violating, so that the gas flowing into the suction path 51 has a liquid phase or a semi-solid state. Therefore, it is suitable for forming a slit in the first section 131.
  • the first section 131 may extend in the horizontal direction, and the second section 132 may extend upward (or downward) with respect to the section connecting portion 133 that surrounds the first section 131. .
  • the collection unit 134 is continuous downward with respect to the section connection unit 133.
  • the gas flowing out from the first section 131 wraps around the outer periphery of the side wall 131 ⁇ / b> B and flows into the second section 132. Therefore, the molten scum S and the like can be separated and collected from the gas by inertial force, centrifugal force, and collision of the airflow with the side wall 131B and the inner wall 133A of the section connecting portion 133. Molten waste S or the like separated from the gas accumulates on the inner wall of the section connection portion 133 and the inside of the collection portion 134 due to its own weight.
  • the positional relationship between the outlet 131A of the first section 131 and the inlet 132A of the second section 132 can be determined as in the third embodiment.
  • the position Ps1 of the outlet 131A in the extending direction D4 of the first section 131 is preferably located in front of the extending direction D4 (the tip side of the arrow) compared to the position Ps2 of the inlet 132A.
  • the difference between the position Ps1 and the position Ps2 corresponds to the above-described difference (distance L) between the height H1 and the height H2.
  • FIG. 19 shows the collection structure 130 more specifically.
  • a collection structure 130 shown in FIG. 19 includes a first section 131 and a second section 132, a section connection section 133, and a collection section 134.
  • the second section 132 is connected to the section connecting section 133 at a position where the first section 131 is surrounded by the section connecting section 133.
  • a difference (distance L) between the heights H1 and H2 of the outflow port 131A and the inflow port 132A is, for example, 5 mm.
  • the section connecting portion 133 and the collecting portion 134 are separated and assembled by the respective flanges 133F and 134F.
  • the flanges 133F and 134F are brought into contact with the annular center ring 135 and are restrained by the clamp 136.
  • the center ring 135 includes an O-ring 135A and a metal ring 135B that supports the O-ring 135A from the inner peripheral side against pressure reduction in the collection unit 134 due to vacuum suction.
  • the collection unit 134 includes a pipe 134A and a lid member 134B that is screwed into the lower end of the pipe 134A.
  • Another pipe and a connecting member (a nipple) with male threads formed at both ends can be added to the collecting part 134 to extend the length of the collecting part 134, and the volume of the collecting part 134 can be increased. Can be enlarged.
  • the diameter of the lower end side of the section connecting portion 133 is gradually reduced toward the collecting section 134, and a flange 133F is provided at the lower end of the section connecting portion 133.
  • the flange 133F functions as a backflow prevention unit having a small opening cross-sectional area with respect to the collection unit 134.
  • the backflow prevention unit prevents the molten scum S or the like from flowing back from the inside of the collection unit 134 to the outside.
  • the cross-sectional area of the opening inside the flange 133F is smaller than the opening cross-sectional area inside the flange 134F of the collecting portion 134 with which the flange 133F is abutted via the center ring 135.
  • the ratio of the inner diameter of the flange 133F to the inner diameter of the collection part 134 can be set to 1.5 to 3 times, for example, but is not limited thereto.
  • the backflow prevention part (flange 133F) is arranged between the collection part 134 and the second section 132, the molten metal S or the like accumulated in the collection part 134 is wound up by the air current and heads upward.
  • the outflow of the molten scum S or the like from the collection unit 134 can be suppressed by the backflow prevention unit (flange 133F), and the molten scum S or the like can be retained inside the collection unit 134.
  • the suction path 51 is used for both vacuum suction and air blow.
  • the backflow prevention unit it is possible to regulate the outflow of the molten scum S or the like from the collection unit 134 during the air blow.
  • the first section 131 includes a flange 131F obtained by drilling a disk-shaped blank flange, and cylinders 131D and 131E (pipe or nipple) joined to the upper and lower surfaces around the hole of the flange 131F by welding. Etc.).
  • An annular center ring 137 is interposed between the upper end portion 133B of the section connecting portion 133 and the outer peripheral portion 131C of the first section 131 between the flange 131F of the first section 131 and the flange 133G of the section connecting portion 133. And sealed.
  • the flange 133G and the flange 131F are restrained by a clamp 138.
  • a bellows-like pipe 139 is connected to the second section 132 via a center ring 137. Since the molten metal debris S mixed in the gas can be sufficiently removed by the collection structure 130, the bellows-like pipe 139 having a high degree of freedom of installation can be used as compared with a pipe that does not have elasticity. .
  • the backflow prevention portion (flange 133 ⁇ / b> F) having an opening concentric with the axis of the section connection portion 133 and the collection portion 134 is provided at the junction between the section connection portion 133 and the collection portion 134.
  • the collection structure 130 may be provided with the backflow prevention part which has the opening eccentric with respect to the axial center of the area connection part 133 and the collection part 134, and a semicircular backflow prevention part.
  • Such a backflow prevention unit is not limited to the joint portion between the section connection unit 133 and the collection unit 134, and may be disposed inside the pipe 134 ⁇ / b> A of the collection unit 134, for example.
  • the collection structure 140 shown in FIG. 20 includes a ball valve 141 that can open and close an outlet 144A provided in the collection unit 144. Except for this point, the collection structure 140 is configured in the same manner as the collection structure 130 of the third embodiment.
  • the collection part 144 is formed integrally with the section connection part 133.
  • An outlet 144A through which the molten metal S or the like can pass is provided at the lower end of the collection part 144.
  • the ball valve 141 includes a ball 141A as a valve body, and a housing 141B provided with a valve seat for receiving the ball 141A.
  • the ball valve 141 is opened and closed by rotating the ball 141A around an axis 141C orthogonal to the passage (bore) inside the housing 141B.
  • the collection structure 140 it is possible to close the ball valve 141 to collect the molten scum S and the like and open the ball valve 141 to discharge the molten scum S and the like.
  • the position of the outlet 144A is not necessarily limited to the lower end portion of the collecting portion 144. Even if the outlet 144A is provided on the side wall 144B of the collection part 144, the molten metal debris S and the like can be discharged by the pressure of the air flow during air blowing. Further, regardless of the position of the outlet 144A, it is not obstructed to manually open the ball valve 141 and take out the molten metal S or the like from the outlet 144A.
  • the collection structure 140 is (1) In the collection part 144, a ball valve 141 (open / close) capable of opening / closing an outlet 144A provided at a position lower than a height H2 of a connection point (inlet 132A) between the section connection part 133 and the second section 132 A kind of valve). (2) It is preferable to install a molten metal receiver 142 for receiving the molten metal S or the like below the ball valve 141.
  • the ball valve 141 is driven by an electric or air (compressed air) driven actuator 143 to open and close the outlet 144A.
  • vacuum suction is performed through the suction path 51 in a state where the outlet 144A is closed by the ball valve 141, the molten scum S or the like separated from the gas is collected in the collection unit 144.
  • the outlet 144 ⁇ / b> A is opened by the ball valve 141, the molten metal S or the like accumulated inside the collecting unit 144 can be discharged to the outside of the collecting unit 144.
  • the molten scum S or the like falls from the open outlet 144 ⁇ / b> A to the molten scum receiver 142.
  • the ball valve 141 is preferably opened at the time of air blowing through the suction path 51.
  • the ball valve 141 is opened at the time of air blowing, the molten metal S or the like collected inside the collecting unit 144 during vacuum suction can be discharged to the outside of the collecting unit 144.
  • the pressure of the air flow at the time of air blowing also acts, so that the molten metal S adhering to the ball 141A is also detached from the ball 141A and exposed to the outside. Can be discharged.
  • the melt flowing in the sleeve 11 is suppressed, so that the gas flowing into the suction path 51 is liquid.
  • Phase or semi-solid molten metal S is difficult to mix. Therefore, the operation of the ball valve 141 is not affected by the adhesion of the liquid phase or semi-solid state molten metal S, and the molten structure S is collected by the collecting structure 140 and the molten material S is discharged. However, it can operate stably. Note that the operation of the ball valve 141 is not affected even if a solidified piece of thin molten metal S or a lubricant is mixed in the gas.
  • the melt of the molten metal in the sleeve 11 is suppressed, so that the solid melt S is mixed into the gas flowing into the suction path 51. Even if it exists, it will remain in a small quantity, and the molten metal debris S solidified in the lump will not mix with gas and fly to the collection part 144. Therefore, the operation of the ball valve 141 can be avoided and the operation can be stably performed.
  • the molten waste S and the like can be automatically discharged to the outside of the collection unit 144 during air blow.
  • the amount of the molten metal S or the like accumulated in the collection unit 144 can be suppressed by removing the molten metal S or the like from the inside of the collection unit 144. If it does so, the quantity of the molten metal waste S etc. which are attracted
  • the molten scum S or the like since the molten scum S or the like is discharged to the outside of the collection unit 144, it is sufficient to clean the molten stag receiver 142 on which the molten scum S or the like has accumulated.
  • the volume of the molten metal receiver 142 is preferably determined appropriately in view of work efficiency and the manufacturing cost of the molten metal receiver 142.
  • the ball valve 141 is opened during air blow, and the molten waste S and the like can be discharged from the collection portion 144 into the molten waste receiver 142. Production can be continuously performed while the collected molten metal S or the like is automatically and periodically taken out from the collection unit 144.
  • valves 141 that can reliably close the outlet 144A of the collection unit 144 during vacuum suction, such as a butterfly valve or a gate valve, may be employed.
  • the fifth embodiment relates to facilitating cleaning of the molten metal debris S and the like adhering to the inside of the vacuum pipe.
  • the vacuum piping structure 150 disclosed in the fifth embodiment includes the injection apparatus 1 and 6 of the first and second embodiments and the die casting machine 100 including the injection apparatus 1 or 6, as well as the injection apparatus and die casting machine of the die casting machine. Can be applied to the machine.
  • the configurations disclosed in the fifth embodiment and the modified example of the fifth embodiment can also be applied to an injection device including a plunger including a tip in which the suction recess 120 is not partitioned and a sleeve.
  • the fifth embodiment shows a structure of a suction path 51 (vacuum pipe) for vacuum-sucking the space formed in communication from the internal space of the sleeve 11 to the cavity 23.
  • a suction path 51 vacuum pipe
  • the suction path 51 for sucking the inner space of the sleeve 11 from each of the suction ports 14 to 17 which are a plurality of holes in the sleeve 11 will be described.
  • the suction path 51 is provided at one place or a plurality of places of the mold. The same applies to the suction path for sucking the inside of the cavity 23 from the connection port 28.
  • the collection unit 152 provided in the course of the suction path 51 through which the gas is sucked from the inside of the sleeve 11 through the suction port 14, and extends from the upstream side of the collection unit 152 toward the collection unit 152.
  • a vacuum piping structure 150 with a cleaning section 151 is shown.
  • the cleaning section 151 includes suction ports 14 to 17 connected to the internal space of the sleeve 11 that is a generation source of the molten metal S and the like in the suction path 51, and a collection unit 152 that collects the molten metal S and the like mixed in the gas. Corresponds to the interval between
  • molten scum S or the like is introduced into the suction path 51 from the suction port 14 (or 15 to 17).
  • the adhering molten metal S or the like forms a throttle portion in the suction path 51.
  • the upstream side of the collecting unit 152 in the flow of the sucked gas has a larger amount of the molten metal S or the like mixed in the gas than the downstream side (vacuum tank 36 side) of the collecting unit 152.
  • the cleaning section 151 upstream from the collection unit 152 has a higher need to remove the molten scum S or the like by cleaning than the piping downstream from the collection unit 152.
  • the cleaning section 151 is a section in which the necessity for cleaning is relatively high in the suction path 51.
  • This embodiment contributes to the improvement of the cleaning work efficiency of the cleaning section 151 by the structure in which the plurality of pipes 153 forming the cleaning section 151 are connected by the connecting member 160 provided with the gripping portion 161.
  • the cleaning section 151 is provided in the suction port 14 (or 15 to 17) so that the inside of the pipe 153 can be easily cleaned over almost the entire length from the suction port 14 (or 15 to 17) to the collection unit 152. It is preferable that it extends from the vicinity to the vicinity of the collection part 152. In the example shown in FIG.
  • the flange of the pipe inserted into the suction port 14 (or 15 to 17) and the flange of the pipe 153 are connected by a connecting member 160.
  • the flange provided in the collection unit 152 and the flange of the pipe 153 are connected by a connecting member 160.
  • any of the suction paths 51 corresponding to the suction ports 15 to 17 can each include a cleaning section 151 and a collection unit 152.
  • the cleaning section 151 and the collecting unit 152 can be provided only in at least one suction path 51 that is particularly easily blocked by the molten metal S or the like.
  • the cleaning section 151 has a curved shape as a whole by connecting a plurality of pipes 153.
  • the plurality of pipes 153 include a straight pipe portion 153A that extends linearly and a bent pipe portion 153B that is bent. When the straight pipe portion 153A and the curved pipe portion 153B are not particularly distinguished, they are referred to as a pipe 153.
  • the cleaning section 151 is disassembled into a plurality of pipes 153, the cleaning section 151 is divided into pipes 153 having an appropriate length so that the work of removing the molten metal S attached to the inner wall of each pipe 153 can be easily performed. be able to.
  • the flanges of the plurality of pipes 153 are connected by a connecting member 160.
  • the connecting member 160 has a gripping portion 161 exposed outside the pipe 153 and can be attached to and detached from the flange by hand using the gripping portion 161.
  • the vacuum line is typically constructed using steel pipes and threaded joints such as nipples, unions, elbows, etc., and it is necessary to use tools when disassembling these components. .
  • the cleaning section 151 of this embodiment can be easily disassembled into a plurality of pipes 153 by hand using the gripping portion 161, and each pipe 153 can be cleaned. Therefore, it contributes to the improvement of the work efficiency of cleaning the molten metal debris S attached to the inner wall of the pipe 153.
  • the vacuum piping structure 150 is (1) A cleaning section 151 including a plurality of straight pipe portions 153A and a plurality of curved pipe portions 153B; (2) The collection part 152 (box for molten metal waste) is provided. The suction port 14 (or 15 to 17) and the collecting portion 152 are connected by a curved cleaning section 151 formed by combining the straight tube portion 153A and the curved tube portion 153B.
  • the pipe 153 (straight pipe portion 153A and curved pipe portion 153B) is not flexible and flexible unlike a bellows pipe (bellows pipe) and is formed into a predetermined shape from an appropriate material such as metal. ing.
  • the bellows tube (bellows tube) has a corrugated uneven shape on the inner peripheral portion from a shape in which peaks and valleys are alternately formed in the longitudinal direction, whereas the pipe 153 of this embodiment is In order to suppress adhesion and retention of the liquid phase or the semi-solidified molten material S, it is preferable to have a smooth inner peripheral surface. In the case where liquid phase or semi-solid state molten metal S or the like does not enter the pipe 153, it is also acceptable to use a bellows pipe or the like for the pipe 153.
  • an appropriate pipe can be adopted as the pipe 153.
  • a carbon steel pipe for piping according to Japanese Industrial Standard JIS G 3452 can be used as the straight pipe portion 153A.
  • an NW / KF standard 90 ° elbow can be used as the curved pipe portion 153B.
  • the cleaning section 151 extends upward from the suction port 14 (or 15 to 17), and is curved downward through a horizontally extending portion.
  • One or more straight pipe portions 153A can be used for a portion extending upward from the suction port 14, a portion extending horizontally, and a portion extending downward.
  • the straight pipe portion 153A used for the portion extending upward and the straight pipe portion 153A used for the portion extending horizontally are connected by a curved pipe portion 153B.
  • the straight pipe portion 153A used for the horizontally extending portion and the straight pipe portion 153A used for the upward extending portion are connected by another curved pipe portion 153B.
  • the cleaning section 151 may be curved into a more complicated shape than the illustrated inverted U shape.
  • the cleaning section 151 may be configured to include a curved pipe portion 156 shown in FIG.
  • the curved pipe portion 156 includes a first end portion 156A, a bent portion 156B, and a second end portion 156C, and the first end portion 156A and the second end portion 156C open in opposite directions.
  • the axial center X1 of the opening of the first end 156A and the axial center X2 of the opening of the second end 156C are parallel to each other and are separated in a direction perpendicular to the axial direction of the opening.
  • the collection part 152 collects the molten metal debris S separated from the sucked gas by inertial force and centrifugal force. With this collection part 152 and the piping 153 and the piping 154 communicating via the collection part 152, the molten metal waste S etc. are separated and collected from gas.
  • the collection part 152 connects the piping 153 and the piping 154, and stores the molten metal residue S etc. inside.
  • a pipe 153 (straight pipe part 153A or curved pipe part 153B) that terminates the cleaning section 151 is connected to the collection part 152, and a pipe 154 into which a gas from which the molten metal debris S or the like is separated flows is connected. ing.
  • the collection part 152 and the piping 154 are integrally formed.
  • the gas flowing downward from the lower end of the straight pipe portion 153A toward the inside of the collecting portion 152 is turned toward the pipe 154 inside the collecting portion 152 and is opened in the inner wall of the collecting portion 152 (not shown). It flows into the pipe 154 from the inflow port.
  • the molten metal S having a larger weight and density than the gas is separated from the gas by the inertial force and the centrifugal force. It is collected by the inner wall and collected inside.
  • the straight pipe portion 153A corresponds to the first section 131 described above
  • the pipe 154 corresponds to the second section 132 described above.
  • a known structure that can separate and collect the molten scum S from the gas can be employed.
  • the connecting member 160 serves as a pipe joint that enables connection between the suction port 14 (or 15 to 17) and the pipe 153, connection between the pipes 153, and connection between the pipe 153 and the collecting portion 152 by a flange. .
  • the connecting member 160 includes a center ring 162 disposed between adjacent flanges 153F and 153F of the pipe 153, and a clamp 163 that restrains the flanges against each other via the center ring 162.
  • the clamp 163 includes two or more clamp bodies 163A and 163B arranged around the flanges 153F and 153F, and tightens or loosens the clamp bodies 163A and 163B with respect to the flanges 153F and 153F. And a gripping portion 161 that can be attached.
  • the center ring 162 is sandwiched between the flange 153F of the pipe 153 and the flange 153F of the other pipe 153, and outside air enters the inside of the pipe 153 from the gap between the flanges 153F and 153F. It plays the role of a seal to prevent this, and is formed in a hollow cylindrical shape (annular shape).
  • the center ring 162 includes an O-ring 162A that seals between the flanges 153F and 153F, and a metal ring 162B that supports the O-ring 162A from the inner peripheral side.
  • the center ring 162 preferably includes a mesh 162C for suppressing the passage of the molten metal residue S or the like.
  • the center ring 162 shown in FIG. 22 is a center ring with a mesh of NW / KF standard, but besides this, it is possible to prevent outside air from entering the inside of the pipe 153 between the flanges 153F and 153F. Any suitable seal member that is possible can be employed.
  • the flange 153 ⁇ / b> F protrudes outward in the radial direction of the pipe 153 at the end of the pipe 153 and is formed in a hollow cylindrical shape.
  • the flange 153F has an opposing surface F1 that faces the counterpart flange 153F and a tapered back surface F2.
  • the facing surface F1 is orthogonal to the axis A1 of the pipe 153.
  • the taper back surface F2 is inclined with respect to the axis A1 so that the outer end in the radial direction of the pipe 153 is closer to the other flange 153F than the inner end.
  • the tapered back surface F ⁇ b> 2 is in contact with the inclined tapered inner wall 164 ⁇ / b> A of the clamp 163.
  • Flange (not shown) is also formed at the airflow outlet of the suction port 14 (or 15 to 17) and the airflow inlet of the collecting unit 152, respectively. These flanges can also be formed in the same manner as the flange 153F shown in FIG.
  • Each of the flanges 153F and 153F shown in FIG. 22 is a flange of NW / KF standard, ISO 2861 “Vacuum Technology—Dimensions of clamped-type quick-release couplings”, and has the same shape. However, as long as the flange-type pipe joint structure is established by the flanges 153F and 153F, the flanges 153F and 153F may have an appropriate shape or may have different shapes.
  • the flange 153F shown in FIG. 22 is connected to the main body of the pipe 153 by welding. This welding operation is not necessarily required, and a flanged pipe that is commercially available with the flange 153F provided on the pipe 153 can also be used.
  • the clamp 163 fastens and fixes the flanges 153F and 153F sandwiching the center ring 162 therebetween.
  • the clamp 163 is: (1) a first clamp body 163A; (2) a second clamp body 163B; (3) a hinge mechanism 165 (hinge mechanism); (4) a fastening mechanism 166 including a gripping portion 161.
  • the clamp 163 may include a ratchet mechanism (not shown).
  • FIG. 23 is a diagram illustrating the clamp 163 in the closed state
  • FIG. 24 is a diagram illustrating the clamp 163 in the open state.
  • the first clamp body 163A and the second clamp body 163B are formed in a C shape (arc shape) in a plan view, and are disposed so as to surround a flange 153F (not shown in FIG. 23) such as the pipe 153.
  • each of the first clamp main body 163A and the second clamp main body 163B is formed with an annular groove 164 that receives the flanges 153F and 153F abutted through the center ring 162.
  • annular groove 164 Inside the groove 164, tapered inner walls 164A corresponding to the respective taper back surfaces F2 of the flanges 153F and 153F are formed.
  • the hinge mechanism 165 couples one end of the first clamp body 163A and one end of the second clamp body 163B.
  • a fastening mechanism 166 is provided at the other end (fastening end) of each of the first clamp body 163A and the second clamp body 163B.
  • the hinge mechanism 165 includes a first pin 165A and a second pin 165B arranged along the axial direction of the pipe 153.
  • the first clamp body 163A can rotate around the first pin 165A
  • the second clamp body 163B can rotate around the second pin 165B. Therefore, as shown in FIG. 24, the clamp is opened between the fastening end of the first clamp body 163A and the fastening end of the second clamp body 163B, and closed between these fastening ends. It exhibits a closed state (FIG. 23).
  • the hinge mechanism 165 opens between the fastening portion of the first clamp body 163A and the fastening portion of the second clamp body 163B, As shown in FIG. 22, the flanges 153 ⁇ / b> F and 153 ⁇ / b> F are inserted into the groove 164. Next, as shown in FIG. 23, the flanges 153F and 153F are restrained by fastening the first clamp body 163A and the second clamp body 163B by the fastening mechanism 166.
  • the fastening mechanism 166 engages with the shaft portion 166A and the shaft portion 166A that connects the fastening end portion of the first clamp body 163A and the fastening end portion of the second clamp body 163B.
  • a wing nut 166C and a washer 166E are provided.
  • the distal end portion of the shaft portion 166A is held on the outer peripheral side from the wall 164B corresponding to the bottom of the groove 164 by a pin 166D penetrating the distal end portion in the axial direction of the first clamp body 163A.
  • a through hole into which the pin 166D is inserted is formed in the first clamp body 163A.
  • a through hole may be formed in the second clamp body 163B at the same position as the through hole of the first clamp body 163A, but no pin is inserted into the through hole of the second clamp body 163B.
  • a portion protruding radially outward from the female screw portion corresponds to the grip portion 161 that is gripped when the clamp 163 is attached to and detached from the flanges 153F and 153F.
  • the gripping portion 161 is not necessarily a part of the wing nut 166C.
  • the gripping portion 161 can be appropriately configured as long as it can grip and detach the connecting member 160 from the flanges 153F and 153F.
  • the gripping portion 161 may be a knob provided on a nut that engages with the shaft portion 166A in a direction orthogonal to the axial direction of the nut.
  • the first clamp body 163A and the second clamp body 163B are flanged 153F, 153F by manually turning the wing nut 166C using the gripping portion 161, as shown in FIG.
  • the first clamp body 163A and the second clamp body 163B can be detached from the flanges 153F and 153F.
  • the cleaning section 151 can be disassembled into a plurality of pipes 153 and cleaned by an appropriate method.
  • the molten metal debris S is blown off from the inner periphery of the pipe 153 by blowing air, or a rod-shaped member is inserted into the pipe 153, and the molten debris S or the like is inserted into the pipe 153 by the rod-shaped member. It can be peeled off from the periphery.
  • the smooth inner wall of the pipe 153 is easier to remove the adhering molten scum S and the like than the inner wall having the unevenness of the bellows pipe. If it is difficult to remove the molten metal residue S, the pipe 153 may be replaced with a spare pipe 153.
  • the pipe 153 can be manually connected or released using the gripping portion 161 of the connecting member 160 without using a tool. Disassembly of the cleaning section 151 at the time of cleaning and assembly of the pipe 153 after cleaning can be performed in a short time.
  • the clamp 163 shown in FIGS. 22 to 24 is a vacuum pipe clamp that fastens and fixes NW / KF standard flanges, but this is only an example. As long as it has a gripping part that is exposed to the outside of the pipe 153 and can be manually tightened or loosened with respect to the flange, and can be attached to and detached from the flange by the gripping part, the clamp 163 Instead of this, a clamp having an appropriate configuration can be employed. For example, it includes a chain formed by connecting a plurality of (for example, four) links (clamp bodies) in which grooves for receiving the flanges 153F and 153F are formed, and knobs (gripping portions) for tightening both ends of the chain with screws. Chain type clamps can be used. When the knob is gripped and rotated around the axis of the screw to reduce the diameter of the chain, the flanges 153F and 153F are restrained inside the chain.
  • the cleaning section 155 may extend upward from the suction port 14 (or 15 to 17) and bend toward the collecting portion 152 in the horizontal direction.
  • a collecting portion 152 is connected to a horizontal portion 155H of the cleaning section 155.
  • illustration is abbreviate
  • the suction path 52 includes a vacuum tank and a vacuum pump, like the above-described suction path 51 (FIG. 2) connected to the suction ports 14 to 17 of the sleeve 11.
  • the suction path 52 may include the collection structures 130 and 140 of the third to fourth embodiments described above, the vacuum piping structure 150 and the connection member 160 of the fifth embodiment.
  • a collection structure 130 is provided in the middle of a suction path 52 through which gas is sucked from the cavity 23 through the connection port 28 of the molds 21 and 22.
  • the suction path 52 includes a cleaning section 151 that extends from the vicinity of the connection port 28 to the vicinity of the collection unit 134.
  • the molten metal debris S mixed in the gas sucked into the suction path 52 from the cavity 23 through the connection port 28 is separated from the gas by the collection structure 130 and captured in the collection unit 134. Can be collected. Further, the cleaning section 151 is easily disassembled into a plurality of pipes 153 by the connecting member 160 having the gripping parts 161 (FIGS. 23 and 24), and the molten metal S or the like adhering to each of the pipes 153, the collecting part 134, etc. Can be cleaned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

In order to prevent the inflow of outside air into a suctioned sleeve and suppress turbulence in molten metal, thereby achieving a stable suctioning of the interior of the sleeve, an injection device 1 in a die casting machine 100 is configured so as to be capable of suctioning a suction recess 120 partitioned in the tip 20 of a plunger 12 and a space 75 in front of the front end of the tip 20. Two or more suction openings 14–17 capable of suctioning the inside of a sleeve 11 are formed side by side in the sleeve 11 in the direction D1 in which the plunger 12 advances/retreats. In accordance with the position of the plunger 12 as the plunger advances relative to the sleeve 11, at least one of the suction openings among the two or more suction openings 14–17 selectively communicates with the space 75 in the front, and at least one of the suction openings among the two or more suction openings 14–17 selectively communicates with the suction recess 120.

Description

ダイカストマシンの射出装置、ダイカストマシン、ダイカストマシンの真空用配管の構造、および鋳造方法Die-casting machine injection device, die-casting machine, structure of vacuum piping for die-casting machine, and casting method
 本発明は、スリーブの内側で進退可能なプランジャによりダイカストマシンのキャビティに向けて溶湯を射出する射出装置、その射出装置を備えたダイカストマシン、ダイカストマシンの真空用配管の構造、およびダイカストマシンの射出装置を用いた鋳造方法に関する。 The present invention relates to an injection device that injects a molten metal toward a cavity of a die casting machine by a plunger that can advance and retreat inside a sleeve, a die casting machine including the injection device, a structure of vacuum piping for the die casting machine, and an injection of the die casting machine The present invention relates to a casting method using the apparatus.
 溶湯が供給されるスリーブ内や、スリーブ内からプランジャにより溶湯が射出されるキャビティの真空度を効率よく高めてダイカスト製品における巻き込み巣の発生を抑えるため、スリーブの内側を吸引する技術が知られている。
 例えば、特許文献1には、真空ポンプを用いてスリーブの内側を吸引するダイカストマシンが記載されている。
 かかるダイカストマシンは、スリーブの内側および金型のキャビティを吸引するために第1~第4の吸引装置を備えている。スリーブの内側の吸引には第1吸引装置および第2吸引装置が用いられる。第1吸引装置は、アルミニウム合金等の溶湯が注入される注湯口の近傍でかつ注湯口よりも前方に位置する孔を通じてスリーブ内を吸引する。第2吸引装置は、プランジャのチップとプランジャロッドのフランジとの間のくびれ部とスリーブの内周面との間に形成される閉空間を吸引することにより、チップのくびれ部とスリーブの内周面との間の隙間を介してスリーブ内を吸引する。くびれ部により形成された閉空間の吸引は、プランジャロッドのフランジに軸方向に沿って形成された貫通孔を通じて行われる。
In order to efficiently increase the degree of vacuum in the sleeve to which the molten metal is supplied and in the cavity from which the molten metal is injected by the plunger, the technique of sucking the inside of the sleeve is known in order to suppress the occurrence of entrapment in the die-cast product. Yes.
For example, Patent Document 1 describes a die casting machine that sucks the inside of a sleeve using a vacuum pump.
Such a die casting machine includes first to fourth suction devices for sucking the inside of the sleeve and the cavity of the mold. A first suction device and a second suction device are used for suction inside the sleeve. The first suction device sucks the inside of the sleeve through a hole located in the vicinity of the pouring port into which a molten metal such as an aluminum alloy is poured and in front of the pouring port. The second suction device sucks a closed space formed between the constricted portion between the plunger tip and the flange of the plunger rod and the inner peripheral surface of the sleeve, thereby forming the inner constriction of the tip constricted portion and the sleeve. The inside of the sleeve is sucked through a gap between the surface. The suction of the closed space formed by the constricted portion is performed through a through hole formed in the flange of the plunger rod along the axial direction.
 特許文献1では、スリーブ内に溶湯を注入した後、プランジャのチップにより注湯口が閉鎖される位置までプランジャが前進すると、先ず、注湯口の近傍の孔を通じて第1吸引装置によりスリーブ内におけるチップよりも前方の空間の気体を吸引する。このときスリーブ内の前方の空間を介してキャビティの気体も吸引される。
 次いで、注湯口の近傍の孔がチップにより閉鎖される位置までプランジャが前進すると、第2吸引装置による吸引に移行する。第2吸引装置は、プランジャのくびれ部とスリーブの内周面との間に区画された閉空間をプランジャロッドのフランジの軸方向の貫通孔を通じて吸引することで、スリーブ内のチップよりも前方の空間を吸引する。
 第2吸引装置による吸引を開始した後、第3吸引装置によりキャビティ内の吸引を開始する。
 特許文献1の記載によれば、第1吸引装置によりキャビティ内がスリーブを介して吸引されるため、キャビティ内の真空度がスリーブ内の真空度よりも高くなることが防止され、これにより先湯の発生が抑制される。
In Patent Document 1, after the molten metal is injected into the sleeve, when the plunger advances to a position where the pouring port is closed by the plunger tip, first, the first suction device passes through the hole in the vicinity of the pouring port from the tip in the sleeve. Also sucks the gas in the front space. At this time, the gas in the cavity is also sucked through the space in front of the sleeve.
Next, when the plunger advances to a position where the hole in the vicinity of the pouring port is closed by the tip, the suction moves to the second suction device. The second suction device sucks the closed space defined between the constricted portion of the plunger and the inner peripheral surface of the sleeve through the axial through-hole of the flange of the plunger rod, so that the second suction device is in front of the tip in the sleeve. Aspirate the space.
After the suction by the second suction device is started, the suction in the cavity is started by the third suction device.
According to the description of Patent Document 1, since the inside of the cavity is sucked through the sleeve by the first suction device, the degree of vacuum in the cavity is prevented from becoming higher than the degree of vacuum in the sleeve. Is suppressed.
特開2014-117741号公報JP 2014-117741 A
 吸引により大気圧に対して負圧となるスリーブ内に外気が流入することでスリーブ内の溶湯が暴れると、溶湯の飛沫の付着により吸引用の孔が閉塞したり、真空ラインへの溶湯カスの堆積により吸引効率の低下を招いたりする場合がある。
 「溶湯が暴れる」は、例えばスリーブの後端からプランジャとスリーブとの径方向の隙間を通じてチップよりも前方に外気が吹き込むことで、溶湯が泡立ち飛散したり、湯面が激しく揺れ動いたりすることを言う。こうした溶湯の暴れに起因して吸引用の経路が閉塞したり、吸引効率が低下したりすることなく、スリーブ内の気体を安定して吸引したい。
 特許文献1に記載されたダイカストマシンについても、スリーブ内の吸引時に溶湯が暴れることで吸引用の孔や配管が閉塞するリスクがある。
If outside air flows into the sleeve, which is negative with respect to atmospheric pressure due to suction, the molten metal in the sleeve becomes unclear, the suction holes close due to adhesion of the molten metal droplets, In some cases, the suction efficiency may decrease due to the accumulation.
“Melting metal melt” means, for example, that the outside air blows forward from the tip through the radial gap between the plunger and the sleeve from the rear end of the sleeve, and the molten metal bubbles and scatters or the molten metal surface vibrates violently. say. It is desirable to stably suck the gas in the sleeve without blocking the suction path due to such a violent molten metal or reducing the suction efficiency.
The die-casting machine described in Patent Document 1 also has a risk that the hole for suction and the piping may be blocked due to the molten metal being exposed during suction in the sleeve.
 以上より、本発明は、吸引されたスリーブ内への外気の流入を防いで溶湯の暴れを抑制することにより、スリーブ内の安定した吸引を実現することを目的とする。 In view of the above, an object of the present invention is to realize stable suction in the sleeve by preventing the inflow of outside air into the sucked sleeve and suppressing the rampage of the molten metal.
 本発明は、溶湯が内側に供給されるスリーブと、スリーブの内側で進退可能なプランジャと、を備え、プランジャによりダイカストマシンのキャビティに向けて溶湯を射出する射出装置であって、プランジャのチップには、スリーブの内周部に対して径方向の内側に退避し、周方向に連続する吸引用凹部が区画され、チップの前端よりも前方の空間と、吸引用凹部の内側とを吸引可能に構成され、スリーブには、スリーブを内側と外側とに亘り貫通し、スリーブの内側を吸引可能な2以上の吸引口がプランジャの進退方向に並んで形成され、スリーブに対して前進するプランジャの位置に応じて、2以上の吸引口のうちから選択的に少なくとも1つが前方の空間と連通し、2以上の吸引口のうちから選択的に少なくとも1つが吸引用凹部の内側と連通することを特徴とする。
 「吸引用凹部の内側」は、チップとスリーブとの間に区画された空間を意味するものとする。
The present invention is an injection device that includes a sleeve to which molten metal is supplied and a plunger that can advance and retreat inside the sleeve, and injects the molten metal toward the cavity of the die casting machine by the plunger. Is retracted inward in the radial direction with respect to the inner peripheral portion of the sleeve, and a suction concave portion that is continuous in the circumferential direction is defined so that the space ahead of the front end of the chip and the inner side of the suction concave portion can be sucked. The position of the plunger that is configured and is formed in the sleeve so that two or more suction ports that penetrate the sleeve from the inner side to the outer side and that can suck the inner side of the sleeve are aligned in the forward and backward direction of the plunger. Accordingly, at least one of the two or more suction ports selectively communicates with the space in front, and at least one of the two or more suction ports is selectively disposed in the suction recess. And wherein the communicating with.
“Inside the suction recess” means a space defined between the tip and the sleeve.
 「吸引可能に構成」は、射出装置が、スリーブやプランジャチップ等に形成された吸引用の孔や経路を備えており、射出装置に、吸引用の孔や経路を通じて吸引する真空吸引系統が与えられていることで、スリーブの内側が吸引可能に構成されていることを言うものとする。真空吸引系統は、例えば、配管やバルブ、真空ポンプ、真空タンク等を含むものとする。 In the “suctionable configuration”, the injection device is provided with a suction hole or path formed in a sleeve, a plunger tip or the like, and a vacuum suction system is provided for suction through the suction hole or path. Therefore, the inside of the sleeve is configured to be suckable. The vacuum suction system includes, for example, piping, valves, a vacuum pump, a vacuum tank, and the like.
 本発明のダイカストマシンの射出装置において、2以上の吸引口は、進退方向に所定間隔に配置され、チップは、進退方向の前側に位置する第1大径部と、進退方向の後側に位置し、第1大径部との間に吸引用凹部を区画する第2大径部と、を備え、吸引口の数をn、吸引口の進退方向の寸法をLs2、進退方向に隣り合う吸引口の間隔をLs3、吸引用凹部の進退方向の寸法をLp0、第1大径部の進退方向の寸法をLp1、第2大径部の進退方向の寸法をLp2、とした場合に、Lp1<n×Ls2+(n-1)×Ls3 であることが好ましい。 In the injection device for a die casting machine according to the present invention, the two or more suction ports are arranged at predetermined intervals in the advancing / retreating direction, and the tip is positioned on the first large diameter portion located on the front side in the advancing / retreating direction and on the rear side in the advancing / retreating direction And a second large-diameter portion that divides a suction recess with the first large-diameter portion, the number of suction ports is n, the dimension of the suction port in the advancing / retreating direction is Ls2, and suction is adjacent in the advancing / retreating direction. When the interval between the mouths is Ls3, the dimension in the advancing / retreating direction of the suction recess is Lp0, the dimension in the advancing / retreating direction of the first large diameter part is Lp1, and the dimension in the advancing / retreating direction of the second large diameter part is Lp2, Lp1 < n × Ls2 + (n−1) × Ls3 is preferable.
 さらに、以下の式のいずれかに示す要件を備えることが好ましい。
 Ls1は、スリーブの注湯口から、注湯口に最も近い吸引口までの進退方向における距離であるものとする。
 Lp0<Ls1+n×Ls2+(n-1)×Ls3-Lp1
 Lp2≧Ls2
 Lp0>Ls3
Furthermore, it is preferable to have the requirements shown in any of the following formulas.
Ls1 is a distance in the advancing and retracting direction from the pouring port of the sleeve to the suction port closest to the pouring port.
Lp0 <Ls1 + n × Ls2 + (n−1) × Ls3-Lp1
Lp2 ≧ Ls2
Lp0> Ls3
 本発明のダイカストマシンの射出装置は、プランジャのチップの外周部に沿って周方向に連続し、プランジャの前進および後退に伴いスリーブの内周部を摺動する摺動シールを備え、摺動シールは、チップにおける吸引用凹部以外の部位に位置していることが好ましい。 The injection device for a die casting machine of the present invention includes a sliding seal that is continuous in the circumferential direction along the outer peripheral portion of the tip of the plunger and slides on the inner peripheral portion of the sleeve as the plunger moves forward and backward. Is preferably located in a portion of the chip other than the suction recess.
 さらに、摺動シールの径方向の内側に配置され、摺動シールとチップとの間の隙間を封止するシール部材を備えることが好ましい。 Furthermore, it is preferable to provide a seal member that is disposed inside the sliding seal in the radial direction and seals a gap between the sliding seal and the chip.
 上記構成において、摺動シールは、金属材料を用いて構成され、シール部材は、ゴム系材料を用いて構成されていることが好ましい。 In the above configuration, the sliding seal is preferably configured using a metal material, and the seal member is preferably configured using a rubber-based material.
 そして、本発明のダイカストマシンの射出装置は、プランジャの進退方向に並ぶ2以上の摺動シールを備え、少なくとも1つの摺動シールとチップとの間にシール部材が配置されていることが好ましい。 And it is preferable that the injection device of the die casting machine of the present invention comprises two or more sliding seals arranged in the forward and backward direction of the plunger, and a sealing member is disposed between at least one sliding seal and the tip.
 本発明のダイカストマシンの射出装置において、摺動シールは、周方向の一部における不連続な箇所である不連続部を含んで環状に形成され、径方向の外側に向けてスリーブの内周部を押圧する状態にチップおよびスリーブに装着され、シール部材は、環状に形成され、摺動シールとチップとの間で撓んで隙間を封止することが好ましい。 In the die casting machine injection device of the present invention, the sliding seal is formed in an annular shape including a discontinuous portion which is a discontinuous portion in a part in the circumferential direction, and the inner peripheral portion of the sleeve toward the radially outer side. It is preferable that the chip and the sleeve are mounted in a state of pressing, and the seal member is formed in an annular shape and is bent between the sliding seal and the chip to seal the gap.
 本発明のダイカストマシンの射出装置において、摺動シールの不連続部は、周方向かつプランジャの進退方向に互いにシフトしている第1空隙および第2空隙と、第1空隙および第2空隙を接続する分割部と、を含み、分割部は、シール部材により径方向の内側から封止されていることが好ましい。 In the injection device for a die casting machine according to the present invention, the discontinuous portion of the sliding seal connects the first gap and the second gap that are shifted from each other in the circumferential direction and in the forward and backward direction of the plunger, and the first gap and the second gap. The divided portion is preferably sealed from the inside in the radial direction by a seal member.
 本発明のダイカストマシンの射出装置は、プランジャの進退方向に隣り合う2以上の摺動シールを備え、プランジャの進退方向に隣り合う摺動シールのそれぞれの不連続部は、周方向に互いにシフトし、隣り合う摺動シールの境界は、シール部材により径方向の内側から封止されていることが好ましい。 The injection device for a die casting machine of the present invention includes two or more sliding seals adjacent to each other in the plunger advance / retreat direction, and the discontinuous portions of the slide seals adjacent to each other in the plunger advance / retreat direction are shifted from each other in the circumferential direction. The boundary between adjacent sliding seals is preferably sealed from the inside in the radial direction by a sealing member.
 本発明のダイカストマシンの射出装置は、プランジャの進退方向に並ぶ2以上の摺動シールを備え、プランジャの進退方向に隣り合う摺動シールのそれぞれの不連続部は、周方向に互いに離れていることが好ましい。 The injection device for a die casting machine according to the present invention includes two or more sliding seals arranged in the advance / retreat direction of the plunger, and the discontinuous portions of the slide seals adjacent in the advance / retreat direction of the plunger are separated from each other in the circumferential direction. It is preferable.
 本発明のダイカストマシンの射出装置は、チップにおいて、進退方向の前側に位置する第1大径部の外周部と、進退方向の後側に位置し、第1大径部との間に吸引用凹部を区画する第2大径部の外周部とにシール剤を供給可能なシール剤供給装置を備え、スリーブの内周部と、第1大径部および第2大径部のそれぞれの外周部との間の隙間がシール剤により封止されることが好ましい。 An injection device for a die casting machine according to the present invention includes a tip for suction between an outer peripheral portion of a first large-diameter portion located on the front side in the forward / backward direction and a rear side in the forward / backward direction and the first large-diameter portion. A sealant supply device capable of supplying a sealant to the outer peripheral part of the second large-diameter part that divides the recess is provided, and the inner peripheral part of the sleeve, and the outer peripheral part of each of the first large-diameter part and the second large-diameter part It is preferable that the gap between the two is sealed with a sealant.
 本発明のダイカストマシンの射出装置において、スリーブの内側から吸引口を通じて気体が吸引される吸引経路の途上に、気体に混入した溶湯カスを捕集する捕集構造が設けられ、捕集構造は、吸引経路に接続されて溶湯カスを受け入れる捕集部と、吸引経路の上流側から捕集部に向けて延びる吸引経路の第1区間と、第1区間を外側から包囲し、第1区間を超えて捕集部に至る区間接続部と、区間接続部により第1区間が包囲されている位置で区間接続部と連なる吸引経路の第2区間と、を備え、第1区間および第2区間は、区間接続部の内側を介して連通していることが好ましい。 In the injection device of the die casting machine of the present invention, a collecting structure for collecting the molten metal mixed in the gas is provided in the course of the suction path through which the gas is sucked from the inside of the sleeve through the suction port. A collection part connected to the suction path for receiving molten waste, a first section of the suction path extending from the upstream side of the suction path toward the collection section, and surrounding the first section from the outside, exceeding the first section And a second section of the suction path that continues to the section connecting section at a position where the first section is surrounded by the section connecting section, and the first section and the second section are: It is preferable to communicate via the inside of a section connection part.
 本発明のダイカストマシンの射出装置において、第1区間は、捕集部に向けて下方に延びており、第1区間の流出口の高さが、第2区間の流入口の高さ以下であることが好ましい。 In the die casting machine injection apparatus according to the present invention, the first section extends downward toward the collecting portion, and the height of the outlet in the first section is equal to or lower than the height of the inlet in the second section. It is preferable.
 本発明のダイカストマシンの射出装置において、区間接続部は、捕集部に対して開口断面積が小さい逆流防止部を備えることが好ましい。 In the injection device for a die casting machine of the present invention, it is preferable that the section connection portion includes a backflow prevention portion having a small opening cross-sectional area with respect to the collection portion.
 本発明のダイカストマシンの射出装置において、捕集構造は、捕集部に設けられ、溶湯カスが通過可能な取出口と、取出口を開閉可能なバルブと、を備えることが好ましい。 In the die casting machine injection apparatus according to the present invention, it is preferable that the collection structure is provided with a collection port provided in the collection unit, through which the molten metal can pass, and a valve capable of opening and closing the collection port.
 本発明のダイカストマシンの射出装置において、スリーブの内側から吸引口を通じて気体が吸引される吸引経路の途上に設けられ、気体に混入した溶湯カスを捕集する捕集部と、吸引経路の少なくとも一部であって、捕集部の上流側から捕集部に向けて延びる清掃区間と、を備え、清掃区間は、連結用部材によりフランジ同士が連結される複数の配管から湾曲した形状をなし、連結用部材は、配管の外側に露出した把持部を有し、把持部によりフランジに着脱可能であることが好ましい。 In the die casting machine injection device according to the present invention, a collecting unit that is provided in the course of a suction path through which gas is sucked from the inside of the sleeve through the suction port, and that collects molten metal mixed in the gas, and at least one of the suction paths. A cleaning section extending from the upstream side of the collecting section toward the collecting section, and the cleaning section has a curved shape from a plurality of pipes in which flanges are connected by a connecting member, It is preferable that the connecting member has a grip portion exposed outside the pipe and is detachable from the flange by the grip portion.
 本発明のダイカストマシンの射出装置において、清掃区間は、吸引口の近傍から捕集部の近傍までに亘り延びていることが好ましい。 In the injection device for a die casting machine of the present invention, it is preferable that the cleaning section extends from the vicinity of the suction port to the vicinity of the collecting portion.
 本発明のダイカストマシンの射出装置において、連結用部材は、フランジ同士の間に配置されるセンターリングと、センターリングを介してフランジ同士を突き当てた状態に拘束するクランプと、を備え、クランプは、フランジの周りに配置される2以上のクランプ本体と、クランプ本体をフランジに対して締め付けたり緩めたりが可能な把持部と、を含むことが好ましい。 In the injection device for a die casting machine according to the present invention, the connecting member includes a center ring disposed between the flanges, and a clamp that restrains the flanges against each other via the center ring. It is preferable to include two or more clamp bodies arranged around the flange, and a grip part capable of tightening or loosening the clamp body with respect to the flange.
 また、本発明は、スリーブの内部空間から金型のキャビティに亘って連通して形成される空間内を真空吸引する吸引経路を具備したダイカストマシンであって、金型に形成されたキャビティ吸引口を通じてキャビティから気体が吸引される吸引経路の途上に、気体に混入した溶湯カスを捕集する捕集構造が設けられ、捕集構造は、吸引経路に接続されて溶湯カスを受け入れる捕集部と、吸引経路の上流側から捕集部に向けて延びる吸引経路の第1区間と、第1区間を外側から包囲し、第1区間を超えて捕集部に至る区間接続部と、区間接続部により第1区間が包囲されている位置で区間接続部と連なる吸引経路の第2区間と、を備え、第1区間および第2区間は、区間接続部の内側を介して連通していることを特徴とする。 The present invention also relates to a die casting machine having a suction path for vacuum suction of a space formed in communication from the internal space of the sleeve to the cavity of the mold, and a cavity suction port formed in the mold In the middle of the suction path through which the gas is sucked from the cavity, a collecting structure for collecting the molten metal debris mixed in the gas is provided, and the collecting structure is connected to the suction path and receives the molten metal debris and A first section of the suction path extending from the upstream side of the suction path toward the collection section, a section connection section that surrounds the first section from the outside and reaches the collection section beyond the first section, and a section connection section And a second section of the suction path that is continuous with the section connection portion at a position where the first section is surrounded by the first section, and the first section and the second section communicate with each other via the inside of the section connection section. Features.
 さらに、本発明は、スリーブの内部空間から金型のキャビティに亘って連通して形成される空間内を真空吸引するダイカストマシンの真空用配管の構造であって、金型に形成されたキャビティ吸引口を通じてキャビティから気体が吸引される吸引経路の途上に設けられ、気体に混入した溶湯カスを捕集する捕集部と、吸引経路の少なくとも一部であって、の捕集部の上流側から捕集部に向けて延びる清掃区間と、を備え、清掃区間は、連結用部材によりフランジ同士が連結される複数の配管から湾曲した形状をなし、連結用部材は、配管の外側に露出した把持部を有し、把持部によりフランジに着脱可能であることを特徴とする。 Furthermore, the present invention relates to a vacuum piping structure of a die casting machine for vacuum-sucking the space formed in communication from the internal space of the sleeve to the cavity of the mold, and suctioning the cavity formed in the mold Provided in the course of a suction path through which gas is sucked from the cavity through the mouth, and collecting part for collecting molten waste mixed in the gas, and at least part of the suction path, from the upstream side of the collecting part A cleaning section extending toward the collecting portion, the cleaning section having a curved shape from a plurality of pipes that are connected to each other by a connecting member, and the connecting member is exposed to the outside of the pipe It has a portion and can be attached to and detached from the flange by a gripping portion.
 また、本発明は、溶湯が内側に供給されるスリーブの内側で進退可能なプランジャによりダイカストマシンのキャビティに向けて溶湯を射出する射出装置を用いた鋳造方法であって、プランジャのチップには、スリーブの内周部に対して径方向の内側に退避し、周方向に連続する吸引用凹部が区画され、スリーブには、スリーブを内側と外側とに亘り貫通し、スリーブの内側を吸引可能な2以上の吸引口がプランジャの進退方向に並んで形成され、チップの前端よりも前方の空間と連通する少なくとも1つの吸引口を通じてチップの前端よりも前方の空間を吸引により減圧させながら、吸引用凹部の内側と連通する少なくとも1つの吸引口を通じて吸引用凹部の内側を吸引により減圧させることを特徴とする。 Further, the present invention is a casting method using an injection device that injects a molten metal toward a cavity of a die casting machine by a plunger that can be advanced and retracted inside a sleeve to which the molten metal is supplied inside. Withdrawing inward in the radial direction with respect to the inner periphery of the sleeve, a suction recess that is continuous in the circumferential direction is defined, and the sleeve penetrates the sleeve from the inner side to the outer side and can suck the inner side of the sleeve Two or more suction ports are formed side by side in the advancing and retreating direction of the plunger, and for suction while reducing the space ahead of the front end of the tip by suction through at least one suction port communicating with the space ahead of the front end of the tip. The inside of the suction recess is decompressed by suction through at least one suction port communicating with the inside of the recess.
 本発明の鋳造方法においては、プランジャのチップの外周部に沿って周方向に連続し、プランジャの前進および後退に伴いスリーブの内周部を摺動する摺動シールの径方向の内側に、摺動シールとチップとの間の隙間を封止するシール部材が配置された状態に、摺動シールおよびシール部材をプランジャとスリーブとに装着し、前方の空間と、吸引用凹部の内側とを吸引することが好ましい。 In the casting method of the present invention, the sliding is continued radially along the outer peripheral portion of the tip of the plunger and radially inside the sliding seal that slides on the inner peripheral portion of the sleeve as the plunger moves forward and backward. With the seal member sealing the gap between the dynamic seal and the tip, the sliding seal and seal member are attached to the plunger and the sleeve, and the front space and the inside of the suction recess are sucked. It is preferable to do.
 上記構成において、スリーブおよび摺動シールの熱膨張に伴い拡がる隙間をシール部材により封止した状態に維持することが好ましい。 In the above-described configuration, it is preferable to maintain a state in which a gap expanding with thermal expansion of the sleeve and the sliding seal is sealed with a sealing member.
 本発明の鋳造方法においては、吸引口を通じたスリーブ内の吸引を終えた後、加圧タンクを使用し、吸引口を通じてスリーブの内側にエアを噴出させることが好ましい。 In the casting method of the present invention, it is preferable to use a pressurized tank after the suction in the sleeve through the suction port is finished, and to blow air into the sleeve through the suction port.
 本発明のダイカストマシンの射出装置およびそれを用いた鋳造方法によれば、後述するように、吸引されたスリーブ内への外気の流入を防いで溶湯の暴れを抑制することにより、スリーブ内の安定した吸引を実現することができる。また、本発明の捕集部を備えた構造によれば、真空ラインへの溶湯カスの流入を抑えてダイカストマシンを安定して操業することができる。さらに、把持部を用いて手作業により複数の部品に分解可能な真空用配管構造によれば、溶湯カスを除去する清掃作業の効率向上に寄与できる。 According to the die casting machine injection apparatus and the casting method using the same according to the present invention, as described later, the inflow of the outside air into the sucked sleeve is prevented and the molten metal is prevented from being disturbed. Suction can be realized. Moreover, according to the structure provided with the collection part of this invention, inflow of the molten metal residue to a vacuum line can be suppressed, and a die-cast machine can be operated stably. Furthermore, according to the vacuum piping structure that can be disassembled into a plurality of parts by hand using the grip portion, it is possible to contribute to improving the efficiency of the cleaning work for removing the molten metal debris.
本発明の第1実施形態に係るダイカストマシンの一部が破断された側面図である。It is the side view by which a part of die casting machine concerning a 1st embodiment of the present invention was fractured. 図1に示すダイカストマシンに備わる射出装置のスリーブ内を吸引する系統を模式的に示す図である。It is a figure which shows typically the system | suction which suck | inhales the inside of the sleeve of the injection device with which the die-cast machine shown in FIG. 1 is equipped. (a)~(d)は、スリーブ内への給湯から、プランジャの前進により溶湯が射出されて金型のキャビティに充填されるまでの過程の一例を示す図である。(A)-(d) is a figure which shows an example of the process from the hot_water | molten_metal supply in a sleeve until a molten metal is inject | poured by advancement of a plunger and it fills with the cavity of a metal mold | die. (a)は、図1に示すダイカストマシンの射出装置のプランジャおよびスリーブの部分拡大図である。プランジャとスリーブに摺動シールおよびシール部材が装着されている。(b)は、(a)のIVb-IVb線断面図である。(A) is the elements on larger scale of the plunger and sleeve of the injection device of the die-casting machine shown in FIG. A sliding seal and a seal member are attached to the plunger and the sleeve. (B) is a sectional view taken along line IVb-IVb of (a). (a)は、図4(a)に示すプランジャ単体を模式的に示す図である。(b)は、(a)に示す摺動シールの不連続部の拡大図である。(c)は、不連続部における空隙の位置が(b)とは異なる例を示す図である。(b)および(c)では、シール部材の図示が省略されている。(A) is a figure which shows typically the plunger simple substance shown to Fig.4 (a). (B) is an enlarged view of the discontinuous part of the sliding seal shown to (a). (C) is a figure which shows the example from which the position of the space | gap in a discontinuous part differs from (b). In (b) and (c), the illustration of the seal member is omitted. プランジャから取り外された状態の摺動シールおよびシール部材を示す斜視図である。It is a perspective view which shows the sliding seal and seal member of the state removed from the plunger. (a)は、図4のVIIa-VIIa線に相当する位置におけるスリーブ、プランジャ、摺動シール、およびシール部材を模式的に示す断面図である。(b)は、(a)に示すVIIb部の拡大図である。(A) is a cross-sectional view schematically showing a sleeve, a plunger, a sliding seal, and a seal member at a position corresponding to the line VIIa-VIIa in FIG. (B) is an enlarged view of the VIIb part shown to (a). (a)~(d)はそれぞれ、摺動シールおよびシール部材に係る変形例を示す図である。(A)-(d) is a figure which shows the modification concerning a sliding seal | sticker and a sealing member, respectively. ダイカストによる鋳造方法のフローチャートである。It is a flowchart of the casting method by die casting. 図9に示す回路Aによる処理の内容(スリーブ真空およびエアブロウ)を示すフロ-チャートである。10 is a flowchart showing the contents (sleeve vacuum and air blow) of processing by the circuit A shown in FIG. (a)~(f)は、図1に示すダイカストマシンによるスリーブ真空吸引の一連のステップを示す図である。(A)-(f) is a figure which shows a series of steps of the sleeve vacuum suction by the die-casting machine shown in FIG. (a)~(e)は、スリーブに設けられた複数の吸引口とプランジャの各部との進退方向の寸法関係を説明するための図である。(A)-(e) is a figure for demonstrating the dimensional relationship of the advancing / retreating direction of the some suction opening provided in the sleeve, and each part of a plunger. (a)は、本発明の第2実施形態に係るダイカストマシンの射出装置の要部を示す一部破断側面図である。(b)は、(a)のXIIIb-XIIIb線断面図である。(A) is a partially broken side view which shows the principal part of the injection device of the die-casting machine which concerns on 2nd Embodiment of this invention. (B) is a sectional view taken along line XIIIb-XIIIb of (a). (a)~(c)は、図13に示すダイカストマシンによるスリーブ真空吸引の一連のステップを示す図である。(A)-(c) is a figure which shows a series of steps of the sleeve vacuum suction by the die-casting machine shown in FIG. 本発明の一実施形態に係るシール剤供給装置を備えた射出装置を説明する図である。It is a figure explaining the injection apparatus provided with the sealing agent supply apparatus which concerns on one Embodiment of this invention. 本発明の第3実施形態に係る溶湯カスの捕集構造を模式的に示す図である。It is a figure which shows typically the collection structure of the molten metal dregs concerning 3rd Embodiment of this invention. (a)は、図16に示す捕集構造による作用を説明するための図である。(b)は、他の例を示す図である。(A) is a figure for demonstrating the effect | action by the collection structure shown in FIG. (B) is a figure which shows another example. 第3実施形態の第1変形例に係る捕集構造を示す図である。It is a figure which shows the collection structure which concerns on the 1st modification of 3rd Embodiment. 第3実施形態の第2変形例に係る捕集構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the collection structure which concerns on the 2nd modification of 3rd Embodiment. 本発明の第4実施形態に係る溶湯カスの捕集構造を模式的に示す図である。It is a figure which shows typically the collection structure of the molten metal waste concerning 4th Embodiment of this invention. 本発明の第5実施形態に係る吸引経路の一部(清掃区間)および捕集部を模式的に示す図である。It is a figure which shows typically a part (cleaning area) and collection part of the suction path which concerns on 5th Embodiment of this invention. 図21のXXII-XXII線断面図である。It is the XXII-XXII sectional view taken on the line of FIG. 図22のXXIII矢視により、閉じている状態のクランプを示す図である。It is a figure which shows the clamp of the closed state by the XXIII arrow of FIG. 開いた状態のクランプの斜視図である。It is a perspective view of the clamp of the open state. 第5実施形態の変形例に係る吸引経路の一部(清掃区間)および捕集部を模式的に示す図である。It is a figure which shows typically a part (cleaning area) and collection part of the suction path which concern on the modification of 5th Embodiment. 第5実施形態の清掃区間に使用可能な配管の例を示す図である。It is a figure which shows the example of piping which can be used for the cleaning area of 5th Embodiment. 本発明の第6実施形態に係る捕集構造および清掃区間を模式的に示す図である。It is a figure which shows typically the collection structure and cleaning area which concern on 6th Embodiment of this invention.
 以下、添付図面を参照しながら、本発明の実施形態について説明する。
〔第1実施形態〕
 図1~図12を参照し、第1実施形態に係るダイカストマシン100について説明する。
(ダイカストマシンの概略構成)
 図1は、本発明の一実施形態に係る射出装置1を備えたダイカストマシン100の概略側面図(一部に断面図を含む)である。
 ダイカストマシン100は、可動金型22が設置された可動盤4と、固定金型21が設置された固定盤5と、可動盤4および固定盤5を支持するマシンベース8と、キャビティ23に向けて溶湯18を射出する射出装置1と、ダイカストマシン100の各部の動作を制御する制御装置3とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[First Embodiment]
A die casting machine 100 according to the first embodiment will be described with reference to FIGS.
(Schematic configuration of die casting machine)
FIG. 1 is a schematic side view (partly including a sectional view) of a die casting machine 100 including an injection apparatus 1 according to an embodiment of the present invention.
The die casting machine 100 is directed to the movable platen 4 on which the movable mold 22 is installed, the fixed platen 5 on which the fixed mold 21 is installed, the machine base 8 that supports the movable platen 4 and the fixed platen 5, and the cavity 23. The injection device 1 for injecting the molten metal 18 and the control device 3 for controlling the operation of each part of the die casting machine 100 are provided.
 ダイカストマシン100は、溶湯18への気体の巻き込みに起因する鋳巣(巻き込み巣)の発生を抑えるため、キャビティ23と、射出装置1のスリーブ11の内側との真空引きを行う。
 ダイカストマシン100は、スリーブ11内を安定して吸引するため、後述するようにスリーブ11内への外気の流入を十分に抑制可能な構造を射出装置1に備えていることを主な特徴とする。
The die casting machine 100 evacuates the cavity 23 and the inside of the sleeve 11 of the injection device 1 in order to suppress the occurrence of a cast hole (entrapment nest) resulting from the entrainment of gas into the molten metal 18.
The die casting machine 100 is mainly characterized in that the injection device 1 has a structure capable of sufficiently suppressing the inflow of outside air into the sleeve 11 as will be described later in order to stably suck the inside of the sleeve 11. .
 可動盤4は、トグルリンク機構やボールねじ機構などの型開閉・型締め機構(図示せず)によって、マシンベース8上を固定盤5側に移動する。これによって、可動金型22と固定金型21が係合して、型締め(die clamping)されることにより、キャビティ23が形成される。
 可動盤4と固定盤5の挿通孔には、4本のタイバー7が挿通されている。可動盤4はタイバー7に沿って固定盤5に対して進退自在に移動する。固定金型21と可動金型22が、図1に示す様に係合することによって、それらの間にキャビティ(製品部)23が形成される。アルミニウムやアルミニウム合金等の溶湯18がキャビティ23に射出・充填されることで、鋳造成形品が製造される。
The movable platen 4 moves on the machine base 8 to the fixed platen 5 side by a mold opening / closing / clamping mechanism (not shown) such as a toggle link mechanism or a ball screw mechanism. As a result, the movable mold 22 and the fixed mold 21 are engaged and die clamped to form the cavity 23.
Four tie bars 7 are inserted through the insertion holes of the movable platen 4 and the fixed platen 5. The movable platen 4 moves along the tie bar 7 so as to move forward and backward with respect to the fixed platen 5. As the fixed mold 21 and the movable mold 22 are engaged as shown in FIG. 1, a cavity (product part) 23 is formed between them. A cast 18 is manufactured by injecting and filling molten metal 18 such as aluminum or aluminum alloy into the cavity 23.
 固定盤5には、射出装置1が設けられている。射出装置1は、溶湯18が内側に供給されるスリーブ11と、スリーブ11の内側でスリーブ11に対して進退可能なプランジャ12とを備えている。射出装置1は、プランジャ12によりキャビティ23に向けて溶湯18を射出する。
 射出装置1に関し、溶湯18を射出する際のプランジャ12の移動方向の前方、つまり、キャビティ23に近い側を「前」と定義し、キャビティ23から遠い側を「後」と定義するものとする。
The fixed platen 5 is provided with an injection device 1. The injection device 1 includes a sleeve 11 to which the molten metal 18 is supplied inside, and a plunger 12 that can move forward and backward with respect to the sleeve 11 inside the sleeve 11. The injection device 1 injects the molten metal 18 toward the cavity 23 by the plunger 12.
With respect to the injection device 1, the front of the plunger 12 in the movement direction when the molten metal 18 is injected, that is, the side close to the cavity 23 is defined as “front”, and the side far from the cavity 23 is defined as “rear”. .
 プランジャ12は、大略、プランジャロッド19と、プランジャロッド19の前側に設けられるプランジャチップ20とを備えている。プランジャチップ20は、単にチップ20とも称する。また、プランジャロッド19は、単にロッド19とも称する。 The plunger 12 generally includes a plunger rod 19 and a plunger tip 20 provided on the front side of the plunger rod 19. The plunger tip 20 is also simply referred to as a tip 20. The plunger rod 19 is also simply referred to as a rod 19.
 プランジャ12を前後方向に駆動するために、プランジャロッド19には油圧シリンダ(図示せず)が設けられている。プランジャロッド19は、カップリング(図示せず)を介して、同油圧シリンダのピストンロッドに連結されている。
 溶湯18を射出する際にプランジャ12は前方に向けて移動し、射出後は、後方に向けて移動する。プランジャ12が前進および後退する方向(前後方向)のことを「進退方向」と定義するものとする。
In order to drive the plunger 12 in the front-rear direction, the plunger rod 19 is provided with a hydraulic cylinder (not shown). The plunger rod 19 is connected to the piston rod of the hydraulic cylinder via a coupling (not shown).
When the molten metal 18 is injected, the plunger 12 moves forward, and after the injection, it moves backward. The direction in which the plunger 12 moves forward and backward (front-rear direction) is defined as the “advance / retreat direction”.
 スリーブ11は、直線的に延びた円筒状の筒体である。プランジャ12が挿入されるスリーブ11の後端部11Bには、図4(a)に示すように、後方に向けて拡径したテーパ面11Cが形成されている。スリーブ11の軸方向は、プランジャ12の進退方向D1に一致している。後述するように、射出装置1は、真空吸引系統2(図2)が与えられていることで、スリーブ11の内側を吸引可能に構成されている。 The sleeve 11 is a cylindrical body that extends linearly. As shown in FIG. 4A, a tapered surface 11C whose diameter is increased rearward is formed on the rear end portion 11B of the sleeve 11 into which the plunger 12 is inserted. The axial direction of the sleeve 11 coincides with the forward / backward direction D1 of the plunger 12. As will be described later, the injection device 1 is configured to be able to suck the inside of the sleeve 11 by being provided with a vacuum suction system 2 (FIG. 2).
 スリーブ11は、注湯口13から供給された溶湯18をスリーブ11の内側に貯めることができる。スリーブ11の前端部は、固定盤5を貫通し、固定金型21に設けられた孔10と嵌合している。スリーブ11の後端側は、固定盤5の外側に突出し、後方に向けて水平方向に延びている。スリーブ11の後端側には、溶湯18が注入される注湯口13が設けられている。
 スリーブ11の内側と、固定金型21の孔10とを含んで貯湯室が形成されている。この貯湯室は、ランナー24およびゲート25を介してキャビティ23に連通している。
The sleeve 11 can store the molten metal 18 supplied from the pouring port 13 inside the sleeve 11. A front end portion of the sleeve 11 passes through the fixed platen 5 and is fitted into a hole 10 provided in the fixed mold 21. The rear end side of the sleeve 11 protrudes outside the fixed platen 5 and extends in the horizontal direction toward the rear. On the rear end side of the sleeve 11, a pouring port 13 into which the molten metal 18 is poured is provided.
A hot water storage chamber is formed including the inside of the sleeve 11 and the hole 10 of the fixed mold 21. This hot water storage chamber communicates with the cavity 23 via the runner 24 and the gate 25.
 制御装置3は、進退方向D1におけるプランジャ12の位置をセンサ等により検知しつつ、プランジャ12を進退させる油圧シリンダの駆動を制御する。
 プランジャ12の位置の検知は、一例として、油圧シリンダのストロークに対応してピストンロッドに設けられたマークを、非接触センサで検知することで行われる。その他の例として、プランジャロッド19に設けたスイッチレバーと、複数の固定リミットスイッチ等とを用いることもできる。
The control device 3 controls the drive of the hydraulic cylinder that moves the plunger 12 forward and backward while detecting the position of the plunger 12 in the forward / backward direction D1 with a sensor or the like.
For example, the position of the plunger 12 is detected by detecting a mark provided on the piston rod corresponding to the stroke of the hydraulic cylinder with a non-contact sensor. As another example, a switch lever provided on the plunger rod 19 and a plurality of fixed limit switches can be used.
 図2に示すように、射出装置1には、スリーブ11内を吸引する真空吸引系統2が設けられる。真空吸引系統2は、真空ポンプ37および真空タンク36を用いて吸引することでスリーブ11の内側を減圧させる。真空吸引系統2の具体的な構成については後述する。
 本実施形態のスリーブ11には、真空吸引系統2によりスリーブ11の内側の気体を吸引可能とするため、スリーブ11の内側と外側とに亘り貫通した複数の吸引口14~17(ここでは4つ)がスリーブ11の軸方向(D1)に並んで配置されている。これらの吸引口14~17は、スリーブ11の内側に供給される溶湯18の湯面18A(図4(a))よりも上方に位置するように、スリーブ11の上部に形成されている。
As shown in FIG. 2, the injection apparatus 1 is provided with a vacuum suction system 2 that sucks the inside of the sleeve 11. The vacuum suction system 2 decompresses the inside of the sleeve 11 by suction using the vacuum pump 37 and the vacuum tank 36. A specific configuration of the vacuum suction system 2 will be described later.
In the sleeve 11 of the present embodiment, a plurality of suction ports 14 to 17 (four in this case) penetrating from the inside to the outside of the sleeve 11 are provided so that the gas inside the sleeve 11 can be sucked by the vacuum suction system 2. ) Are arranged side by side in the axial direction (D1) of the sleeve 11. These suction ports 14 to 17 are formed in the upper portion of the sleeve 11 so as to be positioned above the surface 18A (FIG. 4A) of the molten metal 18 supplied to the inside of the sleeve 11.
 スリーブ11の周壁を厚さ方向に貫通する各吸引口14~17を設けることは、スリーブ11内の真空吸引のためプランジャチップ20に軸方向に孔あけする場合と比べて、開口面積の制約が小さい。そのため、吸引口14~17によれば開口面積を大きく確保することができる。また、後者は、プランジャチップ20に軸方向に形成された孔と、この孔に接続されるロッド19の軸方向孔あるいはロッド19に沿った配管とからなる細くて長い経路がスリーブ11内に形成されるのに対し、前者である吸引口14~17によれば、スリーブ11の周壁にスリーブ11の肉厚に対応した長さの経路が形成される。そのため、溶湯カスにより経路が閉塞したとしても清掃作業に要する手間の観点から有利である。 Providing the suction ports 14 to 17 penetrating the peripheral wall of the sleeve 11 in the thickness direction has a restriction on the opening area as compared with the case where the plunger tip 20 is opened in the axial direction for vacuum suction in the sleeve 11. small. Therefore, according to the suction ports 14 to 17, a large opening area can be secured. In the latter case, a narrow and long path is formed in the sleeve 11 which includes a hole formed in the plunger tip 20 in the axial direction and an axial hole of the rod 19 connected to the hole or a pipe along the rod 19. On the other hand, according to the former suction ports 14 to 17, a path having a length corresponding to the thickness of the sleeve 11 is formed on the peripheral wall of the sleeve 11. Therefore, even if the path is blocked by the molten metal residue, it is advantageous from the viewpoint of labor required for the cleaning work.
 本実施形態では、後述するように、スリーブ11に対してプランジャ12が前進する際に、進退方向D1に分布した位置から、前端20Aよりも前方の(キャビティ23側の)空間75と、それよりも後方の吸引用凹部120の内側とから継続的に吸引する。
 なお、プランジャ12の前進を一旦停止した状態で前方空間75および吸引用凹部120の内側の双方を真空吸引することも想定するものとする。
 スリーブ11の内部に臨む吸引用の開口の面積を大きく確保して吸引の効率を向上させるため、また、吸引用の開口や経路の閉塞に対する通気確保の冗長性の観点からも、スリーブ11内の真空吸引に複数の吸引口14~17が使用されることが好ましい。
In the present embodiment, as will be described later, when the plunger 12 moves forward with respect to the sleeve 11, the space 75 in front of the front end 20 </ b> A (on the cavity 23 side) from the position distributed in the forward / backward direction D <b> 1, Is continuously sucked from the inside of the rear suction recess 120.
It is assumed that both the front space 75 and the inside of the suction recess 120 are vacuum-sucked while the advance of the plunger 12 is temporarily stopped.
In order to improve the efficiency of suction by ensuring a large area of the suction opening facing the inside of the sleeve 11, and also from the viewpoint of redundancy in securing ventilation with respect to the suction opening and the passage blockage, A plurality of suction ports 14 to 17 are preferably used for vacuum suction.
 ここで、前方空間75から吸引する目的だけであれば、スリーブ11の前端側に、吸引口が1つあれば足りる。しかし、本実施形態では、後述するように、前方空間75から吸引する間に吸引用凹部120(図4(a))からも吸引することで、前方空間75への外気の流入抑止を図りたいため、進退方向D1に分布する複数の吸引口14~17をスリーブ11に与えている。
 そうすると、吸引に用いる開口の面積を十分に確保しつつ、プランジャ12の前進時に吸引用凹部120を複数の吸引口14~17に順次連通させて前方空間75と吸引用凹部120の内側との双方から継続的に吸引することができるので、前方空間75への外気流入による溶湯18の暴れを抑制することができる。
 進退方向D1に分布している複数の吸引口14~17によれば、後述するように、スリーブ11内の真空吸引を開始した後、スリーブ11内の真空吸引を終了するまでの間の常時、少なくとも1つの吸引口を通じて前方空間75を吸引するとともに、少なくとも1つの吸引口を通じて吸引用凹部120の内側を吸引することができる。
Here, for the purpose of suction from the front space 75, it is sufficient to have one suction port on the front end side of the sleeve 11. However, in this embodiment, as will be described later, it is desired to suppress the inflow of outside air into the front space 75 by sucking from the suction recess 120 (FIG. 4A) while sucking from the front space 75. Therefore, a plurality of suction ports 14 to 17 distributed in the forward / backward direction D1 are provided to the sleeve 11.
Then, while sufficiently securing the area of the opening used for suction, the suction recess 120 is sequentially communicated with the plurality of suction ports 14 to 17 when the plunger 12 moves forward, so that both the front space 75 and the inside of the suction recess 120 are provided. Therefore, the runaway of the molten metal 18 due to the inflow of outside air into the front space 75 can be suppressed.
According to the plurality of suction ports 14 to 17 distributed in the advancing / retreating direction D1, as will be described later, after starting the vacuum suction in the sleeve 11, until the end of the vacuum suction in the sleeve 11, The front space 75 can be sucked through the at least one suction port, and the inside of the suction recess 120 can be sucked through the at least one suction port.
 但し、スリーブ11が1つの吸引口のみを備えていたり、複数の吸引口のうち1つの吸引口のみが使用されたりすることも許容される。吸引口の数は、スリーブ11の長さや、吸引口の寸法、プランジャチップ20の長さ等をも考慮して、適宜な数に定めることができる。
 スリーブ11に、軸方向や周方向に長い1つの吸引口を形成し、その吸引口に真空吸引用のラインが接続されるようにしてもよい。但し、典型的には、円形の吸引口に、断面円形の吸引用配管が接続される。
However, it is allowed that the sleeve 11 has only one suction port, or only one suction port among a plurality of suction ports is used. The number of suction ports can be set to an appropriate number in consideration of the length of the sleeve 11, the dimension of the suction port, the length of the plunger tip 20, and the like.
A single suction port that is long in the axial direction or circumferential direction may be formed in the sleeve 11, and a vacuum suction line may be connected to the suction port. However, typically, a suction pipe having a circular cross section is connected to a circular suction port.
 スリーブ11の内側を吸引するために使用される経路は、吸引口14~17のようにスリーブ11の周壁を貫通する孔には限らず、プランジャ12の外周部とスリーブ11の内周部との間の間隙であったり、プランジャチップ20の内部に軸方向に形成された孔であったりしてもよい。 The path used for sucking the inside of the sleeve 11 is not limited to a hole penetrating the peripheral wall of the sleeve 11 such as the suction ports 14 to 17, and the path between the outer peripheral portion of the plunger 12 and the inner peripheral portion of the sleeve 11. It may be a gap between them, or may be a hole formed in the plunger tip 20 in the axial direction.
 各吸引口14~17は、スリーブ11の周壁を厚さ方向に貫通している。これらの吸引口14~17は、プランジャ12の進退方向D1に間隔をおいて並んでおり、スリーブ11の後側から前側に向けて、吸引口14,15,16,17の順に配置されている。以下では、これらの吸引口14~17のことをそれぞれ、第1吸引口14、第2吸引口15、第3吸引口16、第4吸引口17と称する場合がある。
 第1吸引口14が最も後方に位置し、第4吸引口17が最も前方に位置している。
The suction ports 14 to 17 penetrate the peripheral wall of the sleeve 11 in the thickness direction. These suction ports 14 to 17 are arranged at intervals in the forward / backward direction D1 of the plunger 12, and are arranged in the order of the suction ports 14, 15, 16, and 17 from the rear side to the front side of the sleeve 11. . Hereinafter, these suction ports 14 to 17 may be referred to as a first suction port 14, a second suction port 15, a third suction port 16, and a fourth suction port 17, respectively.
The first suction port 14 is located most rearward, and the fourth suction port 17 is located most forward.
 真空吸引系統2は、吸引口14~17を通じてスリーブ11内の気体を抜くことで、スリーブ11内を所定の真空度に減圧させる。真空吸引系統2によりスリーブ11内が減圧されることによりスリーブ11内を通じてキャビティ23も吸引されるため、真空吸引系統2は、スリーブ11内およびキャビティ23を減圧させることができる。 The vacuum suction system 2 depressurizes the inside of the sleeve 11 to a predetermined degree of vacuum by removing the gas in the sleeve 11 through the suction ports 14 to 17. Since the inside of the sleeve 11 is depressurized by the vacuum suction system 2, the cavity 23 is also sucked through the sleeve 11, so that the vacuum suction system 2 can decompress the inside of the sleeve 11 and the cavity 23.
 ダイカストマシン100は、典型的には、金型に設けられた吸引用経路を通じてキャビティ23を直接的に減圧させる別の真空吸引系統(図示しない)を備えている。
 かかる真空吸引系統は、例えば、固定金型21と可動金型22との境界部に備えられたチルベント27(Chill‐Vent)に設けられている1以上の連結口28を通じて、キャビティ23から空気等の気体を直接的に吸引する。吸引される気体には、空気の他、溶湯や金型離型剤の蒸気等が含まれうる。
The die casting machine 100 typically includes another vacuum suction system (not shown) that directly depressurizes the cavity 23 through a suction path provided in the mold.
Such a vacuum suction system includes, for example, air or the like from the cavity 23 through one or more connection ports 28 provided in a chill vent 27 (Chill-Vent) provided at the boundary between the fixed mold 21 and the movable mold 22. The gas is directly aspirated. In addition to air, the sucked gas can include molten metal, mold release agent vapor, and the like.
 熱伝導率が高い金属材料から形成されたチルベント27は、連結口28を通じてキャビティ23から排気させる、つまりガス抜きを行うことでキャビティ23への溶湯18の充填を促進するとともに、溶湯18を冷やすことで、排気に伴い溶湯18が連結口28から流出することを防止する。チルベント27は、固定金型21に設置されるブロックと、可動金型22に設置されるブロックとに分割されている。
 チルベント27の代わりに、図示しない真空バルブが固定金型21と可動金型22との境界部に設置される場合もある。その場合は、真空バルブを通じてキャビティ23から直接的に気体を吸引することができる。
The chill vent 27 formed of a metal material having a high thermal conductivity is exhausted from the cavity 23 through the connection port 28, that is, degassing facilitates filling of the molten metal 18 into the cavity 23 and cools the molten metal 18. Thus, the molten metal 18 is prevented from flowing out from the connection port 28 along with the exhaust. The chill vent 27 is divided into a block installed on the fixed mold 21 and a block installed on the movable mold 22.
In place of the chill vent 27, a vacuum valve (not shown) may be installed at the boundary between the fixed mold 21 and the movable mold 22. In that case, gas can be directly sucked from the cavity 23 through the vacuum valve.
 制御装置3(図1)は、真空吸引系統2を含め、ダイカストマシン100の真空吸引系統に備わる種々のバルブを適宜なタイミングで開閉することにより、それぞれの系統によるスリーブ11内およびキャビティ23の吸引状態を制御することができる。 The control device 3 (FIG. 1) suctions the inside of the sleeve 11 and the cavity 23 by each system by opening and closing various valves provided in the vacuum suction system of the die casting machine 100 including the vacuum suction system 2 at an appropriate timing. The state can be controlled.
 スリーブ11に複数の吸引口14~17が形成されていると、吸引口14~17の全体として、金型に設けられている図示しない真空吸引系統に与えられている吸引用の開口の全体の面積よりも大きい開口面積を真空吸引系統2に与えることができる。そのため、真空引きによる先湯(preceding molten metal)を防止する効果が期待できる。
 また、金型に設けられている図示しない真空吸引系統による吸引開始に先行して、スリーブ11の吸引口14~17を用いる真空吸引系統2による吸引開始を開始することによっても、先湯を防止することができる。
 先湯の防止により、欠け(chipping)、剥離(peeling)、めくれ(Stripping for shot blast)等の不良の低減に寄与できる。
When a plurality of suction ports 14 to 17 are formed in the sleeve 11, the suction ports 14 to 17 as a whole are all of the suction openings provided to a vacuum suction system (not shown) provided in the mold. An opening area larger than the area can be given to the vacuum suction system 2. Therefore, an effect of preventing a precipitating molten metal due to evacuation can be expected.
Also, prior to the start of suction by a vacuum suction system (not shown) provided in the mold, the start of suction by the vacuum suction system 2 using the suction ports 14 to 17 of the sleeve 11 is also prevented to prevent the hot water. can do.
By preventing the hot water, it can contribute to the reduction of defects such as chipping, peeling, and stripping for shot blast.
(給湯および射出の基本的な動作の説明)
 図3(a)~(d)は、給湯工程から射出充填工程までの一例を説明する図である。図3(a)~(d)では、吸引口14~17に接続されている真空吸引系統2の図示が省略されている。
(Explanation of basic operation of hot water supply and injection)
FIGS. 3A to 3D are diagrams for explaining an example from the hot water supply process to the injection filling process. 3A to 3D, the illustration of the vacuum suction system 2 connected to the suction ports 14 to 17 is omitted.
 図3(a)に示すように、図示しない給湯機のラドル43により、スリーブ11の注湯口13に溶湯18を注入することで、スリーブ11内に溶湯18を供給する(給湯工程)。
 この後、プランジャ12の前進により、スリーブ11の内側においてプランジャ12のチップ20よりも前方に区画された空間を真空吸引系統2により吸引することが可能となる。
As shown to Fig.3 (a), the molten metal 18 is supplied in the sleeve 11 by inject | pouring the molten metal 18 into the pouring opening 13 of the sleeve 11 with the ladle 43 of the hot water heater which is not shown in figure (hot-water supply process).
Thereafter, as the plunger 12 moves forward, the space defined in front of the tip 20 of the plunger 12 inside the sleeve 11 can be sucked by the vacuum suction system 2.
 次いで、図3(b)に示すように、前進するプランジャ12のチップ20によりスリーブ11内の溶湯18をスリーブ11の外側へと押し出すことにより溶湯18を射出し、図3(c)に示すように、ランナー24およびゲート25を通じてキャビティ23に溶湯18を充填する(射出充填工程)。 Next, as shown in FIG. 3B, the molten metal 18 is ejected by pushing the molten metal 18 in the sleeve 11 to the outside of the sleeve 11 by the tip 20 of the plunger 12 moving forward, as shown in FIG. Then, the molten metal 18 is filled into the cavity 23 through the runner 24 and the gate 25 (injection filling process).
 プランジャ12が前進する速度は、プランジャ12を駆動する油圧シリンダに制御指令を与えることで可変に制御される。プランジャ12の前進速度は、プランジャ12が前進を開始してから所定の時点までの間は低く抑えられ、それ以降に増加する。
 具体的には、プランジャ12がスリーブ11の後端近傍における待機位置において前進を開始してから、スリーブ11の前端近傍における作動位置に移動するまでの過程において、プランジャ12の前進開始から、押し出された溶湯18がランナー24を経由してゲート25に到達するまでの間が低速領域に相当する。それ以降、キャビティ23が溶湯18で満たされるまでの間が高速領域に相当する。
 プランジャ12の前進速度の制御は、上記に限られない。例えば、低速、中速、高速というように、前進速度を段階的に増加させるようにしてもよい。
The speed at which the plunger 12 moves forward is variably controlled by giving a control command to the hydraulic cylinder that drives the plunger 12. The advance speed of the plunger 12 is kept low until a predetermined time after the plunger 12 starts to advance, and increases thereafter.
Specifically, in the process from when the plunger 12 starts to advance at the standby position near the rear end of the sleeve 11 to when it moves to the operating position near the front end of the sleeve 11, the plunger 12 is pushed out from the start of advancement of the plunger 12. The time until the molten metal 18 reaches the gate 25 via the runner 24 corresponds to the low speed region. Thereafter, the time until the cavity 23 is filled with the molten metal 18 corresponds to the high speed region.
The control of the forward speed of the plunger 12 is not limited to the above. For example, the forward speed may be increased stepwise such as low speed, medium speed, and high speed.
 プランジャ12の前進動作の制御は、キャビティ23が溶湯18で満たされたタイミング(速度・圧力切換点/VP(Velocity Pressure)切換点)において、上記の速度制御から、キャビティ23における溶湯18の圧力に基づく圧力制御(保圧制御/増圧制御)に切り換えられる。
 その後、プランジャ12によって保圧力(増圧力)が付与された状態で、キャビティ23の溶湯18が冷却され十分に固化されたならば、可動盤4が移動することで金型21,22が開く。金型21,22が開くと、押出板41(図1)に取り付けられた複数の押出ピン42が駆動されることによって製品が押し出されるので、金型21,22から製品を取り出すことができる。
The forward movement of the plunger 12 is controlled at the timing when the cavity 23 is filled with the molten metal 18 (speed / pressure switching point / VP (Velocity Pressure) switching point) from the above speed control to the pressure of the molten metal 18 in the cavity 23. It is switched to pressure control based on (holding pressure control / pressure increasing control).
Thereafter, when the molten metal 18 in the cavity 23 is cooled and sufficiently solidified with the holding pressure (increased pressure) applied by the plunger 12, the molds 21 and 22 are opened by the movement of the movable platen 4. When the molds 21 and 22 are opened, the products are pushed out by driving the plurality of push pins 42 attached to the extrusion plate 41 (FIG. 1), so that the products can be taken out from the molds 21 and 22.
(真空吸引系統)
 図2を参照し、スリーブ11の内側を吸引可能な真空吸引系統2の一例を説明する。真空吸引系統2は、真空ポンプ37と、真空タンク36と、合流・分配部34と、スリーブ11の吸引口14~17に個別に対応する吸引経路51とを備えている。
 各吸引経路51は、スリーブ11内から吸引される気体の流れの上流から下流に向けて、真空引き用の真空フィルタ31と、吸引経路51内の圧力を検出する圧力計、連成計、圧力センサ等である圧力検出部32と、吸引口14~17を選択的に真空タンク36に連通させる選択バルブ33とをこの順序で備えている。
(Vacuum suction system)
An example of the vacuum suction system 2 capable of sucking the inside of the sleeve 11 will be described with reference to FIG. The vacuum suction system 2 includes a vacuum pump 37, a vacuum tank 36, a merging / distributing unit 34, and suction paths 51 that individually correspond to the suction ports 14 to 17 of the sleeve 11.
Each suction path 51 includes a vacuum filter 31 for evacuation, a pressure gauge for detecting the pressure in the suction path 51, a compound gauge, A pressure detection unit 32 such as a sensor and a selection valve 33 for selectively connecting the suction ports 14 to 17 to the vacuum tank 36 are provided in this order.
 選択バルブ33の開閉により、吸引口14~17のそれぞれを適時に、真空タンク36に連通させることができる。また、スリーブ11への溶湯の充填率等に応じて、全数あるいは一部の吸引口のみを真空タンク36に連通させることもできる。 By opening and closing the selection valve 33, each of the suction ports 14 to 17 can be communicated with the vacuum tank 36 in a timely manner. Further, depending on the filling rate of the molten metal into the sleeve 11 or the like, all or some of the suction ports can be communicated with the vacuum tank 36.
 真空フィルタ31は、吸引した気体に混入しうる溶湯の微細な液滴や凝固片、あるいは塵埃等の異物等が吸引経路51に入ることを抑制する。溶湯の液滴や凝固片である溶湯カス等の通過を規制しつつ、真空吸引時における排気抵抗が小さいこと、および、高温の溶湯カスと接触したとしても燃焼しないこと等を考慮して、公知の種々の真空フィルタ31を適宜に選定することができる。例えば、パンチングメタル、メッシュ状やブラシ状の金属部材等を真空フィルタ31に採用することができる。
 吸引経路51には、溶湯カスを捕集する捕集器を設置することもできる。
The vacuum filter 31 suppresses entry of fine droplets of molten metal, solidified pieces, or foreign matters such as dust, which can be mixed into the sucked gas, into the suction path 51. Known in consideration of the low exhaust resistance at the time of vacuum suction and the fact that it does not burn even if it comes into contact with the hot molten metal while restricting the passage of molten liquid droplets and molten metal debris etc. The various vacuum filters 31 can be appropriately selected. For example, a punching metal, a mesh-like or brush-like metal member or the like can be employed for the vacuum filter 31.
In the suction path 51, a collector that collects molten waste can also be installed.
 真空タンク36の内部は、真空ポンプ37を作動させて行う真空引きによって減圧される。真空タンク36を使用すると、真空ポンプ37を連続して作動させながら、真空タンク36との圧力差によりスリーブ11内の気体を真空タンク36へと適時に、間欠的に吸引することができる。
 吸引口14~17は、プランジャ12の進退方向D1における位置や、吸引口14~17からの吸引の状態等に応じて、真空タンク36と選択的に連通されることが好ましい。圧力検出部32により検出された吸引経路51内の圧力等に基づいて、所定の選択バルブ33を開閉させることができる。圧力検出部32が、圧力検出信号の出力が可能な圧力センサであり、選択バルブ33が電磁弁である場合は、制御装置3により、圧力検出部32による圧力検出信号に基づいて選択バルブ33に制御指令を送り、選択バルブ33の開閉を制御することができる。
The inside of the vacuum tank 36 is depressurized by evacuation performed by operating the vacuum pump 37. When the vacuum tank 36 is used, the gas in the sleeve 11 can be intermittently sucked into the vacuum tank 36 at appropriate times due to a pressure difference with the vacuum tank 36 while the vacuum pump 37 is continuously operated.
The suction ports 14 to 17 are preferably selectively communicated with the vacuum tank 36 in accordance with the position of the plunger 12 in the forward / backward direction D1, the state of suction from the suction ports 14 to 17, and the like. Based on the pressure in the suction path 51 detected by the pressure detector 32, the predetermined selection valve 33 can be opened and closed. When the pressure detection unit 32 is a pressure sensor capable of outputting a pressure detection signal and the selection valve 33 is an electromagnetic valve, the control device 3 controls the selection valve 33 based on the pressure detection signal from the pressure detection unit 32. A control command can be sent to control the opening and closing of the selection valve 33.
 真空吸引系統2により真空引きを行う際は、吸引口14~17のうち、対応する選択バルブ33が開かれた状態にある吸引口を通じて、真空タンク36内とスリーブ11内との圧力差に基づき、スリーブ11の内側の気体が吸引経路51に流入する。吸引経路51に流入した気体は、真空フィルタ31、圧力検出部32、選択バルブ33を経て合流・分配部34において他の吸引経路51からの流れと合流し、さらに真空/エアブロウ切換弁35および配管55を経て、真空タンク36に流入する。 When evacuation is performed by the vacuum suction system 2, based on the pressure difference between the vacuum tank 36 and the sleeve 11 through the suction ports of the suction ports 14 to 17 in which the corresponding selection valve 33 is opened. The gas inside the sleeve 11 flows into the suction path 51. The gas flowing into the suction path 51 is merged with the flow from the other suction path 51 in the merge / distribution section 34 through the vacuum filter 31, the pressure detection unit 32, and the selection valve 33, and further, the vacuum / air blow switching valve 35 and the piping. It flows into the vacuum tank 36 through 55.
 真空吸引時には、圧力検出部32により検出される吸引経路51の圧力(真空度)を監視して、正常に真空引きが行われていることを確認することが好ましい。検出された圧力が正常な範囲を逸脱したならば、異常を音や光等により報知することができる。例えば、溶湯カスに起因して一部の吸引口や吸引経路51が閉塞したり、閉塞しないまでも、溶湯カスの堆積により開口が狭められたり、あるいは真空フィルタ31が目詰まりしたりするならば、圧力検出部32により検出される圧力が正常範囲を高い側に逸脱する。この場合は、異常の起きた吸引口や吸引経路51の清掃、真空フィルタ31の清掃または交換等を行うとよい。 At the time of vacuum suction, it is preferable to monitor the pressure (degree of vacuum) in the suction path 51 detected by the pressure detection unit 32 to confirm that vacuuming is normally performed. If the detected pressure deviates from the normal range, the abnormality can be notified by sound or light. For example, if some of the suction ports and the suction path 51 are blocked due to the molten metal, or if the opening is narrowed due to the accumulation of molten metal or the vacuum filter 31 is clogged until it is not blocked. The pressure detected by the pressure detector 32 deviates from the normal range to the higher side. In this case, it is preferable to clean the suction port or the suction path 51 in which an abnormality has occurred, clean the vacuum filter 31, or replace it.
 吸引効率の低下を予防する観点からは、検出された圧力に基づいて、詰まりつつある、あるいは、事前試験等により詰まり易い傾向のある吸引口や吸引経路51に対応する選択バルブ33を閉めることで該当の吸引口や吸引経路51の使用を停止したり、使用を完全に停止しないまでも、間欠的な使用に限る等の使用制限を該当の吸引口や吸引経路51に課したりしてもよい。その場合は、残りの吸引口および吸引経路51のみを使用して、スリーブ11内部の真空引きを効率的に行うことができる。したがって、詰まりの進行を抑えて吸引効率の低下を予防しつつ、継続的に吸引してスリーブ11内の真空度を高めることができる。
 なお、選択バルブ33は、上述のように検出圧力の逸脱時や、詰まりを抑えたい場合に閉められるばかりでなく、後述するように進退方向D1におけるプランジャ12の位置等に応じて開閉されるように、制御することができる。
 また、金型や製品に適合するように、各吸引口14~17の使用/不用を選択バルブ33により選択することで、同一のスリーブ11にて種々の製造条件に対応することができる。製造条件毎にスリーブ11を用意する必要がないため、経済的である。
From the viewpoint of preventing a reduction in the suction efficiency, the selection valve 33 corresponding to the suction port or the suction path 51 that is clogged or tends to be clogged by a preliminary test or the like is closed based on the detected pressure. Even if the use of the suction port and the suction path 51 is stopped or the use is not completely stopped, the use restriction such as the intermittent use is imposed on the suction port or the suction path 51. Good. In that case, the inside of the sleeve 11 can be evacuated efficiently by using only the remaining suction ports and the suction path 51. Therefore, it is possible to increase the degree of vacuum in the sleeve 11 by continuously sucking while suppressing the progress of clogging and preventing a reduction in suction efficiency.
As described above, the selection valve 33 is not only closed when the detected pressure deviates or when it is desired to suppress clogging, but is also opened and closed according to the position of the plunger 12 in the forward / backward direction D1, as will be described later. Can be controlled.
Further, by selecting use / nonuse of the suction ports 14 to 17 by the selection valve 33 so as to suit the mold or product, the same sleeve 11 can cope with various manufacturing conditions. Since it is not necessary to prepare the sleeve 11 for each manufacturing condition, it is economical.
(エアブロウ)
 本実施形態では、吸引口14~17と、吸引口14~17のそれぞれの吸引経路51を、加圧された空気をスリーブ11の内側に噴出させるエアブロウを実施するための経路としても使用する。エアブロウにより、吸引経路51や吸引口から溶湯カスを除去することができる。
 エアブロウを行う加圧空気供給系統9(図2)は、加圧空気の供給源である圧縮空気源39と、圧縮空気源39により空気が送り込まれることで内部に圧力を蓄える加圧タンク38とを備えている。
 本実施形態の真空吸引系統2および加圧空気供給系統9は、合流・分配部34よりも下流(真空吸引時の下流)に設置される真空/エアブロウ切換弁35を含んで構成されている。真空/エアブロウ切換弁35は、合流・分配部34の接続先を真空引きの配管55とエアブロウの配管56とに切り換えることで、真空吸引の実施とエアブロウの実施とを切り換える。
 合流・分配部34よりも上流(真空吸引時の上流)の吸引経路51は、真空引き時とエアブロウ時とにおいて共通である。したがって、吸引口14~17への配管の付け替えにより鋳造品の生産が中断することなく、エアブロウと真空引きとを連続して行うことができる。
(Air blow)
In the present embodiment, the suction ports 14 to 17 and the suction paths 51 of the suction ports 14 to 17 are also used as paths for performing an air blow that ejects pressurized air to the inside of the sleeve 11. The molten metal can be removed from the suction path 51 and the suction port by air blow.
A pressurized air supply system 9 (FIG. 2) that performs air blow includes a compressed air source 39 that is a supply source of pressurized air, and a pressurized tank 38 that stores pressure by being supplied with air by the compressed air source 39. It has.
The vacuum suction system 2 and the pressurized air supply system 9 of the present embodiment are configured to include a vacuum / air blow switching valve 35 installed downstream of the merging / distributing unit 34 (downstream during vacuum suction). The vacuum / air blow switching valve 35 switches between the vacuum suction and the air blow by switching the connection destination of the confluence / distribution unit 34 to the vacuum suction pipe 55 and the air blow pipe 56.
The suction path 51 upstream from the merging / distributing unit 34 (upstream during vacuum suction) is common during evacuation and air blow. Therefore, the air blow and the evacuation can be continuously performed without interrupting the production of the cast product by changing the piping to the suction ports 14 to 17.
 圧力検出部32は、真空引き時の圧力に加え、エアブロウ時の圧力をも検出可能であることが好ましい。真空引き時に検出される圧力は大気圧よりも低い。エアブロウ時に検出される圧力は大気圧よりも高い。 It is preferable that the pressure detector 32 can detect not only the pressure at the time of evacuation but also the pressure at the time of air blowing. The pressure detected during evacuation is lower than atmospheric pressure. The pressure detected during air blow is higher than atmospheric pressure.
 真空/エアブロウ切換弁35がエアブロウに切り換えられると、加圧タンク38から配管56および合流・分配部34を介して各吸引経路51へと空気が放出されて、各吸引口14~17からスリーブ11内に噴出する。エアブロウ時は、合流・分配部34に流入した空気が各吸引経路51へと分配されることとなる。一部の選択バルブ33を閉めると、開いている選択バルブ33に対応する吸引口や吸引経路51におけるエアの流量が増加するので清掃効果が高まる。
 そこで、吸引口14~17のうち詰まり易い吸引口についてのみエアブロウを行ったり、吸引口14~17の全数のエアブロウを行った後、さらに、検出された圧力に基づき、一部の吸引口のみについて重点的にエアブロウを行ったりすることもできる。
 エアブロウ時においても、圧力検出部32により吸引経路51内の圧力を監視することが好ましい。そうすると、検出された圧力がエアブロウ時の正常範囲から外れていたならばエアブロウを継続し、正常範囲に収まったならばエアブロウを終了する、といった処理が可能である。また、検出された圧力がエアブロウ時の閾値に対して過大である場合に、音や光等により報知することができる。
When the vacuum / air blow switching valve 35 is switched to the air blow, air is discharged from the pressurized tank 38 to each suction path 51 through the pipe 56 and the merging / distributing portion 34, and the sleeve 11 from each suction port 14-17. Erupts inside. At the time of air blow, the air flowing into the merging / distributing portion 34 is distributed to the respective suction paths 51. When some of the selection valves 33 are closed, the flow rate of air in the suction port and the suction path 51 corresponding to the open selection valve 33 increases, so that the cleaning effect is enhanced.
Therefore, after air blow is performed only on the suction ports that are likely to be clogged among the suction ports 14 to 17 or after all the air blows of the suction ports 14 to 17 are performed, only some of the suction ports are further determined based on the detected pressure. Air blows can also be focused on.
Even during air blow, it is preferable to monitor the pressure in the suction path 51 by the pressure detector 32. Then, if the detected pressure is out of the normal range at the time of air blow, the air blow is continued, and if it is within the normal range, the air blow is terminated. Further, when the detected pressure is excessive with respect to the threshold value at the time of air blow, it can be notified by sound or light.
 吸引口14~17を通じたエアブロウは、エアブロウにより溶湯18が暴れたり、給湯に支障が出たりしないように、給湯の直前を避け、スリーブ11内に溶湯18が貯留されていない状態において行うことができる。
 例えば、図3(d)に示すようにキャビティ23が溶湯18で満たされたタイミング(速度・圧力切換点/VP(Velocity Pressure)切換点)において、吸引口14~17のいずれについても、エアブロウを実施することが好ましい。このときエアの噴流により各吸引口14~17からスリーブ11内に溶湯カスが落下したとしても、その後、プランジャ12が後退して図3(a)に示すように原位置まで戻る際に、プランジャチップ20の後端20Bにより機械的に、溶湯カスをスリーブ11の外に確実に掻き出すことができるためである。つまり、スリーブ11内に溶湯カスが無い状態で、次の射出サイクルを開始することができる。
The air blowing through the suction ports 14 to 17 is performed in a state where the molten metal 18 is not stored in the sleeve 11, avoiding immediately before the hot water supply, so that the molten metal 18 is not disturbed by the air blow or the hot water supply is disturbed. it can.
For example, as shown in FIG. 3D, at the timing when the cavity 23 is filled with the molten metal 18 (speed / pressure switching point / VP (Velocity Pressure) switching point), air blow is performed on any of the suction ports 14 to 17. It is preferable to implement. At this time, even if the molten metal drops from the suction ports 14 to 17 into the sleeve 11 due to the jet of air, the plunger 12 is then retracted and returned to the original position as shown in FIG. This is because the molten metal residue can be reliably scraped out of the sleeve 11 mechanically by the rear end 20B of the chip 20. That is, the next injection cycle can be started with no molten metal in the sleeve 11.
 上述のように吸引口14~17を通じたエアブロウを行う他、プランジャチップ20の外周部、特に、後述する吸引用凹部120を清掃する目的において、例えばプランジャ12が原位置に戻った際に、スリーブ11の後端部の近傍に設けられた配管(図示しない)を通じてチップ20の小径部203(図15)にエアを噴出させるようにしてもよい。そうすると、チップの潤滑に用いられる潤滑剤や溶湯カス等がチップ20の外周部から除去されるので、真空吸引系統2により吸引されるチップ潤滑剤等の異物や溶湯カスの量を抑えることができ、吸引経路51等の閉塞抑止に寄与できる。 In addition to performing air blowing through the suction ports 14 to 17 as described above, for the purpose of cleaning the outer peripheral portion of the plunger tip 20, particularly the suction recess 120 described later, for example, when the plunger 12 returns to the original position, the sleeve The air may be ejected to the small diameter portion 203 (FIG. 15) of the chip 20 through a pipe (not shown) provided in the vicinity of the rear end portion of the eleventh. As a result, since the lubricant and molten debris used for tip lubrication are removed from the outer periphery of the tip 20, the amount of foreign matter such as tip lubricant and molten debris sucked by the vacuum suction system 2 can be suppressed. This can contribute to blockage prevention of the suction path 51 and the like.
(外気流入防止による課題解決)
 真空吸引系統2(図2)により吸引されたスリーブ11内は、大気圧に対して負圧となる。そのため、スリーブ11の外側の大気である外気とスリーブ11内の気体との圧力差に基づいて、スリーブ11の後端のプランジャロッド19の周りの空間88の外気が、プランジャチップ20とスリーブ11との間の隙間を通じて、スリーブ11内の溶湯18が貯留された空間75に流入したならば、溶湯18が泡立ち飛散したり、湯面18Aが激しく揺れ動いたりする。このように溶湯18が暴れたならば、それに伴い、スリーブ11内の溶湯18に由来する溶湯カスの量が増大する。また、溶湯18が暴れると、溶湯18に気体が巻き込まれ易い。
(Solving problems by preventing inflow of outside air)
The inside of the sleeve 11 sucked by the vacuum suction system 2 (FIG. 2) is a negative pressure with respect to the atmospheric pressure. Therefore, based on the pressure difference between the outside air that is the atmosphere outside the sleeve 11 and the gas inside the sleeve 11, the outside air in the space 88 around the plunger rod 19 at the rear end of the sleeve 11 causes the plunger tip 20, the sleeve 11, and If the molten metal 18 in the sleeve 11 flows into the space 75 in which the molten metal 18 is stored through the gap between the molten metal 18, the molten metal 18 bubbles and scatters, or the molten metal surface 18 </ b> A shakes violently. Thus, if the molten metal 18 goes out of order, the amount of the molten metal derived from the molten metal 18 in the sleeve 11 will increase accordingly. In addition, when the molten metal 18 is violated, gas is easily caught in the molten metal 18.
 本実施形態では、吸引されたスリーブ11内の溶湯18が貯留される空間75への外気の流入を防いで溶湯18の暴れを抑制することで、溶湯カスに起因する吸引口14~17および吸引経路51の詰まりや吸引効率の低下を避けてスリーブ11内を安定して吸引する。
 そして、溶湯18の暴れを抑えることで溶湯18への気体の巻き込みが抑えられるため、巻き込み巣の発生を防ぐことができる。
In the present embodiment, the suction ports 14 to 17 and the suction due to the molten metal are prevented by preventing the outside air from flowing into the space 75 in which the molten metal 18 in the sucked sleeve 11 is stored and suppressing the ramp of the molten metal 18. The inside of the sleeve 11 is stably sucked while avoiding clogging of the path 51 and a decrease in suction efficiency.
And since entrainment of the gas to the molten metal 18 is suppressed by suppressing the rampage of the molten metal 18, generation | occurrence | production of an entrapment nest can be prevented.
 以下、複数の観点から、射出装置1の好ましい構成要件を説明する。
 まず、図4~図8および図13を参照し、プランジャチップ20の外周部とスリーブ11の内周部との間を封止するための部材(摺動シール70およびシール部材79)について説明する。摺動シール70等の部材の熱膨張に対応して外気の流入をより十分に防止するため、摺動シール70にシール部材79を組み合わせた構成を以下に説明する。但し、摺動シール70単体のみによっても、スリーブ11内の前方の空間75への外気の流入を防いで溶湯暴れの抑制に寄与することができる。そのため、射出装置1が、摺動シール70およびシール部材79のうちの摺動シール70のみを備えていれば足りる。
Hereinafter, preferable constituent elements of the injection apparatus 1 will be described from a plurality of viewpoints.
First, members (sliding seal 70 and seal member 79) for sealing between the outer peripheral portion of the plunger tip 20 and the inner peripheral portion of the sleeve 11 will be described with reference to FIGS. . A structure in which the seal member 79 is combined with the slide seal 70 in order to more sufficiently prevent the inflow of outside air corresponding to the thermal expansion of the members such as the slide seal 70 will be described below. However, the sliding seal 70 alone can prevent the flow of outside air into the space 75 in the front of the sleeve 11 and contribute to the suppression of the molten metal rampage. Therefore, it is sufficient that the injection device 1 includes only the sliding seal 70 of the sliding seal 70 and the seal member 79.
 次に、スリーブ11内の前方の空間75に外気が流入するのを抑えるため、前方空間75と、プランジャチップ20の吸引用凹部120の内側との双方を真空吸引することについて説明する。スリーブ11の複数の吸引口14~17を用いて、前方空間75と吸引用凹部120の内側とを吸引しつつ行われるスリーブ真空吸引の手順(図11、図14)についても、制御例(図9および図10)を含め、説明する。
 また、前方空間75と吸引用凹部120の内側との双方を吸引することに関し、スリーブ11の各部の寸法とプランジャチップ20の各部の寸法とに係る要件についても、主に図12を参照して説明する。
Next, the vacuum suction of both the front space 75 and the inside of the suction recess 120 of the plunger tip 20 will be described in order to suppress the outside air from flowing into the front space 75 in the sleeve 11. The sleeve vacuum suction procedure (FIGS. 11 and 14) performed while suctioning the front space 75 and the inside of the suction recess 120 using the suction ports 14 to 17 of the sleeve 11 is also a control example (FIG. 11). 9 and FIG. 10).
Further, with respect to the suction of both the front space 75 and the inside of the suction recess 120, the requirements relating to the dimensions of the respective parts of the sleeve 11 and the dimensions of the respective parts of the plunger tip 20 are mainly described with reference to FIG. explain.
 さらに、プランジャチップ20の外周部へのシール剤の供給についても、図15を参照して説明する。
 なお、射出装置1が摺動シール70を備えているか、あるいは摺動シール70およびシール部材79を備えているならば、必ずしもシール剤を用いる必要がない。
Furthermore, the supply of the sealing agent to the outer peripheral portion of the plunger tip 20 will also be described with reference to FIG.
If the injection device 1 includes the sliding seal 70 or includes the sliding seal 70 and the seal member 79, it is not always necessary to use a sealant.
 図4~図7を参照し、スリーブ11内への外気の流入防止に関して説明する。
(プランジャの構成)
 まず、プランジャ12(図4(a)、(b)、および図5(a))の構成を説明する。プランジャ12は、上述したように、プランジャロッド19と、その前側に設けられるプランジャチップ20とを備えている。
 以下では、プランジャ12やスリーブ11の径方向のことを径方向D2と称する。径方向D2は、進退方向D1に対して直交する。
 また、プランジャ12やスリーブ11の周方向のことを周方向D3と称するものとする。図4(b)に示すプランジャ12の横断面の円周方向は、周方向D3に相当する。
With reference to FIGS. 4 to 7, prevention of inflow of outside air into the sleeve 11 will be described.
(Composition of plunger)
First, the structure of the plunger 12 (FIGS. 4A and 4B and FIG. 5A) will be described. As described above, the plunger 12 includes the plunger rod 19 and the plunger tip 20 provided on the front side thereof.
Hereinafter, the radial direction of the plunger 12 and the sleeve 11 is referred to as a radial direction D2. The radial direction D2 is orthogonal to the advance / retreat direction D1.
The circumferential direction of the plunger 12 and the sleeve 11 is referred to as a circumferential direction D3. The circumferential direction of the cross section of the plunger 12 shown in FIG. 4B corresponds to the circumferential direction D3.
 プランジャロッド19は、チップジョイント20Dによりプランジャチップ20と接合されている。チップジョイント20Dの後端側に設けられている図示しない雄ねじがロッド19の雌ねじ部と締結される。チップジョイント20Dの前端側に設けられている図示しない雄ねじがチップ20の雌ねじ部と締結される。チップ20の小径部203の外周部203Aには、締結作業用の工具と係合する二面幅203B(図4(b))が形成されている。
 プランジャロッド19が軸方向に駆動されると、プランジャロッド19およびプランジャチップ20の全体が一体に進退方向D1に沿って前進、あるいは後退する。
The plunger rod 19 is joined to the plunger tip 20 by a tip joint 20D. A male screw (not shown) provided on the rear end side of the chip joint 20 </ b> D is fastened to the female screw portion of the rod 19. A male screw (not shown) provided on the front end side of the chip joint 20 </ b> D is fastened to the female screw portion of the chip 20. On the outer peripheral portion 203A of the small-diameter portion 203 of the chip 20, a two-sided width 203B (FIG. 4B) that engages with a fastening tool is formed.
When the plunger rod 19 is driven in the axial direction, the entirety of the plunger rod 19 and the plunger tip 20 moves forward or backward integrally along the forward / backward direction D1.
 プランジャチップ20は、プランジャロッド19の径と比べて径が大きく、プランジャ12の前進時にスリーブ11内に貯留されている溶湯18を前方に向けて押し出す。
 プランジャチップ20の熱膨張を抑えるため、プランジャチップ20の内部には、水等の冷却媒体を循環させる機構(図示しない)が設けられている。プランジャチップ20の内部に形成された図示しない流路を冷却媒体が流れることで、プランジャチップ20が冷却される。
The plunger tip 20 has a larger diameter than the plunger rod 19 and pushes the molten metal 18 stored in the sleeve 11 forward when the plunger 12 moves forward.
In order to suppress the thermal expansion of the plunger tip 20, a mechanism (not shown) for circulating a cooling medium such as water is provided inside the plunger tip 20. The plunger tip 20 is cooled by a cooling medium flowing through a flow path (not shown) formed inside the plunger tip 20.
 プランジャチップ20は、スリーブ11の内径に対応した外径を有しており、プランジャ12の進退に伴い、スリーブ11の内周部11Aを摺動する。このとき、詳しくは、プランジャチップ20に備わる摺動シール70がスリーブ11の内周部11Aを摺動する。射出装置1の長期的な使用を経てプランジャチップ20が摩耗したならば、摩耗したプランジャチップ20を新しいものと交換可能である。本実施形態においてロッド19はスリーブ11の内周部11Aに摺動しない。そのため、プランジャチップ20を交換しても、ロッド19は継続して使用することができるため、経済的である。 The plunger tip 20 has an outer diameter corresponding to the inner diameter of the sleeve 11, and slides on the inner peripheral portion 11 </ b> A of the sleeve 11 as the plunger 12 advances and retreats. At this time, specifically, the sliding seal 70 provided on the plunger tip 20 slides on the inner peripheral portion 11 </ b> A of the sleeve 11. If the plunger tip 20 is worn out after long-term use of the injection device 1, the worn plunger tip 20 can be replaced with a new one. In the present embodiment, the rod 19 does not slide on the inner peripheral portion 11 </ b> A of the sleeve 11. Therefore, even if the plunger tip 20 is replaced, the rod 19 can be used continuously, which is economical.
 プランジャチップ20は、図5(a)に示すように、進退方向D1の前側に位置する第1大径部201と、進退方向D1の後側に位置し、第1大径部201との間に吸引用凹部120を区画する第2大径部202とを備えている。吸引用凹部120の位置におけるプランジャチップ20の径は、第1大径部201および第2大径部202の径と比べて小さい。そのため、プランジャチップ20の軸方向(D1)において第1大径部201と第2大径部202との間の区間のことを、小径部203と称する。
 プランジャチップ20は、適宜に複数の部材に分割して構成することができる。
As shown in FIG. 5A, the plunger tip 20 is located between the first large diameter portion 201 located on the front side in the advance / retreat direction D <b> 1 and the rear side in the advance / retreat direction D <b> 1. And a second large-diameter portion 202 that partitions the suction recess 120. The diameter of the plunger tip 20 at the position of the suction recess 120 is smaller than the diameters of the first large diameter portion 201 and the second large diameter portion 202. Therefore, a section between the first large diameter portion 201 and the second large diameter portion 202 in the axial direction (D1) of the plunger tip 20 is referred to as a small diameter portion 203.
The plunger tip 20 can be divided into a plurality of members as appropriate.
 第1大径部201の径と、第2大径部202の径とは、同一に定めることができるが、これに限られない。第1大径部201の径と、第2大径部202の径とが若干異なり、スリーブ11の内周部11Aと、第1大径部201の外周部および第2大径部202の外周部とのそれぞれの間に、異なるクリアランスが設定されていてもよい。 The diameter of the first large diameter portion 201 and the diameter of the second large diameter portion 202 can be determined to be the same, but are not limited thereto. The diameter of the first large-diameter portion 201 and the diameter of the second large-diameter portion 202 are slightly different, and the inner peripheral portion 11A of the sleeve 11, the outer peripheral portion of the first large-diameter portion 201, and the outer periphery of the second large-diameter portion 202 Different clearances may be set between each part.
 吸引用凹部120は、スリーブ11の内周部11Aに対して径方向D2の内側に退避しており、周方向D3に連続している。
 この吸引用凹部120は、プランジャチップ20の全周に亘り連続しているため、スリーブ11の内周部11Aと、吸引用凹部120に対応する小径部203の外周部203Aとの間には、環状の横断面を呈する空隙が形成される。
The suction recess 120 is retracted inward in the radial direction D2 with respect to the inner peripheral portion 11A of the sleeve 11, and is continuous in the circumferential direction D3.
Since the suction recess 120 is continuous over the entire circumference of the plunger tip 20, between the inner peripheral portion 11A of the sleeve 11 and the outer peripheral portion 203A of the small diameter portion 203 corresponding to the suction recess 120, A void having an annular cross section is formed.
 射出装置1は、図4(a)、(b)、および図5(a)に示すように、プランジャチップ20に摺動シール70およびシール部材79を備えていることを主な特徴とする。これら摺動シール70およびシール部材79によってプランジャチップ20の外周部20Cとスリーブ11の内周部11Aとの間の間隙を封止することにより、溶湯18が貯留されている前方空間75への外気の流入を防止する。 The injection device 1 is mainly characterized in that the plunger tip 20 includes a sliding seal 70 and a seal member 79, as shown in FIGS. 4 (a), 4 (b), and 5 (a). By sealing the gap between the outer peripheral portion 20C of the plunger tip 20 and the inner peripheral portion 11A of the sleeve 11 by the sliding seal 70 and the seal member 79, the outside air to the front space 75 in which the molten metal 18 is stored is stored. To prevent inflow.
 本実施形態の射出装置1は、進退方向D1に並ぶ2つの摺動シール70と、同じく進退方向D1に並ぶ2つのシール部材79とを備えている。
 摺動シール70の数は、1でも3以上であってもよい。シール部材79の数も同様である。
 本実施形態では、2つの摺動シール70および2つのシール部材79のいずれも、吸引用凹部120よりも後方の第2大径部202に設けられている。
 摺動シール70およびシール部材79は、第1大径部201および第2大径部202のいずれか一方あるいは両方に設けることができる。
The injection device 1 of the present embodiment includes two sliding seals 70 arranged in the advance / retreat direction D1, and two seal members 79 arranged in the advance / retreat direction D1.
The number of sliding seals 70 may be 1 or 3 or more. The number of seal members 79 is the same.
In the present embodiment, both the two sliding seals 70 and the two seal members 79 are provided in the second large diameter portion 202 behind the suction recess 120.
The sliding seal 70 and the seal member 79 can be provided on one or both of the first large diameter portion 201 and the second large diameter portion 202.
(摺動シール)
 摺動シール70(図4(a)、(b)、および図5(a))は、プランジャチップ20の第2大径部202の外周部に沿って周方向D3に連続している。摺動シール70は、周方向D3の一部における不連続な箇所である不連続部71を含んで環状に形成されている。摺動シール70は、図4(b)および図6に示すように、略円環のリング状に形成された部材である。
(Sliding seal)
The sliding seal 70 (FIGS. 4A, 4 </ b> B, and 5 </ b> A) is continuous in the circumferential direction D <b> 3 along the outer peripheral portion of the second large diameter portion 202 of the plunger tip 20. The sliding seal 70 is formed in an annular shape including a discontinuous portion 71 that is a discontinuous portion in a part of the circumferential direction D3. As shown in FIGS. 4B and 6, the sliding seal 70 is a member formed in a substantially annular ring shape.
 図6に示す摺動シール70は、スリーブ11の外部にあり、外力が作用していない。このように無負荷の状態にある摺動シール70の外径は、スリーブ11の内径と比べて大きい。この摺動シール70がプランジャチップ20の第2大径部202の軸周りに設けられて図4(a)、(b)に示すようにスリーブ11に挿入されると、摺動シール70は、不連続部71の空隙の寸法を狭めて、摺動シール70の径が縮小するように弾性変形する。
 このとき、摺動シール70は、弾性力により径方向D2の外側に向けてスリーブ11の内周部11Aを押圧している。この摺動シール70の弾性力により、摺動シール70の外周部70Bとスリーブ11の内周部11Aとの間が封止される。
The sliding seal 70 shown in FIG. 6 is outside the sleeve 11 and is not subjected to external force. Thus, the outer diameter of the sliding seal 70 in an unloaded state is larger than the inner diameter of the sleeve 11. When this sliding seal 70 is provided around the second large diameter portion 202 of the plunger tip 20 and inserted into the sleeve 11 as shown in FIGS. 4A and 4B, the sliding seal 70 is The gap 71 of the discontinuous portion 71 is narrowed and elastically deformed so that the diameter of the sliding seal 70 is reduced.
At this time, the sliding seal 70 presses the inner peripheral portion 11A of the sleeve 11 toward the outside in the radial direction D2 by elastic force. The elastic force of the sliding seal 70 seals between the outer peripheral portion 70B of the sliding seal 70 and the inner peripheral portion 11A of the sleeve 11.
 摺動シール70は、射出装置1の使用時に必要な耐熱性や耐摩耗性を有した炭素工具鋼、熱間工具鋼(JIS G4404 SKD61)、銅合金(例えばベリリウム銅)等の金属材料を用いて構成されている。 The sliding seal 70 is made of a metal material such as carbon tool steel, hot tool steel (JIS440G4404 SKD61), copper alloy (for example, beryllium copper) having heat resistance and wear resistance required when the injection apparatus 1 is used. Configured.
 摺動シール70の製造は、例えば、上記の金属材料のブロックからの削り出しにより行うことができる。あるいは、上記の金属材料を用いた板材から、打ち抜き等の加工を行うことで、摺動シール70が板状に展開された形態の部材を得て、当該部材に曲げ加工を施すことにより、円環状に成形された摺動シール70を得ることができる。
 摺動シール70の径、板厚(径方向D2の寸法)、幅(進退方向D1の寸法)、および不連続部71の空隙の寸法は、封止に必要な弾性や剛性等を考慮して適宜に定めることができる。
 複数の摺動シール70のそれぞれの径は、典型的には同一である。但し、プランジャチップ20における各摺動シール70の取付位置とスリーブ11の内周部11Aとの間の間隙の寸法が相違している場合は、その限りではない。
The sliding seal 70 can be manufactured, for example, by cutting out the above metal material block. Alternatively, by performing a process such as punching from a plate material using the above-described metal material, a member in a form in which the sliding seal 70 is developed in a plate shape is obtained, and the member is bent to obtain a circle. An annularly shaped sliding seal 70 can be obtained.
The diameter, thickness (diameter D2 dimension), width (advancing / retracting dimension D1) of the sliding seal 70, and the dimension of the gap of the discontinuous portion 71 take into account the elasticity and rigidity necessary for sealing. It can be determined as appropriate.
The diameters of the plurality of sliding seals 70 are typically the same. However, this is not the case when the dimension of the gap between the mounting position of each sliding seal 70 on the plunger tip 20 and the inner peripheral portion 11A of the sleeve 11 is different.
 摺動シール70は、適宜な方法でプランジャチップ20に設けることができる。本実施形態では、摺動シール70を第2大径部202に保持する円環状のシール保持部材72を用いて、摺動シール70をプランジャチップ20に設けている。シール保持部材72は、摺動シール70を後側から支持する状態にプランジャチップ20に固定されている。
 シール保持部材72は、摺動シール70に使用可能な金属材料と同様の金属材料から構成することができる。このシール保持部材72は、全周に亘り連続した環状の部材であってもよいし、周方向D3に分割された複数の部材から構成されていてもよい。
 シール保持部材72には、摺動シール70を保持できるように適宜な径を与えることができる。
 シール保持部材72の外周部72Aとスリーブ11の内周部11Aとの間には、所定のクリアランスを与えることができる。このクリアランスを小さくすると、前方空間75への外気流入を抑制することに寄与する。なお、シール保持部材72が、スリーブ11の内周部11Aに接触することも許容される。
The sliding seal 70 can be provided on the plunger tip 20 by an appropriate method. In the present embodiment, the sliding seal 70 is provided on the plunger tip 20 using an annular seal holding member 72 that holds the sliding seal 70 on the second large diameter portion 202. The seal holding member 72 is fixed to the plunger chip 20 so as to support the sliding seal 70 from the rear side.
The seal holding member 72 can be made of a metal material similar to the metal material that can be used for the sliding seal 70. The seal holding member 72 may be an annular member that is continuous over the entire circumference, or may be composed of a plurality of members that are divided in the circumferential direction D3.
The seal holding member 72 can have an appropriate diameter so that the sliding seal 70 can be held.
A predetermined clearance can be provided between the outer peripheral portion 72 </ b> A of the seal holding member 72 and the inner peripheral portion 11 </ b> A of the sleeve 11. Reducing this clearance contributes to suppressing the outside air inflow into the front space 75. Note that the seal holding member 72 is allowed to contact the inner peripheral portion 11 </ b> A of the sleeve 11.
 摺動シール70およびシール保持部材72を含む複数の部材からプランジャチップ20が組み立てられると、摺動シール70は、軸方向(D1)の両側から部材により挟んだ状態に支持される。例えば、図4(a)において、右側の摺動シール70は2つのシール保持部材72の間に挟持され、左側の摺動シール70はシール保持部材72と、第2大径部202の前端の部位202Aとの間に挟持される。そのため、プランジャ12が進退する際に摺動シール70の軸方向の位置がずれることが規制される。 When the plunger chip 20 is assembled from a plurality of members including the sliding seal 70 and the seal holding member 72, the sliding seal 70 is supported in a state of being sandwiched by members from both sides in the axial direction (D1). For example, in FIG. 4A, the right sliding seal 70 is sandwiched between two seal holding members 72, and the left sliding seal 70 is attached to the seal holding member 72 and the front end of the second large diameter portion 202. It is sandwiched between the part 202A. Therefore, the position of the sliding seal 70 in the axial direction is restricted when the plunger 12 moves back and forth.
 本実施形態の不連続部71の詳細な具体例を説明する。
 不連続部71は、外気の吹き抜けを防止するため、図5(a)、(b)、および図6に示すように、第1空隙711と、第2空隙712と、第1空隙711および第2空隙712を接続する分割部715とを含んでいることが好ましい。
 第1空隙711および第2空隙712は、周方向D3に互いにシフトしているとともに、進退方向D1にも互いにシフトしている。
 摺動シール70は、第1空隙711、第2空隙712、および分割部715により、幅方向(D1)の全体に亘り一端部701と他端部702とに分離可能に分割される。
A detailed specific example of the discontinuous portion 71 of the present embodiment will be described.
In order to prevent the outside air from being blown out, the discontinuous portion 71 has a first gap 711, a second gap 712, a first gap 711, and a first gap as shown in FIGS. It is preferable to include a dividing portion 715 that connects the two gaps 712.
The first gap 711 and the second gap 712 are shifted from each other in the circumferential direction D3 and are also shifted from each other in the forward / backward direction D1.
The sliding seal 70 is divided by the first gap 711, the second gap 712, and the dividing portion 715 so as to be separable into one end portion 701 and the other end portion 702 over the entire width direction (D1).
 第1空隙711および第2空隙712は、図5(c)に示すように配置されていてもよい。第1空隙711および第2空隙712のそれぞれの周方向D3における位置は、図5(b)と図5(c)とで入れ替わっている。
 以下、図5(b)に示す例に基づいて説明する。
The 1st space | gap 711 and the 2nd space | gap 712 may be arrange | positioned as shown in FIG.5 (c). The positions of the first gap 711 and the second gap 712 in the circumferential direction D3 are interchanged between FIG. 5B and FIG. 5C.
Hereinafter, description will be given based on the example shown in FIG.
 図5(b)に示すように、第1空隙711および第2空隙712を挟んで、摺動シール70の一端部701と他端部702とが周方向D3に対向している。
 一端部701および他端部702はいずれも鉤状に形成されている。
 一端部701における前側には、他端部702に向けて突出する前側凸部701Aが形成されている。他端部702における後側には、一端部701に向けて突出する後側凸部702Aが形成されている。
 なお、摺動シール70の一端部701および他端部702は、必ずしも鉤状に形成されていなくてもよく、単純には、軸方向(D1)に沿って直線的に形成されていてもよい。一端部701および他端部702が直線的に形成される場合に好適な構成例(図13(a)および(b))については後述する。
As shown in FIG. 5B, the one end portion 701 and the other end portion 702 of the sliding seal 70 are opposed to each other in the circumferential direction D3 with the first gap 711 and the second gap 712 interposed therebetween.
Both the one end portion 701 and the other end portion 702 are formed in a bowl shape.
On the front side of the one end portion 701, a front convex portion 701A that protrudes toward the other end portion 702 is formed. On the rear side of the other end portion 702, a rear convex portion 702A that protrudes toward the one end portion 701 is formed.
Note that the one end portion 701 and the other end portion 702 of the sliding seal 70 do not necessarily have to be formed in a bowl shape, and may simply be formed linearly along the axial direction (D1). . A configuration example (FIGS. 13A and 13B) suitable when the one end 701 and the other end 702 are formed linearly will be described later.
 第1空隙711は、後側凸部702Aの前側に隣接して、前側凸部701Aの先端と他端部702との間に区画されている。
 第2空隙712は、前側凸部701Aの後側に隣接して、後側凸部702Aの先端と一端部701との間に区画されている。
 第1空隙711の周方向D3の寸法と、第2空隙712の周方向D3の寸法とは同等に設定されているが、異なっていてもよい。
The first gap 711 is adjacent to the front side of the rear convex portion 702A and is partitioned between the front end of the front convex portion 701A and the other end portion 702.
The second gap 712 is adjacent to the rear side of the front convex portion 701A and is partitioned between the tip of the rear convex portion 702A and the one end portion 701.
Although the dimension of the circumferential direction D3 of the 1st space | gap 711 and the dimension of the circumferential direction D3 of the 2nd space | gap 712 are set equally, you may differ.
 分割部715は、第1空隙711の後側に隣接する領域(702A)の端縁と、第2空隙712の前側に隣接する領域(701A)の端縁とからなる。この分割部715は、後側凸部702Aの前方の端面702Bと、前側凸部701Aの後方の端面701Bとに沿って形成されている。
 一端部701の前側凸部701Aと、他端部702の後側凸部702Aとは、第1空隙711および第2空隙712を残しつつ、幅方向(D1)内側の端面701B,702B同士が突き当てられるように配置される。端面701Bと端面702Bとの間には隙間がないことが好ましい。
The dividing portion 715 includes an edge of a region (702A) adjacent to the rear side of the first gap 711 and an edge of a region (701A) adjacent to the front side of the second gap 712. The dividing portion 715 is formed along the front end surface 702B of the rear convex portion 702A and the rear end surface 701B of the front convex portion 701A.
The front convex portion 701A of the one end portion 701 and the rear convex portion 702A of the other end portion 702 are protruded by the end surfaces 701B and 702B on the inner side in the width direction (D1) while leaving the first gap 711 and the second gap 712. Arranged to be hit. It is preferable that there is no gap between the end surface 701B and the end surface 702B.
 摺動シール70の径方向D2の変形量に応じて、前側凸部701Aと後側凸部702Aとの周方向D3における相対位置が変化することに伴い、第1空隙711および第2空隙712の寸法が変化する。 As the relative position in the circumferential direction D3 between the front convex portion 701A and the rear convex portion 702A changes according to the deformation amount in the radial direction D2 of the sliding seal 70, the first gap 711 and the second gap 712 The dimensions change.
 前側凸部701Aおよび後側凸部702Aの周方向D3の長さや、第1、第2空隙711,712の周方向D3の寸法は、射出装置1の使用時におけるスリーブ11や摺動シール70等の熱膨張により第1、第2空隙711,712の寸法が拡大したとしても端面701B,702B同士が突き当てられた状態に維持されるように適切に定められることが好ましい。 The length in the circumferential direction D3 of the front convex portion 701A and the rear convex portion 702A and the dimension in the circumferential direction D3 of the first and second gaps 711 and 712 are the sleeve 11 and the sliding seal 70 when the injection apparatus 1 is used. Even if the dimensions of the first and second gaps 711 and 712 are increased due to the thermal expansion, it is preferably determined appropriately so that the end faces 701B and 702B are maintained in contact with each other.
 本実施形態の分割部715は、摺動シール70の幅方向の中心を幅方向(D1)に対して直交する方向に沿って延びている。
 なお、分割部715が、摺動シール70の幅方向の中心よりも前方あるいは後方にシフトしていてもよい。
The division part 715 of this embodiment extends along the direction orthogonal to the width direction (D1) with respect to the center in the width direction of the sliding seal 70.
The dividing portion 715 may be shifted forward or backward from the center of the sliding seal 70 in the width direction.
 不連続部71を通じて外気が前方空間75に流入することを抑えるため、2つの摺動シール70のそれぞれの不連続部71が、図4(a)および図6に示すように、周方向D3に互いに離れていることが好ましい。それらの不連続部71の周方向D3の位置が相違していると、同一である場合とは異なり、不連続部71,71間を外気が直進できないため、外気に与えられる抵抗が大きいからである。
 本実施形態では、2つの摺動シール70のそれぞれの不連続部71が互いに180°離れている。
In order to suppress the outside air from flowing into the front space 75 through the discontinuous portion 71, the discontinuous portions 71 of the two sliding seals 70 are arranged in the circumferential direction D3 as shown in FIG. 4A and FIG. Preferably they are separated from each other. If the positions of the discontinuous portions 71 in the circumferential direction D3 are different, unlike the case where the discontinuous portions 71 are the same, the outside air cannot go straight between the discontinuous portions 71 and 71, and thus the resistance given to the outside air is large. is there.
In the present embodiment, the discontinuous portions 71 of the two sliding seals 70 are separated from each other by 180 °.
 2つの摺動シール70の不連続部71の相対的な位置関係が維持されるように、2つの摺動シール70の相対回転がピン等を用いて規制されていることが好ましい。2つの摺動シール70の回転規制のために、例えば、2つの摺動シール70の間に位置するシール保持部材72を用いることができる。この場合に、2つの摺動シール70とシール保持部材72とが軸周りに一体に回転したとしても、2つの摺動シール70の不連続部71の相対位置関係は変わらず、不連続部71が180°シフトした状態を維持することができる。
 2つの摺動シール70の間に位置するシール保持部材72を省略したとしても、2つの摺動シール70間への廻り止め等の設置や、他のシール保持部材72および第2大径部202の前端の部位202Aを用いることにより、2つの摺動シール70の回転を規制することができる。
 2つの摺動シール70の間に位置するシール保持部材72を省略した場合は、図13に示す摺動シール81,82と同様に、2つの摺動シール70を互いに近接して配置し、それらの摺動シール70の境界をシール部材79により径方向内側から封止するとよい。
It is preferable that the relative rotation of the two sliding seals 70 is restricted using a pin or the like so that the relative positional relationship between the discontinuous portions 71 of the two sliding seals 70 is maintained. In order to restrict the rotation of the two sliding seals 70, for example, a seal holding member 72 positioned between the two sliding seals 70 can be used. In this case, even if the two sliding seals 70 and the seal holding member 72 are integrally rotated around the axis, the relative positional relationship between the discontinuous portions 71 of the two sliding seals 70 is not changed, and the discontinuous portions 71 are not changed. Can be maintained 180 ° shifted.
Even if the seal holding member 72 located between the two sliding seals 70 is omitted, installation of a detent or the like between the two sliding seals 70, the other seal holding member 72, and the second large diameter portion 202 are omitted. The rotation of the two sliding seals 70 can be restricted by using the front end portion 202A.
When the seal holding member 72 located between the two sliding seals 70 is omitted, like the sliding seals 81 and 82 shown in FIG. The boundary of the sliding seal 70 may be sealed from the radially inner side by the seal member 79.
(シール部材)
 次に、シール部材79(図4(a)、図5(a)、および図6)は、摺動シール70の径方向D2の内側に配置されている。シール部材79は、ゴム系材料を用いて、連続した円環状に構成された、所謂Oリングである。
 シール部材79は、摺動シール70とプランジャチップ20の第2大径部202との間で径方向D2に撓んで、図4(b)、図7(a)および(b)に示すように、それらの間の隙間Gpを封止する。シール部材79は、径方向D2の弾性力により、摺動シール70の内周部70Aと第2大径部202の外周部20Cとに押圧されることで、隙間Gpを封止する。
(Seal member)
Next, the seal member 79 (FIGS. 4A, 5A, and 6) is disposed inside the sliding seal 70 in the radial direction D2. The seal member 79 is a so-called O-ring configured with a continuous annular shape using a rubber-based material.
The seal member 79 bends in the radial direction D2 between the sliding seal 70 and the second large diameter portion 202 of the plunger tip 20, and as shown in FIGS. 4B, 7A, and 7B. The gap Gp between them is sealed. The seal member 79 seals the gap Gp by being pressed by the inner peripheral portion 70A of the sliding seal 70 and the outer peripheral portion 20C of the second large diameter portion 202 by the elastic force in the radial direction D2.
 シール部材79は、摺動シール70と比べて弾性率が十分に小さい。そのため、スリーブ11および摺動シール70の熱膨張に伴い隙間Gpが拡がったとしても、隙間Gpを塞ぐために十分な弾性変形量をシール部材79に確保することができる。
 なお、スリーブ11は、典型的には、熱間金型用鋼を用いて構成されている。
The sealing member 79 has a sufficiently small elastic modulus as compared with the sliding seal 70. Therefore, even if the gap Gp expands due to the thermal expansion of the sleeve 11 and the sliding seal 70, a sufficient elastic deformation amount can be secured in the seal member 79 to close the gap Gp.
In addition, the sleeve 11 is typically configured using hot mold steel.
 シール部材79は、スリーブ11の内周部11Aと直接は接触しないため、プランジャ12の進退に伴う摩擦熱の影響が小さく、さらに、摺動シール70と比べて、径方向D2の内側に位置しているため、典型的には水冷されているプランジャチップ20の内部に近い。そのため、シール部材79に要求される耐熱性は、摺動シール70と比べて低い。したがって、金属材料と比べて耐熱性が一般に低いゴム系材料をシール部材79に用いることができる。
 また、溶湯18に接触するチップ20の前端20A側と比べると後端20B側の温度は低いため、耐熱の観点からは、チップ20における第2大径部202に摺動シール70およびシール部材79が設けられることが好ましい。
Since the seal member 79 is not in direct contact with the inner peripheral portion 11A of the sleeve 11, the influence of frictional heat associated with the advancement and retraction of the plunger 12 is small, and further, the seal member 79 is located on the inner side in the radial direction D2 as compared with the sliding seal 70. Therefore, it is close to the inside of the plunger tip 20 that is typically water-cooled. Therefore, the heat resistance required for the seal member 79 is lower than that of the sliding seal 70. Therefore, a rubber-based material generally having a low heat resistance compared to a metal material can be used for the seal member 79.
Further, since the temperature on the rear end 20B side is lower than the front end 20A side of the chip 20 in contact with the molten metal 18, the sliding seal 70 and the seal member 79 are formed on the second large diameter portion 202 of the chip 20 from the viewpoint of heat resistance. Is preferably provided.
 シール部材79には、射出装置1の使用時に必要な耐熱性、および封止に必要な剛性の観点より、例えば、フッ素ゴム、シリコーンゴム、クロロプレンゴム、ニトリルゴム、アクリルゴム等の適宜なゴム系材料や、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)等の樹脂系材料を用いることができる。本実施形態のシール部材79には、耐熱温度が約200℃であるフッ素ゴムが用いられている。
 シール部材79の外径や内径、断面径等の寸法は、隙間Gpが最大に拡がった際に、シール部材79が弾性変形量を減少させつつも隙間Gpを封止した状態を維持するように、適宜に定めることができる。
From the viewpoint of heat resistance required when using the injection device 1 and rigidity required for sealing, the seal member 79 is made of, for example, an appropriate rubber system such as fluorine rubber, silicone rubber, chloroprene rubber, nitrile rubber, and acrylic rubber. Materials and resin materials such as polytetrafluoroethylene (PTFE) and polyamide (PA) can be used. For the seal member 79 of the present embodiment, fluororubber having a heat resistant temperature of about 200 ° C. is used.
The seal member 79 has dimensions such as an outer diameter, an inner diameter, and a cross-sectional diameter so that when the gap Gp is maximized, the seal member 79 maintains the sealed state of the gap Gp while reducing the amount of elastic deformation. Can be determined as appropriate.
 シール部材79は、図7(a)、(b)に示すように、第2大径部202の外周面202Bから窪んだシール保持溝202Cの内側に保持されている。シール保持溝202Cは、周方向D3に沿って第2大径部202の全周に亘り、環状に形成されている。
 シール部材79は、シール保持溝202Cに保持されていることで、進退方向D1への位置ずれが規制される。
As shown in FIGS. 7A and 7B, the seal member 79 is held inside a seal holding groove 202 </ b> C that is recessed from the outer peripheral surface 202 </ b> B of the second large diameter portion 202. The seal holding groove 202C is formed in an annular shape over the entire circumference of the second large diameter portion 202 along the circumferential direction D3.
Since the seal member 79 is held in the seal holding groove 202C, displacement in the forward / backward direction D1 is restricted.
 図7(a)および(b)に示すように、シール保持溝202Cに保持されたシール部材79の周りに摺動シール70が配置される。シール部材79は、摺動シール70の不連続部71における分割部715を径方向D2の内側から封止するように、摺動シール70の幅方向(D1)における分割部715の位置(幅方向中心)に配置されることが好ましい。図7(b)に示す例では、シール部材79において径が最大である外端79Aが、分割部715が延びている周方向D3に沿って、分割部715およびその近傍に突き当てられて密着している。 7A and 7B, a sliding seal 70 is disposed around the seal member 79 held in the seal holding groove 202C. The seal member 79 has a position (width direction) of the dividing portion 715 in the width direction (D1) of the sliding seal 70 so as to seal the dividing portion 715 in the discontinuous portion 71 of the sliding seal 70 from the inside in the radial direction D2. It is preferable to arrange in the center). In the example shown in FIG. 7B, the outer end 79A having the largest diameter in the seal member 79 is abutted against and closely contacted with the divided portion 715 and the vicinity thereof along the circumferential direction D3 in which the divided portion 715 extends. doing.
 第1空隙711と第2空隙712とを接続する分割部715が、径方向D2の内側からシール部材79により封止されていると、摺動シール70における後方の第2空隙712に流入した外気が、径方向D2の内側を通って前方の第1空隙711に流入することを避けることができる。 When the divided portion 715 that connects the first gap 711 and the second gap 712 is sealed by the seal member 79 from the inside in the radial direction D2, the outside air that has flowed into the second gap 712 behind the sliding seal 70 However, it can avoid flowing into the front 1st space | gap 711 through the inner side of radial direction D2.
(摺動シールおよびシール部材を備えた射出装置の製造)
 まず、シール部材79および摺動シール70が装着されたプランジャチップ20と、プランジャロッド19とを組み付けてプランジャ12(図5(a))を製造する。
 プランジャチップ20にシール部材79および摺動シール70を装着する際には、プランジャチップ20の第2大径部202のシール保持溝202Cにシール部材79を保持した状態で、シール部材79の周りに、第2大径部202の後端側から、摺動シール70およびシール保持部材72を軸方向の所定の順序で挿入する。
(Manufacture of injection device equipped with sliding seal and seal member)
First, the plunger 12 (FIG. 5 (a)) is manufactured by assembling the plunger tip 20 to which the seal member 79 and the sliding seal 70 are attached and the plunger rod 19.
When the seal member 79 and the sliding seal 70 are attached to the plunger tip 20, the seal member 79 is held around the seal member 79 in a state where the seal member 79 is held in the seal holding groove 202 </ b> C of the second large diameter portion 202 of the plunger tip 20. The sliding seal 70 and the seal holding member 72 are inserted in a predetermined order in the axial direction from the rear end side of the second large diameter portion 202.
 次いで、スリーブ11内にプランジャ12を挿入する。このとき、スリーブ11に対するプランジャ12の前進に伴い、スリーブ11の後端部11Bに形成された誘い込み用のテーパ面11C(図4(a))により摺動シール70が案内されて径方向D2の内側に弾性変形することによって摺動シール70の径が縮小する。これに伴い、摺動シール70の内周部70Aとプランジャチップ20の外周部20Cとの間にシール部材79が押圧されて径方向D2に弾性変形する。 Next, the plunger 12 is inserted into the sleeve 11. At this time, with the advancement of the plunger 12 relative to the sleeve 11, the sliding seal 70 is guided by the guiding tapered surface 11C (FIG. 4 (a)) formed at the rear end portion 11B of the sleeve 11, and in the radial direction D2. The diameter of the sliding seal 70 is reduced by elastically deforming inward. Along with this, the seal member 79 is pressed between the inner peripheral portion 70A of the sliding seal 70 and the outer peripheral portion 20C of the plunger tip 20, and elastically deforms in the radial direction D2.
 スリーブ11内にプランジャ12が挿入されると、図7(a)、(b)に示すように、摺動シール70がスリーブ11の内周部11Aを径方向D2に押圧し、摺動シール70の内周部70Aとプランジャチップ20の外周部20Cとをシール部材79が押圧する。このため、スリーブ11の内周部11Aとプランジャチップ20の外周部20Cとの間の間隙が封止される。
 上記の状態に摺動シール70およびシール部材79をプランジャ12とスリーブ11とに装着するステップを経て、射出装置1が製造される。
When the plunger 12 is inserted into the sleeve 11, as shown in FIGS. 7A and 7B, the sliding seal 70 presses the inner peripheral portion 11 </ b> A of the sleeve 11 in the radial direction D <b> 2, and the sliding seal 70. The seal member 79 presses the inner peripheral portion 70 </ b> A and the outer peripheral portion 20 </ b> C of the plunger tip 20. For this reason, the gap between the inner peripheral portion 11A of the sleeve 11 and the outer peripheral portion 20C of the plunger tip 20 is sealed.
The injection device 1 is manufactured through the step of attaching the sliding seal 70 and the seal member 79 to the plunger 12 and the sleeve 11 in the above state.
 射出装置1は、新規に製造されたものには限らず、既存の射出装置に摺動シール70およびシール部材79を与える改修によって得られたものであってもよい。既存機の改修による場合も、上記と同様に、摺動シール70およびシール部材79をプランジャ12とスリーブ11とに装着するステップを経て、摺動シール70およびシール部材79を備えた射出装置1を製造することができる。 The injection device 1 is not limited to a newly manufactured device, and may be obtained by a modification in which a sliding seal 70 and a seal member 79 are provided to an existing injection device. Even when the existing machine is refurbished, the injection device 1 including the sliding seal 70 and the seal member 79 is passed through the step of attaching the sliding seal 70 and the seal member 79 to the plunger 12 and the sleeve 11 as described above. Can be manufactured.
(摺動シールおよびシール部材による作用および効果)
 ダイカストマシン100による鋳造プロセスにおいては、溶湯18への空気の巻き込みを抑えるため、真空吸引系統2(図2)により、スリーブ11の内側において少なくとも溶湯18が貯留されている空間75を吸引により減圧させる。
 こうしてスリーブ11内の真空吸引を行う鋳造について、以下に、摺動シール70およびシール部材79による作用および効果を説明する。
 本実施形態では、プランジャチップ20の前端20Aよりも前方の空間75と、吸引用凹部120の内側とが真空吸引系統2により吸引される。吸引用凹部120の内側の吸引は、以下に述べる作用および効果を得るにあたって必ずしも前提とはされない。
(Operation and effect of sliding seal and seal member)
In the casting process by the die casting machine 100, in order to suppress the entrainment of air into the molten metal 18, the space 75 in which at least the molten metal 18 is stored inside the sleeve 11 is decompressed by suction by the vacuum suction system 2 (FIG. 2). .
The operation and effect of the sliding seal 70 and the seal member 79 will be described below for casting that performs vacuum suction in the sleeve 11 in this way.
In the present embodiment, the space 75 ahead of the front end 20 </ b> A of the plunger tip 20 and the inside of the suction recess 120 are sucked by the vacuum suction system 2. The suction inside the suction recess 120 is not necessarily a premise for obtaining the actions and effects described below.
 ダイカストマシン100による鋳造を開始すると、溶湯18の熱により、スリーブ11や摺動シール70が熱膨張して径が拡大する。摺動シール70は、熱膨張と、径方向D2外側への弾性力とにより、スリーブ11に追従して径が拡大する。シール部材79も熱膨張により径が拡大する。
 一方、プランジャチップ20は、典型的には水冷されており、また、スリーブ11に対してプランジャ12が後退しているときにロッド19から外気へと放熱される。そのため、プランジャチップ20も熱膨張により径が拡大するとは言え、スリーブ11や摺動シール70等と比べてプランジャチップ20の熱膨張による変形量は小さい。
When casting by the die casting machine 100 is started, the sleeve 11 and the sliding seal 70 are thermally expanded by the heat of the molten metal 18 and the diameter is expanded. The diameter of the sliding seal 70 increases following the sleeve 11 due to thermal expansion and elastic force outward in the radial direction D2. The diameter of the seal member 79 also increases due to thermal expansion.
On the other hand, the plunger tip 20 is typically water-cooled, and heat is radiated from the rod 19 to the outside air when the plunger 12 is retracted with respect to the sleeve 11. Therefore, although the diameter of the plunger tip 20 is also expanded by thermal expansion, the amount of deformation due to the thermal expansion of the plunger tip 20 is small compared to the sleeve 11 and the sliding seal 70 and the like.
 以上より、摺動シール70の内周部70Aとプランジャチップ20の第2大径部202の外周部20Cとが径方向D2に離れ、隙間Gp(図4(b))が拡大したとする。
 それでも、シール部材79は弾性変形した状態にあり、プランジャチップ20の外周部20Cと摺動シール70の内周部70Aとに押圧されているため、隙間Gpは封止された状態に維持される。
 しかも、本実施形態では、摺動シール70の不連続部71を通じて外気が前方へと吹き抜けることも防止する。不連続部71の第2空隙712に後方から外気が流入したとしても、第2空隙712の前側に隣接する領域(前側凸部701A)の後方の端面701B(図5(a)、図7(a)および(b))が外気を遮蔽する壁として機能することで、第2空隙712から第1空隙711へと外気が直進しない。そのため、外気に抵抗を与え、不連続部71を外気が通過することを抑えることができる。
From the above, it is assumed that the inner peripheral portion 70A of the sliding seal 70 and the outer peripheral portion 20C of the second large diameter portion 202 of the plunger tip 20 are separated in the radial direction D2, and the gap Gp (FIG. 4B) is enlarged.
Still, since the seal member 79 is in an elastically deformed state and pressed against the outer peripheral portion 20C of the plunger tip 20 and the inner peripheral portion 70A of the sliding seal 70, the gap Gp is maintained in a sealed state. .
In addition, in the present embodiment, the outside air is also prevented from being blown forward through the discontinuous portion 71 of the sliding seal 70. Even if outside air flows into the second gap 712 of the discontinuous portion 71 from behind, the rear end surface 701B of the region adjacent to the front side of the second gap 712 (front convex portion 701A) (FIG. Since a) and (b)) function as a wall that shields outside air, the outside air does not travel straight from the second gap 712 to the first gap 711. Therefore, resistance can be given to outside air and it can suppress that outside air passes the discontinuous part 71. FIG.
 不連続部71に関してより詳細には、分割部715を構成する前側凸部701Aの端面701Bと後側凸部702Aの端面702Bとが隙間なく突き当てられていることで、前側凸部701Aの後方の端面701B(壁)に衝突した外気が分割部715である端面701B,702B間を通じて第1空隙711へと流入するのを防ぐことができる。
 さらに、分割部715が径方向D2の内側からシール部材79により封止されていることで、第2空隙712に流入した外気が、径方向D2の内側を通って第1空隙711に流入することも避けることができる。
More specifically with respect to the discontinuous portion 71, the end surface 701B of the front convex portion 701A and the end surface 702B of the rear convex portion 702A that constitute the dividing portion 715 are abutted with no gap, so that the rear of the front convex portion 701A. It is possible to prevent the outside air that has collided with the end surface 701B (wall) from flowing into the first gap 711 through the space between the end surfaces 701B and 702B which are the divided portions 715.
Furthermore, since the dividing portion 715 is sealed from the inner side in the radial direction D2 by the seal member 79, the outside air that has flowed into the second gap 712 flows into the first gap 711 through the inner side in the radial direction D2. Can also be avoided.
 そして、外気の上流(後側)に位置する摺動シール70およびシール部材79を外気の一部が吹き抜けたとしても、それよりも下流(前側)に位置する別の摺動シール70およびシール部材79により、外気の吹き抜けを防ぐことができる。
 本実施形態のように複数の摺動シール70が進退方向D1に並んで配置されていると、後方から前方に向かう外気の流れに対して、不連続部71における壁(701B)の数が増えるため、外気の流れを遮蔽する効果が向上する。
 しかも、上流の摺動シール70と下流の摺動シール70とのそれぞれの不連続部71が周方向D3に離れていると、上流の摺動シール70の不連続部71を通過した外気が、下流の摺動シール70の不連続部71へと直進しない。この点でも、外気の流れを遮蔽する効果が向上する。
Even if a part of the outside air blows through the slide seal 70 and the seal member 79 located upstream (rear side) of the outside air, another slide seal 70 and seal member located further downstream (front side) than that. 79 can prevent the outside air from being blown out.
When the plurality of sliding seals 70 are arranged side by side in the advance / retreat direction D1 as in this embodiment, the number of walls (701B) in the discontinuous portion 71 increases with respect to the flow of outside air from the rear to the front. Therefore, the effect of shielding the flow of outside air is improved.
Moreover, when the discontinuous portions 71 of the upstream sliding seal 70 and the downstream sliding seal 70 are separated in the circumferential direction D3, the outside air that has passed through the discontinuous portion 71 of the upstream sliding seal 70 is It does not go straight to the discontinuous portion 71 of the downstream sliding seal 70. Also in this respect, the effect of shielding the flow of outside air is improved.
 以上で述べた摺動シール70とシール部材79との作用によれば、鋳造により製品を連続して生産する間に亘り、プランジャチップ20の外周部20Cとスリーブ11の内周部11Aとの間の間隙における径方向D2の外側および内側のいずれも封止されている。そのため、ガス抜きされるスリーブ11の内側と外気との間に圧力差が生じていても、摺動シール70およびシール部材79よりも前方に外気が流入することを防ぐことができる。
 その結果、溶湯18の暴れが抑制されるため、溶湯カスに起因する吸引口14~17、吸引経路51の閉塞や吸引効率の低下を避けながら、スリーブ11内を所望の真空度にまで減圧させて巻き込み巣の発生を防ぐことができる。
According to the action of the sliding seal 70 and the sealing member 79 described above, the product between the outer peripheral portion 20C of the plunger tip 20 and the inner peripheral portion 11A of the sleeve 11 is continuously produced by casting. Both the outer side and the inner side in the radial direction D2 in the gap are sealed. Therefore, even if a pressure difference is generated between the inside of the sleeve 11 to be vented and the outside air, the outside air can be prevented from flowing in front of the sliding seal 70 and the seal member 79.
As a result, since the melt 18 is prevented from being violated, the inside of the sleeve 11 is decompressed to a desired degree of vacuum while avoiding blockage of the suction ports 14 to 17 and the suction path 51 and a decrease in suction efficiency due to the molten metal debris. Can prevent the occurrence of entrapment.
 本実施形態によれば、摺動シール70およびシール部材79によってスリーブ11内の気密性を高めて溶湯18の暴れを抑制することができる。そのため、スリーブ11内の気密性を向上させるために高真空ダイカスト専用の高価なプランジャチップを射出装置1に採用する必要がない。
 また、摺動シール70およびシール部材79により、スリーブ11等の熱膨張により径方向D2に変化する間隙が封止された状態に維持されるので、セラミック系の材料やサーメット等の熱膨張率が小さい材料から構成された高価なスリーブ11を採用する必要もない。
 以上より、装置コストを抑えつつ、スリーブ11内の真空吸引により巻き込み巣の発生を抑えて鋳造製品の品質を向上させることができる。
 本実施形態によれば、従来、溶湯カスに起因して吸引用の孔や経路がたちまち閉塞しがちなスリーブ真空吸引にあって、吸引用の経路の閉塞や吸引効率の低下を避けてスリーブ11内の安定した吸引を実現することができる。本実施形態によれば、経路の閉塞等を避けるためにスリーブ内における真空度や溶湯充填率を抑えて真空吸引を行う必要がないので、高真空度・高充填率のスリーブ真空吸引を実現することができる。
According to the present embodiment, the sliding seal 70 and the seal member 79 can improve the airtightness in the sleeve 11 and suppress the runaway of the molten metal 18. Therefore, it is not necessary to use an expensive plunger tip dedicated to high vacuum die casting in the injection apparatus 1 in order to improve the airtightness in the sleeve 11.
Further, since the gap that changes in the radial direction D2 due to the thermal expansion of the sleeve 11 or the like is maintained by the sliding seal 70 and the seal member 79, the thermal expansion coefficient of the ceramic material, cermet, or the like is increased. There is no need to employ an expensive sleeve 11 made of a small material.
As described above, it is possible to improve the quality of the cast product by suppressing the generation of the entrapment nest by vacuum suction in the sleeve 11 while suppressing the apparatus cost.
According to the present embodiment, conventionally, in the sleeve vacuum suction in which the suction hole and the path are likely to be blocked due to the molten metal debris, the sleeve 11 avoids the suction path being blocked and the suction efficiency is lowered. Stable suction can be realized. According to the present embodiment, since it is not necessary to perform vacuum suction while suppressing the degree of vacuum and the molten metal filling rate in the sleeve in order to avoid blockage of the path and the like, high-vacuum and high filling rate sleeve vacuum suction is realized. be able to.
(摺動シールの変形例)
 図8(a)に示す射出装置1は、1つの摺動シール70と、1つのシール部材79とを備えている。
 図8(b)に示す射出装置1は、3つの摺動シール70と、2つのシール部材79とを備えている。この例に示すように、必ずしも摺動シール70の全数について、摺動シール70の径方向D2の内側にシール部材79が配置されていなくてもよい。進退方向D1に並んだ摺動シール70のうち、径方向D2内側の封止が必要な摺動シール70に対してのみシール部材79を配置することが許容される。
 この例に示すように、摺動シール70とシール部材79とが必ずしも同数である必要はない。
(Modification of sliding seal)
The injection device 1 shown in FIG. 8A includes one sliding seal 70 and one seal member 79.
The injection device 1 illustrated in FIG. 8B includes three sliding seals 70 and two seal members 79. As shown in this example, the sealing members 79 do not necessarily have to be arranged inside the radial direction D2 of the sliding seal 70 for all the sliding seals 70. Of the sliding seals 70 arranged in the advancing / retreating direction D1, the seal member 79 is allowed to be disposed only on the sliding seal 70 that needs to be sealed inside the radial direction D2.
As shown in this example, the sliding seals 70 and the sealing members 79 do not necessarily have to be the same number.
 既に述べたように、隣り合う摺動シール70のそれぞれの不連続部71は、図8(b)に示すように、周方向D3に互いに離れていることが好ましい。不連続部71を通じて外気が吹き抜けることを抑えるためである。 As already described, the discontinuous portions 71 of the adjacent sliding seals 70 are preferably separated from each other in the circumferential direction D3 as shown in FIG. 8 (b). This is to prevent outside air from blowing through the discontinuous portion 71.
 図8(c)に示すように、不連続部71は階段状に形成されていてもよい。この不連続部71は、第1空隙711と、第2空隙712と、第3空隙713と、第1分割部715と、第2分割部716とを含んで構成されている。第1分割部715と第2分割部716とはそれぞれ、径方向D2の内側からシール部材79により封止されている。 As shown in FIG. 8C, the discontinuous portion 71 may be formed in a staircase shape. The discontinuous portion 71 includes a first gap 711, a second gap 712, a third gap 713, a first divided portion 715, and a second divided portion 716. Each of the first divided portion 715 and the second divided portion 716 is sealed with a seal member 79 from the inside in the radial direction D2.
 さらに、図8(d)に示すように、凹部717が形成された一端部701と、凸部718が形成された他端部702との間に、第1~第3空隙711~713が配置されていてもよい。この例では、1つのシール部材791により第1分割部715と第2分割部716とに亘り、径方向D2の内側から封止している。 Further, as shown in FIG. 8D, the first to third gaps 711 to 713 are arranged between the one end portion 701 in which the concave portion 717 is formed and the other end portion 702 in which the convex portion 718 is formed. May be. In this example, the first divided portion 715 and the second divided portion 716 are sealed from the inside in the radial direction D2 by one seal member 791.
 図13(a)および(b)を参照し、直線的な不連続部80を含んで環状に形成されている摺動シール81,82について説明する。なお、図13(a)および(b)に示す構成を備えた射出装置6によるスリーブ真空吸引のステップについては、図14(a)~(c)を参照して後述する。 Referring to FIGS. 13A and 13B, the sliding seals 81 and 82 formed in an annular shape including the linear discontinuous portion 80 will be described. The step of sleeve vacuum suction by the injection device 6 having the configuration shown in FIGS. 13A and 13B will be described later with reference to FIGS. 14A to 14C.
 図13(a)に示す射出装置6は、進退方向D1に隣り合う第1摺動シール81および第2摺動シール82と、1つのシール部材79とを備えている。
 隣り合う第1、第2摺動シール81,82のそれぞれの不連続部80は、軸方向(D1)に沿って直線的に形成されている。これらの不連続部80は、周方向D3に互いにシフトしていることが好ましい。ここでは、第1、第2摺動シール81,82のそれぞれの不連続部80が互いに180°離れている。
 そして、第1、第2摺動シール81,82の境界80Bは、図13(b)に示すように、シール部材79により径方向D2の内側から封止されている。ここに示す例では、シール部材79の外端79Aが、境界80Bが延びている周方向D3に沿って、境界80Bおよびその近傍に突き当てられて密着している。
The injection device 6 shown in FIG. 13A includes a first sliding seal 81 and a second sliding seal 82 that are adjacent to each other in the advance / retreat direction D1, and one seal member 79.
The discontinuous portions 80 of the adjacent first and second sliding seals 81 and 82 are linearly formed along the axial direction (D1). These discontinuous portions 80 are preferably shifted from each other in the circumferential direction D3. Here, the discontinuous portions 80 of the first and second sliding seals 81 and 82 are separated from each other by 180 °.
And the boundary 80B of the 1st, 2nd sliding seals 81 and 82 is sealed from the inner side of radial direction D2 with the sealing member 79, as shown in FIG.13 (b). In the example shown here, the outer end 79A of the seal member 79 is abutted against and closely contacts the boundary 80B and its vicinity along the circumferential direction D3 in which the boundary 80B extends.
 第1摺動シール81の不連続部80は、図5(a)および(b)に示す実施形態における第1空隙711に相当する。
 第2摺動シール82の不連続部80は、上記実施形態における第2空隙712に相当する。
 第1摺動シール81と第2摺動シール82との軸方向(D1)における境界80Bは、上記実施形態における分割部715に相当する。
 したがって、図13(a)および(b)に示す構成によれば、上記実施形態の摺動シール70と比べて簡素な加工による摺動シール81,82を用いていながら、上記実施形態と同様に、スリーブ11内の前方空間75に向けて外気が流入するのを防止する効果を得ることができる。
The discontinuous portion 80 of the first sliding seal 81 corresponds to the first gap 711 in the embodiment shown in FIGS.
The discontinuous portion 80 of the second sliding seal 82 corresponds to the second gap 712 in the above embodiment.
A boundary 80B in the axial direction (D1) between the first sliding seal 81 and the second sliding seal 82 corresponds to the dividing portion 715 in the above embodiment.
Therefore, according to the configuration shown in FIGS. 13A and 13B, the sliding seals 81 and 82 by simple processing are used as compared with the sliding seal 70 of the above embodiment, but the same as in the above embodiment. The effect of preventing the outside air from flowing toward the front space 75 in the sleeve 11 can be obtained.
(吸引用凹部の吸引による外気流入抑制)
 本実施形態では、上述したように、スリーブ11内におけるプランジャチップ20の前端20Aよりも前方の空間75からの吸引に加えて、それよりも後方の吸引用凹部120の内側からも吸引することにより、空間75および吸引用凹部120の内側のいずれも大気圧に対して減圧させる。
 本実施形態では、吸引口14~17を通じて吸引用凹部120の内側が吸引される。これに限らず、例えば、第2大径部202に軸方向に形成された孔を通じて吸引用凹部120の内側を吸引することも許容される。軸方向の孔は、プランジャ12の進退方向D1の位置にかかわらず、吸引用凹部120の内側に常に連通しているため、スリーブ真空吸引の開始から終了まで常時、軸方向の孔を通じて吸引用凹部120の内側を吸引することができる。
(Suppression of outside air flow by suction of suction recess)
In the present embodiment, as described above, in addition to the suction from the space 75 in front of the front end 20A of the plunger tip 20 in the sleeve 11, the suction is also performed from the inside of the suction recess 120 behind the front end 20A. The space 75 and the inside of the suction recess 120 are depressurized with respect to the atmospheric pressure.
In the present embodiment, the inside of the suction recess 120 is sucked through the suction ports 14 to 17. Not limited to this, for example, it is allowed to suck the inside of the suction recess 120 through a hole formed in the second large diameter portion 202 in the axial direction. Since the axial hole is always in communication with the inside of the suction recess 120 regardless of the position of the plunger 12 in the advance / retreat direction D1, the suction recess always passes through the axial hole from the start to the end of the sleeve vacuum suction. The inside of 120 can be aspirated.
 前方の空間75と、吸引用凹部120の内側との吸引によれば、スリーブ11内において前方の空間75よりも後方に、前方空間75と圧力が同等である空間(吸引用凹部120の内側)を与えて、スリーブ11の外側の外気がスリーブ11内の前方空間75に流入するのを抑えることができる。これは、吸引用凹部120の内側における圧力P1と空間75の圧力P2との差が無いか、圧力差が有るとしても、その圧力差(P1-P2)が大気圧P0と前方空間75の圧力P2との差(P0-P2)と比べて十分に小さいことにより、外気が吸引用凹部120の内側を経て前方空間75へと流入することが抑制されるからである。 According to the suction between the front space 75 and the inside of the suction recess 120, the space in the sleeve 11 that is equivalent in pressure to the front space 75 behind the front space 75 (inside the suction recess 120). Thus, outside air outside the sleeve 11 can be prevented from flowing into the front space 75 in the sleeve 11. Even if there is no difference between the pressure P1 inside the suction recess 120 and the pressure P2 in the space 75, or there is a pressure difference, the pressure difference (P1-P2) is the pressure in the atmospheric pressure P0 and the pressure in the front space 75. This is because the outside air is suppressed from flowing into the front space 75 through the inside of the suction recess 120 by being sufficiently smaller than the difference (P0−P2) from P2.
 プランジャ12が前進する際に、前方空間75および吸引用凹部120の内側の双方を継続的に吸引すると、それらを吸引する間に亘り、溶湯18を貯留する前方空間75への外気の流入を抑制することができる。前方空間75を吸引する間は、吸引用凹部120の内側を間断なく吸引することで、前方空間75を吸引する間は常時、前方空間75への外気の流入を抑制することが好ましい。 When the plunger 12 moves forward, if both the front space 75 and the inside of the suction recess 120 are continuously sucked, the inflow of outside air to the front space 75 storing the molten metal 18 is suppressed during the suction. can do. While the front space 75 is sucked, it is preferable that the inside of the suction recess 120 is sucked without interruption, so that the inflow of outside air into the front space 75 is always suppressed while the front space 75 is sucked.
 本実施形態では、上述した真空吸引系統2(図2)の構成に基づいて、前方空間75および吸引用凹部120の内側の吸引を1つの真空吸引系統2により担うことができる。前方空間75から吸引された気体も、吸引用凹部120の内側から吸引された気体も、同一の真空タンク36を介して同一の真空ポンプ37により吸引される。
 そのため、前方空間75および吸引用凹部120の内側に個別に真空吸引系統を備える場合と比べて、真空ポンプ37や真空タンク36等の装置コストを低減することができる。また、真空吸引系統の数が少ないことで、気体の漏れ(リーク)の点検箇所が少ないため、点検作業効率が良い。
In the present embodiment, based on the configuration of the vacuum suction system 2 (FIG. 2) described above, the suction inside the front space 75 and the suction recess 120 can be performed by one vacuum suction system 2. Both the gas sucked from the front space 75 and the gas sucked from the inside of the suction recess 120 are sucked by the same vacuum pump 37 through the same vacuum tank 36.
Therefore, compared with the case where a vacuum suction system is individually provided inside the front space 75 and the suction recess 120, the cost of the devices such as the vacuum pump 37 and the vacuum tank 36 can be reduced. In addition, since the number of vacuum suction systems is small, the number of inspection points for gas leakage (leakage) is small, so the inspection work efficiency is good.
 但し、前方空間75と、吸引用凹部120の内側とが、別々の系統を通じて吸引されることも許容される。 However, the front space 75 and the inside of the suction recess 120 are allowed to be sucked through different systems.
 上述した摺動シール70およびシール部材79を装着したプランジャチップ20を、スリーブ11に挿入し、かつ前方空間75に加えて吸引用凹部120の内側からも吸引することにより、溶湯18を貯留する前方空間75への外気の流入をより確実に防ぐことができる。 The plunger tip 20 equipped with the sliding seal 70 and the seal member 79 described above is inserted into the sleeve 11 and sucked from the inside of the suction recess 120 in addition to the front space 75, thereby storing the melt 18. Inflow of outside air into the space 75 can be prevented more reliably.
 吸引用凹部120の内側の圧力P1と、外気の圧力P0との差に基づいて、外気が吸引用凹部120の内側を介して前方空間75に流入するのを防ぐため、第1、第2大径部201,202のうち少なくとも第2大径部202に摺動シール70およびシール部材79を設けることが好ましい。
 前方空間75の圧力P2と吸引用凹部120の内側の圧力P1との差(P1-P2)に基づいて吸引用凹部120の内側から前方空間75へと外気が流入するのを防ぐ観点からは、第1大径部201に摺動シール70およびシール部材79を設けるとよい。
In order to prevent the outside air from flowing into the front space 75 via the inside of the suction recess 120 based on the difference between the pressure P1 inside the suction recess 120 and the pressure P0 of the outside air, the first and second large It is preferable to provide the sliding seal 70 and the seal member 79 on at least the second large diameter portion 202 of the diameter portions 201 and 202.
From the viewpoint of preventing the outside air from flowing from the inside of the suction recess 120 into the front space 75 based on the difference (P1−P2) between the pressure P2 of the front space 75 and the pressure P1 inside the suction recess 120, A sliding seal 70 and a seal member 79 may be provided on the first large diameter portion 201.
(複数の吸引口による前方空間および吸引用凹部の継続的な吸引)
 次に、複数の吸引口14~17を通じて、前方空間75と吸引用凹部120の内側とを継続的に吸引することについて説明する。
 プランジャ12を前進させて行う射出のプロセスの序盤から終盤までの間における出来るだけ長い期間に亘り、かつ、出来るだけ間断なく、前方空間75および吸引用凹部120の内側から継続的に吸引することが好ましい。溶湯18を貯留する前方空間75への外気の流入を抑えて前方空間75から気体を安定して継続的に、十分に吸引するためである。
(Continuous suction of front space and suction recess by multiple suction ports)
Next, continuous suction of the front space 75 and the inside of the suction recess 120 through the plurality of suction ports 14 to 17 will be described.
Suction is continuously performed from the front space 75 and the inside of the suction recess 120 for as long a period as possible from the beginning to the end of the injection process performed by moving the plunger 12 forward, and without interruption as much as possible. preferable. This is because the inflow of outside air to the front space 75 storing the molten metal 18 is suppressed, and the gas is stably and continuously sucked sufficiently from the front space 75.
 プランジャ12が、例えば、図11(a)に示す後退限の位置から、図11(f)に示すように、最も前方に位置する第4吸引口17がチップ20により閉鎖される位置まで前進する際には、プランジャチップ20の前端20Aが、第1吸引口14、第2吸引口15、第3吸引口16、第4吸引口17の順に吸引口14~17のそれぞれの位置を通過する。 For example, the plunger 12 moves forward from the backward limit position shown in FIG. 11A to a position where the foremost fourth suction port 17 is closed by the tip 20 as shown in FIG. 11F. In this case, the front end 20A of the plunger tip 20 passes through the positions of the suction ports 14 to 17 in the order of the first suction port 14, the second suction port 15, the third suction port 16, and the fourth suction port 17.
 本実施形態における射出充填工程においては、スリーブ11に対してプランジャ12を前進させつつ、前方空間75と連通する少なくとも1つの吸引口を通じて前方空間75を吸引しながら、吸引用凹部120の内側と連通する少なくとも1つの吸引口を通じて吸引用凹部120の内側を吸引する。 In the injection filling process in the present embodiment, the plunger 12 is advanced with respect to the sleeve 11, and the front space 75 is sucked through at least one suction port communicating with the front space 75, and communicates with the inside of the suction recess 120. The inside of the suction recess 120 is sucked through at least one suction port.
 図11(b)~(e)に示すようにプランジャ12が前進すると、スリーブ11に対して前進するプランジャ12の位置に応じて、吸引口14~17のうちから選択的に少なくとも1つが前方空間75と連通し、吸引口14~17のうちから選択的に少なくとも1つが吸引用凹部120の内側と連通する。
 かかる構成によれば、前方空間75と吸引用凹部120の内側とにそれぞれ連通する1以上の吸引口を通じて、前方空間75が吸引される間に亘り、吸引用凹部120の内側を間断なく吸引して、前方空間75への外気流入を抑えることができる。
When the plunger 12 moves forward as shown in FIGS. 11B to 11E, at least one of the suction ports 14 to 17 is selectively disposed in the front space according to the position of the plunger 12 that moves forward with respect to the sleeve 11. 75 and at least one of the suction ports 14 to 17 communicates with the inside of the suction recess 120.
According to such a configuration, the inside of the suction recess 120 is continuously sucked through the one or more suction ports communicating with the front space 75 and the inside of the suction recess 120 while the front space 75 is sucked. Thus, the inflow of outside air into the front space 75 can be suppressed.
 次に、図9および図10を参照して鋳造の各工程を説明した後、図11(a)~(f)に示す具体例に基づいて、スリーブ11内の真空吸引を説明する。 Next, after describing each process of casting with reference to FIG. 9 and FIG. 10, vacuum suction in the sleeve 11 will be described based on a specific example shown in FIGS. 11 (a) to 11 (f).
(鋳造方法、スリーブ真空吸引の制御例)
 まず、図9および図10を参照して鋳造の各工程を説明する。
 以下では、真空吸引系統2による真空吸引のことを「スリーブ真空」と称するものとする。
(Casting method, control example of sleeve vacuum suction)
First, each process of casting is demonstrated with reference to FIG. 9 and FIG.
Hereinafter, the vacuum suction by the vacuum suction system 2 is referred to as “sleeve vacuum”.
 図9に、ダイカストによる鋳造方法のフローチャートを示す。フローチャートに示すように、ダイカスト鋳造開始から始まり、型締め、注湯、射出開始、スリーブ真空、の順に、制御装置3による制御下で各工程が進む。 FIG. 9 shows a flowchart of a casting method by die casting. As shown in the flowchart, each process proceeds under the control of the control device 3 in the order of mold clamping, pouring, injection start, sleeve vacuum, starting from the start of die casting.
 スリーブ真空の工程を実施しない場合は(ステップS11でNo)、増圧切換指令、冷却(凝固)、型開き、製品取出、製品検知、金型スプレー、射出後退、チップ潤滑、の順に工程が進み、次サイクルが始まる(ステップS12でYesの場合)。
 一方、スリーブ真空を実施する場合は(ステップS11でYes)、回路Aによる処理(図10)を行い、かつ、増圧切換指令、冷却(凝固)、型開き、製品取出、製品検知、金型スプレー、射出後退、チップ潤滑、の順に工程が進む。
 なお、回路Aによる処理(図10)の一部は、増圧切換指令の工程よりも前に行われ、残りは、増圧切換指令以降の工程と並行して行われる。概ね、ステップS101~S113は増圧切換指令の工程よりも前に行うことができ、ステップS114~S118までは増圧切換指令以降の工程と並行して行うことができる。
If the sleeve vacuum process is not performed (No in step S11), the process proceeds in the order of pressure increase switching command, cooling (solidification), mold opening, product removal, product detection, mold spray, injection retreat, and chip lubrication. The next cycle starts (in the case of Yes in step S12).
On the other hand, when the sleeve vacuum is executed (Yes in step S11), the processing by the circuit A (FIG. 10) is performed, and the pressure increase switching command, cooling (solidification), mold opening, product removal, product detection, mold The process proceeds in the order of spray, reverse injection, and tip lubrication.
A part of the processing by the circuit A (FIG. 10) is performed before the step of the pressure increase switching command, and the rest is performed in parallel with the steps after the pressure increase switching command. In general, steps S101 to S113 can be performed before the step of increasing pressure switching command, and steps S114 to S118 can be performed in parallel with the steps after the pressure increasing switching command.
 以下、制御回路である回路Aによる処理について、図10および図2を参照して説明する。回路Aによる処理も、制御装置3による制御下で行われる。
 図10に示すステップS104からステップS111までのスリーブ真空の過程は、吸引口14~17にそれぞれ対応する選択バルブ33の基本的な動作を示している。
 スリーブ真空の開始時は、全ての吸引口14~17が開いているものとする。スリーブ真空の開始後、前進したプランジャ12のチップ20により吸引口14~17が順次閉鎖される。プランジャ12の前進により、チップ20が吸引口を通過する。チップ20の第2大径部202により吸引口が閉鎖された以降において、当該吸引口は、前方空間75にも吸引用凹部120の内側にも連通しない状態となるから、前方空間75と吸引用凹部120の内側とから吸引するスリーブ真空には使用できない。こうした吸引口は、前方空間75および吸引用凹部120の内側に連通していない状態とは言え、真空タンク36の圧力上昇を抑制して吸引効率を維持し、当該吸引口に溶湯カスが入ることを避けるため、使用不能後には、対応する選択バルブ33を閉めることが好ましい。
 したがって、以下に述べるように、プランジャ12の前進に伴い、吸引口14~17のそれぞれについて、プランジャチップ20の第2大径部202により閉鎖される位置にプランジャ12が到達した時点で、当該吸引口に対応する選択バルブ33を順次、閉めている。
 つまり、プランジャ12の前進に伴い、吸引口14~17に対応する選択バルブ33が順次閉められる。
Hereinafter, processing by the circuit A as the control circuit will be described with reference to FIGS. 10 and 2. The processing by the circuit A is also performed under the control of the control device 3.
The sleeve vacuum process from step S104 to step S111 shown in FIG. 10 shows the basic operation of the selection valve 33 corresponding to each of the suction ports 14-17.
It is assumed that all the suction ports 14 to 17 are open at the start of the sleeve vacuum. After the start of the sleeve vacuum, the suction ports 14 to 17 are sequentially closed by the tip 20 of the plunger 12 which has advanced. As the plunger 12 advances, the tip 20 passes through the suction port. After the suction port is closed by the second large-diameter portion 202 of the chip 20, the suction port is not in communication with the front space 75 or the inside of the suction recess 120. It cannot be used for a sleeve vacuum sucked from the inside of the recess 120. Although such a suction port is not in communication with the front space 75 and the inside of the suction recess 120, the pressure increase in the vacuum tank 36 is suppressed to maintain the suction efficiency, and molten metal enters the suction port. Therefore, it is preferable to close the corresponding selection valve 33 after it cannot be used.
Therefore, as described below, when the plunger 12 reaches the position closed by the second large diameter portion 202 of the plunger tip 20 for each of the suction ports 14 to 17 as the plunger 12 moves forward, the suction is performed. The selection valves 33 corresponding to the mouths are sequentially closed.
That is, as the plunger 12 advances, the selection valves 33 corresponding to the suction ports 14 to 17 are sequentially closed.
 選択バルブ33は、対応する吸引口がチップ20の第2大径部202により閉鎖された状態にある間に閉められることが好ましい。第2大径部202が当該吸引口を通過することで、当該吸引口がプランジャロッド19の周りの図4の空間88と連通したときに、選択バルブ33が開いていると、外気が空間88から当該吸引口を介して吸引経路51を経由して真空タンク36に流入する可能性がある。これは意図しないため、例えば、図11(d)に示すステップでは、チップ20により閉鎖されている状態の吸引口14に対応する選択バルブ33を閉めている。 The selection valve 33 is preferably closed while the corresponding suction port is closed by the second large diameter portion 202 of the chip 20. When the second large diameter portion 202 passes through the suction port and the suction port communicates with the space 88 in FIG. 4 around the plunger rod 19, if the selection valve 33 is open, the outside air is in the space 88. May flow into the vacuum tank 36 via the suction port 51 via the suction port. Since this is not intended, for example, in the step shown in FIG. 11 (d), the selection valve 33 corresponding to the suction port 14 closed by the chip 20 is closed.
 以下で述べる選択バルブ33の動作は一例に過ぎない。選択バルブ33は、各吸引口の閉鎖に基づく使用不能だけでなく、上述したように、溶湯カスに起因する吸引経路51等の使用不能に基づいて、適切に閉めることが好ましい。あるいは、金型や製品に応じた製造条件に基づいて、吸引口14~17にそれぞれ対応する選択バルブ33を開閉することが可能である。 The operation of the selection valve 33 described below is only an example. It is preferable that the selection valve 33 is appropriately closed not only based on the unusability based on the closing of the suction ports but also based on the unusability of the suction path 51 and the like caused by the molten metal as described above. Alternatively, the selection valves 33 corresponding to the suction ports 14 to 17 can be opened and closed based on the manufacturing conditions according to the mold and product.
 ステップS101では、真空タンク36の内部が十分な真空度にまで達したことを確認して、準備完了の信号を出す。
 ステップS102では、注湯後、プランジャ12が前進して、注湯口13を閉鎖する位置を超えた後に、真空吸引系統2によりスリーブ11を真空に引く動作を開始する。プランジャ12の進退方向D1における所定の位置を、真空吸引が開始される真空開始位置として定めることができる。設定された真空開始位置へのプランジャ12の到達の検知は、プランジャ12を駆動する油圧シリンダのストロークを、非接触センサ等で検知することにより行う。以下のステップにおける各設定位置へのプランジャ12の到達についても、同様にして検知する。
In step S101, it is confirmed that the inside of the vacuum tank 36 has reached a sufficient degree of vacuum, and a preparation completion signal is issued.
In step S102, after pouring, the plunger 12 moves forward and exceeds the position where the pouring port 13 is closed, and then the vacuum suction system 2 starts to pull the sleeve 11 into a vacuum. A predetermined position in the advance / retreat direction D1 of the plunger 12 can be determined as a vacuum start position at which vacuum suction is started. Detection of the arrival of the plunger 12 at the set vacuum start position is performed by detecting the stroke of the hydraulic cylinder that drives the plunger 12 with a non-contact sensor or the like. The arrival of the plunger 12 at each set position in the following steps is similarly detected.
 ステップS103では、真空/エアブロウ切換弁35を、真空吸引に切り換える。
 ステップS104では、プランジャ12が、第1吸引口14を閉にする設定位置(図2/第1吸引口閉塞位置)に到達する。
 ステップS105では、第1吸引口14に対応した選択バルブ33を閉にする。
In step S103, the vacuum / air blow switching valve 35 is switched to vacuum suction.
In step S104, the plunger 12 reaches a set position (FIG. 2 / first suction port closing position) where the first suction port 14 is closed.
In step S105, the selection valve 33 corresponding to the first suction port 14 is closed.
 ステップS106では、プランジャ12が、第2吸引口15を閉にする設定位置(図2/第2吸引口閉塞位置)に到達する。
 ステップS107では、第2吸引口15に対応した選択バルブ33を閉にする。
In step S106, the plunger 12 reaches a set position (FIG. 2 / second suction port closing position) where the second suction port 15 is closed.
In step S107, the selection valve 33 corresponding to the second suction port 15 is closed.
 ステップS108では、プランジャ12が、第3吸引口16を閉にする設定位置(図2/第3吸引口閉塞位置)に到達する。
 ステップS109では、第3吸引口16に対応した選択バルブ33を閉にする。
In step S108, the plunger 12 reaches a set position (FIG. 2 / third suction port closing position) where the third suction port 16 is closed.
In step S109, the selection valve 33 corresponding to the third suction port 16 is closed.
 ステップS110では、プランジャ12が、第4吸引口17を閉にする設定位置(図2/第4吸引口閉塞位置)に到達する。ここで、プランジャ12が、第4吸引口17を閉にする設定位置に到達する直前において、第4吸引口17に対応する吸引経路51の真空度を、圧力検出部32を用いて測定する。第4吸引口17の真空度は、上限及び下限の範囲を設けて、管理されている。この真空度が、設定された範囲外の圧力であった場合には、ランプやブザーなどにより、警報を出す。なお、上限及び下限の範囲としては、-90~-100kPaが望ましい。
 ステップS111では、第4吸引口17に対応した選択バルブ33を閉にする。
In step S110, the plunger 12 reaches a setting position (FIG. 2 / fourth suction port closing position) where the fourth suction port 17 is closed. Here, immediately before the plunger 12 reaches the set position for closing the fourth suction port 17, the degree of vacuum of the suction path 51 corresponding to the fourth suction port 17 is measured using the pressure detection unit 32. The degree of vacuum of the fourth suction port 17 is managed by providing upper and lower limits. When the degree of vacuum is outside the set range, an alarm is issued by a lamp or buzzer. The upper and lower limits are preferably −90 to −100 kPa.
In step S111, the selection valve 33 corresponding to the fourth suction port 17 is closed.
 ステップS112では、真空/エアブロウ切換弁35を、切(中立位置)にする。
 ステップS113では、各吸引口14~17の選択バルブ33を、全て開にする。
 ステップS114では、真空/エアブロウ切換弁35を、エアブロウに切り換える。
 ステップS115では、真空吸引系統2と配管の一部が共通である加圧空気供給系統9により、加圧タンク38を使用し、吸引口を通じてスリーブ11内にエアを噴出させる処理であるエアブロウを行う。この際、各吸引口14~17の選択バルブ33が、全て開の状態でも良いし、選択バルブ33を、順に1個ずつ開にしても良い。エアブロウを終えたならば、真空/エアブロウ切換弁35を、切(中立位置)にする(S118)。
 ステップS116では、エアブロウを実施している間に、圧力検出部32により吸引口14~17の各吸引経路51の圧力を測定し、その圧力に基づいて配管内や真空フィルタ31の目詰まりの有無について判定を行う。目詰まりが発生した場合は、ランプやブザーなどにより、警報を出す(ステップS117)。
In step S112, the vacuum / air blow switching valve 35 is turned off (neutral position).
In step S113, all the selection valves 33 of the suction ports 14 to 17 are opened.
In step S114, the vacuum / air blow switching valve 35 is switched to air blow.
In step S115, the air blow, which is a process of ejecting air into the sleeve 11 through the suction port, is performed using the pressurized tank 38 by the pressurized air supply system 9 that shares a part of the piping with the vacuum suction system 2. . At this time, all the selection valves 33 of the suction ports 14 to 17 may be opened, or the selection valves 33 may be opened one by one in order. When air blow is completed, the vacuum / air blow switching valve 35 is turned off (neutral position) (S118).
In step S116, the pressure of the suction passages 51 to 17 of the suction ports 14 to 17 is measured by the pressure detection unit 32 while air blow is being performed. Judgment is made. If clogging occurs, an alarm is issued by a lamp or buzzer (step S117).
 尚、ステップS115のエアブロウを行うタイミングとしては、鋳造サイクル中であれば、プランジャ12がスリーブ11内を前進して、注湯口13から最も離間した吸引口17に到達した以降であって、各吸引口を通じたスリーブ11内の真空吸引を終えた後であれば良い。例えば、プランジャ12が、先に説明した、速度・圧力切換点に到達した以降、更には、金型を開く際、製品押出機構を備えた可動金型22側に、鋳造品が確実に保持されるように、鋳造品とビスケット部分を介して接しているプランジャ12を、その前進限位置まで押し出す動作における、プランジャ12の前進限位置でエアブロウを行っても良い。
 また、鋳造サイクル中以外では、ダイカストマシンの運転モード(鋳造開始時の1サイクル自動運転モード/全自動運転モード)を切り換えるスイッチを操作して、運転モードを選択する場合、同スイッチの切換操作時に、自動で、ステップS115のエアブロウを行うようにしても良い。
Note that the timing of performing the air blow in step S115 is after the plunger 12 moves forward in the sleeve 11 and reaches the suction port 17 farthest away from the pouring port 13 during the casting cycle. It may be after vacuum suction in the sleeve 11 through the mouth is finished. For example, after the plunger 12 reaches the speed / pressure switching point described above, the cast product is securely held on the movable mold 22 side having the product pushing mechanism when the mold is opened. As described above, air blow may be performed at the forward limit position of the plunger 12 in the operation of pushing the plunger 12 in contact with the cast product via the biscuit portion to the forward limit position.
Also, when the operation mode is selected by operating a switch that switches the operation mode of the die casting machine (1 cycle automatic operation mode / full automatic operation mode at the start of casting) except during the casting cycle, The air blow in step S115 may be performed automatically.
 以上、フローチャートを説明した。ここでは、吸引口14~17の第1吸引口14から第4吸引口17までを、全て使用してスリーブ11を真空に引くようにしていたが、これ以外に、第3吸引口16と第4吸引口17の2つを使用するとか、第2吸引口15と第3吸引口16と第4吸引口17の3つを使用するとか、その組合せは自由である。使用する吸引口の数にも制限はない。 This completes the description of the flowchart. Here, the sleeve 11 is evacuated by using all of the suction ports 14 to 17 from the first suction port 14 to the fourth suction port 17, but in addition to this, the third suction port 16 and the second suction port Any combination of the four suction ports 17 or the second suction port 15, the third suction port 16, and the fourth suction port 17 may be used. There is no limit to the number of suction ports used.
 各吸引口14~17に対応する選択バルブ33を開閉する制御に、上限スリーブ充填率を用いることができる。
 「上限スリーブ充填率」とは、スリーブ11内の溶湯18の充填率(スリーブ充填率という)が、所定値(例えば、80%)まで上昇したら、プランジャ12が到達した吸引口からキャビティ23に近い吸引口に属する選択バルブ33を全て閉にする場合の、スリーブ充填率の上限値である。
 この「上限スリーブ充填率」を使用するということは、スリーブ充填率が所定値に達した場合には、プランジャ12が到達した吸引口からキャビティ23に近い吸引口に属する選択バルブ33を全て閉にすることを指す。なお、上限スリーブ充填率は、鋳造を行う前に、自由に設定できる。
The upper limit sleeve filling rate can be used for the control of opening and closing the selection valve 33 corresponding to each of the suction ports 14 to 17.
The “upper limit sleeve filling rate” is close to the cavity 23 from the suction port reached by the plunger 12 when the filling rate of the molten metal 18 in the sleeve 11 (referred to as sleeve filling rate) rises to a predetermined value (for example, 80%). This is the upper limit value of the sleeve filling rate when all the selection valves 33 belonging to the suction port are closed.
Using this “upper limit sleeve filling rate” means that when the sleeve filling rate reaches a predetermined value, all the selection valves 33 belonging to the suction port close to the cavity 23 from the suction port reached by the plunger 12 are closed. To do. Note that the upper limit sleeve filling rate can be freely set before casting.
 上限スリーブ充填率の使用の目的は、スリーブ充填率が高くなって、真空引きの際、吸引口14~17から吸引経路51内に溶湯のカスが侵入することを防止するためと、吸引口14~17から吸引経路51内に溶湯のカスが侵入しない最大限の数の吸引口により、スリーブ11を真空に引くため、である。 The purpose of using the upper limit sleeve filling rate is to prevent the molten metal debris from entering the suction path 51 from the suction ports 14 to 17 at the time of evacuation because the sleeve filling rate is increased. This is because the sleeve 11 is evacuated by the maximum number of suction ports from which molten metal debris does not enter the suction path 51 from .about.17.
(スリーブ真空過程の具体例)
 以下、図11(a)~(f)に示す具体例に基づいて、複数の吸引口14~17を通じて前方空間75および吸引用凹部120の内側の継続的な吸引を行う一連のステップの一例を説明する。
(Specific example of sleeve vacuum process)
Hereinafter, based on the specific example shown in FIGS. 11A to 11F, an example of a series of steps for performing continuous suction inside the front space 75 and the suction recess 120 through the plurality of suction ports 14-17. explain.
 図11(a)~(f)は、スリーブ真空の一連のステップを説明する図である。図11(a)はスリーブ真空準備ステップ、図11(b)はスリーブ真空開始ステップ、図11(c)はスリーブ真空第1ステップ、図11(d)はスリーブ真空第2ステップ、図11(e)はスリーブ真空キャビティ側真空終了ステップ、図11(f)はスリーブ真空終了ステップをそれぞれ示している。スリーブ真空のステップは、プランジャ12の前進に伴い、図11において、(a)、(b)、(c)、(d)、(e)、(f)の順番で進んで行く。 FIGS. 11A to 11F are diagrams for explaining a series of steps of sleeve vacuum. 11 (a) is a sleeve vacuum preparation step, FIG. 11 (b) is a sleeve vacuum start step, FIG. 11 (c) is a sleeve vacuum first step, FIG. 11 (d) is a sleeve vacuum second step, FIG. ) Shows a sleeve vacuum cavity side vacuum end step, and FIG. 11 (f) shows a sleeve vacuum end step. As the plunger 12 moves forward, the sleeve vacuum step proceeds in the order of (a), (b), (c), (d), (e), and (f) in FIG.
 図11(a)~(f)では、摺動シール70、シール部材79、およびシール保持部材72の図示が省略されている。図12(a)~(e)でも同様である。 11A to 11F, the sliding seal 70, the seal member 79, and the seal holding member 72 are not shown. The same applies to FIGS. 12A to 12E.
スリーブ真空準備ステップ:
 図11(a)に示すスリーブ真空準備ステップでは、プランジャ12が後退限の位置である原位置に停止した状態にある。注湯口13が開放されているため、注湯口13からスリーブ11内に溶湯18を供給可能である。このとき、プランジャチップ20の前端20Aよりも前方の空間75と、注湯口13とが連通している。
 スリーブ真空準備ステップは、スリーブ真空を開始する準備をするステップである。このとき、全ての吸引口14~17に関し、真空吸引は実施されていない。
Sleeve vacuum preparation steps:
In the sleeve vacuum preparation step shown in FIG. 11A, the plunger 12 is in a state of being stopped at the original position which is the position of the retreat limit. Since the pouring port 13 is opened, the molten metal 18 can be supplied from the pouring port 13 into the sleeve 11. At this time, the space 75 in front of the front end 20 </ b> A of the plunger tip 20 and the pouring port 13 communicate with each other.
The sleeve vacuum preparation step is a step for preparing to start the sleeve vacuum. At this time, vacuum suction is not performed for all of the suction ports 14 to 17.
 図11(a)に示す状態から、チップ20の前端20Aが注湯口13を前方に超える位置(図11(a)に一点鎖線で示す位置)までプランジャ12が前進すると、プランジャチップ20の第1大径部201により注湯口13が閉鎖された状態となり、これによって前端20Aよりも前方の空間75と、注湯口13とがチップ20により隔てられる。
 さらに、第2大径部202の前端が注湯口13を前方に超える位置(図示省略)までプランジャ12が前進すると、第2大径部202により注湯口13が閉鎖された状態になるので、吸引用凹部120の内側と、注湯口13とがチップ20により隔てられる。
 この位置以降、前方にプランジャ12が移動する間に亘り(図11(b)~(f)を含む)、前方空間75と吸引用凹部120の内側とは、チップ20により注湯口13とは隔てられた状態にスリーブ11内に区画された状態に保たれる。
 その後、吸引用凹部120の内側が、図11(b)に示すように、最も後方の吸引口14に連通する位置までプランジャ12が前進すると、吸引用凹部120の内側と、前方空間75とにそれぞれ、少なくとも1つの吸引口が連通した状態となるので、スリーブ11内の前方空間75と吸引用凹部120の内側とのいずれからも吸引可能となる。
When the plunger 12 advances from the state shown in FIG. 11A to a position where the front end 20A of the tip 20 exceeds the pouring gate 13 (a position indicated by a one-dot chain line in FIG. 11A), the first of the plunger tip 20 is moved. The pouring port 13 is closed by the large diameter portion 201, whereby the space 75 in front of the front end 20 </ b> A and the pouring port 13 are separated from each other by the chip 20.
Further, when the plunger 12 advances to a position where the front end of the second large diameter portion 202 exceeds the pouring port 13 (not shown), the pouring port 13 is closed by the second large diameter portion 202, so that suction is performed. The inside of the recess 120 for use and the pouring port 13 are separated by the chip 20.
After this position, while the plunger 12 moves forward (including FIGS. 11B to 11F), the front space 75 and the inside of the suction recess 120 are separated from the pouring port 13 by the tip 20. It is kept in a state where it is partitioned in the sleeve 11.
Thereafter, as shown in FIG. 11B, when the plunger 12 advances to a position where the inner side of the suction recess 120 communicates with the rearmost suction port 14, the suction recess 120 is moved into the front space 75. Since at least one suction port is in communication with each other, suction is possible from both the front space 75 in the sleeve 11 and the inside of the suction recess 120.
 そのため、スリーブ真空を開始するときのプランジャ12の位置(真空開始位置)は、図11(b)に示すように、吸引用凹部120の内側と、前方空間75とにそれぞれ、少なくとも1つの吸引口が連通した状態となるときのプランジャ12の位置に設定することが好ましい。かかる位置にプランジャ12が到達したならば直ちに前方空間75および吸引用凹部120の内側の吸引を開始することが好ましい。そうすると、吸引時間を十分に確保して、前方空間75および吸引用凹部120の内側を十分な真空度に高めることができる。 Therefore, the position (vacuum start position) of the plunger 12 when starting the sleeve vacuum is at least one suction port on each of the inside of the suction recess 120 and the front space 75 as shown in FIG. It is preferable to set the position of the plunger 12 when the is in communication. As soon as the plunger 12 reaches such a position, it is preferable to immediately start suction inside the front space 75 and the suction recess 120. As a result, a sufficient suction time can be secured, and the inside of the front space 75 and the suction recess 120 can be raised to a sufficient degree of vacuum.
スリーブ真空開始ステップ:
 図11(b)に示すスリーブ真空開始ステップでは、全ての吸引口14~17を通じたスリーブ真空を開始する。スリーブ真空開始ステップでは、まず、プランジャ12が後退限の位置から前進を開始して、第2大径部202のキャビティ23側の端面が注湯口13を通過する。次に、真空タンク36によりスリーブ11の全ての吸引口14~17を通じて、吸引用凹部120の内側と前方空間75とを真空に引く。
Sleeve vacuum start step:
In the sleeve vacuum start step shown in FIG. 11 (b), the sleeve vacuum is started through all the suction ports 14-17. In the sleeve vacuum start step, first, the plunger 12 starts to advance from the position of the retreat limit, and the end surface on the cavity 23 side of the second large diameter portion 202 passes through the pouring port 13. Next, the vacuum tank 36 evacuates the inside of the suction recess 120 and the front space 75 through all the suction ports 14 to 17 of the sleeve 11.
 図11(b)に示すようにプランジャ12が真空開始位置にあるとき、吸引用凹部120の内側には第1吸引口14が連通しており、前方空間75には第2~第4吸引口15~17が連通している。
 そのため、第1吸引口14を通じて吸引用凹部120の内側の真空吸引を実施し、それと同時に、あるいはタイミングをずらして、第2吸引口15と第3吸引口16と第4吸引口17の3つを通じて前方空間75の真空吸引を実施することができる。
 このとき、第2吸引口15、第3吸引口16、および第4吸引口17にそれぞれ対応する選択バルブ33を同時に開いてもよいし、タイミングを変えて開いてもよい。
 スリーブ11の外側の外気が吸引用凹部120の内側を介して前方空間75に流入するのを抑えるため、前方空間75の真空吸引の開始に先行して、吸引用凹部120の内側の真空吸引を開始することが好ましい。
As shown in FIG. 11B, when the plunger 12 is in the vacuum start position, the first suction port 14 communicates with the inside of the suction recess 120, and the second to fourth suction ports are provided in the front space 75. 15 to 17 communicate.
Therefore, vacuum suction inside the suction recess 120 is performed through the first suction port 14, and at the same time or at different timings, the second suction port 15, the third suction port 16, and the fourth suction port 17. Through this, vacuum suction of the front space 75 can be performed.
At this time, the selection valves 33 corresponding to the second suction port 15, the third suction port 16, and the fourth suction port 17 may be opened at the same time, or may be opened at different timings.
In order to suppress the outside air outside the sleeve 11 from flowing into the front space 75 through the inside of the suction recess 120, the vacuum suction inside the suction recess 120 is performed prior to the start of the vacuum suction of the front space 75. It is preferable to start.
スリーブ真空第1ステップ:
 図11(c)に示すスリーブ真空第1ステップでは、プランジャ12がさらに前進して、吸引用凹部120の内側が第1吸引口14と第2吸引口15とに連通した状態となる。また、前方空間75が第3吸引口16と第4吸引口17とに連通した状態となる。
 そのため、2つの吸引口(第1吸引口14、第2吸引口15)を通じた吸引用凹部120の内側の真空吸引と、残りの吸引口(第3吸引口16、第4吸引口17)を通じた前方空間75の真空吸引とを実施することができる。
Sleeve vacuum first step:
In the sleeve vacuum first step shown in FIG. 11 (c), the plunger 12 further advances, and the inside of the suction recess 120 is in communication with the first suction port 14 and the second suction port 15. Further, the front space 75 communicates with the third suction port 16 and the fourth suction port 17.
Therefore, vacuum suction inside the suction recess 120 through the two suction ports (first suction port 14 and second suction port 15) and through the remaining suction ports (third suction port 16 and fourth suction port 17). Further, vacuum suction of the front space 75 can be performed.
スリーブ真空第2ステップ:
 図11(d)に示すスリーブ真空第2ステップでは、プランジャ12がさらに前進して、吸引用凹部120の内側が1つの吸引口(第2吸引口15)に連通した状態となる。また、前方空間75が2つの吸引口(第3吸引口16と第4吸引口17)に連通した状態となる。
 このとき、プランジャチップ20の第2大径部202が第1吸引口14に対向することで、第1吸引口14が閉鎖された状態となり、使用不能となる。そのため、第1吸引口14に対応する選択バルブ33を閉にすることにより、第1吸引口14による減圧を終了する。ここで、第1吸引口14がチップ20の第2大径部202により閉鎖された状態にあり、外部空間88には連通していない時に選択バルブ33を閉めるものとする。
 図11(d)~(f)において、対応する選択バルブ33が閉塞された吸引口には「閉塞」と付記されている。
 第1~第4吸引口14~17のうち、対応する選択バルブ33が閉塞されていない、残りの吸引口15~17は、前方空間75または吸引用凹部120の内側と連通している。そのため、1つの吸引口(第2吸引口15)を通じた吸引用凹部120の内側の真空吸引と、2つの吸引口(第3吸引口16、第4吸引口17)を通じた前方空間75の真空吸引とを実施することができる。
Sleeve vacuum second step:
In the sleeve vacuum second step shown in FIG. 11 (d), the plunger 12 further advances, and the inside of the suction recess 120 is in communication with one suction port (second suction port 15). Further, the front space 75 communicates with the two suction ports (the third suction port 16 and the fourth suction port 17).
At this time, when the second large diameter portion 202 of the plunger tip 20 faces the first suction port 14, the first suction port 14 is closed and becomes unusable. Therefore, the selection valve 33 corresponding to the first suction port 14 is closed, and the decompression by the first suction port 14 is finished. Here, it is assumed that the selection valve 33 is closed when the first suction port 14 is closed by the second large diameter portion 202 of the chip 20 and is not in communication with the external space 88.
In FIGS. 11D to 11F, “blocking” is added to the suction port where the corresponding selection valve 33 is blocked.
Among the first to fourth suction ports 14 to 17, the remaining suction ports 15 to 17 whose corresponding selection valves 33 are not closed communicate with the front space 75 or the inside of the suction recess 120. Therefore, vacuum suction inside the suction recess 120 through one suction port (second suction port 15) and vacuum in the front space 75 through two suction ports (third suction port 16, fourth suction port 17). Aspiration can be performed.
 プランジャ12が前進するのに伴って、図11(c)に示すスリーブ真空第1ステップと図11(d)に示すスリーブ真空第2ステップとが交互に繰り返されながら、スリーブ11内の真空吸引が進行していく。
 つまり、プランジャ12の前進に伴い、2つの吸引口を通じた吸引用凹部120の内側の真空吸引(図11(c))と、1つの吸引口を通じた吸引用凹部120の内側の真空吸引(図11(d))とが交互に繰り返され、且つ、少なくとも1つの吸引口を通じた前方空間75の真空吸引が継続して行われ、さらに、使用不能となった吸引口に対応する選択バルブ33が閉められることとなる。
As the plunger 12 advances, the sleeve vacuum first step shown in FIG. 11C and the sleeve vacuum second step shown in FIG. Progress.
That is, as the plunger 12 moves forward, vacuum suction inside the suction recess 120 through two suction ports (FIG. 11C) and vacuum suction inside the suction recess 120 through one suction port (FIG. 11). 11 (d)) are alternately repeated, and the vacuum suction of the front space 75 through the at least one suction port is continuously performed, and the selection valve 33 corresponding to the suction port that has become unusable is provided. It will be closed.
スリーブ真空キャビティ側真空終了ステップ:
 その後、図11(e)に示すように、最も前方の第4吸引口17がチップ20により閉鎖される位置までプランジャ12が前進したならば、前方空間75の吸引を終了する。この第4吸引口17が閉鎖される直前まで、第4吸引口17を通じて前方空間75の吸引が行われ、吸引用凹部120の内側からも吸引されている。
 図11(e)に示すように最も前方の第4吸引口17が第1大径部201により閉鎖される位置までプランジャ12が前進すると、前方空間75は、第1吸引口14~第4吸引口17のいずれとも連通していない状態である。この状態にて、前方空間75と吸引用凹部120の内側とからの真空吸引を終了することができる(スリーブ真空キャビティ側真空終了ステップ)。この場合は、第4吸引口17に対応する選択バルブ33と、吸引用凹部120の位置にある第3吸引口16に対応する選択バルブ33とを閉めるとよい。
Sleeve vacuum cavity side vacuum end step:
Thereafter, as shown in FIG. 11E, when the plunger 12 has advanced to a position where the foremost fourth suction port 17 is closed by the tip 20, the suction of the front space 75 is terminated. The front space 75 is sucked through the fourth suction port 17 until just before the fourth suction port 17 is closed, and is sucked also from the inside of the suction recess 120.
As shown in FIG. 11 (e), when the plunger 12 moves forward to the position where the foremost fourth suction port 17 is closed by the first large diameter portion 201, the front space 75 has the first suction port 14 to the fourth suction port. It is in a state where it does not communicate with any of the mouths 17. In this state, the vacuum suction from the front space 75 and the inside of the suction recess 120 can be terminated (sleeve vacuum cavity side vacuum termination step). In this case, the selection valve 33 corresponding to the fourth suction port 17 and the selection valve 33 corresponding to the third suction port 16 at the position of the suction recess 120 may be closed.
 図11(e)に示す状態にてスリーブ真空を終了しないで、図11(f)に示す位置にプランジャ12が前進するまでの間、スリーブ真空を継続することもできる。これについて以下に説明する。 The sleeve vacuum can be continued until the plunger 12 moves forward to the position shown in FIG. 11 (f) without ending the sleeve vacuum in the state shown in FIG. 11 (e). This will be described below.
 図11(e)に示すように第4吸引口17が第1大径部201により閉鎖されたことで、前方空間75にはいずれの吸引口も連通していないとしても、吸引用凹部120の内側には第3吸引口16が連通している。つまり、第3吸引口16を通じた吸引用凹部120の内側の真空吸引を実施することができる。そして、前方空間75に直接連通する吸引口はなくとも、前方空間75は、第1大径部201とスリーブ11の内周部11Aとの間に存在する隙間89を介して第4吸引口17に通じている。したがって、隙間89および第4吸引口17を通じて、前方空間75を吸引することができる。
 そこで、図11(e)に示す例では、第4吸引口17に対応する選択バルブ33を閉めていない。第4吸引口17と隙間89とを通じて前方空間75を吸引しつつ、第3吸引口16を通じて吸引用凹部120の内側を吸引することが可能である。
As shown in FIG. 11E, the fourth suction port 17 is closed by the first large-diameter portion 201, so that no suction port communicates with the front space 75. The third suction port 16 communicates with the inside. That is, vacuum suction inside the suction recess 120 through the third suction port 16 can be performed. Even if there is no suction port that directly communicates with the front space 75, the front space 75 is connected to the fourth suction port 17 via a gap 89 that exists between the first large diameter portion 201 and the inner peripheral portion 11 </ b> A of the sleeve 11. Leads to. Therefore, the front space 75 can be sucked through the gap 89 and the fourth suction port 17.
Therefore, in the example shown in FIG. 11E, the selection valve 33 corresponding to the fourth suction port 17 is not closed. While sucking the front space 75 through the fourth suction port 17 and the gap 89, the inside of the suction recess 120 can be sucked through the third suction port 16.
 その後、プランジャ12が前進すると、第4吸引口17が、隙間89と吸引用凹部120の内側との双方に連通するので、第4吸引口17を通じて前方空間75と吸引用凹部120の内側との真空吸引を実施することができる。 Thereafter, when the plunger 12 moves forward, the fourth suction port 17 communicates with both the gap 89 and the inside of the suction recess 120, so that the front space 75 and the inside of the suction recess 120 are connected through the fourth suction port 17. Vacuum suction can be performed.
スリーブ真空終了ステップ:
 さらに、図11(f)に示すように、第2大径部202の前端が第4吸引口17を前方に超える位置までプランジャ12が前進することにより、吸引用凹部120がスリーブ11の内壁により閉鎖されたならば、スリーブ真空を終了する(スリーブ真空終了ステップ)。このとき、第4吸引口17に対応する選択バルブ33を閉める。この選択バルブ33は、第4吸引口17が第2大径部202により閉鎖されており、外部空間88には連通していない状態で閉められることが好ましい。
Sleeve vacuum end step:
Further, as shown in FIG. 11 (f), when the plunger 12 moves forward to a position where the front end of the second large diameter portion 202 exceeds the fourth suction port 17, the suction recess 120 is moved by the inner wall of the sleeve 11. If closed, the sleeve vacuum is terminated (sleeve vacuum termination step). At this time, the selection valve 33 corresponding to the fourth suction port 17 is closed. The selection valve 33 is preferably closed in a state where the fourth suction port 17 is closed by the second large diameter portion 202 and is not in communication with the external space 88.
 なお、第2大径部202とスリーブ11との間の隙間90、および隙間90と連通している吸引口17を通じて吸引用凹部120の内側を吸引するようにしてもよい。そうすると、吸引用凹部120の内側を介して前方空間75も吸引することができ、スリーブ真空を延長して実施することができる。
 但し、プランジャ12の前進により吸引口17がロッド19の周りの空間88と連通する前に、吸引口17に対応する選択バルブ33を閉めて、スリーブ真空を終了することが好ましい。
Note that the inside of the suction recess 120 may be sucked through the gap 90 between the second large diameter portion 202 and the sleeve 11 and the suction port 17 communicating with the gap 90. If it does so, the front space 75 can also be attracted | sucked through the inner side of the recessed part 120 for suction, and it can implement by extending a sleeve vacuum.
However, before the suction port 17 communicates with the space 88 around the rod 19 by the advancement of the plunger 12, it is preferable to close the selection valve 33 corresponding to the suction port 17 to end the sleeve vacuum.
 図11(a)~(f)と、以上の説明から理解されるように、個々の吸引口14~17について言うと、スリーブ真空の開始当初は、吸引口14~17のうちの任意の吸引口(例えば、第1吸引口14)は、前方空間75に連通しており、前進したプランジャ12の第1大径部201により閉鎖されるまでの間は、前方空間75に連通している。次いで、当該吸引口は、プランジャ12の前進により吸引用凹部120の内側に連通する。当該吸引口は、前進したプランジャ12の第2大径部202により閉鎖されるまでの間は、吸引用凹部120の内側に連通している。第2大径部202により任意の吸引口が閉鎖された以降は、当該吸引口は、前方空間75にも吸引用凹部120の内側にも連通しないため、スリーブ真空に使用不能であるから、対応する選択バルブ33が閉められる。 As can be understood from FIGS. 11 (a) to 11 (f) and the above description, when referring to the individual suction ports 14 to 17, any one of the suction ports 14 to 17 is selected at the beginning of the sleeve vacuum. The mouth (for example, the first suction port 14) communicates with the front space 75, and communicates with the front space 75 until it is closed by the first large-diameter portion 201 of the advanced plunger 12. Next, the suction port communicates with the inside of the suction recess 120 by the advancement of the plunger 12. The suction port communicates with the inside of the suction recess 120 until it is closed by the second large diameter portion 202 of the plunger 12 that has advanced. After the arbitrary suction port is closed by the second large-diameter portion 202, the suction port does not communicate with the front space 75 or the inside of the suction recess 120, and therefore cannot be used for sleeve vacuum. The selection valve 33 to be closed is closed.
 図11(b)に示すスリーブ真空の開始時から、図11(e)に示す位置にプランジャ12が到達する直前までのスリーブ真空の過程に亘り、吸引口14~17全体として見ると、常時、少なくとも1つの吸引口が前方空間75に連通しているとともに、少なくとも1つの吸引口が吸引用凹部120の内側に連通している。
 そうすると、最も前方の吸引口17を通じた前方空間75からの真空吸引を終えるまで、吸引用凹部120の内側からの真空吸引を継続することができる。
 したがって、前方空間75に加えて吸引用凹部120の内側からの吸引実施と、上述した摺動シール70およびシール部材79による封止作用とによって、スリーブ真空を開始してから、射出充填工程の終盤までに亘り、外気流入による溶湯18の暴れを防ぎつつスリーブ11内の吸引を安定して継続することができる。そのため、溶湯18への気体の巻き込みを抑えて鋳造製品の品質を向上させることができる。
From the start of the sleeve vacuum shown in FIG. 11 (b) to the sleeve vacuum process from the start of the sleeve vacuum until just before the plunger 12 reaches the position shown in FIG. 11 (e), At least one suction port communicates with the front space 75 and at least one suction port communicates with the inside of the suction recess 120.
Then, the vacuum suction from the inside of the suction recess 120 can be continued until the vacuum suction from the front space 75 through the foremost suction port 17 is completed.
Therefore, after the sleeve vacuum is started by the suction from the inside of the suction recess 120 in addition to the front space 75 and the sealing action by the sliding seal 70 and the seal member 79 described above, the final stage of the injection filling process is started. Thus, the suction in the sleeve 11 can be stably continued while preventing the molten metal 18 from being ramped up due to the inflow of outside air. Therefore, entrainment of gas into the molten metal 18 can be suppressed and the quality of the cast product can be improved.
 さらに、図11(e)に示すように最も前方の吸引口17が第1大径部201により閉鎖された後も、スリーブ真空吸引を継続しようとすれば、第1大径部201とスリーブ11との間の隙間89を使用して前方空間75を吸引するとよい。その場合は、図11(e)に示す状態においてスリーブ真空を終了する場合とは異なり、最も前方の吸引口17が吸引用凹部120の内側の吸引にも使用されることとなる。
 こうすることで、スリーブ真空を開始してから、射出充填工程における可能な限り最後までに亘り、スリーブ11内の吸引を継続して行うことができる。
Furthermore, as shown in FIG. 11E, if the sleeve vacuum suction is continued even after the foremost suction port 17 is closed by the first large diameter portion 201, the first large diameter portion 201 and the sleeve 11 are maintained. The front space 75 may be sucked using the gap 89 between the two. In that case, unlike the case where the sleeve vacuum is terminated in the state shown in FIG. 11E, the foremost suction port 17 is also used for suction inside the suction recess 120.
In this way, the suction in the sleeve 11 can be continuously performed from the start of the sleeve vacuum to the end as much as possible in the injection filling process.
 以上で説明したように、前方空間75および吸引用凹部120の内側に関して真空吸引を同時に開始し、真空吸引の開始から終了までの間に亘り、双方から継続して吸引し、真空吸引を同時に終了することによれば、溶湯18が貯留された前方空間75よりも後方に、前方空間75と圧力が同等である空間としての吸引用凹部120の内側をスリーブ真空吸引の間の常時、確実に与えることができるので、外気流入を抑止するために好ましい。
 但し、真空吸引の中断により前方空間75および吸引用凹部120の内側の圧力に影響したとしても、プランジャ12のチップ20の外周部20Cとスリーブ11の内周部11Aとの間が摺動シール70およびシール部材79により封止されているため、外気が容易には吸引用凹部120の内側や前方空間75には流入しない。
 さらに言えば、真空吸引の中断は、溶湯18の暴れによる巻き込み巣の発生や、溶湯カスによる吸引口等の閉塞の状態に影響が出ない程度の短い時間であれば、摺動シール70やシール部材79の有無にかかわらず許容される。
 つまり、外気流入を抑えてスリーブ真空吸引が安定して成立する限りにおいて、スリーブ真空吸引の開始から終了までの間の一部において、前方空間75および吸引用凹部120の内側のいずれか一方あるいは両方の吸引が中断されたり、前方空間75と吸引用凹部120の内側とのスリーブ真空吸引の開始や終了のタイミングが異なっていたりすることも許容される。
As described above, vacuum suction is simultaneously started with respect to the inside of the front space 75 and the suction recess 120, and suction is continuously performed from both sides from the start to the end of the vacuum suction, and the vacuum suction is simultaneously ended. By doing so, the inside of the suction recess 120 as a space having the same pressure as that of the front space 75 is surely always provided behind the front space 75 in which the molten metal 18 is stored during the sleeve vacuum suction. Therefore, it is preferable for suppressing the inflow of outside air.
However, even if the vacuum suction is interrupted to affect the pressure inside the front space 75 and the suction recess 120, the sliding seal 70 is provided between the outer peripheral portion 20C of the tip 20 of the plunger 12 and the inner peripheral portion 11A of the sleeve 11. Since the sealing member 79 seals the outside air, the outside air does not easily flow into the suction recess 120 or the front space 75.
Furthermore, if the vacuum suction is interrupted for a short period of time that does not affect the occurrence of the entrapment nest due to the stagnation of the molten metal 18 or the blockage of the suction port or the like by the molten metal debris, the sliding seal 70 or the seal It is allowed with or without the member 79.
In other words, as long as the sleeve vacuum suction is stably established by suppressing the inflow of outside air, either or both of the front space 75 and the inside of the suction recess 120 in a part from the start to the end of the sleeve vacuum suction. It is also permitted that the suction of the sleeve is interrupted, or the timing of the start and end of the sleeve vacuum suction between the front space 75 and the inside of the suction recess 120 is different.
(前方空間および吸引用凹部の内側の双方の吸引に係る変形例、寸法条件)
 次に、図12(a)~(e)を参照して、前方空間75および吸引用凹部120の内側の双方から真空吸引することに関し、吸引口14~17の数、プランジャチップ20の各部の寸法、スリーブ11の吸引口14~17や注湯口13に係る寸法に関し、射出装置1の変形例を説明する。
 図12(a)~(e)のいずれに示す例においても、図11(b)から図11(e)の直前までと同様、複数の吸引口14~17のうちの選択的に少なくとも1つが前方空間75に連通し、同じく吸引口14~17のうちの選択的に少なくとも1つが吸引用凹部120の内側に連通するので、前方空間75および吸引用凹部120の内側の双方を吸引して前方空間75への外気流入を抑制することができる。
 なお、図12(d)に示す例では、後述するように、吸引用凹部120の内側に外気が流入するため、他の例と比べると、前方空間75への外気流入抑制の効果に劣る。
(Modifications related to suction in both the front space and the inside of the suction recess, dimension conditions)
Next, with reference to FIGS. 12 (a) to 12 (e), regarding vacuum suction from both the front space 75 and the inside of the suction recess 120, the number of suction ports 14 to 17 and each part of the plunger tip 20 With respect to the dimensions and dimensions relating to the suction ports 14 to 17 and the pouring port 13 of the sleeve 11, a modification of the injection apparatus 1 will be described.
In any of the examples shown in FIGS. 12 (a) to 12 (e), at least one of the plurality of suction ports 14 to 17 is selectively provided, as in FIGS. 11 (b) to 11 (e). Since at least one of the suction ports 14 to 17 communicates with the front space 75 and communicates with the inside of the suction recess 120, both the front space 75 and the inside of the suction recess 120 are sucked forward. Inflow of outside air into the space 75 can be suppressed.
In the example shown in FIG. 12D, as will be described later, since the outside air flows into the suction recess 120, the effect of suppressing the inflow of outside air into the front space 75 is inferior to the other examples.
 吸引口14~17の数をnとする。図12(a)~(e)に示されている吸引口14~17の数は、4である(n=4)。
 図12(a)~(c)に示すように、別々の吸引口を通じて前方空間75と吸引用凹部120の内側とを吸引する場合には、nが2以上であればよい。
 図12(e)に示すように、同一の吸引口を通じて前方空間75と吸引用凹部120の内側とを吸引する場合には、nが1以上であればよい。
Let n be the number of suction ports 14-17. The number of suction ports 14 to 17 shown in FIGS. 12A to 12E is 4 (n = 4).
As shown in FIGS. 12A to 12C, when suctioning the front space 75 and the inside of the suction recess 120 through separate suction ports, n may be 2 or more.
As shown in FIG. 12E, when the front space 75 and the inside of the suction recess 120 are sucked through the same suction port, n may be 1 or more.
 図12(a)~(e)にそれぞれ示す例において、各吸引口の進退方向D1の寸法および形状は同一であるものとする。
 また、吸引口が3以上ある場合は(n≧3)、それらの吸引口は進退方向D1に等しい間隔で配置されているものとする。
In the examples shown in FIGS. 12A to 12E, the dimensions and shapes of the suction ports in the advance / retreat direction D1 are the same.
Further, when there are three or more suction ports (n ≧ 3), the suction ports are arranged at equal intervals in the forward / backward direction D1.
 スリーブ11およびプランジャチップ20のそれぞれに係る寸法を下記のように定義する。
・スリーブに関する寸法
 Ls1:注湯口13から、注湯口13に最も近い(最も後方の)吸引口14までの進退方向D1における距離
 Ls2:各吸引口14~17の進退方向D1の寸法
 Ls3:進退方向D1に隣り合う吸引口の間隔
・プランジャチップに関する寸法:
 Lp0:吸引用凹部120の進退方向D1の寸法
 Lp1:第1大径部201の進退方向D1の寸法
 Lp2:第2大径部202の進退方向D1の寸法
The dimensions relating to each of the sleeve 11 and the plunger tip 20 are defined as follows.
Dimension relating to the sleeve Ls1: Distance in the forward / backward direction D1 from the pouring port 13 to the suction port 14 closest to the pouring port 13 (the rearmost) Ls2: Dimension in the forward / backward direction D1 of each of the suction ports 14 to 17 Ls3: Forward / backward direction Distance between suction ports adjacent to D1 and dimensions related to the plunger tip:
Lp0: dimension in the advancing / retreating direction D1 of the recess 120 for suction Lp1: dimension in the advancing / retreating direction D1 of the first large diameter part 201 Lp2: dimension in the advancing / retreating direction D1 of the second large diameter part 202
 なお、図13(a)に示す吸引用凹部120のように、径方向D2の内端における進退方向D1の寸法と、径方向D2の外端における進退方向D1の寸法とが異なる場合のLp0は、外端における進退方向D1の寸法であるものとする。この場合のLp1,Lp2もまた、径方向D2の外端における進退方向D1の寸法であるものとする。 Note that Lp0 when the dimension of the advancing / retreating direction D1 at the inner end in the radial direction D2 and the dimension of the advancing / retreating direction D1 at the outer end of the radial direction D2 are different as in the suction recess 120 shown in FIG. It is assumed that the size is the dimension in the forward / backward direction D1 at the outer end. In this case, Lp1 and Lp2 are also the dimensions in the forward and backward direction D1 at the outer end in the radial direction D2.
 上述した図11(a)~(f)に示す例では、吸引口14~17の数nが4である。図11(a)~(f)に示す例では、スリーブ11およびプランジャチップ20の各部の寸法を例えば、下記のように定めることができる。
 Ls1=50.5(mm)
 Ls2=29(mm)
 Ls3=41(mm)
 Lp0=50(mm)
 Lp1=65(mm)
 Lp2=60(mm)
In the example shown in FIGS. 11A to 11F described above, the number n of the suction ports 14 to 17 is four. In the example shown in FIGS. 11A to 11F, the dimensions of the respective portions of the sleeve 11 and the plunger tip 20 can be determined as follows, for example.
Ls1 = 50.5 (mm)
Ls2 = 29 (mm)
Ls3 = 41 (mm)
Lp0 = 50 (mm)
Lp1 = 65 (mm)
Lp2 = 60 (mm)
 吸引口14~17を通じて前方空間75と吸引用凹部120の内側との真空吸引を実施しようとすれば、既に説明したように、真空吸引の過程に亘り、吸引口14~17のうちの少なくとも1つが吸引用凹部120の内側と連通し、同じく吸引口14~17のうちの少なくとも1つが前方空間75と連通している必要がある(条件1)。
 ここで、射出充填時にプランジャ12を継続して前進させながら前方空間75および吸引用凹部120の内側を真空吸引する場合のみならず、プランジャ12の前進を一旦停止した状態で前方空間75および吸引用凹部120の内側を真空吸引することをも想定するものとする。
 上記の条件1に適合するLp1の最大値(上限)は、図12(a)に示す例に基づいて、次の式(1)により表される。
 Lp1<n×Ls2+(n-1)×Ls3  (1)
If vacuum suction is performed between the front space 75 and the inside of the suction recess 120 through the suction ports 14 to 17, as described above, at least one of the suction ports 14 to 17 in the vacuum suction process. One communicates with the inside of the suction recess 120, and at least one of the suction ports 14 to 17 also needs to communicate with the front space 75 (condition 1).
Here, not only when the front space 75 and the inside of the suction recess 120 are vacuum-sucked while the plunger 12 is continuously advanced during injection filling, the front space 75 and the suction space are stopped in a state where the advancement of the plunger 12 is temporarily stopped. It is assumed that the inside of the recess 120 is vacuumed.
The maximum value (upper limit) of Lp1 that meets the above condition 1 is expressed by the following equation (1) based on the example shown in FIG.
Lp1 <n × Ls2 + (n−1) × Ls3 (1)
 チップ20に吸引用凹部120を形成するためには、第1大径部201の長さがごく短いとしても、チップ20に第1大径部201が存在してさえいれば良い。そのため、Lp1の最小値(下限)は、次の式(2)により表される。
 0<Lp1  (2)
 式(1)と式(2)とを下記にまとめる。
 0<Lp1<n×Ls2+(n-1)×Ls3
In order to form the suction recess 120 in the chip 20, it is only necessary that the first large diameter part 201 exists in the chip 20 even if the length of the first large diameter part 201 is very short. Therefore, the minimum value (lower limit) of Lp1 is expressed by the following equation (2).
0 <Lp1 (2)
Equations (1) and (2) are summarized below.
0 <Lp1 <n × Ls2 + (n−1) × Ls3
 吸引用凹部120が存在することを前提として、Lp1に関する上記の式(1)は、前方空間75と吸引用凹部120の内側との双方から、吸引口14~17を通じて直接的に吸引すること(条件1)を実現するための必須の要件である。
 以下、条件1を実現するための付加的な要件として、Lp0およびLp2にそれぞれ関する式を示す。
 まず、吸引用凹部120の進退方向D1の寸法であるLp0について説明する。
 吸引口14~17を通じて前方空間75と吸引用凹部120の内側との双方から真空吸引するためには、Lp0を最大限に長くするとしても、図12(b)に示す例に基づいて、第2大径部202の前端により注湯口13が閉鎖された時に、キャビティ23に最も近い吸引口17と前方空間75とが連通している必要がある。
 そうすると、プランジャチップ20の各部の寸法と、スリーブ11の各部の寸法とを比べて、次の式(3)が導かれる。
 Lp0+Lp1<Ls1+n×Ls2+(n-1)×Ls3  (3)
 式(3)より、条件1に適合するLp0の最大値(上限)は、次の式(4)により表される。なお、Lp1が最小である時(0に限りなく近い時)に、Lp0が最大となる。
 Lp0<Ls1+n×Ls2+(n-1)×Ls3-Lp1  (4)
Assuming that the suction recess 120 is present, the above equation (1) relating to Lp1 is directly sucked through the suction ports 14 to 17 from both the front space 75 and the inside of the suction recess 120 ( This is an indispensable requirement for realizing Condition 1).
Hereinafter, as additional requirements for realizing Condition 1, equations relating to Lp0 and Lp2 will be shown.
First, Lp0 that is the dimension in the advancing / retreating direction D1 of the suction recess 120 will be described.
In order to perform vacuum suction from both the front space 75 and the inside of the suction recess 120 through the suction ports 14 to 17, even if Lp0 is maximized, the first example is shown in FIG. When the pouring port 13 is closed by the front end of the two large diameter portions 202, the suction port 17 closest to the cavity 23 and the front space 75 need to communicate with each other.
Then, the following expression (3) is derived by comparing the dimensions of the respective parts of the plunger tip 20 and the dimensions of the respective parts of the sleeve 11.
Lp0 + Lp1 <Ls1 + n × Ls2 + (n−1) × Ls3 (3)
From Equation (3), the maximum value (upper limit) of Lp0 that meets Condition 1 is expressed by the following Equation (4). Note that Lp0 is maximized when Lp1 is minimal (when it is close to 0 as much as possible).
Lp0 <Ls1 + n × Ls2 + (n−1) × Ls3-Lp1 (4)
 ここで、式(4)は、あくまで、第2大径部202の前端により注湯口13が閉鎖されることを前提としている。注湯口13が、プランジャ12とは別の部材、例えば、スリーブ11内に後方から挿入された部材により閉鎖されることまで考慮に入れるとすれば、Lp0は、式(4)の限りではない。 Here, Equation (4) is based on the premise that the pouring gate 13 is closed by the front end of the second large diameter portion 202. If it is taken into account that the pouring gate 13 is closed by a member other than the plunger 12, for example, a member inserted from behind in the sleeve 11, Lp0 is not limited to the equation (4).
 図12(b)に示すプランジャ12の位置にて前方空間75および吸引用凹部120の内側の真空吸引を開始した後、プランジャ12を停止させた状態で、前方空間75および吸引用凹部120の内側との真空吸引を行うことが可能である。その後プランジャ12を前進させて第1大径部201により吸引口17が閉鎖されるまでの間、前方空間75および吸引用凹部120の内側の真空吸引を継続して行うことができる。 After the vacuum suction inside the front space 75 and the suction recess 120 is started at the position of the plunger 12 shown in FIG. 12B, the plunger 12 is stopped and the front space 75 and the suction recess 120 inside. It is possible to perform vacuum suction. Thereafter, the vacuum suction inside the front space 75 and the suction recess 120 can be continued until the plunger 12 is advanced and the suction port 17 is closed by the first large diameter portion 201.
 Lp0の最小値については、下記の条件2に基づいて設定することができる。
 プランジャ12が前進する間に亘り継続して、前方空間75および吸引用凹部120の内側の双方を吸引孔を通じて吸引する(条件2)。
 上記の条件2に適合するLp0の最小値(下限)は、図12(c)に示す例から理解されるように、次の式(5)により表される。
 Lp0>Ls3  (5)
 つまり、吸引用凹部120の寸法Lp0が、隣り合う吸引口14~17の間隔の寸法Ls3よりも大きい。このため、例えば、図12(c)に示す例のように、吸引用凹部120における軸方向の後方側が吸引口14と連通し、吸引用凹部120における軸方向の前方側が吸引口15と連通する。そうすると、スリーブ11の吸引口14~17が並んでいる区間に対するプランジャチップ20の軸方向の位置によらず、吸引用凹部120の内側に対して、必ず1以上の吸引口が連通することとなる。そのため、条件2に適合する。
The minimum value of Lp0 can be set based on the following condition 2.
While the plunger 12 moves forward, both the front space 75 and the inside of the suction recess 120 are sucked through the suction holes (condition 2).
As understood from the example shown in FIG. 12C, the minimum value (lower limit) of Lp0 that meets the above condition 2 is expressed by the following equation (5).
Lp0> Ls3 (5)
That is, the dimension Lp0 of the suction recess 120 is larger than the dimension Ls3 of the interval between the adjacent suction ports 14-17. For this reason, for example, as in the example shown in FIG. 12C, the rear side in the axial direction of the suction recess 120 communicates with the suction port 14, and the front side in the axial direction of the suction recess 120 communicates with the suction port 15. . Then, at least one suction port always communicates with the inside of the suction recess 120 regardless of the position of the plunger tip 20 in the axial direction with respect to the section where the suction ports 14 to 17 of the sleeve 11 are arranged. . Therefore, Condition 2 is met.
 上述の式(1)に加えて式(5)が成立していると、既に図11(a)~(f)を参照して説明したように、3つ以上の吸引口が存在する場合に(n>2)、プランジャ12の前進に伴い、2つの吸引口を通じた吸引用凹部120の内側の真空吸引(図11(c))と、1つの吸引口を通じた吸引用凹部120の内側の真空吸引(図11(d))とが交互に繰り返され、かつ、少なくとも1つの吸引口を通じた前方空間75の真空吸引が継続して行われる。このとき、前方空間75および吸引用凹部120の内側の双方が、吸引孔を通じて継続的に吸引されることとなる。
 なお、以下で説明する第2実施形態のようにn=2である場合は、式(5)に示す要件にかかわらず、前方空間75と吸引用凹部120の内側との双方を継続的に吸引可能である。
If Formula (5) is established in addition to Formula (1) above, as already described with reference to FIGS. 11 (a) to (f), when there are three or more suction ports, (N> 2) As the plunger 12 moves forward, vacuum suction (FIG. 11 (c)) inside the suction recess 120 through the two suction ports and inner side of the suction recess 120 through one suction port Vacuum suction (FIG. 11 (d)) is alternately repeated, and vacuum suction of the front space 75 through at least one suction port is continuously performed. At this time, both the front space 75 and the inside of the suction recess 120 are continuously sucked through the suction holes.
Note that when n = 2 as in the second embodiment described below, both the front space 75 and the inside of the suction recess 120 are continuously sucked regardless of the requirements shown in Equation (5). Is possible.
 次に、第2大径部202の進退方向D1の寸法であるLp2は、下記の条件3に基づいて設定することができる。
 第2大径部202により閉鎖された吸引口14~17を介して、第2大径部202よりも後方から外気が吸引用凹部120の内側に流入することを抑制する(条件3)。これについて、図12(d)及び図12(e)を参照して説明する。
Next, Lp2, which is the dimension of the second large diameter portion 202 in the advance / retreat direction D1, can be set based on the following condition 3.
The outside air is prevented from flowing into the suction recess 120 from behind the second large diameter portion 202 via the suction ports 14 to 17 closed by the second large diameter portion 202 (condition 3). This will be described with reference to FIGS. 12D and 12E.
 図12(d)では、矢印で示すように、第2大径部202よりも後方からの外気が吸引口14を介して吸引用凹部120の内側に流入してしまうため、上記の条件3を満たしていない。このとき、吸引用凹部120の内側の圧力を前方空間75と同じ程度にまで減圧させることは難しい。 In FIG. 12D, as indicated by an arrow, outside air from the rear side of the second large diameter portion 202 flows into the inside of the suction recess 120 through the suction port 14. not filled. At this time, it is difficult to reduce the pressure inside the suction recess 120 to the same level as the front space 75.
 一方、図12(e)では、吸引用凹部120よりも後方で第2大径部202により吸引口14が閉鎖されているため、第2大径部202よりも後方の空間88と吸引用凹部120の内側とが吸引口14を介して連通していない。そのため、第2大径部202よりも後方から外気が吸引用凹部120の内側に流入することが抑制されるため、上記の条件3を満たしている。
 図12(e)に示す例から理解されるように、条件3に適合するLp2の最小値(下限)は、次の式(6)により表される。
 Lp2≧Ls2  (6)
On the other hand, in FIG. 12E, since the suction port 14 is closed by the second large diameter portion 202 behind the suction concave portion 120, the space 88 and the suction concave portion behind the second large diameter portion 202 are closed. The inside of 120 does not communicate with the suction port 14. Therefore, since outside air is prevented from flowing into the inside of the suction recess 120 from behind the second large-diameter portion 202, the above condition 3 is satisfied.
As can be understood from the example shown in FIG. 12E, the minimum value (lower limit) of Lp2 that satisfies the condition 3 is expressed by the following equation (6).
Lp2 ≧ Ls2 (6)
 式(6)は、前方空間75への外気流入を抑制してスリーブ真空吸引を確実に行うために実質的に必要な要件に該当する。 Formula (6) corresponds to a requirement that is substantially necessary for reliably performing the sleeve vacuum suction while suppressing the inflow of the outside air into the front space 75.
〔第2実施形態〕
 次に、図13および図14を参照し、本発明の第2実施形態に係るダイカストマシンの射出装置6について説明する。
 以下、第1実施形態と相違する事項を中心に説明する。第1実施形態と同様の構成には同じ符号を付している。
[Second Embodiment]
Next, an injection device 6 for a die casting machine according to a second embodiment of the present invention will be described with reference to FIGS.
Hereinafter, a description will be given focusing on matters that are different from the first embodiment. The same code | symbol is attached | subjected to the structure similar to 1st Embodiment.
 第2実施形態の射出装置6は、プランジャ12の進退方向D1に離れている2つの吸引口14,15が形成されたスリーブ11と、2つの摺動シール81,82および1つのシール部材79が設けられたプランジャ12とを備えている。吸引口の数nは、2である(n=2)。
 摺動シール81,82およびシール部材79は、プランジャチップ20の第2大径部202に設けられている。摺動シール81,82およびシール部材79の構成は、図13(a)および(b)を参照して既に説明した通りである。
The injection device 6 according to the second embodiment includes a sleeve 11 in which two suction ports 14 and 15 that are separated in the advance / retreat direction D1 of the plunger 12 are formed, two sliding seals 81 and 82, and one seal member 79. And a provided plunger 12. The number n of suction ports is 2 (n = 2).
The sliding seals 81 and 82 and the seal member 79 are provided on the second large diameter portion 202 of the plunger tip 20. The configurations of the sliding seals 81 and 82 and the seal member 79 are as already described with reference to FIGS.
 図12(a)~(e)を参照して説明した、プランジャチップ20およびスリーブ11の各部の寸法に関する要件は、Lp0の下限に関する式(5)を除いて、図13および図14に示す射出装置6においても成立する。 The requirements regarding the dimensions of each part of the plunger tip 20 and the sleeve 11 described with reference to FIGS. 12A to 12E are the injections shown in FIGS. 13 and 14, except for the equation (5) regarding the lower limit of Lp0. The same holds true for the device 6.
 以下、図14(a)~(c)を参照して、第2実施形態におけるスリーブ真空吸引の過程を説明する。
 図14(a)に示すように、第2大径部202の前端が注湯口13を通過、閉塞し、かつ吸引用凹部120の内側と吸引口14とが連通したとき、スリーブ真空吸引を開始することが好ましい。
 このとき、前方空間75および吸引用凹部120の内側のいずれも、チップ20により、注湯口13と連通しない状態にスリーブ11内に区画されている。また、前方空間75に第2吸引口15が連通し、吸引用凹部120の内側には第1吸引口14が連通している。
 そのため、図14(a)に実線の矢印で示すように、前方空間75からは第2吸引口15を通じて真空吸引系統2(図2)により吸引可能であり、図14(a)に破線の矢印で示すように、吸引用凹部120の内側からは第1吸引口14を通じて真空吸引系統2により吸引可能である。
Hereinafter, the process of sleeve vacuum suction in the second embodiment will be described with reference to FIGS. 14 (a) to (c).
As shown in FIG. 14 (a), when the front end of the second large-diameter portion 202 passes through and closes the pouring port 13, and the inside of the suction recess 120 and the suction port 14 communicate with each other, the sleeve vacuum suction is started. It is preferable to do.
At this time, both the front space 75 and the inside of the suction recess 120 are partitioned in the sleeve 11 by the tip 20 so as not to communicate with the pouring port 13. Further, the second suction port 15 communicates with the front space 75, and the first suction port 14 communicates with the inside of the suction recess 120.
Therefore, as indicated by the solid arrow in FIG. 14A, the vacuum can be sucked from the front space 75 through the second suction port 15 by the vacuum suction system 2 (FIG. 2), and the broken arrow in FIG. As can be seen, the vacuum suction system 2 can suck from the inside of the suction recess 120 through the first suction port 14.
 その後、前進したプランジャ12のチップ20の第1大径部201により、図14(b)に示すように第2吸引口15が閉鎖されるまでの間に亘り、前方空間75と吸引用凹部120の内側との双方からの真空吸引を継続することができる。 After that, the front space 75 and the suction recess 120 are closed until the second suction port 15 is closed by the first large-diameter portion 201 of the tip 20 of the plunger 12 that has advanced, as shown in FIG. Vacuum suction from both inside and outside can be continued.
 図14(b)に示すように第2吸引口15が第1大径部201により閉鎖された後も、第1大径部201とスリーブ11との間の隙間89(図14(c))を介して前方空間75を第2吸引口15から吸引しつつ、吸引用凹部120の内側も隙間90を介して第1吸引口14から吸引することができる。前方空間75からの吸引を終えた後も、吸引用凹部120の内側から吸引することで、引き続き、前方空間75への外気流入を抑えることができる。 As shown in FIG. 14B, even after the second suction port 15 is closed by the first large-diameter portion 201, the gap 89 between the first large-diameter portion 201 and the sleeve 11 (FIG. 14C). The front space 75 can be sucked from the second suction port 15 through the first suction port 14, and the inside of the suction recess 120 can also be sucked from the first suction port 14 through the gap 90. Even after the suction from the front space 75 is completed, the inflow of outside air into the front space 75 can be continuously suppressed by suction from the inside of the suction recess 120.
 上述した図11または図12に示す例のようにn>2である場合は、プランジャ12の前進に伴い、例えば図11(c)および(d)に示す状態を交互に繰り返し、つまり吸引用凹部120の内側に連通する吸引口を順次切り替えながら、前方空間75および吸引用凹部120の内側を継続して吸引するとよい。しかし、n=2である第2実施形態においては、その必要がない。 When n> 2 as in the example shown in FIG. 11 or FIG. 12 described above, for example, the state shown in FIGS. 11C and 11D is alternately repeated as the plunger 12 advances, that is, the suction recess. The inside of the front space 75 and the suction recess 120 may be continuously sucked while sequentially switching the suction ports communicating with the inside of the 120. However, this is not necessary in the second embodiment where n = 2.
 第2実施形態では、少なくとも、第2吸引口15が閉鎖される直前までは、図14(b)に破線の矢印で示すように、吸引用凹部120の内側と直接的に連通する第1吸引口14を通じて吸引用凹部120の内側から継続して吸引できれば足りる。
 図14(b)に示すように、第1大径部201により第2吸引口15が閉鎖されたならば、少なくとも、前方空間75に直接的に連通した第2吸引口15を通じて行われる真空吸引は終了する。図14(b)または(c)に示す状態のとき、吸引用凹部120の内側が、第2吸引用凹部15に必ずしも連通している必要はない。第2実施形態のようにn=2である場合は、吸引用凹部120の寸法Lp0の下限に関する上述の式(5)に示す要件にかかわらず、前方空間75が吸引される間に亘り継続して、吸引口14から直接的に、吸引用凹部120の内側を吸引可能である。そのため、第2実施形態では、式(5)とは異なり、Lp0≦Ls3である。
In the second embodiment, at least until immediately before the second suction port 15 is closed, as shown by a dashed arrow in FIG. 14B, the first suction communicates directly with the inside of the suction recess 120. It is sufficient that the suction can be continued from the inside of the suction recess 120 through the mouth 14.
As shown in FIG. 14B, if the second suction port 15 is closed by the first large diameter portion 201, at least vacuum suction performed through the second suction port 15 directly communicating with the front space 75. Ends. In the state shown in FIG. 14B or FIG. 14C, the inside of the suction recess 120 does not necessarily need to communicate with the second suction recess 15. When n = 2 as in the second embodiment, it continues while the front space 75 is sucked regardless of the requirement shown in the above formula (5) regarding the lower limit of the dimension Lp0 of the suction recess 120. Thus, the inside of the suction recess 120 can be sucked directly from the suction port 14. Therefore, in the second embodiment, unlike Expression (5), Lp0 ≦ Ls3.
 Lp0≦Ls3であるならば、図示を省略するが、第1大径部201により第2吸引口15が閉鎖され、かつ第2大径部202により第1吸引口14が閉鎖されたときに、吸引用凹部120の内側に連通する吸引口が存在しないことで、吸引用凹部120の内側の真空吸引が中断される場合があり得る。このとき溶湯18が暴れたとしても、n=2であるため、吸引口14,15の他に、開口した吸引口が存在しないので、少なくとも、溶湯18の飛散により吸引口が閉塞する懸念はない。 If Lp0 ≦ Ls3, the illustration is omitted, but when the second suction port 15 is closed by the first large diameter portion 201 and the first suction port 14 is closed by the second large diameter portion 202, The absence of a suction port that communicates with the inside of the suction recess 120 may interrupt the vacuum suction inside the suction recess 120. Even if the molten metal 18 is violated at this time, since n = 2, there is no opened suction port in addition to the suction ports 14 and 15, so there is no concern that at least the suction port is blocked by the scattering of the molten metal 18. .
 第2実施形態において、前方空間75に連通した第2吸引口15を通じて、前方空間75の直接的な真空吸引を終える直前まで、吸引用凹部120の内側と連通した第1吸引口14を通じて吸引用凹部120の内側の直接的な真空吸引を継続すること実現するためには、上述したようにLp1の上限に関する式(1)に示す要件が必須である。そして、Lp0の上限に関しては上述した式(4)に示す要件に従うことが好ましく、さらに、Lp2の下限に関しては上述した式(6)に示す要件に従うことが好ましい。 In the second embodiment, through the second suction port 15 that communicates with the front space 75, the first suction port 14 that communicates with the inside of the suction recess 120 immediately before the end of the direct vacuum suction of the front space 75 is used. In order to realize that the direct vacuum suction inside the recess 120 is continued, as described above, the requirement shown in the equation (1) regarding the upper limit of Lp1 is essential. And regarding the upper limit of Lp0, it is preferable to follow the requirements shown in Formula (4) mentioned above, and it is preferable to follow the requirements shown in Formula (6) mentioned above about the lower limit of Lp2.
〔シール材供給装置を備えた射出装置〕
 次に、図15を参照し、本発明の一実施形態に係る射出装置6Aについて説明する。
 図15に示す射出装置6Aは、スリーブ11の内周部とプランジャチップ20の外周部との間にシール剤61を介在させるために、シール剤供給装置60を備えている。
 射出装置6Aは、上述した摺動シール70およびシール部材79(図4)を備えていることが好ましい。
[Injection device with sealing material supply device]
Next, an injection device 6A according to an embodiment of the present invention will be described with reference to FIG.
The injection device 6A shown in FIG. 15 includes a sealing agent supply device 60 in order to interpose the sealing agent 61 between the inner peripheral portion of the sleeve 11 and the outer peripheral portion of the plunger tip 20.
The injection device 6A preferably includes the above-described sliding seal 70 and seal member 79 (FIG. 4).
 シール剤供給装置60は、プランジャチップ20において第1大径部201の外周部と、第2大径部202の外周部とのそれぞれにシール剤61を供給可能に構成されている。
 シール剤61としては、例えば、プランジャチップ20の潤滑に用いられる潤滑剤を用いることができる。一般に、シール剤61の粘度が高いほどシール性が向上するが、粘度が高過ぎると流動性の低下によりシール剤61を必要な領域に十分に行き渡らせることが難しい。そのため、シール性および流動性を考慮して適宜な粘度のシール剤61を用いることが好ましい。シール剤供給装置60としては、公知のプランジャ潤滑剤供給装置を使用することが可能である。
The sealing agent supply device 60 is configured to be able to supply the sealing agent 61 to each of the outer peripheral portion of the first large diameter portion 201 and the outer peripheral portion of the second large diameter portion 202 in the plunger tip 20.
As the sealant 61, for example, a lubricant used for lubricating the plunger tip 20 can be used. In general, the higher the viscosity of the sealant 61, the better the sealability. However, if the viscosity is too high, it is difficult to sufficiently spread the sealant 61 to a necessary region due to a decrease in fluidity. Therefore, it is preferable to use a sealing agent 61 having an appropriate viscosity in consideration of sealing properties and fluidity. As the sealant supply device 60, a known plunger lubricant supply device can be used.
 シール剤供給装置60は、シール剤61を貯留する容器62と、容器62にそれぞれ接続される第1配管631および第2配管632と、シール剤61を適時に供給するための図示しない弁とを備えている。制御装置3(図1)等により、シール剤供給装置60の弁が自動的に開閉あるいは開度の調整が行われることが好ましい。かかる弁が第1配管631および第2配管632に個別に備えられていれば、シール剤61を第1大径部201と第2大径部202とに個別に供給することができる。第1大径部201および第2大径部202のいずれか一方のみにシール剤61を供給することも許容される。
 第1配管631および第2配管632の形態は、図15に示す例には限らず、容器62に接続された1つの配管から第1配管631および第2配管632が分岐していてもよい。
The sealant supply device 60 includes a container 62 for storing the sealant 61, a first pipe 631 and a second pipe 632 connected to the container 62, and a valve (not shown) for supplying the sealant 61 in a timely manner. I have. It is preferable that the valve of the sealant supply device 60 is automatically opened and closed or the opening degree is adjusted by the control device 3 (FIG. 1) or the like. If such valves are individually provided in the first pipe 631 and the second pipe 632, the sealing agent 61 can be individually supplied to the first large diameter part 201 and the second large diameter part 202. It is also permitted to supply the sealing agent 61 to only one of the first large diameter portion 201 and the second large diameter portion 202.
The form of the first pipe 631 and the second pipe 632 is not limited to the example shown in FIG. 15, and the first pipe 631 and the second pipe 632 may be branched from one pipe connected to the container 62.
 図15に実線で示すようにプランジャ12が後退限の位置にあるとき、プランジャチップ20の前端側がスリーブ11内に挿入されている。このとき、スリーブ11内に位置する第1大径部201の外周部に、第1配管631を通じてシール剤61を供給し、スリーブ11の外部に位置する第2大径部202の外周部には、第2配管632を通じてシール剤61を供給することができる。 15, when the plunger 12 is in the retreat limit position as indicated by a solid line, the front end side of the plunger tip 20 is inserted into the sleeve 11. At this time, the sealing agent 61 is supplied to the outer peripheral portion of the first large-diameter portion 201 located in the sleeve 11 through the first pipe 631, and the outer peripheral portion of the second large-diameter portion 202 located outside the sleeve 11 is The sealing agent 61 can be supplied through the second pipe 632.
 図15に破線で示すようにプランジャチップ20が前進すると、第1大径部201の外周部とスリーブ11の内周部との間の隙間89にシール剤61が塗り拡げられて充填される。そのため、第1大径部201とスリーブ11との間がシール剤61により封止される。
 同様に、プランジャチップ20の前進により、第2大径部202の外周部とスリーブ11の内周部との間の隙間90にもシール剤61が塗り拡げられて充填される。そのため、第2大径部202とスリーブ11との間がシール剤61により封止される。
When the plunger tip 20 moves forward as indicated by a broken line in FIG. 15, the sealing agent 61 is spread and filled in the gap 89 between the outer peripheral portion of the first large diameter portion 201 and the inner peripheral portion of the sleeve 11. Therefore, the space between the first large diameter portion 201 and the sleeve 11 is sealed with the sealant 61.
Similarly, as the plunger tip 20 advances, the sealing agent 61 is spread and filled in the gap 90 between the outer peripheral portion of the second large diameter portion 202 and the inner peripheral portion of the sleeve 11. Therefore, the space between the second large diameter portion 202 and the sleeve 11 is sealed with the sealant 61.
 本実施形態においても、前方空間75および吸引用凹部120の内側の双方が真空吸引される。その際に、隙間90に存在するシール剤61により、負圧である吸引用凹部120の内側に外気が空間88を通じて流入することを抑制して吸引用凹部120の内側における圧力を低く保ちつつ、隙間89に存在するシール剤61により、吸引用凹部120の内側と前方空間75とに圧力差が存在するとしても吸引用凹部120の内側を経由して前方空間75へと外気が流入することを抑制することができる。 Also in this embodiment, both the front space 75 and the inside of the suction recess 120 are vacuumed. At that time, the sealing agent 61 present in the gap 90 suppresses the outside air from flowing into the suction recess 120, which is a negative pressure, through the space 88, while keeping the pressure inside the suction recess 120 low, Even if there is a pressure difference between the inside of the suction recess 120 and the front space 75 due to the sealing agent 61 present in the gap 89, the outside air flows into the front space 75 via the inside of the suction recess 120. Can be suppressed.
 図15に示す例では、第1配管631の末端部は、スリーブ11の注湯口13よりも後方の壁を厚さ方向に貫通したシール剤配管用孔11Dに挿入されている。シール剤配管用孔11Dの内側で開口した第1配管631の出口631Aは、後退限の位置にあるプランジャチップ20の第1大径部201の外周部に近いため、出口631Aからシール剤61が第1大径部201の外周部に確実に供給される。
 第2配管632は、スリーブ11の外側に露出した第2大径部202の外周部の近くに出口632Aを有している。この出口632Aからも、第2大径部202の外周部にシール剤61が確実に供給される。
In the example shown in FIG. 15, the end portion of the first pipe 631 is inserted into a sealant pipe hole 11 </ b> D that penetrates the wall behind the pouring port 13 of the sleeve 11 in the thickness direction. Since the outlet 631A of the first pipe 631 opened inside the sealant pipe hole 11D is close to the outer peripheral part of the first large diameter part 201 of the plunger tip 20 at the retreat limit position, the sealant 61 is discharged from the outlet 631A. It is reliably supplied to the outer peripheral portion of the first large diameter portion 201.
The second pipe 632 has an outlet 632A near the outer periphery of the second large diameter portion 202 exposed to the outside of the sleeve 11. Also from the outlet 632A, the sealing agent 61 is reliably supplied to the outer peripheral portion of the second large diameter portion 202.
 図15に示す例のように、2つの配管631,632を用いると、第1大径部201および第2大径部202のそれぞれの外周部における所望の位置にシール剤61を確実に供給することができ、かつ、2つの配管631,632により、第1、第2大径部201,202へのシール剤61の供給を同時に、あるいは並行して行えるので、シール剤供給のステップを迅速に終えることができる。 When the two pipes 631 and 632 are used as in the example illustrated in FIG. 15, the sealing agent 61 is reliably supplied to desired positions in the outer peripheral portions of the first large diameter portion 201 and the second large diameter portion 202. In addition, the supply of the sealing agent 61 to the first and second large diameter portions 201 and 202 can be performed simultaneously or in parallel by the two pipes 631 and 632, so that the step of supplying the sealing agent can be performed quickly. Can finish.
 シール剤61をスリーブ11の内周部とチップ20の外周部との間に介在させて、それらの隙間を封止できる限りにおいて、シール剤供給装置60を適宜に構成し、また、プランジャ12が後退限の位置にあるときに限らず、適宜なタイミングでシール剤61をチップ20の外周部に供給することができる。第1大径部201へのシール剤61の供給と、第2大径部202へのシール剤61の供給とを同じタイミングで行ってもよいし、異なるタイミングで行ってもよい。 As long as the sealing agent 61 is interposed between the inner peripheral portion of the sleeve 11 and the outer peripheral portion of the chip 20 and the gap can be sealed, the sealing agent supply device 60 is appropriately configured, and the plunger 12 The sealing agent 61 can be supplied to the outer peripheral portion of the chip 20 at an appropriate timing, not only when it is in the retreat limit position. The supply of the sealing agent 61 to the first large diameter portion 201 and the supply of the sealing agent 61 to the second large diameter portion 202 may be performed at the same timing, or may be performed at different timings.
 プランジャ12が後退限の位置にあるとき、第1大径部201の軸方向の例えば半分程度がスリーブ11の外に露出している場合は、第1配管631の末端部は、第2配管632と同様にスリーブ11の外に位置していてもよい。 When, for example, about half of the axial direction of the first large-diameter portion 201 is exposed outside the sleeve 11 when the plunger 12 is in the retreat limit position, the end portion of the first pipe 631 is connected to the second pipe 632. Similarly to the above, it may be located outside the sleeve 11.
 第2大径部202がスリーブ11内に挿入されているときに第2大径部202の外周部にシール剤61を供給する場合は、第1配管631と同様に、第2配管632の末端部をスリーブ11に形成された孔の内側に配置することができる。 When the sealing agent 61 is supplied to the outer periphery of the second large diameter portion 202 when the second large diameter portion 202 is inserted into the sleeve 11, the end of the second piping 632 is the same as the first piping 631. The part can be arranged inside the hole formed in the sleeve 11.
 シール剤供給装置60が、必ずしも2つの配管631,632を有している必要はない。シール剤供給装置60が容器62に接続された1つの配管631のみを有していたとしても、チップ20の前進により、配管631を通じて、第2大径部202の外周部にもシール剤61を供給可能である。 It is not always necessary for the sealing agent supply device 60 to have the two pipes 631 and 632. Even if the sealant supply device 60 has only one pipe 631 connected to the container 62, the sealant 61 is applied to the outer peripheral portion of the second large diameter portion 202 through the pipe 631 by the advancement of the chip 20. It can be supplied.
〔第3実施形態〕
 次に、図16~図19を参照し、本発明の第3実施形態およびその変形例について説明する。第3実施形態および第3実施形態の変形例と、次に説明する第4実施形態は、吸引経路51の閉塞対策に関する。かかる閉塞対策は、第1、第2実施形態の射出装置1,6、および射出装置1または6を備えたダイカストマシン100に適用することができる。
[Third Embodiment]
Next, a third embodiment of the present invention and its modification will be described with reference to FIGS. A third embodiment, a modification of the third embodiment, and a fourth embodiment to be described next relate to measures for blocking the suction path 51. Such a countermeasure against blockage can be applied to the die casting machine 100 including the injection devices 1 and 6 and the injection device 1 or 6 of the first and second embodiments.
 第3実施形態、第3実施形態の変形例、および第4実施形態に開示する構成は、吸引用凹部120が区画されていないチップを含むプランジャと、スリーブとを備えた射出装置にも適用することができる。 The configuration disclosed in the third embodiment, the modified example of the third embodiment, and the fourth embodiment is also applied to an injection device including a plunger including a tip in which the suction recess 120 is not partitioned and a sleeve. be able to.
 第3実施形態は、スリーブ11の内部空間からキャビティ23に亘って連通して形成される空間内を真空吸引する吸引経路51(図2)を具備したダイカストマシンに関する構成を示すものである。ここでは、スリーブ11にあいている複数の孔である吸引口14~17のそれぞれから、スリーブ11の内部空間を吸引する吸引経路51について説明する。
 但し、吸引経路51は、スリーブ11の内部空間からキャビティ23に亘り連通して形成される空間内を真空吸引可能である限りにおいて、スリーブ11に設けられた他の孔や開口部に接続されるものであったり、プランジャ12に設けられた通路、例えば、チップ20からプランジャ12の後端に向けて軸方向に延びる通路に接続されるものであったりしてもよい。上述したように、第3実施形態、第3実施形態の変形例、および第4実施形態は、吸引用凹部120が区画されていないチップ20を備えた射出装置にも適用可能であり、その場合、吸引経路51は、スリーブに1つのみ形成された吸引口に接続されるものであってもよい。
 また、吸引経路51は、射出装置のスリーブ11やプランジャ12の孔や開口部に接続されるものに限らず、金型の1箇所あるいは複数箇所に設けた連結口28(図2)に接続されるものであってもよい。
 吸引経路51に関する以上の記述は、第5実施形態、および第5実施形態の変形例についても同様である。
 キャビティ23内を吸引する吸引経路については、図27を示して後述する。
3rd Embodiment shows the structure regarding the die-casting machine provided with the suction path 51 (FIG. 2) which vacuum-sucks the inside of the space formed in communication from the internal space of the sleeve 11 to the cavity 23. FIG. Here, the suction path 51 for sucking the internal space of the sleeve 11 from each of the suction ports 14 to 17 which are a plurality of holes in the sleeve 11 will be described.
However, the suction path 51 is connected to other holes and openings provided in the sleeve 11 as long as the inside of the space communicating from the internal space of the sleeve 11 to the cavity 23 can be vacuum-sucked. Or a passage provided in the plunger 12, for example, a passage extending in the axial direction from the tip 20 toward the rear end of the plunger 12. As described above, the third embodiment, the modified example of the third embodiment, and the fourth embodiment are also applicable to the injection apparatus including the chip 20 in which the suction recess 120 is not partitioned. The suction path 51 may be connected to a suction port formed only in one sleeve.
The suction path 51 is not limited to the one connected to the hole or opening of the sleeve 11 or the plunger 12 of the injection device, but is connected to the connection port 28 (FIG. 2) provided at one place or a plurality of places of the mold. It may be.
The above description regarding the suction path 51 is the same for the fifth embodiment and the modified example of the fifth embodiment.
A suction path for sucking the inside of the cavity 23 will be described later with reference to FIG.
 図16には、スリーブ11の内側から吸引口14を通じて気体が吸引される吸引経路51の途上に設けられた捕集構造130が示されている。捕集構造130は、上述した真空吸引系統2(図2)を構成する吸引経路51を真空タンク36に向けて吸引される気体に混入した溶湯カスS等を気体から分離して捕集する。
 捕集構造130により溶湯カスS等が捕集されることで、吸引経路51への溶湯カスS等の滞留による吸引効率低下や吸引経路51の閉塞が防止される。
FIG. 16 shows a collection structure 130 provided in the course of a suction path 51 through which gas is sucked from the inside of the sleeve 11 through the suction port 14. The collection structure 130 separates and collects the molten scum S or the like mixed in the gas sucked toward the vacuum tank 36 through the suction path 51 constituting the vacuum suction system 2 (FIG. 2) described above.
By collecting the molten scum S and the like by the collection structure 130, the suction efficiency is reduced and the suction path 51 is prevented from being blocked by the stagnation of the molten scum S and the like in the suction path 51.
 真空吸引系統2が真空フィルタ31(図2)を備えている場合、捕集構造130は、吸引経路51を吸引される気体の流れにおける真空フィルタ31の上流側に設けられている。その場合、捕集構造130により、真空フィルタ31の目詰まりが防止される。
 もっとも、本実施形態の捕集構造130を使用することで、真空吸引系統2から真空フィルタ31を省くこともできる。
When the vacuum suction system 2 includes the vacuum filter 31 (FIG. 2), the collection structure 130 is provided on the upstream side of the vacuum filter 31 in the flow of gas sucked through the suction path 51. In that case, the trapping structure 130 prevents the vacuum filter 31 from being clogged.
However, the vacuum filter 31 can be omitted from the vacuum suction system 2 by using the collection structure 130 of the present embodiment.
 吸引口14に対応する吸引経路51の他、吸引口15~17のそれぞれに対応する吸引経路51のいずれにも、捕集構造130を設けることができる。なお、吸引口14~17のそれぞれに対応する吸引経路51のうち、溶湯カスS等により特に閉塞し易い少なくとも1つの吸引経路51のみに捕集構造130を設けることもできる。 In addition to the suction path 51 corresponding to the suction port 14, the collection structure 130 can be provided in any of the suction paths 51 corresponding to the suction ports 15 to 17. Of the suction paths 51 corresponding to each of the suction ports 14 to 17, the collecting structure 130 can be provided only in at least one suction path 51 that is particularly easily blocked by the molten metal debris S or the like.
 捕集構造130は、吸引経路51の一部である第1区間131と、吸引経路51の一部である第2区間132と、区間接続部133と、捕集部134とを備えている。
 捕集部134は、吸引経路51に接続されており、溶湯の液滴や凝固片である溶湯カスSを受け入れる。スリーブ11の内部から吸引される気体には、溶湯カスSの他に、塵埃等の異物や、プランジャチップ20の潤滑に用いられる油性または水溶性の潤滑剤の余剰分が混入しうる。キャビティ23から吸引される気体にも、溶湯カスSの他に、塵埃等の異物や、油性または水溶性の離型剤の余剰分が混入しうる。捕集部134は、気体に対して重量および密度が大きい、溶湯カスSや異物、潤滑剤あるいは離型剤等を受け入れて留める。本明細書では、溶湯カスSや、異物、潤滑剤あるいは離型剤等のことを「溶湯カス等」と称する。
The collection structure 130 includes a first section 131 that is a part of the suction path 51, a second section 132 that is a part of the suction path 51, a section connection part 133, and a collection part 134.
The collection unit 134 is connected to the suction path 51 and receives molten metal droplets S or molten metal debris S that is a solidified piece. The gas sucked from the inside of the sleeve 11 may contain foreign matters such as dust, and excess oily or water-soluble lubricant used for lubricating the plunger tip 20 in addition to the molten metal S. In addition to the molten metal debris S, foreign matter such as dust, and excess oily or water-soluble release agent can be mixed in the gas sucked from the cavity 23. The collection unit 134 receives and holds the molten metal S, foreign matter, lubricant, mold release agent, or the like, which has a large weight and density with respect to the gas. In the present specification, the molten residue S, foreign matter, lubricant, mold release agent, and the like are referred to as “molten residue”.
 図16に示す例では、捕集部134が区間接続部133と一体に、円筒状に形成されているが、その限りではない。捕集部134と区間接続部133とが別体であって、接合されていてもよい。また、捕集部134は、気体から分離された溶湯カスS等を捕集し、内部に留めることのできる限り、適宜な形状であってよく、例えば、矩形状の横断面を呈する箱状に形成することができる。区間接続部133も、円筒状には限定されることなく、適宜な形状であってよい。 In the example shown in FIG. 16, the collection part 134 is formed in a cylindrical shape integrally with the section connection part 133, but this is not restrictive. The collection part 134 and the area connection part 133 are separate bodies, and may be joined. Moreover, the collection part 134 may be in an appropriate shape as long as it can collect the molten metal debris S separated from the gas and keep it inside, for example, in a box shape having a rectangular cross section. Can be formed. The section connection portion 133 is not limited to a cylindrical shape, and may have an appropriate shape.
 溶湯カスS等の気体への想定混入量および捕集部134の清掃頻度等を考慮して、溜まった溶湯カスS等と第2区間132の流入口132Aとの間に適切な距離を確保することができるように、捕集部134に適切な容積を与えることができる。 In consideration of an assumed amount of mixture of the molten scum S and the like and a cleaning frequency of the collecting unit 134, an appropriate distance is secured between the accumulated molten scum S and the inlet 132A of the second section 132. An appropriate volume can be given to the collection part 134 so that it can do.
 第1区間131は、捕集部134よりも上流側、つまり吸引口14側(または吸引口15~17側)から延びた配管の一部であり、捕集部134に向けて下方に延びている。
 吸引経路51の配管において、スリーブ11の上部に位置する吸引口14(または15~17)と捕集部134との間の領域51Aは、典型的には、吸引口14(または15~17)から上方に立ち上がった後、水平な区間を経て、下方に向けて湾曲している。つまり、当該領域51Aは、上方に向けて凸の状態に湾曲している。第1区間131は、当該領域51Aにおいて捕集部134に向けて下方に延びる区間に相当する。
The first section 131 is a part of a pipe extending from the upstream side of the collection unit 134, that is, from the suction port 14 side (or the suction ports 15 to 17 side), and extends downward toward the collection unit 134. Yes.
In the piping of the suction path 51, a region 51A between the suction port 14 (or 15 to 17) located on the upper portion of the sleeve 11 and the collection unit 134 is typically a suction port 14 (or 15 to 17). After rising upwards, it curves downward through a horizontal section. That is, the region 51A is curved in a convex state upward. The first section 131 corresponds to a section extending downward toward the collection unit 134 in the region 51A.
 領域51Aは、複数の配管を組み付けて構成することができる。溶湯カスS等が配管の内壁に滞留するのを避けるため、滑らかな内壁を有する配管を領域51Aに使用することが好ましい。 The region 51A can be configured by assembling a plurality of pipes. In order to avoid the molten scum S or the like from staying on the inner wall of the pipe, it is preferable to use a pipe having a smooth inner wall in the region 51A.
 吸引経路51の配管は、配管の設置に許容されるスペースや、配管を支持する支持物の位置等に応じて、あるいは、配管同士の干渉を避けるため、適宜に取り回される。そのため、領域51Aが、図示した逆U字形状よりも複雑な形状に湾曲していてもよい。 The piping of the suction path 51 is appropriately routed according to the space allowed for installation of the piping, the position of a support that supports the piping, or the like, or in order to avoid interference between the piping. Therefore, the region 51A may be curved in a more complicated shape than the illustrated inverted U shape.
 区間接続部133は、第1区間131を外側から包囲し、第1区間131の下端の流出口131Aを下方に超えて捕集部134に至る。区間接続部133は、第1区間131の少なくとも下端部の近傍を包囲していれば足りる。
 第1区間131から流出し、第1区間131の側壁131Bと区間接続部133の内壁133Aとの間を通り抜ける気流の抵抗等を考慮して、第1区間131および区間接続部133のそれぞれに適切な径を与えることができる。
The section connection part 133 surrounds the first section 131 from the outside, reaches the collecting section 134 beyond the outlet 131A at the lower end of the first section 131 downward. The section connection part 133 is sufficient if it surrounds at least the vicinity of the lower end of the first section 131.
Appropriate for each of the first section 131 and the section connecting portion 133 in consideration of the resistance of the airflow flowing out from the first section 131 and passing between the side wall 131B of the first section 131 and the inner wall 133A of the section connecting portion 133. Can provide a large diameter.
 区間接続部133の軸心と、区間接続部133の内側に配置された第1区間131の軸心とは必ずしも一致している必要がない。例えば、区間接続部133に対して第1区間131が図16の左側に偏心していてもよい。この場合は、図16に示す区間接続部133の左側における内壁133Aと側壁131Bとの間よりも、第2区間132が接続される区間接続部133の右側において、内壁133Aと側壁131Bとの間が広い。 The axis of the section connection part 133 and the axis of the first section 131 arranged inside the section connection part 133 do not necessarily have to coincide with each other. For example, the first section 131 may be eccentric to the left side in FIG. In this case, between the inner wall 133A and the side wall 131B on the right side of the section connecting portion 133 to which the second section 132 is connected, rather than between the inner wall 133A and the side wall 131B on the left side of the section connecting section 133 shown in FIG. Is wide.
 第2区間132は、区間接続部133により第1区間131が包囲されている位置で区間接続部133と連なる。図16に示す例では、第2区間132が、区間接続部133および捕集部134と一体に形成されているが、これに限られない。
 区間接続部133の内周部には、第2区間132の流入口132Aが開口している。流入口132Aは、第1区間131の側壁131Bに対向している。
The second section 132 is continuous with the section connecting section 133 at a position where the first section 131 is surrounded by the section connecting section 133. In the example illustrated in FIG. 16, the second section 132 is formed integrally with the section connection portion 133 and the collection portion 134, but is not limited thereto.
An inlet 132 </ b> A of the second section 132 is opened in the inner peripheral portion of the section connection section 133. The inflow port 132A faces the side wall 131B of the first section 131.
 第1区間131と第2区間132とは、区間接続部133の内側を介して連通しており、吸引される気体の流路130Fをなしている。第1区間131は、上下方向(鉛直方向)に沿って延びており、第2区間132は、区間接続部133の内壁133Aに水平方向に向けて開口している。第1区間131から下方に流出した気体の流れは、区間接続部133の内側で転向し、区間接続部133の内壁133Aに連なる第2区間132に流入する。そのため、第1区間131、区間接続部133、および第2区間132に亘り、曲がった流路130Fが形成されることとなる。流路130Fを流れる気体の流れを図16に矢印で模式的に示している。 The first section 131 and the second section 132 communicate with each other via the inside of the section connecting portion 133, and form a flow path 130F for the sucked gas. The first section 131 extends in the vertical direction (vertical direction), and the second section 132 opens in the horizontal direction on the inner wall 133A of the section connecting portion 133. The gas flow that flows downward from the first section 131 turns inside the section connection portion 133 and flows into the second section 132 that is continuous with the inner wall 133A of the section connection section 133. Therefore, a curved flow path 130 </ b> F is formed over the first section 131, the section connecting portion 133, and the second section 132. The flow of gas flowing through the flow path 130F is schematically shown by arrows in FIG.
 なお、第1区間131から流出した気体が図16の左側に向けて転向するように、第2区間132が二点鎖線で示す位置に配置されていてもよい。この場合も、本実施形態の捕集構造130によるものと同様の効果を得ることができる。 Note that the second section 132 may be arranged at a position indicated by a two-dot chain line so that the gas flowing out of the first section 131 turns toward the left side of FIG. Also in this case, the same effect as that by the collection structure 130 of the present embodiment can be obtained.
 また、第1区間131が上下方向に対して傾斜していたり、区間接続部133の内壁133Aにおいて、第2区間132の流入口132Aが水平方向に対して傾斜した向きに開口していたりすることも許容される。第2区間132が、内壁133Aから斜め上方あるいは斜め下方に向けて延びていてもよい。
 図16に示す第2区間132は水平方向に延びているが、必ずしもこれに限定されるものではなく、第2区間132は、区間接続部133との接続箇所から、任意の方向に延びていてよい。
Also, the first section 131 may be inclined with respect to the vertical direction, or the inlet 132A of the second section 132 may be opened in a direction inclined with respect to the horizontal direction on the inner wall 133A of the section connecting portion 133. Is also acceptable. The second section 132 may extend obliquely upward or obliquely downward from the inner wall 133A.
The second section 132 shown in FIG. 16 extends in the horizontal direction. However, the second section 132 is not necessarily limited to this, and the second section 132 extends in an arbitrary direction from the connection portion with the section connection portion 133. Good.
 第1区間131の流出口131Aの高さH1は、区間接続部133と第2区間132との接続部である第2区間132の流入口132A(開口)の高さH2以下であることが好ましい(H1≦H2、L≧0)。H1,H2は、同一の基準位置からの高さである。
 ここで、流入口132Aの高さH2は、流入口132Aの下端における高さを意味するものとする。つまり、第1区間131は、第2区間132の流入口132Aの下端の位置まで延びているか、あるいは、流入口132Aの下端の位置よりも下方まで延びていることが好ましい。
 流路130Fは、第1区間131の流出口131Aから下方に流出した後、区間接続部133の内側で流出口131Aよりも上方へ流れ、さらに第1区間131の軸心に対して径方向外側に流れ、第2区間132の流入口132Aへと流入する。
The height H1 of the outlet 131A of the first section 131 is preferably equal to or less than the height H2 of the inlet 132A (opening) of the second section 132, which is a connection portion between the section connecting portion 133 and the second section 132. (H1 ≦ H2, L ≧ 0). H1 and H2 are heights from the same reference position.
Here, the height H2 of the inlet 132A means the height at the lower end of the inlet 132A. That is, it is preferable that the first section 131 extends to the position of the lower end of the inlet 132A of the second section 132 or extends below the position of the lower end of the inlet 132A.
The flow path 130 </ b> F flows downward from the outlet 131 </ b> A of the first section 131, then flows upward from the outlet 131 </ b> A inside the section connection portion 133, and further radially outward with respect to the axis of the first section 131. And flows into the inlet 132A of the second section 132.
 図16に示す上述した具体例に基づいて、捕集構造130の要件を簡単に示す。
 捕集構造130は、
(1)吸引口14(または15~17)に連通しており、捕集部134に向かって、下方に延びるように形成させた第1区間131と、
(2)第1区間131に連通した溶湯カス用ボックス(区間接続部133および捕集部134)と、
(3)溶湯カス用ボックスの内部空間に、連通するように形成させた第2区間132と、
を備えている。
 さらに、捕集構造130において、第1区間131の流出口131Aの高さH1が、区間接続部133と第2区間132との接続箇所(流入口132A)の高さH2以下であることが好ましい。具体的には、高さH1と高さH2との差に相当する距離Lが、下記の式(7)の関係を満たしている。
 L≧0  (7)
 L≧0であるならば、第2区間132の流入口132Aの開口を第1区間131の側壁131Bに投影したとき、投影範囲R1内において流入口132Aの開口の上端(12時位置)と下端(6時位置)との両方が存在することとなる。
Based on the above-described specific example shown in FIG. 16, the requirements of the collection structure 130 are simply shown.
The collection structure 130 is
(1) a first section 131 that communicates with the suction port 14 (or 15 to 17) and that extends downward toward the collecting portion 134;
(2) Molten waste box (section connection portion 133 and collection portion 134) communicating with the first section 131;
(3) a second section 132 formed to communicate with the internal space of the molten metal box,
It has.
Furthermore, in the collection structure 130, the height H1 of the outlet 131A of the first section 131 is preferably equal to or less than the height H2 of the connection point (the inlet 132A) between the section connecting portion 133 and the second section 132. . Specifically, the distance L corresponding to the difference between the height H1 and the height H2 satisfies the relationship of the following formula (7).
L ≧ 0 (7)
If L ≧ 0, when the opening of the inlet 132A of the second section 132 is projected onto the side wall 131B of the first section 131, the upper end (12 o'clock position) and the lower end of the opening of the inlet 132A within the projection range R1. Both (6 o'clock position) will exist.
 捕集構造130による作用を説明する。真空引きにより、スリーブ11内から吸引口14(または15~17)を通じて気体と共に吸引経路51へ吸い出された溶湯カスS等は、第1区間131を流れて捕集部134に向かう。
 真空引きにより、気体は、第1区間131から流出すると区間接続部133の内側で転向し、第2区間132に向けて吸引されるが、気体と比べて慣性力が大きい溶湯カスS等は、第1区間131の下端から第1区間131の延出方向に沿って下方へほぼ直進することで、気体から分離される。第2区間132へと流入する気体の流れから分離された溶湯カスS等は、捕集部134により捕捉されることとなる。溶湯カスS等は、捕集部134の内部空間を落下して、捕集部134の底部に溜まる。
The effect | action by the collection structure 130 is demonstrated. Due to the evacuation, the molten metal S or the like sucked into the suction path 51 together with the gas from the sleeve 11 through the suction port 14 (or 15 to 17) flows through the first section 131 toward the collecting unit 134.
When the gas flows out from the first section 131 by evacuation, the gas turns inside the section connection portion 133 and is sucked toward the second section 132. The gas is separated from the gas by moving substantially straight downward from the lower end of the first section 131 along the extending direction of the first section 131. Molten waste S or the like separated from the gas flow flowing into the second section 132 is captured by the collection unit 134. Molten waste S or the like falls in the internal space of the collection unit 134 and accumulates at the bottom of the collection unit 134.
 慣性力に加えて、遠心力によっても、気体に混入していた溶湯カスS等が気体から分離される。つまり、第1区間131から流出して第2区間132に向けて転向する気体に働く遠心力により、気体と溶湯カスSとの密度の相違に基づいて、気体と溶湯カスS等とが分離される。
 ここで、第1区間131と第2区間132とは、直接的には連通しておらず、第1区間131を包囲する区間接続部133を介して連通している。なおかつ、区間接続部133により第1区間131が包囲されている位置で、第2区間132が区間接続部133に連なっている。そのため、第1区間131に対する第2区間132の流入口132Aの投影範囲R1(図17(a))内に第1区間131の側壁131Bが存在している。
 上記構成を図17(a)に拡大して示す。
In addition to the inertial force, the molten metal residue S or the like mixed in the gas is also separated from the gas by the centrifugal force. That is, due to the centrifugal force acting on the gas flowing out from the first section 131 and turning toward the second section 132, the gas and the molten scum S are separated based on the difference in density between the gas and the molten scum S. The
Here, the first section 131 and the second section 132 are not in direct communication with each other, but are in communication with each other via a section connecting portion 133 that surrounds the first section 131. In addition, the second section 132 is connected to the section connecting section 133 at a position where the first section 131 is surrounded by the section connecting section 133. Therefore, the side wall 131B of the first section 131 exists in the projection range R1 (FIG. 17A) of the inlet 132A of the second section 132 with respect to the first section 131.
The said structure is expanded and shown to Fig.17 (a).
 上記構成によれば、第1区間131から第2区間132にかけて真空吸引のための経路を確保しつつ、側壁131Bにより、第1区間131から第2区間132に気体が直接的に流入するのを防ぐことができる。
 ここで、他の例である図17(b)に示すように第1区間131から第2区間132に直接的に気体が流入する場合でも、慣性力および遠心力により気体から分離された溶湯カスS等が概ね捕集されることが試験により確認されている。
 なお、第2区間132が二点鎖線で示す位置に配置されており、第1区間131から流出した気体が図17(b)の左側に向けて転向する場合でも、右側に向けて転向する場合と同様の捕集効率を示した。
 本実施形態では、図17(a)に示すように、第1区間131を包囲する区間接続部133に第2区間132が連なっている。本実施形態によれば、第1区間131から第2区間132に直接的に気体が流入する場合と比べて、溶湯カスS等の捕集効率が高く、溶湯カスS等の第2区間132への流入を規制する効果が高いことも試験により確認されている。
According to the above configuration, the gas flows directly from the first section 131 to the second section 132 by the side wall 131B while securing a path for vacuum suction from the first section 131 to the second section 132. Can be prevented.
Here, as shown in FIG. 17B as another example, even when the gas directly flows from the first section 131 to the second section 132, the molten metal separated from the gas by inertial force and centrifugal force. It has been confirmed by tests that S and the like are generally collected.
Note that the second section 132 is arranged at the position indicated by the two-dot chain line, and the gas flowing out from the first section 131 turns toward the right side even when turning toward the left side in FIG. It showed the same collection efficiency.
In the present embodiment, as shown in FIG. 17A, the second section 132 is connected to the section connecting portion 133 that surrounds the first section 131. According to this embodiment, compared with the case where gas flows directly into the 2nd area 132 from the 1st area 131, collection efficiency, such as the molten metal debris S, is high, and it goes to the 2nd area 132, such as the molten metal debris S. Tests have also confirmed that the effect of regulating the inflow of water is high.
 図17(a)と、他の例である図17(b)とを参照して、引き続き、本実施形態の捕集構造130の作用を説明する。図17(b)に示す例では、第1区間131の流出口131Aが第2区間132の流入口132Aよりも上方に位置している。第1区間131の側壁131Bは、流入口132Aの投影領域内には存在していない。 Referring to FIG. 17 (a) and FIG. 17 (b) which is another example, the operation of the collection structure 130 of this embodiment will be described. In the example shown in FIG. 17B, the outlet 131A of the first section 131 is located above the inlet 132A of the second section 132. The side wall 131B of the first section 131 does not exist in the projection area of the inflow port 132A.
 本実施形態(図17(a))では、図17(b)に示す例に対して第1区間131が長いため、第2区間132の流入口132Aの投影範囲R1内に第1区間131の側壁131Bが存在しているので、第1区間131から流出した気体が、第1区間131の外周に回り込んでから第2区間132に流入する。
 一方、図17(b)に示す例では、第1区間131から流出した気体が直接的に第2区間132に流入する。これは、区間接続部133の内側に第1区間131が存在していない場合と同様である。
In the present embodiment (FIG. 17A), since the first section 131 is longer than the example shown in FIG. 17B, the first section 131 is within the projection range R1 of the inlet 132A of the second section 132. Since the side wall 131 </ b> B exists, the gas flowing out from the first section 131 flows around the outer periphery of the first section 131 and then flows into the second section 132.
On the other hand, in the example shown in FIG. 17B, the gas flowing out from the first section 131 flows directly into the second section 132. This is the same as the case where the first section 131 does not exist inside the section connection unit 133.
 本実施形態によれば、区間接続部133により包囲された第1区間131の流出口131Aと、区間接続部133の内壁133Aに開口した第2区間132の流入口132Aとの配置に基づいて、図17(a)に示すように、流出口131Aから流入口132Aまでの複数箇所で気流が曲がる。具体的に、気流は、流出口131Aから第1区間131の外周に折り返すように曲がり、その一部が第1区間131の側壁131Bに吹き付けられつつ、第2区間132に向けて転向する。この過程で、気流が第1区間131の下端部近傍や第2区間132の流入口132Aの周縁部に衝突する。
 そうすると、曲がった箇所のそれぞれにおいて慣性力および遠心力による気体からの溶湯カスS等の分離効果を得つつ、第1区間131の下端部近傍や第2区間132の流入口132Aの周縁部への気流の衝突による溶湯カスS等の分離効果をも得ることができる。
According to the present embodiment, based on the arrangement of the outlet 131A of the first section 131 surrounded by the section connecting portion 133 and the inlet 132A of the second section 132 opened to the inner wall 133A of the section connecting portion 133, As shown in FIG. 17A, the air current bends at a plurality of locations from the outlet 131A to the inlet 132A. Specifically, the airflow is bent from the outlet 131 </ b> A to the outer periphery of the first section 131, and turns toward the second section 132 while being partially blown to the side wall 131 </ b> B of the first section 131. In this process, the airflow collides with the vicinity of the lower end of the first section 131 and the peripheral edge of the inlet 132A of the second section 132.
Then, while obtaining the separation effect of the molten scum S or the like from the gas due to inertial force and centrifugal force at each bent portion, the vicinity of the lower end portion of the first section 131 and the peripheral portion of the inlet 132A of the second section 132 are obtained. It is also possible to obtain an effect of separating the molten metal S and the like due to the collision of the airflow.
 本実施形態では、第1区間131の流出口131Aと第2区間132の流入口132Aとの間に第1区間131の側壁131Bが存在しているため、流出口131Aから流出した気体が側壁131Bの外周に回り込んで流入口132Aに到達するまでの過程において溶湯カスS等が十分に分離された気体が第2区間132に流入することとなる。したがって、第2区間132を通じて真空フィルタ31や選択バルブ33に向けて溶湯カスS等が流出するのを防いで、捕集部134による溶湯カスS等の捕集を促進することができる。 In the present embodiment, since the side wall 131B of the first section 131 exists between the outlet 131A of the first section 131 and the inlet 132A of the second section 132, the gas flowing out from the outlet 131A flows into the side wall 131B. The gas from which the molten metal residue S or the like is sufficiently separated flows into the second section 132 in the process of going around the outer periphery of the steel and reaching the inlet 132A. Therefore, it is possible to prevent the molten scum S and the like from flowing out toward the vacuum filter 31 and the selection valve 33 through the second section 132 and to promote the collection of the molten scum S and the like by the collecting unit 134.
 以上より、本実施形態によれば、図17(b)に示す例に対し、吸引される気体から溶湯カスS等をより十分に分離して捕集部134に捕集することで、第2区間132への溶湯カスS等の流出を防ぐことができるので、吸引経路51の吸引効率の低下や閉塞を未然に防ぐことができる。
 そのため、溶湯カスS等の滞留を防ぐために滑らかな内壁を有する配管を第1区間131には使用していたとしても、第2区間132と、それよりも真空タンク36側の配管には、設置自由度の高い蛇腹状の配管(ベローズ管)を使用することが可能となる。
 なお、領域51Aへの蛇腹状の配管の使用も許容される。
As described above, according to the present embodiment, compared to the example illustrated in FIG. 17B, the molten residue S or the like is more sufficiently separated from the sucked gas and collected in the collection unit 134. Since the outflow of the molten metal S or the like to the section 132 can be prevented, it is possible to prevent the suction efficiency of the suction path 51 from being lowered and blocked.
Therefore, even if a pipe having a smooth inner wall is used in the first section 131 in order to prevent the stay of molten metal S or the like, it is installed in the second section 132 and the pipe closer to the vacuum tank 36 than that. It becomes possible to use a bellows-like pipe (bellows pipe) having a high degree of freedom.
In addition, use of a bellows-like pipe for the region 51A is allowed.
 捕集部134は、定期的に清掃し、内部に溜まった溶湯カスS等を除去するものとする。これにより、第2区間132に吸引される溶湯カスS等の量を低減することができるため、真空フィルタ31が用いられる場合は真空フィルタ31の清掃頻度を下げることが可能となり、吸引経路51の吸引効率低下を抑えて安定操業を行うことができる。
 捕集部134の容積が小さい方が、吸引エア量が少なくて済むため、真空吸引の効率が良くなり、真空度にとって有利である。但し、捕集部134の容積が小さ過ぎると、捕集部134の清掃頻度が高くなるので、真空度および清掃頻度を考慮して、捕集部134の容積を適切に定めるとよい。
The collection part 134 shall be cleaned regularly and the molten metal residue S etc. which accumulated in the inside shall be removed. Thereby, since the amount of the molten waste S or the like sucked into the second section 132 can be reduced, the cleaning frequency of the vacuum filter 31 can be lowered when the vacuum filter 31 is used, and the suction path 51 Stable operation can be performed while suppressing a reduction in suction efficiency.
The smaller the volume of the collection part 134 is, the smaller the amount of suction air is, so that the efficiency of vacuum suction is improved, which is advantageous for the degree of vacuum. However, if the volume of the collection unit 134 is too small, the frequency of cleaning of the collection unit 134 increases. Therefore, the volume of the collection unit 134 may be appropriately determined in consideration of the degree of vacuum and the cleaning frequency.
 図16および図17(a)に示す如く、第1区間131の流出口131Aの高さH1が、第2区間132の流入口132Aの高さH2以下であることが好ましい(H1≦H2)。そうすると、第1区間131から流出した気体が、全体的に側壁131Bの外周に回り込んで、第1区間131の下端部や、流入口132Aの周縁部に衝突しつつ、第2区間132に流入する。そのため、気体に混入した溶湯カスS等が流出口131Aから流入口132Aに到達するまでの間に気体から溶湯カスS等を分離して捕集し、第2区間132への溶湯カスS等の流入を抑えることで吸引経路51の吸引効率の低下や閉塞を防ぐ効果が高い。 As shown in FIGS. 16 and 17A, the height H1 of the outlet 131A in the first section 131 is preferably equal to or lower than the height H2 of the inlet 132A in the second section 132 (H1 ≦ H2). Then, the gas flowing out from the first section 131 flows around the outer periphery of the side wall 131B as a whole and flows into the second section 132 while colliding with the lower end of the first section 131 and the peripheral edge of the inflow port 132A. To do. Therefore, the molten scum S or the like mixed in the gas is separated and collected from the gas until the molten scum S or the like mixed in the gas reaches the inlet 132A from the outlet 131A. By suppressing the inflow, the effect of preventing the suction efficiency of the suction path 51 from being lowered and blocked is high.
 ここで、H2-H1(距離L)が大きいほど、第2区間132への溶湯カスS等の流入を効果的に防止することができる。高さH1,H2の差は、溶湯カスS等の気体からの分離および捕集の効率と、第1区間131の下端部近傍や、流入口132Aの周縁部により気流に与えられる圧力損失とを考慮して、適宜に定めることができる。
 距離Lは、一例として、5mmに設定することができる。ダイカストマシンの実機において距離L=5mmを適用してスリーブ11内の真空吸引を行う試験を行ったところ、溶湯カスS等が捕集部134に捕集され、第2区間132には殆ど流入しないため、真空吸引系統2から真空フィルタ31を省くことができる。当該試験によれば、選択バルブ33の上流に設置されたY型ストレーナのフィルタに溶湯カスS等の付着はない。
Here, as H2-H1 (distance L) is larger, the inflow of the molten waste S or the like into the second section 132 can be effectively prevented. The difference between the heights H1 and H2 is the separation and collection efficiency from the gas such as the molten metal S and the pressure loss applied to the airflow by the vicinity of the lower end of the first section 131 and the peripheral edge of the inlet 132A. It can be determined as appropriate in consideration.
The distance L can be set to 5 mm as an example. When a test of vacuum suction in the sleeve 11 was performed using a distance L = 5 mm in an actual die casting machine, the molten metal S or the like was collected in the collection unit 134 and hardly flowed into the second section 132. Therefore, the vacuum filter 31 can be omitted from the vacuum suction system 2. According to the test, there is no adhesion of the molten metal S or the like on the filter of the Y-type strainer installed upstream of the selection valve 33.
 距離Lが5mm以下、あるいは、高さH1が高さH2よりも高い場合であっても、流入口132Aの投影範囲R1内に第1区間131の側壁131Bが少しでも存在しているならば、第1区間131から流出した気体の少なくとも一部が、第1区間131を包囲する区間接続部133の内側で第1区間131の外周に回り込んで第2区間132に流入する。その流れから溶湯カスS等が十分に分離されて捕集されることにより、第2区間132への溶湯カスS等の流出を防いで、吸引経路51の吸引効率の低下や閉塞を防ぐことができる。 Even if the distance L is 5 mm or less or the height H1 is higher than the height H2, if the side wall 131B of the first section 131 exists in the projection range R1 of the inflow port 132A, At least a part of the gas flowing out of the first section 131 wraps around the outer periphery of the first section 131 inside the section connecting portion 133 surrounding the first section 131 and flows into the second section 132. By sufficiently separating and collecting the molten scum S or the like from the flow, it is possible to prevent the molten scum S or the like from flowing out to the second section 132 and to prevent the suction efficiency of the suction path 51 from being lowered or blocked. it can.
 第1区間131の下端部近傍には、メッシュ、あるいはパンチングメタル等を使用することで多数の細隙を形成することができる。細隙の開口は、溶湯カスSが通過しない大きさに設定するとよい。細隙の形成により、第2区間132への溶湯カスS等の流入を防ぐ壁として第1区間131を機能させながら、第1区間131から流出して第2区間132に向かう気流に与える抵抗を減少させることができる。
 第1区間131への細隙の形成により、距離Lを長く確保して第2区間132への溶湯カスS等の流入を効果的に防止しつつ、第1区間131により気流に抵抗が付与されることによる圧力損失を抑えることができる。
A large number of slits can be formed in the vicinity of the lower end of the first section 131 by using a mesh or punching metal. The opening of the slit may be set to a size that does not allow the molten metal residue S to pass through. Due to the formation of the slit, the first section 131 functions as a wall that prevents inflow of the molten waste S or the like into the second section 132, and the resistance given to the airflow flowing out from the first section 131 toward the second section 132 is given. Can be reduced.
By forming a slit in the first section 131, the first section 131 provides resistance to the airflow while ensuring a long distance L and effectively preventing the molten residue S or the like from flowing into the second section 132. Pressure loss due to
 なお、第1区間131に細隙を形成する場合は、気体に混入した溶湯カスS等の液相、半凝固、固相の状態を考慮するものとする。固相の溶湯カスSが気体と共に第1区間131に飛来する場合は、溶湯カスSにより細隙が閉塞することを避けることができる。吸引用凹部120(図4(a))が設けられたチップ20を用いることでスリーブ11内の溶湯の暴れが抑制されることにより、吸引経路51に流入する気体には液相や半凝固状態の溶湯カスSが混入し難いため、第1区間131への細隙の形成に適する。 In addition, when forming a slit in the 1st area 131, the state of liquid phase, such as the molten metal S mixed with gas, semi-solidification, and a solid phase shall be considered. In the case where the molten metal debris S flies to the first section 131 together with the gas, it is possible to avoid clogging of the slit by the molten metal debris S. By using the tip 20 provided with the suction recess 120 (FIG. 4 (a)), the molten metal in the sleeve 11 is prevented from violating, so that the gas flowing into the suction path 51 has a liquid phase or a semi-solid state. Therefore, it is suitable for forming a slit in the first section 131.
〔第3実施形態の第1変形例〕
 図18に示すように、第1区間131が水平方向に延びており、第2区間132が、第1区間131を包囲する区間接続部133に対して上方(または下方)に延びていてもよい。捕集部134は、区間接続部133に対して下方に連なっている。
[First Modification of Third Embodiment]
As shown in FIG. 18, the first section 131 may extend in the horizontal direction, and the second section 132 may extend upward (or downward) with respect to the section connecting portion 133 that surrounds the first section 131. . The collection unit 134 is continuous downward with respect to the section connection unit 133.
 図18に示す例によれば、上記第3実施形態と同様に、第1区間131から流出した気体が側壁131Bの外周に回り込んで第2区間132に流入する。そのため、慣性力、遠心力、および側壁131Bや区間接続部133の内壁133Aへの気流の衝突により気体から溶湯カスS等を分離させて捕集することができる。気体から分離された溶湯カスS等は、自重により区間接続部133の内壁および捕集部134の内部に溜まる。 According to the example shown in FIG. 18, similarly to the third embodiment, the gas flowing out from the first section 131 wraps around the outer periphery of the side wall 131 </ b> B and flows into the second section 132. Therefore, the molten scum S and the like can be separated and collected from the gas by inertial force, centrifugal force, and collision of the airflow with the side wall 131B and the inner wall 133A of the section connecting portion 133. Molten waste S or the like separated from the gas accumulates on the inner wall of the section connection portion 133 and the inside of the collection portion 134 due to its own weight.
 図18に示す例においても、上記第3実施形態と同様に、第1区間131の流出口131Aと第2区間132の流入口132Aとの位置関係を定めることができる。第1区間131の延出方向D4における流出口131Aの位置Ps1が、流入口132Aの位置Ps2と比べ、延出方向D4の前方(矢印の先端側)に位置していると好ましい。位置Ps1と位置Ps2との差が、上述の高さH1と高さH2との差(距離L)に相当する。 In the example shown in FIG. 18 as well, the positional relationship between the outlet 131A of the first section 131 and the inlet 132A of the second section 132 can be determined as in the third embodiment. The position Ps1 of the outlet 131A in the extending direction D4 of the first section 131 is preferably located in front of the extending direction D4 (the tip side of the arrow) compared to the position Ps2 of the inlet 132A. The difference between the position Ps1 and the position Ps2 corresponds to the above-described difference (distance L) between the height H1 and the height H2.
〔第3実施形態の第2変形例〕
 図19は、捕集構造130をより具体的に示したものである。図16に示す捕集構造130の構成要素と同様の構成要素には同じ符号を付している。
 図19に示す捕集構造130は、第1区間131および第2区間132と、区間接続部133と、捕集部134とを備えている。
 図16に示す構成と同様に、区間接続部133により第1区間131が包囲されている位置で、第2区間132が区間接続部133に連なっている。流出口131Aおよび流入口132Aのそれぞれの高さH1,H2の差(距離L)は、一例として5mmである。
[Second Modification of Third Embodiment]
FIG. 19 shows the collection structure 130 more specifically. The same components as those of the collection structure 130 shown in FIG.
A collection structure 130 shown in FIG. 19 includes a first section 131 and a second section 132, a section connection section 133, and a collection section 134.
Similarly to the configuration shown in FIG. 16, the second section 132 is connected to the section connecting section 133 at a position where the first section 131 is surrounded by the section connecting section 133. A difference (distance L) between the heights H1 and H2 of the outflow port 131A and the inflow port 132A is, for example, 5 mm.
 図19に示す例では、区間接続部133と、捕集部134とが別体とされ、それぞれのフランジ133F,134Fにより組み付けられている。フランジ133F,134Fは、円環状のセンターリング135を挟んだ状態に突き当てられ、クランプ136により拘束されている。センターリング135は、Oリング135Aと、真空吸引による捕集部134内の圧力減少に対してOリング135Aを内周側から支持する金属環135Bとを含んでいる。 In the example shown in FIG. 19, the section connecting portion 133 and the collecting portion 134 are separated and assembled by the respective flanges 133F and 134F. The flanges 133F and 134F are brought into contact with the annular center ring 135 and are restrained by the clamp 136. The center ring 135 includes an O-ring 135A and a metal ring 135B that supports the O-ring 135A from the inner peripheral side against pressure reduction in the collection unit 134 due to vacuum suction.
 捕集部134は、配管134Aと、配管134Aの下端部にねじ込まれる蓋部材134Bとからなる。別の配管と、両端に雄ねじが形成された接続用部材(ニップル)とを捕集部134に付加して捕集部134の長さを延長することができ、そうすると捕集部134の容積を拡大することができる。 The collection unit 134 includes a pipe 134A and a lid member 134B that is screwed into the lower end of the pipe 134A. Another pipe and a connecting member (a nipple) with male threads formed at both ends can be added to the collecting part 134 to extend the length of the collecting part 134, and the volume of the collecting part 134 can be increased. Can be enlarged.
 区間接続部133の下端側は、捕集部134に向けて径が次第に縮小しており、区間接続部133の下端にはフランジ133Fが設けられている。このフランジ133Fは、捕集部134に対して開口断面積が小さい逆流防止部として機能する。この逆流防止部は、捕集部134の内部から外部へと溶湯カスS等が逆流することを防止する。 
 フランジ133Fの内側の開口の断面積は、フランジ133Fがセンターリング135を介して突き当てられる捕集部134のフランジ134Fの内側の開口断面積よりも小さい。捕集部134の内径に対するフランジ133Fの内径の比率は、例えば1.5~3倍に設定することができるが、これに限られない。
The diameter of the lower end side of the section connecting portion 133 is gradually reduced toward the collecting section 134, and a flange 133F is provided at the lower end of the section connecting portion 133. The flange 133F functions as a backflow prevention unit having a small opening cross-sectional area with respect to the collection unit 134. The backflow prevention unit prevents the molten scum S or the like from flowing back from the inside of the collection unit 134 to the outside.
The cross-sectional area of the opening inside the flange 133F is smaller than the opening cross-sectional area inside the flange 134F of the collecting portion 134 with which the flange 133F is abutted via the center ring 135. The ratio of the inner diameter of the flange 133F to the inner diameter of the collection part 134 can be set to 1.5 to 3 times, for example, but is not limited thereto.
 逆流防止部(フランジ133F)が捕集部134と第2区間132との間に配置されていることにより、捕集部134に溜まった溶湯カスS等が気流に巻き上げられて上方に向かったとしても、逆流防止部(フランジ133F)により溶湯カスS等の捕集部134からの流出を抑制し、捕集部134の内部に溶湯カスS等を留めることができる。
 上述したように、吸引経路51は、真空吸引と、エアブロウとに兼用される。逆流防止部により、エアブロウ時に捕集部134から溶湯カスS等が流出することを規制することができる。なお、真空吸引とエアブロウとを切り替える際に、捕集構造130を含め、吸引経路51の構成部材を変更する必要がないので、吸引経路51の組立作業が発生することなく、継続して生産を行うことができる。
Since the backflow prevention part (flange 133F) is arranged between the collection part 134 and the second section 132, the molten metal S or the like accumulated in the collection part 134 is wound up by the air current and heads upward. In addition, the outflow of the molten scum S or the like from the collection unit 134 can be suppressed by the backflow prevention unit (flange 133F), and the molten scum S or the like can be retained inside the collection unit 134.
As described above, the suction path 51 is used for both vacuum suction and air blow. By the backflow prevention unit, it is possible to regulate the outflow of the molten scum S or the like from the collection unit 134 during the air blow. In addition, when switching between vacuum suction and air blow, it is not necessary to change the constituent members of the suction path 51 including the collection structure 130, so that production can be continued without causing assembly work of the suction path 51. It can be carried out.
 第1区間131は、円板状のブランクフランジを孔加工することで得られるフランジ131Fと、フランジ131Fの孔の周りの上面と下面とに溶接により接合された筒体131D,131E(パイプやニップル等)とを含んで製作されている。
 区間接続部133の上端部133Bと第1区間131の外周部131Cとの間は、第1区間131のフランジ131Fと、区間接続部133のフランジ133Gとの間に円環状のセンターリング137を介在させて封止されている。フランジ133Gとフランジ131Fとは、クランプ138により拘束されている。
The first section 131 includes a flange 131F obtained by drilling a disk-shaped blank flange, and cylinders 131D and 131E (pipe or nipple) joined to the upper and lower surfaces around the hole of the flange 131F by welding. Etc.).
An annular center ring 137 is interposed between the upper end portion 133B of the section connecting portion 133 and the outer peripheral portion 131C of the first section 131 between the flange 131F of the first section 131 and the flange 133G of the section connecting portion 133. And sealed. The flange 133G and the flange 131F are restrained by a clamp 138.
 第2区間132には、センターリング137を介して蛇腹状の配管139が接続されている。捕集構造130により気体に混入した溶湯カスS等を十分に除去することができるので、伸縮性を有していない配管と比べて設置自由度の高い蛇腹状の配管139を使用することができる。 A bellows-like pipe 139 is connected to the second section 132 via a center ring 137. Since the molten metal debris S mixed in the gas can be sufficiently removed by the collection structure 130, the bellows-like pipe 139 having a high degree of freedom of installation can be used as compared with a pipe that does not have elasticity. .
 図19に示す例では、区間接続部133および捕集部134の軸心に対して同心の開口を有した逆流防止部(フランジ133F)が区間接続部133と捕集部134との接合部に配置されている。この例に限らず、捕集構造130が、区間接続部133および捕集部134の軸心に対して偏心した開口を有した逆流防止部や、半円形の逆流防止部を備えていてもよい。かかる逆流防止部は、区間接続部133と捕集部134との接合部に限らず、例えば、捕集部134の配管134Aの内部に配置されていてもよい。 In the example shown in FIG. 19, the backflow prevention portion (flange 133 </ b> F) having an opening concentric with the axis of the section connection portion 133 and the collection portion 134 is provided at the junction between the section connection portion 133 and the collection portion 134. Has been placed. Not only this example but the collection structure 130 may be provided with the backflow prevention part which has the opening eccentric with respect to the axial center of the area connection part 133 and the collection part 134, and a semicircular backflow prevention part. . Such a backflow prevention unit is not limited to the joint portion between the section connection unit 133 and the collection unit 134, and may be disposed inside the pipe 134 </ b> A of the collection unit 134, for example.
〔第4実施形態〕
 次に、図20を参照し、本発明の第4実施形態について説明する。図20に示す捕集構造140は、捕集部144に設けられた取出口144Aを開閉可能なボールバルブ141を備えている。この点を除いて、捕集構造140は、第3実施形態の捕集構造130と同様に構成されている。捕集部144は、区間接続部133と一体に形成されている。
 以下、第3実施形態の捕集構造130と相違する事項を中心に説明する。
 捕集部144の下端部には、溶湯カスS等が通過可能な取出口144Aが設けられている。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG. The collection structure 140 shown in FIG. 20 includes a ball valve 141 that can open and close an outlet 144A provided in the collection unit 144. Except for this point, the collection structure 140 is configured in the same manner as the collection structure 130 of the third embodiment. The collection part 144 is formed integrally with the section connection part 133.
Hereinafter, the description will focus on items that are different from the collection structure 130 of the third embodiment.
An outlet 144A through which the molten metal S or the like can pass is provided at the lower end of the collection part 144.
 ボールバルブ141は、弁体としてのボール141Aと、ボール141Aを受ける弁座が設けられるハウジング141Bとを備えている。ボールバルブ141は、ハウジング141B内部の通路(ボア)に直交する軸141Cの周りにボール141Aが回転されることで開閉される。
 捕集構造140によれば、ボールバルブ141を閉じて溶湯カスS等を捕集するとともに、ボールバルブ141を開いて溶湯カスS等を排出させることが可能となる。
The ball valve 141 includes a ball 141A as a valve body, and a housing 141B provided with a valve seat for receiving the ball 141A. The ball valve 141 is opened and closed by rotating the ball 141A around an axis 141C orthogonal to the passage (bore) inside the housing 141B.
According to the collection structure 140, it is possible to close the ball valve 141 to collect the molten scum S and the like and open the ball valve 141 to discharge the molten scum S and the like.
 取出口144Aの位置は、必ずしも捕集部144の下端部に限らない。取出口144Aが捕集部144の側壁144Bに設けられていたとしても、エアブロウ時の気流の圧力により溶湯カスS等を排出させることができる。
 また、取出口144Aの位置によらず、手動によりボールバルブ141を開いて溶湯カスS等を取出口144Aから取り出すことも妨げられない。
The position of the outlet 144A is not necessarily limited to the lower end portion of the collecting portion 144. Even if the outlet 144A is provided on the side wall 144B of the collection part 144, the molten metal debris S and the like can be discharged by the pressure of the air flow during air blowing.
Further, regardless of the position of the outlet 144A, it is not obstructed to manually open the ball valve 141 and take out the molten metal S or the like from the outlet 144A.
 捕集構造140は、
(1)捕集部144において、区間接続部133と第2区間132の接続箇所(流入口132A)の高さH2よりも低い位置に設けられた取出口144Aを開閉可能なボールバルブ141(開閉弁の一種)を備えている。
(2)ボールバルブ141の下方には、溶湯カスS等を受ける溶湯カス受け142が設置されることが好ましい。
The collection structure 140 is
(1) In the collection part 144, a ball valve 141 (open / close) capable of opening / closing an outlet 144A provided at a position lower than a height H2 of a connection point (inlet 132A) between the section connection part 133 and the second section 132 A kind of valve).
(2) It is preferable to install a molten metal receiver 142 for receiving the molten metal S or the like below the ball valve 141.
 ボールバルブ141が電動またはエア(圧縮空気)駆動のアクチュエーター143により駆動されることにより、取出口144Aが開閉される。
 ボールバルブ141により取出口144Aが閉じられた状態で、吸引経路51を通じて真空吸引が行われる際に、気体から分離された溶湯カスS等が捕集部144の内部に捕集される。
 ボールバルブ141により取出口144Aを開くと、捕集部144の内部に溜まった溶湯カスS等を捕集部144の外部に排出させることができる。図20に示す例では、開いた取出口144Aから溶湯カスS等が溶湯カス受け142へと落下する。
The ball valve 141 is driven by an electric or air (compressed air) driven actuator 143 to open and close the outlet 144A.
When vacuum suction is performed through the suction path 51 in a state where the outlet 144A is closed by the ball valve 141, the molten scum S or the like separated from the gas is collected in the collection unit 144.
When the outlet 144 </ b> A is opened by the ball valve 141, the molten metal S or the like accumulated inside the collecting unit 144 can be discharged to the outside of the collecting unit 144. In the example shown in FIG. 20, the molten scum S or the like falls from the open outlet 144 </ b> A to the molten scum receiver 142.
 ボールバルブ141は、吸引経路51を通じて行うエアブロウ時に開かれることが好ましい。ボールバルブ141がエアブロウ時に開かれることにより、真空吸引時に捕集部144の内部に捕集された溶湯カスS等を捕集部144の外部に排出させることができる。ボールバルブ141が開かれる際にボール141Aが動くことに加えて、エアブロウ時の気流の圧力も作用することで、ボール141Aに付着していた溶湯カスSをもボール141Aから離脱させて、外部に排出することができる。 The ball valve 141 is preferably opened at the time of air blowing through the suction path 51. When the ball valve 141 is opened at the time of air blowing, the molten metal S or the like collected inside the collecting unit 144 during vacuum suction can be discharged to the outside of the collecting unit 144. In addition to the movement of the ball 141A when the ball valve 141 is opened, the pressure of the air flow at the time of air blowing also acts, so that the molten metal S adhering to the ball 141A is also detached from the ball 141A and exposed to the outside. Can be discharged.
 上述したように、吸引用凹部120(図4(a))が設けられたチップ20を用いることでスリーブ11内の溶湯の暴れが抑制されることにより、吸引経路51に流入する気体には液相や半凝固状態の溶湯カスSが混入し難い。そのため、液相や半凝固状態の溶湯カスSの固着によりボールバルブ141の動作に影響が出ることを避けて、捕集構造140による溶湯カスS等の捕集、溶湯カスS等の排出を行いながら、安定的に操業することができる。なお、溶湯カスSの薄い凝固片や潤滑剤が気体に混入していても、ボールバルブ141の動作には影響が及ばない。 As described above, by using the tip 20 provided with the suction recess 120 (FIG. 4A), the melt flowing in the sleeve 11 is suppressed, so that the gas flowing into the suction path 51 is liquid. Phase or semi-solid molten metal S is difficult to mix. Therefore, the operation of the ball valve 141 is not affected by the adhesion of the liquid phase or semi-solid state molten metal S, and the molten structure S is collected by the collecting structure 140 and the molten material S is discharged. However, it can operate stably. Note that the operation of the ball valve 141 is not affected even if a solidified piece of thin molten metal S or a lubricant is mixed in the gas.
 吸引用凹部120が設けられたチップ20を使用した試験によれば、スリーブ11内の溶湯の暴れが抑制されることにより、吸引経路51に流入する気体に固相の溶湯カスSが混入しているとしても少量に留まり、塊状に凝固した溶湯カスSが気体に混入して捕集部144まで飛来することはない。そのため、ボールバルブ141の動作に影響が出ることを避けて、安定的に操業することができる。 According to the test using the tip 20 provided with the suction recess 120, the melt of the molten metal in the sleeve 11 is suppressed, so that the solid melt S is mixed into the gas flowing into the suction path 51. Even if it exists, it will remain in a small quantity, and the molten metal debris S solidified in the lump will not mix with gas and fly to the collection part 144. Therefore, the operation of the ball valve 141 can be avoided and the operation can be stably performed.
 エアブロウ時にアクチュエーター143によりボールバルブ141を開くことで、エアブロウ時に、自動的に溶湯カスS等を捕集部144の外部に排出することができる。エアブロウの都度、捕集部144の内部から溶湯カスS等が除去されることで、捕集部144に溜まる溶湯カスS等の量を抑えることができる。そうすると、捕集部144と連通する第2区間132へと吸引される溶湯カスS等の量を効果的に低減することができ、真空フィルタ31の清掃頻度の低減にも寄与することができる。
 本実施形態では、溶湯カスS等が捕集部144の外部へ排出されるため、溶湯カスS等が堆積した溶湯カス受け142を清掃すれば足りる。
By opening the ball valve 141 by the actuator 143 during air blow, the molten waste S and the like can be automatically discharged to the outside of the collection unit 144 during air blow. Each time the air blow is performed, the amount of the molten metal S or the like accumulated in the collection unit 144 can be suppressed by removing the molten metal S or the like from the inside of the collection unit 144. If it does so, the quantity of the molten metal waste S etc. which are attracted | sucked to the 2nd area 132 connected with the collection part 144 can be reduced effectively, and it can contribute also to the reduction of the cleaning frequency of the vacuum filter 31.
In the present embodiment, since the molten scum S or the like is discharged to the outside of the collection unit 144, it is sufficient to clean the molten stag receiver 142 on which the molten scum S or the like has accumulated.
 溶湯カス受け142の容積は、大きい方が、清掃頻度を下げることが可能となり、作業効率の面において有利である。溶湯カス受け142の容積は、作業効率と、溶湯カス受け142の製作コストを鑑み、適切に定めることが好ましい。 The larger the volume of the molten metal receiver 142, the lower the frequency of cleaning, which is advantageous in terms of work efficiency. The volume of the molten metal receiver 142 is preferably determined appropriately in view of work efficiency and the manufacturing cost of the molten metal receiver 142.
 本実施形態の捕集構造140によれば、エアブロウ時にボールバルブ141を開いて、溶湯カスS等を捕集部144の内部から溶湯カス受け142の中へ排出させることができるため、真空吸引時に捕集された溶湯カスS等を捕集部144から自動的に定期的に取り出しながら、継続して生産を行うことができる。 According to the collection structure 140 of the present embodiment, the ball valve 141 is opened during air blow, and the molten waste S and the like can be discharged from the collection portion 144 into the molten waste receiver 142. Production can be continuously performed while the collected molten metal S or the like is automatically and periodically taken out from the collection unit 144.
 ボールバルブ141に代えて、捕集部144の取出口144Aを真空吸引時に確実に締め切ることが可能な他のバルブ、例えば、バタフライバルブやゲートバルブ等を採用することもできる。 Instead of the ball valve 141, other valves that can reliably close the outlet 144A of the collection unit 144 during vacuum suction, such as a butterfly valve or a gate valve, may be employed.
〔第5実施形態〕
 次に、図21~図24を参照して、本発明の第5実施形態に係る吸引経路51の一部である真空用配管構造150について説明する。第5実施形態は、真空用配管の内部に付着する溶湯カスS等の清掃の容易化に関する。第5実施形態に開示する真空用配管構造150は、第1、第2実施形態の射出装置1,6、および射出装置1または6を備えたダイカストマシン100をはじめ、ダイカストマシンの射出装置およびダイカストマシンに適用することができる。
[Fifth Embodiment]
Next, a vacuum piping structure 150 that is a part of the suction path 51 according to the fifth embodiment of the present invention will be described with reference to FIGS. The fifth embodiment relates to facilitating cleaning of the molten metal debris S and the like adhering to the inside of the vacuum pipe. The vacuum piping structure 150 disclosed in the fifth embodiment includes the injection apparatus 1 and 6 of the first and second embodiments and the die casting machine 100 including the injection apparatus 1 or 6, as well as the injection apparatus and die casting machine of the die casting machine. Can be applied to the machine.
 第5実施形態および第5実施形態の変形例に開示する構成は、吸引用凹部120が区画されていないチップを含むプランジャと、スリーブとを備えた射出装置にも適用することができる。 The configurations disclosed in the fifth embodiment and the modified example of the fifth embodiment can also be applied to an injection device including a plunger including a tip in which the suction recess 120 is not partitioned and a sleeve.
 第5実施形態は、スリーブ11の内部空間からキャビティ23に亘って連通して形成される空間内を真空吸引する吸引経路51(真空用配管)の構造を示すものである。ここでは、スリーブ11にあいている複数の孔である吸引口14~17のそれぞれから、スリーブ11の内部空間を吸引する吸引経路51について説明するが、金型の1箇所あるいは複数箇所に設けた連結口28から、キャビティ23内を吸引する吸引経路についても同様である。 The fifth embodiment shows a structure of a suction path 51 (vacuum pipe) for vacuum-sucking the space formed in communication from the internal space of the sleeve 11 to the cavity 23. Here, the suction path 51 for sucking the inner space of the sleeve 11 from each of the suction ports 14 to 17 which are a plurality of holes in the sleeve 11 will be described. However, the suction path 51 is provided at one place or a plurality of places of the mold. The same applies to the suction path for sucking the inside of the cavity 23 from the connection port 28.
 図21には、スリーブ11の内側から吸引口14を通じて気体が吸引される吸引経路51の途上に設けられた捕集部152と、捕集部152の上流側から捕集部152に向けて延びる清掃区間151とを備えた真空用配管構造150が示されている。 In FIG. 21, the collection unit 152 provided in the course of the suction path 51 through which the gas is sucked from the inside of the sleeve 11 through the suction port 14, and extends from the upstream side of the collection unit 152 toward the collection unit 152. A vacuum piping structure 150 with a cleaning section 151 is shown.
 清掃区間151は、吸引経路51において、溶湯カスS等の発生源であるスリーブ11の内部空間に連なる吸引口14~17と、気体に混入した溶湯カスS等を捕集する捕集部152との間の区間に相当する。 The cleaning section 151 includes suction ports 14 to 17 connected to the internal space of the sleeve 11 that is a generation source of the molten metal S and the like in the suction path 51, and a collection unit 152 that collects the molten metal S and the like mixed in the gas. Corresponds to the interval between
 例えば、射出する溶湯の温度のばらつき、射出条件、金型の温度、および金型の熱膨張等の影響により、吸引口14(または15~17)から吸引経路51の内部に溶湯カスS等が侵入して、吸引経路51の内部に溶湯カスS等が付着する可能性がある。付着した溶湯カスS等は、吸引経路51に絞り部を形成する。
 ここで、吸引される気体の流れにおける捕集部152よりも上流は、捕集部152よりも下流(真空タンク36側)と比べて、気体に混入している溶湯カスS等の量が多く、配管の内壁に溶湯カスS等が付着し易い。そのため、捕集部152よりも上流である清掃区間151は、捕集部152よりも下流の配管と比べて、清掃により溶湯カスS等を除去する必要性が高い。
For example, due to the influence of variations in the temperature of the molten metal to be injected, injection conditions, mold temperature, thermal expansion of the mold, etc., molten scum S or the like is introduced into the suction path 51 from the suction port 14 (or 15 to 17). There is a possibility that the molten metal debris S or the like adheres to the inside of the suction path 51. The adhering molten metal S or the like forms a throttle portion in the suction path 51.
Here, the upstream side of the collecting unit 152 in the flow of the sucked gas has a larger amount of the molten metal S or the like mixed in the gas than the downstream side (vacuum tank 36 side) of the collecting unit 152. The molten metal residue S or the like is likely to adhere to the inner wall of the pipe. Therefore, the cleaning section 151 upstream from the collection unit 152 has a higher need to remove the molten scum S or the like by cleaning than the piping downstream from the collection unit 152.
 つまり、清掃区間151は、吸引経路51において相対的に清掃の必要性が高い区間である。本実施形態は、清掃区間151をなす複数の配管153が、把持部161を備えた連結用部材160により連結される構造により、清掃区間151の清掃作業効率の向上に寄与する。
 吸引口14(または15~17)から捕集部152までのほぼ全長に亘り配管153の内部を容易に清掃することができるように、清掃区間151が、吸引口14(または15~17)の近傍から捕集部152の近傍までに亘り延びていることが好ましい。図21に示す例では、吸引口14(または15~17)に挿入された配管のフランジと、配管153のフランジとが連結用部材160により連結されている。また、捕集部152に設けられたフランジと配管153のフランジとが連結用部材160により連結されている。
That is, the cleaning section 151 is a section in which the necessity for cleaning is relatively high in the suction path 51. This embodiment contributes to the improvement of the cleaning work efficiency of the cleaning section 151 by the structure in which the plurality of pipes 153 forming the cleaning section 151 are connected by the connecting member 160 provided with the gripping portion 161.
The cleaning section 151 is provided in the suction port 14 (or 15 to 17) so that the inside of the pipe 153 can be easily cleaned over almost the entire length from the suction port 14 (or 15 to 17) to the collection unit 152. It is preferable that it extends from the vicinity to the vicinity of the collection part 152. In the example shown in FIG. 21, the flange of the pipe inserted into the suction port 14 (or 15 to 17) and the flange of the pipe 153 are connected by a connecting member 160. In addition, the flange provided in the collection unit 152 and the flange of the pipe 153 are connected by a connecting member 160.
 吸引口14に対応する吸引経路51の他、吸引口15~17のそれぞれに対応する吸引経路51のいずれも、清掃区間151および捕集部152を備えることができる。なお、吸引口14~17のそれぞれに対応する吸引経路51のうち、溶湯カスS等により特に閉塞し易い少なくとも1つの吸引経路51のみに清掃区間151および捕集部152を設けることもできる。 In addition to the suction path 51 corresponding to the suction port 14, any of the suction paths 51 corresponding to the suction ports 15 to 17 can each include a cleaning section 151 and a collection unit 152. Of the suction paths 51 corresponding to each of the suction ports 14 to 17, the cleaning section 151 and the collecting unit 152 can be provided only in at least one suction path 51 that is particularly easily blocked by the molten metal S or the like.
 清掃区間151は、複数の配管153が連結されることで全体として湾曲した形状をなしている。複数の配管153は、直線状に延びる直管部153Aと、曲がった曲管部153Bとからなる。直管部153Aと曲管部153Bとを特に区別しないときは、配管153と称する。清掃区間151を複数の配管153に分解した際に、各配管153の内壁に付着した溶湯カスS等を除去する作業が行い易いように、清掃区間151を適宜な長さの配管153に分割することができる。
 複数の配管153は、連結用部材160によりフランジ同士が連結される。連結用部材160は、配管153の外側に露出した把持部161を有しており、把持部161を用いて手作業によりフランジに着脱可能である。
The cleaning section 151 has a curved shape as a whole by connecting a plurality of pipes 153. The plurality of pipes 153 include a straight pipe portion 153A that extends linearly and a bent pipe portion 153B that is bent. When the straight pipe portion 153A and the curved pipe portion 153B are not particularly distinguished, they are referred to as a pipe 153. When the cleaning section 151 is disassembled into a plurality of pipes 153, the cleaning section 151 is divided into pipes 153 having an appropriate length so that the work of removing the molten metal S attached to the inner wall of each pipe 153 can be easily performed. be able to.
The flanges of the plurality of pipes 153 are connected by a connecting member 160. The connecting member 160 has a gripping portion 161 exposed outside the pipe 153 and can be attached to and detached from the flange by hand using the gripping portion 161.
 真空ラインは、典型的には、鋼管と、ねじ込み継手であるニップル、ユニオン、およびエルボ等を使用して構成されており、これらの構成部品に分解する際には、工具を使用する必要がある。
 典型的な真空ラインとは異なり、本実施形態の清掃区間151は、把持部161を用いて手作業により複数の配管153に容易に分解し、各配管153を清掃することができる。そのため、配管153の内壁に付着した溶湯カスS等の清掃の作業効率向上に寄与する。
The vacuum line is typically constructed using steel pipes and threaded joints such as nipples, unions, elbows, etc., and it is necessary to use tools when disassembling these components. .
Unlike a typical vacuum line, the cleaning section 151 of this embodiment can be easily disassembled into a plurality of pipes 153 by hand using the gripping portion 161, and each pipe 153 can be cleaned. Therefore, it contributes to the improvement of the work efficiency of cleaning the molten metal debris S attached to the inner wall of the pipe 153.
 以上より、真空用配管構造150は、
(1)複数の直管部153Aと、複数の曲管部153Bとを含む清掃区間151と、
(2)捕集部152(溶湯カス用ボックス)と、を備えている。
 吸引口14(または15~17)と捕集部152は、直管部153Aと、曲管部153Bとを組み合わせてなる湾曲した清掃区間151によって接続されている。
From the above, the vacuum piping structure 150 is
(1) A cleaning section 151 including a plurality of straight pipe portions 153A and a plurality of curved pipe portions 153B;
(2) The collection part 152 (box for molten metal waste) is provided.
The suction port 14 (or 15 to 17) and the collecting portion 152 are connected by a curved cleaning section 151 formed by combining the straight tube portion 153A and the curved tube portion 153B.
 配管153(直管部153Aおよび曲管部153B)は、ベローズ管(蛇腹管)等とは異なり柔軟性・屈曲性を有しておらず、金属等の適宜な材料から所定の形状に成形されている。また、ベローズ管(蛇腹管)が、山部と谷部とが長手方向に交互に形成された形状から、内周部に波形の凹凸形状を呈するのに対し、本実施形態の配管153は、液相や半凝固状態の溶湯カスS等の付着、滞留を抑えるため、平滑な内周面を有していることが好ましい。
 なお、液相や半凝固状態の溶湯カスS等が配管153に侵入しない場合には、配管153にベローズ管等を用いることも許容される。
The pipe 153 (straight pipe portion 153A and curved pipe portion 153B) is not flexible and flexible unlike a bellows pipe (bellows pipe) and is formed into a predetermined shape from an appropriate material such as metal. ing. In addition, the bellows tube (bellows tube) has a corrugated uneven shape on the inner peripheral portion from a shape in which peaks and valleys are alternately formed in the longitudinal direction, whereas the pipe 153 of this embodiment is In order to suppress adhesion and retention of the liquid phase or the semi-solidified molten material S, it is preferable to have a smooth inner peripheral surface.
In the case where liquid phase or semi-solid state molten metal S or the like does not enter the pipe 153, it is also acceptable to use a bellows pipe or the like for the pipe 153.
 連結用部材160を取り付け可能で、真空吸引に使用することが可能である限り、配管153として適宜な管を採用することができる。
 例えば、直管部153Aとして、日本工業規格JIS G 3452の配管用炭素鋼鋼管を使用することができる。例えば、曲管部153Bとして、NW/KF規格の90°エルボを使用することができる。
As long as the connecting member 160 can be attached and can be used for vacuum suction, an appropriate pipe can be adopted as the pipe 153.
For example, as the straight pipe portion 153A, a carbon steel pipe for piping according to Japanese Industrial Standard JIS G 3452 can be used. For example, an NW / KF standard 90 ° elbow can be used as the curved pipe portion 153B.
 清掃区間151は、図21に示す例では、吸引口14(または15~17)から上方に延び、水平に延びる部分を経て、下方に向けて湾曲している。吸引口14から上方に延びる部分、水平に延びる部分、および下方に延びる部分にはそれぞれ、1つ以上の直管部153Aを使用することができる。
 上方に延びる部分に使用された直管部153Aと、水平に延びる部分に使用された直管部153Aとは、曲管部153Bにより接続される。水平に延びる部分に使用された直管部153Aと上方に延びる部分に使用された直管部153Aとは、他の曲管部153Bにより接続される。
In the example shown in FIG. 21, the cleaning section 151 extends upward from the suction port 14 (or 15 to 17), and is curved downward through a horizontally extending portion. One or more straight pipe portions 153A can be used for a portion extending upward from the suction port 14, a portion extending horizontally, and a portion extending downward.
The straight pipe portion 153A used for the portion extending upward and the straight pipe portion 153A used for the portion extending horizontally are connected by a curved pipe portion 153B. The straight pipe portion 153A used for the horizontally extending portion and the straight pipe portion 153A used for the upward extending portion are connected by another curved pipe portion 153B.
 なお、清掃区間151は、図示した逆U字形状よりも複雑な形状に湾曲していてもよい。例えば、清掃区間151が、図26に示す曲管部156を含んで構成されていてもよい。曲管部156は、第1端部156Aと、屈曲部156Bと、第2端部156Cとを備えており、第1端部156Aと第2端部156Cとは、逆向きに開口している。第1端部156Aの開口の軸心X1と、第2端部156Cの開口の軸心X2とは、互いに平行であり、開口の軸方向に対して直交する方向に離間している。
 複数の配管から清掃区間151を組み立てる際に、軸心X1,X2の周りに曲管部156と他の配管とを相対回転させることで配管の製造誤差を吸収可能であることにより、清掃区間151の組み立てが容易である。
The cleaning section 151 may be curved into a more complicated shape than the illustrated inverted U shape. For example, the cleaning section 151 may be configured to include a curved pipe portion 156 shown in FIG. The curved pipe portion 156 includes a first end portion 156A, a bent portion 156B, and a second end portion 156C, and the first end portion 156A and the second end portion 156C open in opposite directions. . The axial center X1 of the opening of the first end 156A and the axial center X2 of the opening of the second end 156C are parallel to each other and are separated in a direction perpendicular to the axial direction of the opening.
When assembling the cleaning section 151 from a plurality of pipes, it is possible to absorb the manufacturing error of the pipe by rotating the curved pipe portion 156 and other pipes around the shaft centers X1 and X2, thereby cleaning the cleaning section 151. Is easy to assemble.
 捕集部152は、吸引される気体から慣性力および遠心力により分離された溶湯カスS等を捕集する。
 この捕集部152と、捕集部152を介して連通する配管153および配管154とにより、溶湯カスS等を気体から分離して捕集する。
The collection part 152 collects the molten metal debris S separated from the sucked gas by inertial force and centrifugal force.
With this collection part 152 and the piping 153 and the piping 154 communicating via the collection part 152, the molten metal waste S etc. are separated and collected from gas.
 捕集部152は、配管153と配管154とを接続し、かつ、溶湯カスS等を内部に貯留する。
 捕集部152には、清掃区間151の終端をなす配管153(直管部153Aまたは曲管部153B)が接続されるとともに、溶湯カスS等が分離された気体が流入する配管154が接続されている。捕集部152と配管154とは、図21に示す例では、一体に形成されている。
The collection part 152 connects the piping 153 and the piping 154, and stores the molten metal residue S etc. inside.
A pipe 153 (straight pipe part 153A or curved pipe part 153B) that terminates the cleaning section 151 is connected to the collection part 152, and a pipe 154 into which a gas from which the molten metal debris S or the like is separated flows is connected. ing. In the example shown in FIG. 21, the collection part 152 and the piping 154 are integrally formed.
 直管部153Aの下端から捕集部152の内部へと下方に向けて流出した気体は、捕集部152の内部で配管154に向けて転向し、捕集部152の内壁に開口した図示しない流入口から配管154に流入する。直管部153Aから流出した気体が捕集部152の内部を流れる過程で、気体よりも重量、密度が大きい溶湯カスS等が、慣性力および遠心力により気体から分離され、捕集部152の内壁により捕集されて内部に溜まる。 The gas flowing downward from the lower end of the straight pipe portion 153A toward the inside of the collecting portion 152 is turned toward the pipe 154 inside the collecting portion 152 and is opened in the inner wall of the collecting portion 152 (not shown). It flows into the pipe 154 from the inflow port. In the process in which the gas flowing out from the straight pipe portion 153A flows inside the collecting portion 152, the molten metal S having a larger weight and density than the gas is separated from the gas by the inertial force and the centrifugal force. It is collected by the inner wall and collected inside.
 捕集部152、直管部153Aおよび配管154からなる捕集構造に代えて、第3実施形態の捕集構造130や、第4実施形態の捕集構造140を採用することができる。直管部153Aが上述した第1区間131に相当し、配管154が上述した第2区間132に相当する。
 その他、捕集部152、直管部153Aおよび配管154からなる捕集構造に代えて、気体から溶湯カスS等を分離して捕集可能な公知の構造を採用することもできる。
It can replace with the collection structure which consists of the collection part 152, the straight pipe part 153A, and the piping 154, and the collection structure 130 of 3rd Embodiment and the collection structure 140 of 4th Embodiment are employable. The straight pipe portion 153A corresponds to the first section 131 described above, and the pipe 154 corresponds to the second section 132 described above.
In addition, instead of the collection structure composed of the collection section 152, the straight pipe section 153A, and the pipe 154, a known structure that can separate and collect the molten scum S from the gas can be employed.
 次に、図22~図24を参照し、連結用部材160(真空配管用部品)について説明する。連結用部材160は、吸引口14(または15~17)と配管153の接続、配管153同士の接続、および配管153と捕集部152とのフランジによる接続を可能にする管継手の役割を果たす。 Next, the connecting member 160 (part for vacuum piping) will be described with reference to FIGS. The connecting member 160 serves as a pipe joint that enables connection between the suction port 14 (or 15 to 17) and the pipe 153, connection between the pipes 153, and connection between the pipe 153 and the collecting portion 152 by a flange. .
 図22は、連結用部材160の構成を示す要部拡大断面図であり、図21のXXII-XXII断面図である。
 連結用部材160は、配管153の隣り合うフランジ153F,153Fの間に配置されるセンターリング162と、センターリング162を介してフランジ同士を突き当てた状態に拘束するクランプ163とを備えている。
22 is an enlarged cross-sectional view of a main part showing the configuration of the connecting member 160, and is a cross-sectional view taken along the line XXII-XXII in FIG.
The connecting member 160 includes a center ring 162 disposed between adjacent flanges 153F and 153F of the pipe 153, and a clamp 163 that restrains the flanges against each other via the center ring 162.
 クランプ163は、図22および図23に示すように、フランジ153F,153Fの周りに配置される2以上のクランプ本体163A,163Bと、クランプ本体163A,163Bをフランジ153F,153Fに対して締め付けたり緩めたりが可能な把持部161とを含んでいる。 As shown in FIGS. 22 and 23, the clamp 163 includes two or more clamp bodies 163A and 163B arranged around the flanges 153F and 153F, and tightens or loosens the clamp bodies 163A and 163B with respect to the flanges 153F and 153F. And a gripping portion 161 that can be attached.
 図22に示すように、センターリング162は、配管153のフランジ153Fと他の配管153のフランジ153Fとの間に挟まれて、フランジ153F,153F間の隙間から配管153の内部に外気が侵入することを防止するためのシールの役割を担い、中空円柱状(円環状)に形成されている。 As shown in FIG. 22, the center ring 162 is sandwiched between the flange 153F of the pipe 153 and the flange 153F of the other pipe 153, and outside air enters the inside of the pipe 153 from the gap between the flanges 153F and 153F. It plays the role of a seal to prevent this, and is formed in a hollow cylindrical shape (annular shape).
 図22に示す例に基づいて説明すると、センターリング162は、フランジ153F,153F間を封止するOリング162Aと、Oリング162Aを内周側から支持する金属環162Bとを備えている。このセンターリング162は、溶湯カスS等の通過を抑制するためのメッシュ162Cを備えていることが好ましい。
 図22に示しているセンターリング162は、NW/KF規格のメッシュ付センターリングであるが、これ以外にも、フランジ153F,153F間から配管153の内部に外気が侵入することを防止することが可能な適宜なシール部材を採用することができる。
Referring to the example shown in FIG. 22, the center ring 162 includes an O-ring 162A that seals between the flanges 153F and 153F, and a metal ring 162B that supports the O-ring 162A from the inner peripheral side. The center ring 162 preferably includes a mesh 162C for suppressing the passage of the molten metal residue S or the like.
The center ring 162 shown in FIG. 22 is a center ring with a mesh of NW / KF standard, but besides this, it is possible to prevent outside air from entering the inside of the pipe 153 between the flanges 153F and 153F. Any suitable seal member that is possible can be employed.
 フランジ153Fは、配管153の端部に、配管153の径方向外側に突出して中空円柱状に形成されている。フランジ153Fは、相手のフランジ153Fに対向する対向面F1と、テーパ背面F2とを有している。
 対向面F1は、配管153の軸線A1に対して直交している。
 テーパ背面F2は、配管153の径方向における外端が内端と比べて相手のフランジ153Fに近接する向きに、軸線A1に対して傾斜している。テーパ背面F2は、クランプ163の傾斜したテーパ内壁164Aと接触する。
The flange 153 </ b> F protrudes outward in the radial direction of the pipe 153 at the end of the pipe 153 and is formed in a hollow cylindrical shape. The flange 153F has an opposing surface F1 that faces the counterpart flange 153F and a tapered back surface F2.
The facing surface F1 is orthogonal to the axis A1 of the pipe 153.
The taper back surface F2 is inclined with respect to the axis A1 so that the outer end in the radial direction of the pipe 153 is closer to the other flange 153F than the inner end. The tapered back surface F <b> 2 is in contact with the inclined tapered inner wall 164 </ b> A of the clamp 163.
 吸引口14(または15~17)の気流の出口、および捕集部152の気流の入口にもそれぞれフランジ(図示しない)が形成されている。それらのフランジも、図22に示すフランジ153Fと同様に形成することができる。 Flange (not shown) is also formed at the airflow outlet of the suction port 14 (or 15 to 17) and the airflow inlet of the collecting unit 152, respectively. These flanges can also be formed in the same manner as the flange 153F shown in FIG.
 図22に示しているフランジ153F,153FはいずれもNW/KF規格、ISO 2861 ”Vacuum Technology - Dimensions of clamped-type quick-release couplings”のフランジであり、同様の形状が与えられている。但し、フランジ153F,153Fによりフランジ式管継手の構造が成立する限り、フランジ153F,153Fは、適宜な形状であってよく、互いに異なる形状であってもよい。
 図22に示しているフランジ153Fは、配管153の本体に溶接により接続されている。この溶接作業は必ずしも必要ではなく、配管153にフランジ153Fを設けた状態で市販されているフランジ付きの配管を用いることもできる。
Each of the flanges 153F and 153F shown in FIG. 22 is a flange of NW / KF standard, ISO 2861 “Vacuum Technology—Dimensions of clamped-type quick-release couplings”, and has the same shape. However, as long as the flange-type pipe joint structure is established by the flanges 153F and 153F, the flanges 153F and 153F may have an appropriate shape or may have different shapes.
The flange 153F shown in FIG. 22 is connected to the main body of the pipe 153 by welding. This welding operation is not necessarily required, and a flanged pipe that is commercially available with the flange 153F provided on the pipe 153 can also be used.
 クランプ163は、センターリング162を間に挟んだフランジ153F,153Fを締め付けて固定する。
 図22~図24に示す例に基づくと、クランプ163は、
(1)第1クランプ本体163Aと、
(2)第2クランプ本体163Bと、
(3)蝶番機構165(ヒンジ機構)と、
(4)把持部161を含む締結機構166と、を備えている。
 上記に加え、クランプ163が、図示しないラチェット機構を備えていてもよい。
The clamp 163 fastens and fixes the flanges 153F and 153F sandwiching the center ring 162 therebetween.
Based on the example shown in FIGS. 22-24, the clamp 163 is:
(1) a first clamp body 163A;
(2) a second clamp body 163B;
(3) a hinge mechanism 165 (hinge mechanism);
(4) a fastening mechanism 166 including a gripping portion 161.
In addition to the above, the clamp 163 may include a ratchet mechanism (not shown).
 図23は、閉状態のクランプ163を示す図であり、図24は、開状態のクランプ163を示す図である。
 第1クランプ本体163Aと第2クランプ本体163Bは、平面視においてC字状(円弧状)に形成され、配管153等のフランジ153F(図23には不図示)を囲むように配置される。
FIG. 23 is a diagram illustrating the clamp 163 in the closed state, and FIG. 24 is a diagram illustrating the clamp 163 in the open state.
The first clamp body 163A and the second clamp body 163B are formed in a C shape (arc shape) in a plan view, and are disposed so as to surround a flange 153F (not shown in FIG. 23) such as the pipe 153.
 図22に示すように、第1クランプ本体163Aおよび第2クランプ本体163Bにはそれぞれ、センターリング162を介して突き当てられたフランジ153F,153Fを受け入れる環状の溝164が形成されている。溝164の内側には、フランジ153F,153Fのそれぞれのテーパ背面F2と対応するテーパ内壁164Aが形成されている。 As shown in FIG. 22, each of the first clamp main body 163A and the second clamp main body 163B is formed with an annular groove 164 that receives the flanges 153F and 153F abutted through the center ring 162. Inside the groove 164, tapered inner walls 164A corresponding to the respective taper back surfaces F2 of the flanges 153F and 153F are formed.
 図23および図24に示すように、蝶番機構165により、第1クランプ本体163Aの一端部と、第2クランプ本体163Bの一端部とが結合されている。
 なお、第1クランプ本体163Aおよび第2クランプ本体163Bのそれぞれの他端部(締結端部)には、締結機構166が設けられる。
As shown in FIGS. 23 and 24, the hinge mechanism 165 couples one end of the first clamp body 163A and one end of the second clamp body 163B.
A fastening mechanism 166 is provided at the other end (fastening end) of each of the first clamp body 163A and the second clamp body 163B.
 蝶番機構165は、配管153の軸方向に沿って配置される第1ピン165Aおよび第2ピン165Bを備えている。第1クランプ本体163Aは、第1ピン165Aの周りに回転可能であり、第2クランプ本体163Bは、第2ピン165Bの周りに回転可能である。そのため、クランプは、図24に示すように第1クランプ本体163Aの締結端部と第2クランプ本体163Bの締結端部との間が開いた開状態と、これらの締結端部の間が閉じた閉状態(図23)とを呈する。 The hinge mechanism 165 includes a first pin 165A and a second pin 165B arranged along the axial direction of the pipe 153. The first clamp body 163A can rotate around the first pin 165A, and the second clamp body 163B can rotate around the second pin 165B. Therefore, as shown in FIG. 24, the clamp is opened between the fastening end of the first clamp body 163A and the fastening end of the second clamp body 163B, and closed between these fastening ends. It exhibits a closed state (FIG. 23).
 連結用部材160により配管153,153を連結する際には、図24に示すように、蝶番機構165により第1クランプ本体163Aの締結部と第2クランプ本体163Bの締結部との間を開き、図22に示すように溝164にフランジ153F,153Fを挿入する。次いで、図23に示すように、締結機構166により第1クランプ本体163Aと第2クランプ本体163Bとを締結することで、フランジ153F,153Fを拘束する。 When connecting the pipes 153 and 153 by the connecting member 160, as shown in FIG. 24, the hinge mechanism 165 opens between the fastening portion of the first clamp body 163A and the fastening portion of the second clamp body 163B, As shown in FIG. 22, the flanges 153 </ b> F and 153 </ b> F are inserted into the groove 164. Next, as shown in FIG. 23, the flanges 153F and 153F are restrained by fastening the first clamp body 163A and the second clamp body 163B by the fastening mechanism 166.
 締結機構166は、図22~図24に示すように、第1クランプ本体163Aの締結端部と第2クランプ本体163Bの締結端部とを連結する軸部166Aと、軸部166Aに係合する蝶ナット166Cと、ワッシャ166Eとを備えている。
 軸部166Aの先端部は、当該先端部を第1クランプ本体163Aの軸方向に貫通するピン166Dにより、溝164の底に対応する壁164Bよりも外周側に保持されている。第1クランプ本体163Aには、ピン166Dが挿入される貫通孔が形成されている。第2クランプ本体163Bにも、第1クランプ本体163Aの貫通孔と同様の位置に貫通孔が形成されていてもよいが、第2クランプ本体163Bの貫通孔にはピンが挿入されない。
 蝶ナット166Cにおいて、雌ねじ部から径方向外側に突出した部分が、クランプ163をフランジ153F,153Fに着脱する際に把持される把持部161に相当する。
As shown in FIGS. 22 to 24, the fastening mechanism 166 engages with the shaft portion 166A and the shaft portion 166A that connects the fastening end portion of the first clamp body 163A and the fastening end portion of the second clamp body 163B. A wing nut 166C and a washer 166E are provided.
The distal end portion of the shaft portion 166A is held on the outer peripheral side from the wall 164B corresponding to the bottom of the groove 164 by a pin 166D penetrating the distal end portion in the axial direction of the first clamp body 163A. A through hole into which the pin 166D is inserted is formed in the first clamp body 163A. A through hole may be formed in the second clamp body 163B at the same position as the through hole of the first clamp body 163A, but no pin is inserted into the through hole of the second clamp body 163B.
In the wing nut 166C, a portion protruding radially outward from the female screw portion corresponds to the grip portion 161 that is gripped when the clamp 163 is attached to and detached from the flanges 153F and 153F.
 なお、把持部161は、必ずしも蝶ナット166Cの一部である必要はない。把持部161は、把持して連結用部材160をフランジ153F,153Fに着脱させる作業が可能である限り、適宜に構成することができる。例えば、把持部161は、軸部166Aに係合するナットに、ナットの軸線方向に対して直交する向きに設けられたノブであってもよい。 Note that the gripping portion 161 is not necessarily a part of the wing nut 166C. The gripping portion 161 can be appropriately configured as long as it can grip and detach the connecting member 160 from the flanges 153F and 153F. For example, the gripping portion 161 may be a knob provided on a nut that engages with the shaft portion 166A in a direction orthogonal to the axial direction of the nut.
 第1クランプ本体163Aおよび第2クランプ本体163Bによりフランジ153F,153Fを囲み、把持部161を用いて手動にて軸部166Aの雄ねじ部に対して蝶ナット166Cを締め付けると、第1クランプ本体163Aと第2クランプ本体163Bとがそれぞれピン165A,165Bを中心にして回転し、第1クランプ本体163Aと第2クランプ本体163Bとの距離が縮まる。そのため、クランプ163全体として径方向外側から径方向内側に変位してクランプ163の径が縮小することで、テーパ内壁164Aがフランジ153Fのテーパ背面F2に押し付けられる。すると、両テーパ面164A,F2のくさび効果により、フランジ153F,153Fを配管153の軸方向に互いに引き寄せる向きの力が発生するので、フランジ153F,153Fの間にOリング162Aを押圧して弾性変形させながら、フランジ153F,153Fが拘束される。 When the flanges 153F and 153F are surrounded by the first clamp body 163A and the second clamp body 163B and the wing nut 166C is manually tightened with respect to the male thread portion of the shaft portion 166A using the grip portion 161, the first clamp body 163A and The second clamp body 163B rotates around the pins 165A and 165B, respectively, and the distance between the first clamp body 163A and the second clamp body 163B is reduced. Therefore, as the entire clamp 163 is displaced from the radially outer side to the radially inner side and the diameter of the clamp 163 is reduced, the tapered inner wall 164A is pressed against the tapered back surface F2 of the flange 153F. Then, due to the wedge effect of both tapered surfaces 164A, F2, a force is generated in a direction that pulls the flanges 153F, 153F toward each other in the axial direction of the pipe 153. While doing so, the flanges 153F and 153F are restrained.
 そうすると、フランジ153F,153F間が気密に封止されるため、スリーブ11内から吸引経路51を通じて真空吸引することができる。吸引される気体に混入した溶湯カスS等は、気体から分離されて捕集部152により捕集されるので、吸引効率の低下や管路の閉塞を抑えながら、ダイカストマシンの操業を安定して行うことができる。 Then, since the gap between the flanges 153F and 153F is hermetically sealed, vacuum suction can be performed from the sleeve 11 through the suction path 51. Since the molten scum S or the like mixed in the sucked gas is separated from the gas and collected by the collecting unit 152, the operation of the die casting machine can be stably performed while suppressing the lowering of the suction efficiency and the blockage of the pipe line. It can be carried out.
 清掃区間151を清掃する際には、把持部161を用いて手動にて蝶ナット166Cを回すことにより、図24に示すように、第1クランプ本体163Aおよび第2クランプ本体163Bをフランジ153F,153Fに対して緩め、第1クランプ本体163Aおよび第2クランプ本体163Bをフランジ153F,153Fから取り外すことができる。
 そうすると、連結用部材160による配管153等のフランジ153F,153Fの連結が解除されるため、清掃区間151を複数の配管153等に分解して適宜な方法で清掃することができる。
 例えば、エアを吹き付けることにより配管153の内周部から溶湯カスS等を吹き飛ばして除去したり、棒状の部材を配管153の内部に挿入し、棒状の部材により溶湯カスS等を配管153の内周部から剥ぎ取ったりすることができる。配管153の滑らかな内壁は、ベローズ配管の凹凸のある内壁と比べ、付着した溶湯カスS等の除去が容易である。
 なお、溶湯カスSの除去が困難な場合には、配管153を予備の配管153に交換してもよい。
When cleaning the cleaning section 151, the first clamp body 163A and the second clamp body 163B are flanged 153F, 153F by manually turning the wing nut 166C using the gripping portion 161, as shown in FIG. The first clamp body 163A and the second clamp body 163B can be detached from the flanges 153F and 153F.
Then, since the connection of the flanges 153F and 153F such as the pipe 153 by the connecting member 160 is released, the cleaning section 151 can be disassembled into a plurality of pipes 153 and cleaned by an appropriate method.
For example, the molten metal debris S is blown off from the inner periphery of the pipe 153 by blowing air, or a rod-shaped member is inserted into the pipe 153, and the molten debris S or the like is inserted into the pipe 153 by the rod-shaped member. It can be peeled off from the periphery. The smooth inner wall of the pipe 153 is easier to remove the adhering molten scum S and the like than the inner wall having the unevenness of the bellows pipe.
If it is difficult to remove the molten metal residue S, the pipe 153 may be replaced with a spare pipe 153.
 以上で説明した第5実施形態によれば、工具を使用することなく、連結用部材160の把持部161を用いて手作業により配管153を連結したり連結を解除したりすることができるので、清掃する際の清掃区間151の分解、および清掃後の配管153の組み付けを短時間で行うことができる。 According to the fifth embodiment described above, the pipe 153 can be manually connected or released using the gripping portion 161 of the connecting member 160 without using a tool. Disassembly of the cleaning section 151 at the time of cleaning and assembly of the pipe 153 after cleaning can be performed in a short time.
 図22~図24に示しているクランプ163は、NW/KF規格のフランジ同士を締め付けて固定する真空配管用クランプであるが、これはあくまで一例である。配管153の外部に露出し、手作業にてフランジに対してクランプ本体を締め付けたり緩めたりすることの可能な把持部を有し、その把持部によりフランジに着脱可能であるである限り、クランプ163に代えて適宜な構成のクランプを採用することができる。
 例えば、フランジ153F,153Fを受け入れる溝が形成された複数(例えば4つ)のリンク(クランプ本体)が連結されてなるチェーンと、チェーンの両端部をスクリューにより締め込むノブ(把持部)とを含むチェーン式のクランプを採用可能である。ノブを把持してスクリューの軸周りに回転させ、チェーンの径を縮めると、チェーンの内側にフランジ153F,153Fが拘束される。
The clamp 163 shown in FIGS. 22 to 24 is a vacuum pipe clamp that fastens and fixes NW / KF standard flanges, but this is only an example. As long as it has a gripping part that is exposed to the outside of the pipe 153 and can be manually tightened or loosened with respect to the flange, and can be attached to and detached from the flange by the gripping part, the clamp 163 Instead of this, a clamp having an appropriate configuration can be employed.
For example, it includes a chain formed by connecting a plurality of (for example, four) links (clamp bodies) in which grooves for receiving the flanges 153F and 153F are formed, and knobs (gripping portions) for tightening both ends of the chain with screws. Chain type clamps can be used. When the knob is gripped and rotated around the axis of the screw to reduce the diameter of the chain, the flanges 153F and 153F are restrained inside the chain.
〔第5実施形態の変形例〕
 図25に示す清掃区間155のように、吸引口14(または15~17)から上方に延び、捕集部152に向けて水平方向に向けて湾曲していてもよい。清掃区間155の水平な部分155Hに捕集部152が接続されている。
 また、図示を省略するが、清掃区間が、上述の清掃区間151(図21)と同様に逆U字状に湾曲した部分と、当該部分から連なり、水平方向に延びる部分とを備えていてもよい。その場合も、水平方向の延びる部分に捕集部152を接続することができる。
[Modification of Fifth Embodiment]
Like the cleaning section 155 shown in FIG. 25, the cleaning section 155 may extend upward from the suction port 14 (or 15 to 17) and bend toward the collecting portion 152 in the horizontal direction. A collecting portion 152 is connected to a horizontal portion 155H of the cleaning section 155.
Moreover, although illustration is abbreviate | omitted, even if the cleaning area is provided with the part curved in the reverse U shape similarly to the above-mentioned cleaning area 151 (FIG. 21), and the part extended from the said part and extended in a horizontal direction. Good. Also in that case, the collection part 152 can be connected to the part extended in a horizontal direction.
〔第6実施形態〕
 図27を参照し、金型21,22に形成されたキャビティ吸引口(連結口28)を通じてキャビティ23から気体が吸引される吸引経路52に係る構造を説明する。
 吸引経路52は、スリーブ11の吸引口14~17に接続される上述の吸引経路51(図2)と同様に、真空タンクや真空ポンプを含んで構成されている。
 かかる吸引経路52が、上述した第3~第4実施形態の捕集構造130,140や、第5実施形態の真空用配管構造150および連結用部材160を備えていてもよい。
[Sixth Embodiment]
With reference to FIG. 27, a structure relating to a suction path 52 through which gas is sucked from the cavity 23 through a cavity suction port (connection port 28) formed in the molds 21 and 22 will be described.
The suction path 52 includes a vacuum tank and a vacuum pump, like the above-described suction path 51 (FIG. 2) connected to the suction ports 14 to 17 of the sleeve 11.
The suction path 52 may include the collection structures 130 and 140 of the third to fourth embodiments described above, the vacuum piping structure 150 and the connection member 160 of the fifth embodiment.
 図27に示す例では、金型21,22の連結口28を通じてキャビティ23から気体が吸引される吸引経路52の途上に捕集構造130が設けられている。吸引経路52は、連結口28の近傍から捕集部134の近傍までに亘り、清掃区間151を備えている。 In the example shown in FIG. 27, a collection structure 130 is provided in the middle of a suction path 52 through which gas is sucked from the cavity 23 through the connection port 28 of the molds 21 and 22. The suction path 52 includes a cleaning section 151 that extends from the vicinity of the connection port 28 to the vicinity of the collection unit 134.
 第6実施形態によれば、キャビティ23から連結口28を通じて吸引経路52へと吸引される気体に混入した溶湯カスS等を捕集構造130により気体から分離して捕集部134の内部に捕集することができる。
 また、把持部161(図23および図24)を有した連結用部材160により清掃区間151を複数の配管153に容易に分解し、各配管153と捕集部134等に付着した溶湯カスS等を清掃することができる。
According to the sixth embodiment, the molten metal debris S mixed in the gas sucked into the suction path 52 from the cavity 23 through the connection port 28 is separated from the gas by the collection structure 130 and captured in the collection unit 134. Can be collected.
Further, the cleaning section 151 is easily disassembled into a plurality of pipes 153 by the connecting member 160 having the gripping parts 161 (FIGS. 23 and 24), and the molten metal S or the like adhering to each of the pipes 153, the collecting part 134, etc. Can be cleaned.
 上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。 In addition to the above, the configurations described in the above embodiments can be selected or changed to other configurations as appropriate without departing from the gist of the present invention.
100  ダイカストマシン
1,6,6A   射出装置
2    真空吸引系統
3    制御装置
4    可動盤
5    固定盤
7    タイバー
8    マシンベース
9    加圧空気供給系統
10   孔
11   スリーブ
11A  内周部
11B  後端部
11C  テーパ面
11D  シール剤配管用孔
12   プランジャ
13   注湯口
14~17   吸引口
18   溶湯
18A  湯面
19   プランジャロッド
20   プランジャチップ
20A  前端
20B  後端
20C  外周部
20D  チップジョイント
21   固定金型
22   可動金型
23   キャビティ
24   ランナー
25   ゲート
27   チルベント
28   連結口(キャビティ吸引口)
31   真空フィルタ
32   圧力検出部
33   選択バルブ
34   合流・分配部
35   真空/エアブロウ切換弁
36   真空タンク
37   真空ポンプ
38   加圧タンク
39   圧縮空気源
41   押出板
42   押出ピン
43   ラドル
51   吸引経路
51A  領域
55,56   配管
60   シール剤供給装置
61   シール剤
62   容器
70   摺動シール
70A  内周部
70B  外周部
71   不連続部
72   シール保持部材
72A  外周部
75   前方空間
79   シール部材
79A  外端
80   不連続部
80B  境界
81   第1摺動シール
82   第2摺動シール
88   空間
89,90   隙間
120  吸引用凹部
130  捕集構造
130F 流路
131  第1区間
131A 流出口
131B 側壁
131C 外周部
131D,131E 筒体
131F フランジ
132  第2区間
132A 流入口
133  区間接続部
133A 内壁
133B 上端部
133F フランジ(逆流防止部)
133G フランジ
134  捕集部
134A 配管
134B 蓋部材
134F フランジ
135  センターリング
135A Oリング
135B 金属環
136  クランプ
137  センターリング
138  クランプ
139  配管
140  捕集構造
141  ボールバルブ
141A ボール
141B ハウジング
141C 軸
142  溶湯カス受け
143  アクチュエーター
144  捕集部
144A 取出口
144B 側壁
150  真空用配管構造
151  清掃区間
152  捕集部
153  配管
153A 直管部
153B 曲管部
153F フランジ
154  配管
155  清掃区間
156  曲管部
156A 第1端部
156B 屈曲部
156C 第2端部
160  連結用部材
161  把持部
162  センターリング
162A Oリング
162B 金属環
162C メッシュ
163  クランプ
163A,163B   クランプ本体
163B クランプ本体
164  溝
164A テーパ内壁
164B 壁
165  蝶番機構
165A,165B   ピン
166  締結機構
166A 軸部
166C 蝶ナット
166D ピン
166E ワッシャ
201  第1大径部
202  第2大径部
202A 部位
202B 外周面
202C シール保持溝
203  小径部
203A 外周部
203B 二面幅
631  第1配管
631A 出口
632  第2配管
632A 出口
701  一端部
701A 前側凸部
701B 端面
702  他端部
702A 後側凸部
702B 端面
711  第1空隙
712  第2空隙
713  第3空隙
715,716   分割部
717  凹部
718  凸部
791  シール部材
A    回路
A1   軸線
D1   進退方向
D2   径方向
D3   周方向
D4   延出方向
F1   対向面
F2   テーパ背面
Gp   隙間
H1,H2   高さ
P0,P1,P2   圧力
Ps1,Ps2 位置
R1   投影範囲
S    溶湯カス
X1,X2   軸心
100 Die-casting machine 1, 6, 6A Injection device 2 Vacuum suction system 3 Control device 4 Movable platen 5 Fixed platen 7 Tie bar 8 Machine base 9 Pressurized air supply system 10 Hole 11 Sleeve 11A Inner peripheral part 11B Rear end part 11C Tapered surface 11D Hole for sealant pipe 12 Plunger 13 Pouring port 14-17 Suction port 18 Molten metal 18A Molten surface 19 Plunger rod 20 Plunger tip 20A Front end 20B Rear end 20C Tip portion 21D Tip joint 21 Fixed mold 22 Movable mold 23 Cavity 24 Runner 25 Gate 27 Chill vent 28 Connection port (cavity suction port)
31 Vacuum filter 32 Pressure detection unit 33 Selection valve 34 Merge / distribution unit 35 Vacuum / air blow switching valve 36 Vacuum tank 37 Vacuum pump 38 Pressure tank 39 Compressed air source 41 Extrusion plate 42 Extrusion pin 43 Ladle 51 Suction path 51A Region 55, 56 Piping 60 Sealing agent supply device 61 Sealing agent 62 Container 70 Sliding seal 70A Inner peripheral part 70B Outer peripheral part 71 Discontinuous part 72 Seal holding member 72A Outer peripheral part 75 Front space 79 Sealing member 79A Outer end 80 Discontinuous part 80B Boundary 81 First sliding seal 82 Second sliding seal 88 Space 89, 90 Clearance 120 Suction recess 130 Collection structure 130F Flow path 131 First section 131A Outlet 131B Side wall 131C Outer peripheral part 131D, 131E Cylindrical body 131F Flange 132 Second section 32A inlet 133 segment connecting portion 133A inside wall 133B upper portion 133F flange (backflow prevention unit)
133G Flange 134 Collection part 134A Piping 134B Lid member 134F Flange 135 Center ring 135A O-ring 135B Metal ring 136 Clamp 137 Center ring 138 Clamp 139 Piping 140 Collection structure 141 Ball valve 141A Ball 141B Housing 141C Shaft 142 Molten waste receiver 143 Actuator 144 Collection part 144A Outlet 144B Side wall 150 Vacuum piping structure 151 Cleaning section 152 Collection section 153 Pipe 153A Straight pipe section 153B Curved pipe section 153F Flange 154 Pipe 155 Cleaning section 156 Curved pipe section 156A First end section 156B Bending section 156C Second end 160 Connecting member 161 Grasping part 162 Center ring 162A O-ring 162B Metal ring 162C Mesh 163 Clamp 16 3A, 163B Clamp body 163B Clamp body 164 Groove 164A Tapered inner wall 164B Wall 165 Hinge mechanism 165A, 165B Pin 166 Fastening mechanism 166A Shaft 166C Wing nut 166D Pin 166E Washer 201 First large diameter portion 202 Second large diameter portion 202A Region 202B Outer peripheral surface 202C Seal holding groove 203 Small diameter portion 203A Outer peripheral portion 203B Two-sided width 631 First piping 631A Outlet 632 Second piping 632A Outlet 701 One end 701A Front convex portion 701B End surface 702 Other end portion 702A Rear convex portion 702B End surface 711 First 1 gap 712 2nd gap 713 3rd gap 715,716 Dividing part 717 Concave part 718 Convex part 791 Seal member A Circuit A1 Axis line D1 Advancing and retracting direction D2 Radial direction D3 Circumferential direction D4 Extending direction F1 Opposing surface F2 Te Pas rear Gp gaps H1, H2 height P0, P1, P2 pressure Ps1, Ps2 position R1 projection range S molten slag X1, X2 axis

Claims (21)

  1.  溶湯が内側に供給されるスリーブと、前記スリーブの内側で進退可能なプランジャと、を備え、前記プランジャによりダイカストマシンのキャビティに向けて前記溶湯を射出する射出装置であって、
     前記プランジャのチップには、前記スリーブの内周部に対して径方向の内側に退避し、周方向に連続する吸引用凹部が区画され、
     前記チップの前端よりも前方の空間と、前記吸引用凹部の内側とを吸引可能に構成され、
     前記スリーブには、前記スリーブを内側と外側とに亘り貫通し、前記スリーブの内側を吸引可能な2以上の吸引口が前記プランジャの進退方向に並んで形成され、
     前記スリーブに対して前進する前記プランジャの位置に応じて、前記2以上の吸引口のうちから選択的に少なくとも1つが前記前方の空間と連通し、前記2以上の吸引口のうちから選択的に少なくとも1つが前記吸引用凹部の内側と連通する、
    ことを特徴とするダイカストマシンの射出装置。
    An injection device comprising: a sleeve to which molten metal is supplied inside; and a plunger capable of moving forward and backward inside the sleeve, and injecting the molten metal toward a cavity of a die casting machine by the plunger,
    The tip of the plunger is retracted inward in the radial direction with respect to the inner peripheral portion of the sleeve, and a suction recess that is continuous in the circumferential direction is defined,
    It is configured to be able to suck the space ahead of the front end of the chip and the inside of the suction recess,
    The sleeve is formed with two or more suction ports penetrating the sleeve between the inner side and the outer side and capable of sucking the inner side of the sleeve side by side in the forward and backward direction of the plunger,
    Depending on the position of the plunger that moves forward relative to the sleeve, at least one of the two or more suction ports communicates with the front space, and selectively from the two or more suction ports. At least one communicates with the inside of the suction recess,
    An injection device for a die casting machine characterized by the above.
  2.  前記2以上の吸引口は、前記進退方向に所定間隔に配置され、
     前記チップは、前記進退方向の前側に位置する第1大径部と、前記進退方向の後側に位置し、前記第1大径部との間に前記吸引用凹部を区画する第2大径部と、を備え、
     前記吸引口の数をn、
     前記吸引口の前記進退方向の寸法をLs2、
     前記進退方向に隣り合う前記吸引口の間隔をLs3、
     前記吸引用凹部の前記進退方向の寸法をLp0、
     前記第1大径部の前記進退方向の寸法をLp1、
     前記第2大径部の前記進退方向の寸法をLp2、とした場合に、
     Lp1<n×Ls2+(n-1)×Ls3 である、
    請求項1に記載のダイカストマシンの射出装置。
    The two or more suction ports are arranged at a predetermined interval in the forward / backward direction,
    The tip has a first large-diameter portion located on the front side in the advance / retreat direction and a second large-diameter located on the rear side in the advance / retreat direction, and divides the suction recess between the first large-diameter portion. And comprising
    The number of suction ports is n,
    Ls2 is the dimension of the suction port in the advance / retreat direction.
    The interval between the suction ports adjacent to each other in the forward / backward direction is Ls3,
    The dimension of the advancing / retreating direction of the recess for suction is Lp0,
    The dimension of the first large diameter portion in the advance / retreat direction is Lp1,
    When the dimension of the advancing / retreating direction of the second large diameter portion is Lp2,
    Lp1 <n × Ls2 + (n−1) × Ls3
    The injection device of the die-casting machine according to claim 1.
  3.  前記スリーブの注湯口から、前記注湯口に最も近い前記吸引口までの前記進退方向における距離をLs1とすると、
     Lp0<Ls1+n×Ls2+(n-1)×Ls3-Lp1 である、
    請求項2に記載のダイカストマシンの射出装置。
    When the distance in the advancing / retreating direction from the pouring port of the sleeve to the suction port closest to the pouring port is Ls1,
    Lp0 <Ls1 + n × Ls2 + (n−1) × Ls3−Lp1
    The injection device for a die casting machine according to claim 2.
  4.  Lp2≧Ls2  である、
    請求項2または3に記載のダイカストマシンの射出装置。
    Lp2 ≧ Ls2
    The injection device for a die casting machine according to claim 2 or 3.
  5.  Lp0>Ls3  である、
    請求項2から4のいずれか一項に記載のダイカストマシンの射出装置。
    Lp0> Ls3.
    The injection device for a die casting machine according to any one of claims 2 to 4.
  6.  前記プランジャのチップの外周部に沿って周方向に連続し、前記プランジャの前進および後退に伴い前記スリーブの内周部を摺動する摺動シールを備え、
     前記摺動シールは、前記チップにおける前記吸引用凹部以外の部位に位置している、
    請求項1から5のいずれか一項に記載のダイカストマシンの射出装置。
    A sliding seal that is continuous in the circumferential direction along the outer peripheral portion of the tip of the plunger and slides on the inner peripheral portion of the sleeve as the plunger advances and retreats;
    The sliding seal is located at a site other than the suction recess in the chip.
    The injection device for a die casting machine according to any one of claims 1 to 5.
  7.  前記摺動シールの径方向の内側に配置され、前記摺動シールと前記チップとの間の隙間を封止するシール部材を備える、
    請求項6に記載のダイカストマシンの射出装置。
    A seal member disposed inside the sliding seal in the radial direction and sealing a gap between the sliding seal and the chip;
    The injection apparatus of the die-casting machine according to claim 6.
  8.  前記プランジャの進退方向に並ぶ2以上の前記摺動シールを備え、
     少なくとも1つの前記摺動シールと前記チップとの間に前記シール部材が配置されている、
    請求項7に記載のダイカストマシンの射出装置。
    Comprising two or more sliding seals arranged in a forward and backward direction of the plunger;
    The seal member is disposed between at least one of the sliding seal and the tip;
    The injection device for a die casting machine according to claim 7.
  9.  前記摺動シールは、前記周方向の一部における不連続な箇所である不連続部を含んで環状に形成され、前記径方向の外側に向けて前記スリーブの内周部を押圧する状態に前記チップおよび前記スリーブに装着され、
     前記シール部材は、環状に形成され、前記摺動シールと前記チップとの間で撓んで前記隙間を封止する、
    請求項7または8に記載のダイカストマシンの射出装置。
    The sliding seal is formed in an annular shape including a discontinuous portion which is a discontinuous portion in a part of the circumferential direction, and presses the inner peripheral portion of the sleeve toward the outer side in the radial direction. Attached to the tip and the sleeve;
    The seal member is formed in an annular shape and is bent between the sliding seal and the chip to seal the gap.
    The injection device for a die casting machine according to claim 7 or 8.
  10.  前記チップにおいて、前記進退方向の前側に位置する第1大径部の外周部と、前記進退方向の後側に位置し、前記第1大径部との間に前記吸引用凹部を区画する第2大径部の外周部とにシール剤を供給可能なシール剤供給装置を備え、
     前記スリーブの内周部と、前記第1大径部および前記第2大径部のそれぞれの外周部との間の隙間が前記シール剤により封止される、
    請求項1から9のいずれか一項に記載のダイカストマシンの射出装置。
    In the tip, a suction recess is defined between an outer peripheral portion of the first large diameter portion located on the front side in the advance / retreat direction and a rear side in the advance / retreat direction, and the first large diameter portion. A sealant supply device capable of supplying a sealant to the outer peripheral part of the two large diameter parts;
    The gap between the inner periphery of the sleeve and the outer periphery of each of the first large diameter portion and the second large diameter portion is sealed with the sealant.
    The injection device for a die casting machine according to any one of claims 1 to 9.
  11.  前記スリーブの内側から前記吸引口を通じて気体が吸引される吸引経路の途上に、前記気体に混入した溶湯カスを捕集する捕集構造が設けられ、
     前記捕集構造は、
     前記吸引経路に接続されて前記溶湯カスを受け入れる捕集部と、
     前記吸引経路の上流側から前記捕集部に向けて延びる前記吸引経路の第1区間と、
     前記第1区間を外側から包囲し、前記第1区間を超えて前記捕集部に至る区間接続部と、
     前記区間接続部により前記第1区間が包囲されている位置で前記区間接続部と連なる前記吸引経路の第2区間と、を備え、
     前記第1区間および前記第2区間は、前記区間接続部の内側を介して連通している、
    請求項1から10のいずれか一項に記載のダイカストマシンの射出装置。
    In the course of the suction path through which the gas is sucked from the inside of the sleeve through the suction port, a collecting structure for collecting the molten metal mixed in the gas is provided,
    The collection structure is
    A collection unit connected to the suction path and receiving the molten metal residue;
    A first section of the suction path extending from the upstream side of the suction path toward the collection unit;
    A section connecting portion that surrounds the first section from the outside and reaches the collecting section beyond the first section;
    A second section of the suction path connected to the section connection section at a position where the first section is surrounded by the section connection section,
    The first section and the second section communicate with each other through the inside of the section connecting portion.
    The injection device for a die casting machine according to any one of claims 1 to 10.
  12.  前記第1区間は、前記捕集部に向けて下方に延びており、
     前記第1区間の流出口の高さが、前記第2区間の流入口の高さ以下である、
    請求項11に記載のダイカストマシンの射出装置。
    The first section extends downward toward the collection unit,
    The height of the outlet of the first section is equal to or less than the height of the inlet of the second section.
    The injection device for a die casting machine according to claim 11.
  13.  前記区間接続部は、前記捕集部に対して開口断面積が小さい逆流防止部を備える、
    請求項11または12に記載のダイカストマシンの射出装置。
    The section connection section includes a backflow prevention section having a small opening cross-sectional area with respect to the collection section.
    The die casting machine injection apparatus according to claim 11 or 12.
  14.  前記捕集構造は、
     前記捕集部に設けられ、前記溶湯カスが通過可能な取出口と、
     前記取出口を開閉可能なバルブと、を備える、
    請求項11から13のいずれか一項に記載のダイカストマシンの射出装置。
    The collection structure is
    An outlet provided in the collection part and through which the molten metal can pass;
    A valve capable of opening and closing the outlet,
    The injection device for a die casting machine according to any one of claims 11 to 13.
  15.  前記スリーブの内側から前記吸引口を通じて気体が吸引される吸引経路の途上に設けられ、前記気体に混入した溶湯カスを捕集する捕集部と、
     前記吸引経路の少なくとも一部であって、前記捕集部の上流側から前記捕集部に向けて延びる清掃区間と、を備え、
     前記清掃区間は、連結用部材によりフランジ同士が連結される複数の配管から湾曲した形状をなし、
     前記連結用部材は、前記配管の外側に露出した把持部を有し、前記把持部により前記フランジに着脱可能である、
    請求項1から14のいずれか一項に記載のダイカストマシンの射出装置。
    A collecting portion that is provided in the course of a suction path through which gas is sucked from the inside of the sleeve through the suction port, and that collects the molten metal mixed in the gas;
    A cleaning section that is at least a part of the suction path and extends from the upstream side of the collection section toward the collection section, and
    The cleaning section has a curved shape from a plurality of pipes in which flanges are connected by a connecting member,
    The connecting member has a gripping part exposed outside the pipe, and can be attached to and detached from the flange by the gripping part.
    The injection device for a die casting machine according to any one of claims 1 to 14.
  16.  前記連結用部材は、
     前記フランジ同士の間に配置されるセンターリングと、
     前記センターリングを介して前記フランジ同士を突き当てた状態に拘束するクランプと、を備え、
     前記クランプは、
     前記フランジの周りに配置される2以上のクランプ本体と、
     前記クランプ本体を前記フランジに対して締め付けたり緩めたりが可能な前記把持部と、を含む、
    請求項15に記載のダイカストマシンの射出装置。
    The connecting member is
    A center ring disposed between the flanges;
    A clamp that restrains the flanges against each other via the center ring,
    The clamp is
    Two or more clamp bodies disposed around the flange;
    The grip part capable of tightening or loosening the clamp body with respect to the flange, and
    The injection device for a die casting machine according to claim 15.
  17.  スリーブの内部空間から金型のキャビティに亘って連通して形成される空間内を真空吸引する吸引経路を具備したダイカストマシンであって、
     前記金型に形成されたキャビティ吸引口を通じて前記キャビティから気体が吸引される吸引経路の途上に、前記気体に混入した溶湯カスを捕集する捕集構造が設けられ、
     前記捕集構造は、
     前記吸引経路に接続されて前記溶湯カスを受け入れる捕集部と、
     前記吸引経路の上流側から前記捕集部に向けて延びる前記吸引経路の第1区間と、
     前記第1区間を外側から包囲し、前記第1区間を超えて前記捕集部に至る区間接続部と、
     前記区間接続部により前記第1区間が包囲されている位置で前記区間接続部と連なる前記吸引経路の第2区間と、を備え、
     前記第1区間および前記第2区間は、前記区間接続部の内側を介して連通している、
    ことを特徴とするダイカストマシン。
    A die casting machine having a suction path for vacuum suction in a space formed in communication from an internal space of a sleeve to a cavity of a mold,
    In the course of the suction path through which the gas is sucked from the cavity through the cavity suction port formed in the mold, a collecting structure for collecting the molten metal mixed in the gas is provided,
    The collection structure is
    A collection unit connected to the suction path and receiving the molten metal residue;
    A first section of the suction path extending from the upstream side of the suction path toward the collection unit;
    A section connecting portion that surrounds the first section from the outside and reaches the collecting section beyond the first section;
    A second section of the suction path connected to the section connection section at a position where the first section is surrounded by the section connection section,
    The first section and the second section communicate with each other through the inside of the section connecting portion.
    Die-casting machine characterized by that.
  18.  スリーブの内部空間から金型のキャビティに亘って連通して形成される空間内を真空吸引するダイカストマシンの真空用配管の構造であって、
     前記金型に形成されたキャビティ吸引口を通じて前記キャビティから気体が吸引される吸引経路の途上に設けられ、前記気体に混入した溶湯カスを捕集する捕集部と、
     前記吸引経路の少なくとも一部であって、前記捕集部の上流側から前記捕集部に向けて延びる清掃区間と、を備え、
     前記清掃区間は、連結用部材によりフランジ同士が連結される複数の配管から湾曲した形状をなし、
     前記連結用部材は、前記配管の外側に露出した把持部を有し、前記把持部により前記フランジに着脱可能である、
    ことを特徴とするダイカストマシンの真空用配管の構造。
    A vacuum piping structure of a die casting machine that vacuum-sucks the space formed in communication between the internal space of the sleeve and the cavity of the mold,
    A collecting part that is provided in the course of a suction path through which gas is sucked from the cavity through a cavity suction port formed in the mold, and collects molten metal debris mixed in the gas;
    A cleaning section that is at least a part of the suction path and extends from the upstream side of the collection section toward the collection section, and
    The cleaning section has a curved shape from a plurality of pipes in which flanges are connected by a connecting member,
    The connecting member has a gripping part exposed outside the pipe, and can be attached to and detached from the flange by the gripping part.
    This is the structure of vacuum piping for die casting machines.
  19.  溶湯が内側に供給されるスリーブの内側で進退可能なプランジャによりダイカストマシンのキャビティに向けて前記溶湯を射出する射出装置を用いた鋳造方法であって、
     前記プランジャのチップには、前記スリーブの内周部に対して径方向の内側に退避し、周方向に連続する吸引用凹部が区画され、
     前記スリーブには、前記スリーブを内側と外側とに亘り貫通し、前記スリーブの内側を吸引可能な2以上の吸引口が前記プランジャの進退方向に並んで形成され、
     前記チップの前端よりも前方の空間と連通する少なくとも1つの前記吸引口を通じて前記チップの前端よりも前方の空間を吸引により減圧させながら、前記吸引用凹部の内側と連通する少なくとも1つの前記吸引口を通じて前記吸引用凹部の内側を吸引により減圧させる、
    ことを特徴とする鋳造方法。
    A casting method using an injection device that injects the molten metal toward a cavity of a die casting machine by a plunger capable of moving back and forth inside a sleeve to which molten metal is supplied inside,
    The tip of the plunger is retracted inward in the radial direction with respect to the inner peripheral portion of the sleeve, and a suction recess that is continuous in the circumferential direction is defined,
    The sleeve is formed with two or more suction ports penetrating the sleeve between the inner side and the outer side and capable of sucking the inner side of the sleeve side by side in the forward and backward direction of the plunger,
    At least one suction port communicating with the inside of the suction recess while decompressing the space ahead of the tip by suction through at least one suction port communicating with the space ahead of the front end of the tip The inside of the suction recess is reduced by suction through,
    A casting method characterized by the above.
  20.  前記プランジャのチップの外周部に沿って周方向に連続し、前記プランジャの前進および後退に伴い前記スリーブの内周部を摺動する摺動シールの径方向の内側に、前記摺動シールと前記チップとの間の隙間を封止するシール部材が配置された状態に、前記摺動シールおよび前記シール部材を前記プランジャと前記スリーブとに装着し、
     前記前方の空間と、前記吸引用凹部の内側とを吸引する、
    請求項19に記載の鋳造方法。
    The sliding seal and the inner side in the radial direction of the sliding seal that continues in the circumferential direction along the outer peripheral portion of the tip of the plunger and slides on the inner peripheral portion of the sleeve as the plunger moves forward and backward. In a state where a seal member that seals a gap between the chip and the seal member is disposed, the sliding seal and the seal member are attached to the plunger and the sleeve,
    Sucking the front space and the inside of the suction recess,
    The casting method according to claim 19.
  21.  前記吸引口を通じた前記スリーブ内の吸引を終えた後、
     加圧タンクを使用し、前記吸引口を通じて前記スリーブの内側にエアを噴出させる、
    請求項19または20に記載の鋳造方法。
     
    After finishing the suction in the sleeve through the suction port,
    Using a pressurized tank, air is ejected to the inside of the sleeve through the suction port.
    The casting method according to claim 19 or 20.
PCT/JP2019/017391 2018-05-22 2019-04-24 Injection device for die casting machine, die casting machine, vacuum pipe structure for die casting machine, and casting method WO2019225272A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207028333A KR102677364B1 (en) 2018-05-22 2019-04-24 Die casting machine injection device, die casting machine, structure and casting method of die casting machine vacuum piping
CN201980024271.1A CN111971135B (en) 2018-05-22 2019-04-24 Injection device for die casting machine, structure of vacuum piping for die casting machine, and casting method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018097487 2018-05-22
JP2018-097487 2018-05-22
JP2018126459 2018-07-03
JP2018-126459 2018-07-03
JP2018179982 2018-09-26
JP2018-179982 2018-09-26
JP2018-237978 2018-12-20
JP2018237978A JP7127526B2 (en) 2018-07-03 2018-12-20 Injection device for die casting machine and casting method

Publications (1)

Publication Number Publication Date
WO2019225272A1 true WO2019225272A1 (en) 2019-11-28

Family

ID=68615678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017391 WO2019225272A1 (en) 2018-05-22 2019-04-24 Injection device for die casting machine, die casting machine, vacuum pipe structure for die casting machine, and casting method

Country Status (1)

Country Link
WO (1) WO2019225272A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070507A1 (en) * 2020-09-29 2022-04-07 宇部興産機械株式会社 Injection device for die casting machine, and casting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232734Y2 (en) * 1974-05-08 1977-07-26
JPH0421632Y2 (en) * 1989-05-09 1992-05-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232734Y2 (en) * 1974-05-08 1977-07-26
JPH0421632Y2 (en) * 1989-05-09 1992-05-18

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070507A1 (en) * 2020-09-29 2022-04-07 宇部興産機械株式会社 Injection device for die casting machine, and casting method
JP7524695B2 (en) 2020-09-29 2024-07-30 Ubeマシナリー株式会社 Injection device of die casting machine and casting method

Similar Documents

Publication Publication Date Title
JP2019202350A (en) Die cast machine
JP6900957B2 (en) Injection equipment and casting method for casting equipment
JP2008183652A (en) Machine tool
WO2019225272A1 (en) Injection device for die casting machine, die casting machine, vacuum pipe structure for die casting machine, and casting method
CN111971135B (en) Injection device for die casting machine, structure of vacuum piping for die casting machine, and casting method
JP2009050879A (en) Method for operating die casting apparatus, and die casting apparatus
JP7302284B2 (en) Structure of Vacuum Piping for Die Casting Machine
CN107486547B (en) Exhaust block and die assembly
WO2018139083A1 (en) Dust collection device and dust removal method for same
JP7127526B2 (en) Injection device for die casting machine and casting method
CN201375979Y (en) Water spray nozzle for cleaning inner wall of steel pipe
JP5146014B2 (en) Vacuum casting method and vacuum casting mold
JP7524695B2 (en) Injection device of die casting machine and casting method
CN115023302A (en) Device for cleaning vent holes of forging dies and method for using same
CN115138822A (en) Air extractor for casting mould
JP6755585B2 (en) Pressure reducing valve and casting equipment
JP2009279645A (en) Method for lubricating die casting plunger
JP5942863B2 (en) Die casting mold structure
WO2013008708A1 (en) Substrate processing device
JP2017080755A (en) Actuation defection prevention method of shut-off valve in vacuum die-casting gas vent device
JP2007283299A (en) Spray nozzle
CN213746053U (en) Die casting machine tup lubricating mechanism
JPH0520676B2 (en)
CN207223521U (en) A kind of lathe anti-clogging conveying mechanism
JP3793703B2 (en) Mold cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808251

Country of ref document: EP

Kind code of ref document: A1