WO2019223714A1 - Formaldehyde removal uv-curable coating system - Google Patents

Formaldehyde removal uv-curable coating system Download PDF

Info

Publication number
WO2019223714A1
WO2019223714A1 PCT/CN2019/087942 CN2019087942W WO2019223714A1 WO 2019223714 A1 WO2019223714 A1 WO 2019223714A1 CN 2019087942 W CN2019087942 W CN 2019087942W WO 2019223714 A1 WO2019223714 A1 WO 2019223714A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
coating
acrylate oligomer
substrate
composition according
Prior art date
Application number
PCT/CN2019/087942
Other languages
French (fr)
Inventor
Meiru SUN
Maoyi XUE
Guisheng Li
Original Assignee
Ppg Coatings (Tianjin) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ppg Coatings (Tianjin) Co., Ltd. filed Critical Ppg Coatings (Tianjin) Co., Ltd.
Publication of WO2019223714A1 publication Critical patent/WO2019223714A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a substantially VOC-free, formaldehyde removal UV-curable coating composition, especial lly to a high solid content UV-curable coating composition comprising an acrylate oligomer and a monomer with a modified formaldehyde removal additive.
  • the present invention further relates to use of the coating composition for coating a substrate, and a substrate coated with the coating composition.
  • the present invention is intended to achieve zero VOC emission and low post-curing odor by means of increasing the solid content in the formula, introducing specially selected resins and monomers, and reducing the solvent content. Meanwhile, due to the introduction of specific formaldehyde removal additives into the formula, the coating composition of the present invention has a function of purifying air by removing formaldehyde, achieves a purpose of environmental protection, and meets the higher requirements of users. In addition, because of using a UV curing technology, the coating composition of the present invention can be applied with a substantially reduced curing time, thereby increasing production efficiency. At the same time, it can save energy consumption since the UV curing process can be performed at a relatively low temperature.
  • the present invention provides a novel high solid content, UV-curable coating composition for use on plastic and wooden substrates.
  • the coating composition utilizes specially selected photocurable resin (s) and monomer (s) , and is substantially free or free of any volatile organic compound, achieving a combination of the desired good properties.
  • the present invention provides a high solid content, UV-curable coating composition comprising an acrylate oligomer, a monomer, and a formaldehyde removal additive.
  • the present invention provides use of the above-described high solid content, UV-curable coating composition for coating a substrate.
  • the present invention provides a method of coating a substrate comprising: (a) coating at least a portion of the substrate with the above-described high solid content, UV-curable coating composition in a coating amount of 6-100 g/m 2 ; (b) adjusting the gloss of the coated substrate by infrared treatment; and (c) curing the coating composition by UV radiation.
  • the present invention provides a substrate at least partially having a coating layer formed from the above-described high solid content, UV-curable coating composition.
  • any numerical range as recited herein is intended to encompass any subrange as included therein.
  • the range of “1 to 10” is intended to encompass all the subranges between the minimum value of 1 and the maximum value of 10 (inclusive) , that is, such range has a minimum value of 1 or greater and a maximum value of 10 or less.
  • a high solid content, UV-curable coating composition which utilizes a specific combination of an acrylate oligomer and a monomer, thereby providing a combination of superior wear resistance, chemical resistance, flexibility, and the like.
  • the formed coating composition can sufficiently absorb the formaldehyde present in the service environment thereof so as to impart higher safety to the service environment.
  • service environment refers to the environment where the present coating composition is applied.
  • the specific combination of the selected acrylate oligomer, monomer and formaldehyde removal additive provides a coating with low post-curing odor.
  • the expression “low post-curing odor” means that the coating formed from the present coating composition emits little or no odor after curing, as perceived by users.
  • the performance of “low post-curing odor” can be represented by the low TVOC values measured for the present coating composition, as can be seen in the Examples section hereinafter.
  • the term “solid content/solids” refers to mass percentage of the residual portion of a coating after UV curing in relation to the total mass of the coating.
  • the term “high solid content” means that the relevant resin or composition contains up to 95-100%solids.
  • the resin or composition can be regulated to contain no volatile organic component, or a minor amount of solvent can be added in accordance with the requirements of flowability and viscosity of the coating.
  • the coating layer formed from the coating composition of the present invention is substantially free of VOC, and thus has less harm to human body and relatively low fire risk, and can meet even the harshest VOC emission standards. It is a “green” product with high environmental-friendly performance.
  • VOC volatile organic compound
  • Organic solvents are a typical source for VOC.
  • substantially free of VOC means that the total amount of organic solvent brought by various ingredients into the coating composition is less than 1 wt%, based on the total weight of the coating composition.
  • the acrylate oligomer as used in the coating composition of the present invention has a weight average molecular weight (M w ) in a range of 200-4000, such as a M w in a range of 300-2000, wherein the weight average molecular weight (M w ) is determined by a gel permeation chromatography using an appropriate standard such as a polystyrene standard.
  • the acrylate oligomer for use in the coating composition of the present invention can comprise an epoxy acrylate oligomer, a polyether acrylate oligomer, a polyurethane acrylate oligomer or their mixtures.
  • the epoxy acrylate oligomer, the polyether acrylate oligomer, and the polyurethane acrylate oligomer can refer to acrylate oligomers modified by epoxy, (poly) ether and (poly) urethane moieties.
  • the epoxy acrylate oligomer can be an epoxy acrylate oligomer comprising two or more acrylate moieties per oligomer, such as two acrylate moieties.
  • the epoxy acrylate oligomer is a bisphenol-A type epoxy acrylate oligomer comprising two or more acrylate moieties, such as two acrylate moieties.
  • the polyether acrylate oligomer can be a polyether acrylate oligomer comprising two or more acrylate moieties, such as two acrylate moieties.
  • the polyurethane acrylate oligomer can be polyurethane acrylate oligomer comprising two or more acrylate moieties, such as three acrylate moieties.
  • Examples of useful epoxy acrylate oligomers comprise, but are not limited to, ETERCURE 621A-80 commercially available from Eternal; 6105-70Y commercially available from SANMU; and EBECRYL 605 commercially available from Allnex.
  • Examples of useful polyether acrylate oligomers comprise, but are not limited to GENOMER 3414 commercially available from RAHN; LAROMER PO 94 F commercially available from BASF; and the like.
  • Examples of useful polyurethane acrylate oligomers comprise, but are not limited to 6318P commercially available from SANMU; 5311 commercially available from KETIAN; or the like.
  • the coating composition of the present invention prepared at the aforesaid ratio ensures the performances of the coating, and meanwhile imparts improved accessibility to the coating film formed therefrom, which makes that the free formaldehyde in the air can be better absorbed by and reacted with the coating film, thereby achieving an optimal formaldehyde absorption.
  • an antibacterial ingredient (if present) in the coating film can function to achieve a surface antibacterial effect.
  • the amount of the acrylate oligomer can be 5-80 parts by weight, suitably 10-50 parts by weight, based on the total weight of the composition.
  • the monomer as used in the coating composition of the present invention can comprise or be selected from the group consisting of one or more acrylates and/or methacrylates.
  • suitable monomers comprise, but are not limited to one or more selected from the group consisting C 1-18 aliphatic alcohol acrylates/ (meth) acrylates, C 1-18 alicyclic alcohol acrylates/ (meth) acrylates, and C 1-18 aryl alcohol acrylates/ (meth) acrylates.
  • the suitable monomer can comprise trimethylolpropane triacrylate, dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate or any mixture thereof.
  • the aforesaid products can be commercially available or synthesized in accordance with a method as known in the art.
  • the amount of the monomer can be 5-80 parts by weight, suitably 10-60 parts by weight, based on the total weight of the composition.
  • the coating composition of the present invention employs a specific combination of an acrylate oligomer and a monomer, thereby providing a coating composition having good slip resistance, wear resistance, and flexibility.
  • the formaldehyde removal additive as used in the coating composition of the present invention improves environmental-friendly performance of the coating.
  • Conventional formaldehyde removal additives are generally adapted to waterborne or solvent borne systems, but not suitable for the UV curable coating system of the present invention with high solid content.
  • the formaldehyde removal additives are required to be dissolved in water or a solvent, and then added to the coating system.
  • the UV curable coating system of the present invention is an almost 100%solids system, and should not bear any substantial amounts of aqueous adjuvant or solvent.
  • adding such additives into the coating system at high dispersion rate will result in that the coating fails to meet the fineness requirement.
  • the “fineness requirement” means that the maximum of particle size in the composition is less than 50 ⁇ m, as measured by a fineness gauge GARDCO FG-6254.
  • a formaldehyde removal additive suitable for the high solid content, UV curable coating system can be obtained by grafting structure (s) of acrylates, epoxys, and/or polyesters, etc. onto the molecular structure of the formaldehyde removal ingredient.
  • the modified formaldehyde removal additive has a structure and polarity similar to the oligomer used in the present invention, thereby improving the intermiscibility between them.
  • the monomer of the present invention may be selected to have a similar polarity as the modified formaldehyde removal additive and the oligomer, so that the monomer can act as a liquid carrier for the modified formaldehyde removal additive.
  • Suitable formaldehyde removal additive for use in the present invention can comprise, but are not limited to modified acetoacetamide, hydrazine derivatives, zeolites, nano-silicate and 2-amino glucose, etc.
  • nano-silicate refers to particles which comprise silicate and do not exceed a maximum length of 1000 nm, such as of 100 nm, in any dimension.
  • the nano-silicate can have an aspect ratio of about 10-200, such as about 50-150.
  • the nano-silicate can be obtained from natural bentonite and attapulgite via delamination technology, and may have a size of e.g. about 80*80*1 nm 3 .
  • the formaldehyde removal additive used in the present coating composition comprises modified nano-silicate, modified 2-amino glucose or mixtures thereof. In some embodiments, the formaldehyde removal additive used in the present coating composition comprises a mixture of modified nano-silicate and modified 2-amino glucose.
  • the coating composition comprising the above described acrylate oligomers and monomers combined with the modified formaldehyde removal additives (e.g., the mixture of modified nano-silicate and modified 2-amino glucose) is particularly suitable for use in the UV curable system.
  • modified formaldehyde removal additives e.g., the mixture of modified nano-silicate and modified 2-amino glucose
  • Suitable modified formaldehyde removal additives are commercially available from Yousenhuo New Materials, Inc.
  • the amount of the formaldehyde removal additives can be 0.5-10 parts by weight, such as 0.5-5 parts by weight, based on the total weight of the composition.
  • the photoinitiator used in the coating composition of the present invention facilitates the curing of the composition.
  • the photoinitiator can comprise, but are not limited to, organic peroxides, azo compounds, quinones, benzophenones, nitroso compounds, acryloyl halide, hydrazones, sulfhydryl compounds, pyranium compounds, triacryloyl imidazoles, diimidazoles, diketones (such as, diphenyl diketones and biacetyls) , phenyl ketones (such as, acetophenone, 2, 2, 2-tri-bromo-1-acetophenone, 2, 2-diethoxy acetophenone, 2, 2-dimethoxy-2-phenyl acetophenone, 2, 2, 2-tribromo-1- (2-nitro) acetophenone, benzophenone, 4, 4-bis (dimethylamino) benzophenone) , and acrylphosphates.
  • photoinitiators examples comprise the photoinitiators commercially available under the trade names of IRGACURE 184 (1-hydroxy-cyclohexyl-phenone) , IRGACURE MBF (methyl phenylglyoxylate) , and DAROCUR 1173 (2-hydroxy-2-methyl-1-phenyl-1-acetone) manufactured by Ciba Company; as well as the photoinitiators under the trade name of JRCure BP (benzophenone) manufactured by Jiuri Chemicals; and the like.
  • the photoinitiator comprises 1-hydroxy-cyclohexyl-phenone, benzophenone and diphenylketone.
  • the photoinitiator comprises 1-hydroxy-cyclohexyl-phenone and diphenylketone.
  • the amount of the photoinitiators can be 0-20 parts by weight, preferably 0.5-10 parts by weight, based on the total weight of the composition.
  • the high solid content, UV-curable coating composition of the present invention can further comprise additional additives.
  • additional additives comprise, but are not limited to, plasticizers, antibacterial additives, anti-settling agents, pigments, matting agents, waxes, abrasive materials, dispersants, or any mixture thereof.
  • the coating composition of the present invention can further comprise a plasticizer to enhance the flexibility and improve the processability of the coating composition.
  • suitable plasticizers comprise, but are not limited to, diethyl phthalate, PEG-400, glycerin triacetate, propanediol, dipropylene glycol dibenzoate, and the like.
  • the amount of the plasticizer can be 0-10 parts by weight, such as 0.5-5 parts by weight, based on the total weight of the composition.
  • the coating composition of the present invention can further comprise an antibacterial additive so as to impart an antibacterial property to the coating film formed from the present coating composition.
  • Suitable antibacterial additives for the present invention can be that having an antibacterial property and can be stably present (with stably continued antibacterial property over time) in the coating film formed from the coating composition.
  • Examples thereof comprise, but are not limited to, natural antibacterials, such as, chitosan, antibacterial natural extracts, etc.; synthetic organic antibacterials, such as, isothiazolinones, benzisothiazolinones, formaldehyde-releasing agents, organic amines, polyquaterniums, polyphosphoniums, etc.; and inorganic antibacterials, such as, silver-based antibacterials and oxide-type antibacterial and the like. Of those, it is suitable to use inorganic antibacterials, especially inorganic silver-based antibacterials, such as, silver ion exchange substances, silver particles, silver salts, silver glass, silver zeolite, or any mixture of one or more of the above.
  • the amount of the antibacterial additive can be 0-5 parts by weight, e.g., 0.01-2 parts by weight, based on the total weight of the composition.
  • the coating composition of the present invention can further comprise pigments to impart a color to the coating composition.
  • Suitable pigment for use in the present invention can be any known pigment species in the art that is suitable for use in a coating composition. Pigments like alumina can be suitably used because it can also improve the abrasion resistance of the coating composition.
  • the amount of pigment can be 0-20 parts by weight, e.g., 5-15 parts by weight, based on the total weight of the composition.
  • a matting agent into the coating composition, thereby reducing the surface gloss of the coating film formed from the coating composition or allowing the formed coating film to have a matte effect.
  • useful matting agents comprise, but are not limited to, ultrafine synthetic silicas; micronized waxes; stearates of aluminum, calcium, magnesium, and zinc; polymethylurea (PMU) ; and the like.
  • the coating composition of the present invention can further comprise additional additives, such as, but not limited to, anti-settling agents, waxes, abrasive materials other than the abrasive pigments discussed above, dispersants and/or any mixture or combination of one or more of the above.
  • additional additives such as, but not limited to, anti-settling agents, waxes, abrasive materials other than the abrasive pigments discussed above, dispersants and/or any mixture or combination of one or more of the above.
  • the amount of each additional additive can be generally 0-10 parts by weight, based on the total weight of the composition.
  • the coating layer formed from the coating composition of the present invention is substantially free of volatile organic compounds (VOC) , and is quite environmental-friendly. It can pass the detection of VOC by Germany AgBB, and JC/T 1074-2008, Purification Performance of Coating Materials for Indoor Air Purification Function which requires a formaldehyde purification of ⁇ 75%and a durability of ⁇ 60%. Upon detection, the coating film formed from the coating composition of the present invention exhibits a formaldehyde purification of ⁇ 85%and a durability of ⁇ 75%.
  • VOC volatile organic compounds
  • the present invention further provides a method of preparing the high solid content, UV-curable coating composition as described in the present invention, comprising weighing and mixing uniformly the component of the coating composition.
  • the method can comprise weighing 5-80 parts by weight of the acrylate oligomer, based on the total weight of the composition; weighing 5-80 parts by weight of the monomers, based on the total weight of the composition; and mixing them uniformly.
  • the introduction of other components is similar to the above steps.
  • the present invention further provides use of the high solid content, UV-curable coating composition of the present invention for coating a substrate.
  • the substrate can be plastic or wooden substrates.
  • plastic substrates comprise, but are not limited to, polyethylene (PE) , polypropylene (PP) , polyvinyl chloride (PVC) , polycarbonate (PC) , polyurethane (PU) and the like, suitably PVC.
  • PVC polyvinyl chloride
  • PC polycarbonate
  • PU polyurethane
  • wooden substrates comprise, but are not limited to cork and hard wood, suitably hard wood.
  • the present invention further provides a method of coating a substrate comprising: (a) coating at least a portion of the substrate with the high solid content, UV-curable coating composition of the present invention in a coating amount of 6-100 g/m 2 (before curing) ; (b) adjusting the gloss of the coated substrate by infrared treatment; and (c) curing the coating composition by UV radiation.
  • infrared treatment may be effected at about 50-60 °C for about 0.5-2 min, e.g., 1-2 min.
  • Curing may e.g. be effected by irradiating the coating composition on the substrate with UVA light (320 nm –400 nm) at about 300 –500 mW/cm 2 of power and about 400 -700 mJ/cm 2 of energy.
  • the present invention further provides a substrate at least partially having a coating film formed from the high solid content, UV-curable coating composition of the present invention.
  • the substrate can be plastic substrates (such as, PVC) or wooden substrates (such as, cork) , as already described above.
  • a 95-100%solids, UV-curable coating composition comprising an acrylate oligomer, a monomer and a modified formaldehyde removal additive.
  • acrylate oligomer comprises an epoxy acrylate oligomer, a polyether acrylate oligomer, a polyurethane acrylate oligomer or any mixture thereof.
  • the acrylate oligomer comprises an epoxy acrylate oligomer, a polyether acrylate oligomer, and a polyurethane acrylate oligomer at a weight ratio of 15-25: 3-10: 5-10.
  • modified formaldehyde removal additive comprises modified nano-silicate, modified 2-amino glucoses or their mixture.
  • composition according to any one of the preceding clauses, wherein the composition further comprises a photoinitiator.
  • the coating composition according to any one of the preceding clauses further comprising 0 to 20 parts by weight of a photoinitiator, 0 to 10 parts by weight of a plasticizer, 0 to 5 parts by weight of an antibacterial agent, 0 to 20 parts by weight of a pigment and 0 to 10 parts by weight of one or more additional additives, based on the total weight of the composition.
  • a method of coating a substrate comprising: (a) coating at least a portion of the substrate with the 95-100%solids UV-curable coating composition according to any one of the clauses 1 to 15 in a coating amount of 6-100 g/m 2 ; (b) adjusting the gloss of the coated substrate by infrared treatment; and (c) curing the coating composition by UV radiation.
  • EBECRYL 605 from Allnex was used as the epoxy acrylate oligomer; GENOMER 3414 FROM RAHN was used as the polyether acrylate oligomer; 6318P FROM SANMU was used as the polyurethane acrylate oligomer; and dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate, and trimethylolpropane triacrylate were used as the monomer.
  • Components 1-7 were mixed together in amounts as listed in Table 1 below at room temperature. The mixture was stirred uniformly with an EUROSTAR stirrer (IKA-WERKE) at 800 rpm.
  • Matting powders were slowly added under stirring at 500 rpm, and the mixture was dispersed at high speed (1500 rpm) for 15-30 min. After achieving the desired fineness (i.e., with the maximum particle size in the composition less than 50 ⁇ m) , remaining materials were added. The mixture was stirred uniformly at 800 rpm to produce the coating composition of the Comparative Example 1.
  • Example 1 UV curable coating systems for odor purification and formaldehyde removal
  • EBECRYL 605 from Allnex was used as the epoxy acrylate oligomer; GENOMER 3414 from RAHN was used as the polyether acrylate oligomer; 6318P from SANMU was used as the polyurethane acrylate oligomer; and dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate, and trimethylolpropane triacrylate were used as the monomers.
  • Components 1-7 as listed in Table 2 below were mixed together at room temperature, and the resultant mixture was stirred uniformly with an EUROSTAR stirrer (from IKA-WERKE) at 800 rpm. Matting powders were slowly added under stirring at 500 rpm.
  • the mixture was dispersed at high speed (1500 rpm) for 15-30 min. After achieving the desired fineness (i.e., with the maximum particle size in the composition less than 50 ⁇ m) , remaining materials were added. The mixture was stirred uniformly at 800 rpm to produce the coating composition of the Example 1.
  • Example 2 UV curable coating systems for odor purification and formaldehyde removal
  • ETERCURE 621A-80 from Eternal was used as the epoxy acrylate oligomer; GENOMER 3414 from RAHN was used as the polyether acrylate oligomer; 5311 from KETIAN was used as the polyurethane acrylate oligomer; and dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate, and trimethylolpropane triacrylate were used as the monomers.
  • Components 1-7 as listed in Table 3 below were mixed together at room temperature, and the resultant mixture was stirred uniformly with an EUROSTAR stirrer (from IKA-WERKE) at 800 rpm. Matting powders were slowly added under stirring at 500 rpm.
  • the mixture was dispersed at high speed (1500 rpm) for 15-30 min. After achieving the desired fineness (i.e., with the maximum particle size in the composition less than 50 ⁇ m) , remaining materials were added. The mixture was stirred uniformly at 800 rpm to produce the coating composition of the Example 2.
  • Example 3 UV curable coating systems for odor purification and formaldehyde removal
  • ETERCURE 621A-80 from Eternal was used as the epoxy acrylate oligomer; GENOMER 3414 from RAHN was used as the polyether acrylate oligomer; 5311 from KETIAN was used as the polyurethane acrylate oligomer; and dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate, and trimethylolpropane triacrylate were used as the monomers.
  • Components 1-7 as listed in Table 4 below were mixed together at room temperature, and the resultant mixture was stirred uniformly with an EUROSTAR stirrer (from IKA-WERKE) at 800 rpm. Matting powders were slowly added under stirring at 500 rpm.
  • the mixture was dispersed at high speed (1500 rpm) for 15-30 min. After achieving the desired fineness (i.e., with the maximum particle size in the composition less than 50 ⁇ m) , remaining materials were added. The mixture was stirred uniformly at 800 rpm to produce the coating composition of the Example 3.
  • the UV curable coating composition prepared in the Comparative Example 1 and the UV curable coating compositions for odor purification and formaldehyde removal prepared in the Examples 1-3 were applied to PVC substrate with the thickness of 2 mm –5 mm.
  • the PVC substrates were coated as described above: (a) coating the PVC substrate in a coating amount of 6-100 g/m 2 (before curing) ; (b) adjusting the gloss of the coated substrate by infrared treatment at about 50-60 °C for about 0.5 min; and (c) curing the coating composition by UVA radiation (320 nm –400 nm) at about 300 –500 mW/cm 2 of power and about 400 -700 mJ/cm 2 of energy. Then, the coated PVC substrate were tested in terms of curing speed, scratch resistance, TVOC (Total Volatile Organic Content) and performance of formaldehyde removal. The tests resulted are showed as follows:
  • the coating layers formed from the high solid content, UV curable coating composition comprising a modified formaldehyde removal additive in accordance with the present invention (Examples 1-3) show good physical properties and environmental-friendly performance. Thus, it is a product having good performances and being green and environmental-friendly, and can be widely used in industrial applications.

Abstract

A substantially VOC-free, high solid content, UV-curable coating composition for formaldehyde removal comprising an acrylate oligomer, a monomer, and a formaldehyde removal additive. It further provides the use of the high solid content, UV-curable coating composition for coating a substrate, a method of coating a substrate with the UV-curable coating composition, and a substrate coated with the UV-curable coating composition.

Description

FORMALDEHYDE REMOVAL UV-CURABLE COATING SYSTEM
FIELD OF INVENTION
The present invention relates to a substantially VOC-free, formaldehyde removal UV-curable coating composition, especial lly to a high solid content UV-curable coating composition comprising an acrylate oligomer and a monomer with a modified formaldehyde removal additive. The present invention further relates to use of the coating composition for coating a substrate, and a substrate coated with the coating composition.
BACKGROUND OF INVENTION
To provide better surface protection and environmental protection performances, functional coatings are increasingly used on surfaces of materials. The present invention is intended to achieve zero VOC emission and low post-curing odor by means of increasing the solid content in the formula, introducing specially selected resins and monomers, and reducing the solvent content. Meanwhile, due to the introduction of specific formaldehyde removal additives into the formula, the coating composition of the present invention has a function of purifying air by removing formaldehyde, achieves a purpose of environmental protection, and meets the higher requirements of users. In addition, because of using a UV curing technology, the coating composition of the present invention can be applied with a substantially reduced curing time, thereby increasing production efficiency. At the same time, it can save energy consumption since the UV curing process can be performed at a relatively low temperature.
SUMMARY OF INVENTION
The present invention provides a novel high solid content, UV-curable coating composition for use on plastic and wooden substrates. The coating composition utilizes specially selected photocurable resin (s) and monomer (s) , and is substantially free or free of any volatile organic compound, achieving a combination of the desired good properties.
In one aspect, the present invention provides a high solid content, UV-curable coating composition comprising an acrylate oligomer, a monomer, and a formaldehyde removal additive.
In another aspect, the present invention provides use of the above-described high solid content, UV-curable coating composition for coating a substrate.
In still another aspect, the present invention provides a method of coating a substrate comprising: (a) coating at least a portion of the substrate with the above-described high solid content, UV-curable coating composition in a coating amount of 6-100 g/m 2; (b) adjusting the gloss of the coated substrate by infrared treatment; and (c) curing the coating composition by UV radiation.
In yet another aspect, the present invention provides a substrate at least partially having a coating layer formed from the above-described high solid content, UV-curable coating composition.
DETAILED DESCRIPTION
For the purpose of the detailed description as below, it is understood that the present invention may be carried out with various alternations/modifications and step orders, unless clearly indicated to the contrary. Moreover, unless in any operational example or otherwise specified, all numbers representing, e.g., the amount of an ingredient as used in the description and claims should be understood as being modified with the term “about” in any case. Thus, unless noted to be in the contrary, any numerical parameter as described in the following description and the accompanied claims refers to an approximate value varied depending on the desired properties in accordance with the present invention. At the least, it is not intended to limit the application of Doctrine of Equivalents within the scope of claims, and each and every numerical value should be understood in accordance with the number of significant digits as reported by applying ordinary rounding techniques.
Although the numerical ranges and parameters describing a wide range of the present invention involve approximate values, the values as listed in the particular examples are reported as precisely as possible. However, any value contains inherently certain errors resulting necessarily from the standard deviation as found in their respective measurements.
Moreover, it is understood that any numerical range as recited herein is intended to encompass any subrange as included therein. For instance, the range of “1 to 10” is intended to encompass all the subranges between the minimum value of 1 and the maximum value of 10 (inclusive) , that is, such range has a minimum value of 1 or greater and a maximum value of 10 or less.
In the present application, unless otherwise stated, the use of the singular includes the plural, and the plural includes the singular. Moreover, in the present application, unless otherwise stated, the word “or” is intended to mean “and/or” , even if in some cases a phrase “and/or” is literally used. Moreover, in the present application, unless otherwise stated, the word “a” and “an” is used to represent “at least a” . For instance, “a” polymer, “a” coating composition, and the like refers to one or more of any of these items.
In one aspect of the present invention, provided is a high solid content, UV-curable coating composition which utilizes a specific combination of an acrylate oligomer and a monomer, thereby providing a combination of superior wear resistance, chemical resistance, flexibility, and the like. Moreover, by introducing a specifically selected formaldehyde removal additive, the formed coating composition can sufficiently absorb the formaldehyde present in the service environment thereof so as to impart higher safety to the service environment. The term “service environment” refers to the environment where the present coating composition is applied. Moreover, the specific combination of the selected acrylate oligomer, monomer and formaldehyde removal additive provides a coating with low post-curing odor. As used herein, the expression “low post-curing odor” means that the coating formed from the present coating composition emits little or no odor after curing, as perceived by users. In one aspect, the performance of “low post-curing odor” can be represented by the low TVOC values measured for the present coating composition, as can be seen in the Examples section hereinafter. As used herein, the term “solid content/solids” refers to mass percentage of the residual portion of a coating after UV curing in relation to the total mass of the coating. As used herein, the term “high solid content” means that the relevant resin or composition contains up to 95-100%solids. In other words, the resin or composition can be regulated to contain no volatile organic component, or a minor amount of solvent can be added in accordance with the requirements of flowability and viscosity of the coating. So, the coating layer formed from the coating composition of the present invention is substantially free of VOC, and thus has less harm to human body and relatively low fire risk, and can meet even the harshest VOC emission standards. It is a “green” product with high environmental-friendly performance. As used herein, the term “VOC (volatile organic compound) ” refers to any organic compound having a boiling point less than or equal to 250℃ (482°F) measured at a standard atmospheric pressure of 101.3 kPa. Organic solvents are a typical source for VOC. The expression “substantially free of VOC” means that the total amount of organic solvent brought by various ingredients into the coating composition is less than 1 wt%, based on the total weight of the coating composition.
The acrylate oligomer as used in the coating composition of the present invention has a weight average molecular weight (M w) in a range of 200-4000, such as a M w in a range of 300-2000, wherein the weight average molecular weight (M w) is determined by a gel permeation chromatography using an appropriate standard such as a polystyrene standard. Suitably, the acrylate oligomer for use in the coating composition of the present invention can comprise an epoxy acrylate oligomer, a polyether acrylate oligomer, a polyurethane acrylate oligomer or their mixtures. The epoxy acrylate oligomer, the polyether acrylate oligomer, and the polyurethane acrylate oligomer can refer to acrylate oligomers modified by epoxy, (poly) ether and (poly) urethane moieties. Suitably, the epoxy acrylate oligomer can be an epoxy acrylate oligomer comprising two or more  acrylate moieties per oligomer, such as two acrylate moieties. In some embodiments of the present invention, the epoxy acrylate oligomer is a bisphenol-A type epoxy acrylate oligomer comprising two or more acrylate moieties, such as two acrylate moieties. Suitably, the polyether acrylate oligomer can be a polyether acrylate oligomer comprising two or more acrylate moieties, such as two acrylate moieties. Suitably, the polyurethane acrylate oligomer can be polyurethane acrylate oligomer comprising two or more acrylate moieties, such as three acrylate moieties.
Examples of useful epoxy acrylate oligomers comprise, but are not limited to, ETERCURE 621A-80 commercially available from Eternal; 6105-70Y commercially available from SANMU; and EBECRYL 605 commercially available from Allnex. Examples of useful polyether acrylate oligomers comprise, but are not limited to GENOMER 3414 commercially available from RAHN; LAROMER PO 94 F commercially available from BASF; and the like. Examples of useful polyurethane acrylate oligomers comprise, but are not limited to 6318P commercially available from SANMU; 5311 commercially available from KETIAN; or the like.
In some embodiments, the acrylate oligomer comprises a mixture of epoxy acrylate oligomer, polyether acrylate oligomer, and polyurethane acrylate oligomer at a weight ratio of epoxy acrylate oligomer : polyether acrylate oligomer : polyurethane acrylate oligomer = 15-25: 3-10: 5-10, such as 15-25: 3-8: 5-10. The coating composition of the present invention prepared at the aforesaid ratio ensures the performances of the coating, and meanwhile imparts improved accessibility to the coating film formed therefrom, which makes that the free formaldehyde in the air can be better absorbed by and reacted with the coating film, thereby achieving an optimal formaldehyde absorption. Moreover, an antibacterial ingredient (if present) in the coating film can function to achieve a surface antibacterial effect.
In the coating composition of the present invention, the amount of the acrylate oligomer can be 5-80 parts by weight, suitably 10-50 parts by weight, based on the total weight of the composition.
The monomer as used in the coating composition of the present invention can comprise or be selected from the group consisting of one or more acrylates and/or methacrylates. Examples of suitable monomers comprise, but are not limited to one or more selected from the group consisting C 1-18 aliphatic alcohol acrylates/ (meth) acrylates, C 1-18 alicyclic alcohol acrylates/ (meth) acrylates, and C 1-18 aryl alcohol acrylates/ (meth) acrylates. In the coating composition of the present invention, the suitable monomer can comprise trimethylolpropane triacrylate, dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate or any mixture thereof. The aforesaid products can be commercially available or synthesized in accordance with a method as known in the art.
In the coating composition of the present invention, the amount of the monomer can be  5-80 parts by weight, suitably 10-60 parts by weight, based on the total weight of the composition.
The coating composition of the present invention employs a specific combination of an acrylate oligomer and a monomer, thereby providing a coating composition having good slip resistance, wear resistance, and flexibility.
The formaldehyde removal additive as used in the coating composition of the present invention improves environmental-friendly performance of the coating. Conventional formaldehyde removal additives are generally adapted to waterborne or solvent borne systems, but not suitable for the UV curable coating system of the present invention with high solid content. In general, the formaldehyde removal additives are required to be dissolved in water or a solvent, and then added to the coating system. However, the UV curable coating system of the present invention is an almost 100%solids system, and should not bear any substantial amounts of aqueous adjuvant or solvent. Moreover, adding such additives into the coating system at high dispersion rate will result in that the coating fails to meet the fineness requirement. The “fineness requirement” means that the maximum of particle size in the composition is less than 50 μm, as measured by a fineness gauge GARDCO FG-6254.
The inventors of the present invention found that a formaldehyde removal additive suitable for the high solid content, UV curable coating system can be obtained by grafting structure (s) of acrylates, epoxys, and/or polyesters, etc. onto the molecular structure of the formaldehyde removal ingredient. The modified formaldehyde removal additive has a structure and polarity similar to the oligomer used in the present invention, thereby improving the intermiscibility between them. Moreover, the monomer of the present invention may be selected to have a similar polarity as the modified formaldehyde removal additive and the oligomer, so that the monomer can act as a liquid carrier for the modified formaldehyde removal additive. This further improves the intermiscibility between the modified formaldehyde removal additive and the UV coating, which finally allows the formaldehyde removal ingredient to be stably present in the UV coating, i.e., the formaldehyde removal ingredient is evenly distributed in the coating without sedimentation. Suitable formaldehyde removal additive for use in the present invention can comprise, but are not limited to modified acetoacetamide, hydrazine derivatives, zeolites, nano-silicate and 2-amino glucose, etc. As used herein, the term "nano-silicate" refers to particles which comprise silicate and do not exceed a maximum length of 1000 nm, such as of 100 nm, in any dimension. Suitably, the nano-silicate can have an aspect ratio of about 10-200, such as about 50-150. The nano-silicate can be obtained from natural bentonite and attapulgite via delamination technology, and may have a size of e.g. about 80*80*1 nm 3.
In some embodiments, the formaldehyde removal additive used in the present coating  composition comprises modified nano-silicate, modified 2-amino glucose or mixtures thereof. In some embodiments, the formaldehyde removal additive used in the present coating composition comprises a mixture of modified nano-silicate and modified 2-amino glucose.
Unexpectedly, the present inventors found that the coating composition comprising the above described acrylate oligomers and monomers combined with the modified formaldehyde removal additives (e.g., the mixture of modified nano-silicate and modified 2-amino glucose) is particularly suitable for use in the UV curable system. Suitable modified formaldehyde removal additives are commercially available from Yousenhuo New Materials, Inc.
In the coating composition of the present invention, the amount of the formaldehyde removal additives can be 0.5-10 parts by weight, such as 0.5-5 parts by weight, based on the total weight of the composition.
The photoinitiator used in the coating composition of the present invention facilitates the curing of the composition. Examples of the photoinitiator can comprise, but are not limited to, organic peroxides, azo compounds, quinones, benzophenones, nitroso compounds, acryloyl halide, hydrazones, sulfhydryl compounds, pyranium compounds, triacryloyl imidazoles, diimidazoles, diketones (such as, diphenyl diketones and biacetyls) , phenyl ketones (such as, acetophenone, 2, 2, 2-tri-bromo-1-acetophenone, 2, 2-diethoxy acetophenone, 2, 2-dimethoxy-2-phenyl acetophenone, 2, 2, 2-tribromo-1- (2-nitro) acetophenone, benzophenone, 4, 4-bis (dimethylamino) benzophenone) , and acrylphosphates. Examples of commercially available photoinitiators comprise the photoinitiators commercially available under the trade names of IRGACURE 184 (1-hydroxy-cyclohexyl-phenone) , IRGACURE MBF (methyl phenylglyoxylate) , and DAROCUR 1173 (2-hydroxy-2-methyl-1-phenyl-1-acetone) manufactured by Ciba Company; as well as the photoinitiators under the trade name of JRCure BP (benzophenone) manufactured by Jiuri Chemicals; and the like. In some embodiments of the present invention, the photoinitiator comprises 1-hydroxy-cyclohexyl-phenone, benzophenone and diphenylketone. In some embodiments of the present invention, the photoinitiator comprises 1-hydroxy-cyclohexyl-phenone and diphenylketone.
In the coating composition of the present invention, the amount of the photoinitiators can be 0-20 parts by weight, preferably 0.5-10 parts by weight, based on the total weight of the composition.
The high solid content, UV-curable coating composition of the present invention can further comprise additional additives. Examples of the additional additives comprise, but are not limited to, plasticizers, antibacterial additives, anti-settling agents, pigments, matting agents, waxes, abrasive materials, dispersants, or any mixture thereof.
The coating composition of the present invention can further comprise a plasticizer to enhance the flexibility and improve the processability of the coating composition. Examples of suitable plasticizers comprise, but are not limited to, diethyl phthalate, PEG-400, glycerin triacetate, propanediol, dipropylene glycol dibenzoate, and the like. In the coating composition of the present invention, the amount of the plasticizer can be 0-10 parts by weight, such as 0.5-5 parts by weight, based on the total weight of the composition.
The coating composition of the present invention can further comprise an antibacterial additive so as to impart an antibacterial property to the coating film formed from the present coating composition. Suitable antibacterial additives for the present invention can be that having an antibacterial property and can be stably present (with stably continued antibacterial property over time) in the coating film formed from the coating composition. Examples thereof comprise, but are not limited to, natural antibacterials, such as, chitosan, antibacterial natural extracts, etc.; synthetic organic antibacterials, such as, isothiazolinones, benzisothiazolinones, formaldehyde-releasing agents, organic amines, polyquaterniums, polyphosphoniums, etc.; and inorganic antibacterials, such as, silver-based antibacterials and oxide-type antibacterial and the like. Of those, it is suitable to use inorganic antibacterials, especially inorganic silver-based antibacterials, such as, silver ion exchange substances, silver particles, silver salts, silver glass, silver zeolite, or any mixture of one or more of the above. In the coating composition of the present invention, the amount of the antibacterial additive can be 0-5 parts by weight, e.g., 0.01-2 parts by weight, based on the total weight of the composition.
The coating composition of the present invention can further comprise pigments to impart a color to the coating composition. Suitable pigment for use in the present invention can be any known pigment species in the art that is suitable for use in a coating composition. Pigments like alumina can be suitably used because it can also improve the abrasion resistance of the coating composition. In the coating composition of the present invention, the amount of pigment can be 0-20 parts by weight, e.g., 5-15 parts by weight, based on the total weight of the composition.
Moreover, according to the requirements of service environment, it is required in some cases to add a matting agent into the coating composition, thereby reducing the surface gloss of the coating film formed from the coating composition or allowing the formed coating film to have a matte effect. Examples of useful matting agents comprise, but are not limited to, ultrafine synthetic silicas; micronized waxes; stearates of aluminum, calcium, magnesium, and zinc; polymethylurea (PMU) ; and the like.
Moreover, the coating composition of the present invention can further comprise additional additives, such as, but not limited to, anti-settling agents, waxes, abrasive materials other than the abrasive pigments discussed above, dispersants and/or any  mixture or combination of one or more of the above. The amount of each additional additive can be generally 0-10 parts by weight, based on the total weight of the composition. These additives can improve to some extent the performances of the coating composition in terms of storage stability, processability, and the like.
After curing, the coating layer formed from the coating composition of the present invention is substantially free of volatile organic compounds (VOC) , and is quite environmental-friendly. It can pass the detection of VOC by Germany AgBB, and JC/T 1074-2008, Purification Performance of Coating Materials for Indoor Air Purification Function which requires a formaldehyde purification of≥ 75%and a durability of≥ 60%. Upon detection, the coating film formed from the coating composition of the present invention exhibits a formaldehyde purification of≥ 85%and a durability of≥ 75%.
In another aspect, the present invention further provides a method of preparing the high solid content, UV-curable coating composition as described in the present invention, comprising weighing and mixing uniformly the component of the coating composition. For instance, the method can comprise weighing 5-80 parts by weight of the acrylate oligomer, based on the total weight of the composition; weighing 5-80 parts by weight of the monomers, based on the total weight of the composition; and mixing them uniformly. The introduction of other components is similar to the above steps.
In yet another aspect, the present invention further provides use of the high solid content, UV-curable coating composition of the present invention for coating a substrate. The substrate can be plastic or wooden substrates. Examples of plastic substrates comprise, but are not limited to, polyethylene (PE) , polypropylene (PP) , polyvinyl chloride (PVC) , polycarbonate (PC) , polyurethane (PU) and the like, suitably PVC. Examples of wooden substrates comprise, but are not limited to cork and hard wood, suitably hard wood.
In still another aspect, the present invention further provides a method of coating a substrate comprising: (a) coating at least a portion of the substrate with the high solid content, UV-curable coating composition of the present invention in a coating amount of 6-100 g/m 2 (before curing) ; (b) adjusting the gloss of the coated substrate by infrared treatment; and (c) curing the coating composition by UV radiation. For instance, infrared treatment may be effected at about 50-60 ℃ for about 0.5-2 min, e.g., 1-2 min. Curing may e.g. be effected by irradiating the coating composition on the substrate with UVA light (320 nm –400 nm) at about 300 –500 mW/cm 2 of power and about 400 -700 mJ/cm 2 of energy.
In still yet another aspect, the present invention further provides a substrate at least partially having a coating film formed from the high solid content, UV-curable coating composition of the present invention. The substrate can be plastic substrates (such as, PVC) or wooden substrates (such as, cork) , as already described above.
The following numbered clauses summarize some aspects of the present invention:
1. A 95-100%solids, UV-curable coating composition comprising an acrylate oligomer, a monomer and a modified formaldehyde removal additive.
2. The coating composition according to clause 1, wherein the acrylate oligomer has a weight average molecular weight (Mw) of 200-4000.
3. The coating composition according to clause 1 or clause 2, wherein the acrylate oligomer comprises an epoxy acrylate oligomer, a polyether acrylate oligomer, a polyurethane acrylate oligomer or any mixture thereof.
4. The coating composition according to any one of the preceding clauses, wherein the acrylate oligomer comprises an epoxy acrylate oligomer, a polyether acrylate oligomer, and a polyurethane acrylate oligomer at a weight ratio of 15-25: 3-10: 5-10.
5. The coating composition according to any one of the preceding clauses, wherein the monomer comprises trimethylolpropane triacrylate, dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate or any mixture thereof.
6. The coating composition according to any one of the preceding clauses, wherein the modified formaldehyde removal additive comprises modified nano-silicate, modified 2-amino glucoses or their mixture.
7. The coating composition according to any one of the preceding clauses, wherein the formaldehyde removal additive comprises a mixture of modified nano-silicate and modified 2-amino glucoses.
8. The coating composition according to clause 6 or clause 7, wherein the nano-silicate has an aspect ratio of 10 –200.
9. The coating composition according to any one of the preceding clauses, wherein the composition further comprises a photoinitiator.
10. The coating composition according to clause 9, wherein the photoinitiator comprises 1-hydroxy-cyclohexyl-phenone and diphenylketone.
11. The coating composition according to any one of the preceding clauses, wherein a coating layer formed thereby is substantially free of VOC.
12. The coating composition according to any one of the preceding clauses, wherein a coating layer formed thereby exhibits a formaldehyde-purifying property of≥ 85%, and a durability of≥ 75%, as measured in accordance with JC/T 1074-2008, Purification Performance of Coating Materials for Indoor Air Purification Function.
13. The coating composition according to any one of the preceding clauses wherein the amount of acrylate oligomer is from 5 to 80 part by weight, the amount of monomer is from 5 to 80 part by weight, and the amount of formaldehyde removal additive is from  0.5 to 10 part by weight, based on the total weight of the composition.
14. The coating composition according to clause 13 wherein the amount of acrylate oligomer is from 10 to 50 part by weight, the amount of monomer is from 10 to 60 part by weight, and the amount of formaldehyde removal additive is from 0.5 to 5 part by weight, based on the total weight of the composition.
15. The coating composition according to any one of the preceding clauses further comprising 0 to 20 parts by weight of a photoinitiator, 0 to 10 parts by weight of a plasticizer, 0 to 5 parts by weight of an antibacterial agent, 0 to 20 parts by weight of a pigment and 0 to 10 parts by weight of one or more additional additives, based on the total weight of the composition.
16. Use of the 95-100%solids UV-curable coating composition according to any one of the preceding clauses for coating a substrate and/or for providing a substrate with air purifying properties.
17. A method of coating a substrate comprising: (a) coating at least a portion of the substrate with the 95-100%solids UV-curable coating composition according to any one of the clauses 1 to 15 in a coating amount of 6-100 g/m 2; (b) adjusting the gloss of the coated substrate by infrared treatment; and (c) curing the coating composition by UV radiation.
18. The use of clause 16 or the method of clause 17, wherein the substrate comprises a plastic and/or wooden substrate.
19. A substrate at least partially having a coating layer formed from the 95-100%solids UV-curable coating composition according to any one of the clauses 1 to 15, wherein the substrate comprises a plastic and/or wooden substrate.
20. The substrate according to clause 19, wherein the coating layer has been formed using a method according clause 17 or clause 18.
Hereinafter the present invention will be further explained in details by reference to the examples. However, persons skilled in the art can understand that these examples and the comparative examples are provided for the illustrative purposes, rather than intended to limit the present invention.
Example
The following examples are described to demonstrate the general principles of the present invention. These examples describe the coating compositions of the present invention, the process of preparing the same, and the substrates at least partially coated with the aforesaid coating compositions. Unless otherwise noted, all the amounts as listed are described as parts by weight. The present invention should not be construed to  be limited to the specific examples.
Comparative Example 1: UV curable coating system
EBECRYL 605 from Allnex was used as the epoxy acrylate oligomer; GENOMER 3414 FROM RAHN was used as the polyether acrylate oligomer; 6318P FROM SANMU was used as the polyurethane acrylate oligomer; and dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate, and trimethylolpropane triacrylate were used as the monomer. Components 1-7 were mixed together in amounts as listed in Table 1 below at room temperature. The mixture was stirred uniformly with an EUROSTAR stirrer (IKA-WERKE) at 800 rpm. Matting powders were slowly added under stirring at 500 rpm, and the mixture was dispersed at high speed (1500 rpm) for 15-30 min. After achieving the desired fineness (i.e., with the maximum particle size in the composition less than 50μm) , remaining materials were added. The mixture was stirred uniformly at 800 rpm to produce the coating composition of the Comparative Example 1.
Table 1. Coating Composition of the Comparative Example 1
Figure PCTCN2019087942-appb-000001
Example 1: UV curable coating systems for odor purification and formaldehyde removal
EBECRYL 605 from Allnex was used as the epoxy acrylate oligomer; GENOMER 3414 from RAHN was used as the polyether acrylate oligomer; 6318P from SANMU was used as the polyurethane acrylate oligomer; and dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate, and trimethylolpropane triacrylate were used as the monomers. Components 1-7 as listed in Table 2 below were mixed together at room temperature, and the resultant mixture was stirred uniformly with an EUROSTAR stirrer (from IKA-WERKE) at 800 rpm. Matting powders were slowly added under stirring at  500 rpm. The mixture was dispersed at high speed (1500 rpm) for 15-30 min. After achieving the desired fineness (i.e., with the maximum particle size in the composition less than 50μm) , remaining materials were added. The mixture was stirred uniformly at 800 rpm to produce the coating composition of the Example 1.
Table 2. Coating Composition of the Example 1
Figure PCTCN2019087942-appb-000002
Example 2: UV curable coating systems for odor purification and formaldehyde removal
ETERCURE 621A-80 from Eternal was used as the epoxy acrylate oligomer; GENOMER 3414 from RAHN was used as the polyether acrylate oligomer; 5311 from KETIAN was used as the polyurethane acrylate oligomer; and dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate, and trimethylolpropane triacrylate were used as the monomers. Components 1-7 as listed in Table 3 below were mixed together at room temperature, and the resultant mixture was stirred uniformly with an EUROSTAR stirrer (from IKA-WERKE) at 800 rpm. Matting powders were slowly added under stirring at 500 rpm. The mixture was dispersed at high speed (1500 rpm) for 15-30 min. After achieving the desired fineness (i.e., with the maximum particle size in the composition less than 50μm) , remaining materials were added. The mixture was stirred uniformly at 800 rpm to produce the coating composition of the Example 2.
Table 3. Coating Composition of the Example 2
Figure PCTCN2019087942-appb-000003
Figure PCTCN2019087942-appb-000004
Example 3: UV curable coating systems for odor purification and formaldehyde removal
ETERCURE 621A-80 from Eternal was used as the epoxy acrylate oligomer; GENOMER 3414 from RAHN was used as the polyether acrylate oligomer; 5311 from KETIAN was used as the polyurethane acrylate oligomer; and dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate, and trimethylolpropane triacrylate were used as the monomers. Components 1-7 as listed in Table 4 below were mixed together at room temperature, and the resultant mixture was stirred uniformly with an EUROSTAR stirrer (from IKA-WERKE) at 800 rpm. Matting powders were slowly added under stirring at 500 rpm. The mixture was dispersed at high speed (1500 rpm) for 15-30 min. After achieving the desired fineness (i.e., with the maximum particle size in the composition less than 50μm) , remaining materials were added. The mixture was stirred uniformly at 800 rpm to produce the coating composition of the Example 3.
Table 4. Coating Composition of the Example 3
Figure PCTCN2019087942-appb-000005
Figure PCTCN2019087942-appb-000006
Test of Performance
The UV curable coating composition prepared in the Comparative Example 1 and the UV curable coating compositions for odor purification and formaldehyde removal prepared in the Examples 1-3 were applied to PVC substrate with the thickness of 2 mm –5 mm. The PVC substrates were coated as described above: (a) coating the PVC substrate in a coating amount of 6-100 g/m 2 (before curing) ; (b) adjusting the gloss of the coated substrate by infrared treatment at about 50-60 ℃ for about 0.5 min; and (c) curing the coating composition by UVA radiation (320 nm –400 nm) at about 300 –500 mW/cm 2 of power and about 400 -700 mJ/cm 2 of energy. Then, the coated PVC substrate were tested in terms of curing speed, scratch resistance, TVOC (Total Volatile Organic Content) and performance of formaldehyde removal. The tests resulted are showed as follows:
Table 6. Test Results
Figure PCTCN2019087942-appb-000007
1. Ratings of curing speed of coating film: 1: the fastest - 3: the slowest
It is seen from the above results that the coating layers formed from the high solid content, UV curable coating composition comprising a modified formaldehyde removal additive in accordance with the present invention (Examples 1-3) show good physical properties and environmental-friendly performance. Thus, it is a product having good performances and being green and environmental-friendly, and can be widely used in industrial applications.
The present invention has been described by means of embodiments. It is understood that those embodiments are intended to be illustrative, rather than limitative. In accordance with the above teachings, numerous modifications and variations may be made to the present invention. Thus, it is recognized that the present invention may be carried out within the scope as defined by the appended claims.

Claims (18)

  1. A 95-100%solids, UV-curable coating composition comprising an acrylate oligomer, a monomer and a modified formaldehyde removal additive.
  2. The coating composition according to claim 1, wherein the acrylate oligomer has a weight average molecular weight of 200-4000 (M w) .
  3. The coating composition according to claim 1, wherein the acrylate oligomer comprises an epoxy acrylate oligomer, a polyether acrylate oligomer, a polyurethane acrylate oligomer or any mixture thereof.
  4. The coating composition according to claim 1, wherein the acrylate oligomer comprises an epoxy acrylate oligomer, a polyether acrylate oligomer, and a polyurethane acrylate oligomer at a weight ratio of 15-25: 3-10: 5-10.
  5. The coating composition according to claim 1, wherein the monomer comprises trimethylolpropane triacrylate, dipropylene glycol diacrylate, ethoxylated 1, 6-hexanediol diacrylate or any mixture thereof.
  6. The coating composition according to claim 1, wherein the modified formaldehyde removal additive comprises modified nano-silicate, modified 2-amino glucoses or their mixture.
  7. The coating composition according to claim 1, wherein the formaldehyde removal additive comprises a mixture of modified nano-silicate and modified 2-amino glucoses.
  8. The coating composition according to claim 6 or 7, wherein the modified nano-silicate has an aspect ratio of 10 –200.
  9. The coating composition according to claim 1, wherein the composition further comprises a photoinitiator.
  10. The coating composition according to claim 9, wherein the photoinitiator comprises 1-hydroxy-cyclohexyl-phenone and diphenylketone.
  11. The coating composition according to claim 1, wherein a coating layer formed thereby is substantially free of VOC.
  12. The coating composition according to claim 1, wherein a coating layer formed thereby exhibits a formaldehyde-purifying property of≥ 85%, and a durability of≥ 75%, as measured in accordance with JC/T 1074-2008, Purification Performance of Coating Materials for Indoor Air Purification Function.
  13. Use of the 95-100%solids UV-curable coating composition according to claim 1 for coating a substrate.
  14. The use according to claim 13, wherein the substrate comprises a plastic or wooden substrate.
  15. A method of coating a substrate comprising:
    (a) coating at least a portion of the substrate with the 95-100%solids UV-curable coating composition according to claim 1 in a coating amount of 6-100 g/m 2;
    (b) adjusting the gloss of the coated substrate by infrared treatment; and
    (c) curing the coating composition by UV radiation.
  16. The method according to claim 15, wherein the substrate comprises a plastic  or wooden substrate.
  17. A substrate at least partially having a coating layer formed from the 95-100%solids UV-curable coating composition according to claim 1, wherein the substrate comprises a plastic or wooden substrate.
  18. The substrate according to claim17, wherein the coating layer has been formed using a method according to claim 15.
PCT/CN2019/087942 2018-05-22 2019-05-22 Formaldehyde removal uv-curable coating system WO2019223714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810497452.3 2018-05-22
CN201810497452.3A CN108559366A (en) 2018-05-22 2018-05-22 Except formaldehyde ultraviolet curing coating system

Publications (1)

Publication Number Publication Date
WO2019223714A1 true WO2019223714A1 (en) 2019-11-28

Family

ID=63539372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087942 WO2019223714A1 (en) 2018-05-22 2019-05-22 Formaldehyde removal uv-curable coating system

Country Status (2)

Country Link
CN (1) CN108559366A (en)
WO (1) WO2019223714A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073957A (en) * 2021-03-10 2022-09-20 宁波安特弗新材料科技有限公司 Photo-curing composition, hard coating film and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559366A (en) * 2018-05-22 2018-09-21 Ppg涂料(天津)有限公司 Except formaldehyde ultraviolet curing coating system
CN110938224A (en) * 2019-12-13 2020-03-31 东周化学工业(昆山)有限公司 Plastic product coated by ultraviolet curing coating and manufacturing process thereof
CN111334147A (en) * 2020-04-26 2020-06-26 双峰县湘东机械制造有限责任公司 Multi-composite waterproof coating for exterior wall
CN113088216A (en) * 2021-05-06 2021-07-09 中山市森林家新材料科技有限公司 Formaldehyde removal additive composition and preparation method thereof
CN113088181B (en) * 2021-05-08 2022-06-07 Ppg涂料(天津)有限公司 Water-based finish paint composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101397495A (en) * 2007-09-30 2009-04-01 大连路明发光科技股份有限公司 UV curing luminous plate and its preparing process
CN102286230A (en) * 2011-09-15 2011-12-21 哈尔滨大东方卷烟材料科技开发有限责任公司 Ultraviolet curable ink and preparation method thereof
US20120270027A1 (en) * 2009-12-31 2012-10-25 Sung Chul Hwang Hard coating film, hard coating agent, and polarizing plate including the hard coating film
CN104031451A (en) * 2014-06-20 2014-09-10 Ppg涂料(天津)有限公司 Coating composition as well as preparation method and application of coating composition, coating method and substrate coated with coating
US20140301096A1 (en) * 2013-04-09 2014-10-09 Jae-Beom AHN UV-Curable Coating Compositions For A Flow Coating And Flow Coating Methods Using The Same
CN105368108A (en) * 2015-12-15 2016-03-02 湖州大周高分子材料有限公司 Anion photocureable coating
CN107614607A (en) * 2015-05-21 2018-01-19 太阳化学公司 The UV-curable coating of super-hydrophobicity
CN108559366A (en) * 2018-05-22 2018-09-21 Ppg涂料(天津)有限公司 Except formaldehyde ultraviolet curing coating system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305115B (en) * 2013-06-09 2015-08-12 金甲化工企业(中山)有限公司 A kind of ultraviolet-curing paint formula and preparation technology thereof eliminating formaldehyde in air
CN103589327B (en) * 2013-12-06 2016-05-04 东周化学工业(昆山)有限公司 Photocuring is except formaldehyde environmental protection coating material and preparation method thereof
CN105064647A (en) * 2015-07-15 2015-11-18 德华兔宝宝装饰新材股份有限公司 Photocatalyst formaldehyde decomposition floorboard and production process of photocatalyst formaldehyde decomposition floorboard

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101397495A (en) * 2007-09-30 2009-04-01 大连路明发光科技股份有限公司 UV curing luminous plate and its preparing process
US20120270027A1 (en) * 2009-12-31 2012-10-25 Sung Chul Hwang Hard coating film, hard coating agent, and polarizing plate including the hard coating film
CN102286230A (en) * 2011-09-15 2011-12-21 哈尔滨大东方卷烟材料科技开发有限责任公司 Ultraviolet curable ink and preparation method thereof
US20140301096A1 (en) * 2013-04-09 2014-10-09 Jae-Beom AHN UV-Curable Coating Compositions For A Flow Coating And Flow Coating Methods Using The Same
CN104031451A (en) * 2014-06-20 2014-09-10 Ppg涂料(天津)有限公司 Coating composition as well as preparation method and application of coating composition, coating method and substrate coated with coating
CN107614607A (en) * 2015-05-21 2018-01-19 太阳化学公司 The UV-curable coating of super-hydrophobicity
CN105368108A (en) * 2015-12-15 2016-03-02 湖州大周高分子材料有限公司 Anion photocureable coating
CN108559366A (en) * 2018-05-22 2018-09-21 Ppg涂料(天津)有限公司 Except formaldehyde ultraviolet curing coating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073957A (en) * 2021-03-10 2022-09-20 宁波安特弗新材料科技有限公司 Photo-curing composition, hard coating film and preparation method thereof

Also Published As

Publication number Publication date
CN108559366A (en) 2018-09-21

Similar Documents

Publication Publication Date Title
WO2019223714A1 (en) Formaldehyde removal uv-curable coating system
TWI477522B (en) Composition for forming a hard coating and a formed article having the hard coating layer
CN102516866A (en) Ultraviolet light curing material
CN101528807A (en) Hardcoat compositions and methods
TW200508309A (en) Thermally curable middle layer for 193-nm trilayer resist process
CN103242742B (en) A kind of waterborne radiation curable coating for coiled material PVC floor and preparation method thereof
JPH02248412A (en) Uv-stabilized coating
CN101283062A (en) High-solid UV-curable coating composition
KR20150092202A (en) Composition for hardcoat and molded article with hardcoat layer
EP3689976A1 (en) Ultraviolet-curable paint composition
TW201435021A (en) Scratch and stain resistant coatings
TW201504262A (en) Polymeric photoinitiators
JPH06506718A (en) UV curable hard coat composition and manufacturing method
WO2018235816A1 (en) Photocurable resin composition, cured coating film, substrate with cured coating film, method for producing same, and virus inactivation method
KR101333812B1 (en) Curable composition for superhydrophobic coating and process for preparing substrate including superhydrophobic layer using the same
RU2235108C1 (en) Compositions based on emulsified ultraviolet-cured resins and employment thereof as varnish layer for floor and wall finishing
US20030082305A1 (en) Uv curable woodcoat compositions
TW201235095A (en) Process for producing functional colloidal silica solution, ultraviolet-curable resin composition for hard coats using same, and cured product thereof
WO2001051533A1 (en) Uv curable woodcoat compositions
KR101227551B1 (en) Hard coating film with improved flexibility
JP6893079B2 (en) UV curable resin composition for casting
KR100539716B1 (en) Radiation curable resin composition containing silk powder and molding article using the same
JP2018528995A (en) Coating composition
KR102269391B1 (en) UV- or EB-curable composition having improved steam-resistant property using biomaterial and sheet using the composition
KR20210117593A (en) UV Curable Coating Composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808198

Country of ref document: EP

Kind code of ref document: A1