WO2019223577A1 - 频谱管理装置和方法、无线网络管理装置和方法以及介质 - Google Patents

频谱管理装置和方法、无线网络管理装置和方法以及介质 Download PDF

Info

Publication number
WO2019223577A1
WO2019223577A1 PCT/CN2019/086939 CN2019086939W WO2019223577A1 WO 2019223577 A1 WO2019223577 A1 WO 2019223577A1 CN 2019086939 W CN2019086939 W CN 2019086939W WO 2019223577 A1 WO2019223577 A1 WO 2019223577A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
information
management node
electronic device
spectrum allocation
Prior art date
Application number
PCT/CN2019/086939
Other languages
English (en)
French (fr)
Inventor
郭欣
孙晨
Original Assignee
索尼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司 filed Critical 索尼公司
Priority to CN201980007429.4A priority Critical patent/CN111557106A/zh
Priority to JP2020555158A priority patent/JP7334743B2/ja
Priority to US16/962,235 priority patent/US20210067974A1/en
Priority to KR1020207035727A priority patent/KR20210010506A/ko
Publication of WO2019223577A1 publication Critical patent/WO2019223577A1/zh
Priority to US17/884,583 priority patent/US11671839B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates generally to the field of wireless communications. More specifically, it relates to an electronic device for spectrum management, a spectrum management method, a wireless network management device, a wireless network management method, and a computer-readable medium.
  • Unlicensed Frequency Bands The frequency bands that are currently open for sharing are called Unlicensed Frequency Bands, and include 3.5GHz, 5GHz, 6GHz, and so on.
  • the current shared spectrum allocation system uses a central control method, that is, using a central server to dynamically obtain, for example, the interference protection conditions of the primary (Incumbent) user, and collect information from all levels and sub-systems to meet the interference protection conditions of the Incumbent user as a prerequisite. Allocate resources for all levels of the system.
  • the central control method has the following defects:
  • the present invention has been made for at least a part of the above problems.
  • the invention proposes a distributed shared spectrum management scheme.
  • the distributed shared spectrum management system may include a spectrum management node and a wireless network management node.
  • the spectrum management node is responsible for spectrum management and distributed system management; the wireless network management node obtains spectrum from the spectrum management node and serves the managed user equipment.
  • Multiple spectrum management nodes work together to maintain the fairness and efficiency of spectrum allocation operations.
  • an electronic device for spectrum management includes a processing circuit.
  • the processing circuit is configured to control to send and / or receive spectrum supply and demand information to one or more first spectrum management nodes.
  • the spectrum supply and demand information is related to the spectrum supply and demand of the wireless network management node managed by the electronic device and / or the first spectrum management node.
  • a spectrum management method includes the steps of a second spectrum management node sending to one or more first spectrum management nodes and / or receiving spectrum supply and demand information from one or more first spectrum management nodes.
  • the spectrum supply and demand information is related to the spectrum supply and demand of the wireless network management node managed by the second spectrum management node and / or the first spectrum management node.
  • a wireless network management apparatus including a processing circuit.
  • the processing circuit is configured to control to send spectrum supply and demand information to the spectrum management node and to control to receive information indicating the manner of spectrum allocation from the spectrum management node.
  • the spectrum allocation method is determined based at least in part on spectrum supply and demand information.
  • a wireless network management method includes the steps of sending spectrum supply and demand information to a spectrum management node and the step of receiving information indicating a spectrum allocation method from the spectrum management node.
  • the spectrum allocation method is determined based at least in part on spectrum supply and demand information.
  • Embodiments of the present disclosure also include a computer-readable medium including executable instructions that, when executed by the information processing device, cause the information processing device to perform a method according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram showing a configuration example of an electronic device for spectrum management according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration example of an electronic device for spectrum management according to another embodiment
  • FIG. 3 is a block diagram showing a configuration example of an electronic device for spectrum management according to still another embodiment
  • FIG. 4 is a flowchart illustrating a process example of a spectrum management method according to an embodiment of the present invention
  • FIG. 5 is a flowchart illustrating a process example of a spectrum management method according to another embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a process example of a spectrum management method according to still another embodiment
  • FIG. 7 is a block diagram showing a configuration example of a wireless network management device according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a process example of a wireless network management method according to an embodiment of the present invention.
  • Figure 9 shows an example of a distributed spectrum management protocol stack
  • FIG. 10 shows a structural example of a distributed spectrum management system
  • FIG. 11 shows an example of a spectrum ledger structure
  • FIG. 12 shows an example of a spectrum block structure
  • FIG. 13 shows an example of a spectrum bulletin board
  • FIG. 14 shows an example of a process of updating a spectrum bulletin board
  • FIG. 15 shows an example of an information interaction process between spectrum management nodes
  • FIG. 16 shows an example of a process of generating a spectrum block (mining).
  • FIG. 17 shows an example of a spectrum allocation execution flow
  • FIG. 21 shows a structural example of a logical entity for resource management
  • FIG 22 shows the coexistence between different citizens' broadband radio service equipment (CBSD);
  • CBSD citizens' broadband radio service equipment
  • FIG. 23 is a block diagram illustrating an exemplary structure of a computer that implements the methods and devices of the present disclosure
  • 24 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied;
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a gNB (base station in a 5G system) to which the technology of the present disclosure can be applied.
  • a gNB base station in a 5G system
  • the electronic device 100 for spectrum management includes a processing circuit 110.
  • the processing circuit 110 may be implemented as, for example, a specific chip, a chipset, or a central processing unit (CPU).
  • the processing circuit 110 includes a control unit 111. It should be noted that although the figure shows, for example, the control unit 111 and other units in the form of functional blocks, it should be understood that the functions of these units can also be implemented by the processing circuit as a whole, not necessarily by the processing circuit. Realized in discrete discrete components. In addition, although the processing circuit is shown by a block in the figure, the electronic device may include multiple processing circuits, and the functions of the control unit 111 and other units may be distributed to the multiple processing circuits so that the multiple processing circuits cooperate to operate To perform these functions.
  • the electronic device 100 may work as a spectrum management node, for example.
  • the electronic device 100 may be applied to a citizen broadband wireless service (CBRS) on a 3.5 GHz frequency band, and the electronic device 100 may be configured on a spectrum access system (SAS) or coexistence manager (CxM) side.
  • the wireless network management device managed by the wireless network management device may include a civil broadband wireless service device (CBSD).
  • the electronic device 100 may be applied to a 5GHz broadband system.
  • the electronic device 100 may be configured on the C3 entity side, and the wireless network management device managed by the electronic device 100 may include a wireless access system (WAS) or a wireless device.
  • WAS wireless access system
  • RLAN Local area network
  • the present invention is not limited to this, but is also applicable to other unlicensed frequency bands.
  • the use of the unlicensed spectrum in the embodiments of the present invention satisfies the use requirements on the corresponding unlicensed spectrum, such as the protection of the primary user (Incumbent user) on the frequency band or the protection of higher priority users.
  • the electronic device according to the embodiment of the present invention may also be implemented as part of a spectrum management node (for example, SAS / CxM), or may be implemented independently of the spectrum management node.
  • a spectrum management node for example, SAS / CxM
  • the control unit 111 is configured to perform control to transmit to and / or receive spectrum supply and demand from one or more spectrum management nodes (other than the spectrum management node corresponding to the electronic device 100). information.
  • the spectrum supply and demand information is related to the spectrum supply and demand of the wireless network management node (WNM) managed by the electronic device 100 and / or the one or more spectrum management nodes.
  • WNM wireless network management node
  • the spectrum supply and demand information may include, for example, at least one of spectrum transfer information and spectrum demand information.
  • the spectrum transfer information includes, for example, spectrum information and transfer node information.
  • the spectrum information is used for calculation of spectrum allocation that satisfies spectrum usage constraints, for example, one or more of spectrum type, spectrum range, available time range, use type, available location range, and transfer node location information.
  • the transfer node information is used for the calculation of the spectrum transaction and the generation of the spectrum allocation mode information (which may also be referred to as a spectrum block in the following embodiments), including, for example, the timestamp of the transfer information, the transfer node address (or ID), One or more of the fees.
  • the transferred spectrum may be unoccupied spectrum or used spectrum. If it is unused spectrum, the transfer node may be a spectrum management node (SM); if it is used spectrum, the transfer node may be WNM.
  • SM spectrum management node
  • the spectrum demand information includes, for example, spectrum information and demand node information.
  • the spectrum information is used to calculate the spectrum allocation that satisfies the spectrum usage constraints, for example, it includes: spectrum type, spectrum range, available time range, use type, and demand node location information.
  • the demand node information is used for calculation of a spectrum transaction protocol and generation of spectrum allocation mode information (or spectrum blocks), for example, including one or more of a time stamp for publishing demand information, a demander address, and a payment standard.
  • the demand node can be WNM.
  • a spectrum allocation manner may be further determined based on spectrum supply and demand information.
  • the electronic device 200 for spectrum management includes a processing circuit 210.
  • the processing circuit 210 includes a control unit 211 and a determination unit 213. Some functions of the control unit 211 are similar to the control unit 111 described previously.
  • the determination unit 213 is configured to determine, based on the spectrum supply and demand information, a spectrum allocation manner for the electronic device 200 and / or a wireless network management node managed by a spectrum management node (other than a spectrum management node corresponding to the electronic device 200).
  • control unit 211 is also configured to perform control to transmit information indicating a spectrum allocation method determined by the determination unit 213 to a spectrum management node other than the spectrum management node corresponding to the electronic device 200.
  • the electronic device 200 is used to determine a spectrum allocation method (which may be referred to as "mining” in some example embodiments, that is, to generate a spectrum block), and to obtain information of the spectrum allocation method ( (Some example embodiments may be referred to as spectrum blocks).
  • a spectrum allocation method which may be referred to as "mining” in some example embodiments, that is, to generate a spectrum block
  • spectrum blocks information of the spectrum allocation method
  • the generation (mining) of a spectrum block refers to the spectrum supply-demand relationship and wireless in the spectrum management node based on information shared between the spectrum management nodes (which may be referred to as a spectrum bulletin board in some example embodiments).
  • the spectrum management status of the network management node generates new spectrum allocation information for the spectrum transfer node / demand node.
  • the allocation results also need to meet spectrum usage constraints.
  • a spectrum management node that generates a spectrum block may also be referred to as a miner node or a super node.
  • FIG. 13 schematically illustrates the information contained in the spectrum bulletin board, one of which is spectrum usage constraint information, that is, protection requirements for Incumbent users or protection requirements for higher-priority users (for example, it can be referred to by reference Points and aggregate interference limits), and calculation methods.
  • spectrum usage constraint information that is, protection requirements for Incumbent users or protection requirements for higher-priority users (for example, it can be referred to by reference Points and aggregate interference limits), and calculation methods.
  • Incumbent user status information can be obtained from legal Incumbent information sources allowed by the system, and can dynamically change at any time.
  • the examples of the spectrum supply information and the spectrum demand information have been described above, and will not be repeated here.
  • FIG. 14 shows an example flow of maintaining a spectrum bulletin board.
  • the Incumbent information source in FIG. 14 generates Incumbent protection information, and publishes the Incumbent protection information to the spectrum management node.
  • the spectrum transfer node generates spectrum transfer information (1 '), the spectrum transfer node issues spectrum transfer information (2') to the spectrum management node, the spectrum demand node generates spectrum demand information (1 "), and the spectrum demand node issues to the spectrum management node Spectrum demand information (2 ").
  • the spectrum management node receives the information, updates the spectrum bulletin board (3), and sets the time as the update timestamp T update . In this way, the nodes of the entire network can obtain this information.
  • FIG. 15 shows an example of an information interaction flow between spectrum management nodes.
  • a spectrum management node requests spectrum bulletin board information (1) from other spectrum management nodes, and the request may include a time stamp when the information was last updated.
  • Other spectrum management nodes generate a response by comparing the timestamp T req in the request with the update timestamp T update in the spectrum bulletin: If T req ⁇ T update , the response indicates that no update is needed; if T req ⁇ T update, it will start from T The bulletin board information after req generates a response (2).
  • Other spectrum management nodes post the spectrum bulletin board information response to the miner node. The process for a miner node to request spectrum blockchain information from other spectrum management nodes is similar, and is not repeated here.
  • an electronic device such as the aforementioned miner node for determining a spectrum allocation manner is described above.
  • the embodiment of the present invention further includes an electronic device that does not determine the spectrum allocation mode but obtains the spectrum allocation mode from other spectrum management nodes.
  • the electronic device 300 for spectrum management includes a processing circuit 310.
  • the processing circuit 310 includes a control unit 311 and a verification unit 313.
  • control unit 311 Some functions of the control unit 311 are similar to the control unit 111 described previously.
  • control unit 311 is also configured to control to receive a wireless network management node managed by the spectrum management node (other than the spectrum management node corresponding to the electronic device 300) for the electronic device 300 and / or other spectrum management nodes Information on the determined spectrum allocation method.
  • the verification unit 313 is configured to verify a spectrum allocation manner indicated by the received information.
  • the verification unit 313 may verify the spectrum allocation mode according to the following conditions:
  • the spectrum usage of the specific user equipment or the interference to the specific user equipment is within a predetermined range; and that the spectrum allocation meets the spectrum supply and demand of the wireless network management node.
  • the verification of the spectrum allocation method may include performing spectrum use constraint calculations on the spectrum allocation information, determining that the wireless network management node corresponding to the output address and other wireless network management nodes that meet the usage conditions are used simultaneously when the spectrum is available, Whether to meet the spectrum usage constraints defined in the spectrum bulletin board.
  • the electronic device 300 may also be configured to determine a frequency spectrum allocation method (similar to the electronic device 200 described above), and the control unit 311 may be further configured to perform control to store the frequency spectrum determined by the electronic device 300 Information on allocation methods or information on verified spectrum allocation methods determined by other spectrum management nodes.
  • the spectrum allocation mode information can be stored in a blockchain manner.
  • the blockchain is briefly explained.
  • Blockchain is a brand-new technology that gradually rises with the increasing popularity of digital cryptocurrencies such as Bitcoin. It provides a decentralized, credit-free paradigm for credit establishment, and has now led to the financial industry and scientific research institutions. , Government departments and investment companies attach great importance and extensive attention.
  • Blockchain technology records all past transaction records and historical data by establishing a database that is maintained and cannot be tampered with. All data is distributed and transparent. Under this technology, any network user who does not know each other can reach a credit consensus through contracts, point-to-point accounting, digital encryption, etc. without the need for any central trust agency. With this technology, we can build digital currencies, digital assets, smart property, and smart contracts.
  • Blockchain has the characteristics of decentralization, reliable database, open source programmable, collective maintenance, security and credibility, and quasi-anonymity of transactions. It provides a good foundation for implementing a robust, fair, simple, economical, and scalable management system.
  • blockchain is mainly used in financial currency, copyright maintenance and other scenarios, so it has the unique characteristics of assets or objects. It is relatively simple to verify the compliance of a transaction. For example, for a virtual currency transfer transaction, it is only necessary to confirm that the outflowing party has ownership of the virtual currency and that the amount of the virtual currency holder can afford the transfer transaction.
  • the design of the blockchain is more important to avoid the double-spending problem of the same currency.
  • Blockchain 1.0 supports virtual currency applications, that is, cryptocurrency applications related to transfers, remittances, and digital payments.
  • Bitcoin is a typical application of blockchain 1.0.
  • Blockchain 2.0 supports smart contract applications. Contracts are the cornerstone of economic, market and financial blockchain applications.
  • Blockchain 2.0 applications include stocks, bonds, futures, loans, mortgages, property rights, smart property and smart contracts.
  • Blockchain 3.0 applications are decentralized applications that go beyond the scope of currency, finance, and markets, especially in the fields of government, health, science, culture, and art.
  • the public chain is a network architecture model in which the network has no owner and is completely open to the outside world. Each node in the network can choose to have the same permissions. On such a "fully decentralized" blockchain network, all nodes can read and write blockchain data, and they can participate in the consensus process as candidate nodes for bookkeeping and have the opportunity to participate in the generation and bookkeeping of the ledger.
  • the alliance chain is a network architecture model, in which the network belongs to a common alliance, and the network is only open to members of the alliance. Each node in the network is given different permissions.
  • nodes read and write blockchain data according to the permissions granted, participate in the consensus process, and participate in the generation and bookkeeping of the ledger.
  • Private chain is a network architecture model. In this mode, the network belongs to an owner, and the network is only open to internal members of the owner. Each node in the network is given different permissions.
  • nodes read and write blockchain data according to the permissions granted by the owner, participate in the consensus process, and participate in the generation and accounting of the ledger.
  • An embodiment of the present invention is based on a blockchain system, which is based on an IP communication protocol and a distributed network, is built on network communication, and exchanges information entirely through the Internet.
  • Figure 9 shows a schematic diagram of a distributed spectrum management system protocol stack based on blockchain 1.0. It should be noted that the protocol stack is only exemplary, and the embodiments of the present invention can be applied to any blockchain version.
  • FIG. 10 shows a structure of a distributed spectrum management system to which an embodiment of the present invention can be applied.
  • the logical entity includes an Incumbent information source, a spectrum management node, and a wireless network management node.
  • the Incumbent information source provides the Incumbent user status to the spectrum management node.
  • the spectrum management node encapsulates spectrum allocation information through blocks. This encapsulated block is called a spectrum block.
  • the spectrum blocks are linked using the blockchain as the underlying protocol to form the Spectrum Blockchain or the Spectrum Ledger.
  • the spectrum account book is jointly maintained by multiple spectrum management nodes in the network.
  • the wireless network management node is an access point of a wireless network, and may be, for example, an eNB, a WiFi-AP, or a CBSD.
  • the wireless network management node obtains spectrum from the spectrum management node and serves the managed user equipment. According to the operation of spectrum supply and demand, the wireless network management node may be a spectrum transfer node or a spectrum demand node.
  • the structure shown in FIG. 10 can be divided into public chain, alliance chain, and private chain structures according to the ownership of the spectrum management node. If the spectrum management node can be opened to the public, it is a public chain structure; if the spectrum management node constitutes an alliance member, it is an alliance chain structure; if the spectrum management node is private to an organization, it is a private chain structure. Considering the security protection of Incumbent users, the deployment method is more suitable to use the alliance chain or private chain.
  • the spectrum management node is owned by the alliance or organization, and the Incumbent information source only establishes an interface with the spectrum management node.
  • the data information used in the embodiments of the present invention may include a spectrum account book and a spectrum bulletin board.
  • the example of the spectrum bulletin board has been described previously, and will not be repeated here.
  • An example structure of a spectrum ledger is shown in Figure 11.
  • the spectrum account book is formed by linking spectrum blocks, and the link pointer is a block header hash value generated by processing a block header using a cryptographic hash algorithm.
  • the spectrum block is composed of a block header and a block body. The first block in the entire ledger is called the Genesis Block.
  • the block header contains the hash value of the entire block, used for linking between blocks, and simplified verification.
  • the structure of the block body mainly contains basic data blocks.
  • a tree-like information structure composed of a hash algorithm can be used to process the basic data.
  • the example Merkle hash tree is a type of binary or multi-tree based on hash values.
  • the value on the leaf node is the hash value of the data block, and the value on the non-leaf node is the node.
  • the root node (ROOT) of the entire tree is stored in the block header, which is used to quickly verify whether the data information in each block has been tampered with; the other nodes of the tree are stored in the block body.
  • ROOT root node
  • the block contains information about spectrum allocation.
  • This information includes, for example: spectrum and configuration (spectrum range, maximum available power, available time range), input indicates the spectrum transfer node, and output indicates the frequency spectrum.
  • Demand node According to the privacy protection model of the blockchain, the input and output are the address and location information of the spectrum transfer node / spectrum demand node, and the address is represented by the node's public key.
  • FIG. 16 shows an example of a process of generating a spectrum block (mining).
  • the miner node uses the calculation method in the spectrum bulletin board to generate a new Spectrum allocation information.
  • the allocation result must meet the spectrum usage constraints in the spectrum bulletin board.
  • the miner node calculates the spectrum allocation result that meets the constraints, it is encapsulated into a spectrum block (1).
  • the miner node broadcasts the spectrum block to a network composed of spectrum management nodes (2).
  • the spectrum management nodes can be further divided into full nodes and lightweight nodes according to the amount of stored data.
  • a full node can store spectrum block information (for example, all spectrum block chain data since the genesis block) that contains the current spectrum usage status of all wireless network nodes.
  • spectrum block information for example, all spectrum block chain data since the genesis block
  • the advantage is that spectrum block generation or spectrum block data calibration is performed.
  • the verification operation can be completed only by the locally stored spectrum block chain and the spectrum bulletin board.
  • Lightweight nodes can only store part of the spectrum block information. When other data is needed, they can request other data management nodes to complete the corresponding operations.
  • the verification unit 313 may be configured to select the one with the earliest release time for verification when multiple new spectrum allocation mode information is received within a specific time period.
  • the verification unit 313 may select the one with the earliest release time for verification.
  • control unit 311 may be configured to perform control so as to discontinue when the time window identifier of the received new spectrum allocation mode information and the time window identifier of the currently stored spectrum allocation mode information are discontinuous.
  • the spectrum management node sends a request for information synchronization.
  • control unit 311 may be configured to perform control in a case where the sequence number of the block that receives the new spectrum allocation method information is not continuous with the sequence number of the currently stored blockchain. Send a request for information synchronization to other spectrum management nodes.
  • control unit 311 may be configured to, in a case where a predetermined number of spectrum allocation method information is newly stored, perform control to indicate the spectrum allocation method information before the predetermined number of spectrum allocation method information.
  • the wireless network management node managed by the electronic device 300 is notified of the spectrum allocation method.
  • control unit 311 may be configured to, in a case where a predetermined number of blocks are newly stored, perform control so as to indicate the number of blocks before the predetermined number of blocks.
  • the spectrum allocation method is notified to the wireless network management node managed by the electronic device 300.
  • FIG. 17 shows a spectrum allocation execution flow based on smart contract implementation.
  • the spectrum management node updates the content of the spectrum bulletin board (1).
  • the spectrum management node can clear the spectrum transfer / demand nodes and resource supply and demand requests involved in the bulletin board to avoid duplication of subsequent resource allocation.
  • the second verification can be regarded as a kind of legality verification. Specifically, it may happen that two miner nodes in different regions simultaneously “dig out” two new blocks for linking, and then a “fork” will appear on the main chain. The system does not immediately confirm which block is unreasonable. Instead, it is agreed that subsequent miners always choose the block chain with the largest cumulative proof of work (or other methods such as proof of equity: proof of take). Therefore, after the main chain is forked, miners in subsequent blocks will link their blocks to the alternative chain that maximizes the current cumulative workload proof through calculation and comparison, forming a longer new main chain, and automatically discarding the points. Short chains at the forks, thus solving the fork problem.
  • the proof of workload can be based on the number of spectrum supply and demand nodes satisfied in the spectrum block, and the larger the number, the greater the workload.
  • X spectrum blocks are subsequently added to the spectrum account book, X spectrum blocks are considered to pass the second verification, and X may be set to 5, for example.
  • the spectrum transfer / demand node involved in spectrum allocation completes spectrum allocation reconfiguration (3).
  • the spectrum allocation information in the blockchain spectrum block is actually a smart contract.
  • the contract specifies the conditions under which the involved nodes transfer or use the spectrum.
  • the involved nodes will be configured accordingly according to the contract information.
  • Figure 18 shows an example flow of distributed spectrum allocation and execution.
  • each spectrum management node broadcasts and releases local spectrum supply and demand information in a network formed by the spectrum management nodes, so that each spectrum management node obtains consistent global spectrum supply and demand information.
  • the miner node In process (2), the miner node generates new spectrum allocation information for the spectrum transfer node / demand node based on the spectrum supply and demand relationship in the spectrum announcement bar and the spectrum usage status of other wireless network management nodes in the spectrum account book. Constraints on spectrum usage in the spectrum bulletin board. It is assumed that the maximum spectrum allocation number in the current spectrum account book is #N. When the miner node calculates the spectrum allocation result that meets the constraints, it encapsulates the result as spectrum allocation # N + 1.
  • the miner node broadcasts and releases the spectrum allocation # N + 1 in the network formed by the spectrum management node.
  • the first verification is performed on the selected spectrum allocation # N + 1, and the first verification may be regarded as a compliance verification.
  • the first verification may include two parts: the validity of the spectrum allocation, and the spectrum allocation # N + 1 is consistent with the spectrum account book. Among them, the validity of the spectrum allocation, that is, whether the spectrum allocation result meets the spectrum usage constraint conditions in the spectrum bulletin board. Consistency of the spectrum allocation # N + 1 with the spectrum account book, that is, whether the index of the previous spectrum allocation stored in the spectrum allocation # N + 1 is consistent with the index of the spectrum allocation # N + 1, and whether the generated spectrum allocation package meets requirements.
  • step (c) may be directly performed.
  • the spectrum management node receiving the spectrum allocation # N + 2 performs the first verification on the spectrum allocation # N + 2 and confirms that it is a valid spectrum allocation # N + 2.
  • the spectrum management node sequentially performs the first verification on the received spectrum allocation until it is confirmed that the spectrum allocation # N + 1 + X is a valid spectrum allocation, where X is greater than or equal to 1 Positive integer.
  • the spectrum allocation # N + 1 passes the second check, triggering the execution of its spectrum allocation result.
  • the spectrum allocation subsequently adds X new spectrum allocations to the spectrum account book, the spectrum block is considered to have passed the second verification.
  • Figure 19 shows an example flow of distributed spectrum allocation and execution. This process differs from the process shown in FIG. 18 only in that the spectrum allocation is encapsulated in the form of a spectrum block, and a detailed description thereof is omitted here.
  • FIG. 20 shows a process example of distributed spectrum allocation and execution and forking processing.
  • each spectrum management node obtains consistent global spectrum supply and demand information through broadcasting.
  • the miner nodes 3 and 4 respectively generate a spectrum allocation # N + 1 and a spectrum allocation # N + 1'.
  • the miner nodes 3 and 4 broadcast the spectrum allocation generated by the release, respectively.
  • the spectrum management node receiving the spectrum allocation # N + 1 and / or # N + 1' performs the first verification. For some reason, the spectrum allocation chosen may be different. These reasons include, for example, the delay or failure of transmission, # N + 1 and # N + 1 'cannot reach the spectrum management nodes in the same order, or they cannot all reach the spectrum management nodes. As a result, the effective spectrum allocation # N + 1 'confirmed by the spectrum management node 2 is different from the effective spectrum allocation # N + 1 confirmed by other spectrum management nodes.
  • the spectrum management node 2 receives the new spectrum allocation # N + 2 and cannot pass the check because the previous node of the spectrum allocation # N + 2 is the spectrum allocation # N + 1, and the index check Cannot pass. Therefore, the spectrum management node 2 can only discard the spectrum allocation # N + 2.
  • the spectrum management node 2 initiates a spectrum book synchronization request to other spectrum management nodes to restore the consistency of the spectrum book.
  • the process of distributed spectrum allocation and execution and the bifurcation process is similar to FIG. 20, except that the form of the spectrum allocation is a spectrum block, and detailed description is omitted here.
  • the embodiments of the present invention can be applied to a citizen broadband wireless service or a 5 GHz broadband system in a 3.5 GHz frequency band.
  • a citizen broadband wireless service or a 5 GHz broadband system in a 3.5 GHz frequency band.
  • Example 1 CBRS at 3.5GHz
  • SAS Spectrum Access System
  • DoD Department of Defense
  • FCC Federal Communications Commission
  • Incumbent users represent the highest level. Incumbent users include the aforementioned DoD radar system, Fixed Satellite Service (FSS), and privileged terrestrial wireless services (grandfathered terrestrial wireless operations) for a limited time;
  • FSS Fixed Satellite Service
  • privileged terrestrial wireless services grandfathered terrestrial wireless operations
  • CBSD citizens Broadband Wireless Service Device
  • PAL priority access license
  • GAA general authorized access
  • CBRS uses the census tract as a unit for resource allocation.
  • PAL can use spectrum in the range of 3550-3650MHz, and is distributed in units of 10MHz for a period of 3 years.
  • the total spectrum of all PAL in each census area does not Above 70MHz, the spectrum of each PAL does not exceed 40MHz.
  • GAA can use spectrum in the range of 3550-3700MHz on the premise of not causing harmful interference to high-level users.
  • the logical entities used for resource management mainly include SAS and Domain Proxy (see Figure 21).
  • the domain proxy interacts with SAS on behalf of individual CBSD or network CBSD to obtain services for CDSD.
  • CBSD can also directly obtain services by interacting with SAS without using domain agents.
  • CBRS-A The CBRS Alliance (CBRS-A) organizes the development of technical specifications (TS) to provide coexistence between different CBSDs.
  • the logical entity coexistence manager (CxM) in the coexistence group (CxG) managed by CBRS-A is responsible for following the rules of SAS and managing the coexistence between GAA users, see FIG. 22.
  • the incumbent information source may be Incumbent Detection (ESC)
  • the spectrum allocation device SM may be SAS or CxM
  • the wireless network management device WNM may be CBSD
  • the user equipment UE Can be an End User Device (EUD).
  • Example 2 5GHz broadband system
  • BRAN Broadband Wireless Access Network
  • C3 Central Control and Coordinator
  • C3Instance The logical entity used for management in this system
  • C3Entity C3Instance
  • the implementation of C3 entities can be multiple C3 entities that are interconnected in a distributed manner, and centrally coordinate management objects through information interaction.
  • the management object in this system is called WAS / RLAN.
  • the incumbent information source may be a system-defined incumbent information source
  • the spectrum allocation device SM may be a C3 entity
  • the wireless network management device WNM may be WAS / RLANs
  • user equipment The UE may be a subscriber of WAS / RLANs.
  • the spectrum management method includes step S410: sending by the second spectrum management node to one or more first spectrum management nodes and / or from one or more first spectrum management nodes Receive spectrum supply and demand information.
  • the spectrum supply and demand information is related to the spectrum supply and demand of the wireless network management node managed by the second spectrum management node and / or the first spectrum management node.
  • the spectrum management method according to an embodiment further includes:
  • S520 Determine a spectrum allocation mode for a wireless network management node managed by the second spectrum management node and / or the first spectrum management node based on the spectrum supply and demand information;
  • the spectrum management method according to an embodiment further includes:
  • S620 Receive information of a spectrum allocation manner determined by the first spectrum management node for a second spectrum management node and / or a wireless network management node managed by the first spectrum management node;
  • the embodiment of the present invention further includes a wireless network management device.
  • the wireless network management apparatus 700 includes a processing circuit 710.
  • the processing circuit 710 includes a transmission control unit 711 and a reception control unit 713.
  • the transmission control unit 711 is configured to perform control to transmit spectrum supply and demand information to a spectrum management node.
  • the reception control unit 713 is configured to control to receive information indicating a spectrum allocation method from a spectrum management node.
  • the spectrum allocation method is determined based at least in part on spectrum supply and demand information.
  • FIG. 8 illustrates a wireless network management method according to an embodiment, including:
  • S810 Send spectrum supply and demand information to the spectrum management node.
  • S820 Receive information indicating a spectrum allocation mode from a spectrum management node.
  • the spectrum allocation method is determined based at least in part on spectrum supply and demand information.
  • the embodiment of the present invention further includes a computer-readable medium, which includes executable instructions, and when the executable instructions are executed by the information processing device, the information processing device is caused to execute the method according to the embodiment of the present invention.
  • each step of the above method and each constituent module and / or unit of the above device may be implemented as software, firmware, hardware, or a combination thereof.
  • a computer for example, a general-purpose computer 2300 shown in FIG. 23
  • a dedicated hardware structure can be installed from a storage medium or a network to a program constituting the software for implementing the above method.
  • various programs various functions can be executed.
  • the arithmetic processing unit (ie, the CPU) 2301 performs various processes according to a program stored in a read only memory (ROM) 2302 or a program loaded from a storage section 2308 to a random access memory (RAM) 2303.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2301 performs various processes and the like is also stored as necessary.
  • the CPU 2301, the ROM 2302, and the RAM 2303 are linked to each other via a bus 2304.
  • the input / output interface 2305 is also linked to the bus 2304.
  • the following components are linked to the input / output interface 2305: the input section 2306 (including the keyboard, mouse, etc.), and the output section 2307 (including displays such as cathode ray tubes (CRT), liquid crystal displays (LCD), etc., and speakers, etc.)
  • the storage part 2308 (including a hard disk, etc.) and the communication part 2309 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 2309 performs communication processing via a network such as the Internet.
  • the driver 2310 can also be linked to the input / output interface 2305 as needed.
  • a removable medium 2311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is installed on the drive 2310 as needed, so that a computer program read out therefrom is installed into the storage section 2308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 2311.
  • a storage medium is not limited to the removable medium 2311 shown in FIG. 23 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 2311 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read-only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) ))
  • the storage medium may be a hard disk or the like included in the ROM 2302, the storage portion 2308, and the like, in which programs are stored, and are distributed to users together with a device containing them.
  • Embodiments of the present invention also relate to a program product storing a machine-readable instruction code.
  • the instruction code is read and executed by a machine, the method according to the embodiment of the present invention may be executed.
  • a storage medium for a program product carrying the above-mentioned storage machine-readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • Embodiments of the present application also relate to the following electronic devices.
  • the electronic device can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • eNB evolved Node B
  • a small eNB may be an eNB covering a cell smaller than a macro cell, such as a pico eNB, a pico eNB, and a home (femto) eNB.
  • the electronic device may be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the electronic device may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRH) disposed at a place different from the main body.
  • a main body also referred to as a base station device
  • RRH remote wireless headends
  • various types of terminals which will be described below, can all work as base stations by temporarily or semi-persistently performing base station functions.
  • the electronic device can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable / dongle-type mobile router, and a digital camera)
  • Car terminals such as car navigation equipment.
  • the electronic device may be a wireless communication module (such as an integrated circuit module including a single or multiple chips) mounted on each of the terminals described above.
  • FIG. 24 is a block diagram showing an example of a schematic configuration of a smartphone 2500 to which the technology of the present disclosure can be applied.
  • the smart phone 2500 includes a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, a camera device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, one or more An antenna switch 2515, one or more antennas 2516, a bus 2517, a battery 2518, and an auxiliary controller 2519.
  • the processor 2501 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 2500.
  • the memory 2502 includes a RAM and a ROM, and stores data and programs executed by the processor 2501.
  • the storage device 2503 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2504 is an interface for connecting external devices such as a memory card and a universal serial bus (USB) device to the smartphone 2500.
  • the imaging device 2506 includes an image sensor such as a charge-coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 2507 may include a set of sensors such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 2508 converts a sound input to the smartphone 2500 into an audio signal.
  • the input device 2509 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2510, and receives an operation or information input from a user.
  • the display device 2510 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2500.
  • the speaker 2511 converts an audio signal output from the smartphone 2500 into a sound.
  • the wireless communication interface 2512 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 2512 may generally include, for example, a baseband (BB) processor 2513 and a radio frequency (RF) circuit 2514.
  • the BB processor 2513 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2514 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 2516.
  • the wireless communication interface 2512 may be a chip module on which a BB processor 2513 and an RF circuit 2514 are integrated. As shown in FIG.
  • the wireless communication interface 2512 may include multiple BB processors 2513 and multiple RF circuits 2514.
  • FIG. 24 shows an example in which the wireless communication interface 2512 includes a plurality of BB processors 2513 and a plurality of RF circuits 2514, the wireless communication interface 2512 may also include a single BB processor 2513 or a single RF circuit 2514.
  • the wireless communication interface 2512 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 2512 may include a BB processor 2513 and an RF circuit 2514 for each wireless communication scheme.
  • Each of the antenna switches 2515 switches a connection destination of the antenna 2516 between a plurality of circuits included in the wireless communication interface 2512 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 2516 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2512 to transmit and receive wireless signals.
  • the smartphone 2500 may include a plurality of antennas 2516.
  • FIG. 24 shows an example in which the smartphone 2500 includes a plurality of antennas 2516, the smartphone 2500 may include a single antenna 2516.
  • the smartphone 2500 may include an antenna 2516 for each wireless communication scheme.
  • the antenna switch 2515 may be omitted from the configuration of the smartphone 2500.
  • the bus 2517 connects the processor 2501, memory 2502, storage device 2503, external connection interface 2504, camera device 2506, sensor 2507, microphone 2508, input device 2509, display device 2510, speaker 2511, wireless communication interface 2512, and auxiliary controller 2519 to each other connection.
  • the battery 2518 supplies power to each block of the smartphone 2500 shown in FIG. 24 via a feeder, and the feeder is partially shown as a dotted line in the figure.
  • the auxiliary controller 2519 operates the minimum necessary functions of the smartphone 2500 in the sleep mode, for example.
  • the transmitting and receiving device of the device on the user equipment side may be implemented by the wireless communication interface 2512.
  • the electronic device on the user equipment side or the processing circuit of the information processing device and / or at least a part of the functions of each unit may also be implemented by the processor 2501 or the auxiliary controller 2519.
  • the power consumption of the battery 2518 may be reduced by performing a part of the functions of the processor 2501 by the auxiliary controller 2519.
  • the processor 2501 or the auxiliary controller 2519 may execute at least a part of the functions of the processing circuits and / or units of the electronic device or information processing device on the user equipment side by executing programs stored in the memory 2502 or the storage device 2503.
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 2300 includes multiple antennas 2310 and a base station device 2320.
  • the base station device 2320 and each antenna 2310 may be connected to each other via a radio frequency (RF) cable.
  • RF radio frequency
  • Each of the antennas 2310 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used for the base station device 2320 to transmit and receive wireless signals.
  • the gNB 2300 may include multiple antennas 2310.
  • multiple antennas 2310 may be compatible with multiple frequency bands used by the gNB 2300.
  • the base station device 2320 includes a controller 2321, a memory 2322, a network interface 2323, and a wireless communication interface 2325.
  • the controller 2321 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 2320. For example, the controller 2321 generates a data packet based on data in a signal processed by the wireless communication interface 2325, and transmits the generated packet via the network interface 2323. The controller 2321 may bundle data from multiple baseband processors to generate a bundled packet, and pass the generated bundled packet. The controller 2321 may have a logic function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 2322 includes a RAM and a ROM, and stores a program executed by the controller 2321 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 2323 is a communication interface for connecting the base station device 2320 to the core network 2324.
  • the controller 2321 can communicate with a core network node or another gNB via the network interface 2323.
  • the gNB 2300 and the core network node or other gNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface.
  • the network interface 2323 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 2323 is a wireless communication interface, compared to the frequency band used by the wireless communication interface 2325, the network interface 2323 can use a higher frequency band for wireless communication.
  • the wireless communication interface 2325 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of the gNB 2300 via the antenna 2310.
  • the wireless communication interface 2325 may generally include, for example, a BB processor 2326 and an RF circuit 2327.
  • the BB processor 2326 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and execute layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)).
  • the BB processor 2326 may have a part or all of the above-mentioned logic functions.
  • the BB processor 2326 may be a memory storing a communication control program or a module including a processor and related circuits configured to execute the program. Updating the program can change the functions of the BB processor 2326.
  • the module may be a card or a blade inserted into a slot of the base station device 2320. Alternatively, the module may be a chip mounted on a card or a blade.
  • the RF circuit 2327 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2310.
  • the wireless communication interface 2325 may include a plurality of BB processors 2326.
  • multiple BB processors 2326 may be compatible with multiple frequency bands used by the gNB 2300.
  • the wireless communication interface 2325 may include a plurality of RF circuits 2327.
  • multiple RF circuits 2327 may be compatible with multiple antenna elements.
  • FIG. 25 shows an example in which the wireless communication interface 2325 includes a plurality of BB processors 2326 and a plurality of RF circuits 2327, the wireless communication interface 2325 may also include a single BB processor 2326 or a single RF circuit 2327.
  • the transmitting and receiving device of the wireless communication device on the base station side may be implemented by the wireless communication interface 2325.
  • At least a part of the functions of the processing circuit and / or the processing unit of the electronic device or the wireless communication device on the base station side may be implemented by the controller 2321.
  • the controller 2321 may execute at least a part of a function of a processing circuit and / or each unit of an electronic device or a wireless communication device on the base station side by executing a program stored in the memory 2322.
  • the method of the present invention is not limited to being performed in the chronological order described in the specification, but may also be performed in other chronological order, in parallel, or independently. Therefore, the execution order of the methods described in this specification does not limit the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及频谱管理装置和方法、无线网络管理装置和方法以及介质。根据一个实施例,一种用于频谱管理的电子装置包括处理电路。处理电路被配置为进行控制以向一个或更多个第一频谱管理节点发送并且/或者从一个或更多个第一频谱管理节点接收频谱供需信息。频谱供需信息与电子装置和/或第一频谱管理节点所管理的无线网络管理节点的频谱供需有关。

Description

频谱管理装置和方法、无线网络管理装置和方法以及介质 技术领域
本公开一般涉及无线通信领域。更具体地,涉及用于频谱管理的电子装置、频谱管理方法、无线网络管理装置、无线网络管理方法以及计算机可读介质。
背景技术
随着无线设备数量及无线业务多样性的快速增长,频谱稀缺问题日益严重。一种有前景的解决方案是频谱共享,通过共存协调实现多个系统共享目标频段,提升资源使用效率。目前被开放用于共享的频段称作非授权频段(Unlicensed Frequency Band),例如包括3.5GHz、5GHz、6GHz等等。
发明内容
当前的共享频谱分配系统采用了中央控制的方法,即使用一个中央服务器动态获取例如主(Incumbent)用户的干扰保护条件,收集各级次系统的信息,以满足Incumbent用户的干扰保护条件为前提、为各级次系统分配资源。中央控制的方法具有以下方面的缺陷:
鲁棒性:一旦管理节点损坏或失去就会影响整个系统的运作;
公平性:因为分配权力集中很难实现真正的公平;
复杂性:因为计算能力的集中对于大规模网络很难保证性能;
经济性:运营维护费用较高,增加了频谱使用成本,不利于共享频谱服务的规模化;以及
扩展性:共享频谱服务需要复杂的申请审批流程,不利于业务需求多样化的实现。
针对以上问题中的至少一部分提出了本发明。本发明提出一种分布式共享频谱管理方案。分布式共享频谱管理系统可以包含频谱管理节点和无线网络管理节点。频谱管理节点负责频谱管理和分布式系统管理;无线网络管理节点从频谱管理节点获得频谱,服务于所管理的用户设备。多个频谱 管理节点通过协作方式,共同维护频谱分配操作的公平有效地进行。
在下文中给出了关于本发明实施例的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,以下概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据一个实施例,一种用于频谱管理的电子装置包括处理电路。处理电路被配置为进行控制以向一个或更多个第一频谱管理节点发送并且/或者从一个或更多个第一频谱管理节点接收频谱供需信息。频谱供需信息与电子装置和/或第一频谱管理节点所管理的无线网络管理节点的频谱供需有关。
根据另一个实施例,一种频谱管理方法包括由第二频谱管理节点向一个或更多个第一频谱管理节点发送并且/或者从一个或更多个第一频谱管理节点接收频谱供需信息的步骤。频谱供需信息与第二频谱管理节点和/或第一频谱管理节点所管理的无线网络管理节点的频谱供需有关。
根据又一个实施例,提供一种无线网络管理装置,包括处理电路。处理电路被配置为进行控制以向频谱管理节点发送频谱供需信息以及进行控制以从频谱管理节点接收指示频谱分配方式的信息。频谱分配方式是至少部分地基于频谱供需信息确定的。
根据再一个实施例,一种无线网络管理方法包括向频谱管理节点发送频谱供需信息的步骤以及从频谱管理节点接收指示频谱分配方式的信息的步骤。频谱分配方式是至少部分地基于频谱供需信息确定的。
本公开实施例还包括计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行根据本公开实施例的方法。
通过本公开实施例,能够公平有效地进行频谱分配操作。
附图说明
本发明可以通过参考下文中结合附图所给出的描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本发明的原理和优点。在附图中:
图1是示出根据本发明的一个实施例的用于频谱管理的电子装置的配置示例的框图;
图2是示出根据另一个实施例的用于频谱管理的电子装置的配置示例的框图;
图3是示出根据又一个实施例的用于频谱管理的电子装置的配置示例的框图;
图4是示出根据本发明的一个实施例的频谱管理方法的过程示例的流程图;
图5是示出根据本另一个实施例的频谱管理方法的过程示例的流程图;
图6是示出根据本又一个实施例的频谱管理方法的过程示例的流程图;
图7是示出根据本发明的一个实施例的无线网络管理装置的配置示例的框图;
图8是示出根据本发明的一个实施例的无线网络管理方法的过程示例的流程图;
图9示出了分布式频谱管理协议栈的示例;
图10示出了分布式频谱管理系统的结构示例;
图11示出了频谱账簿结构的示例;
图12示出了频谱区块结构的示例;
图13示出了频谱公告栏的示例;
图14示出了更新频谱公告栏的流程示例;
图15示出了频谱管理节点之间信息交互流程的示例;
图16示出了生成频谱区块(挖矿)的流程的示例;
图17示出了频谱分配执行流程的示例;
图18至图20示出了分布式频谱分配的过程示例;
图21示出了用于资源管理的逻辑实体的结构示例;
图22示出了不同公民宽带无线电服务设备(CBSD)之间的共存;
图23是示出实现本公开的方法和设备的计算机的示例性结构的框图;
图24是示出可以应用本公开内容的技术的智能电话的示意性配置的示 例的框图;
图25是示出可以应用本公开内容的技术的gNB(5G系统中的基站)的示意性配置的示例的框图。
具体实施方式
下面将参照附图来说明本发明的实施例。在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。
如图1所示,根据本实施例的用于频谱管理的电子装置100包括处理电路110。处理电路110例如可以实现为特定芯片、芯片组或者中央处理单元(CPU)等。
处理电路110包括控制单元111。需要指出,虽然附图中以功能块的形式示出了例如控制单元111以及其他单元,然而应理解,这些单元的功能也可以由处理电路作为一个整体来实现,而并不一定是通过处理电路中分立的实际部件来实现。另外,虽然图中以一个框示出处理电路,然而电子装置可以包括多个处理电路,并且可以将控制单元111以及其他单元的功能分布到多个处理电路中,从而由多个处理电路协同操作来执行这些功能。
根据本实施例的电子装置100例如可以工作为频谱管理节点。
更具体地,根据一个实施例的电子装置100可以应用于3.5GHz频段上的公民宽带无线服务(CBRS),电子装置100可以被配置在频谱接入系统(SAS)或共存管理器(CxM)侧,并且其管理的无线网络管理装置可以包括民用宽带无线服务装置(CBSD)。
根据另一个实施例的电子装置100可以应用于5GHz宽带系统(Broadband System),电子装置100可以被配置在C3实体侧,并且其管理的无线网络管理装置可以包括无线接入系统(WAS)或无线局域网(RLAN)。
虽然本公开中以3.5GHz和5GHz为例进行说明,然而本发明不限于此,而是对其它非授权频段同样适用。此外,本发明实施例中对非授权频谱的使用满足对应非授权频谱上的使用要求,例如对该频段上主用户(Incumbent user)的保护或者对较高优先级用户的保护。
此外,需要指出的是,根据本发明实施例的电子装置也可以实现为频谱 管理节点(例如SAS/CxM)的一部分,或者可以独立于频谱管理节点实现。
控制单元111被配置为进行控制以向(除与电子装置100对应的频谱管理节点之外的)一个或更多个频谱管理节点发送并且/或者从该一个或更多个频谱管理节点接收频谱供需信息。频谱供需信息与电子装置100和/或上述一个或更多个频谱管理节点所管理的无线网络管理节点(WNM)的频谱供需有关。
频谱供需信息例如可以包括频谱出让信息以及频谱需求信息中的至少之一。
更具体地,频谱出让信息例如包括频谱信息和出让节点信息。频谱信息用于进行满足频谱使用约束的频谱分配的计算,例如包括:频谱类型、频谱范围、可用时间范围、使用类型、可用位置范围以及出让节点位置信息中的一种或多种。出让节点信息用于频谱交易的计算以及频谱分配方式信息(在后面的实施例中也可以称为频谱区块)的生成,例如包括:发布出让信息的时间戳、出让节点地址(或ID)、收费标准中的一种或多种。被出让的频谱可能是未被使用(unoccupied)的频谱或者被使用的频谱。如果是未被使用的频谱,则出让节点可以是频谱管理节点(SM);如果是被使用的频谱,则出让节点可以是WNM。
频谱需求信息例如包括频谱信息和需求节点信息。频谱信息用于进行满足频谱使用约束的频谱分配的计算,例如包括:频谱类型、频谱范围、可用时间范围、使用类型、需求节点位置信息。需求节点信息用于频谱交易协议的计算以及频谱分配方式信息(或频谱区块)的生成,例如包括:发布需求信息的时间戳、需求者地址、付费标准中的一种或多种。需求节点可以是WNM。
根据本实施例,通过在频谱管理节点间收发频谱供需信息,使得频谱管理节点通过协作方式共同维护频谱分配成为可能。
此外,根据一个实施例,可以进一步基于频谱供需信息确定频谱分配方式。
如图2所示,根据本实施例的用于频谱管理的电子装置200包括处理电路210。处理电路210包括控制单元211和确定单元213。控制单元211的部分功能与前面描述的控制单元111类似。
确定单元213被配置为基于频谱供需信息确定针对电子装置200和/或 (除与电子装置200对应的频谱管理节点之外的)频谱管理节点所管理的无线网络管理节点的频谱分配方式。
此外,控制单元211还被配置为进行控制以将表示确定单元213所确定的频谱分配方式的信息发送给除与电子装置200对应的频谱管理节点之外的频谱管理节点。
换句话说,根据本实施例的电子装置200用于确定频谱分配方式(在一些示例实施例中可以被称为“挖矿”,即生成频谱区块),并将频谱分配方式的信息(在一些示例实施例中可以被称为频谱区块)。
更具体地,频谱区块的生成(挖矿)指的是频谱管理节点根据频谱管理节点之间共享的信息(在一些示例实施例中可以被称为频谱公告栏)中的频谱供需关系以及无线网络管理节点的频谱使用状态,为频谱出让节点/需求节点生成新的频谱分配信息。除了频谱供需之外,该分配结果还需要满足频谱使用约束条件。在一些示例实施例中,生成频谱区块的频谱管理节点也可以称为矿工节点或超级节点。
作为示例,图13示意性地示出了频谱公告栏包含的信息,其中一类是频谱使用约束信息,即对Incumbent用户的保护要求或者对较高优先级次用户的保护要求(例如可以由参考点和聚合干扰上限来表征),以及计算方法。Incumbent用户状态的信息可以从系统允许的合法的Incumbent信息源获得,并且可以随时时间动态变化。此外,前面已经描述了频谱供应信息和频谱需求信息的示例,这里不再重复。
作为示例,图14示出了维护频谱公告栏的示例流程。
图14中的Incumbent信息源生成Incumbent保护信息,并且向频谱管理节点发布Incumbent保护信息。
此外,频谱出让节点生成频谱出让信息(1’),频谱出让节点向频谱管理节点发布频谱出让信息(2’),频谱需求节点生成频谱需求信息(1”),频谱需求节点向频谱管理节点发布频谱需求信息(2”)。
频谱管理节点收到信息,更新频谱公告栏(3),并设定该时间为更新时间戳T update。这样整个网络的节点都可以获取该信息。
图15示出了频谱管理节点间的信息交互流程的示例。
如图15所示,一个频谱管理节点(例如矿工节点)向其它频谱管理节点请求频谱公告栏信息(1),该请求中可以包含上次更新该信息的时间戳。其 它频谱管理节点根据请求中的时间戳T req和频谱公告栏中更新时间戳T update进行比较生成响应:如果T req≥T update则响应指示不需要更新;如果T req<T update则将自T req后的公告栏信息生成响应(2)。其它频谱管理节点将频谱公告栏信息响应发布给矿工节点。矿工节点向其它频谱管理节点请求频谱区块链信息的流程类似,在此不赘述。
上面描述了确定频谱分配方式的电子装置(例如前述矿工节点)的示例实施例。此外,本发明实施例还包括不进行频谱分配方式的确定,而是从其他频谱管理节点获取频谱分配方式的电子装置。
如图3所示,根据本实施例的用于频谱管理的电子装置300包括处理电路310。处理电路310包括控制单元311和验证单元313。
控制单元311的部分功能与前面描述的控制单元111类似。
此外,控制单元311还被配置为进行控制以接收由(除与电子装置300对应的频谱管理节点之外的)频谱管理节点针对电子装置300和/或其他频谱管理节点所管理的无线网络管理节点确定的频谱分配方式的信息。
验证单元313被配置为验证所接收信息所指示的频谱分配方式。
更具体地,验证单元313可以根据以下条件来验证频谱分配方式:
保证特定用户设备的频谱使用或者使特定用户设备受到的干扰在预定范围内;以及频谱分配满足无线网络管理节点的频谱供需。
频谱分配方式的验证可以包括对频谱分配信息进行频谱使用约束条件计算,确定该频谱在可用时间范围内被输出地址对应的无线网络管理节点、以及其它满足使用条件的无线网络管理节点同时使用时,是否满足频谱公告栏中限定的频谱使用约束条件。
此外,根据一个实施例,电子装置300也可以被配置成确定频谱分配方式(类似于前面说明的电子装置200),并且控制单元311还可以被配置为进行控制以存储由电子装置300确定的频谱分配方式的信息或者经过验证的由其他频谱管理节点确定的频谱分配方式的信息。
作为示例,可以以区块链的方式存储频谱分配方式信息。接下来,对区块链进行简要说明。
区块链是随着比特币等数字加密货币的日益普及而逐渐兴起的一种全新技术,它提供了一种去中心化的、无需信任积累的信用建立范式,目前已经引起金融行业、科研机构、政府部门和投资公司的高度重视与广泛 关注。区块链技术通过建立一个共同维护且不可被篡改的数据库来记录过去的所有交易记录和历史数据,所有的数据都是分布式存储且公开透明的。在这种技术下,任何互不相识的网络用户都可以通过合约、点对点记账、数字加密等方式达成信用共识,而不需要任何的中央信任机构。在这种技术下,我们可以建立数字货币、数字资产、智能财产以及智能合约等。
区块链具有去中心化、可靠数据库、开源可编程、集体维护、安全可信、交易准匿名性等特点。为实现鲁棒的、公平的、简单的、经济的、可扩展的管理系统提供了很好的基础。然而,区块链目前的应用场景和共享频谱的应用场景存在着一个关键差距:区块链主要用于金融货币、版权维护等场景,所以具有资产或者对象唯一性特点。验证交易的合规性较为简单,例如,对于虚拟货币的转账交易,只需确认资金流出方对于该虚拟货币具有拥有权、并且其拥有的量能够负担转账交易所需。区块链的设计重点除了保证交易的不可篡改、可追溯之外,更重要的是避免同一个货币可以多次使用(double-spending)问题。
区块链有多种分类方法。一种分类方法根据区块链应用范围和发展阶段来划分,把区块链应用分为区块链1.0、2.0和3.0。区块链1.0支撑虚拟货币应用,也就是与转账、汇款和数字化支付相关的密码学货币应用。比特币是区块链1.0的典型应用。区块链2.0支撑智能合约应用,合约是经济、市场和金融的区块链应用的基石。区块链2.0应用包括股票、债券、期货、贷款、抵押、产权、智能财产和智能合约。区块链3.0应用是超越货币、金融和市场的范围的去中心化应用,特别是在政府、健康、科学、文化和艺术领域的应用。
另一种分类方法根据区块链部署模式来划分,把区块链分为公链(public blockchain)、联盟链(consortium blockchain)以及私链(private blockchain)。公链是一种网络的架构模式,在该模式下网络没有拥有者,完全对外开放。网络中每个节点都可选择拥有相同的权限。在这种“完全去中心”的区块链网络上,所有节点都可以读写区块链数据,都可作为记账的候选节点参与共识流程,有机会参与账本的生成和记账。联盟链是一种网络的架构模式,在该模式下网络属于一个联盟共同所有,网络只对联盟成员开放。网络中每个节点被赋予不同权限。在这种“部分去中心”的区块链网络上,节点根据所赋予权限读写区块链数据,参与共识流程以及参与账本的生成和记账。私链是一种网络的架构模式,在该模式下网络属于一个所有者,网络只对所有者内部成员开放。网络中每个节点被赋予不 同权限。在这种“部分中心”的区块链网络上,节点根据所有者赋予的权限读写区块链数据,参与共识流程以及参与账本的生成和记账。
本发明的一个实施例基于区块链系统,建立在IP通信协议和分布式网络的基础上的,建立于网络通信之上,完全通过互联网去交换信息。图9示出了一个基于区块链1.0的分布式频谱管理系统协议栈示意图。需要注意的是,该协议栈只是示例性的,本发明的实施例可以应用于任何区块链版本。
图10示出了可以应用本发明实施例的分布式频谱管理系统的结构,其中,逻辑实体包含Incumbent信息源、频谱管理节点以及无线网络管理节点。
更具体地,Incumbent信息源给频谱管理节点提供Incumbent用户状态。频谱管理节点将频谱分配信息通过区块进行封装,这个封装的区块叫做频谱区块(Spectrum Block)。频谱区块以区块链作为底层协议进行链接,构成频谱区块链(Spectrum Blockchain),或者频谱账簿(Spectrum Ledger)。频谱账簿由网络中的多个频谱管理节点共同维护。无线网络管理节点是无线网络的接入点,例如可以是eNB或者WiFi-AP或者CBSD。无线网络管理节点从频谱管理节点获得频谱,服务于所管理的用户设备。根据对于频谱供需操作,无线网络管理节点可以是频谱出让节点,也可以是频谱需求节点。
图10所示结构根据频谱管理节点的归属可以分为公链、联盟链、私链结构。如果成为频谱管理节点可以对公众开放,则为公链结构;如果频谱管理节点构成联盟成员,则为联盟链结构;如果频谱管理节点为某组织私有,则为私链结构。考虑到对Incumbent用户安全性保护,部署方式比较适合采用联盟链或者私链的方式,频谱管理节点被联盟或组织拥有,并且Incumbent信息源只和频谱管理节点之间建立接口。
本发明实施例中使用的数据信息可以包括频谱账簿以及频谱公告栏。前面描述了频谱公告栏的示例,这里不再重复。频谱账簿的示例结构如图11所示。频谱账簿由频谱区块链接而成,其链接指针是采用密码学哈希算法对区块头进行处理所产生的区块头哈希值。频谱区块由区块头(Block Head)和区块体(Block Body)构成。整个账簿里的第一个区块称为创世区块(Genesis Block)。
区块头包含整个区块的哈希值,用于区块间的链接,以及简化验证。 区块体的结构主要包含基本的数据块。此外,为了保证每个区块内的数据信息不可篡改,可以采用哈希(Hash)算法组成的树状信息结构处理基本数据。参见图12,示例的Merkle哈希树是一类基于哈希值的二叉树或多叉树,其叶子节点上的值为数据块的哈希值,而非叶子节点上的值是将该节点的所有子节点的组合结果的哈希值。整个树的根节点(ROOT)存储在区块头,用于快速验证每个区块内的数据信息是否被篡改;树的其它节点存储在区块体中。
与普通区块链的区别在于区块体中包含的是频谱分配相关信息,该信息包含例如:频谱及配置(频谱范围、最大可用功率、可用时间范围)、输入表示频谱出让节点、输出表示频谱需求节点。按照区块链保护隐私模型,输入输出分别为频谱出让节点/频谱需求节点的地址和位置信息,该地址由该节点的公开密钥表示。
图16示出了生成频谱区块(挖矿)的流程示例。
如图16所示,矿工节点利用频谱公告栏中的计算方法,根据频谱公告栏中的频谱供需关系以及频谱账簿中其它无线网络管理节点的频谱使用状态,为频谱出让节点/需求节点生成新的频谱分配信息,该分配结果需要满足频谱公告栏中的频谱使用约束条件。当矿工节点计算到满足约束的频谱分配结果,将其封装成频谱区块(1)。
接下来,矿工节点将频谱区块广播到频谱管理节点组成的网络中(2)。
然后,其它频谱管理节点收到广播的频谱区块,校验收到的第一个频谱区块,如果校验结果合规,则将该频谱区块添加到频谱账簿末端(3)。
关于频谱账簿数据的存储,根据存储数据量的不同,频谱管理节点可进一步分为全节点和轻量节点。全节点可以存储包含当前所有无线网络节点频谱使用状态的频谱区块信息(例如,包含从创世区块以来的所有频谱区块链数据),优点是进行频谱区块生成或频谱区块数据校验操作时仅依靠本地存储的频谱区块链以及频谱公告栏就可以完成。轻量节点可以只存储部分频谱区块信息,当需要别的数据时可以向其它频谱管理节点请求所需数据来完成相应操作。
继续参照图3,根据一个实施例,验证单元313可以被配置为当在特定时间段内接收到多个新的频谱分配方式信息的情况下,选择其中发布时间最早的一个进行验证。
对于以区块链方式进行存储的实施例,当接收到区块序号相同的多个新的频谱分配方式信息的情况下,验证单元313可以选择其中发布时间最早的一个进行验证。
此外,根据一个实施例,控制单元311可以被配置为当接收到新的频谱分配方式信息的时间窗口标识与当前存储的频谱分配方式信息的时间窗口标识不连续的情况下,进行控制以向其他频谱管理节点发出进行信息同步的请求。
对于以区块链方式进行存储的实施例,控制单元311可以被配置为当接收到新的频谱分配方式信息的区块序号与当前存储的区块链的序号不连续的情况下,进行控制以向其他频谱管理节点发出进行信息同步的请求。
此外,根据一个实施例,控制单元311可以被配置为在新存储了预定数量个频谱分配方式信息的情况下,进行控制以将与该预定数量个频谱分配方式信息之前的频谱分配方式信息所指示的频谱分配方式通知给由电子装置300管理的无线网路管理节点。
对于以区块链方式进行存储的实施例,控制单元311可以被配置为在新存储了预定数量个区块的情况下,进行控制以将与该预定数量个区块之前的区块所指示的频谱分配方式通知给由电子装置300管理的无线网路管理节点。
作为示例,图17示出了基于智能合约实施的频谱分配执行流程。如图17所示,频谱管理节点更新频谱公告栏内容(1)。特别地,当频谱区块添加到频谱账簿末端,频谱管理节点可以将公告栏里涉及的频谱出让/需求节点和资源供需请求清除,避免后续资源分配重复。
接下来,所有频谱管理节点完成频谱区块的第二验证(2),第二验证可以被视为一种合法性验证。具体地,可能会出现不同地区的两个矿工节点同时“挖出”两个新区块加以链接的情况,这时主链上就会出现“分叉”。系统并不会马上确认哪个区块不合理,而是约定后续矿工总是选择累计工作量证明最大的区块链(或者也可以采用其他方式如权益证明:proof of stake)。因此,当主链分叉以后,后续区块的矿工将通过计算和比较,将其区块链接到当前累计工作量证明最大化的备选链上,形成更长的新主链,并自动抛弃分叉处的短链,从而解决分叉问题。根据上述实施例,工作量的证明可以依据频谱区块中满足的频谱供需节点个数的多少,个数越多说明工作量越大。当频谱区块在频谱账簿上后续新增X个区块,则认为该频谱区块通过第二验证, X例如可以取5。
然后,频谱分配涉及的频谱出让/需求节点完成频谱分配重配置(3)。区块链频谱区块中的频谱分配信息实际上是智能合约(Smart Contract),该合约规定了涉及的节点出让或使用频谱的条件,涉及的节点会根据合约信息进行相应配置。
图18示出了分布式频谱分配及执行的示例流程。
在过程(1)、(1’)、(1”),各频谱管理节点在频谱管理节点构成的网络中广播发布本地频谱供需信息,使得各个频谱管理节点获得一致的全局频谱供需信息。
在过程(2),矿工节点根据频谱公告栏中的频谱供需关系以及频谱账簿中其它无线网络管理节点的频谱使用状态,为频谱出让节点/需求节点生成新的频谱分配信息,该分配结果必须满足频谱公告栏中的频谱使用约束条件。假设当前频谱账簿中频谱分配编号最大为#N。当矿工节点计算到满足约束的频谱分配结果,将该结果封装为频谱分配#N+1。
在过程(3),矿工节点在频谱管理节点构成的网络中广播发布频谱分配#N+1。
在过程(4),收到频谱分配#N+1的频谱管理节点进行如下操作:
(a)选择频谱分配#N+1:如果存在多个频谱分配#N+1,则选择时间戳最早的;
(b)对选择的频谱分配#N+1进行第一验证,第一验证可以被视为一种合规验证。第一验证可以包括两部分:频谱分配的有效性,频谱分配#N+1与频谱账簿一致性。其中,频谱分配的有效性,即频谱分配结果是否满足频谱公告栏中的频谱使用约束条件。频谱分配#N+1与频谱账簿的一致性,即频谱分配#N+1存储的上一个频谱分配的索引是否与频谱分配#N+1索引一致,以及产生的频谱分配封装是否符合要求。
(c)如果校验结果合规,则将该频谱区块添加到频谱账簿末端,确认其为有效的频谱分配#N+1;
如果频谱管理节点是矿工节点,且选择的频谱分配#N+1,则可以跳过上述第一验证步骤,直接进行步骤(c)。
在过程(5),同过程(4),收到频谱分配#N+2的频谱管理节点,对频谱分配#N+2进行第一验证,确认为有效的频谱分配#N+2。
在过程(6),同过程(5),频谱管理节点顺次对收到的频谱分配进行第一验证,直到确认频谱分配#N+1+X为有效的频谱分配,其中X为大于等于1的正整数。
在过程(7),频谱分配#N+1通过第二校验,触发其频谱分配结果的执行。一般当频谱分配在频谱账簿上后续新增X个新的频谱分配,则认为该频谱区块通过第二验证。
图19示出了分布式频谱分配及执行的示例流程。该过程与图18所示的过程的区别仅在于频谱分配以频谱区块的形式封装,在此省略其详细描述。
图20示出了分布式频谱分配及执行以及分叉处理的过程示例。
如图20所示,在过程(1)各频谱管理节点通过广播,获得一致的全局频谱供需信息。
在过程(2)、(2’),矿工节点3和4分别生成频谱分配#N+1和频谱分配#N+1’。
在过程(3)、(3’),矿工节点3和4分别广播发布生成的频谱分配。
在过程(4)、(4’),收到频谱分配#N+1和/或#N+1’的频谱管理节点进行第一验证。由于某些原因,选择的频谱分配可能不同。这些原因包括例如传输的延迟或失败,#N+1和#N+1’不能按照相同顺序到达各频谱管理节点,或者无法全部到达各频谱管理节点。结果,频谱管理节点2确认的有效频谱分配#N+1’与其它频谱管理节点确认的有效频谱分配#N+1不同。
在过程(5)~(7),除了频谱管理节点2外,其它频谱管理节点例如按照图18中的对应流程正常维护频谱账簿。
在过程(5’),频谱管理节点2接收到新的频谱分配#N+2,无法通过校验,原因是频谱分配#N+2的上一个节点是频谱分配#N+1,索引校验无法通过。因此,频谱管理节点2只能丢弃频谱分配#N+2。
在过程(6’),当频谱管理节点2接收到新的频谱分配#N+3,发现其序号无法和频谱账簿的最后一个频谱分配#N+1’保持连续,从而确认频谱账簿出现错误。因此,频谱管理节点2向其它频谱管理节点发起频谱账簿同步请求,以恢复频谱账簿的一致性。
在频谱分配以频谱区块的形式封装的情况下,分布式频谱分配及执行以及分叉处理的过程与图20类似,区别仅在于频谱分配的形式为频谱区块,在此省略详细描述。
如前所述,本发明实施例可以应用于3.5GHz频段上的公民宽带无线服务或5GHz宽带系统。接下来,对这两中应用实例进行进一步说明。
实例一:3.5GHz的CBRS
WINNF组织制定的频谱访问系统(SAS)研究3.5GHz频段上多系统间的共存管理。在美国3.5GHz频带一直用于国防部(Department of Defense,DoD)雷达系统,目前联邦通信委员会(Federal Communications Commission,FCC)在讨论将该频段通过频谱共享的方式用于商用。该共享系统是SAS的一部分,包含三个等级:
Incumbent用户代表最高等级,incumbent用户包含上述DoD雷达系统,固定卫星服务(Fixed Satellite Service,FSS),以及有限时间内的特权陆地无线业务(grandfathered terrestrial wireless operations);
其它统称公民宽带无线服务设备(Citizens Broadband Radio Service Device,CBSD),公民宽带无线服务进一步包含优先访问许可证(priority access license,PAL)以及普通授权访问(General Authorized Access,GAA)两个等级。
频谱使用上,需要保护Incumbent用户不受到来自CBSD的有害干扰,并且需要保护PAL不受到来自GAA的有害干扰。CBRS以人口普查区(census tract)为单位进行资源分配,PAL可以使用3550-3650MHz范围内的频谱,以10MHz为单位以3年为期限发放,每个人口普查区的所有PAL所占总频谱不超过70MHz,其中每个PAL的频谱不超过40MHz。GAA在保证不对高级别用户产生有害干扰的前提下,可以使用3550-3700MHz范围内的频谱。用于资源管理的逻辑实体主要包括SAS以及域代理(Domain Proxy),参见图21,其中域代理代表个体CBSD或者网络CBSD与SAS进行交互为CDSD获得服务。当然,CBSD也可以不通过域代理直接与SAS进行交互获得服务。
CBRS联盟(CBRS-A)组织制定技术规范(TS),提供不同CBSD之间的共存。CBRS-A管理的共存组(Coexistence Group,CxG)中逻辑实体共存管理器(Coexistence Manager,CxM)负责遵循SAS的规则,管理GAA用户之间的共存,参见图22。
在本发明实施例应用于3.5GHz的CBRS的情况下,所述incumbent信息源可以为Incumbent Detection(ESC),频谱分配装置SM可以为SAS或者CxM,无线网络管理装置WNM可以为CBSD,用户设备UE可以为终端用户设备(EUD)。
实例二:5GHz宽带系统
开发用于5G宽带系统的技术是欧洲委员会(European Commission)的目标之一。研究成果包括宽带无线接入网络(BRAN)的项目:WAS/RLAN在5GHz频段的中央协作。
该系统中用于管理的逻辑实体叫做C3(中央控制和协调器(Central Controller and Coordinator)),其具体化的物理实体叫做C3实体(C3Instance)。C3实体的实现可以是分布式互联互通的多个C3实体,通过信息交互实现对管理对象的中央协调。
该系统中的管理对象叫做WAS/RLAN。
在本发明实施例应用于5G宽带系统的情况下,所述incumbent信息源可以为系统定义的incumbent信息源,频谱分配装置SM可以为C3实体,无线网络管理装置WNM可以为WAS/RLANs,用户设备UE可以为WAS/RLANs的订户(Subscriber)。
在前面针对装置的实施例的描述过程中,显然也公开了一些过程和方法。接下来,在不重复前面描述过的细节的情况下,给出对根据实施例的频谱管理方法的说明。
如图4所示,根据一个实施例的频谱管理方法包括步骤S410:由第二频谱管理节点向一个或更多个第一频谱管理节点发送并且/或者从一个或更多个第一频谱管理节点接收频谱供需信息。频谱供需信息与第二频谱管理节点和/或第一频谱管理节点所管理的无线网络管理节点的频谱供需有关。
如图5所示,根据一个实施例的频谱管理方法除了包括与步骤S410类似的步骤S510,还包括:
S520,基于频谱供需信息确定针对第二频谱管理节点和/或第一频谱管理节点所管理的无线网络管理节点的频谱分配方式;以及
S530,将表示所确定的频谱分配方式的信息发送给第一频谱管理节点。
如图6所示,根据一个实施例的频谱管理方法除了包括与步骤S410类似的步骤S610,还包括:
S620,接收由第一频谱管理节点针对第二频谱管理节点和/或第一频谱管理节点所管理的无线网络管理节点确定的频谱分配方式的信息;以及
S630,验证由第一频谱管理节点确定的频谱分配方式。
此外,本发明实施例还包括无线网络管理装置。
如图7所示,根据一个实施例的无线网络管理装置700包括处理电路710。处理电路710包括发送控制单元711和接收控制单元713。
发送控制单元711被配置为进行控制以向频谱管理节点发送频谱供需信息。接收控制单元713被配置为进行控制以从频谱管理节点接收指示频谱分配方式的信息。频谱分配方式是至少部分地基于频谱供需信息确定的。
图8示出了根据一个实施例的无线网络管理方法,其包括:
S810,向频谱管理节点发送频谱供需信息;以及
S820,从频谱管理节点接收指示频谱分配方式的信息。频谱分配方式是至少部分地基于频谱供需信息确定的。
此外,本发明实施例还包括计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行根据本发明实施例的方法。
作为示例,上述方法的各个步骤以及上述装置的各个组成模块和/或单元可以实施为软件、固件、硬件或其组合。在通过软件或固件实现的情况下,可以从存储介质或网络向具有专用硬件结构的计算机(例如图23所示的通用计算机2300)安装构成用于实施上述方法的软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图23中,运算处理单元(即CPU)2301根据只读存储器(ROM)2302中存储的程序或从存储部分2308加载到随机存取存储器(RAM)2303的程序执行各种处理。在RAM 2303中,也根据需要存储当CPU 2301执行各种处理等等时所需的数据。CPU 2301、ROM 2302和RAM 2303经由总线2304彼此链路。输入/输出接口2305也链路到总线2304。
下述部件链路到输入/输出接口2305:输入部分2306(包括键盘、鼠标等等)、输出部分2307(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2308(包括硬盘等)、通信部分2309(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2309经由网络比如因特网执行通信处理。根据需要,驱动器2310也可链路到输入/输出接口2305。可拆卸介质2311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2310上,使得从中读出的计算机程序根据需要被安装到存储部分2308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质2311安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图23所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质2311。可拆卸介质2311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2302、存储部分2308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本发明的实施例还涉及一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
本申请的实施例还涉及以下电子设备。在电子设备用于基站侧的情况下,电子设备可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,电子设备可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。电子设备可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备用于用户设备侧的情况下,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。此外,电子设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个或多个晶片的集成电路模块)。
[关于终端设备的应用示例]
图24是示出可以应用本公开内容的技术的智能电话2500的示意性配置的示例的框图。智能电话2500包括处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512、一个或多个天线 开关2515、一个或多个天线2516、总线2517、电池2518以及辅助控制器2519。
处理器2501可以为例如CPU或片上系统(SoC),并且控制智能电话2500的应用层和另外层的功能。存储器2502包括RAM和ROM,并且存储数据和由处理器2501执行的程序。存储装置2503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2500的接口。
摄像装置2506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2508将输入到智能电话2500的声音转换为音频信号。输入装置2509包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2500的输出图像。扬声器2511将从智能电话2500输出的音频信号转换为声音。
无线通信接口2512支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2512通常可以包括例如基带(BB)处理器2513和射频(RF)电路2514。BB处理器2513可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2514可以包括例如混频器、滤波器和放大器,并且经由天线2516来传送和接收无线信号。无线通信接口2512可以为其上集成有BB处理器2513和RF电路2514的一个芯片模块。如图24所示,无线通信接口2512可以包括多个BB处理器2513和多个RF电路2514。虽然图24示出其中无线通信接口2512包括多个BB处理器2513和多个RF电路2514的示例,但是无线通信接口2512也可以包括单个BB处理器2513或单个RF电路2514。
此外,除了蜂窝通信方案之外,无线通信接口2512可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2512可以包括针对每种无线通信方案的BB处理器2513和RF电路2514。
天线开关2515中的每一个在包括在无线通信接口2512中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2516的连接目的地。
天线2516中的每一个均包括单个或多个天线元件(诸如包括在MIMO 天线中的多个天线元件),并且用于无线通信接口2512传送和接收无线信号。如图24所示,智能电话2500可以包括多个天线2516。虽然图24示出其中智能电话2500包括多个天线2516的示例,但是智能电话2500也可以包括单个天线2516。
此外,智能电话2500可以包括针对每种无线通信方案的天线2516。在此情况下,天线开关2515可以从智能电话2500的配置中省略。
总线2517将处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512以及辅助控制器2519彼此连接。电池2518经由馈线向图24所示的智能电话2500的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2519例如在睡眠模式下操作智能电话2500的最小必需功能。
在图24所示的智能电话2500中,用户设备侧的设备的收发装置可以由无线通信接口2512实现。用户设备侧的电子装置或信息处理设备的处理电路和/或各单元的功能的至少一部分也可以由处理器2501或辅助控制器2519实现。例如,可以通过由辅助控制器2519执行处理器2501的部分功能而减少电池2518的电力消耗。此外,处理器2501或辅助控制器2519可以通过执行存储器2502或存储装置2503中存储的程序而执行用户设备侧的电子装置或信息处理设备的处理电路和/或各单元的功能的至少一部分。
[关于基站的应用示例]
图25是示出可以应用本公开内容的技术的gNB的示意性配置的示例的框图。gNB 2300包括多个天线2310以及基站设备2320。基站设备2320和每个天线2310可以经由射频(RF)线缆彼此连接。
天线2310中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2320发送和接收无线信号。如图25所示,gNB 2300可以包括多个天线2310。例如,多个天线2310可以与gNB 2300使用的多个频带兼容。
基站设备2320包括控制器2321、存储器2322、网络接口2323以及无线通信接口2325。
控制器2321可以为例如CPU或DSP,并且操作基站设备2320的较高 层的各种功能。例如,控制器2321根据由无线通信接口2325处理的信号中的数据来生成数据分组,并经由网络接口2323来传递所生成的分组。控制器2321可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器2322包括RAM和ROM,并且存储由控制器2321执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2323为用于将基站设备2320连接至核心网2324的通信接口。控制器2321可以经由网络接口2323而与核心网节点或另外的gNB进行通信。在此情况下,gNB 2300与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2323还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2323为无线通信接口,则与由无线通信接口2325使用的频带相比,网络接口2323可以使用较高频带用于无线通信。
无线通信接口2325支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2310来提供到位于gNB 2300的小区中的终端的无线连接。无线通信接口2325通常可以包括例如BB处理器2326和RF电路2327。BB处理器2326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2321,BB处理器2326可以具有上述逻辑功能的一部分或全部。BB处理器2326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2326的功能改变。该模块可以为插入到基站设备2320的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2327可以包括例如混频器、滤波器和放大器,并且经由天线2310来传送和接收无线信号。
如图25所示,无线通信接口2325可以包括多个BB处理器2326。例如,多个BB处理器2326可以与gNB 2300使用的多个频带兼容。如图25所示,无线通信接口2325可以包括多个RF电路2327。例如,多个RF电路2327可以与多个天线元件兼容。虽然图25示出其中无线通信接口2325包括多个BB处理器2326和多个RF电路2327的示例,但是无线通信接口2325也可以包括单个BB处理器2326或单个RF电路2327。
在图25所示的gNB 2300中,基站侧的无线通信设备的收发装置可以由无线通信接口2325实现。基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分也可以由控制器2321实现。例如,控制器2321可以通过执行存储在存储器2322中的程序而执行基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分。
在上面对本发明具体实施例的描述中,针对一种实施方式描述和/或示出的特征可以用相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。
在上述实施例和示例中,采用了数字组成的附图标记来表示各个步骤和/或单元。本领域的普通技术人员应理解,这些附图标记只是为了便于叙述和绘图,而并非表示其顺序或任何其他限定。
此外,本发明的方法不限于按照说明书中描述的时间顺序来执行,也可以按照其他的时间顺序地、并行地或独立地执行。因此,本说明书中描述的方法的执行顺序不对本发明的技术范围构成限制。
尽管上面已经通过对本发明的具体实施例的描述对本发明进行了披露,但是,应该理解,上述的所有实施例和示例均是示例性的,而非限制性的。本领域的技术人员可在所附权利要求的精神和范围内设计对本发明的各种修改、改进或者等同物。这些修改、改进或者等同物也应当被认为包括在本发明的保护范围内。
Figure PCTCN2019086939-appb-000001

Claims (18)

  1. 频谱分配满足所述无线网络管理节点的频谱供需。
  2. 根据权利要求4所述的电子装置,所述处理电路还被配置为:
    进行控制以存储由所述电子装置确定的频谱分配方式的信息或者经过验证的由所述第一频谱管理节点确定的频谱分配方式的信息。
  3. 根据权利要求6所述的电子装置,其中,以区块链的方式进行所述存储。
  4. 根据权利要求6所述的电子装置,所述处理电路还被配置为:
    当在特定时间段内接收到多个新的频谱分配方式信息的情况下,选择其中发布时间最早的一个进行所述验证。
  5. 根据权利要求7所述的电子装置,所述处理电路还被配置为:
    当接收到区块序号相同的多个新的频谱分配方式信息的情况下,选择其中发布时间最早的一个进行所述验证。
  6. 根据权利要求6所述的电子装置,所述处理电路还被配置为:
    当接收到新的频谱分配方式信息的时间窗口标识与当前存储的频谱分配方式信息的时间窗口标识不连续的情况下,进行控制以向所述第一频谱管理节点发出进行信息同步的请求。
  7. 根据权利要求7所述的电子装置,所述处理电路还被配置为:
    当接收到新的频谱分配方式信息的区块序号与当前存储的区块链的序号不连续的情况下,进行控制以向所述第一频谱管理节点发出进行信息同步的请求。
  8. 根据权利要求6所述的电子装置,所述处理电路还被配置为:
    在新存储了预定数量个频谱分配方式信息的情况下,进行控制以将与所述预定数量个频谱分配方式信息之前的频谱分配方式信息所指示的频谱分配方式通知给由所述电子装置管理的无线网路管理节点。
  9. 根据权利要求7所述的电子装置,所述处理电路还被配置为:
    在新存储了预定数量个区块的情况下,进行控制以将与所述预定数量个区块之前的区块所指示的频谱分配方式通知给由所述电子装置管理的无线网路管理节点。
  10. 根据权利要求1至13中任一项所述的电子装置,其中,所述电子装置工作为第二频谱管理节点。
  11. 根据权利要求1至13中任一项所述的电子装置,其中,所述电子装置被配置在频谱接入系统SAS或共存管理器CxM侧,并且所述无线网络管理节点包括民用宽带无线服务装置CBSD。
  12. 根据权利要求1至13中任一项所述的电子装置,其中,所述电子装置被配置在C3实体侧,并且所述无线网络管理节点包括无线接入系统WAS或无线局域网RLAN。
  13. 一种频谱管理方法,包括:
    由第二频谱管理节点向一个或更多个第一频谱管理节点发送并且/或者从所述一个或更多个第一频谱管理节点接收频谱供需信息,
    其中,所述频谱供需信息与所述第二频谱管理节点和/或所述第一频谱管理节点所管理的无线网络管理节点的频谱供需有关。
  14. 根据权利要求17所述的方法,还包括:
    基于所述频谱供需信息确定针对所述第二频谱管理节点和/或所述第一频谱管理节点所管理的无线网络管理节点的频谱分配方式;以及
    将表示所确定的频谱分配方式的信息发送给所述第一频谱管理节点。
  15. 根据权利要求17所述的方法,还包括:
    接收由所述第一频谱管理节点针对所述第二频谱管理节点和/或所述第一频谱管理节点所管理的无线网络管理节点确定的频谱分配方式的信息;以及
    验证由所述第一频谱管理节点确定的频谱分配方式。
  16. 一种无线网络管理装置,包括:
    处理电路,所述处理电路被配置为
    进行控制以向频谱管理节点发送频谱供需信息;以及
    进行控制以从所述频谱管理节点接收指示频谱分配方式的信息,
    其中,所述频谱分配方式是至少部分地基于所述频谱供需信息确定的。
  17. 一种无线网络管理方法,包括:
    向频谱管理节点发送频谱供需信息;以及
    从所述频谱管理节点接收指示频谱分配方式的信息,
    其中,所述频谱分配方式是至少部分地基于所述频谱供需信息确定的。
  18. 一种计算机可读介质,其包括可执行指令,当所述可执行指令被信息处理设备执行时,使得所述信息处理设备执行根据权利要求17、18、19或21所述的方法。
PCT/CN2019/086939 2018-05-22 2019-05-15 频谱管理装置和方法、无线网络管理装置和方法以及介质 WO2019223577A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980007429.4A CN111557106A (zh) 2018-05-22 2019-05-15 频谱管理装置和方法、无线网络管理装置和方法以及介质
JP2020555158A JP7334743B2 (ja) 2018-05-22 2019-05-15 電子機器及びスペクトル管理方法
US16/962,235 US20210067974A1 (en) 2018-05-22 2019-05-15 Spectrum management device and method, wireless network management device and method, and medium
KR1020207035727A KR20210010506A (ko) 2018-05-22 2019-05-15 스펙트럼 관리 디바이스 및 방법, 무선 네트워크 관리 디바이스 및 방법, 및 매체
US17/884,583 US11671839B2 (en) 2018-05-22 2022-08-10 Spectrum management device and method, wireless network management device and method, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810494820.9A CN110519766A (zh) 2018-05-22 2018-05-22 频谱管理装置和方法、无线网络管理装置和方法以及介质
CN201810494820.9 2018-05-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/962,235 A-371-Of-International US20210067974A1 (en) 2018-05-22 2019-05-15 Spectrum management device and method, wireless network management device and method, and medium
US17/884,583 Continuation US11671839B2 (en) 2018-05-22 2022-08-10 Spectrum management device and method, wireless network management device and method, and medium

Publications (1)

Publication Number Publication Date
WO2019223577A1 true WO2019223577A1 (zh) 2019-11-28

Family

ID=68616225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086939 WO2019223577A1 (zh) 2018-05-22 2019-05-15 频谱管理装置和方法、无线网络管理装置和方法以及介质

Country Status (5)

Country Link
US (2) US20210067974A1 (zh)
JP (1) JP7334743B2 (zh)
KR (1) KR20210010506A (zh)
CN (2) CN110519766A (zh)
WO (1) WO2019223577A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137583A1 (en) * 2018-10-24 2020-04-30 Motorola Solutions, Inc. Distributed radio frequency spectrum sharing coordination system
CN111385886A (zh) * 2018-12-29 2020-07-07 索尼公司 频谱管理装置、频谱管理方法和计算机可读存储介质
CN112954698A (zh) 2019-12-10 2021-06-11 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN112184452A (zh) * 2020-10-27 2021-01-05 鹏城实验室 基于区块链的多方频谱交易平台、交易方法及存储介质
US11617182B2 (en) 2020-11-19 2023-03-28 Charter Communications Operating, Llc Beam-level spectrum management in 5G radio networks
CN114697971A (zh) * 2020-12-28 2022-07-01 索尼公司 促进频谱共享的区块链节点和方法
CN112954799B (zh) * 2021-01-26 2023-08-18 中国电子科技集团公司第七研究所 一种基于区块链的动态用频协同规划方法
US11968654B2 (en) 2021-05-05 2024-04-23 Charter Communications Operating, Llc Heartbeat management in wireless communication networks
US20220376921A1 (en) * 2021-05-21 2022-11-24 At&T Mobility Ii Llc Blockchain authenticator for dynamic spectrum sharing and blockchain cybersecurity services
US11956641B2 (en) * 2021-05-25 2024-04-09 Charter Communications Operating, Llc Inter-SAS spectrum allocation synchronization
CN113328782B (zh) * 2021-05-25 2022-07-26 清华大学 基于区块链的星地网络资源共享架构系统及其运行方法
CN116095691A (zh) * 2021-11-05 2023-05-09 索尼集团公司 电子设备、频谱管理设备、系统、方法以及存储介质
CN116801261A (zh) * 2022-03-15 2023-09-22 索尼集团公司 用于频谱共享系统的电子设备、方法和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083825A (zh) * 2006-05-30 2007-12-05 株式会社Ntt都科摩 在共存的多种无线网络中进行动态频谱分配的方法及装置
CN102186176A (zh) * 2011-04-22 2011-09-14 南京邮电大学 基于供需平衡的认知无线电频谱共享方法
CN104735677A (zh) * 2015-04-15 2015-06-24 电子科技大学 一种基于不完全网络环境信息的分布式频谱共享方法
US20180084431A1 (en) * 2015-06-29 2018-03-22 T-Mobile Usa, Inc. Cellular communications spectrum management

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8139496B2 (en) 2007-03-06 2012-03-20 Spectrum Bridge, Inc. System and method for policing spectrum usage
CN105356985B (zh) 2010-05-06 2019-02-05 交互数字专利控股公司 动态频谱管理的方法及装置
US9237574B2 (en) * 2011-10-26 2016-01-12 Nec Corporation Spectrum control system, database, spectrum control method, and non-transitory computer-readable medium storing spectrum control program
US9686814B2 (en) * 2011-11-07 2017-06-20 Industrial Technology Research Institute Method of reference cell maintenance
EP2621210B1 (en) 2012-01-27 2014-01-22 Alcatel Lucent Method for determining cell configuration parameters in a wireless telecommunication network
US9019992B2 (en) 2013-01-08 2015-04-28 Tangome, Inc. Joint retransmission and frame synchronization for error resilience control
CN104811943A (zh) 2014-01-24 2015-07-29 中兴通讯股份有限公司 认知无线电系统频谱资源配置方法和装置
CN105336335B (zh) * 2014-07-25 2020-12-08 杜比实验室特许公司 利用子带对象概率估计的音频对象提取
CN104796901B (zh) 2015-04-21 2018-04-10 上海交通大学 分布式频谱资源动态分配的实现方法
GB2559475A (en) * 2016-09-19 2018-08-08 Citadel Defense Company Radio control transmissions
CN106792718A (zh) * 2016-12-28 2017-05-31 武汉邮电科学研究院 适用于5g网络的高低频段的频谱资源分配方法
EP3603154A1 (en) 2017-03-21 2020-02-05 Corning Optical Communications LLC Systems and methods for dynamically allocating spectrum among cross-interfering radio nodes of wireless communications systems
US11025493B2 (en) 2017-11-14 2021-06-01 Volkan Sevindik Smallcell network deployment, optimization and management based on blockchain technology
CN110248414A (zh) 2018-03-09 2019-09-17 索尼公司 用于无线通信的电子设备、方法和计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083825A (zh) * 2006-05-30 2007-12-05 株式会社Ntt都科摩 在共存的多种无线网络中进行动态频谱分配的方法及装置
CN102186176A (zh) * 2011-04-22 2011-09-14 南京邮电大学 基于供需平衡的认知无线电频谱共享方法
CN104735677A (zh) * 2015-04-15 2015-06-24 电子科技大学 一种基于不完全网络环境信息的分布式频谱共享方法
US20180084431A1 (en) * 2015-06-29 2018-03-22 T-Mobile Usa, Inc. Cellular communications spectrum management

Also Published As

Publication number Publication date
KR20210010506A (ko) 2021-01-27
US20220386131A1 (en) 2022-12-01
CN111557106A (zh) 2020-08-18
US11671839B2 (en) 2023-06-06
JP7334743B2 (ja) 2023-08-29
US20210067974A1 (en) 2021-03-04
CN110519766A (zh) 2019-11-29
JP2021524172A (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
WO2019223577A1 (zh) 频谱管理装置和方法、无线网络管理装置和方法以及介质
Yue et al. A survey of decentralizing applications via blockchain: The 5G and beyond perspective
Ling et al. Blockchain radio access network (B-RAN): Towards decentralized secure radio access paradigm
US11836721B2 (en) Protection of information in an information exchange
CN104081742A (zh) 用于提供联合服务账户的方法和装置
US9756036B2 (en) Mechanisms for certificate revocation status verification on constrained devices
WO2021115184A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN111869187A (zh) Iot服务层系统与分布式分类账系统之间的互通
Ling et al. Hash access: Trustworthy grant-free IoT access enabled by blockchain radio access networks
CN110660466A (zh) 结合区块链的物联网的个人健康数据上链方法及系统
Xiao et al. Edgetoll: A blockchain-based toll collection system for public sharing of heterogeneous edges
US20230239704A1 (en) Electronic management device and method for wireless communication, and computer-readable medium
JP6447949B1 (ja) 認証システム、認証サーバ、認証方法及び認証プログラム
Roopa et al. Mathematical modeling and performance evaluation of Beran for 6G Wireless Networks
KR102154347B1 (ko) 휴대 단말기를 이용한 다수의 IoT 디바이스 통신 시스템 및 그 서비스 제공 방법
CN114531342B (zh) 基于区块链的网络切片资源交易系统、方法和介质
WO2023125298A1 (zh) 用于无线通信的频谱管理电子设备和决策电子设备及方法
Lin et al. BcMON: Blockchain Middleware for Offline Networks
US20220405384A1 (en) Blockchain-based method and system for securing a network of virtual wireless base stations
US20230300256A1 (en) Blockchain nodes and methods for facilitating spectrum sharing
US20230354049A1 (en) Electronic device and method in a wireless communication
CN114143333A (zh) 预言机数据处理方法及中心化预言机模块
Singh et al. Role of Blockchain Technology in 6G Network Management
CN117764586A (zh) 基于区块链优先拍卖共识的可信电磁频谱管控方法、系统、设备及介质
CN115766830A (zh) 算力网络处理方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035727

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19807368

Country of ref document: EP

Kind code of ref document: A1