WO2019223279A1 - 计及环境成本与实时电价的可平移负荷模型构建方法 - Google Patents

计及环境成本与实时电价的可平移负荷模型构建方法 Download PDF

Info

Publication number
WO2019223279A1
WO2019223279A1 PCT/CN2018/118421 CN2018118421W WO2019223279A1 WO 2019223279 A1 WO2019223279 A1 WO 2019223279A1 CN 2018118421 W CN2018118421 W CN 2018118421W WO 2019223279 A1 WO2019223279 A1 WO 2019223279A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
model
real
translatable
load model
Prior art date
Application number
PCT/CN2018/118421
Other languages
English (en)
French (fr)
Inventor
崔琼
舒杰
黄磊
吴志锋
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to JP2019565794A priority Critical patent/JP2020524325A/ja
Publication of WO2019223279A1 publication Critical patent/WO2019223279A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Definitions

  • the invention relates to the technical field related to a translatable load model, in particular to a method for constructing a translatable load model that takes into account environmental costs and real-time electricity prices.
  • Micro-grid can fully promote the large-scale access of distributed power sources and renewable energy sources, and achieve highly reliable supply of multiple energy forms of loads. It is an effective way to implement active distribution networks and make the transition from traditional grids to smart grids. . In order to achieve the goals of microgrid safety, reliability, economy, cleanliness, efficiency, and interaction, it is necessary to study the optimal operation of the system. At present, the goal optimization of micro-grids mostly focuses on the control of the power generation side, that is, by rationally arranging the output of the controllable units in the system to optimize the customized target, rarely considering the load side demand response.
  • the translatable load can appropriately adjust its power supply time without affecting the user's power comfort. It is a type of load that is highly controllable and meets demand-side response requirements.
  • the target load in the translatable load model only considers the inverse proportion to the real-time electricity price to adjust the load demand distribution. It does not take into account the environmental costs saved by renewable energy generation. A more reasonable target load affects the effectiveness of the translatable load model.
  • a method for constructing a translatable load model that takes into account environmental costs and real-time electricity prices including:
  • the input modeling preparation data specifically includes:
  • translatable load over time and its power demand power, load forecast data, renewable power generation power forecast data, real-time electricity prices, and thermal power pollutant emission data;
  • the emission data of thermal power generation pollutants specifically include:
  • step of establishing environmental costs saved by renewable energy power generation specifically includes:
  • C t is the cost of environmental pollution loss
  • p i is the environmental value standard of the i-th pollutant
  • q i is the government charging standard of the i-th pollutant
  • E i, t is the i-th time period of t during thermal power generation Pollutant emissions
  • WP t is the predicted power for renewable energy generation in the t-th period.
  • steps of establishing the new electricity price model include:
  • PR t PR N, t -PR wp, t
  • PR N, t is the current real-time electricity price
  • PR wp, t is the electricity price converted from the environmental cost saved by renewable energy generation
  • model of PR wp, t is:
  • the P f, t is the original predicted load before the load shift in t period.
  • the new target load model is:
  • the P obj, t is an optimized target load in a period of t, and T is a scheduling period.
  • establishing the translatable load model specifically includes:
  • the load t is a load after the translatable load moves
  • the method for solving the translatable load model is to adopt the linear interactive universal optimizer, that is, the LINGO software.
  • a linear interactive universal optimizer namely the LINGO solver, is used to solve the translational load model, which can quickly and efficiently handle large-scale linear constraint integer quadratic programming.
  • the model is superior to traditional optimization methods such as effective set method, interior point method, and particle swarm optimization in solving speed and efficiency.
  • FIG. 1 is a working flowchart of a method for constructing a translatable load model taking into account environmental costs and real-time electricity prices according to the present invention.
  • Figure 1 shows the working flowchart of a method for optimizing a translational load model, including:
  • Step S101 input the preparation data for modeling, including: the type and number of the translatable load over time and its power demand power, load forecast data, forecast data for renewable energy power generation, real-time electricity prices, and thermal power pollutant emissions data;
  • Step S102 Establishing environmental costs saved by renewable energy power generation.
  • the specific steps include:
  • C l, t is the cost of environmental pollution loss
  • p i is the environmental value standard of the i-th pollutant
  • the unit is yuan / kg
  • q i is the government charge standard of the i-th pollutant
  • per pollution equivalent is 12 yuan calculation
  • E i, t is the emission amount of the ith pollutant during thermal power generation, the unit is g / (kw ⁇ h)
  • WP t is the predicted power of renewable energy generation at time t, the unit is kw ⁇ h ;
  • Step S103 the step of establishing a new electricity price model, specifically including:
  • PR t PR N, t -PR wp, t
  • PR N, t is the current real-time electricity price
  • PR wp, t is the electricity price converted from the environmental cost saved by renewable energy generation
  • model of PR wp, t is:
  • the P f, t is the original predicted load before the load shift in t period
  • step S104 the optimized target load model is:
  • the P obj, t is an optimized target load in a period of t, and T is a scheduling period;
  • Step S105 establishing a translatable load model, including: translatable load objective function and constraint conditions,
  • the objective function specifically includes:
  • load t is the load value after translation in period t
  • forecasted t is the predicted load value in period t
  • shfitin t and shfitout t are the translational load values moved in and out during t period
  • T is the scheduling period
  • k is the translatable load Type
  • K 1 is the total number of types of translatable load
  • x k, t1, t is the number of units in which the k-th translatable load moves from t 1 to t
  • P k, 1 is the k-th translatable load in the first
  • K 2 is the total number of load types for which the power consumption lasts for a scheduling period
  • L max is the maximum power duration of all translatable load units
  • P k, (l + 1) is the k-th type of translational load at l Load value in +1 period
  • the constraints include:
  • I the number of units of the k-th load in the scheduling period t 1 before the load is translated;
  • the number of units of the k-th load in the scheduling time period t 1 after the load is shifted. All the load unit numbers are the number of units in the first power consumption period of the load in the scheduling period.
  • sk, t is the earliest possible transition period;
  • d k, t is the translation margin of the k- th type of translatable load;
  • Step S106 using the lingo software, the branch and bound method is used to solve the translatable load model, and the translation result is output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种计及环境成本与实时电价的可平移负荷模型构建方法,将可再生能源出力换算成为可节约的环境成本,再结合现有的实时电价进行整合得到新的电价模型,得到改进的目标负荷模型,进而构建新的可平移负荷模型;同时采用线性交互式通用优化器,即LINGO求解器求解可平移负荷模型,可以快速高效的处理规模较大的线性约束整型二次规划模型,在求解速度和效率上优于传统的有效集法、内点法、粒子群算法等最优化求解算法。该模型纳入微电网的多目标优化调度中,能够更有效地减轻负荷高峰时段电网供电压力,降低电气设备使用的峰值功率,提高可再生能源利用率,最终提高了整个系统运行的可靠性和经济性。

Description

计及环境成本与实时电价的可平移负荷模型构建方法 技术领域
本发明涉及可平移负荷模型相关技术领域,特别是涉及一种计及环境成本与实时电价的可平移负荷模型构建方法。
背景技术
由于环境保护和能源枯竭的双重压力,迫使我们大力发展清洁的可再生能源。高效分布式能源系统的发展潜力和利益空间巨大。微电网能够充分促进分布式电源与可再生能源的大规模接入,实现对负荷多种能源形式的高可靠供给,是实现主动式配电网的一种有效方式,使传统电网向智能电网过渡。为了实现微电网安全、可靠、经济、清洁、高效、互动的目标,需要对系统进行优化运行研究。目前微电网的目标优化大多集中在发电侧控制方面,即通过合理安排系统内可控单元的出力以使定制的目标最优,很少考虑到负荷端需求响应方面。随着经济的飞速发展,负荷不断增长,人们对供电要求也越来越高。城市负荷峰谷差不断增大,为了满足用户对供电安全性、可靠性等的要求,每年需要增加不少发电站、变电站和输电线路,以增加备用容量。但是每年负荷峰值持续时间却相对较短,为保证少数用电高峰日的可靠供电,新建设施增大备用容量,显然非常不经济。装设储能系统虽然是一个解决途径,但其成本过高,且目前各项技术还不够成熟,相比之下,直接对需求侧进行有效管理,缩小峰谷差,显得更为经济有效。需求侧响应是针对用户侧的负荷通过实时电价或其他激励手段以引导用户积极响应。其强调的是用户根据调度指令或电价信号主动进行用电行为调整,以维护整个系统的安全、可靠、稳定运行以及最大效益的节能减排。可平移负荷在不影响用户用电舒适度的情况下,可适当调整其供电时间,是可控性强并满足需求侧响应要求的一类负荷。
目前微电网并网状态下,可平移负荷模型中的目标负荷仅考虑了与实时电价成反比例的关系,来进行负荷需求分布调整,未考虑可再生能源发电所节约的环境成本,因此,无法得到更合理的目标负荷,进而影响可平移负荷模型的有效性。
发明内容
基于此,为了更有效地减轻负荷高峰时段电网供电压力,提高电网运行可靠 性和可再生能源利用率,有必要针对目前可平移负荷模型仅考虑实时电价来确立目标负荷的问题,提出一种计及环境成本与实时电价的可平移负荷模型构建方法。
一种计及环境成本与实时电价的可平移负荷模型构建方法,包括:
输入建模的准备数据;
建立可再生能源发电所节约的环境成本;
确立新的电价模型;
提出新的目标负荷模型;
建立可平移负荷模型并求解。
进一步地,所述输入建模的准备数据,具体包括:
可平移负荷随时间分布的种类、数目及其用电需求功率、负荷预测数据、可再生能源发电功率预测数据、实时电价、火力发电污染物排放数据;
所述火力发电污染物排放数据,具体包括:
不同种类污染物的排放量、环境价值标准、政府收费标准以及污染当量。
进一步地,所述建立可再生能源发电所节约的环境成本的步骤,具体包括:
Figure PCTCN2018118421-appb-000001
其中所述C t为环境污染损失成本,p i为第i种污染物的环境价值标准;q i为第i种污染物的政府收费标准;E i,t为火力发电时t时段第i种污染物的排放量;WP t为第t时段可再生能源发电的预测功率。
进一步地,建立所述新的电价模型,其步骤具体包括:
PR t=PR N,t-PR wp,t
其中所述PR N,t为现有的实时电价,PR wp,t为可再生能源发电可节约的环境成本折合后的电价,所述PR wp,t,其模型为:
Figure PCTCN2018118421-appb-000002
所述P f,t为t时段负荷平移前的原始预测负荷。
进一步地,所述新的目标负荷模型为:
Figure PCTCN2018118421-appb-000003
所述P obj,t为t时段优化后的目标负荷,所述T为调度周期。
进一步地,建立所述可平移负荷模型,具体包括:
Figure PCTCN2018118421-appb-000004
所述load t为可平移负荷移动后的负荷;
求解可平移负荷模型,其方法为采用线性交互式通用优化器,即LINGO软件求解。
与现有技术相比,本发明的有益效果是:
并网运行机制下,在可平移负荷建模只考虑实时电价的现有技术的基础上,同时考虑可再生能源出力涉及的环境节约成本,进而对实时电价进行整合,以得到更有效的目标负荷,进而可以得到经济性更优的可平移负荷模型结果;同时选用线性交互式通用优化器,即LINGO求解器求解可平移负荷模型,可以快速高效的处理规模较大的线性约束整型二次规划模型,在求解速度和效率上优于传统的有效集法、内点法、粒子群算法等最优化求解算法。
附图说明
图1为本发明计及环境成本与实时电价的可平移负荷模型构建方法的工作流程图。
具体实施方式
下面结合附表、附图和具体实施例对本发明做进一步详细的说明。
如图1所示为一种可平移负荷模型优化方法的工作流程图,包括:
步骤S101,输入建模的准备数据,具体包括:可平移负荷随时间分布的种类、数目及其用电需求功率,负荷预测数据、可再生能源发电功率预测数据、实时电价、火力发电污染物排放数据;
步骤S102,建立可再生能源发电所节约的环境成本,具体步骤包括:
Figure PCTCN2018118421-appb-000005
其中所述C l,t为环境污染损失成本,p i为第i种污染物的环境价值标准,单位 为元/kg;q i为第i种污染物的政府收费标准,按每污染当量为12元计算;E i,t为火力发电时第i种污染物的排放量,单位为g/(kw·h),WP t为第t时刻可再生能源发电的预测功率,单位为kw·h;
步骤S103,建立新电价模型的步骤,具体包括:
PR t=PR N,t-PR wp,t
其中所述PR N,t为现有的实时电价,PR wp,t为可再生能源发电可节约的环境成本折合后的电价,所述PR wp,t,其模型为:
Figure PCTCN2018118421-appb-000006
所述P f,t为t时段负荷平移前的原始预测负荷;
步骤S104,优化的目标负荷模型为:
Figure PCTCN2018118421-appb-000007
所述P obj,t为t时段优化后的目标负荷,所述T为调度周期;
步骤S105,建立可平移负荷模型,包括:可平移负荷目标函数和约束条件,
所述目标函数,具体包括:
Figure PCTCN2018118421-appb-000008
load t=forecasted t+shfitin t-shfitout t
Figure PCTCN2018118421-appb-000009
Figure PCTCN2018118421-appb-000010
式中,load t为t时段平移后的负荷值,forecasted t为t时段负荷预测值,shfitin t、shfitout t为t时段移入和移出的可平移负荷值,T为调度周期;k为可 平移负荷种类,K 1为可平移负荷种类总数;x k,t1,t为第k类可平移负荷从t 1时段移入到t时段的单元数;P k,1为第k类可平移负荷在第1个工作时段的负荷值;K 2为用电持续一个调度时间段的负荷种类总数;
Figure PCTCN2018118421-appb-000011
为第k类可平移负荷从t 1时段移入到t-l时段的单元数;L max为所有可平移负荷单元最大用电持续时间;P k,(l+1)为第k类平移负荷在第l+1时段的负荷值;
Figure PCTCN2018118421-appb-000012
为第k类可平移负荷从t时段移出到t 1时段的单元数;
Figure PCTCN2018118421-appb-000013
为第k类可平移负荷从t-l时段移出到t 1时段的单元数;
所述约束条件,具体包括:
Figure PCTCN2018118421-appb-000014
Figure PCTCN2018118421-appb-000015
Figure PCTCN2018118421-appb-000016
式中,
Figure PCTCN2018118421-appb-000017
为负荷在平移前第k类负荷在调度时间段t 1的单元数;
Figure PCTCN2018118421-appb-000018
为负荷在平移后第k类负荷在调度时间段t 1的单元数,所有负荷单元数均为该类负荷第一个用电时段在该调度时段的单元数,平移前后负荷种类不变,即K 1=K 1′;s k,t为最早可能转入时段;d k,t为第k类可平移负荷的平移裕度;
步骤S106,利用lingo软件,采用分支定界法,求解可平移负荷模型,输出平移结果。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

  1. 一种计及环境成本与实时电价的可平移负荷模型构建方法,其特征在于,包括:
    输入建模的准备数据;
    建立可再生能源发电所节约的环境成本;
    确立新的电价模型;
    提出新的目标负荷模型;
    建立可平移负荷模型并求解。
  2. 根据权利要求1所述的一种计及环境成本与实时电价的可平移负荷模型构建方法,其特征在于,
    所述输入建模的准备数据,具体包括:
    可平移负荷随时间分布的种类、数目及其用电需求功率、负荷预测数据、可再生能源发电功率预测数据、实时电价、火力发电污染物排放数据;
    所述火力发电污染物排放数据,具体包括:
    不同种类污染物的排放量、环境价值标准、政府收费标准以及污染当量。
  3. 根据权利要求1或2所述的一种计及环境成本与实时电价的可平移负荷模型构建方法,其特征在于,
    所述建立可再生能源发电所节约的环境成本的步骤,具体包括:
    Figure PCTCN2018118421-appb-100001
    其中所述C t为环境污染损失成本,p i为第i种污染物的环境价值标准;q i为第i种污染物的政府收费标准;E i,t为火力发电时t时段第i种污染物的排放量;WP t为第t时段可再生能源发电的预测功率。
  4. 根据权利要求3所述的一种计及环境成本与实时电价的可平移负荷模型构建方法,其特征在于,
    建立所述新的电价模型,其步骤具体包括:
    PR t=PR N,t-PR wp,t
    其中所述PR N,t为现有的实时电价,PR wp,t为可再生能源发电可节约的环境成 本折合后的电价,所述PR wp,t,其模型为:
    Figure PCTCN2018118421-appb-100002
    所述P f,t为t时段负荷平移前的原始预测负荷。
  5. 根据权利要求4所述的一种计及环境成本与实时电价的可平移负荷模型构建方法,其特征在于,所述新的目标负荷模型为:
    Figure PCTCN2018118421-appb-100003
    所述P obj,t为t时段优化后的目标负荷,所述T为调度周期。
  6. 根据权利要求5所述的一种计及环境成本与实时电价的可平移负荷模型构建方法,其特征在于,
    建立所述可平移负荷模型,具体包括:
    Figure PCTCN2018118421-appb-100004
    所述load t为可平移负荷移动后的负荷;
    求解可平移负荷模型,其方法为采用线性交互式通用优化器,即LINGO软件求解。
PCT/CN2018/118421 2018-10-18 2018-11-30 计及环境成本与实时电价的可平移负荷模型构建方法 WO2019223279A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019565794A JP2020524325A (ja) 2018-10-18 2018-11-30 環境コストおよびリアタイムの電気代の両方を考慮した変位可能な負荷モデルの構築方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811216668.4 2018-10-18
CN201811216668.4A CN109412148B (zh) 2018-10-18 2018-10-18 计及环境成本与实时电价的可平移负荷模型构建方法

Publications (1)

Publication Number Publication Date
WO2019223279A1 true WO2019223279A1 (zh) 2019-11-28

Family

ID=65467597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118421 WO2019223279A1 (zh) 2018-10-18 2018-11-30 计及环境成本与实时电价的可平移负荷模型构建方法

Country Status (3)

Country Link
JP (1) JP2020524325A (zh)
CN (1) CN109412148B (zh)
WO (1) WO2019223279A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112507507A (zh) * 2020-10-12 2021-03-16 上海电力大学 一种基于经济性与可靠性的综合能源设备优化配置方法
CN112949093A (zh) * 2021-04-08 2021-06-11 湘潭大学 面向智能楼宇可调度负荷模型
CN112953000A (zh) * 2021-01-22 2021-06-11 深圳市爱嘉物业管理有限公司 一种智慧社区微电网和新能源相结合的节能供电方法
CN113595158A (zh) * 2021-08-04 2021-11-02 国网江苏省电力有限公司南通供电分公司 配售电竞争态势下区域配电网的供电能力评估方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110594962B (zh) * 2019-08-26 2021-04-02 中国科学院广州能源研究所 一种基于模糊需求响应的分布式能源系统优化配置方法
CN117289750A (zh) 2023-09-12 2023-12-26 三峡国际能源投资集团有限公司 一种基于光伏阵列输出特性的最大功率点追踪方法、装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150311713A1 (en) * 2014-04-28 2015-10-29 Nec Laboratories America, Inc. Service-based Approach Toward Management of Grid-Tied Microgrids
CN107358345A (zh) * 2017-06-30 2017-11-17 上海电力学院 计及需求侧管理的分布式冷热电联供系统优化运行方法
CN107482638A (zh) * 2017-07-21 2017-12-15 杭州电子科技大学 冷热电联供型微电网多目标动态优化调度方法
CN107769244A (zh) * 2017-08-31 2018-03-06 南京邮电大学 计及多种柔性负荷模型的多储能风电调度方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3787761B2 (ja) * 2001-09-27 2006-06-21 株式会社日立製作所 発電設備運用計画システム及び売電システム
JP5179423B2 (ja) * 2009-03-30 2013-04-10 東京瓦斯株式会社 エネルギーシステム最適化方法、エネルギーシステム最適化装置及びプログラム
CN104065072B (zh) * 2014-06-16 2016-03-30 四川大学 一种基于动态电价的微电网运行优化方法
JP6679417B2 (ja) * 2016-06-01 2020-04-15 ヤンマー株式会社 運転管理装置
CN106447532A (zh) * 2016-09-14 2017-02-22 国网上海市电力公司 一种电能绿色评价方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150311713A1 (en) * 2014-04-28 2015-10-29 Nec Laboratories America, Inc. Service-based Approach Toward Management of Grid-Tied Microgrids
CN107358345A (zh) * 2017-06-30 2017-11-17 上海电力学院 计及需求侧管理的分布式冷热电联供系统优化运行方法
CN107482638A (zh) * 2017-07-21 2017-12-15 杭州电子科技大学 冷热电联供型微电网多目标动态优化调度方法
CN107769244A (zh) * 2017-08-31 2018-03-06 南京邮电大学 计及多种柔性负荷模型的多储能风电调度方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112507507A (zh) * 2020-10-12 2021-03-16 上海电力大学 一种基于经济性与可靠性的综合能源设备优化配置方法
CN112507507B (zh) * 2020-10-12 2022-06-17 上海电力大学 一种基于经济性与可靠性的综合能源设备优化配置方法
CN112953000A (zh) * 2021-01-22 2021-06-11 深圳市爱嘉物业管理有限公司 一种智慧社区微电网和新能源相结合的节能供电方法
CN112949093A (zh) * 2021-04-08 2021-06-11 湘潭大学 面向智能楼宇可调度负荷模型
CN112949093B (zh) * 2021-04-08 2022-07-01 湘潭大学 面向智能楼宇负荷的优化调度方法
CN113595158A (zh) * 2021-08-04 2021-11-02 国网江苏省电力有限公司南通供电分公司 配售电竞争态势下区域配电网的供电能力评估方法
CN113595158B (zh) * 2021-08-04 2022-07-22 国网江苏省电力有限公司南通供电分公司 配售电竞争态势下区域配电网的供电能力评估方法
WO2023010760A1 (zh) * 2021-08-04 2023-02-09 国网江苏省电力有限公司南通供电分公司 配售电竞争态势下区域配电网的供电能力评估方法

Also Published As

Publication number Publication date
CN109412148A (zh) 2019-03-01
CN109412148B (zh) 2022-04-12
JP2020524325A (ja) 2020-08-13

Similar Documents

Publication Publication Date Title
WO2019223279A1 (zh) 计及环境成本与实时电价的可平移负荷模型构建方法
CN102694391B (zh) 风光储联合发电系统日前优化调度方法
Howlader et al. Distributed generation integrated with thermal unit commitment considering demand response for energy storage optimization of smart grid
Li et al. Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand
CN114498639B (zh) 一种考虑需求响应的多微电网联合互济的日前调度方法
CN103151797A (zh) 基于多目标调度模型的并网运行方式下微网能量控制方法
CN108596442A (zh) 计及条件风险价值的综合能源系统经济调度方法
Zhao et al. Day-ahead robust optimal dispatch of integrated energy station considering battery exchange service
CN115170343A (zh) 一种区域综合能源系统分布式资源和储能协同规划方法
CN112488363A (zh) 基于广义储能的多能源电力系统优化调度方法
CN108805326A (zh) 一种基于多时间尺度需求响应模型的电价定价方法
Yang et al. A two-stage operation optimization model for isolated integrated energy systems with concentrating solar power plant considering multi-energy and multi-type demand response
Yuanyuan et al. Optimization scheduling method of power grid energy-saving based on fuzzy decision
CN107622331B (zh) 一种发电机组与电力用户直接交易方式的优化方法和装置
CN116957139A (zh) 考虑微网间碳交易的多综合能源微网优化运行方法及系统
Yang et al. Storage-transmission joint planning method to deal with insufficient flexibility and transmission congestion
Jiang et al. Low-carbon economic optimal dispatch strategy of integrated energy system considering electric-heat flexible load and carbon trading
Meng et al. Economic optimization operation approach of integrated energy system considering wind power consumption and flexible load regulation
CN110826778A (zh) 一种主动适应新能源发展的负荷特性优化计算方法
CN112257951B (zh) 一种基于合作博弈的综合能源系统与配电公司的优化运行方法
CN109447369B (zh) 一种基于模拟退火算法的考虑多因素的产能端功率分配方法
CN114611905A (zh) 一种考虑气象因素的源网荷储协调规划方法
CN113762643A (zh) 区域综合能源系统的储能容量优化配置方法
Zhang et al. New urban power grid flexible load dispatching architecture and key technologies
Jiarui et al. Research on Demand Response Strategy of Electricity Market Based on Intelligent Power Consumption

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565794

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919678

Country of ref document: EP

Kind code of ref document: A1