WO2019223138A1 - 多元合金涂层、锆合金包壳及燃料组件 - Google Patents

多元合金涂层、锆合金包壳及燃料组件 Download PDF

Info

Publication number
WO2019223138A1
WO2019223138A1 PCT/CN2018/101375 CN2018101375W WO2019223138A1 WO 2019223138 A1 WO2019223138 A1 WO 2019223138A1 CN 2018101375 W CN2018101375 W CN 2018101375W WO 2019223138 A1 WO2019223138 A1 WO 2019223138A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
alloy
zirconium alloy
zirconium
alloy coating
Prior art date
Application number
PCT/CN2018/101375
Other languages
English (en)
French (fr)
Inventor
薛佳祥
李思功
李锐
刘彤
杨英
黄华伟
张显生
卢志威
Original Assignee
广东核电合营有限公司
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东核电合营有限公司, 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 广东核电合营有限公司
Publication of WO2019223138A1 publication Critical patent/WO2019223138A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of nuclear fuel, in particular to a multicomponent alloy coating, a zirconium alloy cladding and a fuel assembly.
  • zirconium alloys are prone to produce heat and hydrogen production reactions, which brings great safety risks to nuclear reactors.
  • the corrosion resistance of the zirconium alloy under high temperature water vapor conditions can be significantly improved;
  • Surface modification technology, through surface heat treatment, chemical heat treatment, Laser surface treatment, ion implantation and other methods can change the morphology, chemical composition, phase composition, microstructure, defect state or stress state of the surface of the zirconium alloy, thereby improving its surface properties.
  • zirconium alloy cladding At present, the main focus of zirconium alloy cladding is corrosion, hydrogen absorption, wear resistance, etc. Among them, Cr-containing coatings have received widespread attention. However, the thermal expansion coefficient of the interface between the coating and the zirconium alloy substrate is usually very different, leading to thermal shock The undercoat layer and the zirconium alloy substrate generate thermal stress, which reduces the bonding force of the coating layer. Conventional metal coatings generally have problems of low hardness and abrasion performance, and the coating and the zirconium alloy substrate are prone to eutectic reaction at high temperature; although the Cr coating has good resistance to high temperature steam oxidation, it has oxidation resistance There is still room for further improvement.
  • the technical problem to be solved by the present invention is to provide a multi-component alloy coating having excellent high-temperature oxidation resistance and wear resistance, and a zirconium alloy cladding and fuel assembly having the coating.
  • the technical solution adopted by the present invention to solve its technical problems is to provide a multi-component alloy coating including the following mass percentage elements: Cr 65% -90%, Al 3% -13%, N 0.5% -8%, Fe 5% -20%, Zr 1.5% -12%.
  • the density of the multi-component alloy coating is 95% -100%, and the porosity is ⁇ 5%.
  • Cr and Zr form a solid solution, and in the solid solution, the atomic ratio of Cr and Zr is 64: 36-69: 31.
  • the invention also provides a zirconium alloy cladding, comprising a zirconium alloy substrate and a multi-component alloy coating provided on the surface of the zirconium alloy substrate; the multi-component alloy coating includes the following elements in mass percentage: Cr 65% -90%, Al 3% -13%, N 0.5% -8%, Fe 5% -20%, Zr 1.5% -12%.
  • the density of the multi-component alloy coating is 95-100%, and the porosity is ⁇ 5%.
  • Cr and Zr form a solid solution, and in the solid solution, the atomic ratio of Cr and Zr is 64: 36-69: 31.
  • the thickness of the multi-component alloy coating is 1-100 micrometers.
  • the thickness of the multi-component alloy coating is 1-20 microns.
  • the multi-component alloy coating uses physical vapor deposition, sputtering, pulsed laser deposition, thermal spraying, plasma spraying, wire arc coating, chemical vapor deposition, electroplating, electrophoretic deposition, electroless coating, or atomic layer deposition methods. It is formed on the surface of the zirconium alloy substrate.
  • the present invention also provides a fuel assembly including a fuel rod, the fuel rod including the zirconium alloy cladding according to any one of the above.
  • the multi-component alloy coating of the present invention can be applied to a zirconium alloy cladding, which effectively solves the problem of thermal expansion mismatch between the coating and the substrate, reduces thermal stress, and further improves the hardness and wear resistance of the conventional Cr coating.
  • the regulation of the composition strengthens the anti-oxidation performance and achieves the anti-oxidation protection effect of the coating under the high temperature steam environment of 1200 ° C.
  • the zirconium alloy cladding of the present invention as a nuclear fuel cladding, includes a zirconium alloy substrate and a multi-component alloy coating provided on the surface of the zirconium alloy substrate.
  • the multi-component alloy coating has multiple elements, which include the following elements in mass percentage: Cr (chromium) 65% -90%, Al (aluminum) 3% -13%, N (nitrogen) 0.5% -8%, Fe ( Iron) 5% -20%, Zr (zirconium) 1.5% -12%.
  • the density of the multi-component alloy coating is 95-100%, and the porosity is ⁇ 5%.
  • the thickness of the multicomponent alloy coating is 1-100 micrometers, preferably 1-20 micrometers.
  • Multi-component alloy coatings can use, but are not limited to, physical vapor deposition, sputtering, pulsed laser deposition, thermal spraying, plasma spraying, wire arc coating, chemical vapor deposition, electroplating, electrophoretic deposition, electroless coating, or atomic layer deposition. It is formed on the surface of the zirconium alloy substrate. According to the different forming methods, the elements in the multi-component alloy coating can be mixed together or stacked one by one.
  • Cr is the main element of the alloy and has a good passivation effect. Under high-temperature steam oxidation environment, it can effectively form an oxide film and inhibit further oxidative corrosion. Cr as the main element of the alloy, and the addition of Al, can quickly form a dense oxide film at a lower temperature, and improve the corrosion resistance. On the basis of CrAl element, by introducing Fe element, it can be effectively alloyed with Al element to avoid the failure of the coating of elemental Al at high temperature due to the low melting point.
  • the multi-component alloy coating of the invention has excellent high-temperature oxidation resistance and abrasion resistance.
  • zirconium alloy cladding it plays a role in protecting the zirconium alloy cladding from high temperature oxidation and resisting micro-vibration wear of the grid under accident conditions.
  • the multi-component alloy coating in the present invention is not limited to the zirconium alloy cladding in the fuel assembly, but can also be provided on the surface of other nuclear fuel components, such as instrumentation tubes, guide tubes, etc., which greatly improves the nuclear reactor's maintenance of nuclear fuel components under severe accident conditions Structural and functional integrity against accidents and safety thresholds.
  • the fuel assembly of the present invention includes a fuel rod, and the fuel rod includes the aforementioned zirconium alloy cladding.
  • the fuel assembly also includes an instrument tube, a guide tube, and the like. The surfaces of the instrument tube and the guide tube may also be provided with the above-mentioned multi-component alloy coating as required.
  • a 5 ⁇ m-thick CrAlNFeZr multi-layer alloy coating is deposited on the surface of the substrate of the zirconium alloy cladding.
  • the mass percentage of each element is as follows: Cr 73%, Al 8%, N 4%, Fe 13%, Zr 2%
  • the density of the coating is> 99%, the porosity is ⁇ 1%, and the bonding strength of the coating to the zirconium alloy substrate is> 100MPa.
  • the oxidized weight gain of the zirconium alloy cladding with the multicomponent alloy coating after oxidizing at 1200 ° C for 1 hour was only 0.25 mg / cm 2 .
  • a 100 ⁇ m-thick CrAlNFeZr multi-alloy coating was deposited on the surface of the substrate of the zirconium alloy cladding.
  • the mass percentage of each element is as follows: Cr 82%, Al 6%, N 2%, Fe 8%, Zr 2%.
  • the density of the layer is more than 98%, the porosity is less than 2%, and the bonding strength between the coating and the zirconium alloy substrate is more than 80MPa.
  • the oxidized weight gain of the zirconium alloy cladding with the multi-alloy coating after the high temperature steam oxidation at 1200 ° C for 1 hour was only 0.45 mg / cm 2 .
  • a CrAlNFeZr multi-alloy coating with a thickness of 1 ⁇ m is deposited on the surface of the substrate of the zirconium alloy cladding.
  • the mass percentage of each element is as follows: Cr 65%, Al 6%, N 8%, Fe 9%, Zr 12%
  • the density of the coating is> 99%
  • the porosity is ⁇ 1%
  • the bonding strength of the coating to the zirconium alloy substrate is> 120MPa.
  • the oxidized weight gain of the zirconium alloy cladding with the multicomponent alloy coating after the high temperature steam oxidation at 1200 ° C for 1 hour was only 0.34 mg / cm 2 .
  • a 20 ⁇ m-thick CrAlNFeZr multi-alloy coating was deposited on the surface of the substrate of the zirconium alloy cladding by magnetron sputtering.
  • the mass percentage of each element is as follows: Cr 52%, Al 13%, N 7%, Fe 20%, Zr 8%
  • the density of the coating is> 99%, the porosity is ⁇ 1%, and the bonding strength of the coating to the zirconium alloy substrate is> 90MPa.
  • the oxidized weight gain of the zirconium alloy cladding with the multicomponent alloy coating after the high temperature steam oxidation at 1200 ° C for 1 hour was only 0.3 mg / cm 2 .
  • a 10 ⁇ m-thick CrAlNFeZr multi-alloy coating was deposited on the surface of the substrate of the zirconium alloy cladding by magnetron sputtering.
  • the mass percentage of each element is as follows: Cr 90%, Al 3%, N 0.5%, Fe 5%, Zr 1.5%
  • the density of the coating is> 99%, the porosity is ⁇ 1%, and the bonding strength of the coating to the zirconium alloy substrate is> 100MPa.
  • the oxidation weight gain of the zirconium alloy cladding with the multi-alloy coating after the high-temperature steam oxidation at 1200 ° C for 1 hour was only 0.18 mg / cm 2 .
  • the uncoated zirconium alloy cladding was steam oxidized at 1200 ° C for 1 hour, and the weight gain was 37 mg / cm 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种多元合金涂层、锆合金包壳及燃料组件,多元合金涂层包括以下质量百分比的元素:Cr 65%-90%、Al 3%-13%、N 0.5%-8%、Fe 5%-20%、Zr 1.5%-12%。该多元合金涂层,可应用在锆合金包壳上,有效解决涂层与基体热膨胀不匹配的问题,降低热应力,进一步提升了常规Cr涂层的硬度和耐磨性能,通过多元素成分的调控,强化了抗氧化性能,实现涂层在1200℃高温蒸汽环境下的抗氧化保护效果。

Description

多元合金涂层、锆合金包壳及燃料组件 技术领域
本发明涉及核燃料技术领域,尤其涉及一种多元合金涂层、锆合金包壳及燃料组件。
背景技术
锆合金在高温条件下,易发生产热、产氢反应,为核反应堆带来了极大的安全隐患。目前,主要有两条途径来提高锆合金的表面性能,进而大幅提升核燃料堆的安全性能:(1)表面涂层技术,通过电镀、化学镀、热喷涂、冷喷涂、气相沉积等技术在锆合金表面覆盖一层异质膜,通过异质膜与基体的紧密结合,可明显提高锆合金在高温水蒸汽条件下的耐腐蚀性能;(2)表面改性技术,通过表面热处理、化学热处理、激光表面处理、离子注入等方式来改变锆合金表面的形貌、化学成分、相组成、微观结构、缺陷状态或应力状态,从而提高其表面性能。
目前的锆合金包壳主要焦点在腐蚀、吸氢、耐磨等方面,其中含Cr涂层受到广泛关注,但通常情况下涂层与锆合金基体的界面热膨胀系数差异大问题,导致在热冲击下涂层与锆合金基体产生热应力,降低涂层结合力。常规的金属涂层普遍存在硬度和磨蚀性能较低的问题,且在高温下涂层与锆合金基体易于发生共晶反应;Cr涂层虽然有较好的抗高温蒸汽氧化性能,但抗氧化性能仍有进一步提升的空间。
技术问题
本发明要解决的技术问题在于,提供一种具有优异的抗高温氧化性能和耐磨性能的多元合金涂层及具有该涂层的锆合金包壳、燃料组件。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种多元合金涂层,包括以下质量百分比的元素:Cr 65%-90%、Al 3%-13%、N 0.5%-8%、Fe 5%-20%、Zr 1.5%-12%。
优选地,所述多元合金涂层的致密度为95%-100%,孔隙率≤5%。
优选地,所述多元合金涂层中,Cr和Zr形成固溶体,且在所述固溶体中,Cr和Zr的原子比为64:36-69:31。
本发明还提供一种锆合金包壳,包括锆合金基体、设置在所述锆合金基体表面的多元合金涂层;所述多元合金涂层包括以下质量百分比的元素:Cr 65%-90%、Al 3%-13%、N 0.5%-8%、Fe 5%-20%、Zr 1.5%-12%。
优选地,所述多元合金涂层的致密度为95-100%,孔隙率≤5%。
优选地,所述多元合金涂层中,Cr和Zr形成固溶体,且在所述固溶体中,Cr和Zr的原子比为64:36-69:31。
优选地,所述多元合金涂层的厚度为1-100微米。
优选地,所述多元合金涂层的厚度为1-20微米。
优选地,所述多元合金涂层采用物理气相沉积、溅射、脉冲激光沉积、热喷涂、等离子喷涂、丝弧涂覆、化学气相沉积、电镀、电泳沉积、无电涂覆或原子层沉积方法形成在所述锆合金基体的表面。
本发明还提供一种燃料组件,包括燃料棒,所述燃料棒包括以上任一项所述的锆合金包壳。
有益效果
本发明的多元合金涂层,可应用在锆合金包壳上,有效解决涂层与基体热膨胀不匹配的问题,降低热应力,进一步提升了常规Cr涂层的硬度和耐磨性能,通过多元素成分的调控,强化了抗氧化性能,实现涂层在1200℃高温蒸汽环境下的抗氧化保护效果。
本发明的实施方式
本发明的锆合金包壳,作为核燃料包壳,其包括锆合金基体、设置在锆合金基体表面的多元合金涂层。
其中,多元合金涂层具有多元素,其包括以下质量百分比的元素:Cr(铬)65%-90%、Al(铝) 3%-13%、N(氮)0.5%-8%、Fe(铁)5%-20%、Zr(锆) 1.5%-12%。
多元合金涂层的致密度为95-100%,孔隙率≤5%。
在锆合金基体上,多元合金涂层的厚度为1-100微米,优选1-20微米。
多元合金涂层可采用但不限于物理气相沉积、溅射、脉冲激光沉积、热喷涂、等离子喷涂、丝弧涂覆、化学气相沉积、电镀、电泳沉积、无电涂覆或原子层沉积等方法形成在锆合金基体的表面。根据形成方法的不同,多元合金涂层中各元素可混合在一起,也可以逐层叠加。
在多元合金涂层(CrAlNFeZr)中,Cr为合金主元素,具有良好的钝化作用,在高温蒸汽氧化环境下,可以有效的生成氧化膜,抑制进一步的氧化腐蚀。Cr作为合金主元素,加入Al元素,可以在较低温度下快速形成致密的氧化膜,提升耐腐蚀性能。在CrAl元素的基础上,通过引入Fe元素,可以有效地与Al元素合金化,避免单质Al由于熔点过低在高温下涂层失效。在CrAlFe元素的基础上,通过引入Zr元素,形成Cr-Zr固溶体,可以避免Cr元素与锆合金基体在高温下发生共晶反应;Cr-Zr固溶体中,Cr和Zr的原子比(原子数之比)为64:36-69:31。在CrAlFeZr元素的基础上,通过引入N元素,可以提升合金涂层的硬度和耐磨蚀性能,进一步降低核燃料包壳的破损率。多元合金涂层中,Cr和Zr形成固溶体,且在所述固溶体中,
本发明的多元合金涂层具有优异的抗高温氧化性能和耐磨性能,在锆合金包壳中,起到保护锆合金包壳在事故工况下高温氧化和抵御格架的微振磨损作用。
本发明中的多元合金涂层不限于燃料组件中的锆合金包壳,还可设置在其它核燃料组件表面,如仪表管、导向管等,极大地提高了核反应堆在严重事故工况下维持核燃料组件结构与功能完整性的抗事故能力和安全阈值。
本发明的燃料组件,包括燃料棒,燃料棒包括上述的锆合金包壳。燃料组件中,还包括仪表管、导向管等,仪表管和导向管的表面也可根据需要设置上述的多元合金涂层。
以下通过具体实施例对本发明作进一步说明。
实施例1
通过多弧离子镀,在锆合金包壳的基体表面沉积5μm厚度的CrAlNFeZr多元合金涂层,其中各元素质量百分比如下:Cr 73%、Al 8%、N 4%、Fe 13%、Zr 2%,涂层的致密度>99%,孔隙率<1%,涂层与锆合金基体结合强度>100MPa。在耐高温氧化性能方面,通过在1200℃高温蒸汽氧化1小时后,具有该多元合金涂层的锆合金包壳氧化增重仅为0.25mg/cm 2
实施例2
通过等离子喷涂,在锆合金包壳的基体表面沉积100μm厚度的CrAlNFeZr多元合金涂层,其中各元素质量百分比如下:Cr 82%、Al 6%、N 2%、Fe 8%、Zr 2%,涂层的致密度>98%,孔隙率<2%,涂层与锆合金基体结合强度>80MPa。在耐高温氧化性能方面,通过在1200℃高温蒸汽氧化1小时后,具有该多元合金涂层的锆合金包壳氧化增重仅为0.45mg/cm 2
实施例3
通过磁控溅射,在锆合金包壳的基体表面沉积1μm厚度的CrAlNFeZr多元合金涂层,其中各元素质量百分比如下:Cr 65%、Al 6%、N 8%、Fe 9%、Zr 12%,涂层的致密度>99%,孔隙率<1%,涂层与锆合金基体结合强度>120MPa。在耐高温氧化性能方面,通过在1200℃高温蒸汽氧化1小时后,具有该多元合金涂层的锆合金包壳氧化增重仅为0.34mg/cm 2
实施例4
通过磁控溅射,在锆合金包壳的基体表面沉积20μm厚度的CrAlNFeZr多元合金涂层,其中各元素质量百分比如下:Cr 52%、Al 13%、N 7%、Fe 20%、Zr 8%,涂层的致密度>99%,孔隙率<1%,涂层与锆合金基体结合强度>90MPa。在耐高温氧化性能方面,通过在1200℃高温蒸汽氧化1小时后,具有该多元合金涂层的锆合金包壳氧化增重仅为0.3mg/cm 2
实施例5
通过磁控溅射,在锆合金包壳的基体表面沉积10μm厚度的CrAlNFeZr多元合金涂层,其中各元素质量百分比如下:Cr 90%、Al 3%、N 0.5%、Fe 5%、Zr 1.5%,涂层的致密度>99%,孔隙率<1%,涂层与锆合金基体结合强度>100MPa。在耐高温氧化性能方面,通过在1200℃高温蒸汽氧化1小时后,具有该多元合金涂层的锆合金包壳氧化增重仅为0.18mg/cm 2
比较例
将没有涂层的锆合金包壳在1200℃高温蒸汽氧化1小时,氧化增重为37mg/cm 2
从上述实施例1-5及比较例的锆合金包壳在耐高温氧化性能进行比较可知,多元合金涂层有效降低锆合金包壳高温蒸汽氧化增重2个数量级。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种多元合金涂层,其特征在于,包括以下质量百分比的元素:Cr 65%-90%、Al 3%-13%、N 0.5%-8%、Fe 5%-20%、Zr 1.5%-12%。
  2. 根据权利要求1所述的多元合金涂层,其特征在于,所述多元合金涂层的致密度为95%-100%,孔隙率≤5%。
  3. 根据权利要求1所述的多元合金涂层,其特征在于,所述多元合金涂层中,Cr和Zr形成固溶体,且在所述固溶体中,Cr和Zr的原子比为64:36-69:31。
  4. 一种锆合金包壳,其特征在于,包括锆合金基体、设置在所述锆合金基体表面的多元合金涂层;所述多元合金涂层包括以下质量百分比的元素:Cr 65%-90%、Al 3%-13%、N 0.5%-8%、Fe 5%-20%、Zr 1.5%-12%。
  5. 根据权利要求4所述的锆合金包壳,其特征在于,所述多元合金涂层的致密度为95-100%,孔隙率≤5%。
  6. 根据权利要求4所述的锆合金包壳,其特征在于,所述多元合金涂层中,Cr和Zr形成固溶体,且在所述固溶体中,Cr和Zr的原子比为64:36-69:31。
  7. 根据权利要求4所述的锆合金包壳,其特征在于,所述多元合金涂层的厚度为1-100微米。
  8. 根据权利要求7所述的锆合金包壳,其特征在于,所述多元合金涂层的厚度为1-20微米。
  9. 根据权利要求4所述的锆合金包壳,其特征在于,所述多元合金涂层采用物理气相沉积、溅射、脉冲激光沉积、热喷涂、等离子喷涂、丝弧涂覆、化学气相沉积、电镀、电泳沉积、无电涂覆或原子层沉积方法形成在所述锆合金基体的表面。
  10. 一种燃料组件,其特征在于,包括燃料棒,所述燃料棒包括权利要求4-9任一项所述的锆合金包壳。
PCT/CN2018/101375 2018-05-21 2018-08-20 多元合金涂层、锆合金包壳及燃料组件 WO2019223138A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810491248.0A CN108588532B (zh) 2018-05-21 2018-05-21 多元合金涂层、锆合金包壳及燃料组件
CN201810491248.0 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019223138A1 true WO2019223138A1 (zh) 2019-11-28

Family

ID=63632211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101375 WO2019223138A1 (zh) 2018-05-21 2018-08-20 多元合金涂层、锆合金包壳及燃料组件

Country Status (2)

Country Link
CN (1) CN108588532B (zh)
WO (1) WO2019223138A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3680917B1 (en) * 2019-01-14 2023-10-04 Westinghouse Electric Sweden AB A cladding tube for a fuel rod for nuclear reactors
CN109811316B (zh) * 2019-04-04 2021-05-28 中国核动力研究设计院 一种高燃耗长寿期锆合金涂层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094664A2 (en) * 2000-06-08 2001-12-13 Surface Engineered Products Corporation Coating system for high temperature stainless steel
CN1498984A (zh) * 2002-11-07 2004-05-26 财团法人工业技术研究院 多元合金涂层
CN102397994A (zh) * 2010-09-10 2012-04-04 上海汇众汽车制造有限公司 模具
CN106399846A (zh) * 2016-10-12 2017-02-15 苏州热工研究院有限公司 核反应堆燃料包壳材料用FeCrAl合金材料
CN107442720A (zh) * 2017-06-13 2017-12-08 江苏森威精锻有限公司 一种冷作模具的材料制造工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1608157B1 (de) * 1968-03-14 1971-12-23 Kernforschung Gmbh Ges Fuer Korrosionsfester Verbundwerkstoff fuer Konstruktionsteile und Brennelementhuellen in Kernreaktoren
JP5794537B2 (ja) * 2012-05-11 2015-10-14 株式会社ディ・ビー・シー・システム研究所 耐熱合金部材およびその製造方法ならびに合金皮膜およびその製造方法
US9721676B2 (en) * 2014-05-27 2017-08-01 Westinghouse Electric Company, Llc Deposition of a protective coating including metal-containing and chromium-containing layers on zirconium alloy for nuclear power applications
CN107513694B (zh) * 2017-08-22 2019-05-14 四川大学 一种用于锆合金表面抗高温氧化ZrCrFe/AlCrFeTiZr复合梯度合金涂层制备工艺
CN107799185B (zh) * 2017-09-13 2019-11-15 中广核研究院有限公司 燃料包壳及燃料组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094664A2 (en) * 2000-06-08 2001-12-13 Surface Engineered Products Corporation Coating system for high temperature stainless steel
CN1498984A (zh) * 2002-11-07 2004-05-26 财团法人工业技术研究院 多元合金涂层
CN102397994A (zh) * 2010-09-10 2012-04-04 上海汇众汽车制造有限公司 模具
CN106399846A (zh) * 2016-10-12 2017-02-15 苏州热工研究院有限公司 核反应堆燃料包壳材料用FeCrAl合金材料
CN107442720A (zh) * 2017-06-13 2017-12-08 江苏森威精锻有限公司 一种冷作模具的材料制造工艺

Also Published As

Publication number Publication date
CN108588532B (zh) 2019-08-30
CN108588532A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
Han et al. An interesting oxidation phenomenon of Cr coatings on Zry-4 substrates in high temperature steam environment
JP6385015B2 (ja) 原子炉級ジルコニウム合金金属組織を伴う動的に付着された組成漸移型Zr−Al−CセラミックまたはTi−Al−Cセラミックまたは非晶質もしくは準非晶質ステンレス鋼
WO2019052315A1 (zh) 燃料包壳及燃料组件
JP2017527816A (ja) 核燃料被覆管、その作製方法および酸化/水素化を防ぐその使用
JP6999810B2 (ja) 高温耐酸化性が向上されたジルコニウム合金被覆管及びその製造方法
Syrtanov et al. High-temperature oxidation of Zr1Nb zirconium alloy with protective Cr/Mo coating
JP2015523231A (ja) 原子力環境において耐酸化性である多層材料
WO2019223138A1 (zh) 多元合金涂层、锆合金包壳及燃料组件
He et al. Effect of Si content of CrSi-based coatings on their oxidation resistance in high temperature air
CN105154878B (zh) 一种α-Al2O3阻氢渗透耐腐蚀绝缘层的制备方法
CN113388811A (zh) 一种事故容错燃料包壳用双层Cr/Cr2AlC涂层及其制备方法
Zeng et al. Oxidation behavior of CrSi coatings on Zry-4 substrates in 1200 C steam environment
Yang et al. Steam oxidation resistance of plasma sprayed chromium‐containing coatings at 1200° C
KR101691916B1 (ko) 내식성이 우수한 크롬-알루미늄 이원계 합금 및 이의 제조방법
Tang et al. Metallic and ceramic coatings for enhanced accident tolerant fuel cladding
RU2212473C1 (ru) Способ нанесения покрытий на сплавы
US20230220556A1 (en) Plated metallic substrates and methods of manufacture thereof
CN115679263B (zh) 一种核反应堆用耐蚀涂层、包壳材料及其制备方法
CN112695282A (zh) 一种抗中高温水蒸气腐蚀的防护涂层及其制备方法与应用
GB2252981A (en) Diffusion barrier coating for titanium alloys involving alloying
Tang et al. Oxidation performance and failure behaviour of monolithic and coated ATF claddings under severe accident conditions
CN117737652A (zh) 一种耐事故锆合金包壳表面复合涂层及其制备方法
CN113106393B (zh) 一种包含镍-钽活性扩散障层的耐熔盐腐蚀涂层及制备方法
CN117721416A (zh) 一种核用锆合金表面复合涂层及其制备方法
Wang et al. Oxidation resistance of Mo/Cr bilayer coating on Zr alloy in a 1200° C steam environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 27/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18919913

Country of ref document: EP

Kind code of ref document: A1