WO2019223053A1 - 同步加速器 - Google Patents

同步加速器 Download PDF

Info

Publication number
WO2019223053A1
WO2019223053A1 PCT/CN2018/092437 CN2018092437W WO2019223053A1 WO 2019223053 A1 WO2019223053 A1 WO 2019223053A1 CN 2018092437 W CN2018092437 W CN 2018092437W WO 2019223053 A1 WO2019223053 A1 WO 2019223053A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchrotron
magnets
particle beam
magnet
stage
Prior art date
Application number
PCT/CN2018/092437
Other languages
English (en)
French (fr)
Inventor
郑志鸿
刘铮铮
李凯若
Original Assignee
新瑞阳光粒子医疗装备(无锡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810506197.4A external-priority patent/CN108770181A/zh
Priority claimed from CN201820779978.6U external-priority patent/CN208300104U/zh
Application filed by 新瑞阳光粒子医疗装备(无锡)有限公司 filed Critical 新瑞阳光粒子医疗装备(无锡)有限公司
Publication of WO2019223053A1 publication Critical patent/WO2019223053A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons

Definitions

  • the present disclosure relates to the field of accelerator technology, for example, to a synchrotron.
  • synchrotrons have the advantages of adjustable energy and low radiation, more and more proton cancer treatment devices use synchrotrons instead of cyclotron synchrotrons to provide 70-230 MeV proton beams.
  • the perimeter of the acceleration track of a medical synchrotron is generally about 30 meters.
  • the rotary treatment head requires a large building space to accommodate it. As a result, it is difficult for hospitals in densely populated areas of the city to accommodate such huge equipment by transforming related hospital buildings. Therefore, the related art synchrotron has a problem that its use range is limited due to its large size.
  • the embodiment of the present application provides a synchrotron to solve the technical problem that the synchrotron of the related technology limits its use range due to its large size.
  • An embodiment of the present application provides a synchrotron, including:
  • a straight line section including two long straight line sections and two short straight line sections, the two long straight line sections and the two short straight line sections are arranged to serially connect the four secondary magnets into a ring, and the four two The first-order magnets are mirror-symmetrical about the center line of the two long straight-line sections, and mirror-symmetrical about the center-point lines of the two short straight-line sections;
  • the four-stage magnets and six-stage magnets are both disposed on the linear section, the four-stage magnets are set to form a preset extraction operating point of the particle beam, and the six-stage magnets are set to A third-order resonance is formed for slow extraction.
  • one end of each of the secondary magnets facing the corresponding one of the two short straight sections is provided with an edge angle for weak focusing.
  • the angle range of the edge angle is 5.5-12.5 degrees.
  • the angle range of the edge angle is 7-11 degrees.
  • a correction mechanism is further included;
  • the correction mechanism is configured to correct a magnet center error of at least one of the four secondary magnets and the four secondary magnets.
  • the correction mechanism includes a first horizontal correction coil wound on the four secondary magnets;
  • the first horizontal correction coil is configured to correct errors in the horizontal direction of the magnetic field centers of the four secondary magnets.
  • the correction mechanism includes a vertical correction coil and a second horizontal correction coil wound on the four four-level magnets;
  • the vertical correction coil is configured to correct errors in the vertical direction of the magnetic field centers of the four four-level magnets
  • the second horizontal correction coil is configured to correct errors in the horizontal direction of the magnetic field centers of the four four-level magnets.
  • the two long straight sections are respectively provided with a proton injection mechanism and a proton extraction mechanism;
  • the long straight section provided with the proton injection mechanism is provided with six-stage magnets on both sides of the injection wire cutting plate of the proton injection mechanism, and the six-stage magnets are arranged to form a third-order particle beam carrying a predetermined energy. Resonate so that the particle beam carrying the preset energy is led out of the synchrotron.
  • an injection horizontal operating point of the particle beam into the synchrotron ranges from 1.35-1.357;
  • the range of the horizontal working point at which the particle beam leads out of the synchrotron is 1.333-1.34;
  • the vertical working point of the particle beam leading out of the synchrotron is less than 0.5.
  • a vacuum flange is further provided, and the vacuum flange is provided as a connection between multiple parts of the synchrotron vacuum cavity;
  • the thickness of the vacuum flange is less than 25 mm, so that the vacuum degree of the synchrotron is greater than or equal to 1e-8torr.
  • the synchrotron provided in the embodiment of the present application deflects the particle beam by 360 degrees through four secondary magnets, so that the particle beam runs and accelerates on the synchronization ring; the four secondary magnets are connected in series through two long straight sections and two short straight sections.
  • the synchrotron of this embodiment can be regarded as It is composed of two identical units, compared with the related art synchrotron, which consists of four units, which greatly reduces the difficulty of adjusting the work point of the synchrotron lead-out, which reduces the difficulty of particle beam lead-out of the synchrotron, and also reduces synchronization.
  • the volume of the accelerator; the preset extraction work point of the particle beam is formed by the four-stage magnets arranged on the linear section, and the third-order resonance for slow extraction is formed by the six-stage magnets arranged on the linear section.
  • the volume of the synchrotron is reduced by the mirror-symmetrical design, and the technical effect of miniaturization of the synchrotron is achieved.
  • FIG. 1 is a schematic structural diagram of a synchrotron provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another synchrotron provided by an embodiment of the present application.
  • FIG. 3 is a graph of a ⁇ y function, a ⁇ x function, and a Dx function according to an embodiment of the present application;
  • FIG. 4 is a flowchart of a particle beam acceleration method provided by an embodiment of the present application.
  • FIG. 5 is a structural block diagram of a particle beam acceleration device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a synchrotron provided by an embodiment of the present application.
  • the synchrotron structure is suitable for miniaturizing the synchrotron.
  • the synchrotron includes four secondary magnets (11, 12, 13, and 14), linear joints (211, 212, 221, and 222), four-stage magnets, and six-stage magnets.
  • the straight section includes two long straight sections (211 and 212)) and two short straight sections (221 and 222)), two long straight sections and two short straight sections It is set to connect four secondary magnets in series in a ring shape, and the four secondary magnets are mirrored symmetrically about the center point of the two long straight line segments, and mirrored symmetrically about the center points of the two short straight line segments;
  • the sixth-order magnets are all arranged on the linear section, the fourth-order magnets are set to form the preset extraction working point of the particle beam, and the sixth-order magnets are set to form the third-order resonance for slow extraction.
  • the synchrotron includes a first secondary magnet 11, a second secondary magnet 12, a third secondary magnet 13, and a fourth secondary magnet.
  • the above structure constitutes a rectangular ring-like structure as shown in FIG. 2.
  • the four secondary magnets located at the four top corners of the "rectangular" can deflect the particle beam by 90 degrees, and the four secondary magnets can deflect the particle beam by 360 degrees, so that the particle beam moves and accelerates in a circular orbit.
  • the four secondary magnets mentioned above are mirror-symmetrical about the center point of the two long straight line segments and mirror-symmetrical about the center point of the two short straight line segments.
  • the symmetrical structure makes the ⁇ y function smaller in the long straight line segment, which is beneficial to Particle beam extraction and adjustment of the working point of the synchrotron.
  • the top four boxes in FIG. 3 are secondary magnets (11, 12, 13, and 14), and the straight line connecting the two boxes (secondary magnets) is a straight section (221, 211, and 222), which are the long straight line in the middle and the two short straight lines on both sides.
  • the top curve in Fig. 3 is a ⁇ y function curve, which is used to represent the vertical oscillation of the particle beam.
  • the leading vertical operating point ⁇ y 0.6
  • the leading vertical operating point drift caused by the space charge effect at an energy of 3.5 MeV is 0.2
  • the vertical working point of the particle beam's extraction will gradually move from 0.5 to 0.6.
  • the emission of the particle beam will increase and cause particle loss.
  • Another consequence of the increased emissivity is that the cross-sectional area of the particle beam that eventually hits the patient will increase, and the loss of the particle beam during the extraction process will also increase.
  • the horizontal operating point of the particle beam extraction synchrotron is 4/3 Nearby, such as 1.333-1.34, compared with the horizontal working point of the 5/3 of the related technology, the 4/3 working point can make the circumference of the synchrotron smaller.
  • the curve with the smallest amplitude at the bottom in Figure 3 is a D x function curve, which is used to indicate the dispersion of the particle beam in the x direction.
  • the vertical working point and the horizontal working point can be obtained according to the ⁇ y function curve and the ⁇ x function curve, such as MAD-X software.
  • the four secondary magnets are each provided with an edge angle in a direction toward the short straight section.
  • the angle range of the edge angle is 5.5-12.5 degrees.
  • the angle range of the edge angle is 7-11 degrees, such as 9 degrees and 10 degrees.
  • the edge angle is mainly set to weak focus, that is, to weakly focus the particle beam in the synchrotron. Compared with the traditional four-level iron focusing, the edge angle focusing can reduce the circumference and volume of the synchro ring, which is conducive to the miniaturization of the synchrotron. .
  • the aforementioned two short straight sections (221 and 222) and the two long straight sections (211 and 212) are respectively provided with a four-stage magnet (31, 32, 33, and 34), and a four-stage magnet is provided.
  • the particle beam is extracted near the preset extraction work point.
  • the correction mechanism includes a first horizontal correction coil wound on the four secondary magnets.
  • the first horizontal correction coil is configured to correct errors in the horizontal direction of the magnetic field centers of the four secondary magnets.
  • the correction mechanism further includes a vertical correction coil and a second horizontal correction coil wound on the aforementioned four fourth-level magnets; the vertical correction coil is set to correct errors in the vertical direction of the magnetic field centers of the four fourth-level magnets; a second horizontal correction coil It is set to correct horizontal errors of the magnetic field centers of the four fourth-order magnets.
  • this embodiment reduces the volume of the synchrotron while suppressing the orbital oscillation function through the correction coil wound on the secondary magnet and the secondary magnet. Conducive to miniaturization of synchrotron.
  • the second long straight section 212 is provided with a particle injection mechanism, and the first long straight section 211 is provided with a particle extraction mechanism.
  • the second long straight section 212 is provided with six-stage magnets on both sides of the injection wire cutting plate magnet 65 of the particle injection mechanism, which are the first six-stage magnet 41 and the second six-stage magnet 42, and the first four-stage magnet. 31 is disposed between the first six-stage magnet 41 and the first two-stage magnet 11.
  • the six-stage magnet is set to form a third-order resonance of the particle beam carrying the predetermined energy, so that the particle beam carrying the predetermined energy is led out of the synchrotron.
  • the particle injection mechanism includes an ion source 61, a radio-frequency quaternary iron 62, a chopper 63, an injection line deflection magnet 64, and an injection line cutting plate magnet 65 according to the particle beam running direction.
  • the ion source 61 is set as Proton source is generated;
  • the RF IV iron 62 is set to initially focus and accelerate the particles from the ion source;
  • the chopper 63 is set to chop the particle beam output by the RF IV iron 62 so that the particle beam satisfies a certain level Duty cycle requirement of the injection line;
  • the injection line deflection magnet 64 is set so that the deflected particle beam is injected into the synchrotron at an appropriate angle, and the injection beam operating point range of the particle beam injection synchrotron is 1.35-1.357;
  • the injection wire cutting plate magnet 65 is set to deflect the particle beam so that it is injected into the synchrotron at a suitable angle.
  • the synchrotron of this embodiment further includes an impact magnet 54 to perform a final step angle correction on the particle beam injected into the synchrotron before the first deflection.
  • the impact magnet 54 is disposed between the first secondary magnet 11 and the fourth magnet (the first fourth magnet 31) on the second long straight section 212.
  • the synchrotron usually further includes a high-frequency acceleration cavity 53.
  • the high-frequency acceleration cavity 53 of this embodiment is provided in the second short straight section 222, for example, in a fourth-stage magnet (fourth-fourth magnet). Between the stage magnet 34) and the third stage magnet 13.
  • This embodiment uses a slow extraction method to extract the particle beam from the synchronization ring.
  • an electrostatic cutting plate 51 and a radio frequency excitation source 52 are usually required.
  • the electrostatic cutting plate 51 is provided to separate the extracted particle beam from the swirling particle beam during the slow extraction so that the extracted particle beam is deflected for the first time.
  • the RF excitation source 52 is provided to horizontally excite the particle beam during slow extraction, and is provided at the first long straight section 211, for example, a fourth-stage magnet (the The third and fourth level magnets 33) and the first lead-out wire cutting board magnet 71 are arranged between the first lead-out wire cutting board magnet 71 and the third second-level magnet 13.
  • the particle extraction mechanism provided on the first long straight section 211 includes a first extraction wire cutting plate magnet 71, a second extraction wire cutting plate magnet 72, and The second lead-out line deflection magnet 73 and the first lead-out cutting plate magnet 71 are set to deflect the lead-out particle beam a second time; the second lead-out cutting plate magnet 72 is set to deflect the lead-out particle beam a third time; The deflection magnet 73 is provided to deflect the extracted particle beam a fourth time. After the fourth deflection of the particle beam, the slow extraction of the particle beam is completed, and the slowly extracted particle beam is output to a preset device, such as a treatment head in a treatment room, through a particle beam transport system.
  • a preset device such as a treatment head in a treatment room
  • the thickness of the vacuum flange used to connect the parts of the vacuum cavity of the synchronizing ring in this embodiment is less than 25mm. Since the synchronizing ring is formed by connecting multiple parts in series, it is 50mm thick compared to the related art.
  • the vacuum flange can reduce the perimeter of the synchronizing ring and is conducive to the miniaturization of the synchronizer.
  • the vacuum flange described in this embodiment makes the vacuum degree of the synchronizing ring greater than or equal to 1e-8torr, and higher than the vacuum degree of 1e-10torr provided by the conventional flange.
  • the working process of the synchrotron in this embodiment may be as follows: Referring to FIG. 2, a low-energy proton cluster is generated by an ion implantation mechanism at the beginning of a treatment cycle, and then enters the center of the synchrotron ring through the injection wire cutting plate magnet 65 and the impact magnet 54. Orbit, the injection length is basically equal to the length of the sync ring. Then the chopper 63 remains on to intercept the injected particle beam, the injection wire cutting plate magnet 65 and the impact magnet 54 are closed, and the secondary magnet guides the particles to make a circular motion in the synchronization ring. The magnetic field strengths of the four secondary magnets are adjusted simultaneously.
  • the high-frequency acceleration cavity 53 accelerates the protons each time it passes, reaches a preset extraction energy after millions of turns, and then closes the high-frequency acceleration cavity 53.
  • the particles are peeled off a little at the third-order resonance point, and enter the first through the electrostatic cutting plate 51.
  • a lead wire cutting plate magnet 71 and a second lead wire cutting plate magnet 72 cause the particle beam 01 to be deflected by a small angle until the patient.
  • the synchrotron provided in the embodiment of the present application deflects the particle beam by 360 degrees through four secondary magnets, so that the particle beam runs and accelerates on the synchronization ring; the four secondary magnets are connected in series through two long straight sections and two short straight sections In a ring shape, and the four secondary magnets are mirrored symmetrically about the center point of the two long straight line segments, and mirrored symmetrically about the center points of the two short straight line segments, that is, the synchrotron of this embodiment can be regarded as It is composed of two identical units, compared with the related art synchrotron, which consists of four units, which greatly reduces the difficulty of adjusting the work point of the synchrotron lead-out, which reduces the difficulty of particle beam lead-out of the synchrotron, and also reduces synchronization.
  • the volume of the accelerator; the preset extraction work point of the particle beam is formed by the four-stage magnets arranged on the linear section, and the third-order resonance for slow extraction is formed by the six-stage magnets arranged on the linear section.
  • the volume of the synchrotron is reduced by the mirror-symmetrical design, and the technical effect of miniaturization of the synchrotron is achieved.
  • FIG. 4 is a flowchart of a particle beam acceleration method according to an embodiment of the present application.
  • the technical solution of this embodiment is applicable to a case where a synchrotron is used to accelerate a particle beam in a synchrotron ring.
  • the method may be executed by a particle beam acceleration device provided in the embodiment of the present application, and the device may be implemented in at least one of software and hardware, and configured to be applied in a processor. As shown in Figure 2 and Figure 4, the method specifically includes the following steps 101 and 102.
  • step 101 the magnetic field strength of the secondary magnet of the synchrotron is controlled, so that the particle beam in the synchrotron carries a preset energy by accelerating.
  • step 102 if the particle beam carries a preset energy, the magnetic field strength of the four-stage magnet of the synchrotron and the six-stage magnet of the synchrotron is adjusted so that the particle beam forms a third-order resonance for slow extraction.
  • the magnetic field strengths of the four-stage magnets (31, 32, 33, and 34) and six-stage magnets (41 and 42) of the synchrotron are adjusted to make the particle beams Form a third-order resonance for slow extraction, which is convenient for the particle beam to be extracted from the synchronization ring by the slow extraction.
  • the control process of the four-stage magnet and the six-stage magnet can be as follows: if the particle beam reaches a preset energy, the high-frequency acceleration cavity 53 is closed, and the four four-stage magnets are used to adjust the optical working point to a preset preset working point. Turn on the RF excitation source 52 and the sixth-order magnet to form a third-order resonance. The particles are peeled off a little at the third-order resonance point, and enter the first lead-out wire cutting board magnet 71 and the second lead-out wire cutting board magnet 72 through the electrostatic cutting plate 51. Beam 01 is deflected by a small angle until it reaches the patient.
  • the particle beam acceleration method provided in this embodiment controls the magnetic field strength of the secondary magnet of the synchrotron so that the particle beam in the synchrotron can carry a preset energy by accelerating; if the particle beam carries a preset energy, adjusting the synchronization through
  • the magnetic field strength of the four-stage magnet of the accelerator and the six-stage magnet of the synchrotron makes the particle beam form a third-order resonance for slow extraction.
  • the magnetic field strengths of the secondary and fourth-level magnets are adjusted in a time-sharing manner according to this embodiment, which greatly simplifies the operation debugging process and debugging difficulty of the synchrotron. , Which significantly improves the stability of the synchrotron.
  • FIG. 5 is a structural block diagram of a particle beam acceleration device provided by an embodiment of the present application.
  • the device is configured to execute the particle beam acceleration method provided in any of the foregoing embodiments, and the device may be implemented by software or hardware.
  • the device includes:
  • the secondary magnet control module 81 is configured to control the magnetic field strength of the secondary magnet of the synchrotron so that the particle beam in the synchrotron can carry a preset energy by accelerating.
  • the third-order resonance forming module 82 is configured to adjust the magnetic field strength of the fourth-stage magnet of the synchrotron and the sixth-stage magnet of the synchrotron if the particle beam carries a preset energy, so that the particle beam forming Third order resonance due to slow.
  • the particle beam acceleration device controls the magnetic field strength of the secondary magnet of the synchrotron so that the particle beam in the synchrotron accelerates to carry a preset energy; if the particle beam carries a preset energy, the pass is adjusted.
  • the magnetic field strength of the four-stage magnet of the synchrotron and the six-stage magnet of the synchrotron makes the particle beam form a third-order resonance for slow extraction.
  • the magnetic field strengths of the secondary and fourth-level magnets are adjusted in a time-sharing manner according to this embodiment, which simplifies the operation debugging process of the synchrotron and significantly improves Operational stability of synchrotron.
  • the particle beam acceleration device provided in the embodiment of the present application can execute the particle beam acceleration method provided in any embodiment of the present application, and has the corresponding functional modules and beneficial effects of the execution method.
  • FIG. 6 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the device includes a processor 901, a memory 902, an input device 903, and an output device 904.
  • the number of processors 901 in the device may be one or
  • a processor 901 is taken as an example; the processor 901, the memory 902, the input device 903, and the output device 904 in the device may be connected through a bus or other methods, and in FIG. 6, a connection through a bus is used as an example.
  • the memory 902 is a computer-readable storage medium, and can be used to store software programs, computer-executable programs, and modules, such as program instructions / modules corresponding to the particle beam acceleration method in the embodiments of the present application (for example, a secondary magnet control module 81 And third-order resonance forming module 82).
  • the processor 901 executes various functional applications and data processing of the device by running software programs, instructions, and modules stored in the memory 902, that is, to implement the foregoing particle beam acceleration method.
  • the memory 902 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system and application programs required for at least one function; the storage data area may store data created according to the use of the terminal, and the like.
  • the memory 902 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 902 may further include memory remotely set with respect to the processor 901, and these remote memories may be connected to the device through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 903 can be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the device.
  • the output device 904 may include a display device such as a display screen, for example, a display screen of a user terminal.
  • An embodiment of the present application further provides a storage medium containing computer-executable instructions.
  • the method is configured to perform a particle beam acceleration method. The method includes:
  • the magnetic field strength of the fourth-order magnet of the synchrotron and the sixth-order magnet of the synchrotron is adjusted so that the particle beam forms a third-order resonance for slow extraction.
  • a storage medium containing computer-executable instructions provided in the embodiments of the present application is not limited to the method operations described above, and may also execute the particle beam acceleration method provided in any embodiment of the present application. Related operations.
  • each unit and module included is only divided according to functional logic, but is not limited to the above division, as long as the corresponding function can be realized; in addition, The specific names of the functional units are only for the convenience of distinguishing each other, and are not used to limit the protection scope of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

一种同步加速器,包括:四个二极磁铁,四个二极磁铁分别设置为将粒子束偏转90度;直线节,直线节包括两长直线节和两短直线节,两长直线节和两短直线节设置为将四个二极磁铁串联成环状,且四个二极磁铁关于两长直线节的中心点连线镜像对称,以及关于两短直线节的中心点连线镜像对称;四极磁铁和六极磁铁,四极磁铁和六极磁铁均设置于直线节上,四极磁铁设置为形成粒子束的预设引出工作点,六极磁铁设置为形成用于慢引出的三阶共振。

Description

同步加速器 技术领域
本公开涉及加速器技术领域,例如涉及一种同步加速器。
背景技术
由于同步加速器具有能量可调、辐射较低的优点,越来越多的质子治癌装置采用同步加速器代替回旋同步加速器来提供70-230MeV的质子束流。医用同步加速器加速轨道的周长一般在30米左右,再加上旋转治疗头,需要较大的建筑使用空间来容纳。从而导致在城市人口密集区的医院,很难通过改造相关的医院建筑来容纳如此庞大的设备。因此相关技术的同步加速器存在由于其体积太大而限制了其使用范围的问题。
实用新型内容
本申请实施例提供一种同步加速器,以解决相关技术的同步加速器由于其体积太大而限制了其使用范围的技术问题。
本申请实施例提供了一种同步加速器,包括:
四个二级磁铁,所述四个二级磁铁分别设置为将粒子束偏转90度;
直线节,所述直线节包括两长直线节和两短直线节,所述两长直线节和两短直线节设置为将所述四个二级磁铁串联成环状,且所述四个二级磁铁关于两长直线节的中心点连线镜像对称,以及关于所述两短直线节的中心点连线镜像对称;
四级磁铁和六级磁铁,所述四级磁铁和六级磁铁均设置于所述直线节上,所述四级磁铁设置为形成粒子束的预设引出工作点,所述六级磁铁设置为形成用于慢引出的三阶共振。
在一实施例中,所述每个二级磁铁朝向所述两短直线节中的相应短直线节一端设有用于弱聚焦的边缘角。
在一实施例中,所述边缘角的角度范围为5.5-12.5度。
在一实施例中,所述边缘角的角度范围为7-11度。
在一实施例中,还包括矫正机构;
所述矫正机构设置为矫正所述四个二级磁铁和所述四级磁铁中至少一项的 磁铁中心误差。
在一实施例中,所述矫正机构包括缠绕于所述四个二级磁铁上的第一水平矫正线圈;
所述第一水平矫正线圈设置为矫正所述四个二级磁铁的磁场中心在水平方向的误差。
在一实施例中,所述四级磁铁有四个,分别设置于所述两长直线节和两短直线节;
所述矫正机构包括缠绕于所述四个四级磁铁上的垂直矫正线圈和第二水平矫正线圈;
所述垂直矫正线圈设置为矫正所述四个四级磁铁的磁场中心在垂直方向上的误差;
所述第二水平矫正线圈设置为矫正所述四个四级磁铁的磁场中心在水平方向上的误差。
在一实施例中,所述两长直线节分别设有质子注入机构和质子引出机构;
设有所述质子注入机构的长直线节在所述质子注入机构的注入线切割板的两侧设有六级磁铁,所述六级磁铁设置为使携带有预设能量的粒子束形成三阶共振,以使所述携带有预设能量的粒子束被引出所述同步加速器。
在一实施例中,所述粒子束注入所述同步加速器的注入水平工作点的范围为1.35-1.357;
所述粒子束引出所述同步加速器的引出水平工作点范围为1.333-1.34;
所述粒子束引出所述同步加速器的引出垂直工作点小于0.5。
在一实施例中,还包括真空法兰,所述真空法兰设置为所述同步加速器真空腔多个部分之间的连接;
所述真空法兰的厚度小于25mm,以使所述同步加速器的真空度大于或等于1e-8torr。
本申请实施例提供的同步加速器,通过四个二级磁铁将粒子束偏转360度,使粒子束在同步环上运行、加速;通过两长直线节和两短直线节将四个二级磁铁串联成环状,且四个二级磁铁关于两长直线节的中心点连线镜像对称,以及关于两短直线节的中心点连线镜像对称,也就是说,本实施例的同步加速器可看成由两个相同单元组成,相较于相关技术的同步加速器由四个单元组成,大大降低了同步加速器引出工作点的调节难度,也就降低了粒子束引出同步加速 器的难度,同时还减少了同步加速器的体积;通过设置于直线节上的四级磁铁形成粒子束的预设引出工作点,通过设置于直线节上的六级磁铁形成用于慢引出的三阶共振。综上所述,本实施例在保证同步加速器优异的工作性能的同时,通过镜像对称设计降低了同步加速器的体积,达到了实现同步加速器小型化的技术效果。
附图概述
图1为本申请一实施例提供的同步加速器的结构示意图;
图2为本申请一实施例提供的另一同步加速器的结构示意图;
图3为本申请一实施例提供的βy函数、βx函数和Dx函数的曲线图;
图4是本申请一实施例提供的粒子束加速方法的流程图;
图5是本申请一实施例提供的粒子束加速装置的结构框图;
图6为本申请一实施例提供的设备的结构示意图。
具体实施方式
图1为本申请一实施例提供的同步加速器的结构示意图。该同步加速器结构适合小型化同步加速器。如图1和图2所示,该同步加速器包括四个二级磁铁(11、12、13、以及14)、直线节(211、212、221、以及222)、四级磁铁,以及六级磁铁;四个二级磁铁分别设置为将粒子束偏转90度;直线节包括两长直线节(211和212))和两短直线节(221和222)),两长直线节和两短直线节设置为将四个二级磁铁串联成环状,且四个二级磁铁关于两长直线节的中心点连线镜像对称,以及关于两短直线节的中心点连线镜像对称;四级磁铁和六级磁铁均设置于直线节上,四级磁铁设置为形成粒子束的预设引出工作点,六级磁铁设置为形成用于慢引出的三阶共振。
如图1和如图2所示,以粒子注入机构为起始点,沿顺时针方向,同步加速器包括第一二级磁铁11、第二二级磁铁12、第三二级磁铁13以及第四二级磁铁14;以及连接第一二级磁铁11和第二二级磁铁12的第一短直线节221,连接第三二级磁铁13和第四二级磁铁14的第二短直线节222;以及连接第二二级磁铁12和第三二级磁铁13的第一长直线节211,以及连接第四二级磁铁14和第一二级磁铁11的第二长直线节212。上述结构构成如图2所示的类似长方形的环状结构。位于“长方形”四个顶角的四个二级磁铁均可将粒子束偏转90度, 四个二级磁铁则可将粒子束偏转360度,使粒子束沿环状轨道运动、加速。
前述四个二级磁铁关于两个长直线节的中心点连线镜面对称,以及关于两个短直线节的中心点连线镜面对称,对称结构使得β y函数在长直线节比较小,有利于粒子束引出和同步加速器的工作点调节。如图3所示,图3最上面的四个方框为二级磁铁(11、12、13、以及14),连接两方框(二级磁铁)的直线为直线节(221、211、以及222),分别是中间的长直线节和两侧的两个短直线节。图3最上面的曲线为β y函数曲线,用于表示粒子束在垂直方向的振荡,从该曲线与二级磁铁、直线节的对应关系可以直接得出,β y函数在长直线节上较小。而且由图3的β y函数曲线,可以得出粒子束引出同步加速器的引出垂直工作点υ y<0.5,这低于相关技术大于或等于0.5的引出垂直工作点。采用引出垂直工作点υ y<0.5的技术方案,可以避免粒子束在由3.5MeV加速到230MeV的过程中因为跨过υ y=0.5的引出垂直工作点而造成大量粒子损失。比如说,若引出垂直工作点υ y=0.6,粒子束在能量3.5MeV时空间电荷效应产生的引出垂直工作点漂移是0.2,所以粒子束在3.5MeV的引出垂直工作点是υ y=0.4,然后当粒子束能量超过35MeV之后,粒子束的引出垂直工作点会越过0.5慢慢走向0.6,在这个过程中粒子束的发射度会增大同时导致粒子损失。而发射度增大的另一个后果是导致最终打在病人身上的粒子束截面积变大,同时引出过程中粒子束的损失也会变大。
如图3所示,位于β y函数曲线下面的是β x函数曲线,用于表示粒子束在水平方向的振荡,由该曲线可以得出粒子束引出同步加速器的引出水平工作点在4/3附近,比如1.333-1.34,相较于相关技术5/3的引出水平工作点,4/3工作点可以让同步加速器的周长更小。图3中最下方振幅最小的曲线为D x函数曲线,用于表示粒子束在x方向的色散度。通过相关技术即可根据β y函数曲线和β x函数曲线求取引出垂直工作点和引出水平工作点,比如MAD-X软件。
如图3所示,前述四个二级磁铁在朝向短直线节的方向均设有边缘角,如图1和图2所示,边缘角的角度范围为5.5-12.5度。例如,边缘角的角度范围为7-11度,比如9度和10度等。边缘角主要设置为弱聚焦,即对同步加速器内的粒子束进行弱聚焦,相比于传统的四级铁聚焦,边缘角聚焦可以减少同步环的周长和体积,有利于同步加速器的小型化。
如图3所示,前述两个短直线节(221和222)和两个长直线节(211和212)分别设有一四级磁铁(31、32、33、以及34),四级磁铁设置为形成粒子束的预 设引出工作点,从而使粒子束在预设引出工作点附近被引出。
为了减小同步加速器的体积,需要尽可能减小实现每一功能的装置的体积,比如减小单个装置的体积或者多个装置集成。考虑到同步加速器的二级磁铁在初始安装阶段会存在一定的磁场中心误差,因为再先进的安装技术也很难保证二级磁铁的磁场中心误差为零,而磁场中心误差的存在会引起轨道振荡。为了抑制轨道振荡,本实施例引入矫正机构。矫正机构包括缠绕于前述四个二级磁铁上的第一水平矫正线圈;第一水平矫正线圈设置为矫正四个二级磁铁的磁场中心在水平方向的误差。矫正机构还包括缠绕于前述四个四级磁铁上的垂直矫正线圈和第二水平矫正线圈;垂直矫正线圈设置为矫正四个四级磁铁的磁场中心在垂直方向上的误差;第二水平矫正线圈设置为矫正四个四级磁铁的磁场中心在水平方向上的误差。相较于相关技术设置于同步环上的独立矫正磁铁,本实施例通过缠绕于二级磁铁和四级磁铁上的矫正线圈,在实现抑制轨道振荡功能的同时,减小了同步加速器的体积,有利于同步加速器的小型化。
结合图1和图2,第二长直线节212设有粒子注入机构,第一长直线节211设有粒子引出机构。其中第二长直线节212在粒子注入机构的注入线切割板磁铁65的两侧均设置有六级磁铁,分别是第一六级磁铁41和第二六级磁铁42,且第一四级磁铁31设置于第一六级磁铁41与第一二级磁铁11之间。六级磁铁设置为使携带有预设能量的粒子束形成三阶共振,以使携带有预设能量的粒子束被引出同步加速器。
其中,粒子注入机构,按照粒子束运行方向,包括顺次连接的离子源61、射频四级铁62、斩波器63、注入线偏转磁铁64和注入线切割板磁铁65;离子源61设置为产生质子源;射频四级铁62设置为对离子源出来的粒子进行初步聚焦和加速;斩波器63设置为对射频四级铁62所输出的粒子束进行斩波处理,使粒子束满足一定的占空比要求;注入线偏转磁铁64设置为使偏转粒子束以合适的角度注入到同步加速器中,而且粒子束注入同步加速器的注入水平工作点的范围为1.35-1.357;注入线切割板磁铁65设置为偏转粒子束使其以合适的角度注入到同步加速器中。
为了优化注入到同步加速器的粒子束在同步环中的运行轨迹,本实施例的同步加速器还包括冲击磁铁54,以对注入到同步加速器的粒子束在第一次偏转前进行最后一步的角度纠正,冲击磁铁54设置于第一二级磁铁11与第二长直线节212上的四级磁铁(第一四级磁铁31)之间。
为了实现粒子束在同步加速器中的加速,同步加速器通常还包括高频加速腔53,本实施例的高频加速腔53设置于第二短直线节222,例如设置于四级磁铁(第四四级磁铁34)与第三二级磁铁13之间。
粒子束被注入到同步加速器后,在同步环中运动、加速,当其在同步环中运行几百万圈加速到预设能量后即可将其引出。本实施例采用慢引出的方式将粒子束从同步环中引出。要实现粒子束的慢引出,通常需要设置静电切割板51和射频激励源52。其中,静电切割板51设置为在慢引出时将引出粒子束从回旋粒子束中分离开使引出粒子束第一次被偏转,设置于第一短直线节221的四级磁铁(第二四级磁铁32))与第二二级磁铁12之间;射频激励源52设置为在慢引出时对粒子束进行水平方向的激励,设置于第一长直线节211,例如设置在四级磁铁(第三四级磁铁33)与第一引出线切割板磁铁71之间,且四级磁铁(第三四级磁铁33)设置于第一引出线切割板磁铁71与第三二级磁铁13之间。
如图2所示,设于第一长直线节211上的粒子引出机构,按照粒子束的运行方向,包括顺次连接的第一引出线切割板磁铁71、第二引出线切割板磁铁72和第二引出线偏转磁铁73,第一引出线切割板磁铁71设置为对引出粒子束进行第二次偏转;第二引出线切割板磁铁72设置为对引出粒子束进行第三次偏转;引出线偏转磁铁73设置为对引出粒子束进行第四次偏转。粒子束在第四次偏转后完成粒子束的慢引出,慢引出后的粒子束通过粒子束输运系统输出至预设装置,比如治疗室的治疗头。
为了减少同步环的体积,本实施例用于连接同步环的真空腔的多个部分的真空法兰的厚度小于25mm,由于同步环由多个部分串联而成,所以相对于相关技术50mm厚的真空法兰,可以减少同步环的周长,有利于同步加速器的小型化。另外,本实施例所述真空法兰使同步环的真空度大于或等于1e-8torr,高于常规法兰所提供的1e-10torr的真空度。
本实施例同步加速器的工作过程可以是:参见图2,一个低能质子束团在一个治疗周期的开始由离子注入机构产生,然后经过注入线切割板磁铁65和冲击磁铁54进入同步加速环的中心轨道,注入长度基本等于同步环的长度。而后斩波器63保持开启拦截注入粒子束,注入线切割板磁铁65和冲击磁铁54关闭,二级磁铁引导粒子在同步环中做圆周运动。同步调节四个二级磁铁的磁场强度,高频加速腔53在质子每一次经过时对其加速,经过几百万圈后达到预设的引出能量,而后关闭高频加速腔53。利用四个四级磁铁将光学工作点调至预设引出 工作点,开启射频激励源52和六级磁铁形成三阶共振,粒子在三阶共振点被一点点剥离,经过静电切割板51进入第一引出线切割板磁铁71和第二引出线切割板磁铁72,粒子束01被小角度偏转引出,直至病人。
本申请实施例提供的同步加速器,通过四个二级磁铁将粒子束偏转360度,使粒子束在同步环上运行、加速;通过两长直线节和两短直线节将四个二级磁铁串联成环状,且四个二级磁铁关于两长直线节的中心点连线镜像对称,以及关于两短直线节的中心点连线镜像对称,也就是说,本实施例的同步加速器可看成由两个相同单元组成,相较于相关技术的同步加速器由四个单元组成,大大降低了同步加速器引出工作点的调节难度,也就降低了粒子束引出同步加速器的难度,同时还减少了同步加速器的体积;通过设置于直线节上的四级磁铁形成粒子束的预设引出工作点,通过设置于直线节上的六级磁铁形成用于慢引出的三阶共振。综上所述,本实施例在保证同步加速器优异的工作性能的同时,通过镜像对称设计降低了同步加速器的体积,达到了实现同步加速器小型化的技术效果。
图4是本申请一实施例提供的粒子束加速方法的流程图。本实施例的技术方案适用于控制同步加速器加速同步环中的粒子束的情况。该方法可以由本申请实施例提供的粒子束加速装置来执行,该装置可以采用软件和硬件中至少一项的方式实现,并配置在处理器中应用。如图2和图4所示,该方法具体包括如下步骤101和步骤102.
在步骤101中,控制同步加速器的二级磁铁的磁场强度,以使同步加速器内的粒子束通过加速而携带预设能量。
要控制同步加速器对粒子束进行加速使其携带预设能量,需要控制二级磁铁(11、12、13、以及14)的磁场强度使粒子束在同步环运动,高频加速腔53在粒子束每一次经过时对其进行加速。
在步骤102中,若粒子束携带预设能量,则调节同步加速器的四级磁铁和同步加速器的六级磁铁的磁场强度,以使粒子束形成用于慢引出的三阶共振。
粒子束经过几百万圈的运动、加速后达到预设能量后,调节同步加速器的四级磁铁(31、32、33以及34)和六级磁铁(41和42)的磁场强度,使粒子束形成用于慢引出的三阶共振,便于粒子束通过慢引出的方式被引出同步环。
四级磁铁和六级磁铁的控制过程可以为:若粒子束达到预设能量,则关闭高频加速腔53,利用四个四级磁铁将光学工作点调至预设的预设引出工作点, 开启射频激励源52和六级磁铁形成三阶共振,粒子在三阶共振点被一点点剥离,经过静电切割板51进入第一引出线切割板磁铁71和第二引出线切割板磁铁72,粒子束01被小角度偏转引出,直至病人。
本实施例提供的粒子束加速方法,通过控制同步加速器的二级磁铁的磁场强度,以使同步加速器内的粒子束通过加速而携带预设能量;若粒子束携带预设能量,则调节通过同步加速器的四级磁铁和同步加速器的六级磁铁的磁场强度,使粒子束形成用于慢引出的三阶共振。相较于相关技术同时调节二级磁铁和四级磁铁的磁场强度,本实施例所述的分时调节二级磁铁和四级磁铁的磁场强度,大大简化了同步加速器的运行调试流程和调试难度,显著提升了同步加速器的运行稳定性。
图5是本申请一实施例提供的粒子束加速装置的结构框图。该装置用于执行上述任意实施例所提供的粒子束加速方法,该装置可选为软件或硬件实现。该装置包括:
二级磁铁控制模块81,设置为控制同步加速器的二级磁铁的磁场强度,以使同步加速器内的粒子束通过加速而携带预设能量。
三阶共振形成模块82,设置为若所述粒子束携带预设能量,则调节所述同步加速器的四级磁铁和所述同步加速器的六级磁铁的磁场强度,以使所述粒子束形成用于慢引出的三阶共振。
本申请实施例提供的粒子束加速装置,通过控制同步加速器的二级磁铁的磁场强度,以使同步加速器内的粒子束通过加速而携带预设能量;若粒子束携带预设能量,则调节通过同步加速器的四级磁铁和同步加速器的六级磁铁的磁场强度,使粒子束形成用于慢引出的三阶共振。相较于相关技术同时调节二级磁铁和四级磁铁的磁场强度,本实施例所述的分时调节二级磁铁和四级磁铁的磁场强度,简化了同步加速器的运行调试流程,显著提升了同步加速器的运行稳定性。
本申请实施例所提供的粒子束加速装置可执行本申请任意实施例所提供的粒子束加速方法,具备执行方法相应的功能模块和有益效果。
图6为本申请一实施例提供的设备的结构示意图,如图6所示,该设备包括处理器901、存储器902、输入装置903以及输出装置904;设备中处理器901的数量可以是一个或多个,图6中以一个处理器901为例;设备中的处理器901、存储器902、输入装置903以及输出装置904可以通过总线或其他方式连接,图 6中以通过总线连接为例。
存储器902作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的粒子束加速方法对应的程序指令/模块(例如,二级磁铁控制模块81和三阶共振形成模块82)。处理器901通过运行存储在存储器902中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的粒子束加速方法。
存储器902可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器902可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器902可进一步包括相对于处理器901远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置903可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。
输出装置904可包括显示屏等显示设备,例如,用户终端的显示屏。
本申请一实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时设置为执行一种粒子束加速方法,该方法包括:
控制同步加速器的二级磁铁的磁场强度,以使同步加速器内的粒子束通过加速而携带预设能量;
若所述粒子束携带预设能量,则调节所述同步加速器的四级磁铁和所述同步加速器的六级磁铁的磁场强度,以使所述粒子束形成用于慢引出的三阶共振。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的粒子束加速方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器 (Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的粒子束加速方法。
值得注意的是,上述粒子束加速装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。

Claims (10)

  1. 一种同步加速器,包括:
    四个二级磁铁,所述四个二级磁铁分别设置为将粒子束偏转90度;
    直线节,所述直线节包括两长直线节和两短直线节,所述两长直线节和所述两短直线节设置为将所述四个二级磁铁串联成环状,且所述四个二级磁铁关于所述两长直线节的中心点连线镜像对称,以及关于所述两短直线节的中心点连线镜像对称;
    四级磁铁和六级磁铁,所述四级磁铁和所述六级磁铁均设置于所述直线节上,所述四级磁铁设置为形成粒子束的预设引出工作点,所述六级磁铁设置为形成用于慢引出的三阶共振。
  2. 根据权利要求1所述的同步加速器,其中,每个所述二级磁铁朝向所述两短直线节中的相应短直线节一端设有用于弱聚焦的边缘角。
  3. 根据权利要求2所述的同步加速器,其中,所述边缘角的角度范围为5.5-12.5度。
  4. 根据权利要求2所述的同步加速器,其中,所述边缘角的角度范围为7-11度。
  5. 根据权利要求1所述的同步加速器,还包括矫正机构;
    所述矫正机构设置为矫正所述四个二级磁铁和所述四级磁铁中至少一项的磁铁中心误差。
  6. 根据权利要求5所述的同步加速器,其中,所述矫正机构包括缠绕于所述四个二级磁铁上的第一水平矫正线圈;
    所述第一水平矫正线圈设置为矫正所述四个二级磁铁的磁场中心在水平方向的误差。
  7. 根据权利要求5所述的同步加速器,其中,所述四级磁铁有四个,分别设置于所述两长直线节和所述两短直线节;
    所述矫正机构包括缠绕于所述四个四级磁铁上的垂直矫正线圈和第二水平矫正线圈;
    所述垂直矫正线圈设置为矫正所述四个四级磁铁的磁场中心在垂直方向上的误差;
    所述第二水平矫正线圈设置为矫正所述四个四级磁铁的磁场中心在水平方向上的误差。
  8. 根据权利要求1所述的同步加速器,其中,所述两长直线节分别设有质 子注入机构和质子引出机构;
    设有所述质子注入机构的长直线节在所述质子注入机构的注入线切割板的两侧设有六级磁铁,所述六级磁铁设置为使携带有预设能量的粒子束形成三阶共振,以使所述携带有预设能量的粒子束被引出所述同步加速器。
  9. 根据权利要求1所述的同步加速器,其中,所述粒子束注入所述同步加速器的注入水平工作点的范围为1.35-1.357;
    所述粒子束引出所述同步加速器的引出水平工作点范围为1.333-1.34;
    所述粒子束引出所述同步加速器的引出垂直工作点小于0.5。
  10. 根据权利要求1-9任一项所述的同步加速器,还包括真空法兰,所述真空法兰用于所述同步加速器真空腔多个部分之间的连接;
    所述真空法兰的厚度小于25mm,以使所述同步加速器的真空度大于或等于1e-8torr。
PCT/CN2018/092437 2018-05-24 2018-06-22 同步加速器 WO2019223053A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810506197.4A CN108770181A (zh) 2018-05-24 2018-05-24 同步加速器、粒子束加速方法、装置、设备及存储介质
CN201810506197.4 2018-05-24
CN201820779978.6U CN208300104U (zh) 2018-05-24 2018-05-24 同步加速器
CN201820779978.6 2018-05-24

Publications (1)

Publication Number Publication Date
WO2019223053A1 true WO2019223053A1 (zh) 2019-11-28

Family

ID=68615674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092437 WO2019223053A1 (zh) 2018-05-24 2018-06-22 同步加速器

Country Status (1)

Country Link
WO (1) WO2019223053A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661000A (ja) * 1992-08-07 1994-03-04 Hitachi Ltd 円形加速器及び円形加速器の運転方法並びに半導体露光装置
JP2005027681A (ja) * 2003-07-07 2005-02-03 Hitachi Ltd 荷電粒子治療装置及び荷電粒子治療システム
US20070170994A1 (en) * 2006-01-24 2007-07-26 Peggs Stephen G Rapid cycling medical synchrotron and beam delivery system
JP2009279045A (ja) * 2008-05-20 2009-12-03 Hitachi Ltd 粒子線治療システム
CN101917815A (zh) * 2010-08-10 2010-12-15 中国科学院近代物理研究所 医用偏转磁聚焦结构的重离子或质子同步加速器
JP2011028983A (ja) * 2009-07-24 2011-02-10 Nihon Univ 荷電粒子の取出装置及び取出方法
CN106793449A (zh) * 2017-03-08 2017-05-31 中国科学院上海应用物理研究所 一种医用超导质子同步加速器
CN108770181A (zh) * 2018-05-24 2018-11-06 新瑞阳光粒子医疗装备(无锡)有限公司 同步加速器、粒子束加速方法、装置、设备及存储介质
CN208300104U (zh) * 2018-05-24 2018-12-28 新瑞阳光粒子医疗装备(无锡)有限公司 同步加速器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661000A (ja) * 1992-08-07 1994-03-04 Hitachi Ltd 円形加速器及び円形加速器の運転方法並びに半導体露光装置
JP2005027681A (ja) * 2003-07-07 2005-02-03 Hitachi Ltd 荷電粒子治療装置及び荷電粒子治療システム
US20070170994A1 (en) * 2006-01-24 2007-07-26 Peggs Stephen G Rapid cycling medical synchrotron and beam delivery system
JP2009279045A (ja) * 2008-05-20 2009-12-03 Hitachi Ltd 粒子線治療システム
JP2011028983A (ja) * 2009-07-24 2011-02-10 Nihon Univ 荷電粒子の取出装置及び取出方法
CN101917815A (zh) * 2010-08-10 2010-12-15 中国科学院近代物理研究所 医用偏转磁聚焦结构的重离子或质子同步加速器
CN106793449A (zh) * 2017-03-08 2017-05-31 中国科学院上海应用物理研究所 一种医用超导质子同步加速器
CN108770181A (zh) * 2018-05-24 2018-11-06 新瑞阳光粒子医疗装备(无锡)有限公司 同步加速器、粒子束加速方法、装置、设备及存储介质
CN208300104U (zh) * 2018-05-24 2018-12-28 新瑞阳光粒子医疗装备(无锡)有限公司 同步加速器

Similar Documents

Publication Publication Date Title
CN102793979B (zh) 质子或重离子束治癌装置
CN106793449B (zh) 一种医用超导质子同步加速器
CN109769336A (zh) 同步加速器、粒子束加速方法、装置、设备及存储介质
EP3024306B1 (en) High current cyclotron
CN109842986B (zh) 横向束流均匀的快循环同步加速器和加速器系统
US20150223315A1 (en) Methods and systems for confining charged particles to a compact orbit during acceleration using a non-scaling fixed field alternating gradient magnetic field
Levichev et al. Electron–positron beam collision studies at the Budker Institute of Nuclear Physics
US9095036B2 (en) Method and system for stable dynamics and constant beam delivery for acceleration of charged particle beams in a non-scaling fixed field alternating gradient magnetic field accelerator
WO2019223053A1 (zh) 同步加速器
US20240121880A1 (en) Superconducting electromagnet component and isochronous cyclotron including the same
CN208300104U (zh) 同步加速器
CN116489864B (zh) 紧凑型强流h2+超导回旋加速器
Ahn et al. Overview of the KoRIA facility for rare isotope beams
Kleeven Injection and extraction for cyclotrons
Keintzel Arc cell options for the HE-LHC
Wang et al. Computer design of a compact cyclotron
EP3549410B1 (en) Cyclotron rf resonator with asymmetrical tuning
KR20180060243A (ko) 양성자 가속기 기반의 붕소-중성자 포획치료기를 위한 세 갈래로 분기된 콤펙트한 고에너지 빔 전송라인
CN208094869U (zh) 一种采用组合型磁铁的质子同步加速器
Gikal et al. Development, creation, and startup of the DC-110 heavy ion cyclotron complex for industrial production of track membranes
Blaser et al. Progress report on the 500 MeV isochronous cyclotron meson factory of ETH Zurich
Imao et al. Charge stripper ring for cyclotron cascade
Holzer Beam Dynamics in Synchrotrons
Kozlov et al. Design of the NICA Collider rings
Härer Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919673

Country of ref document: EP

Kind code of ref document: A1