WO2019223017A1 - 大尺寸多功能界面动力剪切试验仪及试验方法 - Google Patents

大尺寸多功能界面动力剪切试验仪及试验方法 Download PDF

Info

Publication number
WO2019223017A1
WO2019223017A1 PCT/CN2018/088648 CN2018088648W WO2019223017A1 WO 2019223017 A1 WO2019223017 A1 WO 2019223017A1 CN 2018088648 W CN2018088648 W CN 2018088648W WO 2019223017 A1 WO2019223017 A1 WO 2019223017A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical
horizontal
box
shear
actuator
Prior art date
Application number
PCT/CN2018/088648
Other languages
English (en)
French (fr)
Inventor
冯世进
沈阳
张冬梅
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Publication of WO2019223017A1 publication Critical patent/WO2019223017A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means

Definitions

  • the present invention belongs to the technical field of geotechnical engineering and seismic engineering, and particularly relates to a large-size multifunctional interface dynamic shear tester and test method.
  • Geosynthetics are industrial manufactured products based on artificially synthesized polymers (such as plastics, synthetic fibers, synthetic rubber, etc.) as raw materials, including: geotextiles, geomembrane, GCL (Geosynthetic Clay Liner), geocomposite materials, Geonet, fiberglass net, geomat, etc.
  • Geosynthetics are widely used in landfills and the bottom of low-rise buildings. As a liner system, they can isolate pollutants or prevent leakage of liquids. However, the shear strength of the contact interface of geosynthetics is generally low, and complex relative movements will occur along the interface of the composite liner under the action of seismic loads. The theoretical research on the dynamic shear characteristics of the interface is still insufficient.
  • the cyclic direct shear method can be used to test the dynamic shear characteristics of general soil (clay, silt, sand, etc.). It is not appropriate to directly copy this test technology to test the shear characteristics of the interface of geosynthetics.
  • Traditional shear test methods generally use smaller shear surface sizes. Large-scale geosynthetics interface shear tests can more fully and accurately reveal the dynamic shear characteristics of the interface; the geosynthetics interface has differences in the types of materials it contacts. It can be divided into many types, including: geomembrane-GCL interface, geomembrane-clay interface, geomembrane-geotextile interface, geotextile-geocomposite drainage network interface, etc.
  • the object of the present invention is to overcome the shortcomings of the prior art and provide a large-size multifunctional interface dynamic shear tester and test method, which can realize a variety of large-size interfaces in a complex dynamic shear mode. (Including: geosynthetics interface, clay-geosynthetics interface, etc.) and dynamic shear stress-strain characteristics of soil materials, dynamic shear tests, interface mechanics, shear characteristics of geosynthetics, environmental geotechnical engineering, earthquakes The development of engineering research work has laid an excellent research foundation.
  • a large-size multifunctional interface dynamic shear tester includes an oil source system, a control system, and a shear system
  • the shearing system is a device for carrying out a shearing test of the entire instrument, which is provided with two vertical and horizontal actuators;
  • the oil source system is a power device of the entire instrument, which is connected to the shearing system and is used to provide power to two actuators in the shearing system;
  • the control system is a control device for the entire instrument and a sensor signal collecting device, which is respectively connected to the cutting system and the oil source system, and is used to accurately control and monitor the operating state of the instrument.
  • the cutting system includes a main frame, vertical and horizontal actuators, upper and lower shear boxes, and test aids; wherein the main frame includes a base platform, a base leg, a base skirt, and a horizontal Actuator support, vertical frame, vertical rail, top platform, horizontal rail, horizontal rail pad; vertical and horizontal actuators include vertical actuator, vertical actuator telescopic rod, vertical connection Buckle, vertical displacement sensor, vertical axis force sensor, vertical fixed plate, horizontal actuator, horizontal actuator telescopic rod, horizontal connection buckle, horizontal displacement sensor, horizontal axis force sensor, horizontal fixed plate, balance bracket;
  • the upper and lower shear boxes include an upper shear box, an upper shear box vertical slider, a vertical actuator fixing screw hole, a vertical acceleration sensor, a vertical acceleration sensor bracket, a test aid fixing hole, and a lower shear Box base, lower shear box horizontal slider, lower shear box bottom platform, lower shear box rear bracket, horizontal actuator fixing screw hole, actuator fixing screw, lower shear box front bracket, Lower Shear Box Vertical Rail, Lower
  • Several base feet are welded together on the lower part of the base platform, and several base skirts surround and are fixed on each base foot; the horizontal actuator support is fixed on the base platform, and the horizontal actuator support is along its vertical middle position A circular hole is opened for the horizontal actuator telescopic rod to pass through; two vertical frames are respectively fixed at the front and back sides of the center of the base platform, and two vertical frames are fixed with two vertical shallow grooves on the inner side of the two vertical frames.
  • the vertical guide rail is used to connect the vertical slider of the upper shear box to provide the vertical shear freedom of the upper shear box.
  • the top platform is located above the two vertical frames and fixed to the two vertical frames.
  • the upper end of the vertical actuator is connected to a vertical displacement sensor, the lower end of the vertical actuator is connected to a vertical actuator telescopic rod, and the vertical actuator telescopic rod and the vertical axial force sensor are connected through a vertical direction.
  • connection buckle is connected, and the vertical axis force sensor is fixed on the vertical fixing plate, and the vertical fixing plate is fixed on the upper cutting box, and the upper cutting box is In the shape of a box-shaped member, the four upper cutting box vertical sliders are respectively fixed on the front and rear sides of the upper cutting box, and the four upper cutting box vertical sliders are each located in a vertical guide rail, so that the upper cutting
  • the cutting box has a vertical degree of freedom, and the vertical movement of the upper cutting box is driven by the telescopic operation of the telescopic rod of the vertical actuator;
  • the vertical acceleration sensor bracket is fixed at the right end of the upper cutting box, and the vertical acceleration sensor is fixed at the vertical To the acceleration sensor bracket;
  • each flange of the upper shear box is provided with two test aid fixing holes for fixing the upper grip plate or the upper side limiting frame; the lower surface of the upper grip plate is engraved with sharp grip teeth, It is used to bite and fix the test material.
  • the tooth angle of the grasping teeth is 90 °, the tooth height is 1mm, and the tooth spacing is 2mm.
  • the upper grasping plate fixing holes are respectively opened on the wing plate of the upper grasping plate, and the upper grasping plate is fixed.
  • the hole matches the position of the test aid fixing hole on the upper shear box, and the upper grip plate can be fixed to the upper shear box by the upper fixing bolt;
  • the size of the upper limit frame is the same as the limit frame of the lower shear box, and the upper side
  • the side frame fixing holes are opened on the front and rear wings of the frame.
  • the upper frame can be fixed by the upper fixing bolts. Fixed with the upper shear box to form a constant volume of the upper shear box;
  • a balance bracket is installed on the base platform to support the horizontal actuator, the left end of the horizontal actuator is connected to a horizontal displacement sensor, the right end of the horizontal actuator is connected to the horizontal actuator telescopic rod, the horizontal actuator telescopic rod and
  • the horizontal axis force sensors are connected by a horizontal connection buckle.
  • the horizontal axis force sensor is fixed on a horizontal fixing plate.
  • the horizontal fixing plate is fixed on the lower shear box bracket
  • the lower shear box rear bracket is fixed on the left side of the upper surface of the lower shear box base
  • the lower surface of the lower shear box base is fixed with six lower shear box horizontal sliders
  • the lower sliding box horizontal sliders are respectively located in two horizontal guide rails, so that the lower cutting box has a degree of freedom of movement in the horizontal direction, and the horizontal movement of the lower cutting box is driven by the telescopic movement of the telescopic rod of the horizontal actuator;
  • the bottom platform of the cutting box is installed at the middle of the upper surface of the bottom of the lower cutting box.
  • Two lower cutting box vertical rails are fixed on the right side of the lower cutting box back bracket.
  • Two lower shear box front brackets are fixed on the right side of the surface, one lower shear box vertical rail is fixed on the left side of each lower shear box front bracket, and four are fixed on the outside of the side frame of the lower shear box.
  • Vertical sliders of the lower shear box side limit frame, each of the lower shear box side limit frame vertical sliders is located in a lower shear box vertical guide, providing vertical Degree of freedom;
  • a horizontal acceleration sensor bracket is provided on the right end side of the lower limit box of the lower shear box, and the horizontal acceleration sensor is fixed on the horizontal acceleration sensor bracket;
  • the size of the lower limit box of the lower cut box is adapted to the size of the bottom platform of the lower cut box, and the side limit frame of the lower cut box can fit on the bottom platform of the lower cut box to form a variable volume lower cut.
  • the left end of the limiting frame is provided with three screw holes for passing through the fixing screw of the lower grasping plate.
  • the lower grasping plate can be fixed to the limiting frame on the side of the lower shear box by tightening the fixing screws of the lower grasping plate.
  • a total of twelve floating spring sets are provided between the wings on the front and back sides of the lower shear box side limiting frame and the base of the lower shear box, so that the lower shear box side limiting frame is sheared under no vertical force.
  • the volume of the box can be kept stable.
  • the floating spring group includes several sets of supporting springs, spring rods, spring caps, and spring fixing nuts.
  • the side flaps of the side frame of the lower shear box are reserved for the spring caps.
  • a hole a spring cap is clamped on the wing plate of the side frame of the lower shear box through the hole, the lower end of the spring support rod is set on the base of the lower shear box, the spring support is provided with a spring, and the upper end of the spring support is engraved Thread, the spring rod passes through the spring cap and does not contact the spring cap, the spring fixing nut is located above the spring cap and screwed on the upper end of the spring rod The thread is used to control the length of the spring.
  • the spring cap and the lower end of the spring support rod hold the spring together, so that the side frame of the lower shear box is in a floating state.
  • the gripper bracket, the gripping spoon, the gripper displacement transmission rod, the displacement transmission rod sleeve, the sleeve bracket, the displacement transmission joint, and the displacement sensor together form a gripper, and the gripper extends into the interior of the shear box for measurement
  • a sensor device for testing the internal deformation of the soil body One end of the gripper bracket is fixed on the outer side of the right end of the side frame of the lower shear box. The other end is a gripper structure for holding the displacement sensor.
  • the left end of the displacement sensor is provided with telescopic
  • the telescopic rod is connected to the displacement transmission rod through a displacement transmission joint, the displacement transmission rod is sleeved in the sleeve of the displacement transmission rod, and a reserved slot is provided at the right end of the side frame of the lower shear box for placing the displacement transmission rod sleeve.
  • the sleeve of the displacement transmission rod is fixed by the sleeve bracket and is on the holder of the grabber;
  • the left end of the displacement transmission rod is connected with a soil scoop, which is embedded in the test soil in advance and follows the deformation of the soil during the shear test While moving, and transmitting the measured soil deformation to the displacement sensor;
  • the oil source system includes an oil source, a main oil pipeline, an oil separator, and a sub-oil pipeline;
  • the oil source is a power device that sends hydraulic oil to the oil separator through the main oil pipeline, and the oil separator passes through two branches
  • the oil pipeline is connected with the vertical actuator and the horizontal actuator, respectively, and sends the total hydraulic oil delivered by the oil source to the vertical actuator and the horizontal actuator, respectively;
  • the control system includes a control machine, a control cable, a sensor cable, a display, an operation keyboard and a mouse; the control machine is composed of an industrial computer, a control signal transmission device and a sensor signal receiving device; the control machine is connected to the display and Keyboard and mouse; The control machine is connected through the control cable and controls the pressure and flow of the hydraulic oil output from the oil source, the control machine is connected through the control cable and controls the pressure and flow of the hydraulic oil divided by the oil separator; the control machine is connected separately through the sensor cable
  • a vertical displacement sensor, a vertical axis force sensor, a horizontal displacement sensor, a horizontal axis force sensor, a vertical acceleration sensor, a horizontal acceleration sensor, a displacement sensor, and the physical and mechanical indicators measured by these sensors are monitored in real time; among them, a vertical actuator
  • the horizontal actuators measure displacement data in real time through vertical displacement sensors and horizontal displacement sensors installed at their respective ends and transmit them to the control machine; the vertical actuator telescopic rods and horizontal actuator telescopic rods are installed
  • the keyboard and mouse are used to control the control machine to send instructions to the oil source and the oil separator, to control the expansion and contraction of the vertical actuator and the horizontal actuator, the vertical actuator in turn through the vertical actuator telescopic rod,
  • the vertical connection buckle, the vertical axis force sensor, the vertical fixing plate and the upper shear box are connected, so as to drive the entire upper shear box and its accessories to move vertically.
  • the connecting buckle, the horizontal axis force sensor, the horizontal fixing plate and the lower shear box are connected, thereby driving the entire lower shear box and its accessories to move horizontally.
  • the process of carrying out a shear test by the large-size multifunctional interface dynamic shear tester proposed by the present invention is mainly divided into three stages: a test preparation stage, a test progress stage, and a test end stage.
  • Test preparation stage First, turn on the power of each part of the device, operate the vertical actuator to shrink, so that the upper shear box is detached from the lower shear box, and leave enough space; then, unscrew the fixed horizontal fixing plate And the actuator fixing screw of the lower bracket of the lower shear box, disengage the two, and push the lower shear box along the horizontal guide to the side of the horizontal guide pad on the base platform, so that the upper part of the lower shear box is formed to facilitate manual work.
  • the test aids and shear test materials required for the test are installed in the lower shear box; after the installation is completed, the lower shear box is pushed back and used as an actuator fixing screw to horizontally fix the disc and the lower shear.
  • the back bracket of the box is firmly fixed, and the test preparation phase ends at this point.
  • Test development stage First, control the expansion and contraction of the vertical actuator and the horizontal actuator, so that the upper and lower shear boxes face each other; continue to control the vertical actuator, so that the upper shear box along the vertical direction
  • the guide rail moves downwards, and then the test materials held by the upper and lower shear boxes come into contact, and the vertical contact force on the contact surface immediately after the contact occurs is zero.
  • the vertical actuator is continuously controlled to make the vertical
  • the contact force continues to increase, and the rate of vertical force change can be accurately controlled until the applied vertical force reaches the load level required for the test.
  • the magnitude of the vertical force is measured by the vertical axis force sensor and transmitted to the control machine.
  • the vertical displacement of the cutting box is measured by the vertical displacement sensor and transmitted to the control machine.
  • the acceleration data of the upper and lower shear boxes during the dynamic shearing process are measured by the vertical acceleration sensor and the horizontal acceleration sensor, and are transmitted to the control machine through the sensor cable.
  • Set the horizontal loading mode of the shear box such as but not limited to: sine wave motion (set amplitude, frequency), triangle wave (set amplitude, frequency), file wave (set seismic displacement time history data), etc., according to these
  • the dynamic shear test is performed in the set horizontal loading mode. When the set loading mode is completed, the dynamic shear test ends.
  • Test end stage First, control the vertical actuator to reduce its vertical force by operating the control machine until the vertical force is zero. At this time, it can be considered that the test material is not under force and the test interface is not in contact.
  • the vertical actuator shortens its vertical actuator telescopic rod to raise the upper shear box to a proper position. Unscrew the actuator fixing screw to disengage the horizontal fixing plate and the lower bracket of the lower shear box.
  • the large-size multifunctional interface dynamic shear tester provided by the present invention can make the upper and lower shear boxes more accurate by accurately controlling the movement rate of the vertical actuator and the horizontal actuator and the output shaft force. There are multiple modes of relative motion between them to carry out multiple types and modes of dynamic shear tests.
  • the large-size multifunctional interface dynamic shear tester proposed by the present invention can carry out a variety of interface shear tests by adjusting test aids, including but not limited to static and dynamic shear tests at the interface of geosynthetics, or clay -Static and dynamic shear tests on geosynthetics, or static and dynamic shear tests on soils.
  • the biggest advantage of the large-size multifunctional interface dynamic shear tester proposed by the present invention is that it can carry out a variety of large-size interfaces (including: geosynthetic material interface, clay-geochemical synthesis) under complex dynamic shear mode. Material interface, etc.) and dynamic shear test of dynamic shear stress-strain characteristics of soil materials.
  • the instrument of the present invention has laid the groundwork for the research work on interface mechanics, shear characteristics of geosynthetics, environmental geotechnical engineering, and seismic engineering. Good research foundation.
  • FIG 1 is an overall schematic diagram of the present invention.
  • FIG. 2 is a schematic diagram of contact between components of the present invention.
  • FIG. 3 is a schematic diagram of a cutting system according to the present invention.
  • FIG. 4 is a front view of a shearing system of the present invention.
  • FIG. 5 is a left side view of the cutting system of the present invention.
  • FIG. 6 is a right side view of the cutting system of the present invention.
  • FIG. 7 is a top view of a shearing system of the present invention.
  • FIG. 8 is a schematic diagram of a frame of a cutting system according to the present invention.
  • FIG. 9 is a schematic disassembly view of components of a shearing system frame of the present invention.
  • FIG. 10 is a schematic diagram of an actuator and an upper and lower shear box of the present invention.
  • FIG. 11 is a schematic diagram of an upper shear box of the present invention.
  • FIG. 12 is a schematic diagram of a lower shear box of the present invention.
  • FIG. 13 is a schematic rear view of the lower shear box of the present invention.
  • FIG. 14 is a schematic bottom view of a lower shear box of the present invention.
  • FIG. 15 is a disassembly schematic diagram of a lower shear box assembly of the present invention.
  • 16 is a schematic view of a floating spring group according to the present invention.
  • 17 is a schematic diagram of an acceleration sensor of the present invention.
  • FIG. 18 is a schematic diagram of a shearing device for conducting a “geo-synthetic material” interface shear test according to the present invention.
  • FIG. 19 is a front view of the interface structure of the “geo-synthetic material” interface shear test carried out in the present invention.
  • FIG. 20 is a schematic diagram of upper and lower shear plates according to the present invention.
  • FIG. 21 is a schematic diagram of a shearing device for conducting a “geo-synthetic material-soil” interface shear test according to the present invention.
  • FIG. 22 is a front view of the interface composition of the “geo-synthetic material-soil” interface shear test performed in the present invention.
  • FIG. 23 is a schematic diagram of a gripper sensor device of the present invention.
  • FIG. 24 is a schematic diagram of a shearing device for conducting a direct shear test of a soil mass according to the present invention.
  • FIG. 25 is a front view of a shear box for conducting a direct shear test of a soil mass according to the present invention.
  • FIG. 26 is a schematic diagram of an upper frame limiting frame of the present invention.
  • 1 is an oil source
  • 2 is a main oil pipeline
  • 3 is an oil separator
  • 4 is a sub-oil pipeline
  • 5 is a control machine
  • 6 is a control cable
  • 7 is a sensor cable
  • 8 is a display
  • 9 Keyboard and mouse 10 is the base platform
  • 11 is the base foot
  • 12 is the base skirt
  • 13 is the horizontal actuator support
  • 14 is the vertical frame
  • 15 is the vertical rail
  • 16 is the top platform
  • 17 is the horizontal rail 18 is a horizontal guide pad
  • 19 is a vertical actuator
  • 20 is a vertical actuator telescopic rod
  • 21 is a vertical connection buckle
  • 22 is a vertical displacement sensor
  • 23 is a vertical axial force sensor
  • 24 is Vertical fixing plate
  • 25 is a horizontal actuator
  • 26 is a horizontal actuator telescopic rod
  • 27 is a horizontal connection buckle
  • 28 is a horizontal displacement sensor
  • 29
  • 32 is the upper shear box
  • 33 is the vertical slider of the upper shear box
  • 34 is the vertical actuator fixing screw hole
  • 35 is the vertical acceleration sensor
  • 36 is the vertical acceleration sensor bracket
  • 37 is the test aid Fixing screw holes
  • 38 is the base of the lower shear box
  • 39 is the horizontal slider of the lower shear box 40 is the bottom platform of the lower shear box
  • 41 is the rear bracket of the lower shear box
  • 42 is the horizontal actuator fixing screw hole
  • 43 is the actuator fixing screw
  • 44 is the front bracket of the lower shear box
  • 45 is Lower cutting box vertical guide
  • 46 is the lower cutting box side limiting frame
  • 47 is the lower cutting box side limiting frame vertical slider
  • 48 is a reserved slot
  • 49 is a lower grip plate fixing screw
  • 50 is a spring
  • 51 is a spring support rod
  • 52 is a spring cap
  • 53 is a spring fixing nut
  • 54 is a horizontal acceleration sensor
  • 55 is a horizontal acceleration sensor bracket
  • 56 is an upper grasping plate
  • the present invention provides a large-size multifunctional interface dynamic shear tester, including an oil source system, a control system, and a shear system.
  • the oil source system includes: an oil source 1, a main oil pipeline 2, an oil separator 3, and an oil distribution pipeline 4.
  • the oil source 1 is a power device, and the high-pressure hydraulic oil is sent to the oil separator 3 through the main oil pipeline 2 through the high-pressure oil pump and the large oil storage tank inside the oil source 1, and the control machine 5 controls the oil source output through the control cable 6.
  • Pressure and flow of hydraulic oil; oil separator 3 is connected to oil source 1 through main oil pipe 2, and is connected to vertical actuator 19 and horizontal actuator 25 through two sub oil pipes 4, respectively.
  • Oil separator 1 connects oil source 1 The total hydraulic oil delivered is separated and sent to two actuators respectively.
  • the control machine 5 controls the operation of the oil separator 3 and the pressure and flow of the divided hydraulic oil through the control cable 6.
  • the control system includes: a control machine 5, a control cable 6, a sensor cable 7, a display 8, a keyboard and a mouse 9.
  • the display 8 is a display device of the instrument control interface, the keyboard and mouse 9 are input tools for control signals, and the main operations of the instrument can be completed by the keyboard and mouse 9, the display 8 and the keyboard and mouse 9 are connected to the control machine 5; the control machine 5 It is an integrated control center with integrated control and monitoring functions. It consists of an industrial computer, control signal transmission device and sensor signal receiving device. It controls the operation and signal acquisition of the entire instrument.
  • the controller 5 is connected to the oil source 1 through the control cable 6
  • the oil separator 3 controls the pressure and flow of the total flow hydraulic oil output from the oil source 1 and the pressure and flow of the divided hydraulic oil output from the oil separator 3 respectively.
  • the control machine 5 is connected through the sensor cable 7 respectively: vertical displacement Sensor 22, vertical axis force sensor 23, horizontal displacement sensor 28, horizontal axis force sensor 29, vertical acceleration sensor 35, horizontal acceleration sensor 54, displacement sensor
  • the device 68 acquires the physical and mechanical indexes monitored by these sensors in real time during the test.
  • the cutting system is the main system of the device provided by the present invention, and includes four parts, respectively: a main frame, a vertical and horizontal actuator, an upper and lower shear box, and a test aid.
  • the host frame includes: base platform 10, base feet 11, base skirt 12, horizontal actuator support 13, vertical frame 14, vertical rail 15, top platform 16, horizontal rail 17, horizontal rail pad 18.
  • the base platform 10 is a steel rectangular platform, and eight base feet 11 are welded together at the lower portion of the base platform 10 to support it.
  • Eight base skirt plates 12 are fixed around the base feet 11 by screws;
  • 13 is an “L” -shaped steel member, which is welded with a triangular steel rib plate, and has a circular hole in the vertical middle position for the horizontal actuator telescopic rod 26 to pass through, and the horizontal actuator bracket 13 passes a plurality of pieces.
  • High-strength screws are fixed on the base platform 10;
  • the two vertical frames 14 are frame-shaped steel members, and multiple screws are used to fix the middle side of the base platform 10.
  • the inner side of the vertical frame 14 has two vertical openings. Shallow grooves are used to fix two vertical guide rails 15.
  • the vertical guide rails 15 are high-precision guide rails. They are fixed in the middle of the reserved shallow grooves of the vertical frame 14 by screws. The vertical guide rails 15 are used to connect the upper shear box vertically.
  • the slider 33 provides the vertical motion freedom for the upper shear box;
  • the top platform 16 is a square steel member, and a circular hole is opened at the center position for passing through the vertical actuator telescopic rod 20 and the top platform 16 Use more
  • the screws are fixed with the two vertical frames 14;
  • the horizontal guide rails 17 have the same specifications as the vertical guide rails 15, and are fixed on the base platform 10 with screws for connecting the lower cutting box horizontal slider 39 to provide the lower cutting box.
  • the horizontal guide block 18 is a steel member, which is fixed on the base platform 10 with screws and is located at the end of the horizontal guide 17 to limit the sliding of the lower cutting box to prevent the lower cutting box from The base platform 10 slides down;
  • the vertical and horizontal actuator system includes: a vertical actuator 19, a vertical actuator telescopic rod 20, a vertical connection buckle 21, a vertical displacement sensor 22, a vertical axial force sensor 23, and a vertical Fixed plate 24, horizontal actuator 25, horizontal actuator telescopic rod 26, horizontal connection buckle 27, horizontal displacement sensor 28, horizontal axis force sensor 2 9, horizontal fixed plate 30, balance bracket 31;
  • the vertical actuator telescopic rod 20 at the lower end of the vertical actuator 19 can expand and contract under changes in hydraulic oil pressure and flow rate.
  • the vertical connection buckle 21 is a rigid connection member and connects the vertical actuator telescopic rod 20.
  • the vertical axis force sensor 23, the vertical fixing plate 24 is a disc-shaped steel member, and the vertical axis force sensor 23 is firmly fixed to the On the vertical fixing plate 24, the vertical fixing plate 24 is firmly fixed on the upper cutting box 32 with screws; the vertical actuator 19, the vertical actuator telescopic rod 20, the vertical connection buckle 21, and the vertical shaft
  • the force sensor 23, the vertical fixing plate 24 and the upper cutting box 32 are connected into a whole.
  • the telescopic movement of the vertical actuator 19 can drive the same vertical movement of the upper cutting box 32 along the direction of the vertical guide rail 15. ;
  • the horizontal actuator telescopic rod 26 at the front end of the horizontal actuator 25 can expand and contract under changes in hydraulic oil pressure and flow rate.
  • the horizontal connection buckle 27 starts between the horizontal actuator telescopic rod 26 and the horizontal axis force sensor 29.
  • the horizontal axis force sensor 29 is firmly fixed on the horizontal fixing plate 30 with screws, and the horizontal fixing plate 30 is fixed on the rear bracket 41 of the lower shear box with screws.
  • the balance bracket 31 is a steel I-shaped member and is placed on the base.
  • the platform 10 is also located below the middle of the horizontal actuator 25 and is used to support the horizontal actuator 25 so that it does not tilt; the horizontal actuator 25, the horizontal actuator telescopic rod 26, the horizontal connection buckle 27, and the horizontal shaft The force sensor 29, the horizontal fixed plate 30, and the balance bracket 31 are connected into a whole, and the telescopic movement of the horizontal actuator 25 can drive the lower shear box to perform the same horizontal movement in the direction of the horizontal guide rail 17;
  • the vertical actuator 19 and the horizontal actuator 25 are two hydraulic actuators of similar specifications, which are respectively connected to the oil separator 3 through the oil distribution pipe 4 and are vertically displaced by being installed at the end of the actuator.
  • the sensor 22 and the horizontal displacement sensor 28 monitor the displacement data loaded by the two actuators in real time and transmit it to the controller 5, which then analyzes and processes the displacement data, and transmits the control signal to the oil source 1 and the oil separator 3.
  • the purpose of the vertical axis force sensor 23 and the horizontal axis force sensor 29 at the front end of the lever 20 and the horizontal actuator telescopic rod 26 is to: monitor the axial force data loaded by the two actuators and transmit them to the control machine 5, the control machine 5 and further Analyze and process the axial force data, transmit control signals to the oil source 1 and the oil separator 3, and control the pressure and flow of the hydraulic oil to control the large axial force output by the vertical actuator 19 and the horizontal actuator 25. ;
  • Both the vertical actuator 19 and the horizontal actuator 25 are mounted on the host frame system with high-strength screws.
  • the vertical actuator 19 is mounted on the top platform 16.
  • the horizontal actuator 25 is mounted on the horizontal actuator.
  • the two actuators on the support 13 are perpendicular to each other in space layout, and can only move linearly in orthogonal directions, respectively;
  • the upper and lower shear boxes include: an upper shear box 32, an upper shear box vertical slider 33, and a vertical actuator fixing screw hole 34 , Vertical acceleration sensor 35, Vertical acceleration sensor bracket 36, Test aid fixing holes 37, Lower shear box base 38, Lower shear box horizontal slider 39, Lower shear box bottom platform 40, Lower shear box Rear bracket 41, horizontal actuator fixing screw hole 42, actuator fixing screw 43, lower cutting box front bracket 44, lower cutting box vertical guide 45, lower cutting box side limit frame 46, lower cutting box The side limit frame vertical slider 47, the reserved groove 48, the lower grip plate fixing screw 49, the spring 50, the spring support rod 51, the spring cap 52, the spring fixing nut 53, the horizontal acceleration sensor 54, and the horizontal acceleration sensor bracket 55.
  • the upper shear box 32 is Steel box-shaped steel member, four upper cutting box vertical sliders 33 are fastened to the "C" flanges on both sides of the upper cutting box 32 with screws, and four upper cutting box vertical sliders 33
  • Four vertical guide rails 15 are connected respectively to achieve the freedom of movement of the upper shear box 32 in the vertical direction; two lower edges of the four "C" shaped flanges on the sides of the upper shear box 32 are opened
  • the test aid fixing hole 37 is used to pass through the upper fixing bolt 60 to fix the test aids such as the upper grasping plate 56 or the upper limit frame 58; there is a vertical vertical distribution in the middle of the upper surface of the upper shear box 32
  • Actuator fixing screw hole 34 is used to fix the vertical fixing plate 24, so that the upper shear box 32 is integrated with the vertical actuator 19;
  • the vertical acceleration sensor bracket 36 is an "L" -shaped steel member
  • the vertical acceleration sensor bracket 36 is fixed to the right end of the upper shear box 32 by screws, and the vertical acceleration sensor 35
  • the lower shear box base 38 is a steel flat plate, and six lower shear box horizontal sliders 39 are fixed on the lower surface thereof, and the lower shear box horizontal sliders 39 are connected to the horizontal guide rail 17, so that the entire lower shear box is Degree of freedom of movement in the horizontal direction;
  • the bottom platform 40 of the lower shear box is a rectangular box-shaped steel member, which is firmly welded to the middle of the lower shear box base 38;
  • a plurality of horizontal actuator fixing screw holes 42 are opened at the left portion of the lower shear box rear bracket 41.
  • the horizontal fixing plate 30 is fixed to the lower shear box rear bracket by the actuator fixing screws 4 3 41 upper and lower shear box rear brackets 41 on the right side of the right side are respectively fixed with two lower shear box vertical rails 45; the two lower shear box front brackets 44 are triangular steel members, which are fixed to the lower shear with screws At the right end of the box base 38, the two lower cutting box vertical guide rails 45 are respectively fixed to the two lower cutting box front brackets 44 by screws; the lower cutting box rear bracket 41 and the lower cutting box front bracket 44 together provide four Under-root cutting box vertical guide 45, Four-under cutting box vertical guide 45 minutes Connect a lower shear box side limit frame vertical slider 47 to provide a vertical freedom of movement for the lower shear box side limit frame 46; the lower shear box side limit frame 46 is a frame-shaped steel member that is opened up and down , The right side of the lower shear box side limit frame 46 is screwed The two lower shear box side limit frame vertical sliders 47 are fixed for connecting the four lower shear box side limiter
  • the test aids such as the displacement transmission rod sleeve 65 of the gripper.
  • the cuboid space that opens upwards is the volume of the lower shear box. Because the lower shear box side limit frame 46 can move vertically, the volume of the lower shear box is variable.
  • Twelve floating spring groups are fixed on the front and rear wings 46, and the twelve floating spring groups jointly support the lower shear box side limit frame 46, so that the lower shear box side limit frame 46 is not subject to vertical pressure. In the case, the volume of the lower shear box inside the box can be kept stable;
  • the floating spring group is composed of a spring 50, a spring support 51, a spring cap 52, and a spring fixing nut 53, and round holes passing through the spring cap 52 are reserved on both side wings of the lower shear box side limit frame 46.
  • the spring cap 52 is a hollow steel member, and is fixed to the wings on both sides of the lower shear box side limit frame 46 with a plurality of screws.
  • the spring support rod 51 is placed on the lower shear box base 38.
  • the spring fixing nut 53 is a special long nut with internal threads. It is screwed on the spring support rod 51 and does not contact the spring cap 52.
  • the spring cap 52 and the spring support rod 51 hold the spring 50 together, so that the elastic forces at both ends of the spring 50 act on the lower shear box side limit frame 46 and the lower shear box base 38 respectively, so that the lower shear box side limit frame 46 is in a floating state;
  • the horizontal acceleration sensor bracket 55 is fixed to the right side of the lower shear box side limit frame 46 with screws, and the horizontal acceleration sensor 54 is fixed to the horizontal acceleration sensor bracket 55 with bolts.
  • the test aids include: upper gripper plate 56, upper gripper plate fixing screw hole 57, upper restraint frame 58, upper restraint frame fixing screw hole 59, upper fixing bolt 60, lower gripper plate 61, gripper Earthenware holder 62, grabbing spoon 63, grabber displacement transmitting rod 64, displacement transmitting rod sleeve 65, sleeve holder 66, displacement transmitting joint 67, displacement sensor 68;
  • the upper grip plate 56 is a plate-shaped member with four small wings, made of high-strength steel, and the lower surface is sharply carved Grippers are used to engage and fix the test material.
  • the tooth angle of the gripper is 90 °, the tooth height is 1mm, and the tooth pitch is 2mm.
  • Two upper grippers are left on the four small wings of the upper gripper plate 56 respectively.
  • the gripper plate 56 is firmly fixed on the lower surface of the upper shear box 32; the upper limit frame 58 is a frame-shaped steel member, and the inner frame size is the same as the inner frame size of the lower shear box side limit frame 46, on the upper side There are eight upper limit frame fixing holes 59 on the wings on both sides of the limit frame 58.
  • the upper limit frame 58 can be firmly fixed on the lower surface of the upper shear box 32 through eight upper fixing bolts 60, thereby forming one A rectangular parallelepiped space with a downward opening and a constant volume.
  • This space is the upper shear box space, which is opposite to the upward and variable volume of the lower shear box space formed by the lower shear box side limit frame 46, which together form a accommodating shear.
  • Shear box space for cutting materials the lower gripper plate 61 is made of high-strength steel, and the upper surface has sharp grippers, It is used to bite and fix the test material.
  • the specifications of the gripper are the same as those of the upper gripper plate 56.
  • the length and width of the lower gripper plate 61 are adapted to the internal dimensions of the lower shear box side limit frame 46, so that it can fit exactly The gripper faces upward into the lower cutting box, and the lower gripper plate 61 can be clamped and fixed by tightening the lower gripper plate fixing screw 49;
  • the gripper bracket 62, the gripping spoon 63, the gripper displacement transmission rod 64, the displacement transmission rod sleeve 65, the sleeve bracket 66, the displacement transmission joint 67, and the displacement sensor 68 collectively constitute a gripper, and the gripper is an extension A sensor device for measuring the internal deformation of the test soil inside the shear box.
  • the gripper bracket 62 is a steel member. One end of the gripper bracket 62 is fixed to the outer surface of the short side of the lower shear box side limit frame 46 with four screws. On the other side, the other end of the gripper bracket 62 is an adjustable elastic gripper device for holding the displacement sensor 68.
  • the extension rod extended by the displacement sensor 68 is connected to the displacement transmission rod 64 through the displacement transmission joint 67, and the displacement transmission rod 64 It is sleeved in the displacement transmission rod sleeve 65 to prevent the friction of the test soil from hindering the movement of the grabber displacement transmission rod 64 and affecting the measurement accuracy.
  • the displacement transmission rod sleeve 65 is fixed by the sleeve bracket 66, and the sleeve bracket 66 passes A plurality of screws are fixed on the upper surface of the gripper bracket 62; the other end of the displacement transmission rod 64 is connected to the gripping spoon 63, and the gripping spoon 63 is a semi-circular sheet In the preparation phase of the shear test, it is embedded in the test soil in advance, and moves along with the deformation position of the soil during the development of the shear test, thereby measuring the internal deformation of the soil and passing the measured soil deformation through The displacement transmission rod 64 and the displacement transmission joint 67 are transmitted to the displacement sensor 68, and the displacement sensor 68 transmits the deformation signal to the control machine 5 through the sensor cable 7 in real time;
  • the working process of conducting a geomembrane-GCL interface dynamic shear test is mainly divided into three stages: a test preparation stage, a test progress stage, and a test end stage .
  • Test preparation stage First, the geomembrane sample 69 and the GCL sample 70 are prepared by cutting according to the size of the upper and lower shear boxes.
  • the size of the GCL sample 70 is consistent with the size of the shear box.
  • the width is larger than G CL sample 70.
  • the upper fixing bolts 60 securely fix the upper gripping plate 56 on the lower surface of the upper shearing box 32, and the gripping surface of the upper gripping plate 56 faces downward; then, unscrew and fix the horizontal fixing plate 30 and the lower shearing Actuator fixing screws 43 of the box back bracket 41 to disengage the two, and push the lower cutting box along the horizontal guide 17 to the horizontal guide pad 18 on the base platform 10 to make the upper part of the lower cutting box convenient.
  • the lower gripper plate 61 is installed in the lower shear box so that the gripper face is upward, and the lower gripper plate fixing screw 49 is firmly fixed to the lower gripper plate 61; Then, the GCL sample 70 was laid on the lower gripper plate 61 Continue to flatten the geomembrane sample 69 on the GCL sample 70. Finally, push the lower shear box back just below the upper shear box 32, and use it as the actuator fixing screw 43 to cut the horizontal fixing plate 30 and the lower shear. The box back bracket 41 is firmly fixed, and thus the test preparation phase ends.
  • Test development stage First, control the expansion and contraction of the vertical actuator 19 and the horizontal actuator 25, so that the upper and lower shear boxes face each other; continue to control the vertical actuator 19, so that the upper shear box 32 along The vertical guide rail 15 moves downward, and then the geomembrane sample 69 and the GCL sample 70 held by the upper and lower shear boxes are brought into close contact, forming a geomembrane-GCL interface.
  • the vertical positive pressure is zero.
  • the vertical actuator 19 is continuously controlled to continuously increase the positive pressure at the geomembrane-GCL interface, so that the upper gripper plate 56 firmly grips the geomembrane sample 70, and at the same time the lower gripper plate 61 firmly grasp the GCL sample, so that the shear displacement occurs only at the geomembrane-GCL interface formed between the geomembrane sample 69 and the GCL sample 70; accurately control the rate of change of the positive pressure at the geomembrane-GCL interface, Until the applied positive pressure at the geomembrane-GCL interface reaches the load level required for the test, the magnitude of the normal pressure at the geomembrane-GCL interface is measured and transmitted by the vertical axis force sensor 23 Pass it to the control machine 5, and the vertical displacement of the upper shear box 32 is measured by the vertical displacement sensor 22 and transmitted to the control machine 5.
  • Rate and mode make the lower shear box move in a sine wave, carry out the dynamic shear test of the geomembrane-GCL interface, and cyclic shear a certain number of times; during the shearing process, the shear force occurring at the geomembrane-GCL interface is equal to the level
  • the horizontal force applied by the actuator 25 is measured by the horizontal axis force sensor 29 and transmitted to the controller 5.
  • the shear displacement occurring at the geomembrane-GCL interface is equal to the horizontal displacement of the lower shear box.
  • the horizontal displacement sensor 28 Measured and transmitted to the control machine 5.
  • the acceleration data of the upper shear box 32 and the lower shear box during the dynamic shearing process are measured by the vertical acceleration sensor 35 and the horizontal acceleration sensor 54 and transmitted through the sensor cable 7 Pass it to the controller 5; After the set number of cycles is completed, the dynamic shear test of the geomembrane-GCL interface ends.
  • Test end stage First, the vertical actuator 19 is controlled to reduce its vertical force by operating the control machine 5 until the vertical force is zero. At this time, it can be considered that the geomembrane-GCL interface is no longer in contact.
  • the vertical actuator 19 shortens its vertical actuator telescopic rod 20 to raise the upper shear box 32 to a proper position, and unscrew the actuator fixing screws fixing the horizontal fixing plate 30 and the rear bracket 41 of the lower shear box 43. Disengage the two, push the lower shear box along the horizontal rail to the horizontal guide pad 18 on the base platform 10, and insert the geomembrane sample, GCL sample and test auxiliary installed in the lower shear box.
  • test preparation phase the working process of carrying out the geomembrane-clay interface dynamic shear test is mainly divided into three phases: test preparation phase, test progress phase, and test end phase .
  • Test preparation stage First, prepare geomembrane sample 69 and clay sample 71 according to the size of the upper and lower shear boxes. Both the length and width of the geomembrane sample 69 are larger than the size of the shear box. Set the moisture content and mix well beforehand; after the sample preparation is completed, turn on the power of each part of the instrument and operate the vertical actuator 19 to contract.
  • the upper shearing box 32 is detached from the lower shearing box, and there is sufficient space.
  • the upper gripping plate 56 is firmly fixed to the lower surface of the upper shearing box 32 by eight upper fixing bolts 60, and the gripping surface is made.
  • a gripper bracket 62 is mounted on the short side of the lower shear box side limit frame 46, and a sleeve bracket 66 and a displacement sensor thereon. 68; Clay sample 71 is filled in the lower shear box and tamped.
  • the displacement transmission rod 64 When the clay sample 71 is filled more than half, the soil sample spoon 63 is embedded in the clay sample 71, and the soil spoon 6 3, the displacement transmission rod 64 The displacement transmission joint 67 and the displacement sensor 68 are connected in order.
  • the displacement transmission rod 64 is sleeved in the displacement transmission rod sleeve 65, and the displacement transmission rod sleeve 65 is sleeved on the sleeve bracket 66.
  • Two sets of parallel gripper sensors with different installation lengths respectively To measure the internal deformation of the clay sample 71 at different positions during the shearing process; continue to fill the lower shear box with the clay sample, and scrape the upper surface of the clay sample 71 flat, and flatten the geomembrane sample 69 on it Finally, the lower shear box is pushed back directly under the upper shear box 32, and is used as an actuator fixing screw 43 to securely fix the horizontal fixing plate 30 and the lower shear box bracket 41, and thus the test preparation phase ends.
  • Test development stage First, control the expansion and contraction of the vertical actuator 19 and the horizontal actuator 25, so that the upper and lower shear boxes face each other; continue to control the vertical actuator 19, so that the upper shear box 32 along The vertical guide rail 15 moves downward, and then the geomembrane sample 69 and the clay sample 71 held by the upper and lower shear boxes are brought into close contact to form a geomembrane-clay interface.
  • the vertical positive pressure is zero.
  • the vertical actuator 19 is controlled to continuously increase the positive pressure at the geomembrane-clay interface, so that the upper grasping plate 56 firmly grasps the geomembrane sample 69, so that only the shear displacement occurs.
  • the positive pressure of the geomembrane-clay interface is measured by the vertical axis force sensor 23 and transmitted to the controller 5. During the application of the positive pressure, the clay sample 71 is compressed and the volume becomes smaller.
  • the floating spring group supports the lower shear box side limit frame 46 so that its upper edge is always in contact with the overlying geomembrane sample 69, and the vertical deformation of the clay sample 71 is equal to the vertical direction of the upper shear box 32
  • the displacement is measured by the vertical displacement sensor 22 and transmitted to the control machine 5; after the vertical load reaches the set level, the telescopic state of the horizontal actuator 25 is changed, so that the lower shear box moves horizontally along the horizontal guide rail 17, Relative displacement in the horizontal direction with the lower shear box 32, relative displacement
  • the geomembrane-clay interface is also sheared at the same time.
  • the rate and mode of the horizontal actuator 25's expansion and contraction are controlled to make the lower shear box move according to a sine wave.
  • a dynamic shear test at the geomembrane-clay interface is carried out and the cycle is sheared. A certain number of times; during the shearing process, the shear force at the geomembrane-clay interface is equal to the horizontal force applied by the horizontal actuator 25, and the magnitude is measured by the horizontal axis force sensor 29 and transmitted to the controller 5, the geomembrane-clay interface
  • the shear displacement occurring on the top is equal to the horizontal displacement of the lower shear box, which is measured by the horizontal displacement sensor 28 and transmitted to the control machine 5.
  • the acceleration data of the upper shear box 32 and the lower shear box during the dynamic shearing process are vertical. Measured by the acceleration sensor 35 and the horizontal acceleration sensor 54 and transmitted to the controller 5 through the sensor cable 7; after the set number of cycles is completed, the dynamic shear test of the geomembrane-clay interface is ended.
  • Test end stage First, the vertical actuator 19 is controlled to reduce its vertical force by operating the control machine 5 until the vertical force is zero, and then the vertical actuator 19 is controlled to shorten its vertical actuator. Telescopic lever 20 raises the upper cutting box 32 to a proper position, and unscrews the actuator fixing screw 43 which fixes the horizontal fixing plate 30 and the lower bracket 41 of the rear cutting box to disengage the two, and lowers the lower cutting box. Push along the horizontal guide to the horizontal guide pad 18 on the base platform 10, remove the geomembrane sample 69, clay sample 71, and three sets of gripper sensor devices installed in the lower shear box, and remove them one by one.
  • the working process of conducting a direct shear test of clay is mainly divided into three phases: a test preparation phase, a test progress phase, and a test end phase.
  • Test preparation stage First, prepare a certain amount of clay sample 71 according to the volume of the upper and lower shear boxes.
  • the clay sample 71 is prepared by mixing in advance according to the set moisture content; turn on the power of each part of the instrument and operate the vertical Actuator 19 is contracted to disengage upper cutting box 32 from lower cutting box, leaving sufficient space; then, unscrew actuator fixing screw 43 fixing horizontal fixing plate 30 and rear bracket 41 of lower cutting box so that The two are disengaged, and the lower shear box is pushed along the horizontal guide rail 17 to the horizontal rail pad 18 on the base platform 10, so that the upper part of the lower shear box forms an open space convenient for manual operation.
  • Test development stage First, control the expansion and contraction of the vertical actuator 19 and the horizontal actuator 25, so that the clay sample 71 in the upper and lower shear boxes starts to be compressed; then, the vertical actuator 19 is controlled to make The positive pressure on the clay sample 71 continues to increase, and the rate of change of the positive pressure on the clay sample 71 is accurately controlled until the applied positive pressure reaches the load level required for the test.
  • the magnitude of the positive pressure on the clay sample 71 is determined by the vertical axis force sensor.
  • the limiting frame 46 moves downward as the clay sample 71 is compressed.
  • the floating spring group supports the lower shear box-side limiting frame 46 so that its upper edge is always in close contact with the lower edge of the upper limiting frame 58; 71
  • the telescopic state of the horizontal actuator 25 is changed, so that the lower shear box moves horizontally along the horizontal guide rail 17, and a relative displacement occurs in the horizontal direction with the upper shear box 32.
  • Clay test 71 also shears at the same time, controls the rate of expansion and contraction of the horizontal actuator 25, so that the lower shear box moves unidirectionally at a certain shear rate, and the relative displacement between the upper and lower shear boxes gradually increases and continues for a certain time;
  • the shear force occurring inside the clay sample 71 is equal to the horizontal force applied by the horizontal actuator 25. It is measured by the horizontal axis force sensor 29 and transmitted to the controller 5.
  • the shear displacement occurring in the clay sample 71 It is equal to the horizontal displacement of the lower shear box. It is measured by the horizontal displacement sensor 28 and transmitted to the controller 5.
  • the acceleration data of the upper shear box 32 and the lower shear box during the dynamic shearing process are composed of the vertical acceleration sensor 35 and the horizontal acceleration. Measured by the sensor 54 and transmitted to the control machine 5 through the sensor cable 7; after the set cutting time ends, the direct shear test of the clay ends.
  • Test end stage First, the vertical actuator 19 is controlled to reduce its vertical force by operating the control machine 5 until the vertical force is zero. At this time, it can be considered that the clay sample 71 is no longer compressed, and the eighth sample is opened. Set up upper fixing bolts 60 to disengage the upper limit frame 58 and the upper shear box 32; then control the vertical actuator 19 to shorten its vertical actuator telescopic rod 20 to raise the upper shear box 32 to an appropriate level Position, unscrew the actuator fixing screw 43 fixing the horizontal fixing plate 30 and the lower bracket 41 of the lower shear box to disengage the two, and push the lower shear box along the horizontal guide 17 until the base is flat.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供一种大尺寸多功能界面动力剪切试验仪及试验方法,属于岩土工程技术领域。该仪器包括油源系统、控制系统、剪切系统;剪切系统为开展剪切试验的主体装置,包括:主机框架、竖向和水平作动器、上下剪切盒、试验辅具,竖向和水平作动器分别连接上下剪切盒,试验辅具包括抓齿板、侧限框、抓土器传感器等;油源系统为动力装置,用于向两台作动器提供动力;控制系统为仪器的控制及传感器信号收集装置,用于精确控制、监测仪器的运行状态。本发明通过精确控制两台作动器的运动状态,可以实现不同界面类型、试验材料以及不同动力剪切模式等多种试验功能,填补了目前界面动力剪切试验技术手段的不足。

Description

大尺寸多功能界面动力剪切试验仪及试验方法
[0001]
[0002] 技术领域
[0003] 本发明属岩土工程和地震工程技术领域, 具体涉及一种大尺寸多功能界面动力 剪切试验仪及试验方法。
[0004]
[0005] 背景技术
[0006] 土工合成材料是以人工合成的聚合物 (如塑料、 化纤、 合成橡胶等) 为原料的 工业制成品, 包括: 土工织物、 土工膜、 GCL (Geosynthetic Clay Liner) 、 土工 复合材料、 土工网、 玻纤网、 土工垫等。 土工合成材料被广泛应用于垃圾填埋 场及低矮建筑物基础底部, 作为衬垫系统, 起到隔离污染物泄漏或防止液体渗 漏的作用。 然而, 土工合成材料接触界面的剪切强度普遍较低, 在地震荷载等 作用下会沿着复合衬垫的界面发生复杂的相对运动, 目前在对界面动力剪切特 性的理论研究尚不充分, 尤其是实验技术手段方面。 目前可以采取循环直接剪 切法来测试一般土体 (黏土、 粉土、 砂土等) 的动力剪切特性, 直接照搬这种 测试技术方法测试土工合成材料界面的剪切特性并不合适, 而且传统剪切测试 方法一般采用较小的剪切面尺寸, 大尺寸的土工合成材料界面剪切试验能够更 为全面准确地揭示界面的动力剪切特性; 土工合成材料界面因其接触材料类型 的差异可分为多种类型, 包括: 土工膜 -GCL界面、 土工膜 -黏土界面、 土工膜 - 土工布界面、 土工布 -土工复合排水网界面等, 传统的测试方法不能全面开展各 种类型的界面剪切测试; 此外, 目前的动力剪切试验仪器普遍不能模拟地震作 用下地震波的不规则性, 无法开展复杂动力荷载作用下的土工合成材料界面动 力剪切试验。 总而言之, 目前尚没有成熟的技术方案与仪器产品用于开展土工 合成材料界面的动力剪切试验。 缺少试验仪器等硬件设备的支撑, 围绕土工合 成材料界面剪切特性的各项研究工作难以展开进行, 亟需研制能够实现大尺寸 界面剪切、 多种类型界面剪切、 具备多种动力剪切试验模式的土工合成材料界 面动力剪切试验仪装置。
[0007]
[0008] 发明内容
[0009] 本发明的目的在于, 克服现有技术的不足, 提供一种大尺寸多功能界面动力剪 切试验仪及试验方法, 实现了在复杂动力剪切模式下, 能够开展多种大尺寸界 面 (包括: 土工合成材料界面、 黏土-土工合成材料界面等) 和土体材料的动剪 应力-应变特性的动力剪切试验, 对界面力学、 土工合成材料剪切特性、 环境岩 土工程、 地震工程的研究工作的开展奠定了极好的研究基础。
[0010] 为了实现上述目标, 本发明提供了如下技术方案:
[0011] 一种大尺寸多功能界面动力剪切试验仪, 包括油源系统、 控制系统、 剪切系统
[0012] 所述剪切系统为整个仪器开展剪切试验的装置, 其中设置有竖向和水平两台作 动器;
[0013] 所述油源系统为整个仪器的动力装置, 其与剪切系统连接, 用于向剪切系统中 的两台作动器提供动力;
[0014] 所述控制系统为整个仪器的控制及传感器信号收集装置, 其分别与剪切系统及 油源系统连接, 用于精确控制和监测仪器的运行状态。
[0015] 具体的, 所述剪切系统包括主机框架, 竖向和水平作动器, 上、 下剪切盒, 试 验辅具; 其中, 主机框架包括底座平台、 底座支脚、 底座裙板、 水平作动器支 座、 竖向框架、 竖向导轨、 顶部平台、 水平导轨、 水平导轨垫块; 竖向和水平 作动器包括竖向作动器、 竖向作动器伸缩杆、 竖向连接扣、 竖向位移传感器、 竖向轴力传感器、 竖向固定盘、 水平作动器、 水平作动器伸缩杆、 水平连接扣 、 水平位移传感器、 水平轴力传感器、 水平固定盘、 平衡支架; 上、 下剪切盒 包括上剪切盒、 上剪切盒竖向滑块、 竖向作动器固定螺孔、 竖向加速度传感器 、 竖向加速度传感器支架、 试验辅具固定孔、 下剪切盒底座、 下剪切盒水平滑 块、 下剪切盒盒底平台、 下剪切盒后支架、 水平作动器固定螺孔、 作动器固定 螺丝、 下剪切盒前支架、 下剪切盒竖向导轨、 下剪切盒侧限框、 下剪切盒侧限 框竖向滑块、 预留槽、 下抓齿板固定螺丝、 弹簧、 弹簧支杆、 弹簧盖帽、 弹簧 固定螺母、 水平加速度传感器、 水平加速度传感器支架; 试验辅具包括上抓齿 板、 上抓齿板固定螺孔、 上侧限框、 上侧限框固定螺孔、 上固定螺栓、 下抓齿 板、 抓土器支架、 抓土勺、 抓土器位移传递杆、 位移传递杆套筒、 套筒支架、 位移传递接头、 位移传感器;
[0016] 若干底座支脚共同焊接在底座平台下部, 若干底座裙板围绕并固定在各个底座 支脚上; 水平作动器支座固定在底座平台上, 水平作动器支座沿其竖向中间位 置开有一个圆形孔洞, 以供水平作动器伸缩杆穿过; 两个竖向框架分别固定在 底座平台正中侧的前后两边部位, 两个竖向框架的内侧浅槽均固定有两条竖向 导轨, 用于连接上剪切盒竖向滑块, 为上剪切盒提供竖向运动的自由度; 顶部 平台位于两个竖向框架的上方并与两个竖向框架固定在一起, 顶部平台正中位 置开有一个圆孔, 用于穿过竖向作动器伸缩杆; 两个水平导轨固定在底座平台 上并穿过两个竖向框架之间, 用于连接下剪切盒水平滑块, 为下剪切盒提供水 平运动的自由度; 水平导轨垫块固定在水平导轨末端位置上, 以防下剪切盒滑 落;
[0017] 竖向作动器的上端连接竖向位移传感器, 竖向作动器的下端连接竖向作动器伸 缩杆, 竖向作动器伸缩杆和竖向轴力传感器之间通过竖向连接扣连接, 竖向轴 力传感器固定在竖向固定盘上, 竖向固定盘固定在上剪切盒上, 上剪切盒为
Figure imgf000005_0001
字形箱型构件, 四个上剪切盒竖向滑块分别固定在上剪切盒的前后两侧翼缘上 , 四个上剪切盒竖向滑块各自位于一个竖向导轨中, 使上剪切盒具有竖直自由 度, 并通过竖向作动器伸缩杆的伸缩运行带动上剪切盒竖向运动; 竖向加速度 传感器支架固定在上剪切盒的右端, 竖向加速度传感器固定在竖向加速度传感 器支架上;
[0018] 同时上剪切盒的每个翼缘上均开设有两个试验辅具固定孔, 用以固定上抓齿板 或者上侧限框; 上抓齿板下表面刻有尖锐抓齿, 用于咬合固定试验材料, 抓齿 的齿角为 90°, 齿高为 1mm, 齿间距为 2mm, 在上抓齿板的翼板上分别开设有上 抓齿板固定孔, 上抓齿板固定孔与上剪切盒上的试验辅具固定孔位置吻合, 通 过上固定螺栓可将上抓齿板与上剪切盒固定; 上侧限框尺寸与下剪切盒侧限框 一致, 上侧限框的前后翼板上开侧限框固定孔, 通过上固定螺栓可将上侧限框 与上剪切盒固定, 形成容积不变的上剪切盒空间;
[0019] 平衡支架安装在底座平台上用以支撑水平作动器, 水平作动器的左端连接水平 位移传感器, 水平作动器的右端连接水平作动器伸缩杆, 水平作动器伸缩杆和 水平轴力传感器之间通过水平连接扣连接, 水平轴力传感器固定在水平固定盘 上, 在下剪切盒后支架左侧开有多个水平作动器固定螺孔, 通过作动器固定螺 丝将水平固定盘固定在下剪切盒后支架上, 下剪切盒后支架固定在下剪切盒底 座的上表面左侧, 下剪切盒底座的下表面固定六个下剪切盒水平滑块, 六个下 剪切盒水平滑块分别位于两个水平导轨中, 使下剪切盒在水平方向上具有运动 自由度, 并通过水平作动器伸缩杆的伸缩运动带动下剪切盒水平运动; 下剪切 盒盒底平台安装在下剪切盒底座上表面的中部, 下剪切盒后支架右侧固定有两 根下剪切盒竖向导轨, 下剪切盒底座的上表面右侧固定有两个下剪切盒前支架 , 每个下剪切盒前支架的左侧分别固定一根下剪切盒竖向导轨, 下剪切盒侧限 框的外侧分别固定有四个下剪切盒侧限框竖向滑块, 每个下剪切盒侧限框竖向 滑块分别位于一根下剪切盒竖向导轨中, 为下剪切盒侧限框提供了竖向自由度 ; 下剪切盒侧限框的右端侧边上设置有水平加速度传感器支架, 水平加速度传 感器固定在水平加速度传感器支架上;
[0020] 下剪切盒侧限框与下剪切盒盒底平台的尺寸相适应, 且下剪切盒侧限框恰好能 套在下剪切盒盒底平台上, 形成体积可变的下剪切盒; 下抓齿板表面有尖锐抓 齿, 下抓齿板的尺寸与下剪切盒侧限框相适应, 且下抓齿板能恰好放入下剪切 盒中, 在下剪切盒侧限框左端开有三个螺孔, 用于穿过下抓齿板固定螺丝, 通 过旋紧下抓齿板固定螺丝可将下抓齿板与下剪切盒侧限框固定;
[0021] 下剪切盒侧限框前后两侧翼板与下剪切盒底座之间共设置有十二个浮置弹簧组 , 使得下剪切盒侧限框在不受竖向力时下剪切盒的体积能保持稳定; 浮置弹簧 组包括若干组配套使用的弹簧、 弹簧支杆、 弹簧盖帽、 弹簧固定螺母; 下剪切 盒侧限框的两侧翼板上预留有穿过弹簧盖帽的孔洞, 弹簧盖帽通过所述孔洞卡 设在下剪切盒侧限框的翼板上, 弹簧支杆的下端设置在下剪切盒底座上, 弹簧 支杆外套设有弹簧, 弹簧支杆的上端刻有螺纹, 弹簧支杆穿过弹簧盖帽且与弹 簧盖帽不发生接触, 弹簧固定螺母位于弹簧盖帽上方并旋紧在弹簧支杆上端的 螺纹上, 用于控制弹簧的长短, 弹簧盖帽和弹簧支杆的下端共同夹持弹簧, 使 下剪切盒侧限框处于浮置状态;
[0022] 抓土器支架、 抓土勺、 抓土器位移传递杆、 位移传递杆套筒、 套筒支架、 位移 传递接头、 位移传感器共同组成抓土器, 抓土器为伸入剪切盒内部用于测量试 验土体内部变形的传感器装置, 抓土器支架的一端固定在下剪切盒侧限框右端 的外侧面上, 其另一端为抓手结构, 用于夹持位移传感器, 位移传感器的左端 设置有伸缩杆, 所述伸缩杆通过位移传递接头与位移传递杆连接, 位移传递杆 套在位移传递杆套筒内, 在下剪切盒侧限框右端设有预留槽, 用于放置位移传 递杆套筒, 同时位移传递杆套筒通过套筒支架固定, 在抓土器支架上; 位移传 递杆的左端连接抓土勺, 抓土勺预先埋置于试验土体内, 在剪切试验过程中跟 随土体变形而移动, 并将测得的土体变形传递给位移传感器;
[0023] 所述油源系统包括油源、 主输油管、 分油器、 分输油管; 所述油源为动力装置 , 其将液压油通过主输油管输送给分油器, 分油器通过两根分输油管分别和竖 向作动器、 水平作动器连接, 将油源输送的总液压油分别输送给竖向作动器和 水平作动器;
[0024] 所述控制系统包括控制机、 控制线缆、 传感器线缆、 显示器、 操作键盘鼠标; 控制机由一台工业计算机、 控制信号传输装置以及传感器信号接收装置组成; 控制机分别连接显示器和键盘鼠标; 控制机通过控制线缆连接并控制油源输出 液压油的压力、 流量, 控制机通过控制线缆连接并控制分油器分流液压油的压 力、 流量; 控制机通过传感器线缆分别连接垂向位移传感器、 垂向轴力传感器 、 水平位移传感器、 水平轴力传感器、 竖向加速度传感器、 水平加速度传感器 、 位移传感器, 并实时监测这些传感器测量的物理力学指标; 其中, 竖向作动 器、 水平作动器分别通过安装在各自末端的竖向位移传感器、 水平位移传感器 实时测量位移数据并传输给控制机; 竖向作动器伸缩杆、 水平作动器伸缩杆分 别通过安装在各自前端的竖向轴力传感器、 水平轴力传感器测量竖向作动器、 水平作动器加载的轴力数据并传输给控制机; 控制机进而对位移和轴力数据进 行处理分析得到控制信号, 并将控制信号传递给油源与分油器, 调整液压油的 压力、 流量指标来精确控制竖向作动器、 水平作动器。 [0025] 本发明中, 所有采用螺丝固定的部件, 与之相对应部件的相应位置均预留有螺 孔。
[0026] 本发明提出的大尺寸多功能界面动力剪切仪, 其工作过程的基本原理为:
[0027] 通过操作键盘鼠标来操控控制机向油源和分油器发送指令, 控制竖向作动器和 水平作动器的伸缩, 竖向作动器依次通过竖向作动器伸缩杆、 竖向连接扣、 竖 向轴力传感器、 竖向固定盘和上剪切盒相连接, 从而带动整个上剪切盒及其附 件竖向运动, 水平作动器通过水平作动器伸缩杆、 水平连接扣、 水平轴力传感 器、 水平固定盘和下剪切盒相连接, 从而带动整个下剪切盒及其附件水平运动
[0028] 本发明提出的大尺寸多功能界面动力剪切试验仪开展剪切试验的过程主要分为 三个阶段: 试验准备阶段、 试验进行阶段、 试验结束阶段。
[0029] 试验准备阶段: 首先, 打开本装置各部分的电源, 操作竖向作动器收缩, 使上 剪切盒脱离下剪切盒, 并留有足够空间; 随后, 旋开固定水平固定盘和下剪切 盒后支架的作动器固定螺丝, 使两者脱开, 将下剪切盒沿水平导轨推至底座平 台上的水平导轨垫块一侧, 使下剪切盒上部形成便于人工操作的开放空间, 在 下剪切盒内安装开展试验需要的试验辅具与剪切试验材料; 安装完成后, 将下 剪切盒推回, 用作动器固定螺丝将水平固定盘和下剪切盒后支架牢固固定, 至 此试验准备阶段结束。
[0030] 试验开展阶段: 首先, 控制竖向作动器与水平作动器的伸缩, 使上、 下剪切盒 互相正对; 继续控制竖向作动器, 使上剪切盒沿竖向导轨向下运动, 继而使上 、 下剪切盒夹持的试验材料发生接触, 刚发生接触的瞬间接触面上的竖向接触 力为零; 随后, 继续控制竖向作动器, 使竖向接触力持续增大, 可精确控制竖 向力变化的速率, 直至施加的竖向力达到试验需要的荷载水平, 竖向力的大小 由竖向轴力传感器测得并传递给控制机, 上剪切盒的竖向位移由竖向位移传感 器测得并传递给控制机; 待竖向荷载达到设定水平后, 改变水平作动器的伸缩 状态, 使下剪切盒沿着水平导轨水平运动, 与上剪切盒在水平方向上产生相对 位移, 相对位移产生时试验材料也同时产生剪切, 控制水平作动器的伸缩速率 和运动模式就是控制了剪切试验材料的剪切速率和剪切模式, 剪切过程中水平 作动器施加的水平力等于试验材料、 试验界面上发生的剪切力, 水平力的大小 由水平轴力传感器测得并传递给控制机, 下剪切盒在水平方向的位移情况由水 平位移传感器测得并传递给控制机, 上剪切盒、 下剪切盒在动力剪切过程的加 速度数据由竖向加速度传感器和水平加速度传感器测得, 并通过传感器线缆传 递给控制机; 事先设定下剪切盒的水平加载模式, 例如但不限于: 正弦波运动 (设定振幅、 频率) 、 三角波 (设定振幅、 频率) 、 文件波 (设定地震位移时 程数据) 等, 按照这些设定好的水平加载模式开展动力剪切试验, 当设定的加 载模式进行结束后, 动力剪切试验结束。
[0031] 试验结束阶段: 首先, 通过操作控制机控制竖向作动器减小其竖向力, 直至竖 向力为零, 此时可认为试验材料不受力、 试验界面不接触, 随后控制竖向作动 器缩短其竖向作动器伸缩杆, 使上剪切盒抬高到合适位置, 旋开作动器固定螺 丝, 使水平固定盘和下剪切盒后支架脱开, 将下剪切盒沿水平导轨推至底座平 台上的水平导轨垫块一侧, 将下剪切盒内安装的剪切试验材料与试验辅具逐一 卸除、 取出, 并打扫下剪切盒的清洁; 随后将下剪切盒沿水平导轨退回与上剪 切盒正对的位置, 调整竖向作动器的伸缩状态, 使上剪切盒在竖向处于比较合 适的安全位置, 最后关闭电源。
[0032] 本发明提出的大尺寸多功能界面动力剪切试验仪, 可以通过精确控制竖向作动 器、 水平作动器的运动速率及输出轴力大小, 可使上、 下剪切盒之间产生多种 模式的相对运动, 以开展多种类型、 多种模式的动力剪切试验。
[0033] 本发明提出的大尺寸多功能界面动力剪切试验仪, 可以通过对试验辅具的调整 开展多种界面剪切试验, 包括但不限于土工合成材料界面静动力剪切试验、 或 黏土-土工合成材料界面静动力剪切试验、 或土体静动力剪切试验。
[0034] 本发明的有益效果:
[0035] 本发明提出的大尺寸多功能界面动力剪切试验仪的最大优点是实现了在复杂动 力剪切模式下, 能够开展多种大尺寸界面 (包括: 土工合成材料界面、 黏土-土 工合成材料界面等) 和土体材料的动剪应力-应变特性的动力剪切试验, 本发明 仪器对界面力学、 土工合成材料剪切特性、 环境岩土工程、 地震工程的研究工 作的开展奠定了极好的研究基础。 [0036]
[0037] 附图说明
[0038] 图 1为本发明的整体示意图。
[0039] 图 2为本发明的各组件联系示意图。
[0040] 图 3为本发明的剪切系统示意图。
[0041] 图 4为本发明的剪切系统正视图。
[0042] 图 5为本发明的剪切系统左视图。
[0043] 图 6为本发明的剪切系统右视图。
[0044] 图 7为本发明的剪切系统俯视图。
[0045] 图 8为本发明的剪切系统框架示意图。
[0046] 图 9为本发明的剪切系统框架的组件拆解示意图。
[0047] 图 10为本发明的作动器及上下剪切盒示意图。
[0048] 图 11为本发明的上剪切盒示意图。
[0049] 图 12为本发明的下剪切盒示意图。
[0050] 图 13为本发明的下剪切盒后视示意图。
[0051] 图 14为本发明的下剪切盒下视示意图。
[0052] 图 15为本发明的下剪切盒组件拆解示意图。
[0053] 图 16为本发明的浮置弹簧组示意图。
[0054] 图 17为本发明的加速度传感器示意图。
[0055] 图 18为本发明开展“土工合成材料”界面剪切测试的剪切装置示意图。
[0056] 图 19为本发明开展“土工合成材料”界面剪切测试的界面构成正视图。
[0057] 图 20为本发明上下剪切板的示意图。
[0058] 图 21为本发明开展“土工合成材料 -土”界面剪切测试的剪切装置示意图。
[0059] 图 22为本发明开展“土工合成材料 -土”界面剪切测试的界面构成正视图。
[0060] 图 23为本发明的抓土器传感器装置示意图。
[0061] 图 24为本发明开展土体直接剪切测试的剪切装置示意图。
[0062] 图 25为本发明开展土体直接剪切测试的剪切盒正视图。
[0063] 图 26为本发明的上侧限框示意图。 [0064] 图中标号: 1为油源, 2为主输油管, 3为分油器, 4为分输油管, 5为控制机, 6 为控制线缆, 7为传感器线缆, 8为显示器, 9为键盘鼠标, 10为底座平台, 11为 底座支脚, 12为底座裙板, 13为水平作动器支座, 14为竖向框架, 15为竖向导 轨, 16为顶部平台, 17为水平导轨, 18为水平导轨垫块, 19为竖向作动器, 20 为竖向作动器伸缩杆, 21为竖向连接扣, 22为竖向位移传感器, 23为竖向轴力 传感器, 24为竖向固定盘, 25为水平作动器, 26为水平作动器伸缩杆, 27为水 平连接扣, 28为水平位移传感器, 29为水平轴力传感器, 30为水平固定盘, 31 为平衡支架, 32为上剪切盒, 33为上剪切盒竖向滑块, 34为竖向作动器固定螺 孔, 35为竖向加速度传感器, 36为竖向加速度传感器支架, 37为试验辅具固定 螺孔, 38为下剪切盒底座, 39为下剪切盒水平滑块, 40为下剪切盒盒底平台, 4 1为下剪切盒后支架, 42为水平作动器固定螺孔, 43为作动器固定螺丝, 44为下 剪切盒前支架, 45为下剪切盒竖向导轨, 46为下剪切盒侧限框, 47为下剪切盒 侧限框竖向滑块, 48为预留槽, 49为下抓齿板固定螺丝, 50为弹簧, 51为弹簧 支杆, 52为弹簧盖帽, 53为弹簧固定螺母, 54为水平加速度传感器, 55为水平 加速度传感器支架, 56为上抓齿板, 57为上抓齿板固定孔, 58为上侧限框, 59 为上侧限框固定孔, 60为上固定螺栓, 61为下抓齿板, 62为抓土器支架, 63为 抓土勺, 64为位移传递杆, 65为位移传递杆套筒, 66为套筒支架, 67为位移传 递接头, 68为位移传感器, 69为土工膜试样, 70为 GCL试样, 71为黏土试样。
[0065]
[0066] 具体实施方式
[0067] 下面将结合具体实施例及其附图对本发明提供的大尺寸多功能界面动力剪切试 验仪及试验方法的技术方案作进一步说明。 结合以下说明, 本发明的优点和特 征将更加清晰。
[0068] 需要说明的是, 本发明的实施例有较佳的实施性, 并非是对本发明任何形式的 限定。 本发明实施例中描述的技术特征或技术特征的组合不应当被认为是孤立 的, 它们可以被互相组合从而达到更好的技术效果。 本发明优选实施方式的范 围也可以包括另外的现实, 且这应被本发明实施例所属技术领域的技术人员所 理解。 [0069] 对于相关领域普通技术人员已知的技术、 方法和设备可能不作详细介绍, 但在 适当情况下, 所述技术、 方法和设备应当被视为授权说明书的一部分。 在这里 示出和讨论的所有示例中, 任何具体值应被解释为仅仅是示例性的, 而不是作 为限定。 因此, 示例性实施例的其他示例可以具有不同的值。
[0070] 本发明的附图均采用非常简化的形式且均使用非精确的比例, 仅用以方便、 明 晰地辅助说明本发明实施例的目的, 并非是限定本发明可实施的限定条件。 任 何结构的修饰、 比例关系的改变或大小的调整, 在不影响本发明所能产生的效 果及所能达成的目的下, 均应落在本发明所揭示的技术内容所能涵盖的范围内 。 且本发明各附图中所出现的相同标号代表相同的特征或者部件, 可应用于不 同的实施例中。
[0071] 如图 1至图 26所示, 本发明提供一种大尺寸多功能界面动力剪切试验仪, 包括 油源系统、 控制系统、 剪切系统。
[0072] 油源系统包括: 油源 1、 主输油管 2、 分油器 3、 分输油管 4。
[0073] 油源 1为动力装置, 通过油源 1内部的高压油泵和大型储油箱, 将高压液压油通 过主输油管 2输送给分油器 3 , 控制机 5通过控制线缆 6控制油源输出液压油的压 力、 流量; 分油器 3通过主输油管 2连接油源 1, 通过两根分输油管 4分别和竖向 作动器 19、 水平作动器 25连接, 分油器 3将油源 1输送的总液压油分开, 并分别 输送给两台作动器, 控制机 5通过控制线缆 6控制分油器 3的运行与分流液压油的 压力、 流量。
[0074] 控制系统包括: 控制机 5、 控制线缆 6、 传感器线缆 7、 显示器 8、 键盘鼠标 9。
[0075] 显示器 8为仪器控制界面的显示装置, 键盘鼠标 9为控制信号的输入工具, 对仪 器的主要操作均可由键盘鼠标 9操作完成, 显示器 8和键盘鼠标 9连接控制机 5 ; 控制机 5是集成控制与监测等功能的综合控制中心, 由一台工业计算机、 控制信 号传输装置以及传感器信号接收装置组成, 控制整个仪器的运行与信号采集, 控制机 5通过控制线缆 6连接油源 1、 分油器 3 , 分别控制油源 1输出总流液压油的 压力、 流量, 以及分油器 3输出的分流液压油的压力、 流量; 控制机 5通过传感 器线缆 7分别连接: 垂向位移传感器 22、 垂向轴力传感器 23、 水平位移传感器 28 、 水平轴力传感器 29、 竖向加速度传感器 35、 水平加速度传感器 54、 位移传感 器 68 , 在试验过程中实时获取这些传感器监测到的物理力学指标。
[0076] 剪切系统是本发明提出装置的主体系统, 包括四个部分, 分别为: 主机框架、 竖向和水平作动器、 上下剪切盒、 试验辅具。
[0077] 主机框架包括: 底座平台 10、 底座支脚 11、 底座裙板 12、 水平作动器支座 13、 竖向框架 14、 竖向导轨 15、 顶部平台 16、 水平导轨 17、 水平导轨垫块 18。
[0078] 底座平台 10为钢制长方形平台, 八根底座支脚 11共同焊接在底座平台 10下部, 起支撑作用, 八块底座裙板 12通过螺丝围绕固定在底座支脚 11上; 水平作动器 支架 13为“L”型钢制构件, 其上焊有三角形钢制肋板, 竖向中间位置开有一个圆 孔, 供水平作动器伸缩杆 26穿过, 水平作动器支架 13通过多枚高强螺丝固定在 底座平台 10上; 两个竖向框架 14为框型钢制构件, 采用多枚螺丝固定在底座平 台 10正中侧边部位, 竖向框架 14靠内一侧开有两条竖向浅槽, 用于固定两条竖 向导轨 15 , 竖向导轨 15为高精度导轨, 采用螺丝固定在竖向框架 14的预留浅槽 中部, 竖向导轨 15用于连接上剪切盒竖向滑块 33, 为上剪切盒提供竖向运动的 自由度; 顶部平台 16为方形钢制构件, 正中位置开有一个圆孔, 用于穿过竖向 作动器伸缩杆 20, 顶部平台 16用多枚螺丝与两个竖向框架 14固定在一起; 水平 导轨 17与竖向导轨 15规格相同, 采用螺丝固定在底座平台 10上, 用于连接下剪 切盒水平滑块 39 , 为下剪切盒提供水平运动的自由度; 水平导轨垫块 18为钢制 构件, 用螺丝固定在底座平台 10上, 位于水平导轨 17的末端位置, 用于限制下 剪切盒的滑动, 以防下剪切盒从底座平台 10滑落;
[0079] 所有采用螺丝固定的部件, 其对应部件的相应位置均预留有螺孔; 上述构件共 同构成主机框架, 如图 3~9所示;
[0080] 竖向和水平作动器体系包括: 竖向作动器 19、 竖向作动器伸缩杆 20、 竖向连接 扣 21、 竖向位移传感器 22、 竖向轴力传感器 23、 竖向固定盘 24、 水平作动器 25 、 水平作动器伸缩杆 26、 水平连接扣 27、 水平位移传感器 28、 水平轴力传感器 2 9、 水平固定盘 30、 平衡支架 31 ;
[0081] 竖向作动器 19下端的竖向作动器伸缩杆 20在液压油压力、 流量的变化下可以伸 缩, 竖向连接扣 21为刚性连接构件, 连接竖向作动器伸缩杆 20与竖向轴力传感 器 23 , 竖向固定盘 24为圆盘形钢制构件, 竖向轴力传感器 23用螺丝牢固固定在 竖向固定盘 24上, 竖向固定盘 24用螺丝牢固固定在上剪切盒 32上; 竖向作动器 1 9、 竖向作动器伸缩杆 20、 竖向连接扣 21、 竖向轴力传感器 23、 竖向固定盘 24和 上剪切盒 32连成一个整体, 竖向作动器 19的伸缩运动可带动上剪切盒 32沿着竖 向导轨 15的方向发生相同的竖向运动;
[0082] 水平作动器 25前端的水平作动器伸缩杆 26在液压油压力、 流量的变化下可以伸 缩, 水平连接扣 27在水平作动器伸缩杆 26和水平轴力传感器 29之间起连接作用 , 水平轴力传感器 29用螺丝牢固固定在水平固定盘 30上, 水平固定盘 30用螺丝 固定在下剪切盒后支架 41上, 平衡支架 31为钢制“工”字形构件, 放置在底座平台 10上, 同时位于水平作动器 25中部下方, 用于支撑水平作动器 25 , 使之不发生 倾斜; 水平作动器 25、 水平作动器伸缩杆 26、 水平连接扣 27、 水平轴力传感器 2 9、 水平固定盘 30、 平衡支架 31连成一个整体, 水平作动器 25的伸缩运动可以带 动下剪切盒沿着水平导轨 17的方向发生相同的水平运动;
[0083] 竖向作动器 19与水平作动器 25为两台规格相近的油压作动器, 分别通过分输油 管 4与分油器 3连接, 通过安装在作动器末端的竖向位移传感器 22、 水平位移传 感器 28实时监测两台作动器加载的位移数据并传输给控制机 5 , 控制机 5进而对 位移数据进行分析与处理, 将控制信号传递给油源 1与分油器 3 , 通过控制液压 油压力、 流量来控制竖向作动器 19与水平作动器 25的伸缩, 从而精确控制上剪 切盒 32和下剪切盒的运动状态; 安装在竖向作动器伸缩杆 20和水平作动器伸缩 杆 26前端的竖向轴力传感器 23和水平轴力传感器 29的目的是: 监测两台作动器 加载的轴力数据并传输给控制机 5 , 控制机 5进而对轴力数据进行分析与处理, 将控制信号传递给油源 1与分油器 3 , 通过控制液压油的压力、 流量来控制竖向 作动器 19与水平作动器 25输出的轴力大小;
[0084] 竖向作动器 19、 水平作动器 25均用高强螺丝安装在主机框架体系上, 竖向作动 器 19安装在顶部平台 16上, 水平作动器 25安装在水平作动器支座 13上, 两台作 动器在空间布局上互相垂直, 分别只能沿着正交方向直线运动;
[0085] 所有采用螺丝固定的部件, 与之相对应部件的相应位置均预留有螺孔; 上述构 件共同构成了剪切系统的竖向和水平作动器, 参见图 3~7、 10;
[0086] 上下剪切盒包括: 上剪切盒 32、 上剪切盒竖向滑块 33、 竖向作动器固定螺孔 34 、 竖向加速度传感器 35、 竖向加速度传感器支架 36、 试验辅具固定孔 37、 下剪 切盒底座 38、 下剪切盒水平滑块 39、 下剪切盒盒底平台 40、 下剪切盒后支架 41 、 水平作动器固定螺孔 42、 作动器固定螺丝 43、 下剪切盒前支架 44、 下剪切盒 竖向导轨 45、 下剪切盒侧限框 46、 下剪切盒侧限框竖向滑块 47、 预留槽 48、 下 抓齿板固定螺丝 49、 弹簧 50、 弹簧支杆 51、 弹簧盖帽 52、 弹簧固定螺母 53、 水 平加速度传感器 54、 水平加速度传感器支架 55。
[0087] 上剪切盒 32为
Figure imgf000015_0001
字形箱型钢制构件, 四个上剪切盒竖向滑块 33用螺丝牢固固 定在上剪切盒 32两侧的“C”形翼缘上, 四个上剪切盒竖向滑块 33分别连接四根竖 向导轨 15 , 从而实现上剪切盒 32在竖直方向的运动自由度; 在上剪切盒 32侧边 的四个“C”形翼缘的下缘各开有两个试验辅具固定孔 37 , 用于穿过上固定螺栓 60 进而来固定上抓齿板 56或者上侧限框 58等试验辅具; 在上剪切盒 32上表面正中 有圆形分布的竖向作动器固定螺孔 34, 用于固定竖向固定盘 24, 从而使上剪切 盒 32与竖向作动器 19连成一个整体; 竖向加速度传感器支架 36为“L”形钢制构件 , 通过螺丝将竖向加速度传感器支架 36固定在上剪切盒 32的右端, 竖向加速度 传感器 35通过螺栓固定在竖向加速度传感器支架 36上, 并使其测量方向与上剪 切盒 32的竖向运动方向一致;
[0088] 下剪切盒底座 38为钢制平板, 其下表面固定六个下剪切盒水平滑块 39 , 下剪切 盒水平滑块 39连接水平导轨 17 , 从而实现整个下剪切盒在水平方向上的运动自 由度; 下剪切盒盒底平台 40为长方体箱型钢制构件, 牢固焊接在下剪切盒底座 3 8中部; 下剪切盒后支架 41为钢制构件, 用螺丝固定在下剪切盒底座 38左端, 在 下剪切盒后支架 41左部开有多个水平作动器固定螺孔 42, 通过作动器固定螺丝 4 3将水平固定盘 30固定在下剪切盒后支架 41上, 下剪切盒后支架 41右部两侧分别 用螺丝固定两根下剪切盒竖向导轨 45 ; 两个下剪切盒前支架 44为三角形钢制构 件, 用螺丝固定在下剪切盒底座 38的右端, 两根下剪切盒竖向导轨 45分别用螺 丝固定在两个下剪切盒前支架 44; 下剪切盒后支架 41和下剪切盒前支架 44共同 提供了四根下剪切盒竖向导轨 45 , 四根下剪切盒竖向导轨 45分别连接一个下剪 切盒侧限框竖向滑块 47 , 为下剪切盒侧限框 46提供了竖向的运动自由度; 下剪 切盒侧限框 46为上下开口的框型钢制构件, 下剪切盒侧限框 46右侧分别用螺丝 固定两个下剪切盒侧限框竖向滑块 47 , 用于连接四根下剪切盒竖向滑动导轨 45 , 在下剪切盒侧限框 46右侧上端部位开有三个预留槽 48 , 用于穿过、 安放抓土 器的位移传递杆套筒 65等试验辅具, 在下剪切盒侧限框 46左侧部位开有三个螺 孔, 用于穿过下抓齿板夹紧固定螺丝 49; 下剪切盒侧限框 46的内框尺寸与下剪 切盒盒底平台 40的尺寸一致, 下剪切盒侧限框 46恰好能套下剪切盒盒底平台 40 上, 形成一个向上开口的长方体空间, 这个空间大小就是下剪切盒的容积; 因 为下剪切盒侧限框 46可以竖向运动, 所以下剪切盒的容积是可变的, 在下剪切 盒侧限框 46前后两侧翼板上固定有十二个浮置弹簧组, 十二个浮置弹簧组共同 支撑起下剪切盒侧限框 46 , 使得在下剪切盒侧限框 46不受竖向压力的情况下盒 内下剪切盒的容积能保持稳定;
[0089] 浮置弹簧组由弹簧 50、 弹簧支杆 51、 弹簧盖帽 52、 弹簧固定螺母 53组成, 下剪 切盒侧限框 46的两侧翼板上预留有穿过弹簧盖帽 52的圆孔, 弹簧盖帽 52为中空 型钢制构件, 用多枚螺丝固定在下剪切盒侧限框 46的两侧翼板上, 弹簧支杆 51 放置在下剪切盒底座 38上, 弹簧支杆 51的上端杆件刻有螺纹, 弹簧固定螺母 53 为内有螺纹的特制长螺母, 旋紧在弹簧支杆 51上, 且与弹簧盖帽 52不发生接触 , 改变弹簧固定螺母 53的上下位置, 可以控制弹簧 50的长短, 弹簧盖帽 52和弹 簧支杆 51共同夹持弹簧 50, 使弹簧 50两端的弹力分别作用在下剪切盒侧限框 46 与下剪切盒底座 38上, 从而使下剪切盒侧限框 46处于浮置状态; 水平加速度传 感器支架 55用螺丝固定在下剪切盒侧限框 46右端侧边, 水平加速度传感器 54用 螺栓固定水平加速度传感器支架 55上, 使其测量方向与下剪切盒水平运动方向 一致;
[0090] 所有采用螺丝固定的部件, 对应部件的相应位置均预留有螺孔; 上述构件共同 构成了剪切系统的上下剪切盒, 参见图 3~7、 10-17;
[0091] 试验辅具包括: 上抓齿板 56、 上抓齿板固定螺孔 57、 上侧限框 58、 上侧限框固 定螺孔 59、 上固定螺栓 60、 下抓齿板 61、 抓土器支架 62、 抓土勺 63、 抓土器位 移传递杆 64、 位移传递杆套筒 65、 套筒支架 66、 位移传递接头 67、 位移传感器 6 8;
[0092] 上抓齿板 56为带有四个小翼板的板型构件, 采用高强钢制成, 下表面刻有尖锐 抓齿, 用于咬合固定试验材料, 抓齿的齿角为 90°, 齿高为 1mm, 齿间距为 2mm , 在上抓齿板 56的四个小翼板上分别留有两个上抓齿板固定孔 57 , 八个上抓齿 板固定孔 57与上剪切盒 32上的八个试验辅具固定孔 37位置吻合, 通过八枚上固 定螺栓 60, 可将抓齿面朝下的上抓齿板 56牢固固定在上剪切盒 32的下表面上; 上侧限框 58为框型钢制构件, 内框尺寸与下剪切盒侧限框 46的内框尺寸一致, 在上侧限框 58两侧翼板上开有八个上侧限框固定孔 59 , 通过八枚上固定螺栓 60 , 可将上侧限框 58牢固固定在上剪切盒 32的下表面上, 从而形成一个开口向下 且容积不变的长方体空间, 这个空间就是上剪切盒空间, 与下剪切盒侧限框 46 形成的开口向上且容积可变的下剪切盒空间正对, 共同形成容纳剪切材料的剪 切盒空间; 下抓齿板 61采用高强钢制成, 上表面有尖锐抓齿, 用于咬合固定试 验材料, 抓齿规格与上抓齿板 56的抓齿相同, 下抓齿板 61的长宽尺寸与下剪切 盒侧限框 46的内部尺寸相适应, 使其恰好能以抓齿面向上的姿态放入下剪切盒 中, 通过旋紧下抓齿板固定螺丝 49可夹紧牢固固定下抓齿板 61 ;
[0093] 抓土器支架 62、 抓土勺 63、 抓土器位移传递杆 64、 位移传递杆套筒 65、 套筒支 架 66、 位移传递接头 67、 位移传感器 68共同组成抓土器, 抓土器为伸入剪切盒 内部用于测量试验土体内部变形的传感器装置, 抓土器支架 62为钢制构件, 抓 土器支架 62的一端用四枚螺丝牢固固定在下剪切盒侧限框 46的短边外表面上, 抓土器支架 62的另一端为可调节松紧的抓手装置, 用于夹持位移传感器 68 , 位 移传感器 68伸出的伸缩杆通过位移传递接头 67与位移传递杆 64连接, 位移传递 杆 64套在位移传递杆套筒 65内, 以防止试验土体的摩擦力阻碍抓土器位移传递 杆 64的运动, 影响测量精度, 位移传递杆套筒 65通过套筒支架 66固定, 套筒支 架 66通过多枚螺丝固定在抓土器支架 62的上表面上; 位移传递杆 64的另一端连 接抓土勺 63 , 抓土勺 63为半圆形薄片构件, 在剪切试验的准备阶段, 预先埋置 于试验土体内, 在剪切试验开展过程中跟随土体变形发生位置移动, 从而测量 土体的内部变形, 并将测得的土体变形通过位移传递杆 64和位移传递接头 67传 递给位移传感器 68 , 位移传感器 68通过传感器线缆 7将变形信号即时传输给控制 机 5 ;
[0094] 所有采用螺丝固定的部件, 其对应部件的相应位置均预留有螺孔; 上述构件共 同构成了剪切系统的试验辅具, 参见图 18~26。
[0095] 本发明提供的大尺寸多功能界面动力剪切试验仪, 其主要的剪切试验功能将以 三个实施例的形式分别加以介绍:
[0096] 实施例 1 : 土工膜 -GCL界面动力剪切试验
[0097] 基于本发明提出的大尺寸多功能界面动力剪切试验仪, 开展土工膜 -GCL界面 动力剪切试验的工作过程主要分为三个阶段: 试验准备阶段、 试验进行阶段、 试验结束阶段。
[0098] 试验准备阶段: 首先, 依照上下剪切盒的尺寸切割准备土工膜试样 69和 GCL试 样 70, 其中 GCL试样 70的尺寸与剪切盒尺寸一致, 土工膜试样 69的长宽均大于 G CL试样 70; 制样完成后, 打开仪器各部分的电源, 操作竖向作动器 19收缩, 使 上剪切盒 32脱离下剪切盒, 并留有足够空间, 通过八枚上固定螺栓 60将上抓齿 板 56牢固固定在上剪切盒 32的下表面上, 且上抓齿板 56的抓齿面朝下; 随后, 旋开固定水平固定盘 30和下剪切盒后支架 41的作动器固定螺丝 43 , 使两者脱开 , 将下剪切盒沿水平导轨 17推至底座平台 10上的水平导轨垫块 18—侧, 使下剪 切盒上部形成便于人工操作的开放空间, 在下剪切盒内安装下抓齿板 61, 使其 抓齿面朝上, 并旋紧下抓齿板固定螺丝 49将下抓齿板 61牢固固定在下剪切盒内 ; 然后, 将 GCL试样 70平铺于下抓齿板 61上, 在 GCL试样 70上继续平铺土工膜 试样 69; 最后, 将下剪切盒推回至上剪切盒 32的正下方, 用作动器固定螺丝 43 将水平固定盘 30和下剪切盒后支架 41牢固固定, 至此试验准备阶段结束。
[0099] 试验开展阶段: 首先, 控制竖向作动器 19与水平作动器 25的伸缩, 使上下剪切 盒互相正对; 继续控制竖向作动器 19 , 使上剪切盒 32沿竖向导轨 15向下运动, 继而使上下剪切盒夹持的土工膜试样 69和 GCL试样 70发生紧密接触, 形成土工 膜 -GCL界面, 刚发生接触的瞬间土工膜 -GCL界面上的竖向正压力为零; 随后, 继续控制竖向作动器 19使土工膜 -GCL界面正压力持续增大, 使上抓齿板 56牢固 抓住土工膜试样 70, 同时使下抓齿板 61牢固抓住 GCL试样, 从而使剪切位移只 发生在土工膜试样 69和 GCL试样 70之间形成的土工膜 -GCL界面上; 精确控制土 工膜 -GCL界面正压力的变化速率, 直至施加的土工膜 -GCL界面正压力达到试验 需要的荷载水平, 土工膜 -GCL界面正压力的大小由竖向轴力传感器 23测得并传 递给控制机 5 , 上剪切盒 32的竖向位移由竖向位移传感器 22测得并传递给控制机 5; 待竖向荷载达到设定水平后, 改变水平作动器 25的伸缩状态, 使下剪切盒沿 着水平导轨 17水平运动, 与上剪切盒 32在水平方向上产生相对位移, 相对位移 产生时土工膜 -GCL界面也同时发生剪切, 控制水平作动器 25伸缩的速率、 模式 , 使下剪切盒按正弦波运动, 开展土工膜 -GCL界面动力剪切试验, 并循环剪切 一定次数; 剪切过程中, 土工膜 -GCL界面上发生的剪切力等于水平作动器 25施 加的水平力, 大小由水平轴力传感器 29测得并传递给控制机 5 , 土工膜 -GCL界面 上发生的剪切位移等于下剪切盒的水平位移, 由水平位移传感器 28测得并传递 给控制机 5, 上剪切盒 32、 下剪切盒在动力剪切过程的加速度数据由竖向加速度 传感器 35和水平加速度传感器 54测得, 并通过传感器线缆 7传递给控制机 5 ; 待 设定的循环次数完成后, 土工膜 -GCL界面动力剪切试验结束。
[0100] 试验结束阶段: 首先, 通过操作控制机 5控制竖向作动器 19减小其竖向力, 直 至竖向力为零, 此时可认为土工膜 -GCL界面不再接触, 随后控制竖向作动器 19 缩短其竖向作动器伸缩杆 20, 使上剪切盒 32抬高到合适位置, 旋开固定水平固 定盘 30和下剪切盒后支架 41的作动器固定螺丝 43 , 使两者脱开, 将下剪切盒沿 水平导轨推至底座平台 10上的水平导轨垫块 18—侧, 将下剪切盒内安装的土工 膜试样、 GCL试样与试验辅具逐一卸除、 取出, 并打扫下剪切盒的清洁; 随后 将下剪切盒沿水平导轨 17退回与上剪切盒 32正对的位置, 调整竖向作动器 19的 伸缩状态, 使上剪切盒 32在竖向处于比较合适的安全位置, 最后关闭电源。
[0101] 参见图 1~20, 本领域的科研技术人员经过培训后均能实施该实施例描述的土工 膜 -GCL界面动力剪切试验。
[0102] 实施例 2: 土工膜-黏土界面动力剪切试验
[0103] 基于本发明提出的大尺寸多功能界面动力剪切试验仪, 开展土工膜-黏土界面 动力剪切试验的工作过程主要分为三个阶段: 试验准备阶段、 试验进行阶段、 试验结束阶段。
[0104] 试验准备阶段: 首先, 依照上下剪切盒的尺寸切割准备土工膜试样 69和黏土试 样 71, 土工膜试样 69的长宽均大于剪切盒尺寸, 黏土试样 71应按照设定含水率 事先拌和好; 制样完成后, 打开仪器各部分的电源, 操作竖向作动器 19收缩, 使上剪切盒 32脱离下剪切盒, 并留有足够空间, 通过八枚上固定螺栓 60将上抓 齿板 56牢固固定在上剪切盒 32的下表面上, 且使其抓齿面朝下; 随后, 旋开固 定水平固定盘 30和下剪切盒后支架 41的作动器固定螺丝 43 , 使两者脱开, 将下 剪切盒沿水平导轨 17推至底座平台 10上的水平导轨垫块 18—侧, 使下剪切盒上 部形成便于人工操作的开放空间, 在下剪切盒侧限框 46短边侧面安装抓土器支 架 62, 以及其上的套筒支架 66和位移传感器 68 ; 在下剪切盒内装入黏土试样 71 并捣实, 当黏土试样 71装入过半时, 在黏土试样 71内埋入抓土勺 63, 将抓土勺 6 3、 位移传递杆 64、 位移传递接头 67和位移传感器 68依次连接, 位移传递杆 64套 在位移传递杆套筒 65内, 位移传递杆套筒 65套在套筒支架 66上, 安装完一套抓 土器传感器后, 再安装长度不同的两套并联抓土器传感器, 分别用于测量黏土 试样 71在剪切过程中的不同位置内部变形; 继续在下剪切盒内装满黏土试样, 并将黏土试样 71上表面刮平, 在其上平铺土工膜试样 69; 最后, 将下剪切盒推 回至上剪切盒 32正下方, 用作动器固定螺丝 43将水平固定盘 30和下剪切盒后支 架 41牢固固定, 至此试验准备阶段结束。
[0105] 试验开展阶段: 首先, 控制竖向作动器 19与水平作动器 25的伸缩, 使上下剪切 盒互相正对; 继续控制竖向作动器 19 , 使上剪切盒 32沿竖向导轨 15向下运动, 继而使上下剪切盒夹持的土工膜试样 69和黏土试样 71发生紧密接触, 形成土工 膜 -黏土界面, 刚发生接触的瞬间土工膜 -黏土界面上的竖向正压力为零; 随后, 控制竖向作动器 19使土工膜-黏土界面正压力持续增大, 使上抓齿板 56牢固抓住 土工膜试样 69 , 从而使剪切位移只发生在土工膜试样 69与黏土试样 71之间形成 的土工膜-黏土界面上; 精确控制土工膜-黏土界面正压力变化的速率, 直至施加 的土工膜-黏土界面正压力达到试验需要的荷载水平, 土工膜 -黏土界面正压力的 大小由竖向轴力传感器 23测得并传递给控制机 5 , 正压力施加过程中黏土试样 71 受到压缩导致体积变小, 下剪切盒侧限框 46随之向下运动, 浮置弹簧组托起下 剪切盒侧限框 46使其上缘始终与上覆的土工膜试样 69接触, 黏土试样 71的竖向 变形量等于上剪切盒 32的竖向位移, 由竖向位移传感器 22测得并传递给控制机 5 ; 待竖向荷载达到设定水平后, 改变水平作动器 25的伸缩状态, 使下剪切盒沿 着水平导轨 17水平运动, 与下剪切盒 32在水平方向上产生相对位移, 相对位移 产生时土工膜-黏土界面也同时发生剪切, 控制水平作动器 25伸缩的速率、 模式 , 使下剪切盒按正弦波运动, 开展土工膜 -黏土界面动力剪切试验, 并循环剪切 一定次数; 剪切过程中, 土工膜-黏土界面上的剪切力等于水平作动器 25施加的 水平力, 大小由水平轴力传感器 29测得并传递给控制机 5 , 土工膜-黏土界面上发 生的剪切位移等于下剪切盒的水平位移, 由水平位移传感器 28测得并传递给控 制机 5, 上剪切盒 32、 下剪切盒在动力剪切过程的加速度数据由竖向加速度传感 器 35和水平加速度传感器 54测得, 并通过传感器线缆 7传递给控制机 5 ; 待设定 的循环次数结束后, 土工膜-黏土界面动力剪切试验结束。
[0106] 试验结束阶段: 首先, 通过操作控制机 5控制竖向作动器 19减小其竖向力, 直 至竖向力为零, 随后控制竖向作动器 19缩短其竖向作动器伸缩杆 20, 使上剪切 盒 32抬高到合适位置, 旋开固定水平固定盘 30和下剪切盒后支架 41的作动器固 定螺丝 43 , 使两者脱开, 将下剪切盒沿水平导轨推至底座平台 10上的水平导轨 垫块 18—侧, 将下剪切盒内安装的土工膜试样 69、 黏土试样 71与三套抓土器传 感器装置逐一卸除、 取出, 并打扫下剪切盒的清洁; 随后将下剪切盒沿水平导 轨 17退回与上剪切盒 32正对的位置, 调整竖向作动器 19的伸缩状态, 使上剪切 盒 32在竖向处于比较合适的安全位置, 最后关闭电源。
[0107] 参见图 1~17、 21-23 , 本领域的科研技术人员经过培训后均能实施该实施例描 述的土工膜 -黏土界面动力剪切试验。
[0108] 实施例 3: 黏土直接剪切试验
[0109] 基于本发明提出的大尺寸多功能界面动力剪切试验仪, 开展黏土直接剪切试验 的工作过程主要分为三个阶段: 试验准备阶段、 试验进行阶段、 试验结束阶段
[0110] 试验准备阶段: 首先, 依照上下剪切盒的容积准备一定量的黏土试样 71, 黏土 试样 71按设定的含水率事先拌和制备完成; 打开仪器各部分的电源, 操作竖向 作动器 19收缩, 使上剪切盒 32脱离下剪切盒, 并留有足够空间; 随后, 旋开固 定水平固定盘 30和下剪切盒后支架 41的作动器固定螺丝 43 , 使两者脱开, 将下 剪切盒沿水平导轨 17推至底座平台 10上的水平导轨垫块 18—侧, 使下剪切盒上 部形成便于人工操作的开放空间, 在下剪切盒侧限框 46正上方对齐安放上侧限 框 58 , 在其形成的空间内填入黏土试样 71, 并捣实; 将下剪切盒推回至上剪切 盒 32正下方, 用作动器固定螺丝 43将水平固定盘 30和下剪切盒后支架 41牢固固 定; 控制竖向作动器 19与水平作动器 25的伸缩, 使上下剪切盒互相正对; 继续 控制竖向作动器 19 , 使上剪切盒 32沿竖向导轨 15向下运动, 使上侧限框固定孔 5 9与上剪切盒 32侧边的试验辅具固定孔正对, 通过八枚上固定螺栓 60将将上侧限 框 58牢固固定在上剪切盒 32的下部, 至此试验准备阶段结束。
[0111] 试验开展阶段: 首先, 控制竖向作动器 19与水平作动器 25的伸缩, 使上下剪切 盒内的黏土试样 71开始受压; 随后, 控制竖向作动器 19使黏土试样 71受到的正 压力持续增大, 精确控制黏土试样 71正压力的变化速率, 直至施加的正压力达 到试验需要的荷载水平, 黏土试样 71正压力的大小由竖向轴力传感器 23测得并 传递给控制机 5 , 黏土试样 71的竖向变形量等于上剪切盒 32的竖向位移, 由竖向 位移传感器 22测得并传递给控制机 5 , 下剪切盒侧限框 46随着黏土试样 71的压缩 而向下运动, 浮置弹簧组托起下剪切盒侧限框 46使其上缘始终与上侧限框 58下 缘紧密接触; 待黏土试样 71正压力达到设定水平后, 改变水平作动器 25的伸缩 状态, 使下剪切盒沿着水平导轨 17水平运动, 与上剪切盒 32在水平方向上产生 相对位移, 相对位移产生时黏土试样 71也同时发生剪切, 控制水平作动器 25伸 缩的速率, 使下剪切盒按一定剪切速率单向运动, 上下剪切盒之间的相对位移 逐渐变大, 并持续一定时间; 剪切过程中, 黏土试样 71内部发生的剪切力等于 水平作动器 25施加的水平力, 由水平轴力传感器 29测得并传递给控制机 5 , 黏土 试样 71内发生的剪切位移等于下剪切盒的水平位移, 由水平位移传感器 28测得 并传递给控制机 5 , 上剪切盒 32、 下剪切盒在动力剪切过程的加速度数据由竖向 加速度传感器 35和水平加速度传感器 54测得, 并通过传感器线缆 7传递给控制机 5; 待设定的剪切时间结束后, 黏土直接剪切试验结束。
[0112] 试验结束阶段: 首先, 通过操作控制机 5控制竖向作动器 19减小其竖向力, 直 至竖向力为零, 此时可认为黏土试样 71不再受压, 打开八枚上固定螺栓 60, 使 上侧限框 58和上剪切盒 32脱开; 随后控制竖向作动器 19缩短其竖向作动器伸缩 杆 20, 使上剪切盒 32抬高到合适位置, 旋开固定水平固定盘 30和下剪切盒后支 架 41的作动器固定螺丝 43 , 使两者脱开, 将下剪切盒沿水平导轨 17推至底座平 台 10上的水平导轨垫块 18—侧, 将下剪切盒内的黏土试样 71与上侧限框 58逐一 卸除、 取出, 并打扫下剪切盒的清洁; 随后将下剪切盒沿水平导轨 17推回与上 剪切盒 32正对的位置, 调整竖向作动器 19的伸缩状态, 使上剪切盒 32在竖向处 于比较合适的安全位置, 最后关闭电源。
[0113] 参见图 1~17、 24-26 , 本领域的科研技术人员经过培训后均能实施该实施例描 述的土工膜 -GCL界面动力剪切试验。
[0114] 上述描述仅是对本发明较佳实施例的描述, 并非是对本发明范围的任何限定。
任何熟悉该领域的普通技术人员根据上述揭示的技术内容做出的任何变更或修 饰均应视为等同的有效实施例, 均属于本发明技术方案保护的范围。
发明概述
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种大尺寸多功能界面动力剪切试验仪, 其特征在于: 包括油源系统 、 控制系统、 剪切系统;
所述剪切系统为整个仪器开展剪切试验的装置, 其中设置有竖向和水 平两台作动器;
所述油源系统为整个仪器的动力装置, 其与剪切系统连接, 用于向剪 切系统中的两台作动器提供动力;
所述控制系统为整个仪器的控制及传感器信号收集装置, 其分别与剪 切系统及油源系统连接, 用于精确控制和监测仪器的运行状态。
[权利要求 2] 根据权利要求 1所述的大尺寸多功能界面动力剪切仪, 其特征在于: 所述剪切系统包括主机框架, 竖向和水平作动器, 上、 下剪切盒, 试 验辅具; 其中, 主机框架包括底座平台 (10) 、 底座支脚 (11) 、 底 座裙板 (12) 、 水平作动器支座 (13) 、 竖向框架 (14) 、 竖向导轨 (15) 、 顶部平台 (16) 、 水平导轨 (17) 、 水平导轨垫块 (18) ; 竖向和水平作动器包括竖向作动器 (19) 、 竖向作动器伸缩杆 (20)
、 竖向连接扣 (21) 、 竖向位移传感器 (22) 、 竖向轴力传感器 (23 ) 、 竖向固定盘 (24) 、 水平作动器 (25) 、 水平作动器伸缩杆 (26 ) 、 水平连接扣 (27) 、 水平位移传感器 (28) 、 水平轴力传感器 ( 29) 、 水平固定盘 (30) 、 平衡支架 (31) ; 上、 下剪切盒包括上剪 切盒 (32) 、 上剪切盒竖向滑块 (33) 、 竖向作动器固定螺孔 (34)
、 竖向加速度传感器 (35) 、 竖向加速度传感器支架 (36) 、 试验辅 具固定孔 (37) 、 下剪切盒底座 (38) 、 下剪切盒水平滑块 (39) 、 下剪切盒盒底平台 (40) 、 下剪切盒后支架 (41) 、 水平作动器固定 螺孔 (42) 、 作动器固定螺丝 (43) 、 下剪切盒前支架 (44) 、 下剪 切盒竖向导轨 (45) 、 下剪切盒侧限框 (46) 、 下剪切盒侧限框竖向 滑块 (47) 、 预留槽 (48) 、 下抓齿板固定螺丝 (49) 、 弹簧 (50)
、 弹簧支杆 (51) 、 弹簧盖帽 (52) 、 弹簧固定螺母 (53) 、 水平加 速度传感器 (54) 、 水平加速度传感器支架 (55) ; 试验辅具包括上 抓齿板 (56) 、 上抓齿板固定螺孔 (57) 、 上侧限框 (58) 、 上侧限 框固定螺孔 (59) 、 上固定螺栓 (60) 、 下抓齿板 (61) 、 抓土器支 架 (62) 、 抓土勺 (63) 、 抓土器位移传递杆 (64) 、 位移传递杆套 筒 (65) 、 套筒支架 (66) 、 位移传递接头 (67) 、 位移传感器 (68 ) ;
若干底座支脚 (11) 共同焊接在底座平台 (10) 下部, 若干底座裙板 (12) 围绕并固定在各个底座支脚 (11) 上; 水平作动器支座 (13) 固定在底座平台 (10) 上, 水平作动器支座 (13) 沿其竖向中间位置 开有一个圆形孔洞, 以供水平作动器伸缩杆 (26) 穿过; 两个竖向框 架 (14) 分别固定在底座平台 (10) 正中侧的前后两边部位, 两个竖 向框架 (14) 的内侧浅槽均固定有两条竖向导轨 (15) , 用于连接上 剪切盒竖向滑块 (33) , 为上剪切盒 (32) 提供竖向运动的自由度; 顶部平台 (16) 位于两个竖向框架 (14) 的上方并与两个竖向框架 ( 14) 固定在一起, 顶部平台 (16) 正中位置开有一个圆孔, 用于穿过 竖向作动器伸缩杆 (20) ; 两个水平导轨 (17) 固定在底座平台 (10 ) 上并穿过两个竖向框架 (14) 之间, 用于连接下剪切盒水平滑块 ( 39) , 为下剪切盒提供水平运动的自由度; 水平导轨垫块 (18) 固定 在水平导轨 (17) 末端位置上, 以防下剪切盒滑落;
竖向作动器 (19) 的上端连接竖向位移传感器 (22) , 竖向作动器 ( 19) 的下端连接竖向作动器伸缩杆 (20) , 竖向作动器伸缩杆 (20) 和竖向轴力传感器 (23) 之间通过竖向连接扣 (21) 连接, 竖向轴力 传感器 (23) 固定在竖向固定盘 (24) 上, 竖向固定盘 (24) 固定在 上剪切盒 (32) 上, 上剪切盒 (32) 为“#”字形箱型构件, 四个上剪 切盒竖向滑块 (33) 分别固定在上剪切盒 (32) 的前后两侧翼缘上, 四个上剪切盒竖向滑块 (33) 各自位于一个竖向导轨 (15) 中, 使上 剪切盒 (32) 具有竖直自由度, 并通过竖向作动器伸缩杆 (20) 的伸 缩运行带动上剪切盒 (32) 竖向运动; 竖向加速度传感器支架 (36) 固定在上剪切盒 (32) 的右端, 竖向加速度传感器 (35) 固定在竖向 加速度传感器支架 (36) 上;
同时上剪切盒 (32) 的每个翼缘上均开设有两个试验辅具固定孔 (37 ) , 用以固定上抓齿板 (56) 或者上侧限框 (58) ; 上抓齿板 (56) 下表面刻有尖锐抓齿, 用于咬合固定试验材料, 抓齿的齿角为 90°, 齿高为 1mm, 齿间距为 2mm, 在上抓齿板 (56) 的翼板上分别开设 有上抓齿板固定孔 (57) , 上抓齿板固定孔 (57) 与上剪切盒 (32) 上的试验辅具固定孔 (37) 位置吻合, 通过上固定螺栓 (60) 可将上 抓齿板 (56) 与上剪切盒 (32) 固定; 上侧限框 (58) 尺寸与下剪切 盒侧限框 (46) —致, 上侧限框 (58) 的前后翼板上开侧限框固定孔 (59) , 通过上固定螺栓 (60) 可将上侧限框 (58) 与上剪切盒 (32 ) 固定, 形成容积不变的上剪切盒空间;
平衡支架 (31) 安装在底座平台 (10) 上用以支撑水平作动器 (25)
, 水平作动器 (25) 的左端连接水平位移传感器 (28) , 水平作动器 (25) 的右端连接水平作动器伸缩杆 (26) , 水平作动器伸缩杆 (26 ) 和水平轴力传感器 (29) 之间通过水平连接扣 (27) 连接, 水平轴 力传感器 (29) 固定在水平固定盘 (30) 上, 在下剪切盒后支架 (42 ) 左侧开有多个水平作动器固定螺孔 (42) , 通过作动器固定螺丝 ( 43) 将水平固定盘 (30) 固定在下剪切盒后支架 (41) 上, 下剪切盒 后支架 (41) 固定在下剪切盒底座 (38) 的上表面左侧, 下剪切盒底 座 (38) 的下表面固定六个下剪切盒水平滑块 (39) , 六个下剪切盒 水平滑块 (39) 分别位于两个水平导轨 (17) 中, 使下剪切盒在水平 方向上具有运动自由度, 并通过水平作动器伸缩杆 (26) 的伸缩运动 带动下剪切盒水平运动; 下剪切盒盒底平台 (40) 安装在下剪切盒底 座 (38) 上表面的中部, 下剪切盒后支架 (41) 右侧固定有两根下剪 切盒竖向导轨 (45) , 下剪切盒底座 (38) 的上表面右侧固定有两个 下剪切盒前支架 (44) , 每个下剪切盒前支架 (44) 的左侧分别固定 一根下剪切盒竖向导轨 (45) , 下剪切盒侧限框 (46) 的外侧分别固 定有四个下剪切盒侧限框竖向滑块 (47) , 每个下剪切盒侧限框竖向 滑块 (47) 分别位于一根下剪切盒竖向导轨 (45) 中, 为下剪切盒侧 限框 (46) 提供了竖向自由度; 下剪切盒侧限框 (46) 的右端侧边上 设置有水平加速度传感器支架 (55) 水平加速度传感器 (54) 固定 在水平加速度传感器支架 (55) 上;
下剪切盒侧限框 (46) 与下剪切盒盒底平台 (40) 的尺寸相适应, 且 下剪切盒侧限框 (46) 恰好能套在下剪切盒盒底平台 (40) 上, 形成 体积可变的下剪切盒; 下抓齿板 (61) 表面有尖锐抓齿, 下抓齿板 ( 61) 的尺寸与下剪切盒侧限框 (46) 相适应, 且下抓齿板 (61) 能恰 好放入下剪切盒中, 在下剪切盒侧限框 (46) 左端开有三个螺孔, 用 于穿过下抓齿板固定螺丝 (49) 通过旋紧下抓齿板固定螺丝 (49) 可将下抓齿板 (61) 与下剪切盒侧限框 (46) 固定;
下剪切盒侧限框 (46) 前后两侧翼板与下剪切盒底座 (38) 之间共设 置有十二个浮置弹簧组, 使得下剪切盒侧限框 (46) 在不受竖向力时 下剪切盒的体积能保持稳定; 浮置弹簧组包括若干组配套使用的弹簧 (50) 弹簧支杆 (51) 弹簧盖帽 (52) 弹簧固定螺母 (53) ; 下剪切盒侧限框 (46) 的两侧翼板上预留有穿过弹簧盖帽 (52) 的孔 洞, 弹簧盖帽 (52) 通过所述孔洞卡设在下剪切盒侧限框 (46) 的翼 板上, 弹簧支杆 (51) 的下端设置在下剪切盒底座 (38) 上, 弹簧支 杆 (51) 外套设有弹簧 (50) , 弹簧支杆 (51) 的上端刻有螺纹, 弹 簧支杆 (51) 穿过弹簧盖帽 (52) 且与弹簧盖帽 (52) 不发生接触, 弹簧固定螺母 (53) 位于弹簧盖帽 (52) 上方并旋紧在弹簧支杆 (51 ) 上端的螺纹上, 用于控制弹簧 (50) 的长短, 弹簧盖帽 (52) 和弹 簧支杆 (51) 的下端共同夹持弹簧 (50) 使下剪切盒侧限框 (46) 处于浮置状态;
抓土器支架 (62) 抓土勺 (63) 抓土器位移传递杆 (64) 位移 传递杆套筒 (65) 套筒支架 (66) 位移传递接头 (67) 位移传 感器 (68) 共同组成抓土器, 抓土器为伸入剪切盒内部用于测量试验 土体内部变形的传感器装置, 抓土器支架 (62) 的一端固定在下剪切 盒侧限框 (46) 右端的外侧面上, 其另一端为抓手结构, 用于夹持位 移传感器 (68) 位移传感器 (68) 的左端设置有伸缩杆, 所述伸缩 杆通过位移传递接头 (67) 与位移传递杆 (64) 连接, 位移传递杆 ( 64) 套在位移传递杆套筒 (65) 内, 在下剪切盒侧限框 (46) 右端设 有预留槽 (48) 用于放置位移传递杆套筒 (65) 同时位移传递杆 套筒 (65) 通过套筒支架 (66) 固定, 在抓土器支架 (62) 上; 位移 传递杆 (64) 的左端连接抓土勺 (63) 抓土勺 (63) 预先埋置于试 验土体内, 在剪切试验过程中跟随土体变形而移动, 并将测得的土体 变形传递给位移传感器 (68) ;
所述油源系统包括油源 (1) 主输油管 (2) 分油器 (3) 分输 油管 (4) ; 所述油源 (1) 为动力装置, 其将液压油通过主输油管 ( 2) 输送给分油器 (3) 分油器 (3) 通过两根分输油管 (4) 分别和 竖向作动器 (19) 水平作动器 (25) 连接, 将油源 (1) 输送的总 液压油分别输送给竖向作动器 (19) 和水平作动器 (25) ;
所述控制系统包括控制机 (5) 控制线缆 (6) 传感器线缆 (7)
、 显示器 (8) 、 操作键盘鼠标 (9) ; 控制机 (5) 由一台工业计算 机、 控制信号传输装置以及传感器信号接收装置组成; 控制机 (5) 分别连接显示器 (8) 和键盘鼠标 (9) ; 控制机 (5) 通过控制线缆 (6) 连接并控制油源 (1) 输出液压油的压力、 流量, 控制机 (5) 通过控制线缆 (6) 连接并控制分油器 (3) 分流液压油的压力、 流量 ; 控制机 (5) 通过传感器线缆 (7) 分别连接垂向位移传感器 (22) 垂向轴力传感器 (23) 水平位移传感器 (28) 水平轴力传感器 (29) 、 竖向加速度传感器 (35) 、 水平加速度传感器 (54) 、 位移 传感器 (68) 并实时监测这些传感器测量的物理力学指标; 其中, 竖向作动器 (19) 水平作动器 (25) 分别通过安装在各自末端的竖 向位移传感器 (22) 水平位移传感器 (28) 实时测量位移数据并传 输给控制机 (5) ; 竖向作动器伸缩杆 (20) 、 水平作动器伸缩杆 (2 6) 分别通过安装在各自前端的竖向轴力传感器 (23) 水平轴力传 感器 (29) 测量竖向作动器 (19) 、 水平作动器 (25) 加载的轴力数 据并传输给控制机 (5) ; 控制机 (5) 进而对位移和轴力数据进行处 理分析得到控制信号, 并将控制信号传递给油源 (1) 与分油器 (3)
, 调整液压油的压力、 流量指标来精确控制竖向作动器 (19) 、 水平 作动器 (25) 。
[权利要求 3] 根据权利要求 2所述的大尺寸多功能界面动力剪切试验仪, 其特征在 于: 所有采用螺丝固定的部件, 与之相对应部件的相应位置均预留有 螺孔。
[权利要求 4] 一种大尺寸多功能界面动力剪切试验方法, 其特征在于, 包括如下阶 段:
(一) 试验准备阶段: 打开仪器各部分的电源, 操作竖向作动器 (19 ) 收缩, 使上、 下剪切盒脱离; 旋开作动器固定螺丝 (43) , 使水平 固定盘 (30) 和下剪切盒后支架 (41) 脱开, 将下剪切盒沿水平导轨
(17) 推至水平导轨垫块 (18) —侧, 在下剪切盒内安装试验辅具与 试验材料; 将下剪切盒推回, 用作动器固定螺丝 (43) 将水平固定盘 (30) 和下剪切盒后支架 (41) 牢固固定;
(二) 试验开展阶段: 控制竖向作动器 (19) 与水平作动器 (25) 的 伸缩, 使上、 下剪切盒互相正对; 控制竖向作动器 (19) 使上剪切盒
(32) 向下运动, 使上、 下剪切盒夹持的试验材料发生接触; 操作控 制机 (5) 控制竖向作动器 (19) , 使竖向接触力持续增大, 直至竖 向力达到试验需要的荷载水平, 竖向力的大小由竖向轴力传感器 (23 ) 测得, 上剪切盒 (32) 的竖向位移由竖向位移传感器 (22) 测得; 待竖向荷载达到设定水平后, 控制水平作动器 (25) 的伸缩状态, 使 下剪切盒水平运动, 上、 下剪切盒产生相对位移, 剪切试验材料发生 剪切, 控制剪切试验的剪切速率、 模式, 剪切力的大小由水平轴力传 感器 (29) 测得, 剪切位移由水平位移传感器 (28) 测得, 上、 下剪 切盒在动力剪切过程的加速度数据由竖向加速度传感器 (35) 和水平 加速度传感器 (54) 测得; 事先设定动力剪切模式; (三) 试验结束阶段: 操作控制机 (5) 控制竖向作动器 (19) 减小 竖向力, 直至竖向力为零, 控制竖向作动器 (19) 使上剪切盒 (32) 抬高到合适位置, 旋开作动器固定螺丝 (43) , 使水平固定盘 (30) 和下剪切盒后支架 (41) 的脱开, 将下剪切盒推至水平导轨垫块 (18 ) 一侧, 将下剪切盒内安装的剪切试验材料与试验辅具逐一卸除、 取 出, 并打扫下剪切盒的清洁; 将下剪切盒推回与上剪切盒 (32) 正对 的位置, 调整竖向作动器 (19) 的伸缩状态, 使上剪切盒 (32) 处于 比较合适的安全位置, 最后关闭电源。
[权利要求 5] 根据权利要求 4所述的大尺寸多功能界面动力剪切试验方法, 其特征 在于: 通过精确控制竖向作动器 (19) 、 水平作动器 (25) 的运动速 率及输出轴力大小, 可使上、 下剪切盒之间产生多种模式的相对运动 , 以开展多种类型、 多种模式的动力剪切试验。
[权利要求 6] 根据权利要求 4所述的大尺寸多功能界面动力剪切试验方法, 其特征 在于: 通过对试验辅具的调整开展多种界面剪切试验。
[权利要求 7] 根据权利要求 6所述的大尺寸多功能界面动力剪切试验方法, 其特征 在于: 所述多种界面剪切试验包括土工合成材料界面静动力剪切、 或 黏土 -土工合成材料界面静动力剪切、 或土体静动力剪切。
PCT/CN2018/088648 2018-05-23 2018-05-28 大尺寸多功能界面动力剪切试验仪及试验方法 WO2019223017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810500345.1A CN108645722B (zh) 2018-05-23 2018-05-23 大尺寸多功能界面动力剪切试验仪及试验方法
CN201810500345.1 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019223017A1 true WO2019223017A1 (zh) 2019-11-28

Family

ID=63757753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088648 WO2019223017A1 (zh) 2018-05-23 2018-05-28 大尺寸多功能界面动力剪切试验仪及试验方法

Country Status (2)

Country Link
CN (1) CN108645722B (zh)
WO (1) WO2019223017A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781550B (zh) * 2019-03-24 2023-09-22 华北理工大学 剪力连接件竖向加载试验装置及试验方法
CN110470536A (zh) * 2019-07-30 2019-11-19 西安理工大学 一种砌体筒式构件压剪复合受力试验加载装置及加载方法
CN111458238B (zh) * 2020-04-09 2023-06-09 中南林业科技大学 一种装配式岩土体边坡原位直剪试验装置及方法
CN112067433B (zh) * 2020-08-24 2023-09-22 中国飞机强度研究所 一种复合材料轨道剪切试验用辅助对中安装装置
CN112858043B (zh) * 2021-02-24 2022-05-20 同济大学 一种可实现双向高频振动的土-结构接触面剪切试验装置
CN114002079A (zh) * 2021-11-08 2022-02-01 江苏科技大学 大型界面剪切设备及其实施方法
CN114441156A (zh) * 2022-01-29 2022-05-06 常州市建筑科学研究院集团股份有限公司 一种剪切型阻尼器试验加载系统及方法
CN115219320A (zh) * 2022-07-16 2022-10-21 昆明理工大学 一种建筑墙体保温材料强度检测设备

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3795721B2 (ja) * 2000-01-19 2006-07-12 独立行政法人科学技術振興機構 小型自動繰り返し一面せん断試験装置
ES2302662B2 (es) * 2008-02-21 2009-02-16 Cespa Gestion De Residuos, S.A. Dispositivo para la sujecion de geosinteticos en ensayos de corte directo y metodos de sujecion de geosinteticos asociados al mismo.
CN101603903A (zh) * 2009-07-07 2009-12-16 河海大学 叠环式剪切仪及其对复合衬垫材料系统测试的方法
CN101726443A (zh) * 2009-12-22 2010-06-09 上海大学 一种土工合成材料之间及土工合成材料-土之间大型直剪仪
KR20110098182A (ko) * 2010-02-26 2011-09-01 건국대학교 산학협력단 전단시험장치
CN102207436A (zh) * 2010-07-26 2011-10-05 水利部交通运输部国家能源局南京水利科学研究院 高性能大型接触面直剪仪
CN102478473A (zh) * 2010-11-25 2012-05-30 天水红山试验机有限公司 一种微机控制电液伺服大型双向直剪仪
CN102607966A (zh) * 2012-03-30 2012-07-25 王军 循环荷载作用大型接触面特性直剪仪
JP5002827B2 (ja) * 2007-03-23 2012-08-15 中国電力株式会社 岩盤不連続面のせん断試験装置
CN203365229U (zh) * 2013-07-12 2013-12-25 上海大学 施加循环荷载作用的大型界面特性直剪仪
CN106018124A (zh) * 2016-05-19 2016-10-12 同济大学 一种用于大尺寸土工直剪仪的静动力防漏剪切盒装置
CN106872292A (zh) * 2017-03-28 2017-06-20 山东大学 一种便携式土工合成材料综合实验仪
CN108037007A (zh) * 2017-12-25 2018-05-15 同济大学 一种用于土工合成材料界面剪切试验的材料抓齿板固定装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821789A (ja) * 1994-07-08 1996-01-23 Fujita Corp 一面せん断試験装置
CN201909741U (zh) * 2010-12-29 2011-07-27 中国科学院武汉岩土力学研究所 一种饱和岩土试样直剪试验装置
CN104034607B (zh) * 2014-06-04 2016-04-06 同济大学 大型多功能土工合成材料界面动力直剪仪
CN106053253B (zh) * 2016-05-19 2018-10-26 同济大学 一种测量大尺寸土工直剪仪剪切土体真实位移的抓土器测量装置
CN206573375U (zh) * 2017-03-01 2017-10-20 深圳市昭俐测量仪器有限公司 一种高精度电子万能材料测试机
CN107976363B (zh) * 2017-11-27 2019-12-27 同济大学 一种测量土工直剪试验中测试土体内部微变形的套筒式抓土器传感器装置
CN108020473A (zh) * 2018-01-03 2018-05-11 中国电建集团华东勘测设计研究院有限公司 考虑干湿循环的岩土体剪切蠕变仪及其试验方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3795721B2 (ja) * 2000-01-19 2006-07-12 独立行政法人科学技術振興機構 小型自動繰り返し一面せん断試験装置
JP5002827B2 (ja) * 2007-03-23 2012-08-15 中国電力株式会社 岩盤不連続面のせん断試験装置
ES2302662B2 (es) * 2008-02-21 2009-02-16 Cespa Gestion De Residuos, S.A. Dispositivo para la sujecion de geosinteticos en ensayos de corte directo y metodos de sujecion de geosinteticos asociados al mismo.
CN101603903A (zh) * 2009-07-07 2009-12-16 河海大学 叠环式剪切仪及其对复合衬垫材料系统测试的方法
CN101726443A (zh) * 2009-12-22 2010-06-09 上海大学 一种土工合成材料之间及土工合成材料-土之间大型直剪仪
KR20110098182A (ko) * 2010-02-26 2011-09-01 건국대학교 산학협력단 전단시험장치
CN102207436A (zh) * 2010-07-26 2011-10-05 水利部交通运输部国家能源局南京水利科学研究院 高性能大型接触面直剪仪
CN102478473A (zh) * 2010-11-25 2012-05-30 天水红山试验机有限公司 一种微机控制电液伺服大型双向直剪仪
CN102607966A (zh) * 2012-03-30 2012-07-25 王军 循环荷载作用大型接触面特性直剪仪
CN203365229U (zh) * 2013-07-12 2013-12-25 上海大学 施加循环荷载作用的大型界面特性直剪仪
CN106018124A (zh) * 2016-05-19 2016-10-12 同济大学 一种用于大尺寸土工直剪仪的静动力防漏剪切盒装置
CN106872292A (zh) * 2017-03-28 2017-06-20 山东大学 一种便携式土工合成材料综合实验仪
CN108037007A (zh) * 2017-12-25 2018-05-15 同济大学 一种用于土工合成材料界面剪切试验的材料抓齿板固定装置

Also Published As

Publication number Publication date
CN108645722B (zh) 2020-08-14
CN108645722A (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
WO2019223017A1 (zh) 大尺寸多功能界面动力剪切试验仪及试验方法
CN105510153B (zh) 一种大型土体界面剪切试验模型及试验方法
CN201145658Y (zh) 便携式现场和室内两用直剪试验仪
CN104515734B (zh) 一种管桩竖向静载试验可视化模拟装置及模拟方法
CN101105433A (zh) 便携式现场和室内两用直剪试验仪及其取样测试方法
CN108982264B (zh) 一种基于土体剪切带发展的p-y曲线测量装置
CN105223080B (zh) 一种压剪条件下节理岩体性能及锚注效果的评价方法
CN102914475A (zh) 一种观测水下土与结构界面力学特性的剪切试验装置
CN114062107B (zh) 适用于不同尺寸圆柱样直剪试验的剪切盒装置及其应用
CN114324010A (zh) 基于振动台原理的岩体结构面多向动态剪切力学测试系统
CN207937266U (zh) 污染土抗拉强度测试仪
CN110629812A (zh) 单桩竖向动静荷载的加载试验装置及方法
CN102605806B (zh) 土工离心模型试验模型桩的压桩装置
CN106289987A (zh) 一种能实现各向拉拔的试验系统及其实施方法
CN109653258B (zh) 可模拟沉桩过程的钙质砂桩基模型试验系统
CN206095799U (zh) 一种能实现各向拉拔的试验系统
CN113338252B (zh) 一种注浆锚固分层倾斜与沉降监测系统及方法
CN109653259A (zh) 多功能荷载钙质砂桩基模型试验系统
CN110411840B (zh) 模拟采空区地表土体产生拉张裂隙的试验装置及方法
CN109932246B (zh) 一种土工合成材料顶压蠕变试验装置
CN209211512U (zh) 一种钙质砂竖向锤击荷载桩基模型试验装置
CN204314159U (zh) 深孔岩/土体原位测试机器人
CN108301295B (zh) 一种自动化地砖拆装设备
CN204461981U (zh) 一种管桩竖向静载试验可视化模拟装置
CN202903619U (zh) 一种观测水下土与结构界面力学特性的剪切试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 29/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18920123

Country of ref document: EP

Kind code of ref document: A1