WO2019222943A1 - Npr无磁性锚杆钢材料及其生产方法 - Google Patents

Npr无磁性锚杆钢材料及其生产方法 Download PDF

Info

Publication number
WO2019222943A1
WO2019222943A1 PCT/CN2018/088059 CN2018088059W WO2019222943A1 WO 2019222943 A1 WO2019222943 A1 WO 2019222943A1 CN 2018088059 W CN2018088059 W CN 2018088059W WO 2019222943 A1 WO2019222943 A1 WO 2019222943A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
npr
magnetic anchor
npr non
anchor steel
Prior art date
Application number
PCT/CN2018/088059
Other languages
English (en)
French (fr)
Inventor
何满潮
夏敏
郭洪燕
王九平
Original Assignee
He Manchao
Xia Min
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by He Manchao, Xia Min filed Critical He Manchao
Priority to JP2020545411A priority Critical patent/JP7029544B2/ja
Priority to EP18919931.8A priority patent/EP3686308B1/en
Priority to PCT/CN2018/088059 priority patent/WO2019222943A1/zh
Priority to US15/733,046 priority patent/US11434558B2/en
Publication of WO2019222943A1 publication Critical patent/WO2019222943A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/003Rolling non-ferrous metals immediately subsequent to continuous casting, i.e. in-line rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5241Manufacture of steel in electric furnaces in an inductively heated furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5264Manufacture of alloyed steels including ferro-alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0093Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the technical field of mining equipment materials, in particular to an NPR non-magnetic anchor steel material and a production method thereof.
  • coal mine roadways in China are growing at a speed of 8000km / year, of which about 80% are supported by bolts, and hundreds of millions of bolts are used each year to support the surrounding rock of the roadway.
  • these anchors belong to the traditional Poisson's ratio material, that is, plastic hardened material, with small deformation, low strength, elongation and scalability, and can no longer adapt to the nonlinear large-scale deformation and failure characteristics of the surrounding rock in deep roadways.
  • the anchor strength is broken and the anchor failure occurs, and the bearing protection ability is lost.
  • the roadway is repeatedly repaired, the steel frame is distorted, and the pouring concrete cracks.
  • Two-point anchors such as expansion shell anchors
  • full-length anchors such as rebar, rebar, which have high support resistance, but small deformation and cannot Adapt to roadway surrounding rock deformation and failure due to tensile failure
  • friction anchors adapt to the elastoplastic deformation of surrounding rock through the friction between the rod body and the hole wall, but the bearing capacity is small and cannot provide sufficient support resistance
  • an ideal roadway support system should not only have sufficient strength, but also have a large amount of deformation to accommodate the nonlinear large-scale deformation and failure characteristics of the surrounding rock in deep roadways.
  • energy absorption anchors include: cone bolts, Garford anchors, Roffex anchors (constant resistance 80-90kN, maximum deformation 300mm), MCB conebolt (the maximum extension can reach up to 180mm), D-type anchor (constant resistance 100-210kN, deformation 110-167mm), etc.
  • the material problems of the anchor steel in the prior art result in the anchor steel in the prior art having strong magnetism, low tensile strength, and low effective elongation.
  • the prior art anchor rods cannot meet the requirements of large deformation of surrounding rocks, and the anchor rods may break during use.
  • An embodiment of the present invention provides an NPR non-magnetic anchor steel material and a production method thereof to solve the problems that the anchor steel in the prior art has strong magnetism, low tensile strength, and low effective elongation.
  • the present invention provides an NPR non-magnetic anchor steel material.
  • the composition and weight percentage content of the NPR non-magnetic anchor steel material are: C: 0.4-0.7%, Mn : 15-20%, Cr: 1-18%, Si: 0.3-3%, Ca: 0.05-0.15%, Cu: ⁇ 0.03%, Ni: ⁇ 0.02%, S: ⁇ 0.001%, P: ⁇ 0.001%
  • the rest are Fe and unavoidable impurity elements.
  • the hot-rolled yield strength of the NPR non-magnetic anchor steel material is 600 MPa-1000 MPa
  • the tensile strength is 900 MPa-1100 MPa
  • the uniform elongation is ⁇ 20-50%.
  • Poisson's ratio is 0.003-0.008.
  • a method for producing an NPR non-magnetic anchor steel material is provided.
  • the NPR non-magnetic anchor steel material is a hot-rolled round steel or a cold-rolled state.
  • the NPR non-magnetic anchor steel The hot-rolled yield strength of the material is 600 MPa-1000 MPa, the tensile strength is 900 MPa-1100 MPa, the uniform elongation is ⁇ 20-50%, and the Poisson's ratio of the NPR non-magnetic anchor steel material is 0.003-0.008;
  • NPR non-magnetic anchor steel materials are:
  • the steps of the production method include:
  • Intermediate frequency smelting process adding alloy elements of NPR non-magnetic anchor steel material group distribution ratio, smelting through the intermediate frequency steelmaking process, adding active lime and fluorite during the smelting process to adjust the slag copying, and performing online component testing and supplementation after completion
  • For alloying elements adjust the proportion of molten steel to the design proportion, and perform deoxidation, desulfurization, and dephosphorization;
  • Refining process The molten steel smelted in the intermediate frequency furnace is hoisted into the refining furnace, and the bottom is blown with argon to refine the slag.
  • the amount of argon gas is 3-60L / min. , Desulfurization, dephosphorization; after completion, online composition analysis and fine-tuning of molten steel chemical composition;
  • Continuous die casting process The tapping temperature of molten steel after refining furnace is controlled to 1560-1590 ° C, and the molten steel after refining is introduced into the tundish, and the temperature of the pre-insulation of the steel mold is controlled to 200-250 ° C for die casting. After natural cooling, demould;
  • Heating furnace heating process The ingot after the mold casting process is cold-packed into the heating furnace and kept at the temperature of 1200 ° C for 2-4 hours;
  • the hot rolling process is performed on the slab.
  • the rolling temperature is controlled at 1050 °C ⁇ 50 °C
  • the final rolling temperature is controlled at 850 °C ⁇ 50 °C
  • the rolling speed is controlled at 8-10m / s
  • the slab is hot rolled. After the treatment, it was naturally cooled to room temperature.
  • Continuous cold rolling process Continuous cold rolling of hot-rolled round steel, according to the requirements of different yield strength and elongation, heat preservation for 1 hour, natural cooling treatment outside the furnace.
  • the method further includes: a billet inspection step: detecting surface defects of the billet according to a surface inspection method of the billet.
  • the refining furnace is an LF refining furnace.
  • the NPR non-magnetic anchor steel material of the present invention is compared with the traditional anchor steel material in the prior art.
  • the technical advantage of the present invention is that the NPR non-magnetic anchor steel material of the present invention is Full austenitic structure, non-magnetic; NPR non-magnetic anchor steel material yield strength 600MPa-1000MPa, tensile strength 900MPa-1100MPa, uniform elongation ⁇ 20-50%, and the NPR non-magnetic anchor steel The Poisson's ratio of the material is 0.003-0.008.
  • FIG. 1 is a schematic diagram of a typical metallographic structure of the NPR non-magnetic anchor steel material of the present invention before and after plastic deformation.
  • FIG. 2 is a schematic diagram of a typical X-ray diffraction pattern of the NPR non-magnetic anchor steel material of the present invention before and after deformation.
  • FIG. 3 is a schematic diagram of an experimental curve of drawing a hot-rolled round steel + cold-rolled + 550 ° C continuous annealed NPR non-magnetic anchor steel material according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an experimental curve of a NPR non-magnetic anchor steel material for hot-rolled round steel according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a negative Poisson's ratio effect of an NPR non-magnetic anchor steel material according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for producing a NPR non-magnetic anchor steel material according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an experimental curve of stretching of an ordinary anchor rod in the prior art.
  • an NPR non-magnetic anchor steel material is provided.
  • NPR refers to a negative Poisson's ratio material.
  • the NPR non-magnetic anchor steel material has the following components and weight percentages:
  • Mn It is mainly dissolved in ferrite to improve the strength of the material. It is also a good deoxidizer and desulfurizer. Containing a certain amount of manganese can eliminate or weaken the brittleness caused by sulfur, thereby improving the workability of steel.
  • Chromium can increase the strength and hardness of the carbon steel in the rolled state, reduce the elongation and reduction of area, and contains a certain amount of chromium, which can improve the strength of the steel.
  • Ca A certain amount of calcium can refine the grains, partially desulfurize, change the composition, quantity and morphology of non-metallic inclusions, improve the fluidity of molten steel, and the hardness and durability of steel.
  • Si Does not form carbides in steel, exists in the form of solid solution in ferrite or austenite, significantly improves the elastic limit, yield strength and yield ratio of steel, so the content is low, so the range of Si is selected 0.1% or less.
  • trace copper The addition of trace copper can increase the strength and yield ratio of steel.
  • Nickel can improve the strength, toughness, and hardenability of steel. With a certain amount of nickel, it can improve strength and toughness.
  • P, S As harmful elements, the lower the content, the better. If the content of S is too high, a large amount of MnS inclusions will be formed, which will reduce the ductility and toughness of the steel. Therefore, the lower the content, the better. Therefore, the range of S is selected to be ⁇ 0.001%. The impact performance is greatly reduced, so the lower the content, the better, so the range for selecting P is ⁇ 0.001%.
  • Figure 1 shows the typical metallographic structure of NPR non-magnetic steel before and after plastic deformation (a is before deformation and b is after deformation). It can be seen that the NPR non-magnetic steel is a stable austenitized structure before and after deformation;
  • Figure 2 is Typical X-ray diffraction patterns of NPR non-magnetic steel before and after plastic deformation, it can be seen that NPR non-magnetic steel is single austenite before and after deformation (the curve in Figure 2 is before deformation and the curve in Figure 2 is after deformation). This shows that NPR steel is a stable non-magnetic austenitized structure.
  • Non-magnetic steel is a single austenite before and after deformation. It further illustrates that NPR steel is a stable non-magnetic austenitized structure, which can prove that the anchor steel material provided by the present invention is non-magnetic.
  • FIG. 3 shows the experimental curve of tensile using the NPR non-magnetic anchor steel material provided by the present invention. It can be seen from FIG. 3 that the tensile-displacement curve of the NPR non-magnetic anchor steel material before and after stretching, yielding Strength 980MPa, tensile strength 110MPa, uniform elongation ⁇ 30%. It can be seen that, compared with the conventional anchor steel material in the prior art, the NPR non-magnetic anchor steel material of the present invention has the technical advantage that the yield strength of the NPR non-magnetic anchor steel material can reach 980 MPa, It has a tensile strength of 1100 MPa and has an elongation of 30% or more while maintaining high strength.
  • the NPR non-magnetic anchor steel material of the present invention not only has the above advantages, but also exhibits a significant negative Poisson's ratio effect.
  • FIG. 5 the test value of the dynamic Poisson's ratio of the ordinary anchor and the dynamic Poisson's ratio of the NPR anchor material (ie, the NPR non-magnetic anchor steel material of the present invention) is shown; the shaded area in the figure is the NPR anchor material ( That is, the negative Poisson's ratio effect zone of the NPR non-magnetic anchor steel material of the present invention; its Poisson's ratio is 0.003, which shows a significant negative Poisson's ratio effect compared with the ordinary Poisson's ratio of 0.03.
  • FIG. 7 is a schematic diagram of a tensile test curve of an ordinary anchor rod currently used in a large area, which has a yield strength of 520 MPa (200 KN), a tensile strength of 700 MPa (272 KN), an elongation of 15%, and is magnetic.
  • the NPR non-magnetic anchor steel material of this embodiment has a hot-rolled yield strength of 600 MPa-1000 MPa, a tensile strength of 900 MPa-1100 MPa, a uniform elongation of ⁇ 20-50%, and the Poisson's ratio of the NPR non-magnetic anchor steel material It is 0.003-0.008.
  • the present invention also provides an embodiment of a method for producing a NPR non-magnetic anchor steel material.
  • the NPR non-magnetic anchor steel material is a hot-rolled round steel, and the NPR non-magnetic anchor steel material has a yield strength of 600 MPa- 1000MPa, tensile strength 900MPa-1100MPa, uniform elongation ⁇ 20-50%. Comparing Figure 6 with Figure 7, it can be seen that the NPR non-magnetic anchor steel material has higher yield strength, tensile strength, elongation, and non-magnetic characteristics, and its performance is much better than ordinary anchor materials.
  • NPR non-magnetic anchor steel materials are:
  • Intermediate frequency smelting process S10 adding alloy elements of NPR non-magnetic anchor steel material group distribution ratio, smelting through the intermediate frequency steelmaking process, adding active lime and fluorite during the smelting process to adjust the slag, and after completion of online component testing, Add alloy elements, adjust the proportion of molten steel to the design proportion, and perform deoxidation, desulfurization, and dephosphorization.
  • Refining process S20 The molten steel smelted by the intermediate frequency furnace is suspended in the LF refining furnace, and slag is refined by blowing argon at the bottom with an argon gas amount of 3-60L / min. Further carry out deoxidation, desulfurization and dephosphorization; after completion, perform on-line composition analysis and fine-tune the chemical composition of molten steel.
  • Continuous mold casting process S30 The tapping temperature of molten steel after LF refining furnace is controlled to 1560-1590 ° C, and the molten steel after refining is introduced into the tundish.
  • the temperature of the steel mold pre-heating is controlled to 200-250 ° C. After casting and natural cooling, it is demoulded.
  • Billet inspection process S40 According to the surface inspection method of the billet, the surface defects are detected.
  • Heating furnace heating step S50 The ingot after the die casting process is cold-packed into a heating furnace and kept at a furnace temperature of 1200 ° C for 2-4 hours.
  • Continuous hot rolling process S60 The steel slab is subjected to a hot rolling treatment, in which the rolling temperature is controlled at 1050 ° C ⁇ 50 ° C, the final rolling temperature is controlled at 850 ° C ⁇ 50 ° C, and the rolling speed is controlled at 8-10 m / s. After the rolling treatment, it was naturally cooled to room temperature.
  • Continuous cold rolling process S70 Continuous cold rolling of hot-rolled round steel, according to the requirements of different yield strength and elongation, heat preservation for 1 hour, natural cooling treatment outside the furnace
  • the above NPR non-magnetic anchor steel material production method has simple smelting composition, stable control, high production cost effect and low production cost.
  • the problems of complex procedures, high production cost and low production efficiency in the prior art anchor rod production method or production process are solved.
  • the technical advantage of the present invention is that the structure of the NPR non-magnetic anchor steel material obtained according to the above production method is typical.
  • the non-magnetic austenite structure has a stable non-magnetic austenite structure before and after deformation, see Figures 1 and 2 for details.
  • the yield strength of NPR non-magnetic anchor steel materials can reach 980 MPa and tensile strength of 110 MPa.
  • the NPR non-magnetic anchor steel material of the present invention has the following advantages: the deformation amount can be controlled within 20% according to the requirements of different yield strength and elongation, and the NPR non-magnetic anchor
  • the yield strength of the rod steel material can be adjusted in the range of 600MPa-1000MPa, and the elongation can be adjusted in the range of 20-60%. See Figures 3 to 4 for details.
  • FIG. 3 is a schematic diagram of an experimental curve of a NPR non-magnetic anchor steel material which is hot-rolled round steel + cold-rolled + 550 ° C continuously annealed.
  • FIG. 4 is a schematic diagram of an experimental curve of a NPR non-magnetic anchor steel material for hot-rolled round steel according to an embodiment of the present invention.
  • NPR non-magnetic anchor rod According to Figures 3 to 4, it can be seen that the yield strength of NPR non-magnetic anchor steel material can be maintained at 600 in the NPR non-magnetic anchor steel material with adjustable diameter and different annealing temperatures after cold rolling. In the range of -1000MPa, the elongation of NPR non-magnetic anchor steel can also be maintained at 20-60%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Forging (AREA)

Abstract

一种NPR无磁性锚杆钢材料及其生产方法,其中,NPR无磁性锚杆钢材料的组分及重量百分比含量为:C:0.4-0.7%,Mn:15-20%,Cr:1-18%,Si:0.3-3%,Ca:0.05-0.15%、Cu:≤0.03%,Ni:≤0.02%,S:≤0.001%,P:≤0.001%,其余为Fe和不可避免的杂质元素。NPR无磁性锚杆钢材料及其生产方法有效地解决了现有技术中锚杆钢存在的强磁性,以及锚杆抗拉强度低、有效延伸率低的问题。NPR无磁性锚杆钢材料为全奥氏体化组织,无磁性;屈服强度在600-1000MPa范围内可调,延伸率在20-60%可调。

Description

NPR无磁性锚杆钢材料及其生产方法 技术领域
本发明涉及采矿设备材料技术领域,具体而言,涉及一种NPR无磁性锚杆钢材料及其生产方法。
背景技术
随着地下工程的不断发展,一些特殊的地下工程支护对锚杆的磁性提出了苛刻的要求,随着经济建设对能源需求量的增加,以及开采强度的不断加大,浅部资源日益枯竭,国内外矿山相继进入深部开采状态。目前世界上许多金属矿上开采深度已超过1000米,如瑞士,加拿大,澳大利亚,南非等国家的大部分金属矿开采深度已超过1000米,有的甚至超过3000米。在中国,部分金属及有色金属矿山开采深度在800-1000米范围。预计未来20年,我国许多煤矿开采深度将达到1000-2000米。进入深部开采,受高地应力、高地温、高岩溶水压和采矿扰动(“三高一扰动”)等复杂地质条件的影响,工程岩体大都表现为软岩大变形力学状态,工程开挖后,巷道围岩都表现出大变形破坏的特点,具体表现为软岩大变形、岩爆大变形、瓦斯突出大变形等。目前,国内外矿山煤层巷道广泛采用传统锚杆、锚索、U型钢可缩支架等传统材料为基础的支护方式。据统计,我国煤矿巷道以8000km/年的速度增长,其中锚杆支护约占80%,每年数以亿计的锚杆应用于巷道围岩支护。但是,这些锚杆均属于传统泊松比材料,即为塑性硬化材料,变形量小,强度、延伸率及可伸缩量等性能均较低,已经不能适应深部巷道围岩非线性大变形破坏特征,在受到冲击载荷作用下瞬间达到其屈服强度出现锚杆破断失效,而失去承载防护能力,从而造成巷道多次返修、钢架扭曲变形、浇注混凝土开裂等破坏现象。因此,矿山开采深度的不断增加也给深部巷道支护材料的研究提出了严峻的挑战,现已成为国内外岩土力学与地下工程领域研究的热点。传统锚杆材料可分为三类:两点锚固锚杆(如膨胀壳锚杆)、全长锚固锚杆(如 螺纹钢,螺纹钢,具有较高的支护阻力,但变形量小,不能适应巷道围岩大变形破坏而被拉断失效)、摩擦型锚杆(通过杆体与孔壁之间的摩擦作用适应围岩弹塑性变形,但承载力较小,无法提供足够的支护阻力)。因此,理想的巷道支护体系不但应当具有足够的强度,还应具有较大的变形量以适应深部巷道围岩非线性大变形破坏特征。近20多年以来,为了控制巷道围岩大变形破坏,国内外研究者开始致力于能量吸收型锚杆的研究。目前,世界上主要的能量吸收型锚杆包括:锥形锚杆(Cone bolt),Garford锚杆,Roffex锚杆(恒阻力80-90kN,最大变形量300mm),MCB conebolt(延伸量最大可达180mm),D型锚杆(恒阻力100-210kN,变形量110-167mm)等。但是由于这些能量吸收锚杆主要通过改变杆体材料或者通过摩擦结构来达到其支护性能,无法同时提供高恒阻力和大变形量,仍无法在实际工程应用中控制深部巷道软岩大变形、岩爆大变形等工程灾害。目前大部分的锚杆为了保持高的强度要求,大都是由具有体心立方结构的马氏体、铁素体等组成,由于体心立方结构的晶体往往具有很强的磁性,所有目前几乎所有的锚杆都存在强的磁性问题。而奥氏体不锈钢在常温下一般具有单一的奥氏体组织,属于面心立方结构,是无磁性的
综上所述,现有技术中锚杆钢存在的材料问题,导致现有技术中的锚杆钢具有强磁性、抗拉强度低、有效延伸率低。在巷道支撑过程中,现有技术的锚杆不能满足围岩大变形的要求,在使用过程中会出现锚杆断裂的情况。
发明内容
本发明实施例中提供一种NPR无磁性锚杆钢材料及其生产方法,以解决现有技术中的锚杆钢具有强磁性、抗拉强度低、有效延伸率低问题。
为解决上述技术问题,根据本发明的一个方面,本发明提供了一种NPR无磁性锚杆钢材料NPR无磁性锚杆钢材料的组分及重量百分比含量为:C:0.4-0.7%,Mn:15-20%,Cr:1-18%,Si:0.3-3%,Ca:0.05-0.15%、Cu:≤0.03%,Ni:≤0.02%,S:≤0.001%,P:≤0.001%,其余为Fe和不可避免的杂质元素。
进一步地,所述NPR无磁性锚杆钢材料的热轧态屈服强度600MPa-1000MPa、抗拉强度900MPa-1100MPa、均匀延伸率≥20-50%,并且,所述NPR无磁性锚杆钢材料的泊松比值为0.003-0.008。
根据本发明的另一个方面,提供了一种NPR无磁性锚杆钢材料的生产方法,所述NPR无磁性锚杆钢材料为热轧圆钢或冷轧态,所述NPR无磁性锚杆钢材料的热轧态屈服强度600MPa-1000MPa、抗拉强度900MPa-1100MPa、均匀延伸率≥20-50%,并且,所述NPR无磁性锚杆钢材料的泊松比值为0.003-0.008;
NPR无磁性锚杆钢材料的组分及重量百分比含量为:
C:0.4-0.7%,Mn:15-20%,Cr:1-18%,Si:0.3-3%,Ca:0.05-0.15%、Cu:≤0.03%,Ni:≤0.02%,S:≤0.001%,P:≤0.001%,其余为Fe和不可避免的杂质元素;生产方法的步骤包括:
中频冶炼工序:加入NPR无磁性锚杆钢材料组分配比的合金元素,通过中频炼钢工艺进行冶炼,在冶炼过程中加入活性石灰、萤石进行调整抄渣,完成后进行在线成分化验、补充合金元素,调整钢水的比例为设计比例,并进行脱氧、脱硫、脱磷;
精炼工序:将中频炉冶炼的钢水吊入精炼炉中,采用底部吹氩精炼造渣,氩气量为3-60L/min,向精炼炉中加入氟化钙、石灰、脱渣剂,进一步进行脱氧、脱硫、脱磷;完成后进行在线成分分析、微调钢水化学成分;
连续模铸工序:将经过精炼炉精炼后钢水的出钢温度控制在1560-1590℃,并将精炼后的钢水导入中间包,钢模预先保温的温度控制在200-250℃,进行模铸,自然冷却后,脱模;
加热炉加热工序:将模铸工序后的铸锭冷装放入加热炉里,在1200℃的炉内温度下保温2-4小时;
连续热轧工序:对钢坯进行热轧处理,其中,开轧温度控制在1050℃±50℃,终轧温度控制在850℃±50℃,轧制速度控制在8-10m/s,钢坯热轧处理后自然冷却至室温。
连续冷轧工序:对热轧圆钢进行连续冷轧,根据不同的屈服强度和延伸率的要求,保温1小时,炉外自然冷却处理。
进一步地,在连续模铸工序之后、加热炉加热工序之前,还包括: 钢坯检查工序:按照钢坯的表面检测方法,检测其表面缺陷。
进一步地,所述精炼炉为LF精炼炉。
应用本发明的技术方案,本发明的NPR无磁性锚杆钢材料相对于现有技术中传统的锚杆钢材料来说,本发明的技术优点在于,本发明的NPR无磁性锚杆钢材料为全奥氏体化组织,无磁性;NPR无磁性锚杆钢材料的屈服强度600MPa-1000MPa、抗拉强度900MPa-1100MPa、均匀延伸率≥20-50%,并且,所述NPR无磁性锚杆钢材料的泊松比值为0.003-0.008。
附图说明
图1是本发明的NPR无磁性锚杆钢材料在塑性变形前后的典型金相组织示意图。
图2是本发明的NPR无磁性锚杆钢材料在变形前后的典型X射线衍射图谱示意图。
图3是本发明实施例的热轧圆钢+冷轧+550℃连续退火的NPR无磁性锚杆钢材料进行拉伸的实验曲线示意图。
图4是本发明实施例的热轧圆钢的NPR无磁性锚杆钢材料进行拉伸的实验曲线示意图。
图5是本发明实施例的NPR无磁性锚杆钢材料的负泊松比效应示意图。
图6是本发明实施例的NPR无磁性锚杆钢材料的生产方法的流程示意图。
图7是现有技术中的普通锚杆的拉伸的实验曲线示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
根据本发明的实施例,提供了一种NPR无磁性锚杆钢材料,NPR是指基于负泊松比材料(Negative Poisson’s ratio),NPR无磁性锚杆钢材料的组分及重量百分比含量为:
C:0.4-0.7%,Mn:15-20%,Cr:1-18%,Si:0.3-3%,Ca: 0.05-0.15%、Cu:≤0.03%,Ni:≤0.02%,S:≤0.001%,P:≤0.001%,,其余为Fe和不可避免的杂质元素。
C:是提高钢材强度最有效的元素,选择0.4-0.7%使其塑性和韧性保持原有水平,保证冲击性能恶化。
Mn:主要是固溶于铁素体中提高材料的强度,其又是良好的脱氧剂和脱硫剂,含有一定量的锰可以消除或减弱因硫引起的脆性,从而改善钢的加工性能。
Cr:铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率,含一定量的铬,可以提高钢的强度。
Ca:一定量的钙可以细化晶粒,部分脱硫,改变非金属夹杂物的成分、数量和形态,改善钢水的流动性,以及钢的硬度和持久强度。
Si:在钢中不形成碳化物,是以固溶体的形态存在于铁素体或者奥氏体中,显著提高钢的弹性极限、屈服强度和屈强比,故含量偏低,所以选择Si的范围在≤0.1%。
Cu:微量铜的加入可以提高钢的强度和屈强比。
Ni:镍能提高钢的强度、韧性、淬透性,含一定量的镍,可以改善强度和韧性。
P、S:作为有害元素,其含量越低越好。S含量过高,会形成大量的MnS夹杂,降低钢材的延展性和韧性,因此含量越低越好,所以选择S的范围在≦0.001%;P易在晶界偏析,增加钢的脆性,使冲击性能大幅降低,因此含量越低越好,所以选择P的范围在≦0.001%。
图1为NPR无磁钢塑性变形前后的典型金相组织(a为变形前,b为变形后),可以看出NPR无磁钢在变形前后均为稳定的奥氏体化组织;图2为NPR无磁钢塑性变形前后的典型X射线衍射图谱,可以看出NPR无磁钢在变形前后均为单一的奥氏体(图2下方曲线为变形前,图2上方曲线为变形后),进一步说明NPR钢为稳定的无磁性奥氏体化组织。无磁钢在变形前后均为单一的奥氏体,进一步说明NPR钢为稳定的无磁性奥氏体化组织,可证明本发明提供的锚杆钢材料为无磁性。
图3示出了以本发明提供的NPR无磁性锚杆钢材料进行拉伸的实验曲线,可以从图3中看出,NPR无磁性锚杆钢材料拉伸前后的拉力- 位移曲线,其屈服强度980MPa,抗拉强度110MPa,均匀延伸率≥30%。由此可见,本发明的NPR无磁性锚杆钢材料相对于现有技术中传统的锚杆钢材料来说,本发明的技术优点在于,NPR无磁性锚杆钢材料的屈服强度可达到980MPa,抗拉强度1100MPa,而且在保持高强度的情况下,还具备30%以上的延伸率。
另外,本发明的NPR无磁性锚杆钢材料不仅有如上的优点,还能表现出明显的负泊松比效应。参见图5所示,普通锚杆的动态泊松比值,与NPR锚杆材料(即本发明NPR无磁性锚杆钢材料)动态泊松比值的测试值;图中阴影区为NPR锚杆材料(即本发明NPR无磁性锚杆钢材料)的负泊松比效应区;其泊松比值为0.003,相对于普通锚杆泊松比0.03,表现出明显的负泊松比效应。
图7是目前大面积使用的普通锚杆的拉伸的实验曲线示意图,其屈服强度520MPa(200KN),抗拉强度700MPa(272KN),延伸率15%,具有磁性。
本实施例的NPR无磁性锚杆钢材料的热轧态屈服强度600MPa-1000MPa、抗拉强度900MPa-1100MPa、均匀延伸率≥20-50%,并且,NPR无磁性锚杆钢材料的泊松比值为0.003-0.008。
本发明还提供了一种NPR无磁性锚杆钢材料的生产方法的实施例,参见图6,NPR无磁性锚杆钢材料为热轧圆钢,NPR无磁性锚杆钢材料的屈服强度600MPa-1000MPa、抗拉强度900MPa-1100MPa、均匀延伸率≥20-50%。图6与图7对比可以看出NPR无磁性锚杆钢材料具有更高的屈服强度、抗拉强度、延伸率、以及无磁性等特点,其性能大大优于普通的锚杆材料。
NPR无磁性锚杆钢材料的组分及重量百分比含量为:
C:0.4-0.7%,Mn:15-20%,Cr:1-18%,Si:0.3-3%,Ca:0.05-0.15%、Cu:≤0.03%,Ni:≤0.02%,S:≤0.001%,P:≤0.001%,,其余为Fe和不可避免的杂质元素生产方法的步骤包括:
中频冶炼工序S10:加入NPR无磁性锚杆钢材料组分配比的合金元素,通过中频炼钢工艺进行冶炼,在冶炼过程中加入活性石灰、萤石进行调整抄渣,完成后进行在线成分化验、补充合金元素,调整钢水的比例为设计比例,并进行脱氧、脱硫、脱磷。
精炼工序S20:将中频炉冶炼的钢水吊入LF精炼炉中,采用底部吹氩精炼造渣,氩气量为3-60L/min,向LF精炼炉中加入氟化钙、石灰、脱渣剂,进一步进行脱氧、脱硫、脱磷;完成后进行在线成分分析、微调钢水化学成分。
连续模铸工序S30:将经过LF精炼炉精炼后钢水的出钢温度控制在1560-1590℃,并将精炼后的钢水导入中间包,钢模预先保温的温度控制在200-250℃,进行模铸,自然冷却后,脱模。
钢坯检查工序S40:按照钢坯的表面检测方法,检测其表面缺陷。
加热炉加热工序S50:将模铸工序后的铸锭冷装放入加热炉里,在1200℃的炉内温度下保温2-4小时。
连续热轧工序S60:对钢坯进行热轧处理,其中,开轧温度控制在1050℃±50℃,终轧温度控制在850℃±50℃,轧制速度控制在8-10m/s,钢坯热轧处理后自然冷却至室温。
连续冷轧工序S70:对热轧圆钢进行连续冷轧,根据不同的屈服强度和延伸率的要求,保温1小时,炉外自然冷却处理
上述的NPR无磁性锚杆钢材料生产方法,冶炼成分简单,控制稳定,而且生产成本效果高、生产成本低。解决了现有技术中锚杆生产方法或者生产工艺中程序复杂、生产成本高、生产效率低下的问题。根据上述生产方法得到的NPR无磁性锚杆钢材料,相对于现有技术中传统的NPR无磁性锚杆钢材料来说,本发明的技术优点在于,NPR无磁性锚杆钢材料的组织为典型的无磁奥氏体组织,在变形前后都具有稳定的无磁性的全奥氏体组织,具体参见图1和图2;NPR无磁性锚杆钢材料的屈服强度可达到980MPa,抗拉强度110MPa,而且在保持高强度的情况下,还具备30%的延伸率。而且,基于提供的NPR无磁性锚杆钢材料,本发明的NPR无磁性锚杆钢材料具有如下优点:可以根据不同屈服强度和延伸率的要求,变形量控制在20%以内,NPR无磁性锚杆钢材料屈服强度在600MPa-1000MPa范围内可调,延伸率在20-60%可调,具体参见图3至图4。其中,图3为热轧圆钢+冷轧+550℃连续退火的NPR无磁性锚杆钢材料进行拉伸的实验曲线示意图。图4是本发明实施例的热轧圆钢的NPR无磁性锚杆钢材料进行拉伸的实验曲线示意图。
NPR无磁性锚杆根据图3至图4可以看出,在直径可调的NPR无磁性锚杆钢材料以及冷轧后不同退火温度的,NPR无磁性锚杆钢材料屈服强度还能保持在600-1000MPa范围内,而且还能将NPR无磁性锚杆钢材料的延伸率保持在20-60%。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
当然,以上是本发明的优选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明基本原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (5)

  1. 一种NPR无磁性锚杆钢材料,其特征在于,所述NPR无磁性锚杆钢材料的组分及重量百分比含量为:
    C:0.4-0.7%,Mn:15-20%,Cr:1-18%,Si:0.3-3%,Ca:0.05-0.15%,Cu:≤0.03%,Ni:≤0.02%,S:≤0.001%,P:≤0.001%,,其余为Fe和不可避免的杂质元素。
  2. 根据权利要求1所述的NPR无磁性锚杆钢材料,其特征在于,所述NPR无磁性锚杆钢材料的热轧态屈服强度600MPa-1000MPa、抗拉强度900MPa-1100MPa、均匀延伸率≥20-50%,并且,所述NPR无磁性锚杆钢材料的泊松比值为0.003-0.008。
  3. 一种NPR无磁性锚杆钢材料的生产方法,其特征在于,所述NPR无磁性锚杆钢材料为热轧圆钢或冷轧态,所述NPR无磁性锚杆钢材料的热轧态屈服强度600MPa-1000MPa、抗拉强度900MPa-1100MPa、均匀延伸率≥20-50%,并且,所述NPR无磁性锚杆钢材料的泊松比值为0.003-0.008;
    所述NPR无磁性锚杆钢材料的组分及重量百分比含量为:
    C:0.4-0.7%,Mn:15-20%,Cr:1-18%,Si:0.3-3%,Ca:0.05-0.15%、Cu:≤0.03%,Ni:≤0.02%,S:≤0.001%,P:≤0.001%,其余为Fe和不可避免的杂质元素所述生产方法的步骤包括:
    中频冶炼工序(S10):加入所述NPR无磁性锚杆钢材料组分配比的合金元素,通过中频炼钢工艺进行冶炼,在冶炼过程中加入活性石灰、萤石进行调整抄渣,完成后进行在线成分化验、补充合金元素,调整钢水的比例为设计比例,并进行脱氧、脱硫、脱磷;
    精炼工序(S20):将中频炉冶炼的钢水吊入精炼炉中,采用底部吹氩精炼造渣,氩气量为3-60L/min,向精炼炉中加入氟化钙、石灰、脱渣剂,进一步进行脱氧、脱硫、脱磷;完成后进行在线成分分析、微调钢水化学成分;
    连续模铸工序(S30):将经过精炼炉精炼后钢水的出钢温度控制在1560-1590℃,并将精炼后的钢水导入中间包,钢模预先保温的温度控制在200-250℃,进行模铸,自然冷却后,脱模;
    加热炉加热工序(S50):将模铸工序后的铸锭冷装放入加热炉里, 在1200℃的炉内温度下保温2-4小时;
    连续热轧工序(S60):对钢坯进行热轧处理,其中,开轧温度控制在1050℃±50℃,终轧温度控制在850℃±50℃,轧制速度控制在8-10m/s,钢坯热轧处理后自然冷却至室温;
    连续冷轧工序(S70):对热轧圆钢进行连续冷轧,根据不同的屈服强度和延伸率的要求,保温1小时,炉外自然冷却处理。
  4. 根据权利要求3所述的生产方法,其特征在于,在所述连续模铸工序(S30)之后、所述加热炉加热工序(S50)之前,还包括:
    钢坯检查工序(S40):按照钢坯的表面检测方法,检测其表面缺陷。
  5. 根据权利要求3所述的生产方法,其特征在于,所述精炼炉为LF精炼炉。
PCT/CN2018/088059 2018-05-23 2018-05-23 Npr无磁性锚杆钢材料及其生产方法 WO2019222943A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020545411A JP7029544B2 (ja) 2018-05-23 2018-05-23 Npr非磁性ロックボルト鋼材料及びその生産方法
EP18919931.8A EP3686308B1 (en) 2018-05-23 2018-05-23 Npr nonmagnetic anchor rod steel material and production method therefor
PCT/CN2018/088059 WO2019222943A1 (zh) 2018-05-23 2018-05-23 Npr无磁性锚杆钢材料及其生产方法
US15/733,046 US11434558B2 (en) 2018-05-23 2018-05-23 NPR non-magnetic steel material for rock bolt and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/088059 WO2019222943A1 (zh) 2018-05-23 2018-05-23 Npr无磁性锚杆钢材料及其生产方法

Publications (1)

Publication Number Publication Date
WO2019222943A1 true WO2019222943A1 (zh) 2019-11-28

Family

ID=68616236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088059 WO2019222943A1 (zh) 2018-05-23 2018-05-23 Npr无磁性锚杆钢材料及其生产方法

Country Status (4)

Country Link
US (1) US11434558B2 (zh)
EP (1) EP3686308B1 (zh)
JP (1) JP7029544B2 (zh)
WO (1) WO2019222943A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522630A (zh) * 2020-11-20 2021-03-19 何满潮 Npr新材料板坯转炉连铸的生产方法
JP2022539480A (ja) * 2020-11-16 2022-09-09 中国▲鉱▼▲業▼大学(北京) 岩質傾斜面崩壊災害のnprアンカーロッドの監視及び制御システム並びに方法
CN118148685A (zh) * 2024-05-09 2024-06-07 山西省交通建设工程质量检测中心(有限公司) 一种用于软岩隧道安全的npr加固和监测装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038404A1 (en) * 2019-08-23 2021-03-04 Rand York Castings (Pty) Limited Rock bolt assembly
US11771183B2 (en) 2021-12-16 2023-10-03 Joon Bu Park Negative Poisson's ratio materials for fasteners
CN116555532B (zh) * 2023-03-31 2024-04-09 宝镁特(上海)智能工程有限公司 一种薄规格硅钢材料的高精度退火方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291341A (ja) * 1996-04-25 1997-11-11 Sanyo Special Steel Co Ltd 冷間加工用オーステナイト系快削ステンレス鋼
CN1418977A (zh) * 2001-11-30 2003-05-21 莱芜钢铁集团有限公司 高强度高韧性锚杆钢筋合金钢及其生产方法
CN101858225A (zh) * 2010-06-10 2010-10-13 北京中矿深远能源环境科学研究院 恒阻大变形锚杆
CN104404390A (zh) * 2014-12-08 2015-03-11 钢铁研究总院 煤矿支护用高强度、高塑性锚杆用钢及制造方法
CN104451443A (zh) * 2014-11-21 2015-03-25 芜湖新兴铸管有限责任公司 一种煤矿用锚杆钢及其生产方法
CN105200315A (zh) * 2015-09-24 2015-12-30 武汉钢铁(集团)公司 一种锚杆钢及其生产方法
CN108754305A (zh) * 2018-05-23 2018-11-06 何满潮 Npr无磁性锚杆钢材料及其生产方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT371840B (de) 1978-05-31 1983-08-10 Voest Ag Verfahren zur herstellung von ankerstaeben oder ankerdraehten
JPS58197256A (ja) * 1982-05-12 1983-11-16 Kawasaki Steel Corp 耐候性および耐銹性にすぐれる高靭性高Mn鋼
JPS5928561A (ja) 1982-08-11 1984-02-15 Sumitomo Metal Ind Ltd 体積電気抵抗率の高い非磁性鋼
JPH04259325A (ja) * 1991-02-13 1992-09-14 Sumitomo Metal Ind Ltd 加工性に優れた高強度熱延鋼板の製造方法
JP3428628B2 (ja) * 1998-11-25 2003-07-22 住友金属工業株式会社 ステンレス鋼の脱硫精錬方法
FR2829775B1 (fr) * 2001-09-20 2003-12-26 Usinor Procede de fabrication de tubes roules et soudes comportant une etape finale d'etirage ou d'hydroformage et tube soude ainsi obtenu
KR100742823B1 (ko) * 2005-12-26 2007-07-25 주식회사 포스코 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법
RO123560B1 (ro) 2005-12-29 2013-09-30 Doru Cornel Sava Instalaţie de canalizare
JP2009007596A (ja) 2007-06-26 2009-01-15 Minebea Co Ltd シャフト用合金、モータ用シャフトおよびモータ
JP5526809B2 (ja) * 2009-04-27 2014-06-18 大同特殊鋼株式会社 高耐食・高強度・非磁性ステンレス鋼並びに高耐食・高強度・非磁性ステンレス鋼製品及びその製造方法
US20120156085A1 (en) 2010-12-14 2012-06-21 Thompson Peter T Blast Resistant, Non-Magnetic, Stainless Steel Armor
DE102012113053A1 (de) 2012-12-21 2014-06-26 Thyssenkrupp Steel Europe Ag Verbindungsmittel mit Formgedächtnis
KR20160078825A (ko) 2014-12-24 2016-07-05 주식회사 포스코 절삭 가공성 및 표면가공품질이 우수한 저온용강 및 그 제조방법
JP6603033B2 (ja) 2015-03-31 2019-11-06 日本冶金工業株式会社 高Mn含有Fe−Cr−Ni合金およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291341A (ja) * 1996-04-25 1997-11-11 Sanyo Special Steel Co Ltd 冷間加工用オーステナイト系快削ステンレス鋼
CN1418977A (zh) * 2001-11-30 2003-05-21 莱芜钢铁集团有限公司 高强度高韧性锚杆钢筋合金钢及其生产方法
CN101858225A (zh) * 2010-06-10 2010-10-13 北京中矿深远能源环境科学研究院 恒阻大变形锚杆
CN104451443A (zh) * 2014-11-21 2015-03-25 芜湖新兴铸管有限责任公司 一种煤矿用锚杆钢及其生产方法
CN104404390A (zh) * 2014-12-08 2015-03-11 钢铁研究总院 煤矿支护用高强度、高塑性锚杆用钢及制造方法
CN105200315A (zh) * 2015-09-24 2015-12-30 武汉钢铁(集团)公司 一种锚杆钢及其生产方法
CN108754305A (zh) * 2018-05-23 2018-11-06 何满潮 Npr无磁性锚杆钢材料及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686308A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022539480A (ja) * 2020-11-16 2022-09-09 中国▲鉱▼▲業▼大学(北京) 岩質傾斜面崩壊災害のnprアンカーロッドの監視及び制御システム並びに方法
JP7218982B2 (ja) 2020-11-16 2023-02-07 中国▲鉱▼▲業▼大学(北京) 岩質傾斜面崩壊災害の監視及び制御システム並びに方法
CN112522630A (zh) * 2020-11-20 2021-03-19 何满潮 Npr新材料板坯转炉连铸的生产方法
CN118148685A (zh) * 2024-05-09 2024-06-07 山西省交通建设工程质量检测中心(有限公司) 一种用于软岩隧道安全的npr加固和监测装置
CN118148685B (zh) * 2024-05-09 2024-07-19 山西省交通建设工程质量检测中心(有限公司) 一种用于软岩隧道安全的npr加固和监测装置

Also Published As

Publication number Publication date
EP3686308B1 (en) 2022-10-05
JP7029544B2 (ja) 2022-03-03
JP2021503558A (ja) 2021-02-12
US11434558B2 (en) 2022-09-06
EP3686308A1 (en) 2020-07-29
US20210189536A1 (en) 2021-06-24
EP3686308A4 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
CN108754305B (zh) Npr无磁性锚杆钢材料及其生产方法
CN108754339B (zh) Npr锚杆钢材料的生产方法
WO2019222944A1 (zh) Npr锚杆钢材料及其生产方法
WO2019222943A1 (zh) Npr无磁性锚杆钢材料及其生产方法
CN110468350B (zh) 一种高强高耐候建筑用q420gjnhez35钢板及其生产方法
CN102876999B (zh) 一种调质型低温压力容器用钢板及其制备方法
CN104087850B (zh) 一种抗h2s腐蚀的矿山用锚杆钢及生产方法
CN105950997B (zh) 一种高韧性高强度厚钢板及其生产方法
CN104073720B (zh) 一种屈强比≤0.8的矿山用锚杆钢及生产方法
CN106834944A (zh) 一种海洋工程用耐低温高韧性热轧角钢及其制造方法
WO2022099680A1 (zh) Npr锚杆或锚索新材料转炉及连铸小方坯的生产方法
CN109457177A (zh) Q345级热轧h型钢及其冶炼和轧制方法
CN110106445A (zh) 一种用于海洋平台铸造节点高强度高低温韧性用钢及其制备方法
CN104630655A (zh) 强韧性匹配优良的特厚焊接结构钢板及其生产工艺
CN102676947A (zh) 一种焊接结构钢及其制造方法
CN103667921B (zh) 沿厚度方向性能均匀的高强韧性厚钢板及其生产方法
CN105200315B (zh) 一种锚杆钢的生产方法
CN110273101A (zh) 一种h级抽油杆及其制备方法
CN110656287B (zh) 一种高强度钻杆用无缝钢管及其制造方法
CN103194680B (zh) X级钻杆管体用无缝钢管的制备方法
CN115717214B (zh) 一种沿海大气环境炼化管道用钢及其制备方法
CN112647027A (zh) Npr锚杆或锚索新材料转炉及连铸小方坯的生产方法
CN111926258A (zh) 一种高强、高韧性钇铝增强锰钢及其冶炼工艺
CN109972032A (zh) 一种低焊接裂纹敏感性特厚钢板610cf及其生产方法
Dong et al. Steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018919931

Country of ref document: EP

Effective date: 20200327

ENP Entry into the national phase

Ref document number: 2020545411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE