WO2019222906A1 - 一种从塑料中提取碳材料的方法及设备 - Google Patents

一种从塑料中提取碳材料的方法及设备 Download PDF

Info

Publication number
WO2019222906A1
WO2019222906A1 PCT/CN2018/087797 CN2018087797W WO2019222906A1 WO 2019222906 A1 WO2019222906 A1 WO 2019222906A1 CN 2018087797 W CN2018087797 W CN 2018087797W WO 2019222906 A1 WO2019222906 A1 WO 2019222906A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
salt
carbon
plastic
pet
Prior art date
Application number
PCT/CN2018/087797
Other languages
English (en)
French (fr)
Inventor
卡马里阿里
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to US16/491,108 priority Critical patent/US20200262708A1/en
Priority to PCT/CN2018/087797 priority patent/WO2019222906A1/zh
Priority to EP18920105.6A priority patent/EP3763672A4/en
Priority to GB1912936.0A priority patent/GB2578517B/en
Publication of WO2019222906A1 publication Critical patent/WO2019222906A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/008Pyrolysis reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention belongs to the field of carbon material preparation and relates to a method for extracting carbon material from plastic. Specifically, it is a method for generating nano-graphitizable carbon with high conductivity and high surface area.
  • plastic The global output of plastic reached 335 million tons in 2016. Due to low production costs, durability, low density, strong chemical resistance, and low spatial stability, plastics are increasingly used in various structural applications in modern life.
  • Polyterephthalate (C 10 H 8 O 4 ) n , PET) is the most commonly used plastic. Because of its affordable cost, excellent mechanical properties, shielding properties and high transparency, it is often used as a bottled liquid and Containers for other food. Its radiation resistance is also used in nuclear power stations and nuclear equipment insulation materials and nuclear tracking detectors.
  • PET As a hydrocarbon, plastic has a high calorific value and is therefore widely considered as a potential raw material for the production of H 2 and syngas.
  • PET due to its high carbon content of about 45% and its lack of inorganic components, PET can be considered a reliable source of high-purity solid carbon materials. It is worth mentioning that due to the increasing application of carbon materials in different fields such as energy storage systems, conductive composite materials and solar energy collection, carbon materials with higher surface area and electrical conductivity are of great significance.
  • PET has been used as a carbon source.
  • the shredded mineral water bottle is heated to 815 ° C under a nitrogen atmosphere to produce a black high-carbon polymer, which is then filled into a hollow carbon tube and used as an anode on a rotating cathode arc discharge device, which is traditionally used for preparation
  • a method for multi-walled carbon nanotubes (MWCNTs) In soot, the anode and cathode are heated at different regions of about 1700-2600 ° C, forming nano-scale carbon spheres and MWCNTs.
  • Raman G band is related to the vibration of sp 2 carbon atoms in a two-dimensional hexagonal lattice, while the Raman D band is caused by structural defects.
  • Raman 2D bands are sensitive to the number of layers. Therefore, in graphene-based materials, the ratios of Raman 2D / G (I 2D / I G ) and D / G (I D / I G ) intensity correspond to the density of defects and the quality of graphene flakes, respectively, thereby affecting The conductivity of the material.
  • graphite materials with lower I 2D / I G values and electrical conductivity have higher I D / I G values.
  • I D / I G values were 1.02,1.19 and 1.55 reduced graphene oxide (of RGO) material I 2D / I G values of 0.14,0.07 and 0.01, respectively, 166,133 and the electric conductivity 69 Sm -1 . Consistent with this trend, RGO foams prepared with GO and Ni have lower I D / I G values (0.92), and lack high electrical conductivity of 1600 Sm -1 .
  • PET was pyrolyzed to form gaseous compounds (58%, carbon monoxide, carbon dioxide, and hydrocarbons), terephthalic acid (20%), and extraction from the bottom of the reactor in an N 2 atmosphere at 725 ° C. Black solid residue.
  • the black residue was ground, pyrolyzed at 925 ° C in N 2 for 1 h, and then activated in CO 2.
  • the loss on ignition was in the range of 12-76%.
  • the BET specific surface area of the obtained activated carbon ranges from 340 to 2468 m 2 g -1 and the I D / I G value ranges from 0.76 to 1.24 (JB Parra, CO Ania, A. Arenillas, F. Rubiera, JJ Pis and J.M. Palacios, Structuralchanges in polyethylene terepthalate (PET) waste materials caused by pyrolysis and CO 2 activation, Adsorption Science & Technology 24 (2006) 439-449.).
  • the present invention proposes to use molten salt to treat PET to prepare high-performance carbon nanomaterials.
  • the obtained materials have a variety of excellent characteristics such as high specific surface area (522.54 m 2 g -1 ), low I D / I G value (0.47), and high
  • the test material with an I 2D / I G value (0.52) at a pressure of 6.13 MPa (corresponding to a bulk density of 1.04 g cm -3 ) has excellent electrical conductivity up to 1143Sm -1 . It is by far the highest quality carbon material obtained from plastic using a one-step molten salt process.
  • the present invention adopts a very effective method to prepare a nanostructured graphitized carbon material from plastic.
  • the method is to heat a plastic or a mixture of different types of plastics with an inorganic metal halide or a mixture of different types of inorganic metal halides, and the heating temperature is higher than that of an inorganic metal halide or a different type of inorganic The melting point of the metal halide mixture.
  • a method for extracting a carbon material from plastic is produced by heating a mixture, the mixture consisting of at least one plastic and at least one metal halide salt; the heating temperature is: Heating temperature ⁇ boiling point + 50 ° C.
  • the metal halide salt is a hydrated metal halide salt.
  • the heating temperature is above the melting point of the metal halide salt and less than the boiling point, a mixture of nanostructured carbon material and salt is generated. After cooling, the salt is dissolved in water and filtered. The nanostructured carbon material is obtained by drying.
  • the electrical conductivity of the generated nanostructured carbon material is greater than 1000 S m -1 or the value of Raman I D / I G is less than 0.5.
  • the above metal halide salt is one or more of LiCl, NaCl, KCl, MgCl 2 , CaCl 2 , NaF, ZnCl 2 ;
  • the hydrate metal halide salt is LiCl, NaCl, KCl One or more mixed hydrates of MgCl 2 , CaCl 2 , NaF, ZnCl 2 .
  • the plastic includes polyethylene (PE, C 2 H 4 ), polypropylene (PP, (C 3 H 6 ) n ), polyethylene terephthalate (PET, (C 10 H 8 O 4 ) n ), polystyrene (PS, (C 8 H 8 ) n ), polyvinyl chloride (PVC, (C 2 H 3 Cl) n ), polylactic acid (PLA, (C 3 H 4 O 2 ) n ) , Polycarbonate (PC, C 16 H 18 O 5 ), acrylic (PMMA, (C 5 O 2 H 8 ) n ), nylon (PA, (C 12 H 22 N 2 O 2 ) n ), or ABS resin ( ABS, (C 8 H 8 • C 4 H 6 • C 3 H 3 N) n) or one or more of synthetic polymers (such as synthetic rubber) whose skeleton consists of carbon-carbon bonds.
  • PE polyethylene
  • PP polypropylene
  • PET PET
  • PET polyethylene terephthalate
  • PS poly
  • the heating is performed in air, an inert gas atmosphere, a nitrogen atmosphere, or a vacuum condition.
  • the heating atmosphere is an inert gas or nitrogen atmosphere, it contains H 2 above 0.1% by volume.
  • the nanostructured carbon material produced by the method has one or more of the following characteristics: specific surface area greater than 500 m 2 g -1 ; specific capacitance value greater than 70 F g -1 ; graphite structure; a symmetrical Raman 2D bands; graphene nanosheet layers containing less than 20 layers, each layer being less than 10 nm thick.
  • the metal halide salt is NaCl
  • the plastic is polyethylene terephthalate (PET)
  • the heating temperature is above 1100 ° C.
  • the temperature is preferably 1300 ° C or higher.
  • the above method for extracting carbon material from plastic is performed based on the following equipment, which includes a tunnel furnace with a mobile load support; the mobile load support is made of refractory material or alumina fragments are laid on metal rails; the upper part of the tunnel furnace A heating element is installed at the refractory fault; the heating element is driven by gas or electricity to provide the heating temperature required for the reaction; the upper part of the tunnel furnace is provided with a hole connected to the gas exhaust system for collecting the reaction process Released gaseous substance; refractory container is set on the mobile load support, which contains salt and plastic. It moves with the mobile load support during the reaction, from one end of the tunnel furnace to the other, the temperature rises from lower to higher, and finally exits the tunnel furnace.
  • the post-processing and recycling device is used to dissolve the reaction product after heat treatment in the refractory container to dissolve in water, filter the suspended nano-structured carbon material, and dry to obtain the final product.
  • the filtrate uses the tunnel furnace waste heat to evaporate excess water to recover the reaction salt Reuse.
  • the beneficial effects of the present invention are: during the heating process of plastic and metal halide salt without being restricted by mechanical devices, wherein the salt is in a molten state, the carbonaceous material will be protected from oxidation; secondly, the molten salt Promote further graphitization of carbon materials.
  • NaCl in metal halide salts is cheap and easily available, and has a high boiling point, making it the best choice.
  • the nano-carbon material formed by this method has high crystallinity and electrical conductivity, high purity and high surface area, and moderate capacitance. These characteristics make this carbon product suitable for a wide range of applications including conductive carbon additives in energy storage devices, electrode materials for supercapacitors and lithium-sulfur batteries, hydrogen storage sorbents, photocatalytic support materials, and sorbents.
  • Figure 1 shows the XRD pattern on a small piece of PET water bottle.
  • the broad diffraction peaks in this spectrum correspond to the (100) crystal plane of the triclinic system C 10 H 8 O 4 .
  • Figure 2 shows the XRD pattern of the PET bottle after being heated at 250 ° C overnight.
  • the diffraction peak in this figure corresponds to a crystalline PET (slanted) structure.
  • Figure 3 shows the DSC and TGA thermal analysis curves for a heating rate of 40 ° Cmin -1 PET at an air flow rate of 100 ml min -1 .
  • Figure 4 shows (a) XRD patterns of PET materials heated to 620 ° C and 850 ° C in air; (b) SEM images of 620 ° C; (c) SEM images of 850 ° C and (d) 850 ° C SEM partial enlarged picture.
  • Figure 5 shows the product analysis after PET and NaCl are mixed and heated to 1100 ° C and 1300 ° C, and then cooled and washed.
  • A XRD spectrum and
  • B Raman spectrum.
  • FIG. 6 is a SEM picture of a carbon material obtained by mixing PET and NaCl and heating to 1100 ° C.
  • A The edges of irregular particles with smooth surfaces;
  • FIG. 7 is an optical photograph of cured carbon and NaCl obtained by mixing PET and NaCl and heating to 1300 ° C. (A) the mixture inside the alumina crucible, (b) the mixture taken out from the crucible.
  • FIG. 8 is a SEM image of a nanostructured carbon material obtained by mixing PET and NaCl and heating to 1300 ° C.
  • A the graphite layer is seen;
  • the surface of the graphite layer of the carbon material is peeled off to form a nanoflake of graphene;
  • the surface of the graphite layer of the carbon material is peeled off and formed more clearly after being enlarged Graphene nanoflakes;
  • the graphite layer can be seen more clearly after zooming in.
  • Figure 9 is a HRTEM picture of a carbon material obtained by mixing PET and NaCl heated to 1300 ° C.
  • A is a low-magnification image showing the hierarchical structure of the material consisting of nanoflakes and fragmented nanoflakes;
  • (b) is a high-magnification image of the morphology of fragmented nanoflakes; the illustrations in (b) are some pieces FFT analysis of the debris;
  • (c) High-resolution TEM image of the sample.
  • the black rectangle in the figure is an FFT pattern on a carbon sheet, showing the spots corresponding to the graphite nanostructure;
  • the two identified in the figure The thickness is 5.6nm and 8.5nm.
  • Figure 10 shows the nitrogen adsorption-desorption isotherm of carbon materials obtained by mixing PET and NaCl and heating to 1300 ° C.
  • Figure 11 shows the performance of a carbon material conductive supercapacitor obtained by mixing PET and NaCl heated to 1300 ° C: (a) VI relationship, (b) carbon material conductivity and density vs. pressure, and (c) different scan rates Cyclic voltammetry (CV) characteristics, (d) constant current charge and discharge performance of electrodes made of this carbon material at different current densities.
  • Figure 12 is a Raman spectrum of a carbon material obtained by mixing a PET plastic bottle and NaF in air and heating to 1300 ° C, followed by cooling and washing.
  • FIG. 13 is a Raman spectrum of a carbon material obtained by mixing a PET plastic bottle and MgCl 2 ⁇ 6H 2 O in a vacuum and heating to 1300 ° C, followed by cooling and washing.
  • FIG. 14 is a flowchart of a preferred reaction process for continuously producing nanostructured graphitized carbon.
  • 1 mobile load support 2 upper part of the tunnel furnace; 3 holes connected to the gas exhaust system; 4 temperature profile in the tunnel furnace; 5 salt recovered from a nano-structured carbon and salt mixture; 6 refractory containers; 7 A crucible carrying a mixture of plastic and salt; 8 plastic material melts; 9 solid salt particles; 10 nanometer structured carbon material dispersed in molten salt; 11 crucibles are sufficiently cooled; 12 nanometer structured carbon material.
  • the preferred reactor includes a tunnel furnace with a moving load support.
  • the mobile load bracket 1 is made of a refractory material, such as laying aluminum oxide fragments on a metal rail. Controllers can change their speed into the tunnel furnace.
  • the tunnel furnace upper part 2 contains heating elements installed at the refractory fault. The heating element is pneumatically or electrically driven.
  • the upper part of the tunnel furnace is provided with a hole 3 connected to the gas exhaust system. It can be seen from the temperature profile in the tunnel furnace that the temperature gradually increases from the room temperature T 1 to the adjustable maximum temperature T max .
  • the maximum temperature T max is 1100 ° C. or higher, of which it is preferably higher than 1200 ° C., and more preferably higher than 1300 ° C.
  • T 2 is less than 500 ° C, and preferably less than 400 ° C, and more preferably less than 300 ° C.
  • Salt and pieces of plastic material are contained in a refractory container 6, the salt being a metal halide or a mixture of metal halides.
  • Preferred salts are NaCl or mixed salts containing NaCl. Because NaCl is cheap and easily available.
  • the melting point and boiling point of sodium chloride are approximately 800 ° C and 1400 ° C, respectively, indicating that molten NaCl can protect carbonaceous materials from severe oxidation at high temperatures in excess of 900 ° C.
  • NaCl has a high solubility in water, so it can be removed and recovered from the system relatively easily.
  • the refractory container 6 is a ceramic crucible, such as alumina (Al 2 O 3 ); or a carbon crucible, such as a graphite crucible, but the reaction process needs to be performed in a protective atmosphere, such as an argon or nitrogen atmosphere, to avoid oxidation of the carbon crucible.
  • the heat treatment process is started, and the crucible 7 loaded with the mixture of plastic and salt is sent into the tunnel furnace by moving the load support 1.
  • the temperature in the furnace is controlled by a heating element provided in the upper portion 2 of the tunnel furnace. The temperature gradually increases, as shown in Figure 4 of the temperature profile inside the tunnel furnace. When the temperature in the tunnel furnace exceeds the melting point of the plastic material in the crucible, the plastic material melts8.
  • the temperature exceeds the decomposition point of the plastic material. Therefore, the plastic material is decomposed into a gas phase, separated from the crucible, the solid carbonaceous particles are mixed with the solid salt particles 9, and the gas phase is discharged from the hole 3 connected to the gas discharge system of the tunnel furnace. As the crucible continued to move forward, the temperature exceeded the melting point of the salt. The crucible is further moved in a tunnel furnace, and the carbonaceous material is promoted by molten salt to enhance graphitization. At T max , the graphitization process is accelerated, and the carbonaceous material forms a nanostructured carbon material dispersed in molten salt10.
  • the temperature is reduced to the temperature T 2 at the outlet.
  • water is added to the inside of the crucible to dissolve the salt in the water.
  • the internal components of the crucible include a liquid phase composed of water and salt and a suspended phase of a nanostructured carbon material. Nanostructured carbon materials can be extracted through filter paper. The person skilled in the art knows how to separate the nanostructured carbon material (12) from the suspended phase. then,. Salt can be recovered by evaporating water from the liquid phase. The heat from the tunnel furnace can be used to evaporate water. The salt 5 recovered from the nanostructured carbon and salt mixture is passed to the starting point and mixed with the plastic material.
  • the characteristics of the materials were as follows: Scanning electron microscope (SEM) characterization was tested on a Nova Nano-SEM 450 instrument equipped with an energy dispersive X-ray analyzer (EDX); high-resolution transmission
  • the electron microscope (HRTEM) characterization instrument is a FEI Tecnai F20 field emission electron microscope with an acceleration voltage of 200 kV.
  • the Raman spectrum was generated in a Renishaw 1000 Ramanscope with a He–Ne ion laser with a wavelength of 633 nm (red, 1.96eV).
  • Thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis were performed simultaneously using SDT-Q60 thermal analysis.
  • the test air flow rate was 100 ml min ⁇ 1 and the heating rate was 40 ° C min ⁇ 1 .
  • Brunauer-Emmett-Teller (BET) specific surface area is calculated by nitrogen adsorption / desorption isotherm. Static adsorption technology is used at ⁇ 196 ° C.
  • the test instrument model is TriStar 3000 V 6.04.
  • is the resistivity ( ⁇ m)
  • S is the surface area of the acrylic tube hole (mm 2 )
  • V is the potential difference (mV)
  • I is the current (A)
  • H is the height of the compressed powder (mm). Electrical conductivity is calculated as the inverse of resistivity.
  • a three-electrode system was used to evaluate the electrochemical capacity of the carbon product.
  • the carbon material was combined with 10% conductive carbon (SP45, BET surface area of 45 m 2 g -1 ) and 10% binder (polytetrafluoroethylene). , PTFE) mixed together to make a working electrode.
  • the mixture was coated on a foamed nickel current collector with a diameter of 1.2 cm at a loading of 3.3 mg cm -2 .
  • the electrolyte is 6 M KOH.
  • Platinum wire and saturated calomel electrode Hg / HgCl n saturated KCl were used as the counter electrode and the reference electrode, respectively.
  • I is the discharge current
  • ⁇ t is the discharge time
  • m is the mass of the active material
  • ⁇ V is the voltage window.
  • Figure 1 shows the XRD pattern on a small piece of PET water bottle.
  • the XRD pattern of Figure 1 shows that PET has a low crystalline structure.
  • This low-crystalline PET material is heated overnight in a muffle furnace at 260 ° C (above the melting point of PET). After cooling to room temperature, the obtained heat-treated material was white large irregular-shaped crystal particles, and was subjected to XRD analysis. .
  • the inset in Figure 2 is a scanning electron microscope image of crystalline PET. Large-sized particles with a particle size exceeding 0.5 mm, sharp edges, and smooth surfaces can be observed.
  • the EDX analysis of crystalline PET shows that the value of C: O is 1.8, which is less than the theoretical value of the atom C: O in the PET molecular unit of 2.5.
  • the decrease in the C: O ratio observed based on the EDX analysis was due to the surface electron irradiation of PET under a microscope.
  • Figure 3 shows the TGA and DSC curves in the temperature range of 25-900 ° C.
  • the first endothermic peak at 254.1 ° C is due to the melting of PET.
  • the second endothermic peak is 466.8 ° C, which is due to the decomposition of PET.
  • the TGA curve it can be seen that its quality has decreased by 84.17%, and the decomposition of PET begins at about 390 ° C.
  • the final endothermic peak is at 791.2 ° C and may be partially graphitized for the remaining carbon material.
  • FIG. 4 (a) shows the XRD pattern of the sample.
  • the first diffraction peak corresponds to the (002) crystal plane of the short-range ordered hexagonal carbon atom array, and the d (002) layer spacing is 4.18 ⁇ , which is also called disordered graphite or amorphous carbon.
  • the second broad peak 2 ⁇ 40-45 °, a maximum of 43.4 o, corresponding to the (100) and (101) crystal plane superimposed.
  • Amorphous carbon is a variant of hexagonal graphite.
  • the carbon layers on the (002) crystal plane can be randomly transformed into each other and rotated around the normal graphite layer.
  • the endothermic peak at 791.2 ° C in the DSC curve is attributed to the graphitization of amorphous carbon. It can be seen from the TGA curve in Fig. 3 that the residual mass is about 10%.
  • the oxidation process is formed by pits at the defect site. However, at higher temperatures, oxidation occurs on defects and substrate planes. It is well known that the oxidation rate of amorphous carbon is higher than that of graphitized carbon materials. Without being limited by equipment, the high oxidation resistance of carbon materials produced by pyrolysis of PET in air is mainly due to its surface defects with huge particle size, low porosity, and low density.
  • the heat treatment of PET in NaCl is performed. Cut a plastic water bottle into small pieces (about 10 ⁇ 5mm) with scissors. 9.83 g of plastic sheet was placed in an alumina crucible with internal diameters and heights of 50 mm and 100 mm, respectively. Then, 50.80 g of NaCl (NaCl, Aladdin C111533, purity 99.5%) was added to the crucible. The crucible was placed in a muffle furnace, heated in an air atmosphere, the temperature was raised to 1100 ° C at a rate of 20 ° C min -1 , and then immediately cooled down, and cooled to room temperature at about the same rate as the heating rate. A black solid mixture containing the solidified salt and carbon material was placed in enough distilled water to completely dissolve the salt. Then, vacuum filtration was performed with a filter paper, the carbon material was recovered from the filter, and then dried at a temperature of 80 ° C.
  • Figure 5 shows the XRD and Raman spectra of a PET-NaCl mixture heated to 1100 ° C and 1300 ° C (the melting point of NaCl is 801 ° C). The product was then cooled and washed to remove NaCl.
  • the XRD pattern of the black solid product obtained at 1100 ° C showed diffraction peaks corresponding to hexagonal carbon and cubic NaCl. The latter is residual NaCl, which remains in the carbon material even after the cleaning process.
  • the Raman spectrum of a carbon material prepared in molten NaCl at 1100 ° C provides information on the graphite structure of the material.
  • the D-band and G-band caused by the defects correspond to the tensile vibrations of the graphene layer on the carbon material substrate, which appear at the Raman shift values of 1372, 1599 cm -1 , respectively.
  • the Raman shift of the low-intensity 2D band, which is the octave peak of the D band is 2703 cm -1 .
  • I D / I G corresponds to the defect level or is inversely proportional to the degree of graphitization of the carbon material, with a value of 0.94. .
  • Figure 6 is a SEM picture of a carbon material produced at 1100 ° C.
  • Figure 6a shows the edges of irregular particles with a smooth surface. This morphology appears to be roughly similar to that observed in samples heated by air at 850 ° C for PET, with a large number of graphitized bands on the smooth surface of the carbon material produced in molten NaCl.
  • Figure 6b clearly shows the presence of graphene nanoplatelets on carbon particles.
  • Figure 6c is a low magnification SEM image showing that these graphitized bands are scattered on the surface of the irregularly shaped carbon particles. As shown in the SEM image of Fig. 6d, some regions are highly crystallized into graphene nanoflakes. This finding proves that graphitized carbon nanomaterials can be prepared by simply heating in NaCl to a low temperature close to 1100 ° C.
  • FIG. 7a shows a mixture of salt and carbon products in a crucible.
  • the alumina crucible was broken and the mixture of salt and carbon material was taken out of the crucible ( Figure 7b). It can be seen that the carbon material is completely distributed on the solidified NaCl. The high dispersibility of the carbon product in molten NaCl was demonstrated. This solid mixture was added to 500 ml of distilled water.
  • the Raman spectrum of the sample ( Figure 5b) provides information about the quality of the carbon material produced.
  • the spectrum shows a relatively small D-band at 1364 cm -1 and a sharply protruding G-band at 1590 cm -1 .
  • the I D / I G ratio can be measured from the Raman spectrum below 0.47. This observation revealed the existence of crystalline carbon domains with low defect density. In addition, a symmetrical 2D band appears at 2723 cm -1 and the I 2D / I G ratio is 0.52.
  • FIG. 8 shows a SEM micrograph of the obtained nanostructured carbon material.
  • the graphite layer can be clearly seen in Figures 8a and d. It can be clearly seen in Figs. 8b and c that the surface of the graphite layer of the carbon material is peeled off to form a nanoflake of graphene.
  • EDX analysis of the carbon material showed that the atomic ratio of C: O was 28.4.
  • Figure 9a is a low-magnification image showing the hierarchical structure of the material consisting of nanoflakes and fragmented nanoflakes.
  • Figure 9b is a high magnification image of the morphology of the latter, showing the crystal edges of the nanoflakes.
  • the inset of Figure 9b is an FFT analysis of some flaky fragments. The halo in the FFT pattern indicates that the interlayer distance is 3.5 ⁇ , which corresponds to the crystal plane of hexagonal carbon at (002). This pattern confirms the nanocrystalline structure of the carbon material produced in the molten NaCl.
  • Figures c and d in Figure 9 show high-resolution TEM images of the samples, which have very high crystalline structures.
  • Figure 10 is an isothermal curve. According to the IUPAC classification [40], this curve is a type II isotherm with H4 type hysteresis loops, which indicates the presence of non-porous or slit-type macroporous structures.
  • the BET specific surface area of the carbon material was 522 m 2 g -1 .
  • conductivity is one of the most important parameters that determines the performance of carbon materials in practical applications, such as supercapacitors, electromagnetic shielding, catalysts, and metal ion batteries.
  • conductivity is one of the most important parameters that determines the performance of carbon materials in practical applications, such as supercapacitors, electromagnetic shielding, catalysts, and metal ion batteries.
  • the specific surface area increases, the electrical conductivity generally decreases.
  • FIG. 11a shows the current-voltage response relationship of carbon materials under different pressures.
  • a 0.5g sample shows a perfect ohmic response in the range of 0.01-6.13 MPa.
  • Figure 11b shows the conductivity and density values as a function of applied pressure, where the density values are calculated by considering the column height of the compressed powder. It can be seen that under a light pressure of 0.10 MPa, the density of the carbon powder is 0.10 g cm -3 , showing a conductivity of 12.53 S m -1 .
  • nanostructured graphite was produced.
  • a three-electrode system containing 6 M KOH was used to evaluate the electrochemical behavior of carbon materials.
  • Figure 11c shows the CV characteristics recorded at a scanning speed of 5-200 mV s ⁇ 1 and shows an approximately rectangular shape, indicating that the carbon material is mainly charged by the electrochemical double layer capacitance mechanism, which has a better performance. Magnification performance and no capacitor effect. It further confirms the high carbon purity and conductivity of the sample.
  • Figure 11d shows the potential-time characteristics measured with a current density between 0.2 and 20 A g -1 . It can be seen that the discharge time is approximately equal to the charging time, and the curve is almost an isosceles triangle, indicating high reversibility. According to the constant current charge / discharge curves, the specific capacitances corresponding to current densities of 0.2, 0.5, 1.0, 5.0, 10.0, and 20A g ⁇ 1 were calculated as 90.2, 78.6, 73.0, 58.0, 50.0, and 40.0 F g -1 .
  • the process of producing conductive nanostructured graphitized carbon can be performed in a continuous manner in a tunnel furnace, as shown in Figure 14.
  • Tunnel furnaces provide continuous operation for the preparation of nanostructured carbon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提出了一种从塑料中提取碳材料的方法及设备,该方法是在至少一种熔融盐(如NaCl)中对至少一种塑料材料(如聚对苯二酸盐)进行热处理达到熔融盐的熔点之上形成纳米结构碳材料,其中盐处于熔融状态,碳质材料将受到保护免受氧化;其次,熔盐促进了碳材料的进一步石墨化,其产物为具有高导电性和高表面积的纳米石墨微片;该方法为生产导电碳材料提供了简单、经济、高效的方法。它还通过将几乎不可降解的塑料废物转化为高价值的导电碳材料,对环境产生了显著的积极影响。

Description

一种从塑料中提取碳材料的方法及设备 技术领域
本发明属于碳材料制备领域,涉及一种从塑料中提取碳材料的方法。具体为生成高导电性和高表面积的纳米石墨化碳的方法。
背景技术
塑料在2016年全球产量达3.35亿吨,由于生产成本低、耐用性、密度低、耐化学性强、空间稳定性低等,在现代生活中越来越多地应用于各种结构应用。
聚对苯二酸酯((C 10H 8O 4n,PET)是最常用的塑料,由于其可承受的成本、优良的机械性能、屏蔽性能和高透明度,通常被用作瓶装液体和其他食品的容器。它的抗辐射特性也用于核电站和核设备的绝缘材料和核跟踪探测器。
事实上,不断增长的对瓶装水的需求,使全球每年的塑料瓶消费量达到了500亿美元左右。只有大约9%的新水瓶中未利用的塑料被回收,大约80%的旧水瓶会被填埋或投放海洋中。因此,投入海洋中的塑料约有上亿万吨,塑料的微结构被鸟类、鱼类和其他生物摄取,并最终被人类以海鲜形式吃掉,形成了一个全球废物管理和环境危机严重,当前的气候变化也许经历着相同级别的后果。目前,在20年的时间里,全球使用的塑料累积量约为12000万吨。
考虑到PET的自然退化需要很长时间,可能在几百年的时间里,它的循环或转化是至关重要的。作为碳氢化合物,塑料具有高热量值,因此被广泛认为是产生H 2和合成气的潜在原料。另一方面,由于其具有约45%的高碳含量,而且缺乏无机成分,PET可以被认为是高纯度固体碳材料的可靠来源。值得一提的是,由于碳材料在能源存储系统、导电复合材料和太阳能采集等不同领域的应用日益增多,具有较高表面积和导电性的碳材料具有重要意义。
在一些传统的碳纳米材料生产方法中,PET已经被用作碳源。在氮气气氛下加热切碎的矿泉水瓶子到815 °C,生成黑色的高碳聚合物,随后将其填入空心碳管,在旋转阴极电弧放电设备上作为阳极,这是传统上用于制备多壁碳纳米管(MWCNTs)的方法。在烟灰中阳极和阴极加热温度约为1700-2600°C的不同区域,形成纳米尺度的碳球和MWCNTs。
为证实在传统化学汽相淀积(CVD)增长方法中使用PET作为碳源的可行性(C. Liu andHui-Ming Cheng, Carbon nanotubes: controlled growth and application, Materials Today 16 (2013) 19-28.),Hatta等人把PET和高密度聚乙烯作为碳源加入CVD石英管的上端,将铁的氢氧化物作为催化剂加入石英管中心。在氩气气氛下,将该系统加热到700-900°C,在催化剂上生长出碳纳米球和纳米纤维(M.N.M.Hatta, M.S.Hashim, R. Hussin, S. Aida, Z. Kamdi, A.R. Ainunddin and M.Z. Yunos, Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate (PET) waste by chemical vapour deposition,  Journal of Physics: Conference Series 914 (2017) 012029.)。
将PET瓶转换成固体碳纳米管,可为农业和环境提供机会。然而,为了评估热解PET制备碳材料产品的价值,考虑到其过程的经济可行性,在描述碳材料特性上,不仅考虑形貌,在结晶度、缺陷级别、比表面积和导电性的表征更具必要性。这些特性在各种应用过程中都很重要,通常利用电子显微镜、电导率测试仪以及x射线衍射和拉曼光谱等技术进行表征。拉曼光谱被广泛应用于碳材料定性和定量表征,因为它为层状结构、结晶度和缺陷表征提供了清晰的研究。例如,在石墨材料中,我们知道所谓的拉曼G带与二维六边形晶格中的sp 2键碳原子的振动有关,而拉曼 D带则是由结构缺陷引起的。另外,拉曼2D带对层的数量很敏感。因此,在石墨烯基材料中,拉曼2D/G(I 2D/I G)和D/G(I D/I G)强度的比值分别对应于缺陷的密度和石墨烯薄片的质量,从而影响材料的导电性。一般来说,I 2D/I G值和导电率较低的石墨材料具有较高的I D/I G值。例如,I D/I G值分别为1.02、1.19和1.55的还原的氧化石墨烯(RGO)材料的I 2D/I G值分别为0.14、0.07和0.01,电导率分别为166、133和69 Sm -1。与这一趋势一致的是,利用GO和Ni制备的RGO泡沫具有较低的I D/I G值(0.92),缺具有较高的电导率1600Sm -1
从文献中对由PET制备的碳材料的质量进行回顾。El Essawy等人在一个密闭的不锈钢高压釜中加热破碎的PET水瓶,在800 °C加热1 h,形成了一种高度无序的碳材料,具有弱的拉曼G和D带,其I D/I G值为1.13。PET已被用作制备活性碳的碳前驱体(N. A. El Essawy, S. M. Ali, H. A. Farag, A. H. Konsowa, M. Elnouby and H. A. Hamad, Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution, Ecotoxicology and Environmental Safety 145 (2017) 57–68.)。Rai等人在N 2氛围下热解PET,热解程序为400°C热解1 h,725°C热解 2 h。随后将得到的碳材料磨碎并在N 2氛围925°C热解1 h,然后通入CO2活化2 h。在N 2氛围降温后得到的活性炭的比表面积为659.6m 2 g -1,I D/I G值为1.04,并具有一个非常弱的2D拉曼带(P. Rai and K. P. Singh, Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application,Journal of Environmental Management 207 (2018) 249-261.)。
在另一项研究中,725°C 下PET在N 2氛围中被高温分解形成气态化合物(58%,一氧化碳,二氧化碳和碳氢化合物)、对苯二甲酸(20%)和从反应器底部提取的黑色固体残渣。将黑色残渣研磨,在N 2中925°C热解1 h,随后在CO2中活化,烧失量在12-76%的范围内。所得到的活性炭的BET比表面积范围为340-2468 m 2 g -1,I D/I G值范围为0.76~1.24(J.B. Parra, C.O. Ania, A. Arenillas, F. Rubiera, J.J. Pis andJ.M. Palacios, Structuralchanges in polyethylene terepthalate (PET) waste materials caused by pyrolysis and CO 2 activation,Adsorption Science & Technology 24 (2006) 439-449.)。
总结文献可知,尽管PET是碳材料的一个有益来源,但制备碳材料需要很多步骤处理,而且往往导致低石墨化度的碳材料的形成,这不可避免地会带来低导电性,极大地限制了碳材料的可能应用,也限制了PET作为高导电碳材料碳源的可行性。这是一个不好的现象,因为越来越多的垃圾PET被认为是低成本的碳源。更提及不到将塑料废物转化为高附加值材料的同时会带来非常积极的环境影响。
本发明提出了利用熔盐处理PET制备高性能碳纳米材料,得到的材料具有多种优异特性如高比表面积(522.54 m 2g -1),低的I D/I G值(0.47)和高的I 2D / I G值(0.52)在6.13 MPa的压力(对应体积密度为1.04 g cm -3)测试材料具有优异的电导率高达1143Sm -1的电导率。它是迄今为止采用一步熔盐工艺从塑料中获得的最高质量的碳材料。
技术问题
本发明为了克服现有技术的不足,采用了非常有效的方法,从塑料中制备纳米结构的石墨化碳材料。该方法是将一种塑料或者不同类型的塑料混合物与一种无机金属卤化物或者不同类型的无机金属卤化物混合物进行加热,加热温度高于所述的一种无机金属卤化物或者不同类型的无机金属卤化物混合物的熔点。
技术解决方案
具体技术方案为:
一种从塑料中提取碳材料的方法,通过加热混合物产生纳米结构碳材料,所述混合物由至少一种塑料和至少一种金属卤化物盐组成;其加热温度为:金属卤化物盐的熔点≤加热温度≤沸点+50°C。
进一步地,上述金属卤化物盐为水合金属卤化物盐。
进一步地,上述加热温度为金属卤化物盐的熔点以上,小于沸点时,产生纳米结构碳材料和盐的混合物,冷却后用水溶解其中的盐,并过滤,含有盐的滤液回收再利用,滤得物烘干得到纳米结构碳材料。
进一步地,上述生成的纳米结构碳材料的电导率大于1000 S m -1或者拉曼I D/I G的值小于0.5。
进一步地,上述的金属卤化物盐为LiCl、NaCl、KCl、MgCl 2、CaCl 2、NaF、ZnCl 2中的一种或多种混合;所述的水合物金属卤化物盐为LiCl、NaCl、KCl、MgCl 2、CaCl 2、NaF、ZnCl 2中的一种或多种混合的水合物。
进一步地,上述塑料包括聚乙烯(PE,C 2H 4)、聚丙烯(PP,(C 3H 6) n)、聚对苯二甲酸乙二醇酯(PET,(C 10H 8O 4) n)、聚苯乙烯(PS,(C 8H 8) n)、聚氯乙烯(PVC,(C 2H 3Cl) n)、聚乳酸(PLA,(C 3H 4O 2) n)、聚碳酸酯(PC,C 16H 18O 5)、丙烯酸(PMMA,(C 5O 2H 8) n)、尼龙(PA,(C 12H 22N 2O 2) n)或ABS树脂(ABS,(C 8H 8•C 4H 6•C 3H 3N)n)或骨架由碳碳键组成的合成聚合物(如合成橡胶)中的一种或两种以上。
进一步地,在空气中、惰性气体氛围、氮气氛围或者真空条件下进行加热。所述的加热气氛为惰性气体或者氮气氛围时,其中含有高于0.1%体积分数的 H 2
进一步地,该方法的产物纳米结构碳材料具有以下一种或多种特性:比表面积大于500 m 2 g -1;比电容值大于70 F g -1;具有石墨结构;具有一个对称的拉曼2D带;含有少于20层的石墨烯纳米片层,每层的厚度小于10 nm。
进一步地,上述金属卤化物盐为NaCl,塑料为聚对苯二甲酸乙二醇酯(PET),加热温度为1100°C以上。优选为1300°C以上。
上述从塑料中提取碳材料的方法基于以下设备进行,该设备包括一个带有移动负载支架的隧道炉;所述移动负载支架由耐火材料制成或在金属轨上铺设氧化铝碎片;隧道炉上部设置安装在耐火材料断层处的加热元件;所述加热元件是由气或电驱动的,提供反应所需加热温度;隧道炉的上部设有与气体排放系统相连的孔,用于收集反应过程中释放的气体物质;耐火容器设置于移动负载支架上,其中承装盐和塑料,反应过程中随移动负载支架移动,从隧道熔炉的一端到另一端,温度从升高到降低,最后出隧道炉;后处理及循环装置用于将耐火容器中经过加热处理后的反应产物溶于水,过滤悬浮状态的纳米结构碳材料,并干燥得到最终产物,滤液利用隧道炉余热蒸发多余水分后回收反应盐再利用。
有益效果
本发明的有益效果为:可以在不受机械装置限制的情况下,塑料和金属卤化物盐一起加热过程中,其中盐处于熔融状态,碳质材料将受到保护,免受氧化;其次,熔盐促进了碳材料的进一步石墨化。金属卤化物盐中的NaCl便宜易得,且有很高的沸点,成为最佳的选择。该方法形成的纳米碳材料具有高结晶度和高电导率,高纯度和高表面积以及适度的电容。这些特性使该碳产品适用于包括在储能装置中的导电碳添加剂、超级电容器和锂硫电池的电极材料、储氢吸附剂、光催化支持材料、吸附剂等大范围的应用。
附图说明
图1为PET水瓶小块上的XRD图谱。该图谱中的宽衍射峰对应于三斜晶系C 10H 8O 4的(100)晶面。
图2为 PET塑料瓶在250°C的温度下加热一整晚后样品的XRD图谱。该图中衍射峰对应于晶状PET(斜)结构。
图3为在100 ml min -1的空气流量中,加热速度为40°Cmin -1PET的DSC和TGA热分析曲线。
图4为PET材料在空气中加热到620°C和850°C的(a)XRD图谱;(b)620°C的SEM图片;(c)850°C的SEM图片和(d)850°C的SEM局部放大图片。
图5为PET和NaCl混合加热到1100°C和1300°C,然后冷却和清洗后的产品分析,(a)XRD图谱和(b)拉曼光谱。
图6为PET和NaCl混合加热到1100°C所获得的碳材料的SEM图片。(a)表面光滑的不规则颗粒的边缘;(b)显示了碳颗粒上石墨烯纳米片的存在;(c)为低倍SEM图像,石墨化带散布在不规则形状的碳颗粒表面;(d)一些区域被高度结晶成石墨烯纳米薄片。
图7为PET和NaCl混合加热到1300°C所得固化碳和NaCl的光学照片。(a)氧化铝坩埚内部的混合物,(b)从坩埚中取出的混合物。
图8为PET和NaCl混合加热到1300°C获得的纳米结构碳材料的SEM图片。(a)看到石墨层;(b)看到碳材料的石墨层的表面剥落,形成石墨烯的纳米薄片;(c)放大后可以更清楚地看到碳材料的石墨层的表面剥落,形成石墨烯的纳米薄片;(d)放大后可以更清楚地看到石墨层。
图9为PET和NaCl混合加热到1300°C获得碳材料的HRTEM图片。(a)为低放大倍数图像,显示材料由纳米片和碎片化的纳米薄片组成的层次结构;(b)为碎片化的纳米薄片的形貌高倍放大图像;(b)中的插图是一些片状碎片的FFT分析;(c)样品高分辨率TEM图片,图中黑色矩形内为一个碳片上的FFT图案,显示了与石墨纳米结构相对应的斑点;(d)图中识别出来的两个厚度为5.6nm和8.5nm。
图10为PET和NaCl混合加热到1300°C获得碳材料的氮吸附-脱附等温线。
图11为PET和NaCl混合加热到1300°C获得碳材料的导电性超级电容器性能测试:(a)V-I关系,(b)碳材料的导电率和密度与压力的关系,(c)不同扫描速率下的循环伏安(CV)特性,(d)用该碳材料制造的电极在不同的电流密度下恒流充放电性能。
图12为PET塑料瓶和NaF在空气中混合加热到1300°C,随后冷却和清洗获得的碳材料的拉曼光谱。
图13为PET塑料瓶和MgCl 2·6H 2O在真空中混合加热到1300°C,随后冷却和清洗获得的碳材料的拉曼光谱。
图14为一个用于连续生产纳米结构石墨化碳的优选反应工艺流程图。图中:1移动负载支架;2隧道炉上部;3与气体排放系统相连的孔;4隧道炉内的温度剖面图;5从纳米结构的碳和盐混合物中回收的盐;6耐火容器;7负载塑料和盐的混合物的坩埚;8塑性材料融化;9固体盐颗粒;10纳米结构碳材料分散在熔融盐中;11坩埚足够冷却;12纳米结构的碳材料。
本发明的实施方式
为了使本发明能够被证实,更容易理解并且容易被本领域技术人员实施,用非限制的实例结合相应的图片、图表和显微照片来描述,其中:
如图14所示,优选的反应器包括一个带有移动负载支架的隧道熔炉。移动负载支架1由耐火材料制成,如在金属轨上铺设氧化铝碎片。控制人员可以改变其速度进入隧道炉。隧道炉上部2包含安装在耐火材料断层处的加热元件。加热元件是气或电驱动的。隧道炉的上部设有一个与气体排放系统相连的孔3。从隧道炉内的温度剖面图4看出温度逐渐从室温T 1增加到可调最高温度T max。该最高温度T max为1100°C以上,其中优选超过1200°C,再优选超过1300°C。之后温度从最高温度逐渐降低,将负载支架移到隧道炉的另一端温度为T 2,T 2小于500°C,其中优选小于400°C,进一步优选小于300°C。
盐和塑料材料碎片装在耐火容器6中,盐为一种金属卤化物或多种金属卤化物的混合物。优选盐是NaCl或含有NaCl的混合盐。因为NaCl价格便宜,而且易获得。此外,氯化钠的熔点和沸点分别约为800°C和1400°C,表明熔融NaCl可以在超过900°C的高温下保护碳质材料免受严重氧化。此外,NaCl在水中的溶解度很高,因此可以相对容易地从系统中去除并回收。耐火容器6为陶瓷坩埚,如氧化铝(Al 2O 3);或者碳坩埚,如石墨坩埚,但需要反应过程在保护性氛围下进行,如氩气或氮气氛围,以避免碳坩埚的氧化。启动热处理工艺,通过移动负载支架1将负载塑料和盐的混合物的坩埚7送进隧道炉。炉内的温度由设置在隧道炉上部2的加热元件控制。温度逐渐增加,如隧道炉内的温度剖面图4所示。当隧道炉内的温度超过坩埚内塑性材料的熔点时,塑性材料熔化8,通过在隧道炉中进一步移动坩埚,温度超过了塑性材料的分解点。因此,塑性材料分解成气相,从坩埚里分离出来,固体碳质颗粒与固体盐颗粒9混合,气相从隧道炉与气体排放系统相连的孔3中排出。当坩埚继续向前移动时,温度超过了盐的熔点。在隧道炉中进一步移动坩埚,碳质材料经过熔盐的促进,使石墨化增强。在T max时,石墨化过程加快,碳质材料形成了一种纳米结构的碳材料分散在熔融盐中10。通过坩埚进一步移动穿过隧道炉,温度降低到出口处的温度T 2。当坩埚足够冷却11时,向其内部加入水,将盐溶解在水中,坩埚内部成分包括由水和盐组成的液相和纳米结构碳材料的悬浮相。纳米结构的碳材料可以通过滤纸提取。本领域技术人员了解如何将纳米结构的碳材料(12)从悬浮相中分离出来。然后,。可以通过蒸发液相中水分回收盐份。来自隧道炉的热量,可用于蒸发水份。从纳米结构的碳和盐混合物中回收的盐5被传递到起始点与塑料材料混合。
除非在示例中另有说明,材料的特征是按照以下方法进行的:扫描电子显微镜(SEM)表征在配有能量色散X射线分析仪(EDX)的Nova Nano-SEM 450仪器进行测试;高分辨透射电子显微镜(HRTEM)表征仪器为FEI Tecnai F20场发射电子显微镜,加速电压为200 kV。X射线衍射(XRD)在Philips 1710 X射线衍射仪上进行表征,采用Cu-Kα射线(k=1.54 A°),步长和停留时间分别为0.05 2θ和5 s,然后使用X'Pert High Score Plus软件对XRD图谱进行分析。拉曼光谱是在一个带有波长为633 nm(红色,1.96eV)的He–Ne离子激光器的Renishaw 1000 Ramanscope产生的。热重(TG)和差示扫描量热(DSC)分析同时采用SDT-Q60热分析进行测试,测试气流速度为100 ml min 1,升温速率为40 °C min 1。Brunauer-Emmett-Teller(BET)比表面积通过氮气吸附/脱附等温线来进行计算,在−196 °C采用静态吸附技术,测试仪器型号为TriStar 3000 V 6.04。电导率的测量在一个铜支架上使用黄铜活塞(D=20.05mm,H=85.36mm)将碳材料的0.5克压缩到一个丙烯酸管中(ID=20.05mm,H=45.37mm)。用液压机压紧碳粉,使碳的压力上升到6MPa。在不同的压力下,在黄铜活塞和铜座之间通过0.16~3 A范围内的不同电流值,并利用四探针直流法在20 °C时记录相应电势。利用该方程计算了压缩碳粉的电阻率:
ρ=(S×V)/(I×H) (1)
其中,ρ为电阻率(μΩ m),S是丙烯酸管孔的表面积(mm 2),V是电位差(mV),I是电流(A),H是压缩粉的高度(mm)。电导率为计算为电阻率的倒数。
利用三电极系统对碳产物的电化学电容性能进行了评价,将碳材料与10%的导电碳(SP45,BET表面积为45 m 2g -1)和10%的粘结剂(聚四氟乙烯,PTFE)混合在一起作成工作电极。该混合物以3.3 mg cm -2负载量涂覆在直径1.2cm的泡沫镍集流体上。电解液是6 M KOH。采用铂丝和饱和甘汞电极(Hg/HgCl n饱和KCl)分别作为对电极和参考电极。运用循环伏安法(CV)、恒电流充放电和电化学阻抗谱(EIS)进行测量,以评价电化学性能。超级电容器的比电容(Fg 1)采用如下方程式进行计算:
C s = (IΔt) /(mΔV)     (2)
其中I是放电电流,Δt是放电时间,m是活性物质的质量,ΔV是电压窗口。
实施例 1
材料的描述
图1为PET水瓶小块上的XRD图谱。该图谱以2θ=25.4°为中心的宽峰作为特征峰,表明短范围(100)结晶域的PET具有三斜的晶体结构(C 10H 8O 4, JCPDS 卡 No.50-2275)。总的来说,图1的XRD图谱说明PET为低结晶结构。
这种低结晶结构的PET材料在马弗炉中260°C(PET熔点之上)加热一整夜。冷却到室温后,得到的热处理材料为白色大的不规则形状的晶体颗粒,对其进行XRD分析。。在图谱中的衍射峰对应于三斜晶体结构的PET。2θ=25.4°处最强衍射峰为对应于(100)晶面。图2中的插图为晶体PET的扫描电镜图片,可以观察到粒径超过0.5毫米、锐边和光滑表面的大尺寸粒子。对晶体PET的EDX分析得到C:O的值为1.8,小于PET分子单元中原子C:O的理论值2.5。
Gonzalez等人(E. Gonzalez II, M. D. Barankin, P. C. Guschl, and R. F. Hicks, Remote Atmospheric-Pressure Plasma Activation of the Surfaces of Polyethylene Terephthalate and Polyethylene Naphthalate,Langmuir 24 (2008) 12636-12643.)分别使用XPS分析,计算了原始状态和等离子体处理过的PET中的C:O比值分别为3和1.7。在原始状态PET上测量的C:O值偏高被认为是由于表面污染。另一方面,等离子体处理的PET的C:O值较低是因为等离子体处理引起PET表面有更多的C-O和C=O引起的。在本实施例中,根据EDX分析所观察到的C:O比率的降低是由于显微镜下PET的表面电子照射。这些观察结果证实,PET结晶是在凝固过程中发生的,而塑料瓶是由纯PET制成的,因此这种高碳含量、没有无机物成分的材料是制备固体碳材料的有益来源。
图3为25-900°C的温度范围内的TGA和DSC曲线。在DSC曲线上有三个吸热峰。第一个吸热峰值在254.1°C,是由于PET的融化引起的。第二个吸热峰值是466.8°C,这归因于PET的分解,根据TGA曲线,看出它的质量下降了84.17%,PET的分解开始于390°C左右。最后的吸热峰值在791.2°C,可能被分配给剩余碳材料的部分石墨化。
为了研究这个吸热峰,在电阻炉中加热一小块PET塑料,分别测试热解到620 oC和850 oC获得的黑色碳材料的XRD和SEM。图4(a)展示了样品的XRD图谱。620 oC热解的样品的XRD显示了2θ = 21.2°和43.4°的两个衍射峰。第一个衍射峰对应短程有序的六方碳原子阵列的(002)晶面,d (002)层间距为4.18 Å,在,也称为无序石墨或无定形碳。第二个宽峰2θ=40-45°,最大值为43.4 o,对应于(100)和(101)的叠加晶面。
应该提到的是,在石墨六方结构(JCPDS卡No.13-0148)中,(002)衍射峰出现在2θ=26.6°,层面间距为3.35 Å。衍射峰(100)和(101)分别出现在2θ值为42.4°和44.4°上。与石墨相比,无序碳材料的d 002 具有更高的值,这表明材料的结晶性很差。
无定型碳作为六方石墨的一种变体,在这种情况下,(002)晶面的碳层可以随机地相互转化,并围绕着正常石墨层进行旋转。
850 °C(图4a)分解的PET的XRD图谱中,(002)和(100)/(101)重叠的衍射峰的2θ值为25.2°(层间距为3.54 Å)和43.2°处具有最大值。与620 °C热解的样品相比,(002)衍射峰的强度增加,且它向更大的值的转变,表明了材料晶体结晶度的增加,从而导致了石墨化的发生。
DSC曲线中在791.2 °C处出现的吸热峰归因于无定型碳的石墨化。从图3的TGA曲线中可以看出,残留质量大约为10%。
进一步的形貌表征可以从图4b-d中所示的样品的SEM中获得。620°C热解得到的碳材料,SEM显示有大量不规则形状的颗粒,具有锋利的边缘,粒径可达数百微米。如图所示,尽管在空气中加热,材料上没有被氧化的迹象,表明抗氧化性很高。对样品的EDX分析显示,C:O的比率为5.2,这比在结晶PET上观察到的1.8要高。然而,620°C热解的无定型碳中存在相对较高的氧含量,这可能是该材料的完全石墨化的主要障碍。850°C热解(图4 c和d)获得的碳材料的SEM照片显示,与620°C热解得到的材料所观察到的形貌大致相同,其特征是不规则形状的大颗粒。然而,图4的高倍放大图像显示表面上有小的凹坑,这可能是由于轻微氧化造成的。尽管如此,这些显微图显示了这种材料的高抗氧化性,即使是在高达850°C的高温下。
据了解,温度超过500°C下空气对碳材料具有较强的氧化作用,这取决于碳材料的性质,包括石墨化程度、粒度和孔隙度(V. Zh. Shemet, A. P. Pomytkin and V. S. Neshpor, High temperature oxidation behavior of carbon materials in air, Curhon 31 (1993) 1-6.)。据Hahn报道,高定向热解石墨的热氧化发生在550-950°C(H. Pan, J. Li and Y.P. Feng, Carbon Nanotubes for Supercapacitor, Nanoscale Research Letters 5 (2010) 654–668.)。在低于875°C的温度下,氧化过程是由缺陷部位的凹坑形成的。然而,在较高的温度下,氧化发生在缺陷和基底平面上。众所周知,无定型碳的氧化速率比石墨化碳材料要高。在不受设备限制的情况下,空气中PET热解产生的碳材料的高抗氧化性主要是由于其具有巨大的颗粒尺寸、低孔隙度和低密度的表面缺陷。
实施例 2
本实施例实施了NaCl中PET的热处理情况。用剪刀把一个塑料水瓶切成小块(大约10 × 5mm)。9.83 g塑料片被放置在一个氧化铝坩埚中,其内部直径和高度分别为50mm和100mm。然后,在坩埚中加入了50.80gNaCl(NaCl,AladdinC111533,纯度99.5%)。这个坩埚被放置在一个马弗炉中,空气气氛中加热,温度以20 °C min -1速率升温至1100°C,然后立即冷却下来,与加热速率大致相同速率冷却至室温。包含凝固的盐和碳材料的黑色固体混合物被放置在足够多的蒸馏水中,将盐完全溶解。然后,用滤纸进行抽真空过滤,将碳材料从过滤物中回收,然后在80°C的温度下干燥。
图5显示了加热到1100°C和1300°C(NaCl的熔点为801°C)的PET-NaCl混合物的XRD和拉曼光谱,然后冷却和清洗产品使NaCl脱出。1100°C下获得的黑色固体产物的XRD图谱显示了六方碳和立方NaCl相对应的衍射峰。后者是残留的NaCl,即使在清洗过程后,它仍然存在于碳材料中。另一方面,(002)六方碳结构的衍射峰出现在2θ = 25.13°,晶面间距为3.54 Å。在2θ= 43.18°的最大值对应于重叠的(100)和(101)晶面。
如图5b所示,1100°C在熔融NaCl中制备碳材料的拉曼光谱,提供了材料的石墨结构信息。由缺陷导致的D带和G带,对应于碳材料基底石墨烯层的拉伸振动,分别出现在1372、1599 cm -1的拉曼位移值上。此外,低强度的2D带,也就是D带的倍频峰,拉曼位移为2703 cm -1。I D/I G与缺陷水平相对应或与碳材料的石墨化程度成反比,值为0.94。。此外,该产品的I 2D/I G强度比表示石墨烯薄片的质量,值是0.23。总的来说,XRD和拉曼分析表明了样品中纳米石墨微晶的存在。图6为1100°C产生的碳材料的SEM图片。图6a显示了表面光滑的不规则颗粒的边缘。这种形貌似乎与PET的空气加热到850°C的样品中所观察到形貌的大体相似,而在熔融NaCl中产生的碳材料的光滑表面上存在着大量的石墨化带。图6b清楚地显示了碳颗粒上石墨烯纳米片的存在。图6c为低倍SEM图像,表明这些石墨化带散布在不规则形状的碳颗粒表面。如图6d的SEM图所示,一些区域被高度结晶成石墨烯纳米薄片。这一发现证明了可以通过在NaCl中简单的加热到接近于1100°C的低温来制备石墨化结构的碳纳米材料。
实施例 3
为了研究温度的影响,PET-NaCl的混合比例与实施例2相同,混合物被加热到1300°C,同样的加热速度是20 °C min -1,然后冷却到室温。图7a显示坩埚中盐和碳产品的混合物。为了确认碳材料在盐中分布位置,打破氧化铝坩埚被,将盐和碳材料的混合物从坩埚中取出(图7b)。可以看出,碳材料完全分布在凝固的NaCl上。证明了碳产物在熔融NaCl中的高可分散性。将该固体混合物添加到500ml蒸馏水里。在氯化钠的溶解过程中,碳物质漂浮在水面上,表示其具有低的密度。搅拌所获得的悬浮体20min,然后过滤,滤纸上的碳材料干燥过夜。得到的样品的XRD分析(图5a)显示了在2θ=25.9°的六方石墨的(002)峰的存在,层间距为3.44 Å。2θ=42.5°的衍射峰对应于重叠(100)和(101)的晶面。正如图中所示,与NaCl相关的衍射峰值几乎已经从图谱中消失了,这可能是由于清洗过程造成的。样品的拉曼光谱(如图5b)提供了关于所产生的碳材料质量的信息。该光谱显示了一个相对较小的D带在1364 cm -1,以及一个急剧突出的G带在1590 cm -1。I D/I G的比值可以从拉曼谱图中测量低于0.47。这一观测结果揭示了具有低缺陷密度的晶体碳域的存在。除此之外,在2723cm -1出现一个对称的2D带,I 2D/I G比值是0.52。这些观察结果证实,碳材料由几层石墨烯的组成。
图8显示了所获得的纳米结构碳材料的SEM显微图。在图8a和d中可以清楚地看到石墨层。图8b和c中可以清楚地看到碳材料的石墨层的表面剥落,形成石墨烯的纳米薄片。碳材料的EDX分析显示,C:O的原子比率是28.4。
TEM显微图片(图9)为石墨化碳纳米结构提供了进一步的证据。图9a为低放大倍数图像,显示材料由纳米片和碎片化的纳米薄片组成的层次结构。图9b为后者的形貌高倍放大图像,显示了纳米薄片的晶体边缘。图9b的插图是一些片状碎片的FFT分析。FFT图案中的光环表示层间距为3.5 Å,对应于(002)的六方碳的晶面。该图案证实了熔融NaCl中产生的碳材料的纳米晶体结构。图9中c和d显示了样品高分辨率TEM图片,在样品中有很高的结晶结构。9c中黑色矩形内为一个碳片上的FFT图案,显示了与石墨纳米结构相对应的斑点。图9d中显示了一些石墨薄片,在图中被识别出来的两个厚度为5.6nm和8.5nm。对碳材料进行的仔细检查发现,石墨片由4-20层组成,每层厚度小于10纳米。
通过氮吸附-脱附法研究了纳米结构碳材料的表面性质,图10为等温曲线。根据IUPAC分类[40],这条曲线是II型等温线具有H4型滞后回环,这表明存在无孔或狭缝型大孔结构。碳材料的BET比表面积为522 m 2g -1
结果证实,熔融NaCl中的PET热处理用于制备一种碳纳米结构材料,这种结构包括结晶石墨纳米片和厚度小于10纳米的薄片碎片,以及一个较高的比表面积。
应该指出的是,与表面积和结晶度一起,导电率是决定碳材料在实际应用中的性能的最重要的参数之一,如超级电容器、电磁屏蔽、催化剂和金属离子电池。然而,在碳材料中,随着比表面积的增加,导电率通常会降低。
实施例 4
如实施例3所述,产生了纳米结构的石墨。采用四探针法,对不同压力下所产生的碳材料的电导率进行了评价。图11a显示了碳材料在不同压力下的电流电压响应关系,0.5g样品在0.01-6.13 MPa范围内,显示出完美的欧姆反应。图11b中展示了电导率和密度值与施加压力的函数关系,其中密度值的计算是通过考虑压缩粉的柱高得到的。可见,在0.10 MPa的轻压力下,碳粉的密度是0.10 g cm -3,显示出12.53 S m -1的导电率。通过将压力增加到4.14 MPa,密度和导电性分别增加到0.89g cm -3和1071.24 S m -1。从图中可以看到,密度增加到1.04 g cm -3,进一步增加压力到5.47 MPa,但相应的电导率会轻微下降到1058.43 S m -1。从图11a可以观察到,在I-V曲线的斜率中,同样的增加压力,样本的电阻从8.76 mΩ到6.79mΩ。随着压力的增加而电导率的下降解释为压力的增加使压缩粉的柱高减小,根据公式(1)可得电导率下降。可以看出,增加压力到6.13 MPa,密度和电导率的值增加到1.06 g cm -3和1150.15 S m -1。获得的显著的导电率。
实施例 5
如实施例3所述,产生了纳米结构石墨。用一个含 6 M KOH的三电极系统来评价碳材料的电化学行为。如图11 c所示为以5-200 mV s 1的扫描速度记录的CV特性,,显示出近似矩形的形状,表明碳材料主要通过电化学双电层电容机制进行充电,具有较好的倍率性能和无赝电容效应。它进一步证实了样品的高碳纯度和导电率。
图11d显示了电流密度在0.2~ 20 A g -1之间测量的电势-时间特性。可以看出,放电时间大致等于充电时间,曲线几乎是等腰三角形,表示高可逆性。根据恒电流充/放电曲线,电流密度分别为0.2、0.5、1.0、5.0、10.0和20A g 1对应的比电容计算为90.2、78.6、73.0、58.0、50.0和40.0 F g -1
实施例 6
100gNaF与20g PET塑料片混合。该混合物被放置在氧化铝坩埚中,加热至1300°C,并在空气中的电炉中保持1h。然后,将坩埚冷却下来,用足够的水冲洗然后过滤掉所得到的盐。在滤纸上获得的碳材料在80°C的温度下干燥2h。所获得的碳材料的拉曼光谱如图12所示。拉曼光谱在1322、1571和2640 cm -1处分别显示了D、G和2D带的存在,即石墨结构的特征。I D/I G强度比可以从光谱中计算为0.5,表示高度的石墨化程度。拉曼光谱中的2D带是较强且对称的,代表了少量石墨烯层的存在。
实施例 7
50gMgCl 2•6H 2O和10 g PET塑料碎片混合,放置在氧化铝坩埚中,其热处理和洗涤过程与实施例6相同,唯一的区别,在于加热过程在10 -2mbar真空下的管式炉进行。得到的碳材料的拉曼光谱如图13所示。分别在1307、1567和2620cm -1中观察到石墨碳材料的D、G和2D带。碳材料中的拉曼I D/I G比值从光谱中计算为0.3,表示高度的石墨化程度。
生产导电纳米结构石墨化碳的过程可以在隧道炉中以连续的方式进行,如图14所示。隧道炉为纳米结构碳的制备提供了连续的操作。

Claims (10)

  1. 一种从塑料中提取碳材料的方法,其特征在于,通过加热混合物产生纳米结构碳材料,所述混合物由至少一种塑料和至少一种金属卤化物盐组成;其加热温度为:金属卤化物盐的熔点≤加热温度≤沸点+50°C。
  2. 根据权利要求1所述的一种从塑料中提取碳材料的方法,其特征在于,所述金属卤化物盐为水合金属卤化物盐。
  3. 根据权利要求1或2所述的一种从塑料中提取碳材料的方法,其特征在于,加热温度为金属卤化物盐的熔点以上,小于沸点时,产生纳米结构碳材料和盐的混合物,冷却后用水溶解其中的盐,并过滤,含有盐的滤液回收再利用,滤得物烘干得到纳米结构碳材料。
  4. 根据权利要求1或2所述的一种从塑料中提取碳材料的方法,其特征在于,生成的纳米结构碳材料的电导率大于1000 S m -1或者拉曼I D/I G的值小于0.5。
  5. 根据权利要求1或2所述的一种从塑料中提取碳材料的方法,其特征在于,所述的金属卤化物盐为LiCl、NaCl、KCl、MgCl 2、CaCl 2、NaF、ZnCl 2中的一种或多种混合;所述的水合物金属卤化物盐为LiCl、NaCl、KCl、MgCl 2、CaCl 2、NaF、ZnCl 2中的一种或多种混合的水合物。
  6. 根据权利要求1或2所述的一种从塑料中提取碳材料的方法,其特征在于,所述塑料包括聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚苯乙烯、聚氯乙烯、聚乳酸、聚碳酸酯、丙烯酸、尼龙、ABS树脂或合成橡胶中的一种或两种以上。
  7. 根据权利要求1或2所述的一种从塑料中提取碳材料的方法,其特征在于,在空气、惰性气体氛围、氮气氛围或者真空条件下进行加热;所述的加热气氛为惰性气体或者氮气氛围时,其中含有高于0.1%体积分数的H 2
  8. 根据权利要求1或2所述的一种从塑料中提取碳材料的方法,其特征在于,该方法的产物纳米结构碳材料具有以下一种或多种特性:表面积大于500 m 2 g -1;电容大于70 F g -1;具有石墨结构;具有一个对称的拉曼2D带;含有少于20层的石墨烯纳米片层,每层的厚度小于10 nm。
  9. 根据权利要求1或2所述的一种从塑料中提取碳材料的方法,其特征在于,金属卤化物盐为NaCl,塑料为聚对苯二甲酸乙二醇酯(PET),加热温度为1100°C以上。
  10. 权利要求1-9所述的任一从塑料中提取碳材料的方法基于以下设备进行,其特征在于,该设备包括一个带有移动负载支架的隧道炉;所述移动负载支架由耐火材料制成或在金属轨上铺设氧化铝碎片;隧道炉上部设置安装在耐火材料断层处的加热元件;所述加热元件是由气或电驱动的,提供反应所需加热温度;隧道炉的上部设有与气体排放系统相连的孔,用于收集反应过程中释放的气体物质;耐火容器设置于移动负载支架上,其中承装盐和塑料,反应过程中随移动负载支架移动,从隧道熔炉的一端到另一端,温度从升高到降低,最后出隧道炉;后处理及循环装置用于将耐火容器中经过加热处理后的反应产物溶于水,过滤悬浮状态的纳米结构碳材料,并干燥得到最终产物,滤液利用隧道炉余热蒸发多余水分后回收反应盐再利用。
PCT/CN2018/087797 2018-05-22 2018-05-22 一种从塑料中提取碳材料的方法及设备 WO2019222906A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/491,108 US20200262708A1 (en) 2018-05-22 2018-05-22 Method and equipment for extracting carbon materials from plastics
PCT/CN2018/087797 WO2019222906A1 (zh) 2018-05-22 2018-05-22 一种从塑料中提取碳材料的方法及设备
EP18920105.6A EP3763672A4 (en) 2018-05-22 2018-05-22 METHOD OF EXTRACTING CARBONATED MATERIAL FROM PLASTIC AND ASSOCIATED DEVICE
GB1912936.0A GB2578517B (en) 2018-05-22 2018-05-22 Method and equipment for extracting carbon materials from plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/087797 WO2019222906A1 (zh) 2018-05-22 2018-05-22 一种从塑料中提取碳材料的方法及设备

Publications (1)

Publication Number Publication Date
WO2019222906A1 true WO2019222906A1 (zh) 2019-11-28

Family

ID=68241219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087797 WO2019222906A1 (zh) 2018-05-22 2018-05-22 一种从塑料中提取碳材料的方法及设备

Country Status (4)

Country Link
US (1) US20200262708A1 (zh)
EP (1) EP3763672A4 (zh)
GB (1) GB2578517B (zh)
WO (1) WO2019222906A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466095A (zh) * 2021-06-02 2021-10-01 国科大杭州高等研究院 一种测定水环境中颗粒态黑碳含量的方法
CN113461006A (zh) * 2021-07-21 2021-10-01 河北工程大学 一种废旧高分子材料制备碳材料的方法
CN115716643A (zh) * 2021-08-24 2023-02-28 北京大学 一种去除碳材料中金属杂质的方法
CN114307984B (zh) * 2021-12-17 2023-11-03 南通市疾病预防控制中心 一种碳基吸附材料的制备方法及其应用
CN116002640A (zh) * 2022-12-13 2023-04-25 柏中环境科技(上海)股份有限公司 一种废盐资源循环综合利用系统及综合利用方法
CN116443874A (zh) * 2023-03-29 2023-07-18 华中科技大学 一种利用盐辅助的聚酯可控碳化制备多孔碳纳米薄片的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1830767A (zh) * 2006-03-31 2006-09-13 中国科学院长春应用化学研究所 裂解聚合物合成碳纳米管方法
CN102115076A (zh) * 2011-01-21 2011-07-06 中国科学技术大学 一种利用生物可降解塑料制备碳纳米管的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052120B2 (ja) * 1982-06-04 1985-11-18 タテホ化学工業株式会社 炭化珪素の製造方法
CN105366658A (zh) * 2015-11-13 2016-03-02 哈尔滨工程大学 废弃塑料碳化制备超级电容器用多孔碳的方法
CN107043098A (zh) * 2017-03-27 2017-08-15 中南大学 一种基于熔盐法制备碳纳米棒的方法及碳纳米棒的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1830767A (zh) * 2006-03-31 2006-09-13 中国科学院长春应用化学研究所 裂解聚合物合成碳纳米管方法
CN102115076A (zh) * 2011-01-21 2011-07-06 中国科学技术大学 一种利用生物可降解塑料制备碳纳米管的方法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
A. JOSEPHBERKMANS M. JAGANNATHAMS. PRIYANKAP. HARIDOSS: "Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method", WASTE MANAGEMENT, vol. 34, 2014, pages 2139 - 2145, XP029048499, DOI: 10.1016/j.wasman.2014.07.004
E. GONZALEZ IIM. D. BARANKINP. C. GUSCHLR. F. HICKS: "Remote atmospheric-pressure plasma activation of the surfaces of polyethylene terephthalate and polyethylene naphthalate", LANGMUIR, vol. 24, 2008, pages 12636 - 12643
J.B. PARRAC.O. ANIAA. ARENILLASF. RUBIERAJ.J. PISJ.M. PALACIOS: "Structuralchanges in polyethylene terepthalate (PET) waste materials caused by pyrolysis and CO activation", ADSORPTION SCIENCE & TECHNOLOGY, vol. 24, 2006, pages 439 - 449
J.R.HAHNH. KANGS.M. LEEY.H. LEE: "Mechanistic study of defect-induced oxidation of graphite,", J. PHYS CHEM B, vol. 103, 1999, pages 9944 - 51
JIANG GONG: "Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, vol. 2, no. 12, 20 October 2014 (2014-10-20), XP055656981, ISSN: 2168-0485 *
M.N.M.HATTA: "Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate(PET) waste by chemical vapour deposition", JOURNAL OF PHYSICS: CONFERENCE SERIES, vol. 914, 23 July 2017 (2017-07-23), XP055656984, ISSN: 1742-6588 *
M.N.M.HATTAM.S.HASHIMR. HUSSINS. AIDAZ. KAMDIA.R. AINUNDDINM.Z. YUNOS: "Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate (PET) waste by chemical vapour deposition", JOURNAL OF PHYSICS: CONFERENCE SERIES, vol. 914, 2017, pages 012029
N. A. EL ESSAWYS. M. ALIH. A. FARAGA. H. KONSOWAM. ELNOUBYH. A. HAMAD: "Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution", ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, vol. 145, 2017, pages 57 - 68, XP085186870, DOI: 10.1016/j.ecoenv.2017.07.014
P. RAIK. P. SINGH: "Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application", JOURNAL OF ENVIRONMENTAL MANAGEMENT, vol. 207, 2018, pages 249 - 261, XP085311448, DOI: 10.1016/j.jenvman.2017.11.047
P. YUX. ZHAOZ. HUANGY. LIAQ. ZHANG: "Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors", JOURNAL OF MATERIALS CHEMISTRY A, vol. 2, 2014, pages 14413 - 14420
See also references of EP3763672A4
V. ZH. SHEMETA. P. POMYTKINV. S. NESHPOR: "High temperature oxidation behavior of carbon materials in air", CARBON, vol. 31, 1993, pages 1 - 6

Also Published As

Publication number Publication date
EP3763672A4 (en) 2021-03-31
US20200262708A1 (en) 2020-08-20
GB201912936D0 (en) 2019-10-23
GB2578517B (en) 2020-11-04
GB2578517A (en) 2020-05-13
EP3763672A1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
Kamali et al. Molten salt conversion of polyethylene terephthalate waste into graphene nanostructures with high surface area and ultra-high electrical conductivity
WO2019222906A1 (zh) 一种从塑料中提取碳材料的方法及设备
Dhand et al. A comprehensive review on the prospects of multi-functional carbon nano onions as an effective, high-performance energy storage material
Cai et al. A novel strategy to simultaneously electrochemically prepare and functionalize graphene with a multifunctional flame retardant
Tang et al. Hydrothermal synthesis of 3D hierarchical flower-like MoSe2 microspheres and their adsorption performances for methyl orange
Wang et al. Direct conversion of waste tires into three-dimensional graphene
Memon et al. Synthesis of graphene/Ni–Al layered double hydroxide nanowires and their application as an electrode material for supercapacitors
Jiang et al. Solvothermal synthesis and electrochemical performance in super-capacitors of Co3O4/C flower-like nanostructures
Kamali et al. Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials
Tenne Inorganic nanotubes and fullerene-like nanoparticles
Ren et al. Structure-oriented conversions of plastics to carbon nanomaterials
Ran et al. Phase-controlled synthesis of 3D flower-like Ni (OH) 2 architectures and their applications in water treatment
Li et al. Synthesis and characterization of activated 3D graphene via catalytic growth and chemical activation for electrochemical energy storage in supercapacitors
Kamali et al. On the oxidation of electrolytic carbon nanomaterials
Yang et al. Characteristics and supercapacitive performance of nanoporous bamboo leaf-like CuO
Takai et al. Graphene: preparations, properties, applications, and prospects
Khamlich et al. Hydrothermal synthesis of simonkolleite microplatelets on nickel foam-graphene for electrochemical supercapacitors
Gao et al. Synthesis of graphene/nickel oxide composite with improved electrochemical performance in capacitors
Shams et al. Solvothermal synthesis of carbon nanostructure and its influence on thermal stability of poly styrene
Dong et al. Synthesis of hollow carbon spheres from polydopamine for electric double layered capacitors application
Jadhav et al. Probing electrochemical charge storage of 3D porous hierarchical cobalt oxide decorated rGO in ultra-high-performance supercapacitor
Liu et al. Hydrothermal preparation of carbon nanosheets and their supercapacitive behavior
Cheng et al. Efficient conversion of waste polyvinyl chloride into nanoporous carbon incorporated with MnOx exhibiting superior electrochemical performance for supercapacitor application
Kumari et al. Valorization of carbonaceous waste into graphene materials and their potential application in water & wastewater treatment: a review
CN108394889B (zh) 一种从塑料中提取碳材料的方法及设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 201912936

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180522

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018920105

Country of ref document: EP

Effective date: 20201008

NENP Non-entry into the national phase

Ref country code: DE