WO2019222828A1 - Skate or other footwear - Google Patents
Skate or other footwear Download PDFInfo
- Publication number
- WO2019222828A1 WO2019222828A1 PCT/CA2018/050617 CA2018050617W WO2019222828A1 WO 2019222828 A1 WO2019222828 A1 WO 2019222828A1 CA 2018050617 W CA2018050617 W CA 2018050617W WO 2019222828 A1 WO2019222828 A1 WO 2019222828A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- last
- skate boot
- skate
- shell
- foot
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43D—MACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
- A43D3/00—Lasts
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B5/00—Footwear for sporting purposes
- A43B5/16—Skating boots
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C1/00—Skates
- A63C1/40—Skates manufactured of one piece of material
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C1/00—Skates
- A63C1/42—Manufacture of skates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D35/00—Producing footwear
- B29D35/12—Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
- B29D35/126—Uppers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C1/00—Skates
- A63C1/30—Skates with special blades
- A63C1/303—Skates with special blades removably fastened to the blade holder
Definitions
- the invention generally relates to footwear, including skates (e.g., ice skates) such as for playing hockey and/or for other activities.
- skates e.g., ice skates
- the invention generally relates to footwear, including skates (e.g., ice skates) such as for playing hockey and/or for other activities.
- Skates are used by skaters in various sports such as ice hockey, roller hockey, etc.
- a skate comprises a skate boot that typically comprises a number of components that are assembled together to form the skate boot. This can include a shell, a toe cap, a tongue, a tendon guard, etc.
- an approach to manufacturing a shell of a skate boot of conventional skates consists of thermoforming different layers of synthetic material and then assembling these layers to form the shell.
- such conventional skates may sometimes be overly heavy, uncomfortable, lacking in protection in certain areas, and/or a bad fit on a skater’s foot.
- such conventional skates can be expensive to manufacture.
- a skate for a skater.
- the skate comprises a skate boot for receiving a foot of the skater and a skating device (e.g., a blade and a blade holder) disposed beneath the skate boot to engage a skating surface.
- a skating device e.g., a blade and a blade holder
- At least part of the skate boot and optionally at least part of one or more other components (e.g., the skating device) of the skate is constructed from one or more materials (e.g., foams) molded by flowing in molding equipment during a molding process (e.g., injection molding or casting). This may allow the skate to have useful performance characteristics (e.g., reduced weight, proper fit and comfort, etc.) while being more cost-effectively manufactured.
- Other articles of footwear are also provided.
- a skate boot for a skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot defining a cavity to receive a foot of a user, the skate boot comprising a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another; and the body comprises a plurality of layers comprising a plurality of materials that are different and molded by flowing.
- a method of making a skate boot for a skate comprising: providing a molding apparatus; and molding a body of the skate boot using the molding apparatus, the body comprising a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another; and the molding comprises causing flow of a plurality of materials that are different in the molding apparatus to form a plurality of layers of the body.
- an article of footwear for receiving a foot of a user, the article of footwear comprising a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another; and the body comprises a plurality of layers comprising a plurality of materials that are different and molded by flowing.
- a skate boot for a skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot defining a cavity to receive a foot of a user, the skate boot comprising a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another; and the body comprises a plurality of injection-molded layers comprising a plurality of materials that are different.
- a method of making a skate boot for a skate comprising: providing an injection molding apparatus; and injection molding a body of the skate boot using the injection molding apparatus, the body comprising a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another; and the body comprises a plurality of injection-molded layers comprising a plurality of materials that are different.
- a skate boot for a skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot defining a cavity to receive a foot of a user, the skate boot comprising: a body comprising a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user; a tendon guard projecting upwardly from the body; and a slash guard comprising a cut-resistant material, extending above the body, and movable relative to the tendon guard.
- a last for molding a body of a skate boot of a skate.
- the skate comprises a skating device disposed beneath the skate boot to engage a skating surface.
- the skate boot is configured to receive a foot of a user.
- the last is configured to mold the body of the skate boot such that the body of the skate boot comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user.
- the last is reconfigurable to facilitate demolding of the body of the skate boot from the last such that the last is changeable between a molding configuration to mold the body of the skate boot on the last and a demolding configuration to demold the body of the skate boot from the last.
- a method of making a skate boot for a skate comprises a skating device disposed beneath the skate boot to engage a skating surface.
- the skate boot is configured to receive a foot of a user.
- the method comprises: providing a last changeable between a molding configuration and a demolding configuration; molding a body of the skate boot on the last in the molding configuration such that the body of the skate boot comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user; changing the last from the molding configuration to the demolding configuration to facilitate removal of the body of the skate boot from the last; and demolding the body of the skate boot from the last in the demolding configuration.
- a last for molding a body of an article of footwear to receive a foot of a user.
- the last is configured to mold the body of the article of footwear such that the body of the footwear comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user.
- the last is reconfigurable to facilitate demolding of the body of the article of footwear from the last such that the last is changeable between a molding configuration to mold the body of the article of footwear on the last and a demolding configuration to demold the body of the article of footwear from the last.
- a method of making an article of footwear to receive a user’s foot comprises: providing a last changeable between a molding configuration and a demolding configuration; molding a body of the article of footwear on the last in the molding configuration such that the body of the article of footwear comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user; changing the last from the molding configuration to the demolding configuration to facilitate removal of the body of the article of footwear from the last; and demolding the body of the article of footwear from the last in the demolding configuration.
- a flexible female mold member for molding a body of a skate boot of a skate.
- the skate comprises a skating device disposed beneath the skate boot to engage a skating surface.
- the skate boot is configured to receive a foot of a user.
- the flexible female mold member is configured to be part of a female mold and disposed adjacent to a last for molding the body of the skate boot.
- the flexible female mold member comprises an inner surface preformed to define a cavity between the flexible female mold member and the last to receive polymeric material to mold at least a portion of the body of the skate boot such that the inner surface of the flexible female mold member creates an outer surface of the portion of the body of the skate boot.
- a method of making a skate boot of a skate comprising a skating device disposed beneath the skate boot to engage a skating surface.
- the skate boot is configured to receive a foot of a user.
- the method comprises providing a female mold and a last for molding a body of the skate boot.
- the female mold comprises a flexible female mold member comprising an inner surface preformed to define a cavity between the flexible female mold member and the last.
- the method comprises causing polymeric material to flow in the cavity to mold at least a portion of the body of the skate boot such that the inner surface of the flexible female mold member creates an outer surface of the portion of the body of the skate boot.
- a flexible female mold member for molding a body of an article of footwear.
- the article of footwear is configured to receive a foot of a user.
- the flexible female mold member is configured to be part of a female mold and disposed adjacent to a last for molding the body of the article of footwear.
- the flexible female mold member comprises an inner surface preformed to define a cavity between the flexible female mold member and the last to receive polymeric material to mold at least a portion of the body of the article of footwear such that the inner surface of the flexible female mold member creates an outer surface of the portion of the body of the article of footwear.
- a method of making an article of footwear to receive a foot of a user comprises: providing a female mold and a last for molding a body of the article of footwear.
- the female mold comprises a flexible female mold member comprising an inner surface preformed to define a cavity between the flexible female mold member and the last.
- the method comprises causing polymeric material to flow in the cavity to mold at least a portion of the body of the article of footwear such that the inner surface of the flexible female mold member creates an outer surface of the portion of the body of the article of footwear.
- a method of making a skate boot of a skate comprises a skating device disposed beneath the skate boot to engage a skating surface.
- the skate boot is configured to receive a foot of a user.
- the method comprises: placing a sheet in a mold for molding a body of the skate boot; and causing flow of material in the mold to mold at least a portion of the body of the skate boot.
- the sheet conforms to the portion of the body of the skate boot.
- a skate boot for a skate.
- the skate comprises a skating device disposed beneath the skate boot to engage a skating surface.
- the skate boot is configured to receive a foot of a user.
- the skate boot comprises a body comprising: a layer of material molded by flowing; and a sheet conforming to and provided during molding of the layer of material.
- a method of making an article of footwear to receive a foot of a user comprises: placing a sheet in a mold for molding a body of the article of footwear; and causing flow of material in the mold to mold at least a portion of the body of the article of footwear.
- the sheet conforms to the portion of the body of the article of footwear.
- an article of footwear to receive a foot of a user.
- the article of footwear comprises a body comprising: a layer of material molded by flowing; and a sheet conforming to and provided during molding of the layer of material.
- a skate boot for a skate.
- the skate comprises a skating device disposed beneath the skate boot to engage a skating surface.
- the skate boot is configured to receive a foot of a user.
- the skate boot comprises a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user.
- the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another by flow of material in a mold.
- the body is free of parting lines opposite from one another.
- an article of footwear for receiving a foot of a user.
- the article of footwear comprises a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user.
- the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another by flow of material in a mold.
- the body is free of parting lines opposite from one another.
- Figure 1 is an example of a skate for a skater, in accordance with an embodiment of the invention
- Figure 2 is an exploded view of the skate
- Figure 3 is a perspective view of a shell of a skate boot of the skate
- Figures 4 to 7 are respective side, front, top and bottom views of the shell of Figure 3;
- Figure 8 is a cross-sectional view of the shell taken along line 8-8 of Figure 5;
- Figures 9 and 10 are cross-sectional views of the shell taken along lines 9-9 and 10-10 of Figure 4;
- Figure 1 1 is a block diagram showing a molding process implementing a molding apparatus to form the shell of the skate boot;
- Figure 12 is a cross-sectional view of the shell showing a plurality of subshells of the shell, including an internal, an intermediate and an external subshell of the shell;
- Figure 13 is an example of a last of the molding apparatus used to form the shell;
- Figure 14 is a cross-sectional view of the last and a first female mold used to produce the internal subshell of the shell;
- Figure 15 is a cross-sectional view of the last and a second female mold used to produce the intermediate subshell of the shell;
- Figure 16 is a cross-sectional view of the last and a third female mold used to produce the external subshell of the shell;
- Figures 17 and 18 are perspective cross-sectional views of the shell of Figure 3 taken along different points of a length of the shell;
- Figure 19 is a cross-sectional view of the shell in an embodiment in which the shell comprises a reinforcement and a design element disposed between the intermediate subshell and the external subshell;
- Figures 20A and 20B are side views of the shell in embodiments in which the reinforcement comprises a rib;
- Figures 21 A and 21 B are side views of the shell in embodiments in which the reinforcement comprises a reinforcing sheet;
- Figure 21 C is a side view of the shell in accordance with an embodiment in which the reinforcement comprises a single fiber
- Figure 22 is a conceptual illustration of constituents of a material flowing into a mold cavity to produce a resulting polymeric material
- Figure 23 is a perspective view of an embodiment in which the shell comprises an overlay
- Figure 24 is a perspective view of a tongue of the skate boot
- Figure 25 is a side view of a blade of a skating device of the skate.
- Figures 26A to 29 show different examples of embodiments in which the blade is affixed to a blade holder of the skating device of the skate;
- Figure 30 is a side view of the shell in an embodiment in which a limited part of the blade holder is molded integrally with the shell;
- Figures 31 and 32 are cross-sectional views of examples of securing the limited part of the blade holder which is molded integrally with the shell with another part of the blade holder;
- Figure 33 is a cross-sectional view of the blade holder in an embodiment in which the blade holder comprises a blade-detachment mechanism
- Figure 34 is a side view of the blade of the skating device
- Figure 35 is a cross-sectional view of the blade taken along line 35-35 of Figure 34;
- Figure 36 is a side view of the skate in an embodiment in which a toe cap, a tongue, a tendon guard, a footbed and a pair of lace members of the skate boot are molded integrally with the shell;
- Figure 37 is a side of the skate in an embodiment in which the shell of the skate boot is molded alone (i.e. , separately from the toe cap, the tongue, the tendon guard, the footbed and the lace members of the skate boot);
- Figure 38 is a side view of the skate in an embodiment in which any of the toe cap, the tongue, the tendon guard, the footbed and the lace members are molded integrally with the shell of the skate boot;
- Figure 39 is a cross-sectional view of the shell of the skate boot in an embodiment in which the shell is a unitary shell (i.e. , has no subshells);
- Figure 40 is a cross-sectional view of the shell of the skate boot in an embodiment in which the shell comprises subshells;
- Figures 41 A, 41 B and 41 C are cross-sectional views of the shell in embodiments in which at least one of the subshells comprise an opening in a sole region of the shell;
- Figure 42, 43A and 43B are cross-sectional views of the shell in embodiments in which a footbed of the skate boot is formed integrally with the shell of the skate boot;
- Figures 44A and 44B are cross-sectional views of the shell in embodiments in which the external subshell of the shell and/or the internal subshell of the shell comprises an opening at the sole region of the shell;
- Figure 45 is a cross-sectional view of the shell in an embodiment in which the footbed of the skate boot is formed integrally with the shell and is in contact with the external subshell of the shell;
- Figure 46 is a cross-sectional view of the shell in an embodiment in which the footbed of the skate boot is an insert that is disposed between given ones of the subshells of the shell;
- Figures 47A and 47B are cross-sectional views of the shell in embodiments in which a limited part of the blade holder is molded integrally with the shell;
- Figure 48 is a cross-sectional of the shell in an embodiment in which the footbed of the skate boot is formed integrally with the shell;
- Figure 49 is a cross-sectional view of the shell in an embodiment in which the shell comprises the internal, intermediate and external subshells and is molded separately from the blade holder;
- Figure 50 is a cross-sectional view of the shell in an embodiment in which the shell comprises four subshells;
- Figure 51 is a cross-sectional view of the shell in an embodiment in which the blade holder is molded separately from the shell and is affixed to the shell;
- Figure 52 is a cross-sectional view of the shell in an embodiment in which the blade holder is molded integrally with the shell and the intermediate subshell making up the blade holder is exposed;
- Figure 53 is a cross-sectional view of the shell in an embodiment in which the blade holder is molded integrally with the shell and a given subshell envelops the blade holder but not the shell;
- Figure 54 is an exploded view of the skate in an embodiment in which the shell is molded separately from the blade holder and from other components of the skate boot, notably the toe cap, the tongue, the tendon guard, the footbed and the lace members of the skate boot;
- Figure 55 is a perspective view of the blade holder in an embodiment in which the blade holder is formed separately from the shell of the skate boot;
- Figure 56 is a top view of a cross-section of the shell taken along an ankle portion of the shell;
- Figures 57 A and 57B show top cross-sectional views of the ankle portion of the shell in accordance with an embodiment in which the skate boot comprises a reinforcement which comprises an extension;
- Figures 58 and 59 show embodiments in which the extension connects a medial ankle side of the ankle portion to a lateral ankle side of the ankle portion in a direction frontwardly of the ankle portion of the shell;
- Figures 60 and 61 show examples in which the extension comprises a plurality of free ends that are movable relative to one another and converge toward one another;
- Figure 62 shows an example of a variant in which the extension is in a rear portion of the ankle portion of the shell
- Figures 63 and 64 show examples in which the reinforcement comprises two extensions, including one in the rear portion of the ankle portion of the shell;
- Figure 65 is an example of a variant in which the rear portion of the ankle portion comprises an opening
- Figure 66 is a perspective view of the shell of the skate boot in accordance with a variant in which the reinforcement comprises the lace members of the skate boot;
- Figures 67 and 68 show different examples of the shell in accordance with the variant of Figure 66;
- Figure 69 shows an example of the shell in accordance with the variant of Figure 66 and in which the skate boot comprises an extension;
- Figure 70 is a side view of the skate boot of Figure 63;
- Figures 71 A and 71 B show side and front views of the skate in accordance with another embodiment
- Figure 72 shows an example of a test for determining the stiffness of a part of a subshell
- Figure 73 shows an example of an embodiment in which an outermost one of the subshells makes up an outer surface of the shell and an outer surface of the blade holder;
- Figure 74 shows an example of a variant in which the blade holder has no opening extending from its lateral side to its medial side;
- Figures 75 to 77 show an example of a variant in which the shell and/or the blade holder comprises one or more inserts over which a subshell is molded;
- Figures 78A to 78C show other examples of the variant of Figure 75 in which the inserts form a part of the shell;
- Figure 79 shows an example of a variant in which one or more of the subshells comprises a filled portion comprising a different material
- Figures 80A to 80F show other examples of the variant of Figure 79;
- Figures 81 and 82 show an example of a variant in which a sheet is used during molding of the shell
- Figure 83 shows an example of a variant in which the skate boot comprises a slash guard
- Figure 84 shows an example of a variant of the slash guard of Figure 83;
- Figure 85 shows a top view of a portion of the slash guard of Figure 83;
- Figures 86A to 86D show examples of a variant in which the shell and/or blade holder and/or other components made integrally with the shell are molded as separate pieces which are then assembled together;
- Figure 87 shows an example of a variant in which the blade holder comprises an insert for receiving the blade
- Figure 88 shows an example of a variant in which the blade holder comprises a void
- Figure 89 shows an example of a variant in which the shell and/or the blade holder and/or other components made integrally with the shell comprises an opening configured to modify a performance of the skate boot;
- Figure 90 shows an example of an embodiment in which a material of a given subshell comprises a polymeric substance and an expansion agent
- Figure 91 shows an example of the expansion agent of Figure 90
- Figures 92 and 93 show examples of the last to form the shell in other embodiments.
- Figures 94 to 105 show an example of the last to form the shell in another embodiment
- Figures 106 to 1 10 show an example of the last to form the shell in another embodiment
- Figures 1 1 1 to 1 15 show an example of the last to form the shell in another embodiment
- Figures 1 16 and 1 17 show an example of the last to form the shell in another embodiment
- Figures 1 18 and 1 19 show an example of the last to form the shell in another embodiment
- Figures 120 to 122 show an example of a flexible female mold member in another embodiment
- Figure 123 shows an example of a variant in which the footwear is a ski boot
- Figure 124 shows an example of a variant in which the footwear is a work boot.
- Figures 125 and 126 are side and front views of a right foot of the skater with an integument of the foot shown in dotted lines and bones shown in solid lines.
- FIG. 1 shows an example of footwear 10 for a wearer in accordance with an embodiment of the invention.
- the footwear 10 is a skate for a skater to skate on a skating surface 12.
- the skate 10 is a hockey skate for the skater who is a hockey player playing hockey.
- the skate 10 is an ice skate, a type of hockey played is ice hockey, and the skating surface 12 is ice.
- the skate 10 comprises a skate boot 22 for receiving a foot 1 1 of the player and a skating device 28 disposed beneath the skate boot 22 to engage the skating surface 12.
- the skating device 28 comprises a blade 26 for contacting the ice 12 and a blade holder 24 between the skate boot 22 and the blade 26.
- the skate 10 has a longitudinal direction, a widthwise direction, and a heightwise direction.
- the skate 10 including at least part of the skate boot 22 and possibly at least part of one or more other components (e.g., the blade holder 24), is constructed from one or more materials (e.g., foams) molded by flowing in molding equipment during a molding process (e.g., injection molding or casting). This may allow the skate 10 to have useful performance characteristics (e.g., reduced weight, proper fit and comfort, etc.) while being more cost-effectively manufactured.
- materials e.g., foams
- the skate boot 22 defines a cavity 54 for receiving the player’s foot 1 1.
- the player’s foot 1 1 includes toes T, a ball B, an arch ARC, a plantar surface PS, a top surface TS, a medial side MS, and a lateral side LS.
- the top surface TS of the player’s foot 1 1 is continuous with a lower portion of a shin S of the player.
- the player has a heel HL, an Achilles tendon AT, and an ankle A having a medial malleolus MM and a lateral malleolus LM that is at a lower position than the medial malleolus MM.
- the Achilles tendon AT has an upper part UP and a lower part LP projecting outwardly with relation to the upper part UP and merging with the heel HL.
- a forefoot of the player includes the toes T and the ball B
- a hindfoot of the player includes the heel HL
- a midfoot of the player is between the forefoot and the hindfoot.
- the skate boot 22 comprises a front portion 56 for receiving the toes T of the player, a rear portion 58 for receiving the heel HL and at least part of the Achilles tendon AT and the ankle A of the player, and an intermediate portion 60 between the front portion 56 and the rear portion 58. More particularly, in this embodiment, the skate boot 22 comprises a shell 30, a toe cap 32, a tongue 34, a tendon guard 35, a liner 36, a footbed 38, and an insole 40.
- the skate boot 22 also comprises lace members 44i , 44 2 and eyelets 46I -46 E extending through (e.g., punched into) the lace members 44 44 2 , the shell 30 and the liner 36 vis-a-vis apertures 48 in order to receive laces for tying on the skate 10.
- the skate boot 22 may not comprise any lace members and the eyelets 46I -46 E may extend directly through the shell 30 and the liner 36 via the apertures 48.
- the shell 30 is a body of the skate boot 22 that imparts strength and structural integrity to the skate 10 to support the player’s foot 1 1 . More particularly, in this embodiment, as shown in Figure 3, the shell 30 comprises a heel portion 62 for receiving the heel HL of the player, an ankle portion 64 for receiving the ankle A of the player, medial and lateral side portions 66, 68 for respectively facing the medial and lateral sides MS, LS of the player’s foot 1 1 , and a sole portion 69 for facing the plantar surface PS of the player’s foot 1 1.
- the shell 30 thus includes a quarter 75 which comprises a medial quarter part 77, a lateral quarter part 79, and a heel counter 81.
- the medial and lateral side portions 66, 68 include upper edges 70, 72 which, in this embodiment, constitute upper edges of the lace members 44i, 44 2 (i.e. , the lace members 44i, 44 2 are made integrally with the shell as will be described later).
- the heel portion 62 may be formed such that it is substantially cup-shaped for following the contour of the heel HL of the player.
- the ankle portion 64 comprises medial and lateral ankle sides 74, 76.
- the medial ankle side 74 has a medial depression 78 for receiving the medial malleolus MM of the player and the lateral ankle side 76 has a lateral depression 80 for receiving the lateral malleolus LM of the player.
- the lateral depression 80 is located slightly lower than the medial depression 78 for conforming to the morphology of the player’s foot 1 1.
- the ankle portion 64 further comprises a rear portion 82 facing the lower part LP of the Achilles tendon AT of the player.
- the shell 30 comprises one or more materials molded into a shape of the shell 30 by flowing in a molding apparatus 150 during a molding process (e.g., injection molding or casting). More particularly, in this embodiment, the shell 30 comprises a plurality of materials MI -M N that are molded into the shape of the shell 30 by flowing in the molding apparatus 150 during the molding process.
- the materials MI -M N are different from one another, such as by having different chemistries and/or exhibiting substantially different values of one or more material properties (e.g., density, modulus of elasticity, hardness, etc.).
- the materials MI -M N are arranged such that the shell 30 comprises a plurality of layers 85I -85 L which are made of respective ones of the materials MI-M n .
- the shell 30 may be referred to as a“multilayer” shell and the layers 85I -85 L of the shell 30 may be referred to as“subshells”. This may allow the skate 10 to have useful performance characteristics (e.g., reduced weight, proper fit and comfort, etc.) while being more cost-effectively manufactured.
- each of the materials MI -M N is a polymeric material.
- each of the polymeric materials MI-M N is polyurethane (PU).
- Any other suitable polymer may be used in other embodiments (e.g., polypropylene, ethylene-vinyl acetate (EVA), nylon, polyester, vinyl, polyvinyl chloride, polycarbonate, polyethylene, an ionomer resin (e.g., Surlyn®), styrene-butadiene copolymer (e.g., K-Resin®) etc.), self-reinforced polypropylene composite (e.g., Curv®), or any other thermoplastic or thermosetting polymer).
- EVA ethylene-vinyl acetate
- nylon nylon
- polyester vinyl
- vinyl polyvinyl chloride
- polycarbonate polyethylene
- an ionomer resin e.g., Surlyn®
- styrene-butadiene copolymer e.g.,
- each of the polymeric materials MrM N is a foam.
- each of the polymeric materials MI -M N is a PU foam.
- This foamed aspect may allow the shell 30 to be relatively light while providing strength.
- a density of each of the polymeric materials MI-M N may be no more than 40 kg/m 3 , in some cases no more than 30 kg/m 3 , in some cases no more than 20 kg/m 3 , in some cases no more than 15 kg/m 3 , in some cases no more 10 kg/m 3 and in some cases even less.
- One or more of the polymeric materials MI -M N may not be foam in other examples of implementation.
- the materials M ⁇ MN of the subshells dd ⁇ ddi . of the shell 30 constitute at least part of the heel portion 62, the ankle portion 64, the medial and lateral side portions 66, 6d, and the sole portion 69 of the shell 30. More particularly, in this embodiment, the materials MI -M N constitute at least a majority (i.e. , a majority or an entirety) of the heel portion 62, the ankle portion 64, the medial and lateral side portions 66, 66, and the sole portion 69 of the shell 30. In this example, the materials MI -M N constitute the entirety of the heel portion 62, the ankle portion 64, the medial and lateral side portions 66, 68, and the sole portion 69 of the shell 30.
- the subshells 85I -85 L constituted by the polymeric materials MI -M N may have different properties for different purposes.
- a polymeric material M x may be stiffer than a polymeric material M y such that a subshell comprising the polymeric material M x is stiffer than a subshell comprising the polymeric material M y .
- a ratio of a stiffness of the subshell comprising the polymeric material M x over a stiffness of the subshell comprising the polymeric material M y may be at least 1.5, in some cases at least 2, in some cases at least 2.5, in some cases 3, in some cases 4 and in some cases even more.
- a given one of the subshells 85I -85 L may be configured to be harder than another one of the subshells 85I -85 l .
- the hardness of the polymeric materials M r M N may vary.
- a hardness of the polymeric material M x may be greater than a hardness of the polymeric material M y .
- a ratio of the hardness of the polymeric material M x over the hardness of the polymeric material M y may be at least 1.5, in some cases at least 2, in some cases at least 2.5, in some cases at least 3, in some cases at least 4, in some cases at least 5 and in some cases even more.
- a part of the subshell 85 x can be isolated from the remainder of the subshell 85 x (e.g., by cutting, or otherwise removing the part from the subshell 85 x , or by producing the part without the remainder of the subshell 85 x ) and a three-point bending test can be performed on the part to subject it to loading tending to bend the part in specified ways (along a defined direction of the part if the part is anisotropic) to observe the rigidity of the part and measure parameters indicative of the rigidity of the part.
- the three-point bending test may be based on conditions defined in a standard test (e.g., ISO 178(2010)).
- the three-point bending test may be performed to subject the subshell 85 x to loading tending to bend the subshell 85 x until a predetermined deflection of the subshell 85 x is reached and measure a bending load at that predetermined deflection of the subshell 85 x .
- the predetermined deflection of the subshell 85 x may be selected such as to correspond to a predetermined strain of the subshell 85 x at a specified point of the subshell 85 x (e.g., a point of an inner surface of the subshell 85 x ).
- the predetermined strain of the subshell 85 x may be between 3% and 5%.
- the bending load at the predetermined deflection of the subshell 85 x may be used to calculate a bending stress at the specified point of the subshell 85 x .
- the rigidity of the subshell 85 x can be taken as the bending stress at the predetermined strain (i.e. , at the predetermined deflection) of the subshell 85 x .
- the rigidity of the subshell 85 x may be taken as the bending load at the predetermined deflection of the subshell 85 x .
- a stiffness of the subshells 85I -85 L may be related to a modulus of elasticity (i.e., Young’s modulus) of the polymeric materials M ⁇ MN associated therewith.
- Young’s modulus a modulus of elasticity of the polymeric materials M ⁇ MN associated therewith.
- the modulus of elasticity of the polymeric materials M ⁇ MN may vary.
- the modulus of elasticity of the polymeric material M x may be greater than the modulus of elasticity of the polymeric material M y .
- a ratio of the modulus of elasticity of the polymeric material M x over the modulus of elasticity of the polymeric material M y may be at least 1.5, in some cases at least 2, in some cases at least 2.5, in some cases at least 3, in some cases at least 4, in some cases at least 5 and in some cases even more .
- This ratio may have any other suitable value in other embodiments.
- a given one of the subshells 85I-85 L may be configured to be denser than another one of the subshells 85I -85 l .
- the density of the polymeric materials MI -M N may vary.
- the polymeric material M x may have a density that is greater than a density of the polymeric material M y .
- a ratio of the density of the material M x over the density of the material M y may be at least 1.1 , in some cases at least 1.5, in some cases at least 2, in some cases at least 2.5, in some cases at least 3 and in some cases even more a certain value
- the subshells 85I -85 L comprise an internal subshell 85i , an intermediate subshell 85 2 and an external subshell 85 3 .
- the internal subshell 85i is“internal” in that it is an innermost one of the subshells 85I -85 l . That is, the internal subshell 85 ! is closest to the player’s foot 1 1 when the player dons the skate 10.
- the external subshell 85 3 is“external” in that is an outermost one of the subshells 85I-85 l . That is, the external subshell 85 3 is furthest from the player’s foot 1 1 when the player dons the skate 10.
- the intermediate subshell 85 2 is disposed between the internal and external subshells 85 ⁇ 85 3 .
- the internal, intermediate and external subshells 85i, 85 2 , 85 3 comprise respective polymeric materials M 2 , M 3 .
- the polymeric materials IVk , M 2 , M 3 have different material properties that impart different characteristics to the internal, intermediate and external subshells 85i , 85 2 , 85 3 .
- a given one of the subshells 85i , 85 2 , 85 3 may be more resistant to impact than another one of the subshells 85i , 85 2 , 85 3
- a given one of the subshells 85i, 85 2 , 85 3 may be more resistant to wear than another one of the subshells 85i , 85 2 , 85 3
- a given one of the subshells 85i , 85 2 , 85 3 may be denser than another one of the subshells 85i , 85 2 , 85 3 .
- a density of each of the internal, intermediate and external subshells 85i, 85 2 , 85 3 may vary.
- the densities of the internal, intermediate and external subshells 85i, 85 2 , 85 3 increase inwardly such that the density of the internal subshell 85i is greater than the density of the intermediate subshell 85 2 which in turn is greater than the density of the external subshell 85 3 .
- the density of the internal subshell 85 ! may be approximately 30 kg/m 3
- the density of the intermediate subshell 85 2 may be approximately 20 kg/m 3
- the density of the external subshell 85 3 may be approximately 10 kg/m 3 .
- the densities of the internal, intermediate and external subshells 85i , 85 2 , 85 3 may have any other suitable values in other embodiments. In other embodiments, the densities of the internal, intermediate and external subshells 85i, 85 2 , 85 3 may increase outwardly such that the external subshell 853 is the densest of the subshells 85I -85 l . In yet other embodiments, the densities of the internal, intermediate and external subshells 85i, 85 2 , 85 3 may not be arranged in order of ascending or descending density.
- a stiffness of the internal, intermediate and external subshells 85i , 85 2 , 85 3 may vary.
- the stiffness of the internal subshell 85i is greater than the respective stiffness of each of the intermediate subshell 85 2 and the external subshell 85 3 .
- a thickness of the internal, intermediate and external subshells 85i , 85 2 , 85 3 may vary.
- the intermediate subshell 85 2 has a thickness that is greater than a respective thickness of each of the internal and external subshells 85 ! , 85 3 .
- the thickness of each of the internal, intermediate and external subshells 85 ⁇ 85 2 , 85 3 may be between 0.1 mm to 25 mm, and in some cases between 0.5 mm to 10 mm.
- each of the internal, intermediate and external subshells 85i, 85 2 , 85 3 may be no more than 30 mm, in some cases no more than 25 mm, in some cases no more than 15 mm, in some cases no more than 10 mm, in some cases no more than 5 mm, in some cases no more than 1 mm, in some cases no more than 0.5 mm, in some cases no more than 0.1 mm and in some cases even less.
- the polymeric materials Mi , M 2 , M 3 of the internal, intermediate and external subshells 85i, 85 2 , 85 3 may comprise different types of polymeric materials.
- the polymeric material Mi comprises a generally soft and dense foam
- the polymeric material M 2 comprises a structural foam that is more rigid than the foam of the polymeric material Mi and less dense than the polymeric material Mi
- the polymeric material M 3 is a material other than foam.
- the polymeric material M 3 of the external subshell 85 3 may consist of a clear polymeric coating.
- the subshells 85I -85 L may be configured in various other ways in other embodiments.
- the shell 30 may comprise a different number of subshells or no subshells.
- the shell 30 may be a single shell and therefore does not comprise any subshells.
- the shell 30 may comprise two subshells 85I -85 l .
- the shell 30 comprises two subshells, notably interior and exterior subshells 85
- the exterior subshell 85 E XT has a density that is greater than a density of the interior subshell 85
- N T, 85 E XT may have an opening, which can be referred to as a gap, along at least part of the sole portion 69 of the shell 30 (e.g., along a majority of the sole portion 69 of the shell 30).
- the exterior subshell 85 Ec t may comprise a gap G at the sole portion 69 of the shell 30 such that the interior and exterior subshells 85
- NT may project outwardly toward the exterior subshell 85 EXT at the sole portion 69 of the shell 30 and fill in the gap of the exterior subshell 85 EXT such that a thickness of the interior subshell 85
- the exterior subshell 85 EXT may project inwardly toward the interior subshell 85
- the footbed 38 may be formed integrally with the shell 30 such as to cover at least partially an inner surface of the innermost subshell (in this case, the interior subshell 85
- the external subshell 85 3 may comprise a gap 61 at the sole portion 69 of the shell 30 and the intermediate subshell 85 2 may project into the external subshell 85 3 at the sole portion 69 of the shell 30 such as to fill in the gap 61 of the external subshell 85 3.
- the intermediate subshell 85 2 may have a greater thickness at the sole portion 69 of the shell 30.
- the subshells dd ⁇ ddi . of the shell 30 may include four subshells 85 ! , 85 2 , 85 3 , 85 4.
- the subshells 85I -85 L constituted by the polymeric materials MI -M N are integral with one another such that they constitute a monolithic one-piece structure. That is, the subshells 85I-85 L constituted by the polymeric materials MI -M N are integrally connected to one another such that the shell 30 is a one-piece shell. In this example of implementation, this is achieved by the subshells dd ⁇ ddi . bonding to one another in the molding apparatus 150 during the molding process by virtue of chemical bonding of the polymeric materials MI -M n .
- the subshells 85I -85 L constituted by the polymeric materials MI-M N are molded into the shape of the shell 30 by flowing into the molding apparatus 150 during the molding process.
- the molding process comprises causing the polymeric materials M ⁇ MN to flow (i.e. , in liquid or other fluid form) in the molding apparatus 150 so as to form the subshells 85I -85 L and thus the shell 30 within the molding apparatus 150 and recovering the shell 30 from the molding apparatus 150 once its molding is completed.
- the molding process of the shell 30 is injection molding and the molding apparatus 150 comprises a male mold 152 (also commonly referred to as a “last”) with which all the polymeric materials MI-M N are molded into shape, as shown in Figure 13. That is, in this example, the last 152 is a single last with which all of the subshells 85I -85 L of the shell 30 are formed.
- the molding apparatus 150 also comprises a plurality of female molds 154- 1 -154 N , each female mold 154, being configured to contain the last 152 at different stages of the molding process.
- each female mold 154 comprises first and second portions 155, 157 that are secured together to contain the last 152.
- the first female mold 154i is opened (i.e. , its first and second portions 155, 157 are separated from one another) and removed from the molding apparatus 150 while the last 152 remains on the molding apparatus 150 with the internal subshell 85i still on it.
- a second female mold 154 2 is installed on the molding apparatus 150.
- the last 152 is secured within the second female mold 154 2 to form a mold cavity 158 between the internal subshell 85i (and in some cases at least part of the last 152) and the second female mold 154 2 .
- the mold cavity 158 has a shape of the desired intermediate subshell 85 2 .
- the mold cavity 158 is then filled with a desired polymeric material M 2 via a sprue, runner and gate system (not shown) of the second female mold 154 2 and left to cure.
- the second female mold 154 2 is opened (i.e., its first and second portions 155, 157 are separated from one another) and removed from the molding apparatus 150 while the last 152 remains on the molding apparatus 150 with the internal subshell 85 ! and the intermediate subshell 85 2 still on it.
- a third female mold 154 3 is installed on the molding apparatus 150.
- the last 152 is secured within the third female mold 154 3 to form a mold cavity 160 between the intermediate subshell 85 2 (and in some cases at least part of the last 152, and in some cases at least part of the internal subshell 85 ⁇ and the third female mold 154 3 .
- the mold cavity 160 has a shape of the desired external subshell 85 3 .
- the mold cavity 160 is then filled with a desired polymeric material M 3 via a sprue, runner and gate system (not shown) of the third female mold 154 3 and left to cure.
- the shell 30, including its now formed internal, intermediate and external subshells 85 85 2 , 85 3 is demolded from (i.e. , removed from) the last 152. This may be achieved in various ways.
- the polymeric materials M 2 , M 3 which constitute the internal, intermediate and external subshells 85i, 85 2 , 85 3 may have sufficient elasticity to allow an operator of the molding apparatus 150 to remove the shell 30 from the last 152 by flexing the internal, intermediate and external subshells 85 85 2 , 85 3 of the shell 30.
- the shell 30 may be removed from the last 152 while at least a given one of the internal, intermediate and external subshells 85i , 85 2 , 85 3 has not fully cured such that the shell 30 has some flexibility that it would not have if the at least one given one of the internal, intermediate and external subshells 85 85 2 , 85 3 had fully cured.
- the last 152 may be reconfigurable to facilitate demolding (i.e., removal) of the shell 30 from the last 152. That is, a configuration (e.g., shape) of the last 152 may be changeable between a“molding” configuration to mold the shell 30 on the last 152 and a“demolding” configuration to demold the shell 30 from the last 152.
- the demolding configuration of the last 152 differs from the molding configuration of the last 152, notably in that demolding of the shell 30 from the last 152 is easier in the demolding configuration of the last 152 than in the molding configuration of the last 152 (e.g., less effort has to be exerted on the shell 30 to remove the shell 30 from the last 152 in its demolding configuration than in its molding configuration, or removal of the shell 30 from the last 152 in its demolding configuration is readily allowed while removal of the shell 30 from the last 152 in its molding configuration is precluded without damaging the shell 30).
- the last 152 may contract (i.e., be reduced in size) in its demolding configuration relative to its molding configuration. Removal of the shell 30 from the last 152, which may be by holding the shell 30 to move it away from the last 152 and/or holding and moving at least part of the last 152 away from the shell 30, is thus facilitated.
- undercuts 51 1 -51 6 i e. , recesses (e.g., depressions) or other reentrant portions, which would otherwise complicate demolding of the shell 30.
- the undercuts 51 ⁇ 51 2 are the medial and lateral depressions 78, 80 for receiving the medial and lateral malleoli MM, LM of the player
- the undercuts 51 3 , 51 4 are recesses 83i, 83 2 defined by curvature of the heel portion 62 in the longitudinal and heightwise directions of the skate 10 and curvature of the heel portion 62 in the widthwise direction of the skate 10 such that the heel portion 62 is substantially cup- shaped
- the undercuts 51 5 , 51 6 are recesses 86 1 , 86 2 defined by curvature of the medial side portion 66 and curvature of the lateral side portion 68 in the longitudinal and heightwise directions of the skate 10 adjacent to the player’s forefoot.
- the shell 30 may have any other suitable undercut such as the undercuts 51 ⁇ 51 6 in other embodiments.
- this may facilitate demolding of the shell 30 from the last 152 without deforming the shell 30. That is, a shape of the shell 30 once molding is completed can be maintained during and upon demolding. In this example, this may be useful as the shell 30 is rigid (e.g., to avoid stressing the shell 30, etc.).
- a volume occupied by the last 152 may be reduced from its molding configuration to its demolding configuration such that the volume occupied by the last 152 in its demolding configuration is smaller than the volume occupied by the last 152 in its molding configuration.
- the last 152 comprises a cavity 163 to receive a fluid 167 to vary the volume occupied by the last 152, by expanding and contracting the last 152.
- the last 152 may be an inflatable last that can be expanded and retracted by controlling a fluid pressure within the last 152.
- the inflatable last 152 may be filled with the fluid 167 which is air (or any other fluid) to expand the inflatable last 152 to a“molding” size at which the molding process is carried out, and then emptied of air to contract the inflatable last 152 to a“demolding” size that is less than the molding size and at which the demolding of the shell 30 from the last 152 can be carried out.
- the fluid 167 may be a liquid (e.g., water, oil, etc.) or any other suitable fluid in other cases.
- the cavity 163 of the last 152 may contain particles 169i-169 P such as beads, granules, sand, or other grit, that are configured to vary a rigidity of the last 152 in response to flow of the fluid 167 relative to (i.e. , into or out of) the cavity 163 of the last 152.
- the particles 169i-169 P may rigidify (i.e., increase the rigidity of the last 152) when the fluid 167 flows out of the cavity 167 (e.g., by vacuum).
- the last 152 may comprise a plurality of last members 175i -175 M that are movable relative to one another to change between its molding configuration and its demolding configuration.
- the last members 175i -175 M may be viewed as last“modules” so that the last 152 is a“modular” last.
- Each of the last members 175i -175 M is shaped such that the last members 175I-175 M collectively form the shape of the last 152 to mold the shell 30 in its molding configuration.
- respective ones of the last members 175i -175 M are movable relative to one another while remaining connected to one another as the last 152 changes between its molding configuration and its demolding configuration.
- the last 152 comprises a control system 187 to control movement of the last members 175i- 175 M relative to one another.
- the control system 187 comprises a linkage 181 that includes links 183 ⁇ 183 0 linking adjacent ones of the last members 175 ⁇ 175 M so that they are movable relative to one another and an actuating mechanism 191 that includes a plurality of actuators 193-i -193 4 operable to move the last members 175r 175 M relative to one another between the molding configuration of the last 152 and the demolding configuration of the last 152.
- Adjacent ones of the last members 175 ⁇ 175 M may be translatable and/or rotatable relative to one to change the last 152 between its molding configuration and its demolding configuration. That is, adjacent ones of the last members 175I-1 75 M may move relative to one by translation, rotation, or a combination of translation and rotation to change the last 152 between its molding configuration and its demolding configuration.
- the linkage 181 comprises translation guides 195I -195 4 for translating adjacent ones of the last members 175I-175 M relative to one another and a pivot 197 for pivoting adjacent ones of the last members 175i- 175 M relative to one another.
- the last member 175i is a front central last member to form part of a front region of the shell 30 including a central part of the toe cap 32 integrally formed with the shell 30 and a front central part of the sole portion 69;
- the last member 175 3 is a rear central last member to form part of a rear central region of the shell 30 including a central part of the heel portion 62, a central part of the ankle portion 64, and a rear central part of the sole portion 69;
- the last member 175 2 is an intermediate central last member disposed between the front central last member 175i and the rear central last member 175 3 to form an intermediate central part of the sole portion 69;
- the last members 175 4 , 175 4 are medial and lateral last members to form medial and lateral parts of the heel portion 62, medial and lateral parts of the ankle portion 64, medial and lateral parts of the sole portion 69, medial and lateral parts of the toe cap 32 integrally formed with the shell 30, and the medial and lateral side
- the last members 175I -175 M are movable relative to one another to change the last 152 from its molding configuration to its demolding configuration by: (1 ) translating the intermediate central last member 175 2 upwardly relative to the front central last member 175-i and the rear central last member 175 3 via the translation guide 195 ⁇ 195 2 ; (2) translating the intermediate central last member 175 2 forwardly towards the front central last member 175i via the translation guide 195 2 that is slanted relative to the translation guide 195i such that the front central last member 175i and the rear central last member 175 3 are closer to one another and the rear central last member 175 3 clears the heel portion 62 of the shell 30; (3) translating the rear central last member 175 3 upwardly relative to the front central last member 175i via the translation guide 195 2 ; (4) pivoting the front central last member 175i , the rear central last member 175 3 and the intermediate central last member 175 2 together about the pivot 197 so that the front central last member 175-i
- last members 175i , 175 2 are movable relative to one another to change the last 152 from its molding configuration to its demolding configuration by: (1 ) rotating the last member 175 2 , which forms the heel portion 62 of the shell 30, relative to the last member 175-i to clear the heel portion 62 of the shell 30; and then rotating the last member 175i and the last member 175 2 together to remove them from the shell 30.
- respective ones of the last members 175- 1 -175 M of the last 152 may be movable relative to one another by disconnecting and separating them from one another.
- one or more of the last members 175I -175 M of the last 152 may be disassembled to facilitate removal of the shell 30 from the last 152.
- one or more of the links 183-i -183 c linking adjacent ones of the last members 175r175 M allow these adjacent last members to be connected to one another in the molding configuration of the last 152 and to be disconnected and separated from one another in the demolding configuration of the last 152.
- the last members 175- 1 -175 M may comprise any suitable material.
- the last members 175- 1 -175 M are rigid.
- the last members 175- 1 -175 M rnay be made of metal, rigid plastic, wood, or any other suitable material.
- the last 152 comprises a base 199 that includes last members 175i, 175 2 which are movable relative to one another, and a last member 175 3 that is a removable covering 179, i.e., sheath, which covers the base 199 and is removable from the base 199.
- the sheath 179 may allow different sizes or shapes of the shell 30 to be molded on the 152 by using different sheaths similar to the sheath 179, protect against leakage of the polymeric material Mi during injection, and/or reduce or eliminate internal parting lines on the shell 30.
- the sheath 179 is flexible to facilitate its placement onto the base 199 of the last 152 and its subsequent removal upon molding, yet sufficiently strong to maintain its desired shape during molding of the shell 30.
- the sheath 179 may comprise an elastomeric material, such as silicone rubber or any other polymeric material with suitable elasticity.
- a hardness of the elastomeric material of the sheath 179 may be between 10 Shore A and 99 Shore A of have any other suitable value. This may create a sealing effect to protect against leakage of the polymeric material Mi during injection.
- the sheath 179 may have a smooth external surface that may reduce or eliminate internal parting lines on the shell 30.
- the sheath 179 is placed over the base 199 of the last 152 for molding the shell 30. This is facilitated by flexibility of the sheath 179. Then, to demold the shell 30, the last member 175 2 is moved relative to the last member 175-i and the sheath 179 to clear a front region of the sheath 179.
- the last member 175i includes a cavity 171 and the last member 175 2 is rotatable into the cavity 171 , thus effectively moving into an interior of the last member 175i .
- the last member 175i and the last member 175 2 which is located in the cavity 171 are then moved upwardly out of the sheath 179.
- the shell 30 may be removed by deforming the sheath 179 to take the shell 30 away from it. Alternatively, in some cases, the sheath 179 may be left in the shell 30 to be part of the skate boot 22 of the skate 10.
- the sheath 179 of the last 152 may be implemented in various other ways in other embodiments.
- the sheath 179 may comprises a reinforcement (e.g., a layer of fabric such as mesh, a thin metallic layer, a plastic film, etc.) within its elastomeric material to reinforce it (e.g., protect against tearing).
- a reinforcement e.g., a layer of fabric such as mesh, a thin metallic layer, a plastic film, etc.
- the sheath 179 may be injection molded using a thermoplastic material such as polypropylene, polyethylene (e.g., high-density polyethylene), or any other suitable material (e.g., with low surface adhesion).
- a thermoplastic material such as polypropylene, polyethylene (e.g., high-density polyethylene), or any other suitable material (e.g., with low surface adhesion).
- a thickness of the sheath 179 may vary to define the undercuts 51 1 -51 6 of the shell 30 while facilitating demolding of the shell 30 from the last 152.
- the sheath 179 is thicker at locations of the medial and lateral depressions 78, 80 of the shell 30 for receiving the medial and lateral malleoli MM, LM of the player, the recesses 83i, 83 2 defined by the curvature of the heel portion 62 in the longitudinal and heightwise directions of the skate 10 and the curvature of the heel portion 62 in the widthwise direction of the skate 10, and the recesses 86 ⁇ 86 2 defined by the curvature of the medial side portion 66 and the curvature of the lateral side portion 68 in the longitudinal and heightwise directions of the skate 10 adjacent to the player’s forefoot.
- the last member 175-i is shaped (e.g., straight or tapered downwardly) so as to me movable vertically during demolding and the last member 175 2 can be removed from the shell 30 after moving the last member 175i vertically.
- the sheath 179 may be a film placed (e.g., wrapped about) the base 199 of the last 152.
- the sheath 179 may be an impermeable sock pullable onto and off the last 152.
- control system 187 to control movement of the last members 175I -175 M relative to one another may be implemented in any other suitable way in other embodiments.
- the control system 187 may be configured to control movement of last members 175i , 175 2 so that the last 152 is expandable into its molding configuration and contractible into its demolding configuration.
- the links 183i-183 c between the last members 175 ⁇ 175 2 include a central member 186 and arms 189 ⁇ 189 A that extend from the central member 186 to respective ones of the last members 175i, 175 2 , such that movement of the central member 186 in a given direction (e.g., downwardly) causes the arms 189i -189 A to push the members 175i, 175 2 away from one another to expand the last 152 for molding the shell 30, and movement of the central member 186 in an opposite direction (e.g., upwardly) causes the arms 189i -189 A to pull the members 175 ⁇ 175 2 towards one another to contract the last 152 for demolding the shell 30.
- a given direction e.g., downwardly
- movement of the central member 186 in an opposite direction e.g.,
- the last members 175I -175 M may be implemented in any other suitable way in other embodiments.
- the last members 175- 1 -175 M may have any other suitable shape, there may be any other suitable number of last members (e.g., two, three, four, six, seven, etc. last members), respective ones of the last members 175- 1 -175 M rnay move in any other way relative to one another, etc.
- features of the last members 175 ⁇ 175 M of different embodiments considered herein may be combined together in some examples of implementation.
- a given one of the female molds 154 1 -154 3 may comprise a flexible female mold member 410 comprising an inner surface 414 constituting at least part of an inner surface of the given one of the female molds 154I-154 3 and preformed to define a given one of the mold cavities 156, 158, 160 between itself and the last 152 in which a given one of the polymeric materials MI -M 3 is injected to mold a given one of the subshells 85I -85 3 such that the inner surface 414 creates an outer surface of the given one of the subshells 85I -85 3 .
- the flexible female mold member 410 which will also be referred to as a “membrane”, is configured to avoid at least one parting line on the shell 30 that would otherwise result because of the portions 155, 157 of the given one of the female molds 154I -154 3 if the membrane 410 was omitted.
- the membrane 410 is part of the female mold 154i such that its inner surface 414 is preformed to define the mold cavity 156 between itself and the last 152 in which the polymeric material Mi is injected to mold the subshell 85i such that the inner surface 414 creates the outer surface of the subshell 85i .
- the inner surface 414 of the membrane 410 is preformed in that it is formed to define the mold cavity 156 to mold the subshell 85i and create the outer surface of the subshell 85 ! before the membrane 410 is placed in the molding apparatus 150.
- the membrane 410 may be preformed in a separate mold in a prior operation.
- the membrane 410 is flexible to flex during movement of the portions 155, 157 of the female mold 154 ! when closing and opening the female mold 154i and overlies one or more spaces where the portions 155, 157 of the female mold 154i move relative to one another. This allows one or more parting lines to be avoided as the membrane 410 overlies where these one or more parting lines would otherwise be located.
- the membrane 410 extends continuously to constitute to at least a majority (i.e., a majority or an entirety) of the inner surface of the female mold 154i and to create at least a majority of the outer surface of the subshell 85i .
- the membrane 410 comprises medial and lateral side portions 420, 422, an ankle portion 424, a heel portion 426, and a sole portion 428 that are integral and continuous with one another as a one-piece structure.
- the membrane 410 is flexible and jointless (i.e., without any joint) at the heel portion 426 and a rear of the ankle portion 424, while the medial and lateral side portions 420, 422 and medial and lateral parts of the sole portion 428 are separable and movable relative to one another, to allow the membrane 410 to flex during movement of the portions 155, 157 of the female mold 154i when closing and opening the female mold 154i .
- the membrane 410 is configured such that the subshell 85 ! may be free of parting lines opposite from one another (i.e., on opposite sides of the subshell 85i).
- the subshell 85i may have a parting line 263, which in this example is in a toe portion of the subshell 85i , but is free of any parting line opposite to the parting line 263, i.e., at an opposite side of the subshell 85 ⁇ which in this example is a heel portion and a rear of an ankle portion of the subshell 85i , because of the membrane 410.
- the membrane 410 may comprise an elastomeric material, such as silicone rubber, any other rubber, or any other polymeric material with suitable elasticity.
- a hardness of the elastomeric material of the membrane 410 may be between 10 Shore A and 99 Shore A of have any other suitable value.
- the membrane 410 of the molding apparatus 150 may be implemented in various other ways in other embodiments.
- the membrane 410 may be flexible and jointless at other areas while separable and movable elsewhere to allow the membrane 410 to flex during movement of the portions 155, 157 of the female mold 154-i when closing and opening the female mold 154i .
- the membrane 410 may be flexible and jointless at the sole portion 428, while medial and lateral parts of the ankle portion 424, medial and lateral parts of the heel portion 426, and the medial and lateral side portions 420, 422 are separable and movable relative to one another, to allow the membrane 410 to flex during movement of the portions 155, 157 of the female mold 154i when closing and opening the female mold 154i .
- the membrane 410 may be flexible and jointless at a front portion, while medial and lateral parts of the sole portion 428, medial and lateral parts of the ankle portion 424, medial and lateral parts of the heel portion 426 and the medial and lateral side portions 420, 422 are separable and movable relative to one another, to allow the membrane 410 to flex during movement of the portions 155, 157 of the female mold ' ⁇ 54-i when closing and opening the female mold 154 ! .
- the membrane 410 may comprises a reinforcement (e.g., a layer of fabric such as mesh, a thin metallic layer, a plastic film, etc.) within its elastomeric material to reinforce it (e.g., protect against tearing).
- a reinforcement e.g., a layer of fabric such as mesh, a thin metallic layer, a plastic film, etc.
- the membrane 410 may be injection molded using a thermoplastic material such as polypropylene, polyethylene (e.g., high- density polyethylene), or any other suitable material (e.g., with low surface adhesion).
- a thermoplastic material such as polypropylene, polyethylene (e.g., high- density polyethylene), or any other suitable material (e.g., with low surface adhesion).
- the membrane 410 may be incorporated into a rigid casting of a material (e.g., polyurethane, epoxy or other polymeric material; aluminum, steel or other metallic material; cement; etc.) stiffer and stronger than that of the membrane.
- a material e.g., polyurethane, epoxy or other polymeric material; aluminum, steel or other metallic material; cement; etc.
- the molding process may utilize various molding apparatuses (e.g., molding stations), each apparatus comprising a different female mold 154
- the last 152 still mounted with at least one subshell 85i, can be moved from one molding station to the next without requiring removal of the female molds installed on the various molding apparatuses.
- molding stations may be horizontally distributed (e.g., linearly and/or in a carrousel or other rotary or otherwise curved arrangement). In other embodiments, molding stations may be vertically distributed such as being stacked vertically over one another, which may be more efficient space-wise.
- the shell 30 may comprise a reinforcement 1 15 disposed between certain ones of the subshells 85I -85 L of the shell 30 such as, for example, between the intermediate and external subshells 85 2 , 85 3 .
- the reinforcement 1 15 is produced separately from the shell 30 and is configured to reinforce selected areas of the shell 30 (e.g., the medial and/or lateral side portions 66, 68 of the shell 30) such as, for example, to make it stronger or stiffer (e.g., increase resistance to deflection or impacts).
- the reinforcement 1 15 is affixed to an exterior surface of the intermediate subshell 85 2 after forming the intermediate subshell 85 2 and prior to forming the external subshell 85 3 .
- the reinforcement 1 15 may be mechanically affixed (e.g., stapled, stitched, etc.), glued (e.g., via an adhesive), ultrasonically bonded, or affixed in any other suitable way to the exterior surface of the intermediate subshell 85 2 .
- the reinforcement 1 15 may be configured in any suitable way.
- the reinforcement 1 15 may comprise a plurality of ribs 1 17 ⁇ 1 17 R (or a single rib 1 17,) which project outwardly from the exterior surface of the intermediate subshell 85 2 when the reinforcement 1 15 is affixed to the intermediate subshell 85 2 .
- the ribs 1 17i-1 17 R may extend on the shell 30 and/or on the blade holder 24.
- the ribs 1 17- 1 -1 17 R may extend from the shell 30 to the blade holder 24. That is, the ribs 1 17i-1 17 R have a vertical extent that spans the blade holder 24 and the shell 30.
- the ribs 1 17 ⁇ 1 17 R may span the blade holder 24, the shell 30 and the lace members 44 ⁇ 44 2 . Furthermore, in some cases, the ribs 1 17- 1 -1 17 R may not all be disposed between the same subshells. For example, in some cases, a first rib 1 17, may be disposed between the intermediate and external subshells 85 2 , 85 3 while a second rib 1 17 j is disposed between the internal and intermediate subshells 85i , 85 2 .
- the reinforcement 1 15 may comprise a reinforcing sheet 1 19 that is similarly affixed to the exterior surface of the intermediate subshell 85 2 (e.g., glued thereto).
- the reinforcing sheet 1 19 comprises a material that is stiffer and/or harder than the polymeric material M 2 of the intermediate subshell 85 2 .
- the reinforcing sheet 1 19 may comprise a composite material comprising thermoset material, thermoplastic material, carbon fibers and/or fiberglass fibers.
- the composite material may be a fiber-matrix composite material that comprises a matrix in which fibers are embedded.
- the matrix may include any suitable polymeric resin, such as a thermosetting polymeric material (e.g., polyester, vinyl ester, vinyl ether, polyurethane, epoxy, cyanate ester, etc.), a thermoplastic polymeric material (e.g., polyethylene, polypropylene, acrylic resin, polyether ether ketone, polyethylene terephthalate, polyvinyl chloride, polymethyl methacrylate, polycarbonate, acrylonitrile butadiene styrene, nylon, polyimide, polysulfone, polyamide-imide, self-reinforcing polyphenylene, etc.), or a hybrid thermosetting-thermoplastic polymeric material.
- the fibers may be made of any suitable material such as carbon fibers, polymeric fibers such as aramid fibers, boron fibers, glass fibers, ceramic fibers, etc.
- the reinforcing sheet 1 19 may comprise a fabric or textile material.
- the reinforcing sheet 1 19 may comprise a fabric mesh such as a nylon mesh or any other suitable fabric material.
- the reinforcing sheet 1 19 may envelop the subshell 85 x over which it is disposed such as to cover at least a majority (i.e. , a majority or an entirety) of an outer surface of that subshell 85 x .
- the reinforcing sheet 1 19 may also cover at least a majority of an internal surface of a subsequent subshell 85 y overlying the subshell 85 x .
- the reinforcing sheet 1 19 may extend from the lateral side portion 66 to the medial side portion 68 of the shell 30. In other cases, the reinforcing sheet 1 19 may be disposed at limited portions of the shell 30 (e.g., only the ankle portion 64 of the shell 30).
- the reinforcement 1 15 may comprise a single fiber 1 1 1 rather than a fabric mesh.
- the single fiber 1 1 1 is configured to apply tension forces on the shell 30 and/or other components of the skate boot 22.
- the tension of the single fiber 1 1 1 is transmitted onto the shell 30 and thus may allow controlling its performance.
- multiple reinforcements 1 15 may be included between the subshells 85I -85 L of the shell 30.
- a rib 1 17, may be disposed at a selected area of the shell 30 while a reinforcing sheet 1 19 may be disposed at another selected area of the shell 30.
- the shell 30 may comprise a decoration 121 , which can be referred to as a design element, disposed between certain ones of the subshells 85I -85 L of the shell 30 such as, for instance, between the intermediate and external subshells 85 2 , 85 3 as shown in Figure 19.
- the design element 121 constitutes an aesthetic element that is produced separately from the shell 30 and may be included in the shell 30 in order to affect its aesthetic look.
- the design element 121 may comprise a piece of material including a graphical representation of: one or more alphanumeric characters that may form text (e.g., a word, a message, etc.); one or more symbols (e.g., a logo, a sign, an emblem, etc.); one or more shapes or patterns; and/or one or more real or imaginary objects (e.g., a person, an animal, a vehicle, an imaginary or fictional character, or any other real or imaginary thing).
- the design element 121 is affixed to an exterior surface of the intermediate subshell 85 2 after forming the intermediate subshell 85 2 and prior to forming the external subshell 85 3 .
- the design element 121 may be mechanically affixed (e.g., stapled, stitched, etc.), glued (e.g., via an adhesive), ultrasonically bonded, or affixed in any other suitable way to the exterior surface of the intermediate subshell 85 2 .
- the shell 30 may comprise a plurality of such design elements which may be spaced apart from one another.
- the reinforcement 1 15, which is depicted in Figure 19 spaced apart from the decoration 121 itself may act as a decoration in addition to its reinforcing functionality.
- the molding process proceeds as described above.
- the next subshell in this case the external subshell 85 3 , is formed such that it covers the reinforcement 1 15 and/or the design element 121 thus trapping the reinforcement 1 15 and/or the design element 121 between the intermediate subshell 85 2 and the external subshell 85 3 .
- the external subshell 85 3 may be clear (i.e. , translucent) and may thus allow displaying the reinforcement 1 15 and/or the design element 121 through the external subshell 85 3 . This may be particularly useful to display the design element 121 but may also be useful to display the reinforcement 1 15 for aesthetic purposes.
- the molding process employed to form the shell 30 is low-pressure injection molding. That is, the polymeric materials MI -M N that constitute the subshells 85I -85 L are injected into the mold cavity formed by each mold 154, at a relatively low pressure.
- the molding process employed to form the shell 30 may be characterized as a co-injection molding process since the polymeric materials MI -M N are injected into a same mold.
- the material M x is polyurethane and includes constituents 125, 127 that chemically react when combined.
- the constituents 125, 127 may be polyols and isocyanates.
- the exothermic chemical reaction that characterizes the molding process of the shell 30 contrasts the conventional method of forming a skate boot shell which involves thermoforming whereby heat is applied to a thermoformable sheet of material in a mold such that the thermoformable sheet of material acquires the shape of the mold.
- the molding process of the shell 30 may be implemented in any suitable way in other embodiments.
- injection molding at higher pressure may be used.
- two or more lasts such as the last 152 may be used (e.g., different lasts for molding respective ones of the subshells dd ⁇ ddi . ).
- the last 152 may be configured differently than the last shown in Figure 13.
- the last 152 may not comprise projections for forming the apertures 43 and rather one or more of the female molds 154i -154 N may comprise such projections for forming the apertures 48.
- the projections on the last 152 for forming the apertures 48 may be retractable.
- the molding process of the shell 30 may be casting in which the polymeric materials MI -M N are poured into one or more molds.
- the skate boot 22 may comprise an overlay 102 on an external surface 65 of the shell 30 for aesthetic or functional purposes.
- the overlay 102 comprises a plurality of overlay elements 104i -104 o that can be disposed at any suitable part of the shell 30.
- the overlay elements 104i -104 o may be a graphic (e.g., a logo), a brand name, a pattern, a word, etc. While the overlay elements 104i-104 o may improve an aesthetic appearance of the skate 10, in some cases, certain overlay elements 104i-104 o may also serve functional purposes. For instance, in some cases, the overlay elements 104i-104 o may be configured to minimize wear of at least a portion of the external surface 65 of the shell 30.
- an overlay element 104 x may be located close to a bottom portion of the medial and/or lateral sides of the shell 30 in order to prevent contact between the playing surface 12 and the shell 30 of the skate boot 22. This may help in reducing undue wear of the skate 10.
- the overlay 102 may be affixed to the external surface 65 of the shell 30 in various ways.
- each of the overlay elements 104i-104 o may be mechanically fastened to the external surface 65 of the shell 30 (e.g., via stitching, staples, etc.), glued thereto via an adhesive, or ultrasonically bonded.
- the overlay elements 104i- 104 o may be affixed to the external surface 65 of the shell 30 in any other suitable way.
- the inner lining 36 of the skate boot 22 is affixed to an inner surface of the shell 30 and comprises an inner surface 96 for facing the heel HL and medial and lateral sides MS, LS of the player’s foot 1 1 and ankle A in use.
- the inner lining 36 may be made of a soft material (e.g., a fabric made of NYLON® fibers or any other suitable fabric).
- the footbed 38 is mounted inside the shell 30 and comprises an upper surface 106 for receiving the plantar surface PS of the player’s foot 1 1 and a wall 108 projecting upwardly from the upper surface 106 to partially cup the heel HL and extend up to a medial line of the player’s foot 1 1.
- the insole 40 has an upper surface 25 for facing the plantar surface PS of the player’s foot 1 1 and a lower surface 23 on which the shell 30 may be affixed.
- the skate boot 22 may not comprise an inner lining 36.
- the internal subshell 85 ! of the shell 30 of the skate boot 22 may serve as an inner lining already and thus the addition of the inner lining 36 may be redundant.
- the inner lining 36 may be inserted during the molding process using the molding apparatus 150.
- a textile material may first be placed on the last 152 prior to forming the first subshell (i.e. , the internal subshell 85i) such as to serve as a pre-formed“sock” onto which the internal subshell 85 ! is formed.
- the toe cap 32 of the skate boot 22 is configured to face and protect the toes T of the player’s foot 1 1.
- at least part (i.e., part or all) of the toe cap 32 is formed integrally with the shell 30.
- the toe cap 32 comprises a bottom portion 1 16 for at least partially covering a front portion of the lower surface 23 of the insole 40, a lateral side portion 1 18 for facing a small toe of the foot 1 1 of the player, a medial side portion 120 for facing a big toe of the foot 1 1 of the player, an end portion 122 between the lateral and medial side portions 1 18, 120, an upper portion 124 for facing a top of the toes T of the player’s foot 1 1 , and a top extension 126 for affixing the tongue 34 to the toe cap 32.
- the top extension 126 of the toe cap 32 may be affixed (e.g., glued and/or stitched) to a distal end portion of the tongue 34 in order to affix the tongue 34 to the toe cap 32.
- the toe cap 32 may comprise a synthetic material 105 that imparts stiffness to the toe cap 32.
- the synthetic material 105 of the toe cap 32 may comprise nylon, polycarbonate materials (e.g., Lexan®), polyurethane, thermoplastics, thermosetting resins, reinforced thermoplastics, reinforced thermosetting resins, polyethylene, polypropylene, high density polyethylene or any other suitable material.
- the synthetic material 105 of the toe cap 32 may be a composite material comprising thermoset material, thermoplastic material, carbon fibers and/or fiberglass fibers.
- the composite material may be a fiber-matrix composite material that comprises a matrix in which fibers are embedded.
- the matrix may include any suitable polymeric resin, such as a thermosetting polymeric material (e.g., polyester, vinyl ester, vinyl ether, polyurethane, epoxy, cyanate ester, etc.), a thermoplastic polymeric material (e.g., polyethylene, polyurethane, polypropylene, acrylic resin, polyether ether ketone, polyethylene terephthalate, polyvinyl chloride, polymethyl methacrylate, polycarbonate, acrylonitrile butadiene styrene, nylon, polyimide, polysulfone, polyamide-imide, self-reinforcing polyphenylene, etc.), or a hybrid thermosetting- thermoplastic polymeric material.
- the fibers may be made of any suitable material such as carbon fibers, polymeric fibers such as aramid fibers, boron fibers, glass fibers, ceramic fibers, etc.
- the tongue 34 extends upwardly and rearwardly from the toe cap 32 for overlapping the top surface TS of the player’s foot 1 1.
- the tongue 34 comprises a core 140 defining a section of the tongue 34 with increased rigidity, a padding member (not shown) for absorbing impacts to the tongue 34, a peripheral member 144 for at least partially defining a periphery 145 of the tongue 34, and a cover member 146 configured to at least partially define a front surface of the tongue 34.
- the tongue 34 defines a lateral portion 147 overlying a lateral portion of the player’s foot 1 1 and a medial portion 149 overlying a medial portion of the player’s foot 1 1.
- the tongue 34 also defines a distal end portion 151 for affixing to the toe cap 32 (e.g., via stitching) and a proximal end portion 153 that is nearest to the player’s shin S.
- the tendon guard 35 extends upwardly from the rear portion 82 of the ankle portion 64 of the shell 30 in order to protect the player’s Achilles tendon AT.
- at least part (i.e. , part or all) of the tendon guard 35 is integrally formed with the shell 30 of the skate boot 22.
- the tendon guard 35 may be a separate component from the shell 30 such that the tendon guard 35 is fastened to the shell 30 via a mechanical fastener (e.g., via stitching, stapling, a screw, etc.) or in any other suitable way.
- the skate boot 22 may be constructed in any other suitable way in other embodiments.
- various components of the skate boot 22 mentioned above may be configured differently or omitted and/or the skate boot 22 may comprise any other components that may be made of any other suitable materials and/or using any other suitable processes.
- the blade 26 comprises an ice-contacting material 220 including an ice-contacting surface 222 for sliding on the ice surface while the player skates.
- the ice-contacting material 220 is a metallic material (e.g., stainless steel).
- the ice-contacting material 220 may be any other suitable material in other embodiments.
- the blade holder 24 comprises a lower portion 162 comprising a blade-retaining base 164 that retains the blade 26 and an upper portion 166 comprising a support 168 that extends upwardly from the blade-retaining base 164 towards the skate boot 22 to interconnect the blade holder 24 and the skate boot 22.
- a front portion 170 of the blade holder 24 and a rear portion 172 of the blade holder 24 define a longitudinal axis 174 of the blade holder 24.
- the front portion 170 of the blade holder 24 includes a frontmost point 176 of the blade holder 24 and extends beneath and along the player’s forefoot in use, while the rear portion 172 of the blade holder 24 includes a rearmost point 178 of the blade holder 24 and extends beneath and along the player’s hindfoot in use.
- An intermediate portion 180 of the blade holder 24 is between the front and rear portions 170, 172 of the blade holder 24 and extends beneath and along the player’s midfoot in use.
- the blade holder 24 comprises a medial side 182 and a lateral side 184 that are opposite one another.
- the blade-retaining base 164 is elongated in the longitudinal direction of the blade holder 24 and is configured to retain the blade 26 such that the blade 26 extends along a bottom portion 186 of the blade-retaining base 164 to contact the ice surface 12.
- the blade-retaining base 164 comprises a blade-retention portion 188 to face and retain the blade 26.
- the blade-retention portion 188 comprises a recess 190 in which an upper portion of the blade 26 is disposed.
- the blade holder 24 can retain the blade 26 in any suitable way.
- the blade 26 may be permanently affixed to the blade holder 24 (i.e. , not intended to be detached and removed from the blade holder 24).
- the blade 26 and the blade-retaining base 164 of the blade holder 24 may be mechanically interlocked via an interlocking portion 234 of one of the blade-retaining base 164 and the blade 26 that extends into an interlocking void 236 of the other one of the blade-retaining base 164 and the blade 26.
- the blade 26 can be positioned in a mold used for molding the blade holder 24 such that, during molding, the interlocking portion 234 of the blade- retaining base 164 flows into the interlocking void 236 of the blade 26 (i.e., the blade holder 24 is overmolded onto the blade 26).
- the blade holder 24 may retain the blade 26 using an adhesive 226 and/or one or more fasteners 228.
- the recess 190 of the blade holder 24 may receive the upper portion of the blade 26 that is retained by the adhesive 226.
- the adhesive 226 may be an epoxy-based adhesive, a polyurethane-based adhesive, or any suitable adhesive.
- the recess 190 of the blade holder 24 may receive the upper part of the blade 26 that is retained by the one or more fasteners 228.
- Each fastener 228 may be a rivet, a screw, a bolt, or any other suitable mechanical fastener.
- the blade holder 24 may retain the blade 26 via a press fit.
- the recess 190 of the blade holder 24 may be configured (e.g., sized) such as to enter into a press fit with the blade 26.
- the blade 26 comprises an elastomeric coating 237 including an elastomeric material (e.g., polyurethane, rubber, or any other suitable elastomeric material) that forms at least part of an outer surface of the blade 26.
- the elastomeric coating 237 has a greater friction coefficient than the ice-contacting material 220 of the blade 26 when interacting with the blade holder 24 such as to improve retention of the blade 26 by the blade holder 24 in a press fit.
- the blade-retention portion 188 of the blade holder 24 may extend into a recess 230 of the upper part of the blade 26 to retain the blade 26 using the adhesive 226 and/or the one or more fasteners 228.
- the blade- retention portion 188 of the blade holder 24 may comprise a projection 232 extending into the recess 230 of the blade 26.
- the blade-retaining base 164 comprises a plurality of apertures 208 I -208 4 distributed in the longitudinal direction of the blade holder 24 and extending from the medial side 182 to the lateral side 184 of the blade holder 24.
- respective ones of the apertures 208 I -208 4 differ in size.
- the apertures 208 I -208 4 may have any other suitable configuration, or may be omitted, in other embodiments.
- the blade-retaining base 164 may be configured in any other suitable way in other embodiments.
- the support 168 is configured for supporting the skate boot 22 above the blade- retaining base 164 and transmit forces to and from the blade-retaining base 164 during skating.
- the support 168 comprises a front pillar 210 and a rear pillar 212 which extend upwardly from the blade-retaining base 164 towards the skate boot 22.
- the front pillar 210 extends towards the front portion 56 of the skate boot 22 and the rear pillar 212 extends towards the rear portion 58 of the skate boot 22.
- the blade-retaining base 164 extends from the front pillar 210 to the rear pillar 212. More particularly, in this embodiment, the blade-retaining base 164 comprises a bridge 214 interconnecting the front and rear pillars 210, 212.
- At least part (i.e. , part or all) of the blade holder 24 is integrally formed with the shell 30 of the skate boot 22. That is, at least part of the blade holder 24 and the shell 30 of the skate boot 22 constitute a monolithic one-piece structure.
- the blade holder 24 thus comprises a portion 215 that is integrally formed with the shell 30 of the skate boot 22 such that the portion 215 of the blade holder 34 and the shell 30 of the skate boot 22 are formed together as one-piece in the molding apparatus 150 during the molding process.
- the portion 215 of the blade holder 24 includes one or more of the polymeric materials M r M N of the subshells dd ⁇ ddi . of the shell 30 of the skate boot 22.
- the portion 215 of the blade holder 24 includes the intermediate and external subshells 85 2 , 85 3 and therefore comprises the polymeric materials M 2 , M 3 associated therewith.
- a majority of the blade holder 24 is constituted by the polymeric material M 2 of the intermediate subshell 85 2 such that the blade holder 24 consists primarily of a structural foam material.
- the portion 215 of the blade holder 24 may include one or more different materials. In this embodiment, at least a majority (i.e.
- a majority or an entirety of the blade holder 24 may be integrally formed with shell 30. That is, the portion 215 of the blade holder 24 may be a major portion or the entirety of the blade holder 24. In this embodiment, an entirety of the blade holder 24 is integrally formed with the shell 30.
- the blade holder 24 is formed with the shell 30 in the molding apparatus 150 with the last 152.
- the blade holder 24 is initially formed during forming of the intermediate subshell 85 2 of the shell 30 and is completed by the forming of the external subshell 85 3 of the shell 30. That is, in this embodiment, as shown in Figure 73, the intermediate subshell 85 2 is the innermost subshell of the blade holder 24 while the external subshell 85 3 is the outermost subshell of the blade holder 24.
- the blade 26 is attached to the blade holder 24 during the molding process by including the blade 26 in a given mold 154, such that the blade holder 24 overmolds the blade 26 during the molding process.
- the mold 154 may be designed specifically to hold the blade 26 during the molding process prior to the forming of the intermediate subshell 85 2.
- one or more other components e.g., the toe cap 32, the tendon guard 35, the lace members 44i , 44 2 , the tongue 34, the footbed 38, etc.
- the skate boot 22 may be molded integrally with the shell 30 in the molding apparatus 150 during the molding process.
- the shell 30 and these one or more other components of the skate boot 22 may thus constitute a monolithic one-piece structure.
- the toe cap 32, the tendon guard 35, and the lace members 44i, 44 2 are molded integrally with the shell 30 in the molding apparatus 150 during the molding process.
- the toe cap 32 comprises a portion 217 that is integrally formed with the shell 30 such that the portion 217 of the toe cap 32 of the skate boot 22 and the shell 30 of the skate boot 22 are formed together as one-piece in the molding apparatus 150 during the molding process.
- the portion 217 of the toe cap 32 of the skate boot 22 may include one or more of the polymeric materials M r M N of the subshells dd ⁇ -dd ⁇ . of the shell 30 of the skate boot 22.
- the portion 217 of the toe cap 32 includes one or more of the polymeric materials M r M N of the subshells dd ⁇ ddi . of the shell 30 of the skate boot 22.
- the portion 217 of the toe cap 32 includes the internal, intermediate and external subshells 35i, 35 2 , 35 3 and therefore comprises the polymeric materials Mi, M 2 , M 3 associated therewith.
- the portion 217 of the toe cap 32 may include one or more different materials.
- the tendon guard 35 comprises a portion 219 that is integrally formed with the shell 30 such that the portion 219 of the tendon guard 35 of the skate boot 22 and the shell 30 of the skate boot 22 are formed together as one-piece in the molding apparatus 150 during the molding process.
- the portion 219 of the tendon guard 35 of the skate boot 22 may include one or more of the polymeric materials M I -M N of the subshells 35i-35 L of the shell 30 of the skate boot 22.
- the portion 219 of the tendon guard 35 includes solely the external subshell 35 3 and therefore comprises the polymeric material M 3 associated therewith.
- the portion 219 of the tendon guard 35 may include one or more different materials.
- the portion 219 of the tendon guard 219 may also comprise the internal subshell 35i and/or the intermediate subshell 35 2 such that the portion 219 of the tendon guard 35 also comprises the polymeric material Mi and/or the polymeric material M 2 associated therewith.
- each of the lace members 44 44 2 comprises a portion 221 that is integrally formed with the shell 30 such that the portion 221 of each of the lace members 44 ⁇ 44 2 of the skate boot 22 and the shell 30 of the skate boot 22 are formed together as one-piece in the molding apparatus 150 during the molding process.
- the portion 221 of each lace member 44, of the skate boot 22 may include one or more of the polymeric materials M I -M N of the subshells 85i- 85 L of the shell 30 of the skate boot 22.
- the portion 221 of the lace member 44 includes solely the external subshell 85 3 and therefore comprises the polymeric material M 3 associated therewith.
- the portion 221 of the lace member 44 may include one or more different materials.
- the portion 221 of the lace member 44 may also comprise the internal subshell 85i and/or the intermediate subshell 85 2 such that the portion 221 of the lace member 44, also comprises the polymeric material Mi and/or the polymeric material M 2 associated therewith.
- the apertures 48 that extend through the lace members 44 44 2 are formed during the molding process by appropriate structures (e.g., projections) of the last 152 and an associated female mold 154,.
- the skate 10 may be implemented in any other suitable manner in other embodiments.
- only a limited part 225 of the blade holder 24 may be integrally formed with the shell 30.
- the part 225 of the blade holder 24 may comprise a projection 227 projecting from an underside of the shell 30 to which another part 229 of the blade holder 24 may be secured.
- the projection 227 of the part 225 of the blade holder 24 may be secured to the other part 229 of the blade holder 24 via an adhesive 231 that is applied between the two parts 225, 229 or in some cases via mechanical fasteners such as a nut and bolt assembly 233 that traverses the parts 225, 229 to secure them together.
- the parts 225, 229 of the blade holder 24 may be secured to one another in any other suitable way in other embodiments.
- a substantial part of the blade holder 24 may be molded integrally with the shell 30.
- at least a majority of the blade holder 24 may be molded together with the shell 30.
- substantially an entirety of the blade holder 24 may be molded integrally with the shell 30.
- the blade holder 24 may retain the blade 26 in any other suitable way.
- the blade holder 24 comprises a blade-detachment mechanism 192 such that the blade 26 is selectively detachable and removable from, and attachable to, the blade holder 24 (e.g., when the blade 26 is worn out or otherwise needs to be replaced or removed from the blade holder 24).
- the blade 26 includes a plurality of projections 194, 196.
- the blade-detachment mechanism 192 includes an actuator 198 and a biasing element 200 which biases the actuator 198 in a direction towards the front portion 170 of the blade holder 24.
- the actuator 198 comprises a trigger.
- the front projection 194 is first positioned within a hollow space 202 (e.g., a recess or hole) of the blade holder 24.
- the rear projection 196 can then be pushed upwardly into a hollow space 204 (e.g., a recess or hole) of the blade holder 24, thereby causing the biasing element 200 to bend and the actuator 198 to move in a rearward direction.
- the rear projection 196 will eventually reach a position which will allow the biasing element 200 to force the actuator 198 towards the front portion 170 of the blade holder 24, thereby locking the blade 26 in place.
- the blade 26 can then be removed by pushing against a finger- actuating surface 206 of the actuator 198 to release the rear projection 196 from the hollow space 204 of the blade holder 24.
- the blade- detachment mechanism 192 is free of any threaded fastener (e.g., a screw or bolt) to be manipulated to detach and remove the blade 26 from the blade holder 24 or to attach the blade 26 to the blade holder 24.
- a threaded fastener e.g., a screw or bolt
- blade-detachment mechanism 192 may be configured in any other suitable way in other embodiments.
- the blade 26 may be implemented in any other suitable way in other embodiments.
- the blade 26 may comprise a runner 238 that is made of the ice-contacting material 220 and includes the ice-contacting surface 222 and a body 240 connected to the runner 238 and made of a material 242 different from the ice-contacting material 220.
- the runner 238 and the body 240 of the blade 26 may be retained together in any suitable way.
- the runner 238 may be adhesively bonded to the body 240 using an adhesive.
- the runner 238 and the body 240 may be fastened using one or more fasteners (e.g., rivets, screws, bolts, etc.).
- the runner 238 and the body 240 may be mechanically interlocked by an interlocking portion of one of the runner 238 and the body 240 that extends into an interlocking space (e.g., one or more holes, one or more recesses, and/or one or more other hollow areas) of the other one of the runner 238 and the body 240 (e.g., the body 240 may be overmolded onto the runner 238).
- one or more other components (e.g., the tongue 34, the footbed 38, etc.) of the skate boot 22 may be molded integrally with the shell 30 in the molding apparatus 150 during the molding process.
- the shell 30 and these one or more other components of the skate boot 22 may thus constitute a monolithic one-piece structure.
- a given component of the skate boot 22 may therefore comprise a portion 235 that is integrally formed with the shell 30 such that the portion 235 of the given component of the skate boot 22 and the shell 30 of the skate boot 22 are formed together as one-piece in the molding apparatus 150 during the molding process.
- the portion 235 of the given component of the skate boot 22 may include one or more of the polymeric materials M ⁇ -M N of the subshells dd ⁇ ddi . of the shell 30 of the skate boot 22.
- the portion 235 of the given component may include one or more of the internal, intermediate and external subshells 85i , 85 2 , 85 3 and therefore may comprise one or more of the polymeric materials Mi , M 2 , M 3 associated therewith.
- the portion 235 of the given component may include one or more different materials.
- the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44 44 2 may be molded integrally with the shell 30 of the skate boot 22. That is, at least a portion of (i.e. , a part or an entirety of) each of the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44i, 44 2 may be formed integrally with the shell 30 as one-piece in the molding apparatus 150 during the molding process.
- the footbed 38 when the footbed 38 is formed integrally with the shell 30 during the molding process, one or more the subshells dd ⁇ ddi . may form the footbed 38.
- a portion of the footbed 38 when the footbed 38 is formed integrally with the shell 30 during the molding process, a portion of the footbed 38 may project outwardly such as to fill a gap of a subshell 85, in the sole portion 69 of the shell 30.
- the footbed 38 when the footbed 38 is formed integrally with the shell 30 during the molding process, the footbed 38 may be configured to project outwardly such as to fill respective gaps of the internal and intermediate subshells 85i, 85 2 in the sole portion 69 of the shell 30.
- At least a portion of (i.e., part or an entirety of) the blade holder 24 may be attached to a given one of the subshells 85 I -85 L of the shell 30.
- the portion of the blade holder 24 may be joined to the given one of the subshells dd ⁇ ddi . during forming of the shell 30.
- the portion of the blade holder 24 may be affixed to an exterior surface of the internal subshell 85 ! and the intermediate and external subshells 85 2 , 85 3 may be formed around the portion of the blade holder 24.
- the portion of the blade holder 24 may be formed during the molding process of the shell 30.
- a majority or an entirety of the portion of the blade holder 24 may be constituted by the external subshell 85 3.
- the footbed 38 may be formed or affixed directly on the portion of the blade holder 24 (i.e. , on the external subshell 85 3 that makes up a majority or an entirety of the portion of the blade holder 24).
- the footbed 38 may be formed integrally with the shell 30 so as to project outwardly into a gap of the internal subshell 85 ! in the sole portion 69 of the shell 30.
- the portion of the blade holder 24 that is formed integrally with the shell 30 may be constituted by the intermediate subshell 85 2 such that the intermediate subshell 85 2 is exposed at the blade holder 24.
- a given one of the subshells 85 I -85 L may be formed to envelop the blade holder 24. That is, a given one of the subshells 85 I -85 L may be formed around the blade holder 24 but not around the shell 30.
- the shell 30 and possibly one or more other components of the skate boot 22 may be manufactured separately from the blade holder 24, which may be manufactured separately and attached to the skate boot 22.
- the shell 30 of the skate boot 22 may be formed alone in the molding apparatus 150, i.e., separately from the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44i , 44 2.
- the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44i , 44 2 may be attached to the shell 30 after the shell 30 has been formed.
- any given one of the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44 44 2 may be formed on the shell 30 in a separate molding process similar to the one described above in respect of the shell 30.
- the given one of the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44 44 2 may be overmolded onto the shell 30.
- the given one of the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44i , 44 2 may be formed separately from the shell 30 during another molding process (e.g., a thermoforming process) and attached to the shell 30 via a fastener (e.g., stitching, stapling, etc.) or via gluing (e.g., using an adhesive).
- a fastener e.g., stitching, stapling, etc.
- gluing e.g., using an adhesive
- the footbed 38 may be an insert that is placed between the internal subshell 85i and the intermediate subshell 85 2 and/or between the internal subshell 85 ! and the external subshell 85 3 during forming of the shell 30 in a manner similar to that described above in respect of the reinforcement 115 for example.
- the player’s foot 11 does not contact the footbed 38 directly, however the footbed 38 may still provide comfort to the player’s foot 11 by interacting between the subshells.
- the blade holder 24 may be formed separately from the internal, intermediate and external subshells 85i , 85 2 , 85 3 of the shell 30.
- the skate boot 22 may comprise an outsole 42, as shown in in Figure 54.
- the outsole 42 is affixed to an underside of the shell 30 for forming the skate boot 22.
- the outsole 42 comprises a rigid material for imparting rigidity to the outsole 42.
- the rigid material of the outsole 42 comprises a composite material.
- the composite material may be a fiber-matrix composite material that comprises a matrix in which fibers are embedded.
- the matrix may include any suitable polymeric resin, such as a thermosetting polymeric material (e.g., polyester, vinyl ester, vinyl ether, polyurethane, epoxy, cyanate ester, etc.), a thermoplastic polymeric material (e.g., polyethylene, polypropylene, acrylic resin, polyether ether ketone, polyethylene terephthalate, polyvinyl chloride, polymethyl methacrylate, polycarbonate, acrylonitrile butadiene styrene, nylon, polyimide, polysulfone, polyamide-imide, self-reinforcing polyphenylene, etc.), or a hybrid thermosetting-thermoplastic polymeric material.
- a thermosetting polymeric material e.g., polyester, vinyl ester, vinyl ether, polyurethane, epoxy, cyanate ester, etc.
- a thermoplastic polymeric material e.g., polyethylene, polypropylene, acrylic resin, polyether ether ketone, polyethylene terephthalate,
- the fibers may be made of any suitable material such as carbon fibers, polymeric fibers such as aramid fibers, boron fibers, glass fibers, ceramic fibers, etc.
- the rigid material may comprise any other suitable material (e.g., nylon, polycarbonate materials, polyurethane, thermoplastics, thermosetting resins, reinforced thermoplastics, reinforced thermosetting resins, polyethylene, polypropylene, high density polyethylene).
- the support 168 of the blade holder 24 and the skate boot 22 may be affixed to one another in any suitable way.
- the front and rear pillars 210, 212 are fastened to the skate boot 22 by fasteners (e.g., rivets, screws, bolts).
- each of the front and rear pillars 210, 212 comprises a flange 216 including a plurality of apertures 218 I -218 F to receive respective ones of the fasteners that fasten the blade holder 24 to the skate boot 22.
- the support 168 may be affixed to the skate boot 22 in any other suitable manner in other embodiments (e.g., by an adhesive).
- the skate boot 22 may comprise a reinforcement 270 molded integrally with the shell 30 to enhance a torsional strength of the skate boot 22 and/or protection of the player’s foot 11 against impacts (e.g., from a puck or hockey stick).
- the reinforcement 270 may comprise an extension 272 that extends beyond the ankle portion 64 of the shell 30 of the skate boot 22 in the longitudinal direction of the skate 10.
- Figure 56 illustrates a conventional configuration of the shell 30 without the reinforcement 270 and thus without the extension 272. As shown, in such a conventional configuration, no part of the shell extends beyond the ankle portion 64 of the shell 30 in the longitudinal direction of the skate.
- the extension 272 may be located in front of the ankle portion 64 of the shell 30 in the longitudinal direction of the skate 10. As such, the extension 272 may be configured to protect a front portion of the player’s ankle A and the top surface TS of the player’s foot 11. The extension 272 may extend in front of the ankle portion 64 of the shell 30 to different extents.
- the extension 272 may extend from the medial ankle side 74 of the ankle portion 64 of the shell 30 and wrap around the player’s ankle A such that the extension 272 crosses from a medial half 278 of the skate boot 22 over a centerline 274 that generally bisects a width the skate boot 22 and into a lateral half 280 of the skate boot 22.
- the extension 272 may be shorter and extend frontwards from the medial ankle side 74 of the ankle portion 64 of the shell 30 and wrap around over a portion of the player’s foot 11 but does not cross over into the lateral half 280 of the skate boot 22.
- the extension 272 may extend from the lateral ankle side 76 of the ankle portion 64 of the shell 30.
- the extension 272 may connect the medial ankle side 74 of the ankle portion 64 of the shell 30 to the lateral ankle side 76 of the ankle portion 64 of the shell 30 in a direction frontwardly of the ankle portion 64 of the shell 30.
- the extension 272 may be configured such that the shell 30 wraps around a front and a rear of the player’s ankle A.
- the shell 30 may be continuous in a region frontwardly of the ankle portion 64 of the shell 30, and may thus lack an opening in which the tongue 34 of the skate boot 22 is typically located. Consequently, in such embodiments, the skate boot 22 may not comprise a tongue 34 or lace members 44i , 44 2.
- the extension 272 may create a gap 275 (i.e. , a spacing) between the extension 272 and the player’s foot 11 in the longitudinal direction of the skate 10 to facilitate motion (e.g., flexion) of the ankle A while skating.
- the extension 272 may be configured to wrap around the player’s foot 11 such that there is substantially no gap between the extension 272 and the player’s foot 11 in the longitudinal direction of the skate 10.
- the extension 272 may comprise a plurality of free ends 276 ⁇ 276 2 that are movable relative to one another and converge toward one another.
- the free ends 276i, 276 2 of the extension 272 may meet in front of the ankle portion 64 of the shell 30.
- the free ends 276i , 276 2 may meet symmetrically about the centerline 274 of the skate 10.
- the free ends 276 ⁇ 276 2 may meet in the medial half 278 or the lateral half 280 of the skate boot 22.
- Figure 60 illustrates the free ends 276i , 276 2 as leaving a gap 275 between the player’s foot 11 and the free ends 276i , 276 2 in the longitudinal direction of the skate 10, in some embodiments, the free ends 276i , 276 2 may terminate relatively close to the player’s foot 11 such that there is substantially no gap between the player’s foot 11 and the free ends 276 ⁇ 276 2.
- each free end 276, of the extension 272 may comprise an overlapping portion 282 that overlaps another portion of the free end 276, in the longitudinal direction of the skate 10.
- the overlapping portion 282 of each free end 276, may be a portion of the free end 276, that faces rearwardly toward the player’s ankle A.
- the extension 272 may be in the rear portion 82 of the ankle portion 64 of the shell 30.
- the extension 62 may be configured such that the gap 275 is between a rear portion of the ankle A of the player and the extension 272.
- the reinforcement 270 may comprise more than one extension.
- the skate boot 22 may comprise a first extension 272 extending frontwardly of the ankle portion 64 of the shell 30 and a second extension 284 extending rearwardly of the ankle portion 64 of the shell 30.
- the second extension 284 may comprise the free ends 276 ⁇ 276 2 such that the free ends 276i, 276 2 extend rearwardly of the ankle portion 64 of the shell 30.
- the tendon guard 35 may be omitted in order to provide additional flexibility when skating.
- the reinforcement 270 may comprise the lace members 44 44 2 of the skate boot 22. That is, the lace members 44i , 44 2 may be configured to enhance a torsional strength of the skate boot 22 and/or protection of the player’s foot 11 against impacts. For instance, as shown in Figures 66 to 68, a given one of the lace members 44i, 44 2 extending in a given one of the medial half 278 and the lateral half 280 of the skate boot 22 may cross over to the other one of the medial half 278 and the lateral half 280 of the skate boot 22. The other one of the lace members 44i, 44 2 may generally follow a direction defined by the given one of the lace members 44i, 44 2. This may be defined as a“twisted” configuration of the skate boot 22.
- the reinforcement 270 may also comprise the extension 272.
- the extension 272 may extend from the medial ankle side 74 to the lateral ankle side 76 of the ankle portion 64 of the shell 30 in a direction frontwardly of the player’s ankle A such that the gap 275 is present between the extension 272 and the player’s foot 11 in the longitudinal direction of the skate 10.
- the twisted configuration of the skate boot 22 may increase the torsional rigidity and frontal impact protection of the skate boot 22 and thus may allow the shell 30 and/or other components of the skate boot 22 (e.g., the toe cap 32) to have a reduced thickness compared to a conventional skate boot without the twisted configuration where the lace members are confined to a single one of the medial or lateral halves of the skate boot.
- the twisted configuration of the skate boot 22 may allow the skate boot 22 to be flexed in a different direction compared to a conventional skate boot. For instance, the twisted configuration of the skate boot 22 may allow the player to flex the skate boot 22 in the medial half 278 of the skate boot 22 in an area around the toe cap 32. As a result, the twisted configuration of the skate boot 22 may allow better conservation of energy used by the player to propulse himself/herself on the ice 12.
- the reinforcement 270 may comprise an opening 285 in the rear portion 82 of the ankle portion 64 of the shell 30.
- the opening 285 may extend vertically for a substantial portion of a height of the skate boot 22.
- a ratio between a height of the opening 285 and the height of the skate boot 22 may be at least 0.3, in some cases at least 0.4, in some cases at least 0.5, in some cases at least 0.6 and in some cases even more.
- the blade holder 24 may be configured such that there is no spacing between the front and rear pillars 210, 212.
- the support 168 of the blade holder 24 comprises a“single” pillar 213 which is constituted by material that extends from the front portion 170 of the blade holder 24 to a rear portion 172 of the blade holder 24.
- the blade holder 24 does not have any openings extending from its lateral side to its medial side.
- the shell 30 and/or the blade holder 24 and/or another component of the skate boot 22 that is made integrally with the shell 30 may comprise one or more inserts 315i -315 N over which one or more of the subshells 85 I -85 L may be molded.
- the blade holder 24 comprises a front insert 315 ! and a rear insert 315 2 which respectively make up a part of the front and rear pillars 210, 212. More particularly, in this example of implementation, the front and rear inserts 315i, 315 2 make up at least a majority (i.e.
- the front and rear inserts 315i, 315 2 are affixed to the shell 30 during the molding process of the shell 30 in order to make the blade holder 24 integrally with the shell 30. For example, once a given number of the subshells 85 !
- the front and rear inserts 315 ⁇ 315 2 are affixed to the formed subshells 85 I -85 L (e.g., by gluing, taping, or any other suitable way) and one or more other ones of the subshells 85 I -85 l , in this case the exterior subshell 85 3 , is molded over the front and rear inserts 315i , 315 2 and the formed subshells 85 I -85 L such as to form a continuous subshell 85 3 extending from the shell 30 to the blade holder 24.
- the blade holder 24 may comprise a single one of the inserts 315i, 315 2 (e.g., only the front insert 315i or only the rear insert 315 2 ).
- the inserts 315i -315 N may not be part of the blade holder 24 but may instead form part of the shell 30.
- the shell 30 comprises an insert 315 M disposed between given ones of the subshells 85 I -85 l.
- the insert 315 M may be disposed on an outer surface of the intermediate subshell 85 2 such that the exterior subshell 85 3 may be molded over the insert 315 M and and the intermediate subshell 85 2.
- the insert 315 M may be disposed at any portion of the shell 30. In this example, the insert 315 M is disposed at a middle portion of the shell 30 corresponding to the intermediate portion 68 of the skate boot 22.
- the insert 315 M is disposed such as to extend from the lateral side portion 66 of the shell 30 to the medial side portion 68 of the shell 30 and wrapping around under the sole portion 69 of the shell 30.
- the insert 315 M may extend to various heights on the medial and lateral side portions 66, 68 of the shell 30.
- the insert 315 M may extend substantially a full height of each of the lateral and medial side portions 66, 68.
- the insert 315 M may not extend to the lateral and medial side portions 66, 68 of the shell 30 but may rather be confined to be disposed under the sole portion 69 of the shell 30.
- the inserts 315 ! -315 N comprise a foam material.
- the foam material of the inserts 315i -315 N has a density that is less than the density of the exterior subshell 85 3. This may be helpful to reduce the weight of the skate 10.
- a given subshell 85 x may comprise one or more filled portions 415i -415 N made of a material M z different from the material Mx of the subshell 85 x.
- the filled portions 415 I -415 N constitute a portion of an other subshell 85 y that was formed such as to fill a void in the given subshell 85 x.
- the filled portions 415 1 -415 N can be said to be“inserted” into voids formed in the subshell 85 x and may thus be referred to as “inserts”.
- the subshell 85 x is first molded to include a void.
- the void of the subshell 85 x may be formed by placing a molding insert in the mold during molding of the subshell 85 x. Once the subshell 85 x has been demolded, the molding insert is removed, leaving a void in the subshell 85 x.
- the void of the subshell 85 x may be formed by removing (e.g., cutting out) a portion of the subshell 85 x to form a void.
- the subshell 85 x which now includes a void, is then re- inserted into a corresponding mold and the material M z is injected to fill in the void in the subshell 85 x , effectively resulting in the subshell 85 x comprising distinct materials.
- the material M z may have a stiffness that is different (e.g., greater or less than) from a density of the material M x of the subshell 85 x . ln this example, the material M z is stiffer than the material M x of the subshell 85 x . Moreover, the material M z may have a density that is different (e.g., greater or less than) from a density of the material M x of the subshell 85 x . In this example, the material M z is denser than the material M x of the subshell 85 x .
- the inserts 415- 1 -415 N may modify the torsional characteristics of the skate boot 22 such that the skate boot 22 responds to torsional forces differently than if the subshell 85 x did not comprise the inserts 415I -415 n .
- the inserts 415- 1 -415 N may thus be distributed to achieve a desired performance of the skate boot 22.
- Figures 80A to 80F show different potential distributions of the inserts 415i -415 N . It is understood that the inserts 415i -415 N may be positioned differently in other embodiments.
- the void may be left unfilled. This may modify the torsional characteristics of the skate boot 22.
- the void left in the subshell 85 x may form an opening 550 that can extend to an edge of the shell 30, such as the lateral or medial edges 45, 47 of the shell 30.
- the opening 550 comprises opposite edges 551 , 552 which converge towards one another at a proximal end and are distanced from one another at a distal end.
- the torsional behavior of the skate boot 22 modified by the opening 550 may allow the opposite edges 551 , 552 to contact one another at the distal end. The act of contacting one another may act as a limit to the movement of the shell 30 allowed by the opening 550 which was otherwise not possible by the shell 30 without the opening 550.
- the molding process of the shell 30 may include using a sheet 615 (e.g., a film) which may be helpful to facilitate the molding process and/or to facilitate the addition of aesthetic features (e.g, designs) to the skate boot 22.
- the sheet 615 is a polymeric sheet comprising a polymeric material such as a polycarbonate, polypropylene, polyethylene or any other suitable polymeric material.
- the sheet 615 is a clear sheet (e.g., transparent or translucid) through which a person can see.
- the sheet 615 may be opaque, colored (e.g., black, white or any other color), partially transparent, homogenous, and/or different at different areas.
- the sheet 615 is overlaid on one or more of the formed subshells 85 ⁇ 85 L such as to acquire a shape of the underlying subshell 85 x (e.g., by thermoforming the sheet 615).
- the sheet 615 extends over at least a majority of the subshell 85 x.
- the sheet 615 may extend over substantially an entirety of the subshell 85 x.
- the sheet 615 may then be sealed (e.g., heat sealed) to form a seam 617.
- a female mold 154 x is then installed over the formed subshells 85 I -85 L and a material M y of the subsequent subshell 85 y is injected between the sheet 615 and the underlying subshell 85 x.
- the subshell 85 y is demolded from the mold 154 x.
- the sheet 615 may allow the molding process of the subshell 85 y to be faster than if no sheet was used.
- the presence of the sheet 615 between the material M y and the female mold 154 x may allow faster removal of the subshell 85 y therefrom as the subshell 85y can be removed from the mold 154 x without the material M y having to have gone through its full polymerization.
- early removal of the subshell 85 y from the mold 154 x may compromise the quality of the subshell 85 y (e.g., it may be deformed).
- the molding process may not require the addition of a mold release agent on surfaces of the mold 154 x which is typically included to facilitate demolding.
- the presence of the sheet 615 facilitates demolding of the subshells 85 I -85 L from the female mold 154 x without using a mold release agent. This may also decrease imperfections in the subshell 85 y since mold release agents, while useful, have a tendency to introduce imperfections in a molded product.
- the sheet 615 may be disposed of and a new sheet 615 used in a similar manner to mold a subsequent subshell if any. Due to the relatively low cost of manufacturing the sheet 615, using the sheet 615 in the molding process may inexpensively increase quality of the subshells 85 I -85 L formed therewith.
- the sheet 615 may not be disposed of after molding. Instead, as shown in Figure 82, the sheet 615 may be affixed to the shell 30 such as, for example, being integrated as a layer between given ones of the subshells dd ⁇ ddi .. In this example, the sheet 615 is formed over the subshell 85i and the subshell 85 3 is molded over the sheet 615. In examples where the subshell 85 3 overlying the sheet 615 is a clear subshell (e.g., transparent or translucent), this may be useful to display the sheet 615 in the finished product. Notably, the sheet 615 may comprise one or more design elements 618.
- the design element 618 may constitute a graphic, a color, a pattern, a word, a letter, a symbol or any other desired visual element.
- the design element 618 may be provided on the sheet 615 in any suitable way.
- the design element 618 may be provided on the sheet 615 via silk-screening, pad printing, flexo printing or offset printing, or any other printing (e.g., jet print, water decal, sublimation, ink transfer, laser, etc.).
- the presence of the design element 618 may on the sheet 615 may allow to hide or otherwise obscure visual imperfections in the subshells 85 I -85 L which do not affect the mechanical properties of the subshells 85 I -85 l.
- the sheet 615 with the design element 618 may be implemented as a permanent film. In other cases, the sheet 615 with the design element 618 may be implemented as a release film having a releasable layer that is removable and ink constituting the design element 618 that remains on the shell 30.
- the sheet 615 may comprise the reinforcement 115 (such as the ribs 117-i -117 R or the reinforcing sheet 119) which may be affixed thereto in any suitable way (e.g., gluing, stitching, welding, mechanical interlock, etc.).
- the sheet 615 is configured to span the shell 30 and the toe cap 32.
- the sheet 615 may be configured to span the shell 30, the blade holder 24, the toe cap 32, the lace members 44i , 44 2 or any other components of the skate boot 22. Furthermore, the sheet 615 may constitute at least part of an external surface of the skate boot 22. In other words, the sheet 615 may be exposed, not only visually, but physically (i.e. , it can be touched). Moreover, in some cases, the sheet 615 may constitute a majority of the external surface of the skate boot 22. For example, the sheet 615 may constitute substantially an entirety of the external surface of the skate boot 22.
- the sheet 615 has been shown as being disposed between the subshells 85 I -85 l , in other examples the sheet 615 may be disposed between the inner lining 36 and the internal subshell 85 ! .
- the sheet 615 may be placed in the cavity 156 of the female mold 154i on the inner surface of the female mold 154i before molding the polymeric material Mi on the last 152 to form the internal subshell 85i of the shell 30. This may allow molding of the polymeric material Mi to form the internal subshell 85i and subsequent demolding without using a mold release agent.
- the sheet 615 may be placed on the last 152 before molding the polymeric material Mi to form the internal subshell 85 ! of the shell 30.
- the sheet 615 may be applied in planar form onto the last 152 or a given one of the subshells 85i-85 L that is already molded to acquire the shape of the last 152 or that given one of the subshells 85 I -85 l. In other cases, the sheet 615 may be preformed in a non-planar form conforming to the shape of the last 152 or a given one of the subshells 85 I -85 L before being placed on the last 152 or the given one of the subshells 85 I -85 l. The sheet 615 may reduce or eliminate parting lines on the shell 30 (i.e. , internal and/or external parting lines).
- the sheet 615 may be configured to avoid at least one parting line on the shell 30 that would otherwise result because of the portions 155, 157 of a given one of the female molds ' ⁇ 54-I -' ⁇ 54 3 if the sheet 615 was omitted. This allows one or more parting lines to be avoided as the sheet 615 overlies where these one or more parting lines would otherwise be located.
- the skate boot 22 may comprise a slash guard 515 configured to protect the player from cuts at a level above lateral and medial upper edges 45, 47 of the shell 30.
- the slash guard 515 is movable with respect to the tendon guard 35 (or with respect to the rear portion 82 of the ankle portion 64 of the shell 30 if no tendon guard is included). This may provide cut- resistant protection of the player’s ankle and/or shin while also allowing mobility thereof.
- the slash guard 515 comprises a cut-resistant material 516 that resists cutting from impacts.
- the cut-resistant material 516 is a fabric consisting of aramid (e.g., Kevlar®) or any other suitable cut-resistant material.
- the slash guard 515 may be pliable due to its fabric nature.
- the slash guard 515 is movable with respect to the tendon guard 35 (or the rear portion 82 of the ankle portion 64 of the shell 30) due to the pliability of the cut-resistant material.
- the slash guard 515 is integrated (i.e., built into) the shell 30 and is permanently affixed thereto.
- the slash guard 515 is not intended to be disconnected from the shell 30 without causing damage to the slash guard 515 and/or the shell 30.
- the slash guard 515 is affixed to the shell 30 by disposing the slash guard 515 between the subshells 85 I -85 L of the shell 30 (i.e., at least one or more of the subshells is overmolded onto the slash guard 515).
- the slash guard 515 is overlayed over a subshell 85 x and a subsequent subshell 85 y is molded over the slash guard 515.
- the slash guard 515 overlaps a portion of the shell 30 sufficient for the slash guard 515 to be permanently affixed between the subshells 85 x , 85 y without the possibility of accidental removal of the slash guard 515.
- the slash guard 515 overlaps a significant portion of the shell 30.
- the slash guard 515 extends over a majority of a length of the shell 30 (in the longitudinal direction of the skate 10).
- a portion of the slash guard 515 extending below the lateral and medial upper edges 45, 47 of the shell 30 may act as a reinforcement element (such as the reinforcement sheet 1 19) between the subshells 85 x , 85 y .
- the slash guard 515 extends vertically above the lateral and medial upper edges 45, 47 of the shell 30 for a height HP that may be substantial.
- the height HP of the slash guard 515 extending above lateral and medial upper edges 45, 47 of the shell 30 may be significant in relation to a height HT of the tendon guard 35 measured from a top of the tendon guard 35 to the lateral and medial upper edges 45, 47 of the shell 30.
- a ratio of the height HP of the slash guard 515 over the height HT of the tendon guard 35 may be at least 0.5, in some cases at least 0.7, in some cases at least 0.9, in some cases at least 1 , in some cases at least 1 .2, in some cases at least 1 .5, in some cases at least 2 and in some cases even more.
- the slash guard 515 comprises a lateral portion 520 for facing a lateral side of the skate boot 22, a medial portion 522 for facing a medial side of the skate boot 22, and a rear portion 524 for facing a rear side of the skate boot 22.
- the slash guard 515 at least partially wraps around the player’s ankle A and/or shin S to provide cut-resistant protection from the sides and the rear of the skate boot 22.
- the slash guard 515 may wrap completely around the player’s ankle A and/or shin S such that the slash guard 515 also comprises a front portion for facing a front side of the skate boot 22.
- the slash guard 515 may comprise a type of sleeve through which the player must insert his/her foot 11 in order to don the skate 10.
- the slash guard 515 may be configured differently in other examples. For instance, the slash guard 515 may not comprise the rear portion 524 if the tendon guard 35 is considered to provide sufficient protection to the player.
- the slash guard 515 may be removeably attachable to the skate boot 22. That is, the slash guard 515 may be selectively attached to and detached from the skate boot 22.
- the slash guard 515 is removeably attachable to the shell 30 via interaction between an attachment member 519 of the slash guard 515 and a portion 517 of the slash guard 515.
- the attachment member 519 is configured to attach the portion 517 of the slash guard 515 to the shell 30.
- the slash guard 515 does not overlap a substantial portion of the shell 30.
- the attachment member 515 is an extension of the slash guard 515 which extends vertically below the lateral and medial upper edges 45, 47 of the shell 30.
- the attachment member 519 is a fastener which fastens the slash guard 515 to the shell 30.
- the attachment member 519 may be a pin, a nut and bolt assembly, a hook-and-loop fastener or any other suitable fastener.
- the cut-resistant material 516 of the slash guard 515 may be rigid and/or pliable.
- the cut-resistant material 516 may comprise a polymer such as nylon, polyurethane and/or any other suitable polymer.
- the cut-resistant material 516 is not limited to pliable fabrics.
- the slash guard 515 is movable with respect to the tendon guard 35 (or the rear portion 82 of the ankle portion 64 of the shell 30) by moving with respect to the attachment member 519. In some cases, the slash guard 515 may be pivotable about the attachment member 519.
- the cut-resistant material 516 of the slash guard 515 may be rigid and/or pliable.
- the cut-resistant material 516 may comprise a polymer such as nylon, polyurethane and/or any other suitable polymer.
- the cut-resistant material 516 is not limited to pliable fabrics.
- the slash guard 515 is movable with respect to the tendon guard 35 (or the rear portion 82 of the ankle
- the slash guard 515 may still be movable with respect to the tendon guard 35 or the rear portion 82 of the ankle portion 64 of the shell 30) by pivoting about the attachment member 519.
- the shell 30 may be molded in a plurality of pieces 710, 712 and the pieces may then be joined together.
- the pieces 710, 712 may be configured to interlock with one another.
- the pieces 710, 712 may comprise protrusions and corresponding recesses for fitting the protrusions such as to interlock the pieces 710, 712 with one another.
- An adhesive may be applied between the pieces 710, 712 to permenantely affix the pieces 710, 712 to one another.
- each of the pieces 710, 712 may constitute a part of the shell 30 and the blade holder 24. In some cases, as shown in Figure 86B, each of the pieces 710, 712 may constitute a part of only the shell 30 or only the blade holder 24. As shown in Figures 86C and 86D, the pieces may include three or more pieces 710, 712, 714.
- one or more of the subshells 85 I -85 L may be sprayed rather than injection molded. For instance, this may allow to more easily form thinner subshells 85 I -85 L (e.g., of 0.1 mm).
- the blade holder 24 may comprise an insert 750 configured to receive the blade 26.
- the insert 750 is affixed to the lower portion 162 of the blade holder 24 in any suitable manner.
- the insert 750 comprises projections that interlock into recesses 165 of the blade holder 24.
- the insert 750 further comprises a recess 752 configured to receive the blade 26.
- the insert 750 may be made integral with the lower portion 162 of the blade holder 24 by inserting it into a corresponding mold during molding of the blade holder 24.
- the insert 750 may be affixed to the lower portion 162 of the blade holder 24 after the lower portion 162 has already been formed.
- the insert 750 comprises a reinforced material that is stronger and/or stiffer than a material of the lower portion 162 of the blade holder 24.
- the reinforced material may be a composite material (e.g., a carbon fiber material).
- the blade holder 24 may comprise a void 350 in one of its front and rear pillars 210, 212. More particularly, in this example, the void 350 of the blade holder 24 may be formed by separately molding the blade holder 24 with a molding insert, and removing the molding insert after molding the blade holder 24 to obtain a cavity in the blade holder 24. Thus, once the blade holder 24 is assembled with the shell 30, the blade holder 24 comprises the void 350 which is contained between surfaces of the blade holder 24 and the sole portion 69 of the shell 30.
- an insert such as the insert 315i , may be placed in the cavity and the blade holder 24 secured to the shell 30 such that the insert 315 ! is contained between inner surfaces of a body of the blade holder 24 and a surface of the sole portion 69 of the shell 30.
- the exterior subshell 85 3 may be configured to extend into the recess 190 of the blade-retention portion 188 of the blade-retaining base 164 of the blade holder 24. As such, the subshell 85 3 may contact the blade 26 as it is inserted into the recess 190. This may be useful in examples where the exterior subshell 85 3 is relatively rigid as it may provide compaction resistance when the blade 26 is inserted in the recess 190.
- the material M, of a subshell 85 x of the skate boot 22 may comprise a mixture of a polymeric substance 52 and an expansion agent 53. This may help the material M, to have desirable properties, such as being more shock-absorbent than it if was entirely made of the expansion agent 53 and/or being lighter than if it was entirely made of the polymeric substance 52.
- the polymeric substance 52 constitutes a substantial part of the material M, and substantially contributes to structural integrity to the subshell 85 x.
- the polymeric substance 52 may constitute at least 40%, in some cases at least 50%, in some cases at least 60%, in some cases at least 70%, in some cases at least 80%, and in some cases at least 90% of the material M, by weight. In this example of implementation, the polymeric substance 52 may constitute between 50% and 90% of the material M, by weight.
- the polymeric substance 52 may be an elastomeric substance.
- the polymeric substance 52 may be a thermoplastic elastomer (TPE) or a thermoset elastomer (TSE).
- the polymeric substance 52 comprises polyurethane.
- the polyurethane 52 may be composed of any suitable constituents such as isocyanates and polyols and possibly additives.
- the polyurethane 52 may have a hardness in a scale of Shore 00, Shore A, Shore C or Shore D, or equivalent.
- the hardness of the polyurethane 52 may be between Shore 5A and 95A or between Shore 40D to 93D. Any other suitable polyurethane may be used in other embodiments.
- the polymeric substance 52 may comprise any other suitable polymer in other embodiments.
- the polymeric substance 52 may comprise silicon, rubber, etc.
- the expansion agent 53 is combined with the polyurethane 52. In some cases, this may be done to enhance properties of the material M,. Alternatively or additionally, in some cases, this may be done to enable expansion of the material M, to a final shape of the subshell 85 x in the mold 154 x.
- the expansion agent 54 may constitute at least 10%, in some cases at least 20%, in some cases at least 30%, in some cases at least 40%, in some cases at least 50%, in some cases at least 60%, of the material M, by weight and in some cases even more. In this example of implementation, the expansion agent 54 may constitute between 15% and 50% of the material M, by weight.
- the expansion agent 53 comprises an amount of expandable microspheres 63 I -63 m.
- Each expandable microsphere 63 comprises a polymeric shell 67 expandable by a fluid encapsulated in an interior of the polymeric shell 67.
- the polymeric shell 67 of the expandable microsphere 63 is a thermoplastic shell.
- the fluid encapsulated in the polymeric shell 67 is a liquid or gas (in this case a gas) able to expand the expandable microsphere 63, when heated during manufacturing of the subshell 85 x.
- the expandable microspheres 63 I -63 M may be ExpancelTM microspheres commercialized by Akzo Nobel.
- the expandable microspheres 63 I -63 M may be Dualite microspheres commercialized by Henkel; Advancell microspheres commercialized by Sekisui; Matsumoto Microsphere microspheres commercialized by Matsumoto Yushi Seiyaku Co; or KUREHA Microsphere microspheres commercialized by Kureha.
- Various other types of expandable microspheres may be used in other embodiments.
- the expandable microspheres 63 I -63 M include dry unexpanded (DU) microspheres when combined with the polymeric substance 52 to create the material M, before the material M, is molded.
- the dry unexpanded (DU) microspheres may be provided as a powder mixed with one or more liquid constituents of the polymeric substance 52.
- the expandable microspheres 63 I -63 M may be provided in various other forms in other embodiments.
- the expandable microspheres 63 I -63 M may include dry expanded, wet and/or partially-expanded microspheres.
- wet unexpanded microspheres may be used to get better bonding with the polymeric substance 52.
- Partially-expanded microspheres may be used to employ less of the polymeric substance 52, or mix with the polymeric substance 52 in semi-solid form.
- the expandable micropsheres 63 ! -63 M may constitute at least 10%, in some cases at least 20%, in some cases at least 30%, in some cases at least 40%, in some cases at least 50%, and in some cases at least 60% of the material M, by weight and in some cases even more.
- the expandable micropsheres 63 ! -63 M may constitute between 15% and 50% of the material M, by weight.
- the subshell 85 x comprising the material M, with the polymeric substance 52 and the expandable microspheres 63I -63 M may have various desirable qualities.
- the subshell 85 x may be less dense and thus lighter than if it was entirely made of the polyurethane 52, yet be more shock- absorbent and/or have other better mechanical properties than if it was entirely made of the expandable microspheres 63I -63 m .
- a density of the material M may be less than a density of the polyurethane 52 (alone).
- the density of the material M, of the subshell 85 x may be no more than 70%, in some cases no more than 60%, in some cases no more than 50%, in some cases no more than 40%, in some cases no more than 30%, in some cases no more than 20%, in some cases no more than 10% and in some cases no more than 5% of the density of the polyurethane 52 and in some cases even less.
- the density of the material M may be between 2 to 75 times less than the density of the polyurethane 52 (i.e. , the density of the material M, may be about 1 % to 50% of the density of the polyurethane 52).
- the density of the material M may have any suitable value.
- the density of the material M may be no more than 0.7 g/cm 3 , in some cases no more than 0.4 g/cm 3 , in some cases no more than 0.1 g/cm 3 , in some cases no more than 0.080 g/cm 3 , in some cases no more than 0.050 g/cm3, in some cases no more than 0.030 g/cm 3 , and/or may be at least 0.010 g/cm 3 .
- the density of the material M may be between 0.015 g/cm 3 and 0.080 g/cm 3 , in some cases between 0.030 g/cm 3 and 0.070 g/cm 3 , and in some cases between 0.040 g/cm 3 and 0.060 g/cm 3 .
- a stiffness of the material M may be different from (i.e. , greater or less than) a stiffness of the expandable microspheres 63 I -63 M (alone).
- a modulus of elasticity (i.e., Young’s modulus) of the material M may be greater or less than a modulus of elasticity of the expandable microspheres 63 I -63 M (alone).
- a difference between the modulus of elasticity of the material M, and the modulus of elasticity of the expandable microspheres 63 I -63 M may be at least 20%, in some cases at least 30%, in some cases at least 50%, and in some cases even more, measured based on a smaller one of the modulus of elasticity of the material M, and the modulus of elasticity of the expandable microspheres 63 I -63 m.
- the modulus of elasticity may be evaluated according to ASTM D-638 or ASTM D-412.
- a resilience of the material M may be less than a resilience of the expandable microspheres 63 ! -63 M (alone).
- the resilience of the material M may no more than 70%, in some cases no more than 60%, in some cases no more than 50%, in some cases no more than 40%, in some cases no more than 30%, and in some cases no more than 20%, and in some cases no more than 10% of the resilience of the expandable microspheres 63 I -63 M according to ASTM D2632-01 which measures resilience by vertical rebound.
- the resilience of the material Mi may be between 20% and 60% of the resilience of the expandable microspheres 63 I -63 m.
- the resilience of the material M may be greater than the resilience of the expandable microspheres 63 I -63 m.
- the resilience of the material M may have any suitable value.
- the resilience of the material M may be no more than 40%, in some cases no more than 30%, in some cases no more than 20%, in some cases no more than 10%, and in some cases even less (e.g., 5%), according to ASTM D2632-01 , thereby making the subshell 85 x more shock-absorbent.
- the resilience of the material M may be at least 60%, in some cases at least 70%, in some cases at least 80% and in some cases even more, according to ASTM D2632- 01 , thereby making the material M, provide more rebound.
- a tensile strength of the material M may be greater than a tensile strength of the expandable microspheres 63 I -63 M (alone).
- the tensile strength of the material M may be at least 120%, in some cases at least 150%, in some cases at least 200%, in some cases at least 300%, in some cases at least 400%, and in some cases at least 500% of the tensile strength of the expandable microspheres 63 I -63 M according to ASTM D-638 or ASTM D-412, and in some cases even more.
- the tensile strength of the material M may have any suitable value.
- the tensile strength of the material M may be at least 0.9 MPa, in some cases at least 1 MPa, in some cases at least 1.2 MPa, in some cases at least 1.5 MPa and in some cases even more (e.g., 2 MPa or more).
- an elongation at break of the material Mi may be greater than an elongation at break of the expandable microspheres 63i- 63 M (alone).
- the elongation at break of the expandable material M may be at least 120%, in some cases at least 150%, in some cases at least 200%, in some cases at least 300%, in some cases at least 400%, and in some cases at least 500% of the elongation at break of the expandable microspheres 63 I -63 M according to ASTM D-638 or ASTM D-412, and in some cases even more.
- the elongation at break of the material M may have any suitable value.
- the elongation at break of the material M may be at least 20%, in some cases at least 30%, in some cases at least 50%, in some cases at least 75%, in some cases at least 100%, and in some cases even more (e.g. 150% or more).
- a material of the shell 30 e.g., a given one of the materials M I -M N
- the composite material may be a fiber-matrix composite material that comprises a matrix in which fibers are embedded.
- the matrix may include any suitable polymeric resin, such as a thermosetting polymeric material (e.g., polyester, vinyl ester, vinyl ether, polyurethane, epoxy, cyanate ester, etc.), a thermoplastic polymeric material (e.g., polyethylene, polyurethane, polypropylene, acrylic resin, polyether ether ketone, polyethylene terephthalate, polyvinyl chloride, polymethyl methacrylate, polycarbonate, acrylonitrile butadiene styrene, nylon, polyimide, polysulfone, polyamide-imide, self-reinforcing polyphenylene, etc.), or a hybrid thermosetting- thermoplastic polymeric material.
- the fibers may be made of any suitable material such as carbon fibers, polymeric fibers such as aramid fibers, boron fibers, glass fibers, ceramic fibers, etc.
- the skate 10 is designed for playing ice hockey on the skating surface 14 which is ice
- the skate 10 may be constructed using principles described herein for playing roller hockey or another type of hockey (e.g., field or street hockey) on the skating surface 14 which is a dry surface (e.g., a polymeric, concrete, wooden, or turf playing surface or any other dry surface on which roller hockey or field or street hockey is played).
- the skating device 28 may comprise a set of wheels to roll on the dry skating surface 14 (i.e. , the skate 10 may be an inline skate or other roller skate).
- the skate 10 may be a figure skate constructed using principles described herein for figure skating.
- the footwear 10 may be any other suitable type of footwear.
- the footwear 10 may be a ski boot comprising a shell 830 which may be constructed in the manner described above with respect to the shell of the skate.
- the ski boot 10 is configured to be attachable and detachable from a ski 802 which is configured to travel on a ground surface 8 (e.g., snow).
- the ski boot 10 is configured to interact with an attachment mechanism 800 of the ski 802.
- the footwear 10 may be a boot (e.g., a work boot or any other type of boot) comprising a shell 930 which can be constructed in the manner described above with respect to the shell of the skate.
- the boot 10 may be a motorcycle boot (e.g., for use with a motocross or other motorcycle), a work boot for protection, security or other purposes (e.g., construction boot, police boot, military boot, etc.), or any other type of boot.
- the shell 930 of the boot 10 may be flexible or semi- rigid, as opposed to rigid as in embodiments discussed above.
- any feature of any embodiment described herein may be used in combination with any feature of any other embodiment described herein.
- any reference numeral designating an element in one figure designates the same element if used in any other figures.
- specific terminology has been resorted to for the sake of description but the invention is not intended to be limited to the specific terms so selected, and it is understood that each specific term comprises all equivalents.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
A skate (e.g., an ice skate) for a skater (e.g., a hockey player). The skate comprises a skate boot for receiving a foot of the skater and a skating device (e.g., a blade and 5 a blade holder) disposed beneath the skate boot to engage a skating surface (e.g., ice). At least part of the skate boot and optionally at least part of one or more other components (e.g., the skating device) may be constructed from one or more materials (e.g., foams) molded by flowing in molding equipment during a molding process (e.g., injection molding or casting). This may allow the skate (or other 0 footwear) to have useful performance characteristics (e.g., reduced weight, proper fit and comfort, etc.) while being more cost-effectively manufactured. Other articles of footwear are also provided.
Description
SKATE OR OTHER FOOTWEAR
CROSS-REFERENCE TO RELATED APPLICATION
For U.S. purposes, this application is a continuation-in-part of International Application PCT/CA2017/050155 filed on February 9, 2017, which claims priority from U.S. Provisional Patent Application 62/292,998 filed on February 9, 2016, all of which are incorporated by reference herein.
FIELD
The invention generally relates to footwear, including skates (e.g., ice skates) such as for playing hockey and/or for other activities.
BACKGROUND
Skates are used by skaters in various sports such as ice hockey, roller hockey, etc. A skate comprises a skate boot that typically comprises a number of components that are assembled together to form the skate boot. This can include a shell, a toe cap, a tongue, a tendon guard, etc.
For example, an approach to manufacturing a shell of a skate boot of conventional skates consists of thermoforming different layers of synthetic material and then assembling these layers to form the shell. However, such conventional skates may sometimes be overly heavy, uncomfortable, lacking in protection in certain areas, and/or a bad fit on a skater’s foot. Moreover, such conventional skates can be expensive to manufacture.
Similar considerations may arise for other types of footwear (e.g., ski boots, motorcycle boots, work boots, etc.).
For these and/or other reasons, there is a need for improvements directed to skates and other footwear.
SUMMARY
In accordance with various aspects of the invention, there is provided a skate (e.g., an ice skate) for a skater. The skate comprises a skate boot for receiving a foot of the skater and a skating device (e.g., a blade and a blade holder) disposed beneath the skate boot to engage a skating surface. At least part of the skate boot and optionally at least part of one or more other components (e.g., the skating device) of the skate is constructed from one or more materials (e.g., foams) molded by flowing in molding equipment during a molding process (e.g., injection molding or casting). This may allow the skate to have useful performance characteristics (e.g., reduced weight, proper fit and comfort, etc.) while being more cost-effectively manufactured. Other articles of footwear are also provided.
In accordance with an aspect of the invention, there is provided a skate boot for a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot defining a cavity to receive a foot of a user, the skate boot comprising a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another; and the body comprises a plurality of layers comprising a plurality of materials that are different and molded by flowing.
In accordance with another aspect of the invention, there is provided a method of making a skate boot for a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot defining a cavity
to receive a foot of a user, the method comprising: providing a molding apparatus; and molding a body of the skate boot using the molding apparatus, the body comprising a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another; and the molding comprises causing flow of a plurality of materials that are different in the molding apparatus to form a plurality of layers of the body.
In accordance with another aspect of the invention, there is provided an article of footwear for receiving a foot of a user, the article of footwear comprising a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another; and the body comprises a plurality of layers comprising a plurality of materials that are different and molded by flowing.
In accordance with another aspect of the invention, there is provided a skate boot for a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot defining a cavity to receive a foot of a user, the skate boot comprising a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another; and the body comprises a plurality of injection-molded layers comprising a plurality of materials that are different.
In accordance with another aspect of the invention, there is provided a method of making a skate boot for a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot defining a cavity to receive a foot of a user, the method comprising: providing an injection molding apparatus; and injection molding a body of the skate boot using the injection molding apparatus, the body comprising a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another; and the body comprises a plurality of injection-molded layers comprising a plurality of materials that are different.
In accordance with another aspect of the invention, there is provided a skate boot for a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot defining a cavity to receive a foot of a user, the skate boot comprising: a body comprising a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user; a tendon guard projecting upwardly from the body; and a slash guard comprising a cut-resistant material, extending above the body, and movable relative to the tendon guard.
In accordance with another aspect of the invention, there is provided a last for molding a body of a skate boot of a skate. The skate comprises a skating device disposed beneath the skate boot to engage a skating surface. The skate boot is configured to receive a foot of a user. The last is configured to mold the body of the skate boot such that the body of the skate boot comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user. The last is reconfigurable to facilitate demolding of the
body of the skate boot from the last such that the last is changeable between a molding configuration to mold the body of the skate boot on the last and a demolding configuration to demold the body of the skate boot from the last.
In accordance with another aspect of the invention, there is provided a method of making a skate boot for a skate. The skate comprises a skating device disposed beneath the skate boot to engage a skating surface. The skate boot is configured to receive a foot of a user. The method comprises: providing a last changeable between a molding configuration and a demolding configuration; molding a body of the skate boot on the last in the molding configuration such that the body of the skate boot comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user; changing the last from the molding configuration to the demolding configuration to facilitate removal of the body of the skate boot from the last; and demolding the body of the skate boot from the last in the demolding configuration.
In accordance with another aspect of the invention, there is provided a last for molding a body of an article of footwear to receive a foot of a user. The last is configured to mold the body of the article of footwear such that the body of the footwear comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user. The last is reconfigurable to facilitate demolding of the body of the article of footwear from the last such that the last is changeable between a molding configuration to mold the body of the article of footwear on the last and a demolding configuration to demold the body of the article of footwear from the last.
In accordance with another aspect of the invention, there is provided a method of making an article of footwear to receive a user’s foot. The method comprises: providing a last changeable between a molding configuration and a demolding
configuration; molding a body of the article of footwear on the last in the molding configuration such that the body of the article of footwear comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user; changing the last from the molding configuration to the demolding configuration to facilitate removal of the body of the article of footwear from the last; and demolding the body of the article of footwear from the last in the demolding configuration.
In accordance with another aspect of the invention, there is provided a flexible female mold member for molding a body of a skate boot of a skate. The skate comprises a skating device disposed beneath the skate boot to engage a skating surface. The skate boot is configured to receive a foot of a user. The flexible female mold member is configured to be part of a female mold and disposed adjacent to a last for molding the body of the skate boot. The flexible female mold member comprises an inner surface preformed to define a cavity between the flexible female mold member and the last to receive polymeric material to mold at least a portion of the body of the skate boot such that the inner surface of the flexible female mold member creates an outer surface of the portion of the body of the skate boot.
In accordance with another aspect of the invention, there is provided a method of making a skate boot of a skate. The skate comprises a skating device disposed beneath the skate boot to engage a skating surface. The skate boot is configured to receive a foot of a user. The method comprises providing a female mold and a last for molding a body of the skate boot. The female mold comprises a flexible female mold member comprising an inner surface preformed to define a cavity between the flexible female mold member and the last. The method comprises causing polymeric material to flow in the cavity to mold at least a portion of the body of the skate boot such that the inner surface of the flexible female mold member creates an outer surface of the portion of the body of the skate boot.
In accordance with another aspect of the invention, there is provided a flexible female mold member for molding a body of an article of footwear. The article of footwear is configured to receive a foot of a user. The flexible female mold member is configured to be part of a female mold and disposed adjacent to a last for molding the body of the article of footwear. The flexible female mold member comprises an inner surface preformed to define a cavity between the flexible female mold member and the last to receive polymeric material to mold at least a portion of the body of the article of footwear such that the inner surface of the flexible female mold member creates an outer surface of the portion of the body of the article of footwear.
In accordance with another aspect of the invention, there is provided a method of making an article of footwear to receive a foot of a user. The method comprises: providing a female mold and a last for molding a body of the article of footwear. The female mold comprises a flexible female mold member comprising an inner surface preformed to define a cavity between the flexible female mold member and the last. The method comprises causing polymeric material to flow in the cavity to mold at least a portion of the body of the article of footwear such that the inner surface of the flexible female mold member creates an outer surface of the portion of the body of the article of footwear.
In accordance with another aspect of the invention, there is provided a method of making a skate boot of a skate. The skate comprises a skating device disposed beneath the skate boot to engage a skating surface. The skate boot is configured to receive a foot of a user. The method comprises: placing a sheet in a mold for molding a body of the skate boot; and causing flow of material in the mold to mold at least a portion of the body of the skate boot. The sheet conforms to the portion of the body of the skate boot.
In accordance with another aspect of the invention, there is provided a skate boot for a skate. The skate comprises a skating device disposed beneath the skate boot to engage a skating surface. The skate boot is configured to receive a foot of a user.
The skate boot comprises a body comprising: a layer of material molded by flowing; and a sheet conforming to and provided during molding of the layer of material.
In accordance with another aspect of the invention, there is provided a method of making an article of footwear to receive a foot of a user. The method comprises: placing a sheet in a mold for molding a body of the article of footwear; and causing flow of material in the mold to mold at least a portion of the body of the article of footwear. The sheet conforms to the portion of the body of the article of footwear.
In accordance with another aspect of the invention, there is provided an article of footwear to receive a foot of a user. The article of footwear comprises a body comprising: a layer of material molded by flowing; and a sheet conforming to and provided during molding of the layer of material.
In accordance with another aspect of the invention, there is provided a skate boot for a skate. The skate comprises a skating device disposed beneath the skate boot to engage a skating surface. The skate boot is configured to receive a foot of a user. The skate boot comprises a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user. The medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another by flow of material in a mold. The body is free of parting lines opposite from one another.
In accordance with another aspect of the invention, there is provided an article of footwear for receiving a foot of a user. The article of footwear comprises a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user. The medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body
are molded together and integral with one another by flow of material in a mold. The body is free of parting lines opposite from one another.
These and other aspects of the invention will now become apparent to those of ordinary skill in the art upon review of the following description of embodiments of the invention in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF DRAWINGS
A detailed description of embodiments of the invention is provided below, by way of example only, with reference to drawings annexed hereto, in which:
Figure 1 is an example of a skate for a skater, in accordance with an embodiment of the invention;
Figure 2 is an exploded view of the skate;
Figure 3 is a perspective view of a shell of a skate boot of the skate;
Figures 4 to 7 are respective side, front, top and bottom views of the shell of Figure 3;
Figure 8 is a cross-sectional view of the shell taken along line 8-8 of Figure 5;
Figures 9 and 10 are cross-sectional views of the shell taken along lines 9-9 and 10-10 of Figure 4;
Figure 1 1 is a block diagram showing a molding process implementing a molding apparatus to form the shell of the skate boot;
Figure 12 is a cross-sectional view of the shell showing a plurality of subshells of the shell, including an internal, an intermediate and an external subshell of the shell;
Figure 13 is an example of a last of the molding apparatus used to form the shell;
Figure 14 is a cross-sectional view of the last and a first female mold used to produce the internal subshell of the shell;
Figure 15 is a cross-sectional view of the last and a second female mold used to produce the intermediate subshell of the shell;
Figure 16 is a cross-sectional view of the last and a third female mold used to produce the external subshell of the shell;
Figures 17 and 18 are perspective cross-sectional views of the shell of Figure 3 taken along different points of a length of the shell;
Figure 19 is a cross-sectional view of the shell in an embodiment in which the shell comprises a reinforcement and a design element disposed between the intermediate subshell and the external subshell;
Figures 20A and 20B are side views of the shell in embodiments in which the reinforcement comprises a rib;
Figures 21 A and 21 B are side views of the shell in embodiments in which the reinforcement comprises a reinforcing sheet;
Figure 21 C is a side view of the shell in accordance with an embodiment in which the reinforcement comprises a single fiber;
Figure 22 is a conceptual illustration of constituents of a material flowing into a mold cavity to produce a resulting polymeric material;
Figure 23 is a perspective view of an embodiment in which the shell comprises an overlay;
Figure 24 is a perspective view of a tongue of the skate boot;
Figure 25 is a side view of a blade of a skating device of the skate;
Figures 26A to 29 show different examples of embodiments in which the blade is affixed to a blade holder of the skating device of the skate;
Figure 30 is a side view of the shell in an embodiment in which a limited part of the blade holder is molded integrally with the shell;
Figures 31 and 32 are cross-sectional views of examples of securing the limited part of the blade holder which is molded integrally with the shell with another part of the blade holder;
Figure 33 is a cross-sectional view of the blade holder in an embodiment in which the blade holder comprises a blade-detachment mechanism;
Figure 34 is a side view of the blade of the skating device;
Figure 35 is a cross-sectional view of the blade taken along line 35-35 of Figure 34;
Figure 36 is a side view of the skate in an embodiment in which a toe cap, a tongue, a tendon guard, a footbed and a pair of lace members of the skate boot are molded integrally with the shell;
Figure 37 is a side of the skate in an embodiment in which the shell of the skate boot is molded alone (i.e. , separately from the toe cap, the tongue, the tendon guard, the footbed and the lace members of the skate boot);
Figure 38 is a side view of the skate in an embodiment in which any of the toe cap, the tongue, the tendon guard, the footbed and the lace members are molded integrally with the shell of the skate boot;
Figure 39 is a cross-sectional view of the shell of the skate boot in an embodiment in which the shell is a unitary shell (i.e. , has no subshells);
Figure 40 is a cross-sectional view of the shell of the skate boot in an embodiment in which the shell comprises subshells;
Figures 41 A, 41 B and 41 C are cross-sectional views of the shell in embodiments in which at least one of the subshells comprise an opening in a sole region of the shell;
Figure 42, 43A and 43B are cross-sectional views of the shell in embodiments in which a footbed of the skate boot is formed integrally with the shell of the skate boot;
Figures 44A and 44B are cross-sectional views of the shell in embodiments in which the external subshell of the shell and/or the internal subshell of the shell comprises an opening at the sole region of the shell;
Figure 45 is a cross-sectional view of the shell in an embodiment in which the footbed of the skate boot is formed integrally with the shell and is in contact with the external subshell of the shell;
Figure 46 is a cross-sectional view of the shell in an embodiment in which the footbed of the skate boot is an insert that is disposed between given ones of the subshells of the shell;
Figures 47A and 47B are cross-sectional views of the shell in embodiments in which a limited part of the blade holder is molded integrally with the shell;
Figure 48 is a cross-sectional of the shell in an embodiment in which the footbed of the skate boot is formed integrally with the shell;
Figure 49 is a cross-sectional view of the shell in an embodiment in which the shell comprises the internal, intermediate and external subshells and is molded separately from the blade holder;
Figure 50 is a cross-sectional view of the shell in an embodiment in which the shell comprises four subshells;
Figure 51 is a cross-sectional view of the shell in an embodiment in which the blade holder is molded separately from the shell and is affixed to the shell;
Figure 52 is a cross-sectional view of the shell in an embodiment in which the blade holder is molded integrally with the shell and the intermediate subshell making up the blade holder is exposed;
Figure 53 is a cross-sectional view of the shell in an embodiment in which the blade holder is molded integrally with the shell and a given subshell envelops the blade holder but not the shell;
Figure 54 is an exploded view of the skate in an embodiment in which the shell is molded separately from the blade holder and from other components of the skate boot, notably the toe cap, the tongue, the tendon guard, the footbed and the lace members of the skate boot;
Figure 55 is a perspective view of the blade holder in an embodiment in which the blade holder is formed separately from the shell of the skate boot;
Figure 56 is a top view of a cross-section of the shell taken along an ankle portion of
the shell;
Figures 57 A and 57B show top cross-sectional views of the ankle portion of the shell in accordance with an embodiment in which the skate boot comprises a reinforcement which comprises an extension;
Figures 58 and 59 show embodiments in which the extension connects a medial ankle side of the ankle portion to a lateral ankle side of the ankle portion in a direction frontwardly of the ankle portion of the shell;
Figures 60 and 61 show examples in which the extension comprises a plurality of free ends that are movable relative to one another and converge toward one another;
Figure 62 shows an example of a variant in which the extension is in a rear portion of the ankle portion of the shell;
Figures 63 and 64 show examples in which the reinforcement comprises two extensions, including one in the rear portion of the ankle portion of the shell;
Figure 65 is an example of a variant in which the rear portion of the ankle portion comprises an opening;
Figure 66 is a perspective view of the shell of the skate boot in accordance with a variant in which the reinforcement comprises the lace members of the skate boot;
Figures 67 and 68 show different examples of the shell in accordance with the variant of Figure 66;
Figure 69 shows an example of the shell in accordance with the variant of Figure 66 and in which the skate boot comprises an extension;
Figure 70 is a side view of the skate boot of Figure 63;
Figures 71 A and 71 B show side and front views of the skate in accordance with another embodiment;
Figure 72 shows an example of a test for determining the stiffness of a part of a subshell;
Figure 73 shows an example of an embodiment in which an outermost one of the subshells makes up an outer surface of the shell and an outer surface of the blade holder;
Figure 74 shows an example of a variant in which the blade holder has no opening extending from its lateral side to its medial side;
Figures 75 to 77 show an example of a variant in which the shell and/or the blade holder comprises one or more inserts over which a subshell is molded;
Figures 78A to 78C show other examples of the variant of Figure 75 in which the inserts form a part of the shell;
Figure 79 shows an example of a variant in which one or more of the subshells comprises a filled portion comprising a different material;
Figures 80A to 80F show other examples of the variant of Figure 79;
Figures 81 and 82 show an example of a variant in which a sheet is used during molding of the shell;
Figure 83 shows an example of a variant in which the skate boot comprises a slash guard;
Figure 84 shows an example of a variant of the slash guard of Figure 83;
Figure 85 shows a top view of a portion of the slash guard of Figure 83;
Figures 86A to 86D show examples of a variant in which the shell and/or blade holder and/or other components made integrally with the shell are molded as separate pieces which are then assembled together;
Figure 87 shows an example of a variant in which the blade holder comprises an insert for receiving the blade;
Figure 88 shows an example of a variant in which the blade holder comprises a void;
Figure 89 shows an example of a variant in which the shell and/or the blade holder and/or other components made integrally with the shell comprises an opening configured to modify a performance of the skate boot;
Figure 90 shows an example of an embodiment in which a material of a given subshell comprises a polymeric substance and an expansion agent;
Figure 91 shows an example of the expansion agent of Figure 90;
Figures 92 and 93 show examples of the last to form the shell in other embodiments;
Figures 94 to 105 show an example of the last to form the shell in another embodiment;
Figures 106 to 1 10 show an example of the last to form the shell in another embodiment;
Figures 1 1 1 to 1 15 show an example of the last to form the shell in another embodiment;
Figures 1 16 and 1 17 show an example of the last to form the shell in another embodiment;
Figures 1 18 and 1 19 show an example of the last to form the shell in another embodiment;
Figures 120 to 122 show an example of a flexible female mold member in another embodiment;
Figure 123 shows an example of a variant in which the footwear is a ski boot;
Figure 124 shows an example of a variant in which the footwear is a work boot; and
Figures 125 and 126 are side and front views of a right foot of the skater with an integument of the foot shown in dotted lines and bones shown in solid lines.
In the drawings, embodiments of the invention are illustrated by way of example. It is to be expressly understood that the description and drawings are only for purposes of illustration and as an aid to understanding, and are not intended to be a definition of the limits of the invention.
DETAILED DESCRIPTION OF EMBODIMENTS
Figure 1 shows an example of footwear 10 for a wearer in accordance with an embodiment of the invention. In this example, the footwear 10 is a skate for a skater to skate on a skating surface 12. In this embodiment, the skate 10 is a hockey skate for the skater who is a hockey player playing hockey. In this example, the skate 10 is an ice skate, a type of hockey played is ice hockey, and the skating surface 12 is ice.
The skate 10 comprises a skate boot 22 for receiving a foot 1 1 of the player and a skating device 28 disposed beneath the skate boot 22 to engage the skating surface 12. In this embodiment, the skating device 28 comprises a blade 26 for contacting the ice 12 and a blade holder 24 between the skate boot 22 and the blade 26. The skate 10 has a longitudinal direction, a widthwise direction, and a heightwise direction.
In this embodiment, as further discussed below, the skate 10, including at least part of the skate boot 22 and possibly at least part of one or more other components (e.g., the blade holder 24), is constructed from one or more materials (e.g., foams) molded by flowing in molding equipment during a molding process (e.g., injection molding or casting). This may allow the skate 10 to have useful performance characteristics (e.g., reduced weight, proper fit and comfort, etc.) while being more cost-effectively manufactured.
The skate boot 22 defines a cavity 54 for receiving the player’s foot 1 1. With additional reference to Figures 125 and 126, the player’s foot 1 1 includes toes T, a ball B, an arch ARC, a plantar surface PS, a top surface TS, a medial side MS, and a lateral side LS. The top surface TS of the player’s foot 1 1 is continuous with a lower portion of a shin S of the player. In addition, the player has a heel HL, an Achilles tendon AT, and an ankle A having a medial malleolus MM and a lateral malleolus LM that is at a lower position than the medial malleolus MM. The Achilles tendon AT has an upper part UP and a lower part LP projecting outwardly with relation to the upper part UP and merging with the heel HL. A forefoot of the player includes the toes T and the ball B, a hindfoot of the player includes the heel HL, and a midfoot of the player is between the forefoot and the hindfoot.
The skate boot 22 comprises a front portion 56 for receiving the toes T of the player, a rear portion 58 for receiving the heel HL and at least part of the Achilles tendon AT and the ankle A of the player, and an intermediate portion 60 between the front portion 56 and the rear portion 58.
More particularly, in this embodiment, the skate boot 22 comprises a shell 30, a toe cap 32, a tongue 34, a tendon guard 35, a liner 36, a footbed 38, and an insole 40. The skate boot 22 also comprises lace members 44i , 442 and eyelets 46I -46E extending through (e.g., punched into) the lace members 44 442, the shell 30 and the liner 36 vis-a-vis apertures 48 in order to receive laces for tying on the skate 10. In some embodiments, the skate boot 22 may not comprise any lace members and the eyelets 46I -46E may extend directly through the shell 30 and the liner 36 via the apertures 48.
The shell 30 is a body of the skate boot 22 that imparts strength and structural integrity to the skate 10 to support the player’s foot 1 1 . More particularly, in this embodiment, as shown in Figure 3, the shell 30 comprises a heel portion 62 for receiving the heel HL of the player, an ankle portion 64 for receiving the ankle A of the player, medial and lateral side portions 66, 68 for respectively facing the medial and lateral sides MS, LS of the player’s foot 1 1 , and a sole portion 69 for facing the plantar surface PS of the player’s foot 1 1. The shell 30 thus includes a quarter 75 which comprises a medial quarter part 77, a lateral quarter part 79, and a heel counter 81. The medial and lateral side portions 66, 68 include upper edges 70, 72 which, in this embodiment, constitute upper edges of the lace members 44i, 442 (i.e. , the lace members 44i, 442 are made integrally with the shell as will be described later). The heel portion 62 may be formed such that it is substantially cup-shaped for following the contour of the heel HL of the player. The ankle portion 64 comprises medial and lateral ankle sides 74, 76. The medial ankle side 74 has a medial depression 78 for receiving the medial malleolus MM of the player and the lateral ankle side 76 has a lateral depression 80 for receiving the lateral malleolus LM of the player. The lateral depression 80 is located slightly lower than the medial depression 78 for conforming to the morphology of the player’s foot 1 1. The ankle portion 64 further comprises a rear portion 82 facing the lower part LP of the Achilles tendon AT of the player.
In this embodiment, with additional reference to Figure 1 1 , the shell 30 comprises one or more materials molded into a shape of the shell 30 by flowing in a molding
apparatus 150 during a molding process (e.g., injection molding or casting). More particularly, in this embodiment, the shell 30 comprises a plurality of materials MI -MN that are molded into the shape of the shell 30 by flowing in the molding apparatus 150 during the molding process. The materials MI -MN are different from one another, such as by having different chemistries and/or exhibiting substantially different values of one or more material properties (e.g., density, modulus of elasticity, hardness, etc.). In this example, the materials MI -MN are arranged such that the shell 30 comprises a plurality of layers 85I -85L which are made of respective ones of the materials MI-Mn. In that sense, in this case, the shell 30 may be referred to as a“multilayer” shell and the layers 85I -85L of the shell 30 may be referred to as“subshells”. This may allow the skate 10 to have useful performance characteristics (e.g., reduced weight, proper fit and comfort, etc.) while being more cost-effectively manufactured.
The materials MI -MN may be implemented in any suitable way. In this embodiment, each of the materials MI -MN is a polymeric material. For example, in this embodiment, each of the polymeric materials MI-MN is polyurethane (PU). Any other suitable polymer may be used in other embodiments (e.g., polypropylene, ethylene-vinyl acetate (EVA), nylon, polyester, vinyl, polyvinyl chloride, polycarbonate, polyethylene, an ionomer resin (e.g., Surlyn®), styrene-butadiene copolymer (e.g., K-Resin®) etc.), self-reinforced polypropylene composite (e.g., Curv®), or any other thermoplastic or thermosetting polymer).
In this example of implementation, each of the polymeric materials MrMN is a foam. In this case, each of the polymeric materials MI -MN is a PU foam. This foamed aspect may allow the shell 30 to be relatively light while providing strength. For instance, in some embodiments, a density of each of the polymeric materials MI-MN may be no more than 40 kg/m3, in some cases no more than 30 kg/m3, in some cases no more than 20 kg/m3, in some cases no more than 15 kg/m3, in some cases no more 10 kg/m3 and in some cases even less. One or more of the polymeric materials MI -MN may not be foam in other examples of implementation.
In this embodiment, the materials M^MN of the subshells dd^ddi. of the shell 30 constitute at least part of the heel portion 62, the ankle portion 64, the medial and lateral side portions 66, 6d, and the sole portion 69 of the shell 30. More particularly, in this embodiment, the materials MI -MN constitute at least a majority (i.e. , a majority or an entirety) of the heel portion 62, the ankle portion 64, the medial and lateral side portions 66, 66, and the sole portion 69 of the shell 30. In this example, the materials MI -MN constitute the entirety of the heel portion 62, the ankle portion 64, the medial and lateral side portions 66, 68, and the sole portion 69 of the shell 30.
The subshells 85I -85L constituted by the polymeric materials MI -MN may have different properties for different purposes.
For instance, in some cases, a polymeric material Mx may be stiffer than a polymeric material My such that a subshell comprising the polymeric material Mx is stiffer than a subshell comprising the polymeric material My. For example, a ratio of a stiffness of the subshell comprising the polymeric material Mx over a stiffness of the subshell comprising the polymeric material My may be at least 1.5, in some cases at least 2, in some cases at least 2.5, in some cases 3, in some cases 4 and in some cases even more.
In some cases, a given one of the subshells 85I -85L may be configured to be harder than another one of the subshells 85I -85l. For instance, to provide a given subshell with more hardness than another subshell, the hardness of the polymeric materials Mr MN may vary. For example, a hardness of the polymeric material Mx may be greater than a hardness of the polymeric material My. For example, in some cases, a ratio of the hardness of the polymeric material Mx over the hardness of the polymeric material My may be at least 1.5, in some cases at least 2, in some cases at least 2.5, in some cases at least 3, in some cases at least 4, in some cases at least 5 and in some cases even more.
To observe the stiffness of a subshell 85x, as shown in Figure 72, a part of the subshell
85x can be isolated from the remainder of the subshell 85x (e.g., by cutting, or otherwise removing the part from the subshell 85x, or by producing the part without the remainder of the subshell 85x) and a three-point bending test can be performed on the part to subject it to loading tending to bend the part in specified ways (along a defined direction of the part if the part is anisotropic) to observe the rigidity of the part and measure parameters indicative of the rigidity of the part. For instance in some embodiments, the three-point bending test may be based on conditions defined in a standard test (e.g., ISO 178(2010)).
For example, to observe the rigidity of the subshell 85x, the three-point bending test may be performed to subject the subshell 85x to loading tending to bend the subshell 85x until a predetermined deflection of the subshell 85x is reached and measure a bending load at that predetermined deflection of the subshell 85x. The predetermined deflection of the subshell 85x may be selected such as to correspond to a predetermined strain of the subshell 85x at a specified point of the subshell 85x (e.g., a point of an inner surface of the subshell 85x). For instance, in some embodiments, the predetermined strain of the subshell 85x may be between 3% and 5%. The bending load at the predetermined deflection of the subshell 85x may be used to calculate a bending stress at the specified point of the subshell 85x. The bending stress at the specified point of the subshell 85x may be calculated as o=My/l, where M is the moment about a neutral axis of the subshell 85x caused by the bending load, y is the perpendicular distance from the specified point of the subshell 85x to the neutral axis of the subshell 85x, and I is the second moment of area about the neutral axis of the subshell 85x. The rigidity of the subshell 85x can be taken as the bending stress at the predetermined strain (i.e. , at the predetermined deflection) of the subshell 85x. Alternatively, the rigidity of the subshell 85x may be taken as the bending load at the predetermined deflection of the subshell 85x.
A stiffness of the subshells 85I -85L may be related to a modulus of elasticity (i.e., Young’s modulus) of the polymeric materials M^MN associated therewith. For example, to provide a given subshell with more stiffness than another subshell, the
modulus of elasticity of the polymeric materials M^MN may vary. For instance, in some embodiments, the modulus of elasticity of the polymeric material Mx may be greater than the modulus of elasticity of the polymeric material My. For example, in some cases, a ratio of the modulus of elasticity of the polymeric material Mx over the modulus of elasticity of the polymeric material My may be at least 1.5, in some cases at least 2, in some cases at least 2.5, in some cases at least 3, in some cases at least 4, in some cases at least 5 and in some cases even more . This ratio may have any other suitable value in other embodiments.
In some cases, a given one of the subshells 85I-85L may be configured to be denser than another one of the subshells 85I -85l. For instance, to provide a given subshell with more density than another subshell, the density of the polymeric materials MI -MN may vary. For instance, in some embodiments, the polymeric material Mx may have a density that is greater than a density of the polymeric material My. For example, in some cases, a ratio of the density of the material Mx over the density of the material My may be at least 1.1 , in some cases at least 1.5, in some cases at least 2, in some cases at least 2.5, in some cases at least 3 and in some cases even more a certain value
In this embodiment, as shown in Figure 12, the subshells 85I -85L comprise an internal subshell 85i , an intermediate subshell 852 and an external subshell 853. The internal subshell 85i is“internal” in that it is an innermost one of the subshells 85I -85l. That is, the internal subshell 85! is closest to the player’s foot 1 1 when the player dons the skate 10. In a similar manner, the external subshell 853 is“external” in that is an outermost one of the subshells 85I-85l. That is, the external subshell 853 is furthest from the player’s foot 1 1 when the player dons the skate 10. The intermediate subshell 852 is disposed between the internal and external subshells 85^ 853.
The internal, intermediate and external subshells 85i, 852, 853 comprise respective polymeric materials
M2, M3. In this embodiment, the polymeric materials IVk , M2, M3 have different material properties that impart different characteristics to the internal,
intermediate and external subshells 85i , 852, 853. As a result, in certain cases, a given one of the subshells 85i , 852, 853 may be more resistant to impact than another one of the subshells 85i , 852, 853, a given one of the subshells 85i, 852, 853 may be more resistant to wear than another one of the subshells 85i , 852, 853, and/or a given one of the subshells 85i , 852, 853 may be denser than another one of the subshells 85i , 852, 853.
For instance, a density of each of the internal, intermediate and external subshells 85i, 852, 853 may vary. For example, in this embodiment, the densities of the internal, intermediate and external subshells 85i, 852, 853 increase inwardly such that the density of the internal subshell 85i is greater than the density of the intermediate subshell 852 which in turn is greater than the density of the external subshell 853. For example, the density of the internal subshell 85! may be approximately 30 kg/m3, while the density of the intermediate subshell 852 may be approximately 20 kg/m3, and the density of the external subshell 853 may be approximately 10 kg/m3. The densities of the internal, intermediate and external subshells 85i , 852, 853 may have any other suitable values in other embodiments. In other embodiments, the densities of the internal, intermediate and external subshells 85i, 852, 853 may increase outwardly such that the external subshell 853 is the densest of the subshells 85I -85l. In yet other embodiments, the densities of the internal, intermediate and external subshells 85i, 852, 853 may not be arranged in order of ascending or descending density.
Moreover, in this embodiment, a stiffness of the internal, intermediate and external subshells 85i , 852, 853 may vary. For example, in this embodiment, the stiffness of the internal subshell 85i is greater than the respective stiffness of each of the intermediate subshell 852 and the external subshell 853.
In addition, in this embodiment, a thickness of the internal, intermediate and external subshells 85i , 852, 853 may vary. For example, in this embodiment, the intermediate subshell 852 has a thickness that is greater than a respective thickness of each of the internal and external subshells 85! , 853. For example, in some cases, the thickness of
each of the internal, intermediate and external subshells 85^ 852, 853 may be between 0.1 mm to 25 mm, and in some cases between 0.5 mm to 10 mm. For instance, the thickness of each of the internal, intermediate and external subshells 85i, 852, 853 may be no more than 30 mm, in some cases no more than 25 mm, in some cases no more than 15 mm, in some cases no more than 10 mm, in some cases no more than 5 mm, in some cases no more than 1 mm, in some cases no more than 0.5 mm, in some cases no more than 0.1 mm and in some cases even less.
In order to provide the internal, intermediate and external subshells 85†, 852, 853 with their different characteristics, the polymeric materials Mi , M2, M3 of the internal, intermediate and external subshells 85i, 852, 853 may comprise different types of polymeric materials. For instance, in this example, the polymeric material Mi comprises a generally soft and dense foam, the polymeric material M2 comprises a structural foam that is more rigid than the foam of the polymeric material Mi and less dense than the polymeric material Mi , and the polymeric material M3 is a material other than foam. For example, the polymeric material M3 of the external subshell 853 may consist of a clear polymeric coating.
The subshells 85I -85L may be configured in various other ways in other embodiments. For instance, in other embodiments, the shell 30 may comprise a different number of subshells or no subshells. For example, in some embodiments, as shown in Figure 39, the shell 30 may be a single shell and therefore does not comprise any subshells. In other embodiments, as shown in Figure 40, the shell 30 may comprise two subshells 85I -85l.
Moreover, as shown in Figures 41 A to 41 C, when the shell 30 comprises two subshells, notably interior and exterior subshells 85|NT, 85Ect, if the exterior subshell 85EXT has a density that is greater than a density of the interior subshell 85|NT, a given one of the subshells 85|NT, 85EXT may have an opening, which can be referred to as a gap, along at least part of the sole portion 69 of the shell 30 (e.g., along a majority of the sole portion 69 of the shell 30). For example, as shown in Figure 41 A,
in some embodiments, the exterior subshell 85Ect may comprise a gap G at the sole portion 69 of the shell 30 such that the interior and exterior subshells 85|NT, 85EXT do not overlie one another at the sole portion 69 of the shell 30 (i.e. , the interior subshell 85|NT may be the only subshell present at the sole portion 69 of the shell 30). As shown in Figure 41 B, in an embodiment in which the exterior subshell 85EXT has a gap at the sole portion 69 of the shell 30, the interior subshell 85|NT may project outwardly toward the exterior subshell 85EXT at the sole portion 69 of the shell 30 and fill in the gap of the exterior subshell 85EXT such that a thickness of the interior subshell 85|NT is greater at the sole portion 69 of the shell 30. As another example, as shown in Figure 41 C, in an embodiment in which the interior subshell 85INT has a gap at the sole portion 69 of the shell 30, the exterior subshell 85EXT may project inwardly toward the interior subshell 85|NT at the sole portion 69 of the shell 30 and fill in the gap of the interior subshell 85|NT such that a thickness of the exterior subshell 85EXT is greater at the sole portion 69 of the shell 30. As shown in Figure 42, the footbed 38 may be formed integrally with the shell 30 such as to cover at least partially an inner surface of the innermost subshell (in this case, the interior subshell 85|NT) and overlie the sole portion 69 of the shell 30. In other cases, the footbed 38 may be inserted separately after the molding process of the shell 30 has been completed.
In some embodiments, as shown in Figures 44A and 44B, when the shell 30 comprises three subshells, notably the internal, intermediate and external subshells 85^ 852, 853, and the external subshell 853 has a density that is greater than a density of the intermediate subshell 852, the external subshell 853 may comprise a gap 61 at the sole portion 69 of the shell 30 and the intermediate subshell 852 may project into the external subshell 853 at the sole portion 69 of the shell 30 such as to fill in the gap 61 of the external subshell 853. In such embodiments, the intermediate subshell 852 may have a greater thickness at the sole portion 69 of the shell 30.
In some embodiments, as shown in Figure 50, the subshells dd^ddi. of the shell 30 may include four subshells 85! , 852, 853, 854.
In this embodiment, the subshells 85I -85L constituted by the polymeric materials MI -MN are integral with one another such that they constitute a monolithic one-piece structure. That is, the subshells 85I-85L constituted by the polymeric materials MI -MN are integrally connected to one another such that the shell 30 is a one-piece shell. In this example of implementation, this is achieved by the subshells dd^ddi. bonding to one another in the molding apparatus 150 during the molding process by virtue of chemical bonding of the polymeric materials MI -Mn.
The subshells 85I -85L constituted by the polymeric materials MI-MN are molded into the shape of the shell 30 by flowing into the molding apparatus 150 during the molding process. In this embodiment, the molding process comprises causing the polymeric materials M^MN to flow (i.e. , in liquid or other fluid form) in the molding apparatus 150 so as to form the subshells 85I -85L and thus the shell 30 within the molding apparatus 150 and recovering the shell 30 from the molding apparatus 150 once its molding is completed.
In this embodiment, the molding process of the shell 30 is injection molding and the molding apparatus 150 comprises a male mold 152 (also commonly referred to as a “last”) with which all the polymeric materials MI-MN are molded into shape, as shown in Figure 13. That is, in this example, the last 152 is a single last with which all of the subshells 85I -85L of the shell 30 are formed. The molding apparatus 150 also comprises a plurality of female molds 154-1-154N, each female mold 154, being configured to contain the last 152 at different stages of the molding process. In this embodiment, each female mold 154, comprises first and second portions 155, 157 that are secured together to contain the last 152.
An example of a method for molding the shell 30 comprising the internal, intermediate and external subshells 85i , 852, 853 will be described in more detail below with reference to Figures 14 to 16.
With additional reference to Figure 14, in order to mold the internal subshell 85^ the last 152 is secured within a first female mold 154i to form a mold cavity 156 between the last 152 and the first female mold 154i . The mold cavity 156 has a shape of the desired internal subshell 85i . The mold cavity 156 is then filled with a desired polymeric material IV via a sprue, runner and gate system (not shown) of the first female mold '\ 54-i and left to cure. Once the polymeric material I has cured for a sufficient amount of time to form the internal subshell 85i , the first female mold 154i is opened (i.e. , its first and second portions 155, 157 are separated from one another) and removed from the molding apparatus 150 while the last 152 remains on the molding apparatus 150 with the internal subshell 85i still on it.
At this stage, with additional reference to Figure 15, in order to form the intermediate subshell 852, a second female mold 1542 is installed on the molding apparatus 150. The last 152 is secured within the second female mold 1542 to form a mold cavity 158 between the internal subshell 85i (and in some cases at least part of the last 152) and the second female mold 1542. The mold cavity 158 has a shape of the desired intermediate subshell 852. The mold cavity 158 is then filled with a desired polymeric material M2 via a sprue, runner and gate system (not shown) of the second female mold 1542 and left to cure. Once the polymeric material M2 has cured for a sufficient amount of time to form the intermediate subshell 852, the second female mold 1542 is opened (i.e., its first and second portions 155, 157 are separated from one another) and removed from the molding apparatus 150 while the last 152 remains on the molding apparatus 150 with the internal subshell 85! and the intermediate subshell 852 still on it.
With additional reference to Figure 16, in order to form the external subshell 853, a third female mold 1543 is installed on the molding apparatus 150. The last 152 is secured within the third female mold 1543 to form a mold cavity 160 between the intermediate subshell 852 (and in some cases at least part of the last 152, and in some cases at least part of the internal subshell 85^ and the third female mold 1543. The mold cavity 160 has a shape of the desired external subshell 853. The mold cavity 160 is then filled
with a desired polymeric material M3 via a sprue, runner and gate system (not shown) of the third female mold 1543 and left to cure.
Once the polymeric material M3 has cured for a sufficient amount of time to form the external subshell 853, the shell 30, including its now formed internal, intermediate and external subshells 85 852, 853, is demolded from (i.e. , removed from) the last 152. This may be achieved in various ways.
For instance, in some embodiments, the polymeric materials
M2, M3 which constitute the internal, intermediate and external subshells 85i, 852, 853 may have sufficient elasticity to allow an operator of the molding apparatus 150 to remove the shell 30 from the last 152 by flexing the internal, intermediate and external subshells 85 852, 853 of the shell 30. In some cases, the shell 30 may be removed from the last 152 while at least a given one of the internal, intermediate and external subshells 85i , 852, 853 has not fully cured such that the shell 30 has some flexibility that it would not have if the at least one given one of the internal, intermediate and external subshells 85 852, 853 had fully cured.
Moreover, in some embodiments, with additional reference to Figures 92 to 1 19, the last 152 may be reconfigurable to facilitate demolding (i.e., removal) of the shell 30 from the last 152. That is, a configuration (e.g., shape) of the last 152 may be changeable between a“molding” configuration to mold the shell 30 on the last 152 and a“demolding” configuration to demold the shell 30 from the last 152. The demolding configuration of the last 152 differs from the molding configuration of the last 152, notably in that demolding of the shell 30 from the last 152 is easier in the demolding configuration of the last 152 than in the molding configuration of the last 152 (e.g., less effort has to be exerted on the shell 30 to remove the shell 30 from the last 152 in its demolding configuration than in its molding configuration, or removal of the shell 30 from the last 152 in its demolding configuration is readily allowed while removal of the shell 30 from the last 152 in its molding configuration is precluded without damaging the shell 30). For example, the last 152 may contract (i.e., be reduced in size) in its
demolding configuration relative to its molding configuration. Removal of the shell 30 from the last 152, which may be by holding the shell 30 to move it away from the last 152 and/or holding and moving at least part of the last 152 away from the shell 30, is thus facilitated.
This may be particularly useful to mold the shell 30 on the last 152 such that the shell 30 has undercuts 511-516, i e. , recesses (e.g., depressions) or other reentrant portions, which would otherwise complicate demolding of the shell 30. For example, in this embodiment, the undercuts 51 ^ 512 are the medial and lateral depressions 78, 80 for receiving the medial and lateral malleoli MM, LM of the player, the undercuts 513, 514 are recesses 83i, 832 defined by curvature of the heel portion 62 in the longitudinal and heightwise directions of the skate 10 and curvature of the heel portion 62 in the widthwise direction of the skate 10 such that the heel portion 62 is substantially cup- shaped, and the undercuts 515, 516 are recesses 861, 862 defined by curvature of the medial side portion 66 and curvature of the lateral side portion 68 in the longitudinal and heightwise directions of the skate 10 adjacent to the player’s forefoot. The shell 30 may have any other suitable undercut such as the undercuts 51 ^516 in other embodiments.
Furthermore, this may facilitate demolding of the shell 30 from the last 152 without deforming the shell 30. That is, a shape of the shell 30 once molding is completed can be maintained during and upon demolding. In this example, this may be useful as the shell 30 is rigid (e.g., to avoid stressing the shell 30, etc.).
For example, in some embodiments, a volume occupied by the last 152 may be reduced from its molding configuration to its demolding configuration such that the volume occupied by the last 152 in its demolding configuration is smaller than the volume occupied by the last 152 in its molding configuration.
In some embodiments, as shown in Figure 92, the last 152 comprises a cavity 163 to receive a fluid 167 to vary the volume occupied by the last 152, by expanding and
contracting the last 152. For instance, in some cases, the last 152 may be an inflatable last that can be expanded and retracted by controlling a fluid pressure within the last 152. For instance, the inflatable last 152 may be filled with the fluid 167 which is air (or any other fluid) to expand the inflatable last 152 to a“molding” size at which the molding process is carried out, and then emptied of air to contract the inflatable last 152 to a“demolding” size that is less than the molding size and at which the demolding of the shell 30 from the last 152 can be carried out. The fluid 167 may be a liquid (e.g., water, oil, etc.) or any other suitable fluid in other cases.
As a variant, in some embodiments, as shown in Figure 93, the cavity 163 of the last 152 may contain particles 169i-169P such as beads, granules, sand, or other grit, that are configured to vary a rigidity of the last 152 in response to flow of the fluid 167 relative to (i.e. , into or out of) the cavity 163 of the last 152. For instance, the particles 169i-169P may rigidify (i.e., increase the rigidity of the last 152) when the fluid 167 flows out of the cavity 167 (e.g., by vacuum).
As another example, in some embodiments, as shown in Figures 94 to 105, the last 152 may comprise a plurality of last members 175i -175M that are movable relative to one another to change between its molding configuration and its demolding configuration. The last members 175i -175M may be viewed as last“modules” so that the last 152 is a“modular” last. Each of the last members 175i -175M is shaped such that the last members 175I-175M collectively form the shape of the last 152 to mold the shell 30 in its molding configuration.
In this embodiment, respective ones of the last members 175i -175M are movable relative to one another while remaining connected to one another as the last 152 changes between its molding configuration and its demolding configuration. The last 152 comprises a control system 187 to control movement of the last members 175i- 175M relative to one another. The control system 187 comprises a linkage 181 that includes links 183^1830 linking adjacent ones of the last members 175^175M so that they are movable relative to one another and an actuating mechanism 191 that
includes a plurality of actuators 193-i -1934 operable to move the last members 175r 175M relative to one another between the molding configuration of the last 152 and the demolding configuration of the last 152.
Adjacent ones of the last members 175^175M may be translatable and/or rotatable relative to one to change the last 152 between its molding configuration and its demolding configuration. That is, adjacent ones of the last members 175I-1 75M may move relative to one by translation, rotation, or a combination of translation and rotation to change the last 152 between its molding configuration and its demolding configuration. For example, in this embodiment, the linkage 181 comprises translation guides 195I -1954 for translating adjacent ones of the last members 175I-175M relative to one another and a pivot 197 for pivoting adjacent ones of the last members 175i- 175M relative to one another.
In this embodiment, the last member 175i is a front central last member to form part of a front region of the shell 30 including a central part of the toe cap 32 integrally formed with the shell 30 and a front central part of the sole portion 69; the last member 1753 is a rear central last member to form part of a rear central region of the shell 30 including a central part of the heel portion 62, a central part of the ankle portion 64, and a rear central part of the sole portion 69; the last member 1752 is an intermediate central last member disposed between the front central last member 175i and the rear central last member 1753 to form an intermediate central part of the sole portion 69; and the last members 1754, 1754 are medial and lateral last members to form medial and lateral parts of the heel portion 62, medial and lateral parts of the ankle portion 64, medial and lateral parts of the sole portion 69, medial and lateral parts of the toe cap 32 integrally formed with the shell 30, and the medial and lateral side portions 66, 68 of the shell 30.
More particularly, in this embodiment, the last members 175I -175M are movable relative to one another to change the last 152 from its molding configuration to its demolding configuration by: (1 ) translating the intermediate central last member 1752 upwardly relative to the front central last member 175-i and the rear central last
member 1753 via the translation guide 195^ 1952; (2) translating the intermediate central last member 1752 forwardly towards the front central last member 175i via the translation guide 1952 that is slanted relative to the translation guide 195i such that the front central last member 175i and the rear central last member 1753 are closer to one another and the rear central last member 1753 clears the heel portion 62 of the shell 30; (3) translating the rear central last member 1753 upwardly relative to the front central last member 175i via the translation guide 1952; (4) pivoting the front central last member 175i , the rear central last member 1753 and the intermediate central last member 1752 together about the pivot 197 so that the front central last member 175-i clears the central part of the toe cap 32 integrally formed with the shell 30; and (5) translating the medial and lateral last members 1754, 1754 laterally towards one another to clear the medial and lateral parts of the heel portion 62, the medial and lateral parts of the ankle portion 64, the medial and lateral parts of the sole portion 69, the medial and lateral parts of the toe cap 32 integrally formed with the shell 30, and the medial and lateral side portions 66, 68 of the shell 30, thereby clearing all of the shell 30 that can be removed from the last 152. The shell 30 can thus be molded and easily demolded, even with its undercuts 51 Ί-516, without deforming it during demolding.
In a variant, in some embodiments, as shown in Figures 106 to 1 10, last members 175i , 1752 are movable relative to one another to change the last 152 from its molding configuration to its demolding configuration by: (1 ) rotating the last member 1752, which forms the heel portion 62 of the shell 30, relative to the last member 175-i to clear the heel portion 62 of the shell 30; and then rotating the last member 175i and the last member 1752 together to remove them from the shell 30.
In some embodiments, respective ones of the last members 175-1-175M of the last 152 may be movable relative to one another by disconnecting and separating them from one another. For example, one or more of the last members 175I -175M of the last 152 may be disassembled to facilitate removal of the shell 30 from the last 152. In such embodiments, one or more of the links 183-i -183c linking adjacent ones of the last
members 175r175M allow these adjacent last members to be connected to one another in the molding configuration of the last 152 and to be disconnected and separated from one another in the demolding configuration of the last 152.
The last members 175-1-175M may comprise any suitable material. In this embodiment, the last members 175-1-175M are rigid. For example, the last members 175-1-175M rnay be made of metal, rigid plastic, wood, or any other suitable material.
In a variant, in some embodiments, as shown in Figures 1 1 1 to 1 15, the last 152 comprises a base 199 that includes last members 175i, 1752 which are movable relative to one another, and a last member 1753 that is a removable covering 179, i.e., sheath, which covers the base 199 and is removable from the base 199. The sheath 179 may allow different sizes or shapes of the shell 30 to be molded on the 152 by using different sheaths similar to the sheath 179, protect against leakage of the polymeric material Mi during injection, and/or reduce or eliminate internal parting lines on the shell 30.
In this embodiment, the sheath 179 is flexible to facilitate its placement onto the base 199 of the last 152 and its subsequent removal upon molding, yet sufficiently strong to maintain its desired shape during molding of the shell 30. For instance, in some embodiments, the sheath 179 may comprise an elastomeric material, such as silicone rubber or any other polymeric material with suitable elasticity. For example, in some embodiments, a hardness of the elastomeric material of the sheath 179 may be between 10 Shore A and 99 Shore A of have any other suitable value. This may create a sealing effect to protect against leakage of the polymeric material Mi during injection. Also, the sheath 179 may have a smooth external surface that may reduce or eliminate internal parting lines on the shell 30.
Thus, in this embodiment, the sheath 179 is placed over the base 199 of the last 152 for molding the shell 30. This is facilitated by flexibility of the sheath 179. Then, to demold the shell 30, the last member 1752 is moved relative to the last member 175-i
and the sheath 179 to clear a front region of the sheath 179. In this example, the last member 175i includes a cavity 171 and the last member 1752 is rotatable into the cavity 171 , thus effectively moving into an interior of the last member 175i . The last member 175i and the last member 1752 which is located in the cavity 171 are then moved upwardly out of the sheath 179. The shell 30 may be removed by deforming the sheath 179 to take the shell 30 away from it. Alternatively, in some cases, the sheath 179 may be left in the shell 30 to be part of the skate boot 22 of the skate 10.
The sheath 179 of the last 152 may be implemented in various other ways in other embodiments.
For example, in some embodiments, the sheath 179 may comprises a reinforcement (e.g., a layer of fabric such as mesh, a thin metallic layer, a plastic film, etc.) within its elastomeric material to reinforce it (e.g., protect against tearing).
As another example, in some embodiments, the sheath 179 may be injection molded using a thermoplastic material such as polypropylene, polyethylene (e.g., high-density polyethylene), or any other suitable material (e.g., with low surface adhesion).
As another example, in some embodiments, as shown in Figures 1 16 and 1 17, a thickness of the sheath 179 may vary to define the undercuts 511-516 of the shell 30 while facilitating demolding of the shell 30 from the last 152. For example, in this embodiment, the sheath 179 is thicker at locations of the medial and lateral depressions 78, 80 of the shell 30 for receiving the medial and lateral malleoli MM, LM of the player, the recesses 83i, 832 defined by the curvature of the heel portion 62 in the longitudinal and heightwise directions of the skate 10 and the curvature of the heel portion 62 in the widthwise direction of the skate 10, and the recesses 86^ 862 defined by the curvature of the medial side portion 66 and the curvature of the lateral side portion 68 in the longitudinal and heightwise directions of the skate 10 adjacent to the player’s forefoot. Also, in this embodiment, the last member 175-i is shaped (e.g., straight or tapered downwardly) so as to me movable vertically during demolding and
the last member 1752 can be removed from the shell 30 after moving the last member 175i vertically.
As another example, in some embodiments, the sheath 179 may be a film placed (e.g., wrapped about) the base 199 of the last 152.
As another example, in other embodiments, the sheath 179 may be an impermeable sock pullable onto and off the last 152.
The control system 187 to control movement of the last members 175I -175M relative to one another may be implemented in any other suitable way in other embodiments.
For example, in some embodiments, as shown in Figure 1 18 and 1 19, the control system 187 may be configured to control movement of last members 175i , 1752 so that the last 152 is expandable into its molding configuration and contractible into its demolding configuration. In this embodiment, the links 183i-183c between the last members 175^ 1752 include a central member 186 and arms 189^189A that extend from the central member 186 to respective ones of the last members 175i, 1752, such that movement of the central member 186 in a given direction (e.g., downwardly) causes the arms 189i -189A to push the members 175i, 1752 away from one another to expand the last 152 for molding the shell 30, and movement of the central member 186 in an opposite direction (e.g., upwardly) causes the arms 189i -189A to pull the members 175^ 1752 towards one another to contract the last 152 for demolding the shell 30.
The last members 175I -175M may be implemented in any other suitable way in other embodiments. For example, in various embodiments, the last members 175-1-175M may have any other suitable shape, there may be any other suitable number of last members (e.g., two, three, four, six, seven, etc. last members), respective ones of the last members 175-1-175M rnay move in any other way relative to one another, etc. Also, in various embodiments, features of the last members 175^175M of different
embodiments considered herein may be combined together in some examples of implementation.
With additional reference to Figures 120 to 122, in some embodiments, a given one of the female molds 1541-1543 may comprise a flexible female mold member 410 comprising an inner surface 414 constituting at least part of an inner surface of the given one of the female molds 154I-1543 and preformed to define a given one of the mold cavities 156, 158, 160 between itself and the last 152 in which a given one of the polymeric materials MI -M3 is injected to mold a given one of the subshells 85I -853 such that the inner surface 414 creates an outer surface of the given one of the subshells 85I -853. The flexible female mold member 410, which will also be referred to as a “membrane”, is configured to avoid at least one parting line on the shell 30 that would otherwise result because of the portions 155, 157 of the given one of the female molds 154I -1543 if the membrane 410 was omitted.
For example, in this embodiment, the membrane 410 is part of the female mold 154i such that its inner surface 414 is preformed to define the mold cavity 156 between itself and the last 152 in which the polymeric material Mi is injected to mold the subshell 85i such that the inner surface 414 creates the outer surface of the subshell 85i .
The inner surface 414 of the membrane 410 is preformed in that it is formed to define the mold cavity 156 to mold the subshell 85i and create the outer surface of the subshell 85! before the membrane 410 is placed in the molding apparatus 150. For instance, the membrane 410 may be preformed in a separate mold in a prior operation.
The membrane 410 is flexible to flex during movement of the portions 155, 157 of the female mold 154! when closing and opening the female mold 154i and overlies one or more spaces where the portions 155, 157 of the female mold 154i move relative to one another. This allows one or more parting lines to be avoided as the membrane 410 overlies where these one or more parting lines would otherwise be located.
In this embodiment, the membrane 410 extends continuously to constitute to at least a majority (i.e., a majority or an entirety) of the inner surface of the female mold 154i and to create at least a majority of the outer surface of the subshell 85i . More particularly, in this embodiment, the membrane 410 comprises medial and lateral side portions 420, 422, an ankle portion 424, a heel portion 426, and a sole portion 428 that are integral and continuous with one another as a one-piece structure. In this example, the membrane 410 is flexible and jointless (i.e., without any joint) at the heel portion 426 and a rear of the ankle portion 424, while the medial and lateral side portions 420, 422 and medial and lateral parts of the sole portion 428 are separable and movable relative to one another, to allow the membrane 410 to flex during movement of the portions 155, 157 of the female mold 154i when closing and opening the female mold 154i .
Thus, in this embodiment, the membrane 410 is configured such that the subshell 85! may be free of parting lines opposite from one another (i.e., on opposite sides of the subshell 85i). For instance, in this embodiment, the subshell 85i may have a parting line 263, which in this example is in a toe portion of the subshell 85i , but is free of any parting line opposite to the parting line 263, i.e., at an opposite side of the subshell 85^ which in this example is a heel portion and a rear of an ankle portion of the subshell 85i , because of the membrane 410.
In this embodiment, the membrane 410 may comprise an elastomeric material, such as silicone rubber, any other rubber, or any other polymeric material with suitable elasticity. For example, in some embodiments, a hardness of the elastomeric material of the membrane 410 may be between 10 Shore A and 99 Shore A of have any other suitable value.
The membrane 410 of the molding apparatus 150 may be implemented in various other ways in other embodiments.
For example, in other embodiments, the membrane 410 may be flexible and jointless at other areas while separable and movable elsewhere to allow the membrane 410 to
flex during movement of the portions 155, 157 of the female mold 154-i when closing and opening the female mold 154i . For instance, in some embodiments, the membrane 410 may be flexible and jointless at the sole portion 428, while medial and lateral parts of the ankle portion 424, medial and lateral parts of the heel portion 426, and the medial and lateral side portions 420, 422 are separable and movable relative to one another, to allow the membrane 410 to flex during movement of the portions 155, 157 of the female mold 154i when closing and opening the female mold 154i . In other embodiments, the membrane 410 may be flexible and jointless at a front portion, while medial and lateral parts of the sole portion 428, medial and lateral parts of the ankle portion 424, medial and lateral parts of the heel portion 426 and the medial and lateral side portions 420, 422 are separable and movable relative to one another, to allow the membrane 410 to flex during movement of the portions 155, 157 of the female mold '\ 54-i when closing and opening the female mold 154! .
As another example, in some embodiments, the membrane 410 may comprises a reinforcement (e.g., a layer of fabric such as mesh, a thin metallic layer, a plastic film, etc.) within its elastomeric material to reinforce it (e.g., protect against tearing).
As another example, in some embodiments, the membrane 410 may be injection molded using a thermoplastic material such as polypropylene, polyethylene (e.g., high- density polyethylene), or any other suitable material (e.g., with low surface adhesion).
As another example, in some embodiments, the membrane 410 may be incorporated into a rigid casting of a material (e.g., polyurethane, epoxy or other polymeric material; aluminum, steel or other metallic material; cement; etc.) stiffer and stronger than that of the membrane.
While the molding process has been described as being performed on a single molding apparatus 150, in some embodiments, the molding process may utilize various molding apparatuses (e.g., molding stations), each apparatus comprising a different female mold 154|. In such embodiments, the last 152, still mounted with at least one subshell
85i, can be moved from one molding station to the next without requiring removal of the female molds installed on the various molding apparatuses. In some embodiments, molding stations may be horizontally distributed (e.g., linearly and/or in a carrousel or other rotary or otherwise curved arrangement). In other embodiments, molding stations may be vertically distributed such as being stacked vertically over one another, which may be more efficient space-wise.
With additional reference to Figures 19 and 20, in some embodiments, the shell 30 may comprise a reinforcement 1 15 disposed between certain ones of the subshells 85I -85L of the shell 30 such as, for example, between the intermediate and external subshells 852, 853. The reinforcement 1 15 is produced separately from the shell 30 and is configured to reinforce selected areas of the shell 30 (e.g., the medial and/or lateral side portions 66, 68 of the shell 30) such as, for example, to make it stronger or stiffer (e.g., increase resistance to deflection or impacts). In order to include the reinforcement 1 15 between the intermediate and external subshells 852, 853, the reinforcement 1 15 is affixed to an exterior surface of the intermediate subshell 852 after forming the intermediate subshell 852 and prior to forming the external subshell 853. For instance, the reinforcement 1 15 may be mechanically affixed (e.g., stapled, stitched, etc.), glued (e.g., via an adhesive), ultrasonically bonded, or affixed in any other suitable way to the exterior surface of the intermediate subshell 852.
The reinforcement 1 15 may be configured in any suitable way. For instance, as shown in Figure 20A, the reinforcement 1 15 may comprise a plurality of ribs 1 17^1 17R (or a single rib 1 17,) which project outwardly from the exterior surface of the intermediate subshell 852 when the reinforcement 1 15 is affixed to the intermediate subshell 852. Moreover, the ribs 1 17i-1 17R may extend on the shell 30 and/or on the blade holder 24. As shown in Figure 20B, in some embodiments, the ribs 1 17-1-1 17R may extend from the shell 30 to the blade holder 24. That is, the ribs 1 17i-1 17R have a vertical extent that spans the blade holder 24 and the shell 30. In other examples, the ribs 1 17^1 17R may span the blade holder 24, the shell 30 and the lace members 44^ 442. Furthermore, in some cases, the ribs 1 17-1-1 17R may not all be disposed between the
same subshells. For example, in some cases, a first rib 1 17, may be disposed between the intermediate and external subshells 852, 853 while a second rib 1 17j is disposed between the internal and intermediate subshells 85i , 852.
Alternatively, as shown in Figure 21 , the reinforcement 1 15 may comprise a reinforcing sheet 1 19 that is similarly affixed to the exterior surface of the intermediate subshell 852 (e.g., glued thereto). In this embodiment, the reinforcing sheet 1 19 comprises a material that is stiffer and/or harder than the polymeric material M2 of the intermediate subshell 852. For instance, the reinforcing sheet 1 19 may comprise a composite material comprising thermoset material, thermoplastic material, carbon fibers and/or fiberglass fibers. For example, the composite material may be a fiber-matrix composite material that comprises a matrix in which fibers are embedded. The matrix may include any suitable polymeric resin, such as a thermosetting polymeric material (e.g., polyester, vinyl ester, vinyl ether, polyurethane, epoxy, cyanate ester, etc.), a thermoplastic polymeric material (e.g., polyethylene, polypropylene, acrylic resin, polyether ether ketone, polyethylene terephthalate, polyvinyl chloride, polymethyl methacrylate, polycarbonate, acrylonitrile butadiene styrene, nylon, polyimide, polysulfone, polyamide-imide, self-reinforcing polyphenylene, etc.), or a hybrid thermosetting-thermoplastic polymeric material. The fibers may be made of any suitable material such as carbon fibers, polymeric fibers such as aramid fibers, boron fibers, glass fibers, ceramic fibers, etc.
Furthermore, in some embodiments, the reinforcing sheet 1 19 may comprise a fabric or textile material. For example, the reinforcing sheet 1 19 may comprise a fabric mesh such as a nylon mesh or any other suitable fabric material. For example, the reinforcing sheet 1 19 may envelop the subshell 85x over which it is disposed such as to cover at least a majority (i.e. , a majority or an entirety) of an outer surface of that subshell 85x. Moreover, the reinforcing sheet 1 19 may also cover at least a majority of an internal surface of a subsequent subshell 85y overlying the subshell 85x. Thus, the reinforcing sheet 1 19 may extend from the lateral side portion 66 to the medial side portion 68 of the shell 30. In other cases, the reinforcing sheet 1 19 may be disposed at
limited portions of the shell 30 (e.g., only the ankle portion 64 of the shell 30).
In another example, as shown in Figure 21 C, the reinforcement 1 15 may comprise a single fiber 1 1 1 rather than a fabric mesh. The single fiber 1 1 1 is configured to apply tension forces on the shell 30 and/or other components of the skate boot 22. In particular, the tension of the single fiber 1 1 1 is transmitted onto the shell 30 and thus may allow controlling its performance.
In some embodiments, multiple reinforcements 1 15 may be included between the subshells 85I -85L of the shell 30. For instance, a rib 1 17, may be disposed at a selected area of the shell 30 while a reinforcing sheet 1 19 may be disposed at another selected area of the shell 30.
Moreover, in some embodiments, rather than or in addition of the reinforcement 1 15, the shell 30 may comprise a decoration 121 , which can be referred to as a design element, disposed between certain ones of the subshells 85I -85L of the shell 30 such as, for instance, between the intermediate and external subshells 852, 853 as shown in Figure 19. The design element 121 constitutes an aesthetic element that is produced separately from the shell 30 and may be included in the shell 30 in order to affect its aesthetic look. For instance, the design element 121 may comprise a piece of material including a graphical representation of: one or more alphanumeric characters that may form text (e.g., a word, a message, etc.); one or more symbols (e.g., a logo, a sign, an emblem, etc.); one or more shapes or patterns; and/or one or more real or imaginary objects (e.g., a person, an animal, a vehicle, an imaginary or fictional character, or any other real or imaginary thing). The design element 121 is affixed to an exterior surface of the intermediate subshell 852 after forming the intermediate subshell 852 and prior to forming the external subshell 853. For instance, the design element 121 may be mechanically affixed (e.g., stapled, stitched, etc.), glued (e.g., via an adhesive), ultrasonically bonded, or affixed in any other suitable way to the exterior surface of the intermediate subshell 852. While a single design element 121 is depicted in Figure 19, the shell 30 may comprise a plurality of such design elements which may be spaced
apart from one another. Moreover, in some cases, the reinforcement 1 15, which is depicted in Figure 19 spaced apart from the decoration 121 , itself may act as a decoration in addition to its reinforcing functionality.
Once the reinforcement 1 15 (or multiple reinforcements 1 15) and/or the design element 121 (or multiple design elements 121 ) has been affixed to the exterior surface of the intermediate subshell 852, the molding process proceeds as described above. Notably, the next subshell, in this case the external subshell 853, is formed such that it covers the reinforcement 1 15 and/or the design element 121 thus trapping the reinforcement 1 15 and/or the design element 121 between the intermediate subshell 852 and the external subshell 853. In some embodiments, the external subshell 853 may be clear (i.e. , translucent) and may thus allow displaying the reinforcement 1 15 and/or the design element 121 through the external subshell 853. This may be particularly useful to display the design element 121 but may also be useful to display the reinforcement 1 15 for aesthetic purposes.
In this embodiment, the molding process employed to form the shell 30 is low-pressure injection molding. That is, the polymeric materials MI -MN that constitute the subshells 85I -85L are injected into the mold cavity formed by each mold 154, at a relatively low pressure. In addition, the molding process employed to form the shell 30 may be characterized as a co-injection molding process since the polymeric materials MI -MN are injected into a same mold.
In this embodiment, no external heat is applied to the polymeric materials MI -MN of the shell 30. Rather, in this embodiment, as shown in Figure 22, in order to form a subshell 85i, two or more constituents of a given polymeric material Mx chemically react when combined to release heat. In other words, the two or more constituents have an exothermic reaction when combined. For instance, in one example, the material Mx is polyurethane and includes constituents 125, 127 that chemically react when combined. The constituents 125, 127 may be polyols and isocyanates. The exothermic chemical reaction that characterizes the molding process of the shell 30 contrasts the
conventional method of forming a skate boot shell which involves thermoforming whereby heat is applied to a thermoformable sheet of material in a mold such that the thermoformable sheet of material acquires the shape of the mold.
The molding process of the shell 30 may be implemented in any suitable way in other embodiments. For example, in some embodiments, injection molding at higher pressure may be used. As another example, in some embodiments, two or more lasts such as the last 152 may be used (e.g., different lasts for molding respective ones of the subshells dd^ddi.). Moreover, the last 152 may be configured differently than the last shown in Figure 13. For instance, the last 152 may not comprise projections for forming the apertures 43 and rather one or more of the female molds 154i -154N may comprise such projections for forming the apertures 48. In other cases, the projections on the last 152 for forming the apertures 48 may be retractable. As another example, in some embodiments, the molding process of the shell 30 may be casting in which the polymeric materials MI -MN are poured into one or more molds.
The skate boot 22 may comprise an overlay 102 on an external surface 65 of the shell 30 for aesthetic or functional purposes.
With additional reference to Figure 23, in this embodiment, the overlay 102 comprises a plurality of overlay elements 104i -104o that can be disposed at any suitable part of the shell 30. For example, in some cases, the overlay elements 104i -104o may be a graphic (e.g., a logo), a brand name, a pattern, a word, etc. While the overlay elements 104i-104o may improve an aesthetic appearance of the skate 10, in some cases, certain overlay elements 104i-104o may also serve functional purposes. For instance, in some cases, the overlay elements 104i-104o may be configured to minimize wear of at least a portion of the external surface 65 of the shell 30. For example, an overlay element 104x may be located close to a bottom portion of the medial and/or lateral sides of the shell 30 in order to prevent contact between the playing surface 12 and the shell 30 of the skate boot 22. This may help in reducing undue wear of the skate 10.
The overlay 102 may be affixed to the external surface 65 of the shell 30 in various ways. For instance, each of the overlay elements 104i-104o may be mechanically fastened to the external surface 65 of the shell 30 (e.g., via stitching, staples, etc.), glued thereto via an adhesive, or ultrasonically bonded. The overlay elements 104i- 104o may be affixed to the external surface 65 of the shell 30 in any other suitable way.
The inner lining 36 of the skate boot 22 is affixed to an inner surface of the shell 30 and comprises an inner surface 96 for facing the heel HL and medial and lateral sides MS, LS of the player’s foot 1 1 and ankle A in use. The inner lining 36 may be made of a soft material (e.g., a fabric made of NYLON® fibers or any other suitable fabric). The footbed 38 is mounted inside the shell 30 and comprises an upper surface 106 for receiving the plantar surface PS of the player’s foot 1 1 and a wall 108 projecting upwardly from the upper surface 106 to partially cup the heel HL and extend up to a medial line of the player’s foot 1 1. The insole 40 has an upper surface 25 for facing the plantar surface PS of the player’s foot 1 1 and a lower surface 23 on which the shell 30 may be affixed.
In some embodiments, the skate boot 22 may not comprise an inner lining 36. For instance, the internal subshell 85! of the shell 30 of the skate boot 22 may serve as an inner lining already and thus the addition of the inner lining 36 may be redundant. In other cases, the inner lining 36 may be inserted during the molding process using the molding apparatus 150. For example, a textile material may first be placed on the last 152 prior to forming the first subshell (i.e. , the internal subshell 85i) such as to serve as a pre-formed“sock” onto which the internal subshell 85! is formed.
The toe cap 32 of the skate boot 22 is configured to face and protect the toes T of the player’s foot 1 1. As will be described in more detail below, in this example, at least part (i.e., part or all) of the toe cap 32 is formed integrally with the shell 30. As shown in Figures 6, 8 and 9, the toe cap 32 comprises a bottom portion 1 16 for at least partially covering a front portion of the lower surface 23 of the insole 40, a lateral side portion 1 18 for facing a small toe of the foot 1 1 of the player, a medial side portion 120 for
facing a big toe of the foot 1 1 of the player, an end portion 122 between the lateral and medial side portions 1 18, 120, an upper portion 124 for facing a top of the toes T of the player’s foot 1 1 , and a top extension 126 for affixing the tongue 34 to the toe cap 32. The top extension 126 of the toe cap 32 may be affixed (e.g., glued and/or stitched) to a distal end portion of the tongue 34 in order to affix the tongue 34 to the toe cap 32.
The toe cap 32 may comprise a synthetic material 105 that imparts stiffness to the toe cap 32. For instance, in various embodiments, the synthetic material 105 of the toe cap 32 may comprise nylon, polycarbonate materials (e.g., Lexan®), polyurethane, thermoplastics, thermosetting resins, reinforced thermoplastics, reinforced thermosetting resins, polyethylene, polypropylene, high density polyethylene or any other suitable material. In some cases, the synthetic material 105 of the toe cap 32 may be a composite material comprising thermoset material, thermoplastic material, carbon fibers and/or fiberglass fibers. For example, the composite material may be a fiber-matrix composite material that comprises a matrix in which fibers are embedded. The matrix may include any suitable polymeric resin, such as a thermosetting polymeric material (e.g., polyester, vinyl ester, vinyl ether, polyurethane, epoxy, cyanate ester, etc.), a thermoplastic polymeric material (e.g., polyethylene, polyurethane, polypropylene, acrylic resin, polyether ether ketone, polyethylene terephthalate, polyvinyl chloride, polymethyl methacrylate, polycarbonate, acrylonitrile butadiene styrene, nylon, polyimide, polysulfone, polyamide-imide, self-reinforcing polyphenylene, etc.), or a hybrid thermosetting- thermoplastic polymeric material. The fibers may be made of any suitable material such as carbon fibers, polymeric fibers such as aramid fibers, boron fibers, glass fibers, ceramic fibers, etc.
The tongue 34 extends upwardly and rearwardly from the toe cap 32 for overlapping the top surface TS of the player’s foot 1 1. In this embodiment, with additional reference to Figure 24, the tongue 34 comprises a core 140 defining a section of the tongue 34 with increased rigidity, a padding member (not shown) for absorbing impacts to the tongue 34, a peripheral member 144 for at least partially defining a periphery 145 of
the tongue 34, and a cover member 146 configured to at least partially define a front surface of the tongue 34. The tongue 34 defines a lateral portion 147 overlying a lateral portion of the player’s foot 1 1 and a medial portion 149 overlying a medial portion of the player’s foot 1 1. The tongue 34 also defines a distal end portion 151 for affixing to the toe cap 32 (e.g., via stitching) and a proximal end portion 153 that is nearest to the player’s shin S.
The tendon guard 35 extends upwardly from the rear portion 82 of the ankle portion 64 of the shell 30 in order to protect the player’s Achilles tendon AT. As will be described in more detail below, in this embodiment, at least part (i.e. , part or all) of the tendon guard 35 is integrally formed with the shell 30 of the skate boot 22. In other embodiments, the tendon guard 35 may be a separate component from the shell 30 such that the tendon guard 35 is fastened to the shell 30 via a mechanical fastener (e.g., via stitching, stapling, a screw, etc.) or in any other suitable way.
The skate boot 22 may be constructed in any other suitable way in other embodiments. For example, in other embodiments, various components of the skate boot 22 mentioned above may be configured differently or omitted and/or the skate boot 22 may comprise any other components that may be made of any other suitable materials and/or using any other suitable processes.
As shown in Figure 25, the blade 26 comprises an ice-contacting material 220 including an ice-contacting surface 222 for sliding on the ice surface while the player skates. In this embodiment, the ice-contacting material 220 is a metallic material (e.g., stainless steel). The ice-contacting material 220 may be any other suitable material in other embodiments.
As shown in Figures 4, 5 and 7, the blade holder 24 comprises a lower portion 162 comprising a blade-retaining base 164 that retains the blade 26 and an upper portion 166 comprising a support 168 that extends upwardly from the blade-retaining base 164 towards the skate boot 22 to interconnect the blade holder 24 and the skate
boot 22. A front portion 170 of the blade holder 24 and a rear portion 172 of the blade holder 24 define a longitudinal axis 174 of the blade holder 24. The front portion 170 of the blade holder 24 includes a frontmost point 176 of the blade holder 24 and extends beneath and along the player’s forefoot in use, while the rear portion 172 of the blade holder 24 includes a rearmost point 178 of the blade holder 24 and extends beneath and along the player’s hindfoot in use. An intermediate portion 180 of the blade holder 24 is between the front and rear portions 170, 172 of the blade holder 24 and extends beneath and along the player’s midfoot in use. The blade holder 24 comprises a medial side 182 and a lateral side 184 that are opposite one another.
The blade-retaining base 164 is elongated in the longitudinal direction of the blade holder 24 and is configured to retain the blade 26 such that the blade 26 extends along a bottom portion 186 of the blade-retaining base 164 to contact the ice surface 12. To that end, the blade-retaining base 164 comprises a blade-retention portion 188 to face and retain the blade 26. In this embodiment, as shown in Figure 26A, the blade-retention portion 188 comprises a recess 190 in which an upper portion of the blade 26 is disposed.
The blade holder 24 can retain the blade 26 in any suitable way. For instance, in this embodiment, the blade 26 may be permanently affixed to the blade holder 24 (i.e. , not intended to be detached and removed from the blade holder 24). For example, as shown in Figure 27, the blade 26 and the blade-retaining base 164 of the blade holder 24 may be mechanically interlocked via an interlocking portion 234 of one of the blade-retaining base 164 and the blade 26 that extends into an interlocking void 236 of the other one of the blade-retaining base 164 and the blade 26. For instance, in some cases, the blade 26 can be positioned in a mold used for molding the blade holder 24 such that, during molding, the interlocking portion 234 of the blade- retaining base 164 flows into the interlocking void 236 of the blade 26 (i.e., the blade holder 24 is overmolded onto the blade 26). In some embodiments, as shown in Figures 26 and 28, the blade holder 24 may retain the blade 26 using an adhesive
226 and/or one or more fasteners 228. For instance, in some embodiments, as shown in Figure 26, the recess 190 of the blade holder 24 may receive the upper portion of the blade 26 that is retained by the adhesive 226. The adhesive 226 may be an epoxy-based adhesive, a polyurethane-based adhesive, or any suitable adhesive. In some embodiments, instead of or in addition to using an adhesive, as shown in Figure 29, the recess 190 of the blade holder 24 may receive the upper part of the blade 26 that is retained by the one or more fasteners 228. Each fastener 228 may be a rivet, a screw, a bolt, or any other suitable mechanical fastener. In some embodiment, the blade holder 24 may retain the blade 26 via a press fit. For example, as shown in Figure 26B, the recess 190 of the blade holder 24 may be configured (e.g., sized) such as to enter into a press fit with the blade 26. More particularly, in this example of implementation, the blade 26 comprises an elastomeric coating 237 including an elastomeric material (e.g., polyurethane, rubber, or any other suitable elastomeric material) that forms at least part of an outer surface of the blade 26. The elastomeric coating 237 has a greater friction coefficient than the ice-contacting material 220 of the blade 26 when interacting with the blade holder 24 such as to improve retention of the blade 26 by the blade holder 24 in a press fit. Alternatively or additionally, in some embodiments, as shown in Figure 28, the blade-retention portion 188 of the blade holder 24 may extend into a recess 230 of the upper part of the blade 26 to retain the blade 26 using the adhesive 226 and/or the one or more fasteners 228. For instance, in some cases, the blade- retention portion 188 of the blade holder 24 may comprise a projection 232 extending into the recess 230 of the blade 26.
In this embodiment, the blade-retaining base 164 comprises a plurality of apertures 208I -2084 distributed in the longitudinal direction of the blade holder 24 and extending from the medial side 182 to the lateral side 184 of the blade holder 24. In this example, respective ones of the apertures 208I-2084 differ in size. The apertures 208I-2084 may have any other suitable configuration, or may be omitted, in other embodiments.
The blade-retaining base 164 may be configured in any other suitable way in other embodiments.
The support 168 is configured for supporting the skate boot 22 above the blade- retaining base 164 and transmit forces to and from the blade-retaining base 164 during skating. In this embodiment, the support 168 comprises a front pillar 210 and a rear pillar 212 which extend upwardly from the blade-retaining base 164 towards the skate boot 22. The front pillar 210 extends towards the front portion 56 of the skate boot 22 and the rear pillar 212 extends towards the rear portion 58 of the skate boot 22. The blade-retaining base 164 extends from the front pillar 210 to the rear pillar 212. More particularly, in this embodiment, the blade-retaining base 164 comprises a bridge 214 interconnecting the front and rear pillars 210, 212.
In this embodiment, at least part (i.e. , part or all) of the blade holder 24 is integrally formed with the shell 30 of the skate boot 22. That is, at least part of the blade holder 24 and the shell 30 of the skate boot 22 constitute a monolithic one-piece structure. The blade holder 24 thus comprises a portion 215 that is integrally formed with the shell 30 of the skate boot 22 such that the portion 215 of the blade holder 34 and the shell 30 of the skate boot 22 are formed together as one-piece in the molding apparatus 150 during the molding process.
In this embodiment, the portion 215 of the blade holder 24 includes one or more of the polymeric materials MrMN of the subshells dd^ddi. of the shell 30 of the skate boot 22. For instance, in this example, the portion 215 of the blade holder 24 includes the intermediate and external subshells 852, 853 and therefore comprises the polymeric materials M2, M3 associated therewith. In particular, in this example, a majority of the blade holder 24 is constituted by the polymeric material M2 of the intermediate subshell 852 such that the blade holder 24 consists primarily of a structural foam material. Alternatively, the portion 215 of the blade holder 24 may include one or more different materials.
In this embodiment, at least a majority (i.e. , a majority or an entirety) of the blade holder 24 may be integrally formed with shell 30. That is, the portion 215 of the blade holder 24 may be a major portion or the entirety of the blade holder 24. In this embodiment, an entirety of the blade holder 24 is integrally formed with the shell 30.
Therefore, in this embodiment, the blade holder 24 is formed with the shell 30 in the molding apparatus 150 with the last 152. In particular, the blade holder 24 is initially formed during forming of the intermediate subshell 852 of the shell 30 and is completed by the forming of the external subshell 853 of the shell 30. That is, in this embodiment, as shown in Figure 73, the intermediate subshell 852 is the innermost subshell of the blade holder 24 while the external subshell 853 is the outermost subshell of the blade holder 24.
Moreover, in this embodiment, the blade 26 is attached to the blade holder 24 during the molding process by including the blade 26 in a given mold 154, such that the blade holder 24 overmolds the blade 26 during the molding process. For instance, the mold 154, may be designed specifically to hold the blade 26 during the molding process prior to the forming of the intermediate subshell 852.
In this embodiment, one or more other components (e.g., the toe cap 32, the tendon guard 35, the lace members 44i , 442, the tongue 34, the footbed 38, etc.) of the skate boot 22 may be molded integrally with the shell 30 in the molding apparatus 150 during the molding process. The shell 30 and these one or more other components of the skate boot 22 may thus constitute a monolithic one-piece structure.
For example, in this embodiment, the toe cap 32, the tendon guard 35, and the lace members 44i, 442 are molded integrally with the shell 30 in the molding apparatus 150 during the molding process.
For instance, in this embodiment, the toe cap 32 comprises a portion 217 that is integrally formed with the shell 30 such that the portion 217 of the toe cap 32 of the skate boot 22 and the shell 30 of the skate boot 22 are formed together as one-piece in the molding apparatus 150 during the molding process. As such, the portion 217 of the toe cap 32 of the skate boot 22 may include one or more of the polymeric materials MrMN of the subshells ddϊ-ddί. of the shell 30 of the skate boot 22.
In this embodiment, the portion 217 of the toe cap 32 includes one or more of the polymeric materials MrMN of the subshells dd^ddi. of the shell 30 of the skate boot 22. For instance, in this example, the portion 217 of the toe cap 32 includes the internal, intermediate and external subshells 35i, 352, 353 and therefore comprises the polymeric materials Mi, M2, M3 associated therewith. Alternatively, the portion 217 of the toe cap 32 may include one or more different materials.
Moreover, in this embodiment, the tendon guard 35 comprises a portion 219 that is integrally formed with the shell 30 such that the portion 219 of the tendon guard 35 of the skate boot 22 and the shell 30 of the skate boot 22 are formed together as one-piece in the molding apparatus 150 during the molding process. As such, the portion 219 of the tendon guard 35 of the skate boot 22 may include one or more of the polymeric materials MI-MN of the subshells 35i-35L of the shell 30 of the skate boot 22. For instance, in this example, the portion 219 of the tendon guard 35 includes solely the external subshell 353 and therefore comprises the polymeric material M3 associated therewith. Alternatively, the portion 219 of the tendon guard 35 may include one or more different materials. For example, in some embodiments, the portion 219 of the tendon guard 219 may also comprise the internal subshell 35i and/or the intermediate subshell 352 such that the portion 219 of the tendon guard 35 also comprises the polymeric material Mi and/or the polymeric material M2 associated therewith.
Moreover, in this embodiment, each of the lace members 44 442 comprises a portion 221 that is integrally formed with the shell 30 such that the portion 221 of
each of the lace members 44^ 442 of the skate boot 22 and the shell 30 of the skate boot 22 are formed together as one-piece in the molding apparatus 150 during the molding process. As such, the portion 221 of each lace member 44, of the skate boot 22 may include one or more of the polymeric materials MI-MN of the subshells 85i- 85L of the shell 30 of the skate boot 22. For instance, in this example, the portion 221 of the lace member 44, includes solely the external subshell 853 and therefore comprises the polymeric material M3 associated therewith. Alternatively, the portion 221 of the lace member 44, may include one or more different materials. For example, in some embodiments, the portion 221 of the lace member 44, may also comprise the internal subshell 85i and/or the intermediate subshell 852 such that the portion 221 of the lace member 44, also comprises the polymeric material Mi and/or the polymeric material M2 associated therewith. Moreover, in this embodiment, the apertures 48 that extend through the lace members 44 442 are formed during the molding process by appropriate structures (e.g., projections) of the last 152 and an associated female mold 154,.
The skate 10 may be implemented in any other suitable manner in other embodiments.
For example, in some embodiments, as shown in Figures 30 to 32, only a limited part 225 of the blade holder 24 may be integrally formed with the shell 30. For instance, in some embodiments, the part 225 of the blade holder 24 may comprise a projection 227 projecting from an underside of the shell 30 to which another part 229 of the blade holder 24 may be secured. As shown in Figures 31 and 32, the projection 227 of the part 225 of the blade holder 24 may be secured to the other part 229 of the blade holder 24 via an adhesive 231 that is applied between the two parts 225, 229 or in some cases via mechanical fasteners such as a nut and bolt assembly 233 that traverses the parts 225, 229 to secure them together. The parts 225, 229 of the blade holder 24 may be secured to one another in any other suitable way in other embodiments. In other embodiments, a substantial part of the blade holder 24 may be molded integrally with the shell 30. For example, in some cases, at
least a majority of the blade holder 24 may be molded together with the shell 30. In some case, substantially an entirety of the blade holder 24 may be molded integrally with the shell 30.
For instance, in some embodiments, the blade holder 24 may retain the blade 26 in any other suitable way. For example, in other embodiments, as shown in Figure 33, the blade holder 24 comprises a blade-detachment mechanism 192 such that the blade 26 is selectively detachable and removable from, and attachable to, the blade holder 24 (e.g., when the blade 26 is worn out or otherwise needs to be replaced or removed from the blade holder 24).
More particularly, in this embodiment, the blade 26 includes a plurality of projections 194, 196. The blade-detachment mechanism 192 includes an actuator 198 and a biasing element 200 which biases the actuator 198 in a direction towards the front portion 170 of the blade holder 24. In this embodiment, the actuator 198 comprises a trigger. To attach the blade 26 to the blade holder 24, the front projection 194 is first positioned within a hollow space 202 (e.g., a recess or hole) of the blade holder 24. The rear projection 196 can then be pushed upwardly into a hollow space 204 (e.g., a recess or hole) of the blade holder 24, thereby causing the biasing element 200 to bend and the actuator 198 to move in a rearward direction. The rear projection 196 will eventually reach a position which will allow the biasing element 200 to force the actuator 198 towards the front portion 170 of the blade holder 24, thereby locking the blade 26 in place. The blade 26 can then be removed by pushing against a finger- actuating surface 206 of the actuator 198 to release the rear projection 196 from the hollow space 204 of the blade holder 24. Thus, in this embodiment, the blade- detachment mechanism 192 is free of any threaded fastener (e.g., a screw or bolt) to be manipulated to detach and remove the blade 26 from the blade holder 24 or to attach the blade 26 to the blade holder 24.
Further information on examples of implementation of the blade-detachment mechanism 192 in some embodiments may be obtained from U.S. Patent 8,454,030
hereby incorporated by reference herein. The blade-detachment mechanism 192 may be configured in any other suitable way in other embodiments.
The blade 26 may be implemented in any other suitable way in other embodiments. For example, in some embodiments, as shown in Figures 34 and 35, the blade 26 may comprise a runner 238 that is made of the ice-contacting material 220 and includes the ice-contacting surface 222 and a body 240 connected to the runner 238 and made of a material 242 different from the ice-contacting material 220. The runner 238 and the body 240 of the blade 26 may be retained together in any suitable way. For example, in some cases, the runner 238 may be adhesively bonded to the body 240 using an adhesive. As another example, in addition to or instead of being adhesively bonded, the runner 238 and the body 240 may be fastened using one or more fasteners (e.g., rivets, screws, bolts, etc.). As yet another example, the runner 238 and the body 240 may be mechanically interlocked by an interlocking portion of one of the runner 238 and the body 240 that extends into an interlocking space (e.g., one or more holes, one or more recesses, and/or one or more other hollow areas) of the other one of the runner 238 and the body 240 (e.g., the body 240 may be overmolded onto the runner 238).
In some embodiments, one or more other components (e.g., the tongue 34, the footbed 38, etc.) of the skate boot 22 may be molded integrally with the shell 30 in the molding apparatus 150 during the molding process. The shell 30 and these one or more other components of the skate boot 22 may thus constitute a monolithic one-piece structure. A given component of the skate boot 22 may therefore comprise a portion 235 that is integrally formed with the shell 30 such that the portion 235 of the given component of the skate boot 22 and the shell 30 of the skate boot 22 are formed together as one-piece in the molding apparatus 150 during the molding process.
As such, the portion 235 of the given component of the skate boot 22 may include one or more of the polymeric materials MΪ-MN of the subshells dd^ddi. of the shell 30
of the skate boot 22. For instance, the portion 235 of the given component may include one or more of the internal, intermediate and external subshells 85i , 852, 853 and therefore may comprise one or more of the polymeric materials Mi , M2, M3 associated therewith. Alternatively, the portion 235 of the given component may include one or more different materials.
For example, in some embodiments, with additional reference to Figure 36, the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44 442 may be molded integrally with the shell 30 of the skate boot 22. That is, at least a portion of (i.e. , a part or an entirety of) each of the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44i, 442 may be formed integrally with the shell 30 as one-piece in the molding apparatus 150 during the molding process.
As shown in Figure 42, in some embodiments, when the footbed 38 is formed integrally with the shell 30 during the molding process, one or more the subshells dd^ddi. may form the footbed 38. Moreover, in some embodiments, as shown in Figure 43A, when the footbed 38 is formed integrally with the shell 30 during the molding process, a portion of the footbed 38 may project outwardly such as to fill a gap of a subshell 85, in the sole portion 69 of the shell 30.
In some embodiments, as shown in Figure 45, when the footbed 38 is formed integrally with the shell 30 during the molding process, the footbed 38 may be configured to project outwardly such as to fill respective gaps of the internal and intermediate subshells 85i, 852 in the sole portion 69 of the shell 30.
In some embodiments, at least a portion of (i.e., part or an entirety of) the blade holder 24 may be attached to a given one of the subshells 85I -85L of the shell 30. For instance, the portion of the blade holder 24 may be joined to the given one of the subshells dd^ddi. during forming of the shell 30. For example, as shown in Figure 47A, the portion of the blade holder 24 may be affixed to an exterior surface of the
internal subshell 85! and the intermediate and external subshells 852, 853 may be formed around the portion of the blade holder 24.
In other embodiments, as discussed above, the portion of the blade holder 24 may be formed during the molding process of the shell 30. For example, as shown in Figure 47B, a majority or an entirety of the portion of the blade holder 24 may be constituted by the external subshell 853. Moreover, the footbed 38 may be formed or affixed directly on the portion of the blade holder 24 (i.e. , on the external subshell 853 that makes up a majority or an entirety of the portion of the blade holder 24).
In some embodiments, as shown in Figure 48, the footbed 38 may be formed integrally with the shell 30 so as to project outwardly into a gap of the internal subshell 85! in the sole portion 69 of the shell 30.
In some embodiments, as shown in Figure 52, when the blade holder 24 is formed integrally with the shell 30 during the molding process, the portion of the blade holder 24 that is formed integrally with the shell 30 (e.g., a part or an entirety of the blade holder 24) may be constituted by the intermediate subshell 852 such that the intermediate subshell 852 is exposed at the blade holder 24. In other embodiments, as shown in Figure 53, when the blade holder 24 is formed integrally with the shell 30 during the molding process, a given one of the subshells 85I-85L may be formed to envelop the blade holder 24. That is, a given one of the subshells 85I -85L may be formed around the blade holder 24 but not around the shell 30.
In some embodiments, with additional reference to Figure 54, the shell 30 and possibly one or more other components of the skate boot 22 may be manufactured separately from the blade holder 24, which may be manufactured separately and attached to the skate boot 22.
For example, in some embodiments, as shown in Figure 37, the shell 30 of the skate boot 22 may be formed alone in the molding apparatus 150, i.e., separately from the
toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44i , 442. As shown in Figure 38, the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44i , 442 may be attached to the shell 30 after the shell 30 has been formed. For instance, any given one of the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44 442 may be formed on the shell 30 in a separate molding process similar to the one described above in respect of the shell 30. For example, the given one of the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44 442 may be overmolded onto the shell 30. In some cases, the given one of the toe cap 32, the tongue 34, the tendon guard 35, the footbed 38 and the lace members 44i , 442 may be formed separately from the shell 30 during another molding process (e.g., a thermoforming process) and attached to the shell 30 via a fastener (e.g., stitching, stapling, etc.) or via gluing (e.g., using an adhesive).
In other embodiments, as shown in Figure 46, the footbed 38 may be an insert that is placed between the internal subshell 85i and the intermediate subshell 852 and/or between the internal subshell 85! and the external subshell 853 during forming of the shell 30 in a manner similar to that described above in respect of the reinforcement 115 for example. In such embodiments, the player’s foot 11 does not contact the footbed 38 directly, however the footbed 38 may still provide comfort to the player’s foot 11 by interacting between the subshells.
As shown in Figures 49 and 51 , in some embodiments, the blade holder 24 may be formed separately from the internal, intermediate and external subshells 85i , 852, 853 of the shell 30.
In such embodiments where the shell 30 and possibly one or more other components of the skate boot 22 are manufactured separately from the blade holder 24, the skate boot 22 may comprise an outsole 42, as shown in in Figure 54. The outsole 42 is affixed to an underside of the shell 30 for forming the skate boot 22. The outsole 42 comprises a rigid material for imparting rigidity to the outsole 42.
More particularly, in this embodiment, the rigid material of the outsole 42 comprises a composite material. For example, the composite material may be a fiber-matrix composite material that comprises a matrix in which fibers are embedded. The matrix may include any suitable polymeric resin, such as a thermosetting polymeric material (e.g., polyester, vinyl ester, vinyl ether, polyurethane, epoxy, cyanate ester, etc.), a thermoplastic polymeric material (e.g., polyethylene, polypropylene, acrylic resin, polyether ether ketone, polyethylene terephthalate, polyvinyl chloride, polymethyl methacrylate, polycarbonate, acrylonitrile butadiene styrene, nylon, polyimide, polysulfone, polyamide-imide, self-reinforcing polyphenylene, etc.), or a hybrid thermosetting-thermoplastic polymeric material. The fibers may be made of any suitable material such as carbon fibers, polymeric fibers such as aramid fibers, boron fibers, glass fibers, ceramic fibers, etc. In other embodiments, the rigid material may comprise any other suitable material (e.g., nylon, polycarbonate materials, polyurethane, thermoplastics, thermosetting resins, reinforced thermoplastics, reinforced thermosetting resins, polyethylene, polypropylene, high density polyethylene).
Moreover, in such embodiments where the skate boot 22 and the blade holder 24 are manufactured separately, the support 168 of the blade holder 24 and the skate boot 22 may be affixed to one another in any suitable way. For example, in some embodiments, as shown in Figure 55, the front and rear pillars 210, 212 are fastened to the skate boot 22 by fasteners (e.g., rivets, screws, bolts). In this example, each of the front and rear pillars 210, 212 comprises a flange 216 including a plurality of apertures 218I-218F to receive respective ones of the fasteners that fasten the blade holder 24 to the skate boot 22. The support 168 may be affixed to the skate boot 22 in any other suitable manner in other embodiments (e.g., by an adhesive).
In some embodiments, the skate boot 22 may comprise a reinforcement 270 molded integrally with the shell 30 to enhance a torsional strength of the skate boot 22 and/or protection of the player’s foot 11 against impacts (e.g., from a puck or hockey stick).
For instance, the reinforcement 270 may comprise an extension 272 that extends beyond the ankle portion 64 of the shell 30 of the skate boot 22 in the longitudinal direction of the skate 10. In contrast, Figure 56 illustrates a conventional configuration of the shell 30 without the reinforcement 270 and thus without the extension 272. As shown, in such a conventional configuration, no part of the shell extends beyond the ankle portion 64 of the shell 30 in the longitudinal direction of the skate.
With additional reference to Figures 57A and 57B, the extension 272 may be located in front of the ankle portion 64 of the shell 30 in the longitudinal direction of the skate 10. As such, the extension 272 may be configured to protect a front portion of the player’s ankle A and the top surface TS of the player’s foot 11. The extension 272 may extend in front of the ankle portion 64 of the shell 30 to different extents. For instance, as shown in Figure 57B, the extension 272 may extend from the medial ankle side 74 of the ankle portion 64 of the shell 30 and wrap around the player’s ankle A such that the extension 272 crosses from a medial half 278 of the skate boot 22 over a centerline 274 that generally bisects a width the skate boot 22 and into a lateral half 280 of the skate boot 22. In some cases, as shown in Figure 57A, the extension 272 may be shorter and extend frontwards from the medial ankle side 74 of the ankle portion 64 of the shell 30 and wrap around over a portion of the player’s foot 11 but does not cross over into the lateral half 280 of the skate boot 22. Alternatively, in some cases, rather than extending from the medial ankle side 74, the extension 272 may extend from the lateral ankle side 76 of the ankle portion 64 of the shell 30.
In an example of the variant, as shown in Figure 58, the extension 272 may connect the medial ankle side 74 of the ankle portion 64 of the shell 30 to the lateral ankle side 76 of the ankle portion 64 of the shell 30 in a direction frontwardly of the ankle portion 64 of the shell 30. In other words, the extension 272 may be configured such that the shell 30 wraps around a front and a rear of the player’s ankle A. As such,
the shell 30 may be continuous in a region frontwardly of the ankle portion 64 of the shell 30, and may thus lack an opening in which the tongue 34 of the skate boot 22 is typically located. Consequently, in such embodiments, the skate boot 22 may not comprise a tongue 34 or lace members 44i , 442. Moreover, the extension 272 may create a gap 275 (i.e. , a spacing) between the extension 272 and the player’s foot 11 in the longitudinal direction of the skate 10 to facilitate motion (e.g., flexion) of the ankle A while skating. In other embodiments, as shown in Figure 59, the extension 272 may be configured to wrap around the player’s foot 11 such that there is substantially no gap between the extension 272 and the player’s foot 11 in the longitudinal direction of the skate 10.
In some embodiments, the extension 272 may comprise a plurality of free ends 276^ 2762 that are movable relative to one another and converge toward one another. In some embodiments, as shown in Figure 60, the free ends 276i, 2762 of the extension 272 may meet in front of the ankle portion 64 of the shell 30. For example, the free ends 276i , 2762 may meet symmetrically about the centerline 274 of the skate 10. In other embodiments, the free ends 276^ 2762 may meet in the medial half 278 or the lateral half 280 of the skate boot 22. While Figure 60 illustrates the free ends 276i , 2762 as leaving a gap 275 between the player’s foot 11 and the free ends 276i , 2762 in the longitudinal direction of the skate 10, in some embodiments, the free ends 276i , 2762 may terminate relatively close to the player’s foot 11 such that there is substantially no gap between the player’s foot 11 and the free ends 276^ 2762.
In some embodiments, each free end 276, of the extension 272 may comprise an overlapping portion 282 that overlaps another portion of the free end 276, in the longitudinal direction of the skate 10. For example, as shown in Figure 61 , the overlapping portion 282 of each free end 276, may be a portion of the free end 276, that faces rearwardly toward the player’s ankle A.
In a variant, the extension 272 may be in the rear portion 82 of the ankle portion 64 of the shell 30. For instance, as shown in Figure 62, the extension 62 may be configured such that the gap 275 is between a rear portion of the ankle A of the player and the extension 272. In some cases, the reinforcement 270 may comprise more than one extension. For instance, with additional reference to Figures 63, 64 and 70, the skate boot 22 may comprise a first extension 272 extending frontwardly of the ankle portion 64 of the shell 30 and a second extension 284 extending rearwardly of the ankle portion 64 of the shell 30. In some embodiments, as shown in Figure 63, the second extension 284 may comprise the free ends 276^ 2762 such that the free ends 276i, 2762 extend rearwardly of the ankle portion 64 of the shell 30.
In some examples of the variant where an extension 272, 284 of the skate boot 22 extends rearwardly of the ankle portion 64 of the shell 30, the tendon guard 35 may be omitted in order to provide additional flexibility when skating.
In another variant, the reinforcement 270 may comprise the lace members 44 442 of the skate boot 22. That is, the lace members 44i , 442 may be configured to enhance a torsional strength of the skate boot 22 and/or protection of the player’s foot 11 against impacts. For instance, as shown in Figures 66 to 68, a given one of the lace members 44i, 442 extending in a given one of the medial half 278 and the lateral half 280 of the skate boot 22 may cross over to the other one of the medial half 278 and the lateral half 280 of the skate boot 22. The other one of the lace members 44i, 442 may generally follow a direction defined by the given one of the lace members 44i, 442. This may be defined as a“twisted” configuration of the skate boot 22.
As shown in Figure 69, in some examples of the twisted configuration of the skate boot 22, the reinforcement 270 may also comprise the extension 272. For example, the extension 272 may extend from the medial ankle side 74 to the lateral ankle side 76 of the ankle portion 64 of the shell 30 in a direction frontwardly of the player’s
ankle A such that the gap 275 is present between the extension 272 and the player’s foot 11 in the longitudinal direction of the skate 10.
The twisted configuration of the skate boot 22 may increase the torsional rigidity and frontal impact protection of the skate boot 22 and thus may allow the shell 30 and/or other components of the skate boot 22 (e.g., the toe cap 32) to have a reduced thickness compared to a conventional skate boot without the twisted configuration where the lace members are confined to a single one of the medial or lateral halves of the skate boot. Moreover, the twisted configuration of the skate boot 22 may allow the skate boot 22 to be flexed in a different direction compared to a conventional skate boot. For instance, the twisted configuration of the skate boot 22 may allow the player to flex the skate boot 22 in the medial half 278 of the skate boot 22 in an area around the toe cap 32. As a result, the twisted configuration of the skate boot 22 may allow better conservation of energy used by the player to propulse himself/herself on the ice 12.
In another variant, with additional reference to Figure 65, the reinforcement 270 may comprise an opening 285 in the rear portion 82 of the ankle portion 64 of the shell 30. The opening 285 may extend vertically for a substantial portion of a height of the skate boot 22. For instance, in some cases, a ratio between a height of the opening 285 and the height of the skate boot 22 may be at least 0.3, in some cases at least 0.4, in some cases at least 0.5, in some cases at least 0.6 and in some cases even more.
In another variant, with reference to Figure 74, the blade holder 24 may be configured such that there is no spacing between the front and rear pillars 210, 212. In such a variant, the support 168 of the blade holder 24 comprises a“single” pillar 213 which is constituted by material that extends from the front portion 170 of the blade holder 24 to a rear portion 172 of the blade holder 24. In particular, in this example, the blade holder 24 does not have any openings extending from its lateral side to its medial side.
In another variant, the shell 30 and/or the blade holder 24 and/or another component of the skate boot 22 that is made integrally with the shell 30 may comprise one or more inserts 315i -315N over which one or more of the subshells 85I -85L may be molded. For instance, as shown in Figure 75, in this example, the blade holder 24 comprises a front insert 315! and a rear insert 3152 which respectively make up a part of the front and rear pillars 210, 212. More particularly, in this example of implementation, the front and rear inserts 315i, 3152 make up at least a majority (i.e. , a majority or an entirety) of the front and rear pillars 210, 212 of the support 168 of the blade holder 24. In this example, the front and rear inserts 315i, 3152 are affixed to the shell 30 during the molding process of the shell 30 in order to make the blade holder 24 integrally with the shell 30. For example, once a given number of the subshells 85!-85L are molded, the front and rear inserts 315^ 3152 are affixed to the formed subshells 85I-85L (e.g., by gluing, taping, or any other suitable way) and one or more other ones of the subshells 85I-85l, in this case the exterior subshell 853, is molded over the front and rear inserts 315i , 3152 and the formed subshells 85I -85L such as to form a continuous subshell 853 extending from the shell 30 to the blade holder 24. In other cases, as shown in Figure 76, the blade holder 24 may comprise a single one of the inserts 315i, 3152 (e.g., only the front insert 315i or only the rear insert 3152).
In other examples, the inserts 315i -315N may not be part of the blade holder 24 but may instead form part of the shell 30. For instance, as shown in Figures 78A, in this example, the shell 30 comprises an insert 315M disposed between given ones of the subshells 85I-85l. For example, the insert 315M may be disposed on an outer surface of the intermediate subshell 852 such that the exterior subshell 853 may be molded over the insert 315M and and the intermediate subshell 852. The insert 315M may be disposed at any portion of the shell 30. In this example, the insert 315M is disposed at a middle portion of the shell 30 corresponding to the intermediate portion 68 of the skate boot 22. In particular, the insert 315M is disposed such as to extend from the lateral side portion 66 of the shell 30 to the medial side portion 68 of
the shell 30 and wrapping around under the sole portion 69 of the shell 30. As shown in Figure 78B, the insert 315M may extend to various heights on the medial and lateral side portions 66, 68 of the shell 30. In some cases, the insert 315M may extend substantially a full height of each of the lateral and medial side portions 66, 68. As shown in Figure 78C, in some cases, the insert 315M may not extend to the lateral and medial side portions 66, 68 of the shell 30 but may rather be confined to be disposed under the sole portion 69 of the shell 30.
In this example, the inserts 315!-315N comprise a foam material. In particular, the foam material of the inserts 315i -315N has a density that is less than the density of the exterior subshell 853. This may be helpful to reduce the weight of the skate 10.
In another variant, as shown in Figure 79, a given subshell 85x (or more than one of the subshells) may comprise one or more filled portions 415i -415N made of a material Mz different from the material Mx of the subshell 85x. The filled portions 415I -415N constitute a portion of an other subshell 85y that was formed such as to fill a void in the given subshell 85x. As such the filled portions 4151-415N can be said to be“inserted” into voids formed in the subshell 85x and may thus be referred to as “inserts”. To implement the inserts 415i -415N, the subshell 85x is first molded to include a void. This may be achieved in various ways. For example, the void of the subshell 85x may be formed by placing a molding insert in the mold during molding of the subshell 85x. Once the subshell 85x has been demolded, the molding insert is removed, leaving a void in the subshell 85x. Alternatively or additionally, the void of the subshell 85x may be formed by removing (e.g., cutting out) a portion of the subshell 85x to form a void. The subshell 85x, which now includes a void, is then re- inserted into a corresponding mold and the material Mz is injected to fill in the void in the subshell 85x, effectively resulting in the subshell 85x comprising distinct materials. This can be useful to replace the material Mx of the subshell 85x at selected locations with another material with desired characteristics such as to modify characteristics of the subshell 85x. For example, the material Mz may have a stiffness that is different (e.g., greater or less than) from a density of the material Mx
of the subshell 85x. ln this example, the material Mz is stiffer than the material Mx of the subshell 85x. Moreover, the material Mz may have a density that is different (e.g., greater or less than) from a density of the material Mx of the subshell 85x. In this example, the material Mz is denser than the material Mx of the subshell 85x. In particular, the inserts 415-1-415N may modify the torsional characteristics of the skate boot 22 such that the skate boot 22 responds to torsional forces differently than if the subshell 85x did not comprise the inserts 415I -415n.
The inserts 415-1-415N may thus be distributed to achieve a desired performance of the skate boot 22. For example, Figures 80A to 80F show different potential distributions of the inserts 415i -415N. It is understood that the inserts 415i -415N may be positioned differently in other embodiments.
In some cases, rather than filling the void formed in the subshell 85x, the void may be left unfilled. This may modify the torsional characteristics of the skate boot 22. For example, as shown in Figure 89, the void left in the subshell 85x may form an opening 550 that can extend to an edge of the shell 30, such as the lateral or medial edges 45, 47 of the shell 30. The opening 550 comprises opposite edges 551 , 552 which converge towards one another at a proximal end and are distanced from one another at a distal end. In some cases, the torsional behavior of the skate boot 22 modified by the opening 550 may allow the opposite edges 551 , 552 to contact one another at the distal end. The act of contacting one another may act as a limit to the movement of the shell 30 allowed by the opening 550 which was otherwise not possible by the shell 30 without the opening 550.
In another variant, with reference to Figures 81 and 82, the molding process of the shell 30 (and other components that are integrally made with the shell 30) may include using a sheet 615 (e.g., a film) which may be helpful to facilitate the molding process and/or to facilitate the addition of aesthetic features (e.g, designs) to the skate boot 22. In this embodiment, the sheet 615 is a polymeric sheet comprising a polymeric material such as a polycarbonate, polypropylene, polyethylene or any
other suitable polymeric material. Moreover, in this example, the sheet 615 is a clear sheet (e.g., transparent or translucid) through which a person can see. In other examples, the sheet 615 may be opaque, colored (e.g., black, white or any other color), partially transparent, homogenous, and/or different at different areas.
In an example, the sheet 615 is overlaid on one or more of the formed subshells 85^ 85L such as to acquire a shape of the underlying subshell 85x (e.g., by thermoforming the sheet 615). In this example, the sheet 615 extends over at least a majority of the subshell 85x. In some cases, the sheet 615 may extend over substantially an entirety of the subshell 85x. The sheet 615 may then be sealed (e.g., heat sealed) to form a seam 617. A female mold 154x is then installed over the formed subshells 85I-85L and a material My of the subsequent subshell 85y is injected between the sheet 615 and the underlying subshell 85x. Once the subshell 85y has cured a desired amount, the subshell 85y is demolded from the mold 154x. The sheet 615 may allow the molding process of the subshell 85y to be faster than if no sheet was used. Notably, the presence of the sheet 615 between the material My and the female mold 154x may allow faster removal of the subshell 85y therefrom as the subshell 85y can be removed from the mold 154x without the material My having to have gone through its full polymerization. In contrast, if no sheet was used during the molding process, early removal of the subshell 85y from the mold 154x may compromise the quality of the subshell 85y (e.g., it may be deformed). Furthermore, due to the presence of the sheet 615 between the material My and the female mold 154x, the molding process may not require the addition of a mold release agent on surfaces of the mold 154x which is typically included to facilitate demolding. As such, the presence of the sheet 615 facilitates demolding of the subshells 85I-85L from the female mold 154x without using a mold release agent. This may also decrease imperfections in the subshell 85y since mold release agents, while useful, have a tendency to introduce imperfections in a molded product. Moreover, if fewer imperfections are formed, this may improve bonding between a subsequent subshell 85z (that is molded over the subshell 85y) and the subshell 85y,
Once the subshell 85y is molded, the sheet 615 may be disposed of and a new sheet 615 used in a similar manner to mold a subsequent subshell if any. Due to the relatively low cost of manufacturing the sheet 615, using the sheet 615 in the molding process may inexpensively increase quality of the subshells 85I -85L formed therewith.
In another example, the sheet 615 may not be disposed of after molding. Instead, as shown in Figure 82, the sheet 615 may be affixed to the shell 30 such as, for example, being integrated as a layer between given ones of the subshells dd^ddi.. In this example, the sheet 615 is formed over the subshell 85i and the subshell 853 is molded over the sheet 615. In examples where the subshell 853 overlying the sheet 615 is a clear subshell (e.g., transparent or translucent), this may be useful to display the sheet 615 in the finished product. Notably, the sheet 615 may comprise one or more design elements 618. The design element 618 may constitute a graphic, a color, a pattern, a word, a letter, a symbol or any other desired visual element. The design element 618 may be provided on the sheet 615 in any suitable way. For example, the design element 618 may be provided on the sheet 615 via silk-screening, pad printing, flexo printing or offset printing, or any other printing (e.g., jet print, water decal, sublimation, ink transfer, laser, etc.). The presence of the design element 618 may on the sheet 615 may allow to hide or otherwise obscure visual imperfections in the subshells 85I -85L which do not affect the mechanical properties of the subshells 85I-85l. In some cases, the sheet 615 with the design element 618 may be implemented as a permanent film. In other cases, the sheet 615 with the design element 618 may be implemented as a release film having a releasable layer that is removable and ink constituting the design element 618 that remains on the shell 30. Alternatively or additionally, the sheet 615 may comprise the reinforcement 115 (such as the ribs 117-i -117R or the reinforcing sheet 119) which may be affixed thereto in any suitable way (e.g., gluing, stitching, welding, mechanical interlock, etc.).
In the example of Figures 81 and 82, the sheet 615 is configured to span the shell 30 and the toe cap 32. In other examples, the sheet 615 may be configured to span the shell 30, the blade holder 24, the toe cap 32, the lace members 44i , 442 or any other components of the skate boot 22. Furthermore, the sheet 615 may constitute at least part of an external surface of the skate boot 22. In other words, the sheet 615 may be exposed, not only visually, but physically (i.e. , it can be touched). Moreover, in some cases, the sheet 615 may constitute a majority of the external surface of the skate boot 22. For example, the sheet 615 may constitute substantially an entirety of the external surface of the skate boot 22.
While in the examples given, the sheet 615 has been shown as being disposed between the subshells 85I-85l, in other examples the sheet 615 may be disposed between the inner lining 36 and the internal subshell 85! .
As another example, in some embodiments, the sheet 615 may be placed in the cavity 156 of the female mold 154i on the inner surface of the female mold 154i before molding the polymeric material Mi on the last 152 to form the internal subshell 85i of the shell 30. This may allow molding of the polymeric material Mi to form the internal subshell 85i and subsequent demolding without using a mold release agent.
As yet another example, in some embodiments, the sheet 615 may be placed on the last 152 before molding the polymeric material Mi to form the internal subshell 85! of the shell 30.
In some cases, the sheet 615 may be applied in planar form onto the last 152 or a given one of the subshells 85i-85L that is already molded to acquire the shape of the last 152 or that given one of the subshells 85I -85l. In other cases, the sheet 615 may be preformed in a non-planar form conforming to the shape of the last 152 or a given one of the subshells 85I-85L before being placed on the last 152 or the given one of the subshells 85I -85l.
The sheet 615 may reduce or eliminate parting lines on the shell 30 (i.e. , internal and/or external parting lines). For example, the sheet 615 may be configured to avoid at least one parting line on the shell 30 that would otherwise result because of the portions 155, 157 of a given one of the female molds '\ 54-I -'\ 543 if the sheet 615 was omitted. This allows one or more parting lines to be avoided as the sheet 615 overlies where these one or more parting lines would otherwise be located.
In another variant, as shown in Figure 83, the skate boot 22 may comprise a slash guard 515 configured to protect the player from cuts at a level above lateral and medial upper edges 45, 47 of the shell 30. The slash guard 515 is movable with respect to the tendon guard 35 (or with respect to the rear portion 82 of the ankle portion 64 of the shell 30 if no tendon guard is included). This may provide cut- resistant protection of the player’s ankle and/or shin while also allowing mobility thereof.
The slash guard 515 comprises a cut-resistant material 516 that resists cutting from impacts. In this example, the cut-resistant material 516 is a fabric consisting of aramid (e.g., Kevlar®) or any other suitable cut-resistant material. As such, the slash guard 515 may be pliable due to its fabric nature. In this embodiment, the slash guard 515 is movable with respect to the tendon guard 35 (or the rear portion 82 of the ankle portion 64 of the shell 30) due to the pliability of the cut-resistant material.
In this embodiment, the slash guard 515 is integrated (i.e., built into) the shell 30 and is permanently affixed thereto. In other words, in this embodiment, the slash guard 515 is not intended to be disconnected from the shell 30 without causing damage to the slash guard 515 and/or the shell 30. In particular, in this example of implementation, the slash guard 515 is affixed to the shell 30 by disposing the slash guard 515 between the subshells 85I-85L of the shell 30 (i.e., at least one or more of the subshells is overmolded onto the slash guard 515). More specifically, in this embodiment, the slash guard 515 is overlayed over a subshell 85x and a subsequent
subshell 85y is molded over the slash guard 515. As such, the slash guard 515 overlaps a portion of the shell 30 sufficient for the slash guard 515 to be permanently affixed between the subshells 85x, 85y without the possibility of accidental removal of the slash guard 515. In this example, the slash guard 515 overlaps a significant portion of the shell 30. In particular, the slash guard 515 extends over a majority of a length of the shell 30 (in the longitudinal direction of the skate 10). A portion of the slash guard 515 extending below the lateral and medial upper edges 45, 47 of the shell 30 may act as a reinforcement element (such as the reinforcement sheet 1 19) between the subshells 85x, 85y.
The slash guard 515 extends vertically above the lateral and medial upper edges 45, 47 of the shell 30 for a height HP that may be substantial. For example, the height HP of the slash guard 515 extending above lateral and medial upper edges 45, 47 of the shell 30 may be significant in relation to a height HT of the tendon guard 35 measured from a top of the tendon guard 35 to the lateral and medial upper edges 45, 47 of the shell 30. For instance, in some cases, a ratio of the height HP of the slash guard 515 over the height HT of the tendon guard 35 may be at least 0.5, in some cases at least 0.7, in some cases at least 0.9, in some cases at least 1 , in some cases at least 1 .2, in some cases at least 1 .5, in some cases at least 2 and in some cases even more.
As shown in Figure 85, which shows a top view of the portion of the slash guard 515 which extends vertically above the lateral and medial upper edges 45, 47 of the shell 30, in this embodiment, the slash guard 515 comprises a lateral portion 520 for facing a lateral side of the skate boot 22, a medial portion 522 for facing a medial side of the skate boot 22, and a rear portion 524 for facing a rear side of the skate boot 22. As such, in this embodiment, the slash guard 515 at least partially wraps around the player’s ankle A and/or shin S to provide cut-resistant protection from the sides and the rear of the skate boot 22. In other examples, the slash guard 515 may wrap completely around the player’s ankle A and/or shin S such that the slash guard 515 also comprises a front portion for facing a front side of the skate boot 22. In
such an example, the slash guard 515 may comprise a type of sleeve through which the player must insert his/her foot 11 in order to don the skate 10.
The slash guard 515 may be configured differently in other examples. For instance, the slash guard 515 may not comprise the rear portion 524 if the tendon guard 35 is considered to provide sufficient protection to the player.
In other embodiments, as shown in Figure 84, the slash guard 515 may be removeably attachable to the skate boot 22. That is, the slash guard 515 may be selectively attached to and detached from the skate boot 22. In this example, the slash guard 515 is removeably attachable to the shell 30 via interaction between an attachment member 519 of the slash guard 515 and a portion 517 of the slash guard 515. In particular, the attachment member 519 is configured to attach the portion 517 of the slash guard 515 to the shell 30. In this example, the slash guard 515 does not overlap a substantial portion of the shell 30. The portion 517 of the slash guard
515 is an extension of the slash guard 515 which extends vertically below the lateral and medial upper edges 45, 47 of the shell 30. In this embodiment, the attachment member 519 is a fastener which fastens the slash guard 515 to the shell 30. For example, the attachment member 519 may be a pin, a nut and bolt assembly, a hook-and-loop fastener or any other suitable fastener.
In this example of Figure 84, the cut-resistant material 516 of the slash guard 515 may be rigid and/or pliable. For example, the cut-resistant material 516 may comprise a polymer such as nylon, polyurethane and/or any other suitable polymer. In other words, the cut-resistant material 516 is not limited to pliable fabrics. In this example, the slash guard 515 is movable with respect to the tendon guard 35 (or the rear portion 82 of the ankle portion 64 of the shell 30) by moving with respect to the attachment member 519. In some cases, the slash guard 515 may be pivotable about the attachment member 519. Thus, in cases where the cut-resistant material
516 is a rigid material, the slash guard 515 may still be movable with respect to the
tendon guard 35 or the rear portion 82 of the ankle portion 64 of the shell 30) by pivoting about the attachment member 519.
In a variant, as shown in Figures 86A to 86D, rather than integrally molding the shell 30 as a single piece, the shell 30 may be molded in a plurality of pieces 710, 712 and the pieces may then be joined together. For example, this may allow using processes other than injection molding, notably such as casting or other molding methods. Moreover, the pieces 710, 712 may be configured to interlock with one another. Notably, the pieces 710, 712 may comprise protrusions and corresponding recesses for fitting the protrusions such as to interlock the pieces 710, 712 with one another. An adhesive may be applied between the pieces 710, 712 to permenantely affix the pieces 710, 712 to one another. As shown in Figure 86A, each of the pieces 710, 712 may constitute a part of the shell 30 and the blade holder 24. In some cases, as shown in Figure 86B, each of the pieces 710, 712 may constitute a part of only the shell 30 or only the blade holder 24. As shown in Figures 86C and 86D, the pieces may include three or more pieces 710, 712, 714.
In another variant, one or more of the subshells 85I-85L may be sprayed rather than injection molded. For instance, this may allow to more easily form thinner subshells 85I -85L (e.g., of 0.1 mm).
In another variant, as shown in Figure 87, the blade holder 24 may comprise an insert 750 configured to receive the blade 26. The insert 750 is affixed to the lower portion 162 of the blade holder 24 in any suitable manner. In this example, the insert 750 comprises projections that interlock into recesses 165 of the blade holder 24. The insert 750 further comprises a recess 752 configured to receive the blade 26. The insert 750 may be made integral with the lower portion 162 of the blade holder 24 by inserting it into a corresponding mold during molding of the blade holder 24. Alternatively, the insert 750 may be affixed to the lower portion 162 of the blade holder 24 after the lower portion 162 has already been formed. The insert 750 comprises a reinforced material that is stronger and/or stiffer than a material of the
lower portion 162 of the blade holder 24. For example, the reinforced material may be a composite material (e.g., a carbon fiber material).
In another variant, as shown in Figure 88, the blade holder 24 may comprise a void 350 in one of its front and rear pillars 210, 212. More particularly, in this example, the void 350 of the blade holder 24 may be formed by separately molding the blade holder 24 with a molding insert, and removing the molding insert after molding the blade holder 24 to obtain a cavity in the blade holder 24. Thus, once the blade holder 24 is assembled with the shell 30, the blade holder 24 comprises the void 350 which is contained between surfaces of the blade holder 24 and the sole portion 69 of the shell 30. In another example, rather than leaving the cavity of the blade holder 24 as a void, an insert, such as the insert 315i , may be placed in the cavity and the blade holder 24 secured to the shell 30 such that the insert 315! is contained between inner surfaces of a body of the blade holder 24 and a surface of the sole portion 69 of the shell 30.
In another variant, the exterior subshell 853 may be configured to extend into the recess 190 of the blade-retention portion 188 of the blade-retaining base 164 of the blade holder 24. As such, the subshell 853 may contact the blade 26 as it is inserted into the recess 190. This may be useful in examples where the exterior subshell 853 is relatively rigid as it may provide compaction resistance when the blade 26 is inserted in the recess 190.
In some embodiments, as shown in Figures 90 and 91 , the material M, of a subshell 85x of the skate boot 22 may comprise a mixture of a polymeric substance 52 and an expansion agent 53. This may help the material M, to have desirable properties, such as being more shock-absorbent than it if was entirely made of the expansion agent 53 and/or being lighter than if it was entirely made of the polymeric substance 52.
The polymeric substance 52 constitutes a substantial part of the material M, and substantially contributes to structural integrity to the subshell 85x. For instance, in some embodiments, the polymeric substance 52 may constitute at least 40%, in some cases at least 50%, in some cases at least 60%, in some cases at least 70%, in some cases at least 80%, and in some cases at least 90% of the material M, by weight. In this example of implementation, the polymeric substance 52 may constitute between 50% and 90% of the material M, by weight.
In this embodiment, the polymeric substance 52 may be an elastomeric substance. For instance, the polymeric substance 52 may be a thermoplastic elastomer (TPE) or a thermoset elastomer (TSE).
More particularly, in this embodiment, the polymeric substance 52 comprises polyurethane. The polyurethane 52 may be composed of any suitable constituents such as isocyanates and polyols and possibly additives. For instance, in some embodiments, the polyurethane 52 may have a hardness in a scale of Shore 00, Shore A, Shore C or Shore D, or equivalent. For example, in some embodiments, the hardness of the polyurethane 52 may be between Shore 5A and 95A or between Shore 40D to 93D. Any other suitable polyurethane may be used in other embodiments.
The polymeric substance 52 may comprise any other suitable polymer in other embodiments. For example, in some embodiments, the polymeric substance 52 may comprise silicon, rubber, etc.
The expansion agent 53 is combined with the polyurethane 52. In some cases, this may be done to enhance properties of the material M,. Alternatively or additionally, in some cases, this may be done to enable expansion of the material M, to a final shape of the subshell 85x in the mold 154x. For instance, in some embodiments, the expansion agent 54 may constitute at least 10%, in some cases at least 20%, in some cases at least 30%, in some cases at least 40%, in some cases at least 50%, in some cases at least 60%, of the material M, by weight and in some cases even
more. In this example of implementation, the expansion agent 54 may constitute between 15% and 50% of the material M, by weight.
In this embodiment, as shown in Figure 91 , the expansion agent 53 comprises an amount of expandable microspheres 63I -63m. Each expandable microsphere 63, comprises a polymeric shell 67 expandable by a fluid encapsulated in an interior of the polymeric shell 67. In this example of implementation, the polymeric shell 67 of the expandable microsphere 63, is a thermoplastic shell. The fluid encapsulated in the polymeric shell 67 is a liquid or gas (in this case a gas) able to expand the expandable microsphere 63, when heated during manufacturing of the subshell 85x. In some embodiments, the expandable microspheres 63I-63M may be Expancel™ microspheres commercialized by Akzo Nobel. In other embodiments, the expandable microspheres 63I -63M may be Dualite microspheres commercialized by Henkel; Advancell microspheres commercialized by Sekisui; Matsumoto Microsphere microspheres commercialized by Matsumoto Yushi Seiyaku Co; or KUREHA Microsphere microspheres commercialized by Kureha. Various other types of expandable microspheres may be used in other embodiments.
In this example of implementation, the expandable microspheres 63I -63M include dry unexpanded (DU) microspheres when combined with the polymeric substance 52 to create the material M, before the material M, is molded. For instance, the dry unexpanded (DU) microspheres may be provided as a powder mixed with one or more liquid constituents of the polymeric substance 52.
The expandable microspheres 63I-63M may be provided in various other forms in other embodiments. For example, in some embodiments, the expandable microspheres 63I -63M may include dry expanded, wet and/or partially-expanded microspheres. For instance, wet unexpanded microspheres may be used to get better bonding with the polymeric substance 52. Partially-expanded microspheres may be used to employ less of the polymeric substance 52, or mix with the polymeric substance 52 in semi-solid form.
In some embodiments, the expandable microspheres 63!-63M may constitute at least 10%, in some cases at least 20%, in some cases at least 30%, in some cases at least 40%, in some cases at least 50%, and in some cases at least 60% of the material M, by weight and in some cases even more. In this example of implementation, the expandable micropsheres 63!-63M may constitute between 15% and 50% of the material M, by weight.
The subshell 85x comprising the material M, with the polymeric substance 52 and the expandable microspheres 63I -63M may have various desirable qualities.
For instance, in some embodiments, the subshell 85x may be less dense and thus lighter than if it was entirely made of the polyurethane 52, yet be more shock- absorbent and/or have other better mechanical properties than if it was entirely made of the expandable microspheres 63I -63m.
For example, in some embodiments, a density of the material M, may be less than a density of the polyurethane 52 (alone). For instance, the density of the material M, of the subshell 85x may be no more than 70%, in some cases no more than 60%, in some cases no more than 50%, in some cases no more than 40%, in some cases no more than 30%, in some cases no more than 20%, in some cases no more than 10% and in some cases no more than 5% of the density of the polyurethane 52 and in some cases even less. For example, in some embodiments, the density of the material M, may be between 2 to 75 times less than the density of the polyurethane 52 (i.e. , the density of the material M, may be about 1 % to 50% of the density of the polyurethane 52).
The density of the material M, may have any suitable value. For instance, in some embodiments, the density of the material M, may be no more than 0.7 g/cm3, in some cases no more than 0.4 g/cm3, in some cases no more than 0.1 g/cm3, in some cases no more than 0.080 g/cm3, in some cases no more than 0.050 g/cm3, in some cases no more than 0.030 g/cm3, and/or may be at least 0.010 g/cm3. In some examples of implementation, the density of the material M, may be between 0.015
g/cm 3 and 0.080 g/cm3, in some cases between 0.030 g/cm 3 and 0.070 g/cm3, and in some cases between 0.040 g/cm3 and 0.060 g/cm3.
As another example, in some embodiments, a stiffness of the material M, may be different from (i.e. , greater or less than) a stiffness of the expandable microspheres 63I -63M (alone). For instance, a modulus of elasticity (i.e., Young’s modulus) of the material M, may be greater or less than a modulus of elasticity of the expandable microspheres 63I -63M (alone). For instance, a difference between the modulus of elasticity of the material M, and the modulus of elasticity of the expandable microspheres 63I -63M may be at least 20%, in some cases at least 30%, in some cases at least 50%, and in some cases even more, measured based on a smaller one of the modulus of elasticity of the material M, and the modulus of elasticity of the expandable microspheres 63I -63m. In some cases, the modulus of elasticity may be evaluated according to ASTM D-638 or ASTM D-412.
As another example, in some embodiments, a resilience of the material M, may be less than a resilience of the expandable microspheres 63!-63M (alone). For instance, in some embodiments, the resilience of the material M, may no more than 70%, in some cases no more than 60%, in some cases no more than 50%, in some cases no more than 40%, in some cases no more than 30%, and in some cases no more than 20%, and in some cases no more than 10% of the resilience of the expandable microspheres 63I-63M according to ASTM D2632-01 which measures resilience by vertical rebound. In some examples of implementation, the resilience of the material Mi may be between 20% and 60% of the resilience of the expandable microspheres 63I -63m. Alternatively, in other embodiments, the resilience of the material M, may be greater than the resilience of the expandable microspheres 63I-63m.
The resilience of the material M, may have any suitable value. For instance, in some embodiments, the resilience of the material M, may be no more than 40%, in some cases no more than 30%, in some cases no more than 20%, in some cases no more than 10%, and in some cases even less (e.g., 5%), according to ASTM D2632-01 ,
thereby making the subshell 85x more shock-absorbent. In other embodiments, the resilience of the material M, may be at least 60%, in some cases at least 70%, in some cases at least 80% and in some cases even more, according to ASTM D2632- 01 , thereby making the material M, provide more rebound.
As another example, in some embodiments, a tensile strength of the material M, may be greater than a tensile strength of the expandable microspheres 63I -63M (alone). For instance, in some embodiments, the tensile strength of the material M, may be at least 120%, in some cases at least 150%, in some cases at least 200%, in some cases at least 300%, in some cases at least 400%, and in some cases at least 500% of the tensile strength of the expandable microspheres 63I -63M according to ASTM D-638 or ASTM D-412, and in some cases even more.
The tensile strength of the material M, may have any suitable value. For instance, in some embodiments, the tensile strength of the material M, may be at least 0.9 MPa, in some cases at least 1 MPa, in some cases at least 1.2 MPa, in some cases at least 1.5 MPa and in some cases even more (e.g., 2 MPa or more).
As another example, in some embodiments, an elongation at break of the material Mi may be greater than an elongation at break of the expandable microspheres 63i- 63M (alone). For instance, in some embodiments, the elongation at break of the expandable material M, may be at least 120%, in some cases at least 150%, in some cases at least 200%, in some cases at least 300%, in some cases at least 400%, and in some cases at least 500% of the elongation at break of the expandable microspheres 63I-63M according to ASTM D-638 or ASTM D-412, and in some cases even more.
The elongation at break of the material M, may have any suitable value. For instance, in some embodiments, the elongation at break of the material M, may be at least 20%, in some cases at least 30%, in some cases at least 50%, in some cases at least 75%, in some cases at least 100%, and in some cases even more (e.g. 150% or more).
In some embodiments, a material of the shell 30 (e.g., a given one of the materials MI-MN) may be a composite material. For example, the composite material may be a fiber-matrix composite material that comprises a matrix in which fibers are embedded. The matrix may include any suitable polymeric resin, such as a thermosetting polymeric material (e.g., polyester, vinyl ester, vinyl ether, polyurethane, epoxy, cyanate ester, etc.), a thermoplastic polymeric material (e.g., polyethylene, polyurethane, polypropylene, acrylic resin, polyether ether ketone, polyethylene terephthalate, polyvinyl chloride, polymethyl methacrylate, polycarbonate, acrylonitrile butadiene styrene, nylon, polyimide, polysulfone, polyamide-imide, self-reinforcing polyphenylene, etc.), or a hybrid thermosetting- thermoplastic polymeric material. The fibers may be made of any suitable material such as carbon fibers, polymeric fibers such as aramid fibers, boron fibers, glass fibers, ceramic fibers, etc.
Although in embodiments considered above the skate 10 is designed for playing ice hockey on the skating surface 14 which is ice, in other embodiments, the skate 10 may be constructed using principles described herein for playing roller hockey or another type of hockey (e.g., field or street hockey) on the skating surface 14 which is a dry surface (e.g., a polymeric, concrete, wooden, or turf playing surface or any other dry surface on which roller hockey or field or street hockey is played). Thus, in other embodiments, instead of comprising the blade 26, the skating device 28 may comprise a set of wheels to roll on the dry skating surface 14 (i.e. , the skate 10 may be an inline skate or other roller skate). Moreover, in other embodiments, the skate 10 may be a figure skate constructed using principles described herein for figure skating.
Furthermore, although in embodiments considered above the footwear 10 is a skate for skating on the skating surface 14, in other embodiments, the footwear 10 may be any other suitable type of footwear. For example, as shown in Figure 123, the footwear 10 may be a ski boot comprising a shell 830 which may be constructed in
the manner described above with respect to the shell of the skate. In particular, the ski boot 10 is configured to be attachable and detachable from a ski 802 which is configured to travel on a ground surface 8 (e.g., snow). To that end, the ski boot 10 is configured to interact with an attachment mechanism 800 of the ski 802. In another example, as shown in Figure 124, the footwear 10 may be a boot (e.g., a work boot or any other type of boot) comprising a shell 930 which can be constructed in the manner described above with respect to the shell of the skate. For instance, in various embodiments, the boot 10 may be a motorcycle boot (e.g., for use with a motocross or other motorcycle), a work boot for protection, security or other purposes (e.g., construction boot, police boot, military boot, etc.), or any other type of boot. In some cases, the shell 930 of the boot 10 may be flexible or semi- rigid, as opposed to rigid as in embodiments discussed above.
In some embodiments, any feature of any embodiment described herein may be used in combination with any feature of any other embodiment described herein.
Certain additional elements that may be needed for operation of certain embodiments have not been described or illustrated as they are assumed to be within the purview of those of ordinary skill in the art. Moreover, certain embodiments may be free of, may lack and/or may function without any element that is not specifically disclosed herein.
To facilitate the description, any reference numeral designating an element in one figure designates the same element if used in any other figures. In describing the embodiments, specific terminology has been resorted to for the sake of description but the invention is not intended to be limited to the specific terms so selected, and it is understood that each specific term comprises all equivalents.
In case of any discrepancy, inconsistency, or other difference between terms used herein and terms used in any document incorporated by reference herein, meanings of the terms used herein are to prevail and be used.
Although various embodiments have been illustrated, this was for the purpose of describing, but not limiting, the invention. Various modifications will become apparent to those skilled in the art and are within the scope of this invention, which is defined more particularly by the attached claims.
Claims
1. A last for molding a body of a skate boot of a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot being configured to receive a foot of a user, the last being configured to mold the body of the skate boot such that the body of the skate boot comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, the last being reconfigurable to facilitate demolding of the body of the skate boot from the last such that the last is changeable between a molding configuration to mold the body of the skate boot on the last and a demolding configuration to demold the body of the skate boot from the last.
2. The last of claim 1 , wherein the last is contracted in its demolding configuration relative to its molding configuration.
3. The last of claim 1 , wherein the last is configured to mold the body of the skate boot such that the body of the skate boot comprises a plurality of undercuts.
4. The last of claim 3, wherein respective ones of the undercuts are medial and lateral depressions of the ankle portion for receiving medial and lateral malleoli of the user.
5. The last of claim 3, wherein a given one of the undercuts is a recess defined by curvature of the heel portion.
6. The last of claim 3, wherein respective ones of the undercuts are recesses defined by curvature of the medial and lateral side portions.
7. The last of claim 1 , wherein a volume occupied by the last is reduced from its molding configuration to its demolding configuration such that the volume
occupied by the last in its demolding configuration is smaller than the volume occupied by the last in its molding configuration.
8. The last of claim 7, wherein the last comprises a cavity to receive a fluid to vary the volume occupied by the last by expanding and contracting the last.
9. The last of claim 1 , wherein the last comprises a cavity containing particles and configured to receive a fluid such that the particles vary a rigidity of the last in response to flow of the fluid relative to the cavity.
10. The last of claim 1 , wherein the last comprises a plurality of last members movable relative to one another to change between its molding configuration and its demolding configuration.
11. The last of claim 10, wherein: respective ones of the last members are movable relative to one another while remaining connected to one another as the last changes between its molding configuration and its demolding configuration; and the last comprises a control system to control movement of the last members relative to one another.
12. The last of claim 10, wherein adjacent ones of the last members are translatable relative to one to change the last between its molding configuration and its demolding configuration.
13. The last of claim 10, wherein adjacent ones of the last members are rotatable relative to one to change the last between its molding configuration and its demolding configuration.
14. The last of claim 10, wherein adjacent ones of the last members are translatable and rotatable relative to one to change the last between its molding configuration and its demolding configuration.
15. The last of claim 10, wherein the last members include at least three last members.
16. The last of claim 10, wherein the last members include at least five last members.
17. The last of claim 10, wherein a first one of the last members is a front central last member, a second one of the last members is a rear central last member, a third one of the last members is an intermediate central last member disposed between the front central last member and the rear central last member; a fourth one of the last members is a medial last member; and a fifth one of the last members is a lateral last member.
18. The last of claim 17, wherein the last is configured to mold the body of the skate boot such that the body of the skate boot comprises a sole portion for facing a plantar surface of the user’s foot.
19. The last of claim 17, wherein the last is configured to mold the body of the skate boot such that the body of the skate boot comprises a toe portion for enclosing toes of the user’s foot.
20. The last of claim 1 , wherein the last is configured to mold the body of the skate boot such that the body of the skate boot comprises a sole portion for facing a plantar surface of the user’s foot.
21. The last of claim 1 , wherein the last is configured to mold the body of the skate boot such that the body of the skate boot comprises a toe portion for enclosing toes of the user’s foot.
22. The last of claim 10, wherein: the last comprises a base including respective ones of the last members; and a given one of the last members is a removable covering configured to enclose the base and removable from the base.
23. The last of claim 22, wherein a thickness of the removable covering varies to define a plurality of undercuts of the body of the skate boot.
24. The last of claim 22, wherein the removable covering is flexible.
25. The last of claim 24, wherein the removable covering comprises an elastomeric material.
26. The last of claim 1 , wherein the last is configured to injection mold the body of the skate boot.
27. The last of claim 1 , wherein the body of the skate boot comprises a plurality of materials that are different and molded by flowing about the last.
28. A skate boot comprising a body molded using the last of claim 1.
29. A method of making a skate boot for a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot being configured to receive a foot of a user, the method comprising:
providing a last changeable between a molding configuration and a demolding configuration;
molding a body of the skate boot on the last in the molding configuration such that the body of the skate boot comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user;
changing the last from the molding configuration to the demolding configuration to facilitate removal of the body of the skate boot from the last; and
demolding the body of the skate boot from the last in the demolding configuration.
30. A last for molding a body of an article of footwear to receive a foot of a user, the last being configured to mold the body of the article of footwear such that the body of the footwear comprises a medial side portion to face a medial side of the
user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, the last being reconfigurable to facilitate demolding of the body of the article of footwear from the last such that the last is changeable between a molding configuration to mold the body of the article of footwear on the last and a demolding configuration to demold the body of the article of footwear from the last.
31. A method of making an article of footwear to receive a user’s foot, the method comprising:
providing a last changeable between a molding configuration and a demolding configuration;
molding a body of the article of footwear on the last in the molding configuration such that the body of the article of footwear comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user; changing the last from the molding configuration to the demolding configuration to facilitate removal of the body of the article of footwear from the last; and
demolding the body of the article of footwear from the last in the demolding configuration.
32. A flexible female mold member for molding a body of a skate boot of a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot being configured to receive a foot of a user, the flexible female mold member being configured to be part of a female mold and disposed adjacent to a last for molding the body of the skate boot, the flexible female mold member comprising an inner surface preformed to define a cavity between the flexible female mold member and the last to receive polymeric material to mold at least a portion of the body of the skate boot such that the
inner surface of the flexible female mold member creates an outer surface of the portion of the body of the skate boot.
33. The flexible female mold member of claim 32, wherein the flexible female mold member is configured to avoid at least one parting line on the body of the skate boot that would otherwise result because of portions of the female mold that are movable relative to one another if the flexible female mold member was omitted.
34. The flexible female mold member of claim 32, wherein the flexible female mold member extends continuously to create at least a majority of the outer surface of the portion of the body of the skate boot.
35. The flexible female mold member of claim 32, wherein the flexible female mold member is flexible to flex during movement of portions of the female mold relative to one another when closing and opening the female mold and is configured to overly a space where the portions of the female mold move relative to one another.
36. The flexible female mold member of claim 32, comprising medial and lateral side portions, an ankle portion, a heel portion, and a sole portion that are integral and continuous with one another as a one-piece structure.
37. The flexible female mold member of claim 32, wherein the flexible female mold member is flexible and jointless at the heel portion and a rear of the ankle portion while the medial and lateral side portions and medial and lateral parts of the sole portion are separable and movable relative to one another to allow the flexible female mold member to flex during movement of portions of the female mold when closing and opening the female mold.
38. The flexible female mold member of claim 32, comprising an elastomeric material.
39. A method of making a skate boot of a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot being configured to receive a foot of a user, the method comprising:
providing a female mold and a last for molding a body of the skate boot, the female mold comprising a flexible female mold member comprising an inner surface preformed to define a cavity between the flexible female mold member and the last; and
causing polymeric material to flow in the cavity to mold at least a portion of the body of the skate boot such that the inner surface of the flexible female mold member creates an outer surface of the portion of the body of the skate boot.
40. A flexible female mold member for molding a body of an article of footwear, the article of footwear being configured to receive a foot of a user, the flexible female mold member being configured to be part of a female mold and disposed adjacent to a last for molding the body of the article of footwear, the flexible female mold member comprising an inner surface preformed to define a cavity between the flexible female mold member and the last to receive polymeric material to mold at least a portion of the body of the article of footwear such that the inner surface of the flexible female mold member creates an outer surface of the portion of the body of the article of footwear.
41. A method of making an article of footwear to receive a foot of a user, the method comprising:
providing a female mold and a last for molding a body of the article of footwear, the female mold comprising a flexible female mold member comprising an inner surface preformed to define a cavity between the flexible female mold member and the last; and
causing polymeric material to flow in the cavity to mold at least a portion of the body of the article of footwear such that the inner surface of the flexible female mold member creates an outer surface of the portion of the body of the article of footwear.
42. A method of making a skate boot of a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot being configured to receive a foot of a user, the method comprising:
placing a sheet in a mold for molding a body of the skate boot; and causing flow of material in the mold to mold at least a portion of the body of the skate boot, the sheet conforming to the portion of the body of the skate boot.
43. The method of claim 42, wherein the sheet is a polymeric sheet.
44. The method of claim 42, wherein the sheet is clear.
45. The method of claim 42, wherein the portion of the body of the skate boot is molded without using a mold release agent in the mold.
46. The method of claim 42, wherein the sheet remains part of the skate boot.
47. The method of claim 46, wherein the sheet comprises a design element.
48. The method of claim 42, wherein the sheet overlies at least a majority of a surface of the body of the skate boot.
49. The method of claim 42, wherein placing the sheet in the mold comprises placing the sheet in planar form in the mold.
50. The method of claim 42, comprising preforming the sheet in non-planar form before being placing the sheet in the mold.
51. The method of claim 42, wherein the sheet is configured to avoid at least one parting line on the body of the skate boot that would otherwise result because of portions of the mold that are movable relative to one another if the sheet was omitted.
52. A skate boot for a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot being configured to receive a foot of a user, the skate boot comprising a body comprising: a layer of material molded by flowing; and a sheet conforming to and provided during molding of the layer of material.
53. A method of making an article of footwear to receive a foot of a user, the method comprising:
placing a sheet in a mold for molding a body of the article of footwear; and causing flow of material in the mold to mold at least a portion of the body of the article of footwear, the sheet conforming to the portion of the body of the article of footwear.
54. An article of footwear to receive a foot of a user, the article of footwear comprising a body comprising: a layer of material molded by flowing; and a sheet conforming to and provided during molding of the layer of material.
55. A skate boot for a skate, the skate comprising a skating device disposed beneath the skate boot to engage a skating surface, the skate boot being configured to receive a foot of a user, the skate boot comprising a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another by flow of material in a mold; and the body is free of parting lines opposite from one another.
56. An article of footwear for receiving a foot of a user, the article of footwear comprising a body that comprises a medial side portion to face a medial side of the user’s foot, a lateral side portion to face a lateral side of the user’s foot, a heel portion to receive a heel of the user’s foot, and an ankle portion to receive
an ankle of the user, wherein: the medial side portion, the lateral side portion, the heel portion, and the ankle portion of the body are molded together and integral with one another by flow of material in a mold; and the body is free of parting lines opposite from one another.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/059,137 US20210206130A1 (en) | 2016-02-09 | 2018-05-25 | Skate or other footwear |
CN201880095854.9A CN112469554A (en) | 2018-05-25 | 2018-05-25 | Skates or other shoes |
CA3205757A CA3205757A1 (en) | 2018-05-25 | 2018-05-25 | Skate or other footwear |
PCT/CA2018/050617 WO2019222828A1 (en) | 2018-05-25 | 2018-05-25 | Skate or other footwear |
EP18919912.8A EP3802089A4 (en) | 2018-05-25 | Skate or other footwear | |
CA3101479A CA3101479C (en) | 2018-05-25 | 2018-05-25 | Skate or other footwear |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CA2018/050617 WO2019222828A1 (en) | 2018-05-25 | 2018-05-25 | Skate or other footwear |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019222828A1 true WO2019222828A1 (en) | 2019-11-28 |
Family
ID=68617114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2018/050617 WO2019222828A1 (en) | 2016-02-09 | 2018-05-25 | Skate or other footwear |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN112469554A (en) |
CA (2) | CA3205757A1 (en) |
WO (1) | WO2019222828A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11130044B2 (en) | 2014-10-22 | 2021-09-28 | Bauer Hockey Llc | Hockey skate including a one-piece frame with integral pedestals |
US11406157B2 (en) | 2016-02-09 | 2022-08-09 | Bauer Hockey, Llc | Skate or other footwear |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023205905A1 (en) * | 2022-04-29 | 2023-11-02 | Bauer Hockey Ltd. | Skate or other footwear |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1746297A (en) * | 1928-10-01 | 1930-02-11 | Zarnke Carl Henry | Boot and shoe last mold |
US3975840A (en) * | 1975-01-24 | 1976-08-24 | Garcia Corporation | Molded athletic boot and method of making same |
DE4010458A1 (en) | 1989-04-24 | 1990-10-25 | Eccolet Sko As | Pivoting last for shoe - has holder and two=part last held together through V=shaped link and connected to driving mechanism |
CA2123046A1 (en) * | 1994-01-19 | 1995-07-20 | Demetre J. Maniatis | Method and apparatus for making seamless uppers for footwear |
US7287293B2 (en) * | 2005-08-12 | 2007-10-30 | Nike, Inc. | Custom fit system with adjustable last and method for custom fitting athletic shoes |
KR20110000737U (en) | 2009-07-16 | 2011-01-24 | 주식회사 에치케이텍 | The otorcycle maintenance lift |
US20110277250A1 (en) | 2009-06-24 | 2011-11-17 | Nike International Ltd. | Inflatable Member |
US8454030B2 (en) | 2011-01-25 | 2013-06-04 | Bauer Hockey, Inc. | Ice skate blade assembly |
CA2947087A1 (en) | 2016-10-31 | 2018-04-30 | Bauer Hockey Corp. | Skate |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110007837U (en) * | 2010-02-01 | 2011-08-09 | 김수홍 | Shoe last conversion assembly for lasting boots |
-
2018
- 2018-05-25 CN CN201880095854.9A patent/CN112469554A/en active Pending
- 2018-05-25 CA CA3205757A patent/CA3205757A1/en active Pending
- 2018-05-25 WO PCT/CA2018/050617 patent/WO2019222828A1/en unknown
- 2018-05-25 CA CA3101479A patent/CA3101479C/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1746297A (en) * | 1928-10-01 | 1930-02-11 | Zarnke Carl Henry | Boot and shoe last mold |
US3975840A (en) * | 1975-01-24 | 1976-08-24 | Garcia Corporation | Molded athletic boot and method of making same |
DE4010458A1 (en) | 1989-04-24 | 1990-10-25 | Eccolet Sko As | Pivoting last for shoe - has holder and two=part last held together through V=shaped link and connected to driving mechanism |
CA2123046A1 (en) * | 1994-01-19 | 1995-07-20 | Demetre J. Maniatis | Method and apparatus for making seamless uppers for footwear |
US7287293B2 (en) * | 2005-08-12 | 2007-10-30 | Nike, Inc. | Custom fit system with adjustable last and method for custom fitting athletic shoes |
US20110277250A1 (en) | 2009-06-24 | 2011-11-17 | Nike International Ltd. | Inflatable Member |
KR20110000737U (en) | 2009-07-16 | 2011-01-24 | 주식회사 에치케이텍 | The otorcycle maintenance lift |
US8454030B2 (en) | 2011-01-25 | 2013-06-04 | Bauer Hockey, Inc. | Ice skate blade assembly |
CA2947087A1 (en) | 2016-10-31 | 2018-04-30 | Bauer Hockey Corp. | Skate |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11130044B2 (en) | 2014-10-22 | 2021-09-28 | Bauer Hockey Llc | Hockey skate including a one-piece frame with integral pedestals |
US11826633B2 (en) | 2014-10-22 | 2023-11-28 | Bauer Hockey Llc | Hockey skate including a one-piece frame with integral pedestals |
US11406157B2 (en) | 2016-02-09 | 2022-08-09 | Bauer Hockey, Llc | Skate or other footwear |
US11969056B2 (en) | 2016-02-09 | 2024-04-30 | Bauer Hockey Llc | Skate or other footwear |
Also Published As
Publication number | Publication date |
---|---|
EP3802089A1 (en) | 2021-04-14 |
CN112469554A (en) | 2021-03-09 |
CA3205757A1 (en) | 2019-11-28 |
CA3101479A1 (en) | 2019-11-28 |
CA3101479C (en) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11969056B2 (en) | Skate or other footwear | |
US20210401109A1 (en) | Skate or other footwear | |
US10897953B2 (en) | Skate | |
US10376771B2 (en) | Ice skate | |
US20240109263A1 (en) | Skate or other footwear | |
US11825908B2 (en) | Skate | |
US11406156B2 (en) | Protector for protecting a skate and a user's foot | |
CA3101479C (en) | Skate or other footwear | |
US20210206130A1 (en) | Skate or other footwear | |
US20170280819A1 (en) | Athletic gear or other wearable articles comprising an expandable user-engaging structure | |
EP1809463B1 (en) | Article having an integrated structure of composite material and thermoplastic or elastomer material and process for the production of the said article | |
CA2947087C (en) | Skate | |
CA2935348A1 (en) | Ice skate | |
US20230337781A1 (en) | Skates and other footwear comprising additively-manufactured components | |
WO2023205905A1 (en) | Skate or other footwear | |
CA3043625A1 (en) | Protector for protecting a skate and a user's foot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18919912 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3101479 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018919912 Country of ref document: EP Effective date: 20210111 |