WO2019222499A1 - Membrane de limitation de glucose thermiquement stable pour capteurs de glucose - Google Patents

Membrane de limitation de glucose thermiquement stable pour capteurs de glucose Download PDF

Info

Publication number
WO2019222499A1
WO2019222499A1 PCT/US2019/032660 US2019032660W WO2019222499A1 WO 2019222499 A1 WO2019222499 A1 WO 2019222499A1 US 2019032660 W US2019032660 W US 2019032660W WO 2019222499 A1 WO2019222499 A1 WO 2019222499A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
analyte
layer
reaction mixture
glucose
Prior art date
Application number
PCT/US2019/032660
Other languages
English (en)
Inventor
Jenn-Hann Larry Wang
Dero Hovanes
Poonam S. Gulati
Original Assignee
Medtronic Minimed, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/981,681 external-priority patent/US11134872B2/en
Application filed by Medtronic Minimed, Inc. filed Critical Medtronic Minimed, Inc.
Priority to EP19728814.5A priority Critical patent/EP3794135A1/fr
Priority to CA3100384A priority patent/CA3100384A1/fr
Priority to CN201980030243.0A priority patent/CN112088217A/zh
Publication of WO2019222499A1 publication Critical patent/WO2019222499A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/002Electrode membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group

Definitions

  • This invention relates to biosensors such as glucose sensors used in the management of diabetes and materials for making such sensors, for example polymeric compositions useful for biosensor membranes.
  • Analyte sensors such as biosensors include devices that use biological elements to convert a chemical analyte in a matrix into a detectable signal.
  • biosensors used to detect wide variety of analytes.
  • amperometric glucose sensor an apparatus commonly used to monitor glucose levels in individuals with diabetes.
  • the glucose oxidase is used to catalyze the reaction between glucose and oxygen to yield gluconic acid and hydrogen peroxide as shown in equation 1.
  • the H2O2 reacts electrochemically as shown in equation 2, and the current is measured by a potentiostat.
  • the stoichiometry of the reaction provides challenges to developing in vivo sensors. In particular, for optimal sensor performance, sensor signal output should be determined only by the analyte of interest (glucose), and not by any co-substrates (O2) or kinetically controlled parameters such as diffusion.
  • the H2O2 is stoichiometrically related to the amount of glucose that reacts at the enzyme; and the associated current that generates the sensor signal is proportional to the amount of glucose that reacts with the enzyme. If, however, there is insufficient oxygen for all of the glucose to react with the enzyme, then the current will be proportional to the oxygen concentration, not the glucose concentration. Consequently, for the sensor to provide a signal that depends solely on the concentrations of glucose, glucose must be the limiting reagent, i. e. the O2 concentration must be in excess for all potential glucose concentrations.
  • a problem with using such glucose sensors in vivo is that the oxygen concentration where the sensor is implanted in vivo is low relative to glucose, phenomena which can compromise the accuracy of sensor readings.
  • Embodiments of the invention provide compositions useful in analyte sensors as well as methods for making and using such compositions and sensors.
  • the sensor is a glucose sensor comprising an analyte modulating membrane formed from a polymeric reaction mixture that includes limiting amounts of catalyst so as to provide such membranes with improved material properties such as enhanced thermal and hydrolytic stability.
  • the resultant sensors exhibit enhanced the long term stability profiles as compared to conventional polymer compositions formed from reaction mixtures that use conventional amounts of catalyst.
  • One embodiment of the invention is a method of increasing the thermal stability of a biocompatible membrane formed by a reaction mixture comprising a diisocyanate, a hydrophilic polymer comprising a hydrophilic diol or hydrophilic diamine, a siloxane having an amino, hydroxyl or carboxylic acid functional group at a terminus; and a catalyst.
  • the reaction mixture is formed so that the catalyst is present in the reaction mixture in amounts less than 0.2% of reaction mixture components (e.g. 0.1%), thereby increasing the thermal stability of the biocompatible membrane as compared to a comparable membrane formed from a reaction mixture where the catalyst is present in the formulation in amounts greater than or equal to 0.2% of the reaction mixture.
  • the reaction mixture further comprises additional components such as a polycarbonate diol.
  • an amperometric analyte sensor comprising a base layer, a conductive layer disposed on the base layer and comprising a working electrode, an analyte sensing layer disposed on the conductive layer, and an analyte modulating layer disposed on the analyte sensing layer.
  • the analyte modulating layer is formed by a reaction mixture comprising a diisocyanate, a hydrophilic polymer comprising a hydrophilic diol or hydrophilic diamine, a siloxane having an amino, hydroxyl or carboxylic acid functional group at a terminus, and a catalyst.
  • the amount of catalyst present in the reaction mixture in amounts less than 0.2% of reaction mixture components so that the analyte modulating layer exhibits a greater thermal stability than a comparable analyte modulating layer formed from a reaction mixture where the catalyst is present in the formulation in amounts greater than or equal to 0.2% of the reaction mixture.
  • Yet another embodiment of the invention is a method of making an analyte sensor for implantation within a mammal.
  • This methodological embodiment comprises the steps of providing a base layer, forming a conductive layer on the base layer, wherein the conductive layer includes a working electrode, forming an analyte sensing layer on the conductive layer, wherein the analyte sensing layer includes an oxidoreductase, and then forming an analyte modulating layer on the analyte sensing layer.
  • the analyte modulating layer is formed by a reaction mixture comprising a diisocyanate, a hydrophilic polymer comprising a hydrophilic diol or hydrophilic diamine, a siloxane having an amino, hydroxyl or carboxylic acid functional group at a terminus; and a catalyst present in the reaction mixture in amounts less than 0.2% (e.g. 0.1%) of reaction mixture components so that the reaction mixture exhibits a greater thermal stability than a comparable analyte modulating layer formed from a reaction mixture where the catalyst is present in the formulation in amounts greater than or equal to 0.2% of the reaction mixture.
  • the reaction mixture further comprises additional components such as a polycarbonate diol.
  • FIG. 1 provides a diagrammatic view of one embodiment of an amperometric analyte sensor having a plurality of layered materials /elements, in accordance with one or more embodiments of the invention
  • FIGS. 2A-C show the chemical structures of raw materials used in the polycarbonate urea glucose limiting membrane (GLM), in accordance with one or more embodiments of the invention.
  • FIG. 2A shows the chemical structures of PDMS and Jeffamine.
  • FIG. 2B shows the chemical structures of 4, 4’-Methylenebis (cyclohexyl isocyanate) or HMDI and 4, 4’-Methylenebis (phenyl isocyanate) or MDI.
  • FIG. 2C shows the chemical structure of polycarbonate diols;
  • FIG. 3 illustrates a GLM synthesis reaction, in accordance with one or more embodiments of the invention
  • FIGS. 4A-B show a comparison of morphology of various counter and working electrodes after testing, in accordance with one or more embodiments of the invention.
  • FIG. 10A shows bubbles (or craters) generated at the counter electrode after usage. Bubbles formation at the counter electrode may trigger delamination or unwanted biological responses (due to texture change or rough surface).
  • FIG. 10B shows that the MDI_polycarnobate_GLM can enhance the GLM adhesion, so that bubbles (or craters) are not generated at the counter electrode after usage;
  • FIG. 5 shows an in vitro SITS data comparison between standard 2xGLM and PCU_GLM (polycarbonate urea glucose limiting membrane), in accordance with one or more embodiments of the invention
  • FIG. 6 shows E3 sensor morphology after 7 days SITS testing for standard 2xGLM coated sensors and PCU_GLM coated sensors, in accordance with one or more embodiments of the invention
  • FIGS. 7A-B provide graphs of data from thermal degradation studies for various formulations and the compositions of the formulations.
  • FIG. 7A provides the results from a thermal degradation study at 45°C comparing the degradation of polymeric materials (as observed by a decrease in molecular weight) useful as biocompatible membranes (e.g. analyte modulating layers in glucose sensors), while FIG. 7B provides the results from a similar thermal degradation study at 60°C.
  • FIGS. 7A provides the results from a thermal degradation study at 45°C comparing the degradation of polymeric materials (as observed by a decrease in molecular weight) useful as biocompatible membranes (e.g. analyte modulating layers in glucose sensors)
  • FIG. 7B provides the results from a similar thermal degradation study at 60°C.
  • the “control” material is formed from a polymeric reaction mixture where the catalyst is present in the formulation in amounts greater than or equal to 0.2% of the polymeric reaction mixture and the“new” material is formed from a polymeric reaction mixture where the catalyst is present in the formulation in amounts less than 0.2% (in this case 0.1%) of the reaction mixture.
  • FIGS. 8A-E show results from thermal degradation studies for various formulations and the compositions of the formulations, in accordance with one or more embodiments of the invention.
  • FIG. 8A shows the results from a thermal degradation study.
  • FIGS. 8B-D show the compositions of various formulations.
  • FIG. 8E provides data showing that glucose permeability (Pg) was not reduced after baking for polycarbonate_GLM;
  • FIG. 9 shows a summary of the results from thermal/hydrolysis studies of various sample formulations, in accordance with one or more embodiments of the invention.
  • the thermal degradation test results demonstrate that MDI and polycarbonates chains can help (slow down) the GLM degradation process.
  • analyte as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to a substance or chemical constituent in a fluid such as a biological fluid (for example, blood, interstitial fluid, cerebral spinal fluid, lymph fluid or urine) that can be analyzed.
  • a biological fluid for example, blood, interstitial fluid, cerebral spinal fluid, lymph fluid or urine
  • Analytes can include naturally occurring substances, artificial substances, metabolites, and/or reaction products.
  • the analyte for measurement by the sensing regions, devices, and methods is glucose.
  • other analytes are contemplated as well, including but not limited to, lactate. Salts, sugars, proteins fats, vitamins and hormones naturally occurring in blood or interstitial fluids can constitute analytes in certain embodiments.
  • the analyte can be naturally present in the biological fluid or endogenous; for example, a metabolic product, a hormone, an antigen, an antibody, and the like.
  • the analyte can be introduced into the body or exogenous, for example, a contrast agent for imaging, a radioisotope, a chemical agent, a fluorocarbon-based synthetic blood, or a drug or pharmaceutical composition, including but not limited to insulin.
  • a contrast agent for imaging for example, a radioisotope, a chemical agent, a fluorocarbon-based synthetic blood, or a drug or pharmaceutical composition, including but not limited to insulin.
  • the metabolic products of drugs and pharmaceutical compositions are also contemplated analytes.
  • the term "sensor,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, the portion or portions of an analyte -monitoring device that detects an analyte.
  • the sensor includes an electrochemical cell that has a working electrode, a reference electrode, and optionally a counter electrode passing through and secured within the sensor body forming an electrochemically reactive surface at one location on the body, an electronic connection at another location on the body, and a membrane system affixed to the body and covering the electrochemically reactive surface.
  • a biological sample for example, blood or interstitial fluid
  • an enzyme for example, glucose oxidase
  • embodiments of the invention relate to the use of an electrochemical sensor that exhibits a novel constellation of material and functional elements.
  • Such sensors incorporate new polymeric compositions in order to form robust analyte modulating membranes, ones having a unique set of technically desirable material properties such as increased thermal stability.
  • the electrochemical sensors of the invention are designed to measure a concentration of an analyte of interest (e.g. glucose) or a substance indicative of the concentration or presence of the analyte in fluid.
  • the sensor is a continuous device, for example a subcutaneous, transdermal, or intravascular device.
  • the device can analyze a plurality of intermittent blood samples.
  • the sensor embodiments disclosed herein can use any known method, including invasive, minimally invasive, and non-invasive sensing techniques, to provide an output signal indicative of the concentration of the analyte of interest.
  • the sensor is of the type that senses a product or reactant of an enzymatic reaction between an analyte and an enzyme in the presence of oxygen as a measure of the analyte in vivo or in vitro.
  • Such sensors comprise a polymeric membrane surrounding the enzyme through which an analyte migrates prior to reacting with the enzyme. The product is then measured using electrochemical methods and thus the output of an electrode system functions as a measure of the analyte.
  • the sensor can use an amperometric, coulometric, conductimetric, and/ or potentiometric technique for measuring the analyte.
  • Analyte modulating compositions such as those useful as glucose limiting membranes in amperometric glucose sensors include polymeric compositions formed from biocompatible polymeric polyurea materials (see, e.g., the contexts of which re incorporated by reference). Such compositions can exhibit stable glucose and oxygen permeabilities, low protein adsorption rates, and biocompatibility. However, due to the content of PEG chains, it suffered some degradation issue under high temperature and/or high humidity conditions. As disclosed in detail below, we have discovered that certain carbonate and aromatic isocyanate compounds can be added to a polymerization reaction so as to replace some portions of PDMS and HMDI polymeric chain elements. Both compounds have been discovered to increase the thermal and hydrolysis resistance of these polymers under high temperature and high humidity conditions.
  • the carbonate materials useful in embodiments of the invention include, but are not limited to, polycarbonate diols (e.g. butanediol or hexanediol or similar compounds). In the illustrative embodiments of the invention, their Mw is from 500 to 2000 Daltons.
  • the aromatic isocyanate materials useful in embodiments of the invention include, but not limited to, MDI or similar compounds.
  • the addition of MDI can improve the thermal and e-beam resistance of polymeric compositions used as analyte modulating (e.g. glucose limiting) compositions through its benzene ring structure.
  • the benzene ring also serves as a good free-radical scavenger to prevent oxidation of polymeric constituents.
  • the polycarbonate diol can provide better thermal and hydrolysis resistances through its carbonate structure (vs. ether or ester chains).
  • the addition of polycarbonate segment in the polymer backbone can prevent the unwanted deformation of a layer of a polymer composition that is disposed on an electrode of an amperometric glucose sensor.
  • Both gas and water are generated on a counter electrode between analyte sensing layers (e.g. ones comprised of an enzyme such as GOX) and analyte modulating (e.g. Glucose Limiting Membrane) layers, which can cause sensor failure (signal drifting) after a long usage.
  • analyte sensing layers e.g. ones comprised of an enzyme such as GOX
  • analyte modulating e.g. Glucose Limiting Membrane
  • the polycarbonate segments in the GLM backbone can prevent/reduce the chain rotation of PDMS in the GLM film, so the glucose permeability (Pg) of GLM will not be gradually reduced over time due to the hydrophilic chains (Jeffamine or PEG) was wrapped/ entrapped by the hydrophobic PDMS chains, especially for the low Pg GLM cases.
  • the synthesis will involve 3 raw material injections after different timings.
  • the addition of polycarbonate chains in the GLM can prevent the Pg change/reduction due to the PDMS chain rotation /tangling over time, especially for low Pg GLM films.
  • the desired MDI content in the final polymer can be from 2% to 25%.
  • the desired polycarbonate content in the final polymer can be from 8% to 30%.
  • Polycarbonate GLM showed good adhesion with AP, no more craters (bubbles) formed after testing
  • Embodiments of the invention disclosed herein provide sensors of the type used, for example, in subcutaneous or transcutaneous monitoring of blood glucose levels in a diabetic patient.
  • a variety of implantable, electrochemical biosensors have been developed for the treatment of diabetes and other life-threatening diseases.
  • Many existing sensor designs use some form of immobilized enzyme to achieve their bio- specificity.
  • Embodiments of the invention described herein can be adapted and implemented with a wide variety of known electrochemical sensors, including for example, U.S. Patent Application No. 20050115832, U.S. Pat. Nos. 6,001,067, 6,702,857,
  • embodiments of the invention disclosed herein provide sensor elements having enhanced material properties and/or architectural configurations and sensor systems (e.g. those comprising a sensor and associated electronic components such as a monitor, a processor and the like) constructed to include such elements.
  • the disclosure further provides methods for making and using such sensors and/or architectural configurations. While some embodiments of the invention pertain to glucose and/ or lactate sensors, a variety of the elements disclosed herein (e.g. analyte modulating membranes made from polycarbonate polymeric compositions) can be adapted for use with any one of the wide variety of sensors known in the art.
  • the analyte sensor elements, architectures and methods for making and using these elements that are disclosed herein can be used to establish a variety of layered sensor structures.
  • Such sensors of the invention exhibit a surprising degree of flexibility and versatility, characteristics which allow a wide variety of sensor configurations to be designed to examine a wide variety of analyte species.
  • amperometric sensors used to detect and/or measure biological analytes such as glucose.
  • Many glucose sensors are based on an oxygen (Clark-type) amperometric transducer (see, e.g. Yang et ah, Electroanalysis 1997, 9, No. 16: 1252-1256; Clark et ak, Ann. N.Y. Acad. Sci. 1962, 102, 29; Updike et ak, Nature 1967, 214,986; and Wilkins et ak, Med. Engin. Physics, 1996, 18, 273.3-51).
  • a number of in vivo glucose sensors utilize hydrogen peroxide-based amperometric transducers because such transducers are relatively easy to fabricate and can readily be miniaturized using conventional technology.
  • One problem associated with the use of certain amperometric transducers include a suboptimal reaction stoichiometry. As discussed in detail below, these problems are addressed by using the polycarbonate polymeric membrane(s) disclosed herein, membranes which can modulate the transport properties of different compounds whose reaction creates a signal at the hydrogen peroxide-based amperometric transducing element. Consequently, these membranes can be used for example with a variety of H2O2 based analyte sensors that benefit from optimized reaction stoichiometries.
  • embodiments of the invention include sensor membranes made from reaction mixtures form to include limiting amounts of catalyst and/or polycarbonate polymer compositions.
  • a polymer comprises a long or larger molecule consisting of a chain or network of many repeating units, formed by chemically bonding together many identical or similar small molecules called monomers.
  • a copolymer or heteropolymer is a polymer derived from two (or more) monomeric species, as opposed to a homopolymer where only one monomer is used. Copolymers may also be described in terms of the existence of or arrangement of branches in the polymer structure.
  • Linear copolymers consist of a single main chain whereas branched copolymers consist of a single main chain with one or more polymeric side chains.
  • Sensor membranes made from polycarbonate polymeric compositions disclosed herein can optimize analyte sensor function including sensor sensitivity, stability and hydration profiles.
  • the membranes disclosed herein can optimize the chemical reactions that produce the critical measurable signals that correlate with the levels of an analyte of interest (e.g. glucose).
  • an analyte of interest e.g. glucose
  • the polymeric materials disclosed herein are useful as biocompatible membranes in a variety of contexts, for example as a glucose limiting membranes (GLM).
  • GLM glucose limiting membranes
  • polymers typically degrade over time due to oxidation, UY light, heat, hydrolysis, or other processes.
  • trace amount of tin catalyst residue from the polymeric mixture used to form biocompatible membranes such as the GLM can speed up GLM degradation overtime. For this reason, older sensors may perform slightly worse than fresh-made sensors due to the gradual degradation of the GLM. While not being bound by a specific scientific theory or mechanism of action, it is believed that trace amount of tin catalyst residue in GLM may further trigger immune response and sensitivity loss.
  • reducing the amount of tin catalyst (e.g. by 50%) used in GLM synthesis process unexpectedly generates membranes having an increased resistance to thermal degradation, and improves the quality (biocompatibility and thermal stability) of the GLM as well as glucose sensor in vivo performance.
  • This greater GLM stability further results in longer sensor shelf life and a more biocompatible sensor, without any significant manufacturing process change.
  • One embodiment of the invention is a method of increasing the thermal stability of a biocompatible membrane formed by a reaction mixture comprising a diisocyanate, a hydrophilic polymer comprising a hydrophilic diol or hydrophilic diamine, a siloxane having an amino, hydroxyl or carboxylic acid functional group at a terminus; and a catalyst.
  • the reaction mixture is formed so that the catalyst is present in the reaction mixture in amounts less than 0.2% of reaction mixture components (e.g. 0.1%), thereby increasing the thermal stability of the biocompatible membrane as compared to a comparable membrane formed from a reaction mixture where the catalyst is present in the formulation in amounts greater than or equal to 0.2% of the reaction mixture.
  • the reaction mixture uses an organic solvent such as tetrahydrofuran (e.g. at 60°C) and further comprises additional components such as a polycarbonate diol.
  • organic solvent such as tetrahydrofuran (e.g. at 60°C)
  • additional components such as a polycarbonate diol.
  • the thermal stability of various biocompatible membrane made in this way can be measured by a variety of art accepted practices, for example by observing changes in molecular weight of the biocompatible membrane maintained at a temperature of 60°C over at least 3, 5 or 7 days (see e.g. FIG. 7).
  • a tin catalyst e.g. Dibutyltin bis (2- ethylhexanoate)
  • a tin catalyst is present in the reaction mixture in amounts less than 0.19%, 0.17%, 0.15%, 0.13%, or 0.11% of the reaction mixture (e.g. 0.1%).
  • the diisocyanate comprises a hexamethylene diisocyanate and/or a methylene diphenyl diisocyanate
  • the hydrophilic polymer comprising a hydrophilic diol or hydrophilic diamine comprises a JEFFAMINE
  • the siloxane having an amino, hydroxyl or carboxylic acid functional group at a terminus comprises a polydimethylsiloxane
  • the polycarbonate diol comprises a (poly(l,6-hexyle carbonate) diol and/or a or poly(l,6 hexyl-1,5 pentyl carbonate) diol.
  • the diisocyanate comprise from 17% to 23% weight percent hexamethylene diisocyanate and from 0% to 8.5% weight percent methylene diphenyl diisocyanate
  • the JEFFAMINE comprises from 28% to 51% weight percent JEFFAMINE 600 and/or JEFFAMINE 900
  • the polydimethylsiloxane comprises from 14% to 48% weight percent polydimethylsiloxane- A15
  • the polycarbonate diol comprises from 7.5% to 19% weight percent (poly(l,6- hexyle carbonate) diol.
  • the diisocyanate comprises about 22% hexamethylene diisocyanate and about 3.5% methylene diphenyl diisocyanate
  • the JEFFAMINE comprises about 45% JEFFAMINE 600 and/or JEFFAMINE 900
  • the polydimethylsiloxane comprises about 22.5% polydimethylsiloxane-A15
  • the polycarbonate diol comprises about 7.5% (poly(l,6-hexyle carbonate) diol.
  • water is added as a chain extender in the reaction mixture of the polyurea- urethane copolymer. Illustrative reaction mixtures of the invention are shown in Tables 1 and 2 below.
  • an amperometric analyte sensor comprising a base layer, a conductive layer disposed on the base layer and comprising a working electrode, an analyte sensing layer disposed on the conductive layer, and an analyte modulating layer disposed on the analyte sensing layer.
  • the analyte modulating layer is formed by a reaction mixture comprising a diisocyanate, a hydrophilic polymer comprising a hydrophilic diol or hydrophilic diamine, a siloxane having an amino, hydroxyl or carboxylic acid functional group at a terminus, and a catalyst.
  • the amount of catalyst present in the reaction mixture in amounts less than 0.2% of reaction mixture components so that the analyte modulating layer exhibits a greater thermal stability than a comparable analyte modulating layer formed from a reaction mixture where the catalyst is present in the formulation in amounts greater than or equal to 0.2% of the reaction mixture.
  • the reaction mixture further comprises additional components such as a polycarbonate diol.
  • the analyte sensor is a glucose sensor that is implantable in vivo.
  • the analyte sensor further comprises at least one of: a protein layer disposed on the analyte sensing layer, or a cover layer disposed on the analyte sensor apparatus, and the cover layer comprises an aperture positioned on the cover layer so as to facilitate an analyte present in an in vivo environment from contacting and diffusing through an analyte modulating layer; and contacting the analyte sensing layer.
  • the conductive layer comprises a plurality of electrodes including a working electrode, a counter electrode and a reference electrode, for example an embodiment where the conductive layer comprises a plurality of working electrodes and/or counter electrodes and/or reference electrodes; and optionally the plurality of working, counter and reference electrodes are grouped together as a unit and positionally distributed on the conductive layer in a repeating pattern of units.
  • Yet another embodiment of the invention is a method of making an analyte sensor for implantation within a mammal.
  • This methodological embodiment comprises the steps of providing a base layer, forming a conductive layer on the base layer, wherein the conductive layer includes a working electrode, forming an analyte sensing layer on the conductive layer, wherein the analyte sensing layer includes an oxidoreductase, and then forming an analyte modulating layer on the analyte sensing layer.
  • the analyte modulating layer is formed by a reaction mixture comprising a diisocyanate, a hydrophilic polymer comprising a hydrophilic diol or hydrophilic diamine, a siloxane having an amino, hydroxyl or carboxylic acid functional group at a terminus; and a catalyst present in the reaction mixture in amounts less than 0.2% (e.g. 0.1%) of reaction mixture components so that the reaction mixture exhibits a greater thermal stability than a comparable analyte modulating layer formed from a reaction mixture where the catalyst is present in the formulation in amounts greater than or equal to 0.2% of the reaction mixture.
  • the reaction mixture further comprises additional components such as a polycarbonate diol.
  • the diisocyanate comprises a hexamethylene diisocyanate and/or a methylene diphenyl diisocyanate
  • the JEFFAMINE comprises about 45% JEFFAMINE 600 and/ or JEFFAMINE 900
  • the polydimethylsiloxane comprises about 22.5% polydimethylsiloxane-A15
  • the polycarbonate diol comprises about 7.5% (poly(l,6- hexyle carbonate) diol.
  • the catalyst e.g.
  • Dibutyltin bis (2- ethylhexanoate)) is present in the reaction mixture in amounts less than 0.19%, 0.17%, 0.15%, 0.13%, or 0.11% of the reaction mixture (e.g. about 0.1%).
  • Certain amperometric sensor design used with embodiments of the invention comprise a plurality of layered elements including for example a base layer having an electrode, an analyte sensing layer (e.g. one comprising glucose oxidase) and an analyte modulating layer that functions in analyte diffusion control (e.g. to modulate the amounts of glucose and oxygen exposed to the analyte sensing layer).
  • a base layer having an electrode e.g. one comprising glucose oxidase
  • an analyte modulating layer that functions in analyte diffusion control (e.g. to modulate the amounts of glucose and oxygen exposed to the analyte sensing layer).
  • FIG. 1 Layered sensor designs that incorporate the polycarbonate polymeric compositions disclosed herein as the analyte modulating layer exhibit a constellation of material properties that overcome challenges observed in a variety of sensors including electrochemical glucose sensors that are implanted in vivo.
  • sensors designed to measure analytes in aqueous environments typically require wetting of the layers prior to and during the measurement of accurate analyte reading.
  • the material properties of membranes used in aqueous environments ideally will facilitate sensor wetting to, for example, minimize the time period between the sensor’s introduction into an aqueous environment and its ability to provide accurate signals that correspond to the concentrations of an analyte in that environment.
  • Embodiments of the invention that comprise polycarbonate polymeric compositions address such issues by facilitating sensor hydration.
  • the material of the analyte modulating layer should not exacerbate (and ideally should diminish) what is known in the art as the“oxygen deficit problem”.
  • glucose oxidase based sensors require both oxygen (O2) as well as glucose to generate a signal, the presence of an excess of oxygen relative to glucose, is necessary for the operation of a glucose oxidase based glucose sensor.
  • oxygen can be the limiting reactant in the reaction between glucose, oxygen, and glucose oxidase in a sensor, a situation which compromises the sensor’s ability to produce a signal that is strictly dependent on the concentration of glucose.
  • the properties of a material can influence the rate at which compounds diffuse through that material to the site of a measurable chemical reaction
  • the material properties of an analyte modulating layer used in electrochemical glucose sensors that utilize the chemical reaction between glucose and glucose oxidase to generate a measurable signal should not for example, favor the diffusion of glucose over oxygen in a manner that contributes to the oxygen deficit problem.
  • Embodiments of the invention that comprise the polycarbonate polymeric compositions disclosed herein do not contribute to, and instead function to ameliorate, the oxygen deficit problem.
  • sensor designs that use the polycarbonate polymeric compositions disclosed herein as a analyte modulating layer can also overcome complications observed with the use of sensor materials that can exhibit different diffusion profiles (e.g. a rate at which an analyte diffuses therethrough) at different temperatures.
  • sensor signal output over a range of temperatures should be determined only by the levels of analyte of interest (e.g. glucose), and not by any co- substrates (e.g. O2) or kinetically controlled parameters (e.g. diffusion).
  • the diffusion of compounds through a polymeric matrix can be temperature dependent. In situations where an analyte (e.g.
  • glucose diffuses through a polymer to react a site where it reacts with another compound (e.g. glucose oxidase), such temperature dependent diffusion profiles can influence the stoichiometry of the reaction relied upon to generate the sensor signal, thereby confounding artisans’ efforts to make sensor signal output depend only on the concentration of an analyte of interest over a range of temperatures.
  • Analyte modulating compositions made from materials having an analyte (e.g. glucose) diffusion profile that is stable over a range of temperatures (e.g. from 22 to 40 degrees centigrade) consequently address such issues.
  • the invention disclosed herein provides polycarbonate polymeric compositions useful for example as membranes for biosensors such as amperometric glucose sensors.
  • Embodiments of the invention include for example a sensor having a plurality of layered elements including an analyte limiting membrane comprising a polycarbonate polymeric composition.
  • Such polymeric membranes are particularly useful in the construction of electrochemical sensors for in vivo use.
  • the membrane embodiments of the invention allow for a combination of desirable properties including: an enhanced hydration profile as well as a permeability to molecules such as glucose that is stable over a range of temperatures.
  • these polymeric membranes exhibit good mechanical properties for use as an outer polymeric membrane. Consequently, glucose sensors that incorporate such polymeric membranes show a highly desirable in-vivo performance profile.
  • Embodiments of the invention include both materials (e.g. polycarbonate polymeric compositions) as well as architectures that designed to facilitate sensor performance.
  • the conductive layer comprises a plurality of working electrodes and/or counter electrodes and/or reference electrodes (e.g. 3 working electrodes, a reference electrode and a counter electrode), in order to, for example, avoid problems associated with poor sensor hydration and/or provide redundant sensing capabilities.
  • the plurality of working, counter and reference electrodes are configured together as a unit and positionally distributed on the conductive layer in a repeating pattern of units.
  • the base layer is made from a flexible material that allows the sensor to twist and bend when implanted in vivo; and the electrodes are grouped in a configuration that facilitates an in vivo fluid contacting at least one of working electrode as the sensor apparatus twists and bends when implanted in vivo. In some embodiments, the electrodes are grouped in a configuration that allows the sensor to continue to function if a portion of the sensor having one or more electrodes is dislodged from an in vivo environment and exposed to an ex vivo environment.
  • the senor is operatively coupled to a sensor input capable of receiving a signal from the sensor that is based on a sensed analyte; and a processor coupled to the sensor input, wherein the processor is capable of characterizing one or more signals received from the sensor.
  • a pulsed voltage is used to obtain a signal from one or more electrodes of a sensor.
  • the analyte modulating layer comprises a polyurethane/polyurea polymer formed from a mixture comprising: a diisocyanate; a hydrophilic polymer comprising a hydrophilic diol or hydrophilic diamine; and a siloxane having an amino, hydroxyl or carboxylic acid functional group at a terminus; with this polymer then polycarbonate with a branched acrylate polymer formed from a mixture comprising: a butyl, propyl, ethyl or methyl-acrylate; an amino-acrylate; a siloxane-acrylate; and a polyethylene oxide)-acrylate.
  • branched acrylate polymer are formed from a reaction mixture that includes a hydroxyl- acrylate compound (e.g. 2-hydroxyethyl methacrylate).
  • a hydroxyl- acrylate compound e.g. 2-hydroxyethyl methacrylate
  • polyurethane/polyurea polymer refers to a polymer containing urethane linkages, urea linkages or combinations thereof.
  • polyurethane is a polymer consisting of a chain of organic units joined by urethane (carbamate) links.
  • Polyurethane polymers are typically formed through step-growth polymerization by reacting a monomer containing at least two isocyanate functional groups with another monomer containing at least two hydroxyl (alcohol) groups in the presence of a catalyst.
  • Polyurea polymers are derived from the reaction product of an isocyanate component and a diamine.
  • such polymers are formed by combining diisocyanates with alcohols and/or amines.
  • combining isophorone diisocyanate with PEG 600 and aminopropyl polysiloxane under polymerizing conditions provides a polyurethane/polyurea composition having both urethane (carbamate) linkages and urea linkages.
  • Such polymers are well known in the art and described for example in U.S. Patent Nos. 5,777,060, 5,882,494 and 6,632,015, and PCT publications WO 96/30431; WO 96/18115; WO 98/13685; and WO 98/17995, the contents of each of which is incorporated by reference.
  • the polyurethane/polyurea compositions of the invention are prepared from biologically acceptable polymers whose hydrophobic/hydrophilic balance can be varied over a wide range to control the ratio of the diffusion coefficient of oxygen to that of glucose, and to match this ratio to the design requirements of electrochemical glucose sensors intended for in vivo use.
  • Such compositions can be prepared by conventional methods by the polymerization of monomers and polymers noted above.
  • the resulting polymers are soluble in solvents such as acetone or ethanol and may be formed as a membrane from solution by dip, spray or spin coating.
  • Diisocyanates useful in this embodiment of the invention are those which are typically those which are used in the preparation of biocompatible polyurethanes. Such diisocyanates are described in detail in Szycher, SEMINAR ON ADVANCES IN MEDICAL GRADE POLYURETHANES, Technomic Publishing, (1995) and include both aromatic and aliphatic diisocyanates. Examples of suitable aromatic diisocyanates include toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'- biphenyl diisocyanate, naphthalene diisocyanate and paraphenylene diisocyanate.
  • Suitable aliphatic diisocyanates include, for example, l,6hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMDI), trans 1,4-cyclohexane diisocyanate (CHDI), 1,4-cyclohexane bis(methylene isocyanate) (BDI), 1,3-cyclohexane bis(methylene isocyanate) (3 ⁇ 4 XDI), isophorone diisocyanate (IPDI) and 4,4'- methylenebis (cyclohexyl isocyanate) (H 2 MDI).
  • HDI l,6hexamethylene diisocyanate
  • TMDI trimethylhexamethylene diisocyanate
  • CHDI trans 1,4-cyclohexane diisocyanate
  • BDI 1,4-cyclohexane bis(methylene isocyanate)
  • 3 ⁇ 4 XDI 1,3-cyclohexane bis(
  • the diisocyanate is isophorone diisocyanate, 1,6-hexamethylene diisocyanate, or 4, 4'methylenebis (cyclohexyl isocyanate).
  • a number of these diisocyanates are available from commercial sources such as Aldrich Chemical Company (Milwaukee, Wis., USA) or can be readily prepared by standard synthetic methods using literature procedures.
  • the quantity of diisocyanate used in the reaction mixture for the polyurethane/ polyurea polymer compositions is typically about 50 mol % relative to the combination of the remaining reactants. More particularly, the quantity of diisocyanate employed in the preparation of the polyurethane/ polyurea polymer will be sufficient to provide at least about 100% of the— NCO groups necessary to react with the hydroxyl or amino groups of the remaining reactants.
  • the hydrophilic polymer can be a hydrophilic diol, a hydrophilic diamine or a combination thereof.
  • the hydrophilic diol can be a poly(alkylene)glycol, a polyester-based polyol, or a polycarbonate polyol.
  • poly(alkylene)glycol refers to polymers of lower alkylene glycols such as poly(ethylene)glycol, poly(propylene)glycol and polytetramethylene ether glycol (PTMEG).
  • polyester-based polyol refers to a polymer in which the R group is a lower alkylene group such as ethylene, 1,3-propylene, 1,2-propylene, 1,4-butylene, 2,2- dimethyl-1, 3-propylene, and the like (e.g. as depicted in FIG. 4 of U.S. Patent Nos. 5,777,060).
  • the diester portion of the polymer can also vary from the six-carbon diacid shown.
  • FIG. 4 of U.S. Patent Nos. 5,777,060 illustrates an adipic acid component
  • the present invention also contemplates the use of succinic acid esters, glutaric acid esters and the like.
  • polycarbonate polyol refers those polymers having hydroxyl functionality at the chain termini and ether and carbonate functionality within the polymer chain.
  • the alkyl portion of the polymer will typically be composed of C2 to C4 aliphatic radicals, or in some embodiments, longer chain aliphatic radicals, cycloaliphatic radicals or aromatic radicals.
  • hydrophilic diamines refers to any of the above hydrophilic diols in which the terminal hydroxyl groups have been replaced by reactive amine groups or in which the terminal hydroxyl groups have been derivatized to produce an extended chain having terminal amine groups.
  • a some hydrophilic diamine is a "diamino poly(oxyalkylene)" which is poly(alkylene) glycol in which the terminal hydroxyl groups are replaced with amino groups.
  • the term "diamino poly(oxyalkylene” also refers to poly(alkylene)glycols which have aminoalkyl ether groups at the chain termini.
  • a suitable diamino poly(oxyalkylene) is polypropylene glycol)bis(2- aminopropyl ether).
  • a number of the above polymers can be obtained from Aldrich Chemical Company. Alternatively, conventional methods known in the art can be employed for their synthesis.
  • the amount of hydrophilic polymer which is used to make the linear polymer compositions will typically be about 10% to about 80% by mole relative to the diisocyanate which is used. Typically, the amount is from about 20% to about 60% by mole relative to the diisocyanate. When lower amounts of hydrophilic polymer are used, it is common to include a chain extender.
  • Silicone containing polyurethane/polyurea polymers which are useful in the present invention are typically linear, have excellent oxygen permeability and essentially no glucose permeability.
  • the silicone polymer is a polydimethylsiloxane having two reactive functional groups (i.e., a functionality of 2).
  • the functional groups can be, for example, hydroxyl groups, amino groups or carboxylic acid groups, but are typically hydroxyl or amino groups.
  • combinations of silicone polymers can be used in which a first portion comprises hydroxyl groups and a second portion comprises amino groups.
  • the functional groups are positioned at the chain termini of the silicone polymer.
  • silicone polymers are commercially available from such sources as Dow Chemical Company (Midland, Mich., USA) and General Electric Company (Silicones Division, Schenectady, N.Y., USA). Still others can be prepared by general synthetic methods known in the art (see, e.g. U.S. Patent Nos. 5,777,060), beginning with commercially available siloxanes (United Chemical Technologies, Bristol. Pa., USA).
  • the silicone polymers will typically be those having a molecular weight of from about 400 to about 10,000, more typically those having a molecular weight of from about 2000 to about 4000.
  • the amount of silicone polymer which is incorporated into the reaction mixture will depend on the desired characteristics of the resulting polymer from which the biocompatible membrane is formed. For those compositions in which a lower glucose penetration is desired, a larger amount of silicone polymer can be employed. Alternatively, for compositions in which a higher glucose penetration is desired, smaller amounts of silicone polymer can be employed. Typically, for a glucose sensor, the amount of siloxane polymer will be from 10% to 90% by mole relative to the diisocyanate. Typically, the amount is from about 20% to 60% by mole relative to the diisocyanate.
  • the reaction mixture for the preparation of biocompatible membranes will also contain a chain extender which is an aliphatic or aromatic diol, an aliphatic or aromatic diamine, alkanolamine, or combinations thereof (e.g. as depicted in FIG. 8 of U.S. Patent Nos. 5,777,060)).
  • a chain extender which is an aliphatic or aromatic diol, an aliphatic or aromatic diamine, alkanolamine, or combinations thereof (e.g. as depicted in FIG. 8 of U.S. Patent Nos. 5,777,060)).
  • suitable aliphatic chain extenders include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6- hexanediol, ethanolamine, ethylene diamine, butane diamine, 1,4-cyclohexanedimethanol.
  • Aromatic chain extenders include, for example, para-di(2-hydroxyethoxy)benzene, meta- di(2-hydroxyethoxy)benzene, Ethacure 100® (a mixture of two isomers of 2,4-diamino- 3,5-diethyltoluene), Ethacure 300® (2,4-diamino-3,5-di(methylthio)toluene), 3,3'- dichloro-4,4'diaminodiphenylmethane, Polacure® 740M (trimethylene glycol bis(para- aminobenzoate)ester), and methylenedianiline.
  • Ethacure 100® a mixture of two isomers of 2,4-diamino- 3,5-diethyltoluene
  • Ethacure 300® (2,4-diamino-3,5-di(methylthio)toluene
  • Polacure® 740M trimethylene glycol bis(para- aminobenzo
  • chain extender typically provides the resulting biocompatible membrane with additional physical strength, but does not substantially increase the glucose permeability of the polymer.
  • a chain extender is used when lower (i.e., 10-40 mol %) amounts of hydrophilic polymers are used.
  • the chain extender is diethylene glycol which is present in from about 40% to 60% by mole relative to the diisocyanate.
  • Suitable catalysts include dibutyltin bis (2-ethylhexanoate) (CAS#: 2781-10-4), dibutyltin diacetate, triethylamine and combinations thereof. Typically dibutyltin bis (2-ethylhexanoate is used as the catalyst. The typical amount of this catalyst used is in the formulation is from 0.05% to 0.2% (w/w ratio). Bulk polymerization is typically carried out at an initial temperature of about 25° C. (ambient temperature) to about 50° C, in order to insure adequate mixing of the reactants.
  • reaction flask Upon mixing of the reactants, an exotherm is typically observed, with the temperature rising to about 90-120° C. After the initial exotherm, the reaction flask can be heated at from 75° C. to 125° C., with 90°. C. to 100 0 C. being an exemplary temperature range. Heating is usually carried out for one to two hours.
  • Solution polymerization can be carried out in a similar manner. Solvents which are suitable for solution polymerization include dimethylformamide, dimethyl sulfoxide, dimethylacetamide, halogenated solvents such as 1,2,3-trichloropropane, and ketones such as 4-methyl-2-pentanone. Typically, THF is used as the solvent. When polymerization is carried out in a solvent, heating of the reaction mixture is typically carried out for three to four hours.
  • Polymers prepared by bulk polymerization are typically dissolved in dimethylformamide and precipitated from water. Polymers prepared in solvents that are not miscible with water can be isolated by vacuum stripping of the solvent. These polymers are then dissolved in dimethylformamide and precipitated from water. After thoroughly washing with water, the polymers can be dried in vacuo at about 50° C. to constant weight.
  • Preparation of the membranes can be completed by dissolving the dried polymer in a suitable solvent and cast a film onto a glass plate.
  • a suitable solvent for casting will typically depend on the particular polymer as well as the volatility of the solvent.
  • the solvent is THF, CHCI3, CH2CI2, DMF, IPA or combinations thereof. More typically, the solvent is THF or DMF/CH2 C (2/98 volume %).
  • the solvent is removed from the films, the resulting membranes are hydrated fully, their thicknesses measured and water pickup is determined.
  • Membranes which are useful in the present invention will typically have a water pickup of about 20 to about 100%, typically 30 to about 90%, and more typically 40 to about 80%, by weight.
  • Oxygen and glucose diffusion coefficients can also be determined for the individual polymer compositions as well as the polycarbonate polymeric membranes of the present invention. Methods for determining diffusion coefficients are known to those of skill in the art, and examples are provided below. Certain embodiments of the biocompatible membranes described herein will typically have an oxygen diffusion coefficient (D 0X ygen) of about 0.1 x 1R 6 cm 2 /sec to about 2.0 x IE 6 cm 2 /sec and a glucose diffusion coefficient (D giUCO se) of about 1 x 1(F 9 cm 2 /sec to about 500 x 1(F 9 cm 2 /sec. More typically, the glucose diffusion coefficient is about 10 x 1R 9 cm 2 /sec to about 200 x 1(F 9 cm 2 / sec.
  • D 0X ygen oxygen diffusion coefficient
  • D giUCO se glucose diffusion coefficient
  • the glucose diffusion coefficient is about 10 x 1R 9 cm 2 /sec to about 200 x 1(F 9 cm 2 / sec.
  • Embodiments of the invention further include sensors comprising the polycarbonate polymeric compositions disclosed herein in combination with other sensor elements such as an interference rejection membrane (e.g. an interference rejection membrane as disclosed in U.S. Patent Application Serial Number 12/572,087, the contents of which are incorporated by reference).
  • an interference rejection membrane e.g. an interference rejection membrane as disclosed in U.S. Patent Application Serial Number 12/572,087, the contents of which are incorporated by reference.
  • an interference rejection membrane comprising methacrylate polymers having a molecular weight between 100 and 1000 kilodaltons, wherein the methacrylate polymers are crosslinked by a hydrophilic crosslinking agent such as an organofunctional dipodal alkoxysilane.
  • Another embodiment of the invention is an interference rejection membrane comprising primary amine polymers having a molecular weight between 4,000 Daltons and 500 kilodaltons, wherein the primary amine polymers are crosslinked by a hydrophilic crosslinking agent such as glutaraldehyde.
  • these interference rejection membranes coat a hydrogen peroxide transducing composition.
  • the hydrogen peroxide transducing composition comprises an electrode; and the crosslinked interference rejection membrane is coated on the electrode in a layer between 0.1 pm and 1.0 pm thick.
  • an element of the sensor apparatus such as an electrode or an aperture is designed to have a specific configuration and/ or is made from a specific material and/or is positioned relative to the other elements so as to facilitate a function of the sensor.
  • a working electrode, a counter electrode and a reference electrode are positionally distributed on the base and/ or the conductive layer in a configuration that facilitates sensor start up and/ or maintains the hydration of the working electrode, the counter electrode and/or the reference electrode when the sensor apparatus is placed in contact with a fluid comprising the analyte (e.g. by inhibiting shadowing of an electrode, a phenomena which can inhibit hydration and capacitive start-up of a sensor circuit).
  • a fluid comprising the analyte e.g. by inhibiting shadowing of an electrode, a phenomena which can inhibit hydration and capacitive start-up of a sensor circuit.
  • Such embodiments of the invention facilitate sensor start-up and/ or initialization.
  • embodiments of the apparatus comprise a plurality of working electrodes and/or counter electrodes and/or reference electrodes (e.g. 3 working electrodes, a reference electrode and a counter electrode), in order to, for example, provide redundant sensing capabilities.
  • Certain embodiments of the invention comprising a single sensor.
  • Other embodiments of the invention comprise multiple sensors.
  • a pulsed voltage is used to obtain a signal from one or more electrodes of a sensor.
  • the plurality of working, counter and reference electrodes are configured together as a unit and positionally distributed on the conductive layer in a repeating pattern of units.
  • the elongated base layer is made from a flexible material that allows the sensor to twist and bend when implanted in vivo; and the electrodes are grouped in a configuration that facilitates an in vivo fluid contacting at least one of working electrode as the sensor apparatus twists and bends when implanted in vivo. In some embodiments, the electrodes are grouped in a configuration that allows the sensor to continue to function if a portion of the sensor having one or more electrodes is dislodged from an in vivo environment and exposed to an ex vivo environment.
  • elements such as the sensor electrodes are organized/disposed within a flex-circuit assembly.
  • the architecture of the sensor system can be designed so that a first sensor does not influence a signal etc. generated by a second sensor (and vice versa); and so that the first and second sensors sense from separate tissue envelopes; so the signals from separate sensors do not interact.
  • the sensors will be spaced at a distance from each other so that allows them to be easily packaged together and/or adapted to be implanted via a single insertion action.
  • One such embodiment of the invention is an apparatus for monitoring an analyte in a patient, the apparatus comprising: a base element adapted to secure the apparatus to the patient; a first piercing member coupled to and extending from the base element; a first electrochemical sensor operatively coupled to the first piercing member and comprising a first electrochemical sensor electrode for determining at least one physiological characteristic of the patient at a first electrochemical sensor placement site; a second piercing member coupled to and extending from the base element; a second electrochemical sensor operatively coupled to the second piercing member and comprising a second electrochemical sensor electrode for determining at least one physiological characteristic of the patient at a second electrochemical sensor placement site.
  • At least one physiological characteristic monitored by the first or the second electrochemical sensor comprises a concentration of a naturally occurring analyte in the patient; the first piercing member disposes the first electrochemical sensor in a first tissue compartment of the patient and the second piercing member disposes the second electrochemical sensor in a second tissue compartment of the patient; and the first and second piercing members are disposed on the base in a configuration selected to avoid a physiological response that can result from implantation of the first electrochemical sensor from altering a sensor signal generated by the second electrochemical sensor.
  • Various elements of the sensor apparatus can be disposed at a certain location in the apparatus and/ or configured in a certain shape and/ or be constructed from a specific material so as to facilitate strength and/or function of the sensor.
  • One embodiment of the invention includes an elongated base comprised of a polyimmide or dielectric ceramic material that facilitates the strength and durability of the sensor.
  • the structural features and/ or relative position of the working and/ or counter and/or reference electrodes is designed to influence sensor manufacture, use and/or function.
  • the sensor is operatively coupled to a constellation of elements that comprise a flex-circuit (e.g. electrodes, electrical conduits, contact pads and the like).
  • One embodiment of the invention includes electrodes having one or more rounded edges so as to inhibit delamination of a layer disposed on the electrode (e.g. an analyte sensing layer comprising glucose oxidase).
  • an electrode of the apparatus comprises a platinum composition and the apparatus further comprises a titanium composition disposed between the elongated base layer and the conductive layer.
  • apparatus further comprises a gold composition disposed between the titanium composition and the conductive layer.
  • Such embodiments of the invention typically exhibit enhanced bonding between layered materials within the sensor and/or less corrosion and/or improved biocompatibility profiles.
  • Related embodiments of the invention include methods for inhibiting corrosion of a sensor element and/or method for improving the biocompatibility of a sensor embodiments of the invention (e.g. one constructed to use such materials).
  • the senor is operatively coupled to further elements (e.g. electronic components) such as elements designed to transmit and/ or receive a signal, monitors, processors and the like as well as devices that can use sensor data to modulate a patient’s physiology such as medication infusion pumps.
  • the sensor is operatively coupled to a sensor input capable of receiving a signal from the sensor that is based on a sensed physiological characteristic value in the mammal; and a processor coupled to the sensor input, wherein the processor is capable of characterizing one or more signals received from the sensor.
  • a sensor input capable of receiving a signal from the sensor that is based on a sensed physiological characteristic value in the mammal
  • a processor coupled to the sensor input, wherein the processor is capable of characterizing one or more signals received from the sensor.
  • the senor comprises three working electrodes, one counter electrode and one reference electrode.
  • at least one working electrode is coated with an analyte sensing layer comprising glucose oxidase and at least one working electrode is not coated with an analyte sensing layer comprising glucose oxidase.
  • FIG. 1 illustrates a cross-section of a typical sensor embodiment 100 of the present invention.
  • This sensor embodiment is formed from a plurality of components that are typically in the form of layers of various conductive and non-conductive constituents disposed on each other according to art accepted methods and/or the specific methods of the invention disclosed herein.
  • the components of the sensor are typically characterized herein as layers because, for example, it allows for a facile characterization of the sensor structure shown in FIG. 1.
  • Artisans will understand however, that in certain embodiments of the invention, the sensor constituents are combined such that multiple constituents form one or more heterogeneous layers. In this context, those of skill in the art understand that the ordering of the layered constituents can be altered in various embodiments of the invention.
  • the embodiment shown in FIG. 1 includes a base layer 102 to support the sensor 100.
  • the base layer 102 can be made of a material such as a metal and/or a ceramic and/ or a polymeric substrate, which may be self-supporting or further supported by another material as is known in the art.
  • Embodiments of the invention include a conductive layer 104 which is disposed on and/or combined with the base layer 102.
  • the conductive layer 104 comprises one or more electrodes.
  • An operating sensor 100 typically includes a plurality of electrodes such as a working electrode, a counter electrode and a reference electrode. Other embodiments may also include a plurality of working and/or counter and/or reference electrodes and/or one or more electrodes that performs multiple functions, for example one that functions as both as a reference and a counter electrode.
  • the base layer 102 and/or conductive layer 104 can be generated using many known techniques and materials.
  • the electrical circuit of the sensor is defined by etching the disposed conductive layer 104 into a desired pattern of conductive paths.
  • a typical electrical circuit for the sensor 100 comprises two or more adjacent conductive paths with regions at a proximal end to form contact pads and regions at a distal end to form sensor electrodes.
  • An electrically insulating cover layer 106 such as a polymer coating can be disposed on portions of the sensor 100.
  • Acceptable polymer coatings for use as the insulating protective cover layer 106 can include, but are not limited to, non-toxic biocompatible polymers such as silicone compounds, polyimides, biocompatible solder masks, epoxy acrylate copolymers, or the like.
  • one or more exposed regions or apertures 108 can be made through the cover layer 106 to open the conductive layer 104 to the external environment and to, for example, allow an analyte such as glucose to permeate the layers of the sensor and be sensed by the sensing elements.
  • Apertures 108 can be formed by a number of techniques, including laser ablation, tape masking, chemical milling or etching or photolithographic development or the like.
  • a secondary photoresist can also be applied to the protective layer 106 to define the regions of the protective layer to be removed to form the aperture(s) 108.
  • the exposed electrodes and/or contact pads can also undergo secondary processing (e.g. through the apertures 108), such as additional plating processing, to prepare the surfaces and/or strengthen the conductive regions.
  • an analyte sensing layer 110 (which is typically a sensor chemistry layer, meaning that materials in this layer undergo a chemical reaction to produce a signal that can be sensed by the conductive layer) is disposed on one or more of the exposed electrodes of the conductive layer 104.
  • an interference rejection membrane 120 is disposed on one or more of the exposed electrodes of the conductive layer 104, with the analyte sensing layer 110 then being disposed on this interference rejection membrane 120.
  • the analyte sensing layer 110 is an enzyme layer.
  • the analyte sensing layer 110 comprises an enzyme capable of producing and/or utilizing oxygen and/or hydrogen peroxide, for example the enzyme glucose oxidase.
  • the enzyme in the analyte sensing layer is combined with a second carrier protein such as human serum albumin, bovine serum albumin or the like.
  • a second carrier protein such as human serum albumin, bovine serum albumin or the like.
  • an oxidoreductase enzyme such as glucose oxidase in the analyte sensing layer 110 reacts with glucose to produce hydrogen peroxide, a compound which then modulates a current at an electrode.
  • the concentration of glucose can be determined by monitoring this modulation in the current.
  • the hydrogen peroxide is oxidized at a working electrode which is an anode (also termed herein the anodic working electrode), with the resulting current being proportional to the hydrogen peroxide concentration.
  • Such modulations in the current caused by changing hydrogen peroxide concentrations can by monitored by any one of a variety of sensor detector apparatuses such as a universal sensor amperometric biosensor detector or one of the other variety of similar devices known in the art such as glucose monitoring devices produced by Medtronic MiniMed.
  • the analyte sensing layer 110 can be applied over portions of the conductive layer or over the entire region of the conductive layer.
  • the analyte sensing layer 110 is disposed on the working electrode which can be the anode or the cathode.
  • the analyte sensing layer 110 is also disposed on a counter and/or reference electrode. While the analyte sensing layer 110 can be up to about 1000 microns (pm) in thickness, typically the analyte sensing layer is relatively thin as compared to those found in sensors previously described in the art, and is for example, typically less than 1, 0.5, 0.25 or 0.1 microns in thickness.
  • some methods for generating a thin analyte sensing layer 110 include brushing the layer onto a substrate (e.g. the reactive surface of a platinum black electrode), as well as spin coating processes, dip and dry processes, low shear spraying processes, ink-jet printing processes, silk screen processes and the like.
  • a substrate e.g. the reactive surface of a platinum black electrode
  • spin coating processes dip and dry processes, low shear spraying processes, ink-jet printing processes, silk screen processes and the like.
  • the analyte sensing layer 110 is coated and or disposed next to one or more additional layers.
  • the one or more additional layers includes a protein layer 116 disposed upon the analyte sensing layer 110.
  • the protein layer 116 comprises a protein such as human serum albumin, bovine serum albumin or the like.
  • the protein layer 116 comprises human serum albumin.
  • an additional layer includes an analyte modulating layer 112 that is disposed above the analyte sensing layer 110 to regulate analyte access with the analyte sensing layer 110.
  • the analyte modulating membrane layer 112 can comprise a glucose limiting membrane, which regulates the amount of glucose that contacts an enzyme such as glucose oxidase that is present in the analyte sensing layer.
  • glucose limiting membranes can be made from a wide variety of materials known to be suitable for such purposes, e.g., silicone compounds such as polydimethyl siloxanes, polyurethanes, polyurea cellulose acetates, NAFION, polyester sulfonic acids (e.g. Kodak AQ), hydrogels, the polymer blends disclosed herein or any other suitable hydrophilic membranes known to those skilled in the art.
  • an adhesion promoter layer 114 is disposed between layers such as the analyte modulating layer 112 and the analyte sensing layer 110 as shown in FIG. 1 in order to facilitate their contact and/or adhesion.
  • an adhesion promoter layer 114 is disposed between the analyte modulating layer 112 and the protein layer 116 as shown in FIG. 1 in order to facilitate their contact and/or adhesion.
  • the adhesion promoter layer 114 can be made from any one of a wide variety of materials known in the art to facilitate the bonding between such layers.
  • the adhesion promoter layer 114 comprises a silane compound.
  • protein or like molecules in the analyte sensing layer 110 can be sufficiently crosslinked or otherwise prepared to allow the analyte modulating membrane layer 112 to be disposed in direct contact with the analyte sensing layer 110 in the absence of an adhesion promoter layer 114.
  • sensors can be designed to contain elements having a combination of some or all of the material properties and/or functions of the elements /constituents discussed below (e.g. an element that serves both as a supporting base constituent and/or a conductive constituent and/or a matrix for the analyte sensing constituent and which further functions as an electrode in the sensor).
  • elements can be described as discreet units (e.g. layers)
  • sensors can be designed to contain elements having a combination of some or all of the material properties and/or functions of the elements /constituents discussed below (e.g. an element that serves both as a supporting base constituent and/or a conductive constituent and/or a matrix for the analyte sensing constituent and which further functions as an electrode in the sensor).
  • these thin film analyte sensors can be adapted for use in a number of sensor systems such as those described below.
  • Sensors of the invention typically include a base constituent (see, e.g. element 102 in FIG. 1).
  • the term“base constituent” is used herein according to art accepted terminology and refers to the constituent in the apparatus that typically provides a supporting matrix for the plurality of constituents that are stacked on top of one another and comprise the functioning sensor.
  • the base constituent comprises a thin film sheet of insulative (e.g. electrically insulative and/ or water impermeable) material.
  • This base constituent can be made of a wide variety of materials having desirable qualities such as dielectric properties, water impermeability and hermeticity. Some materials include metallic, and/ or ceramic and/ or polymeric substrates or the like.
  • the base constituent may be self-supporting or further supported by another material as is known in the art.
  • the base constituent 102 comprises a ceramic.
  • the base constituent comprises a polymeric material such as a polyimmide.
  • the ceramic base comprises a composition that is predominantly AI2O3 (e.g. 96%).
  • AI2O3 e.g. 96%.
  • the use of alumina as an insulating base constituent for use with implantable devices is disclosed in U.S. Pat. Nos. 4,940,858, 4,678,868 and 6,472,122 which are incorporated herein by reference.
  • the base constituents of the invention can further include other elements known in the art, for example hermetical vias (see, e.g.
  • the base constituent can be relatively thick constituent (e.g. thicker than 50, 100, 200, 300, 400, 500 or 1000 microns).
  • a nonconductive ceramic such as alumina, in thin constituents, e.g., less than about 30 microns.
  • the electrochemical sensors of the invention typically include a conductive constituent disposed upon the base constituent that includes at least one electrode for measuring an analyte or its byproduct (e.g. oxygen and/or hydrogen peroxide) to be assayed (see, e.g. element 104 in FIG. 1).
  • a conductive constituent disposed upon the base constituent that includes at least one electrode for measuring an analyte or its byproduct (e.g. oxygen and/or hydrogen peroxide) to be assayed (see, e.g. element 104 in FIG. 1).
  • the term“conductive constituent” is used herein according to art accepted terminology and refers to electrically conductive sensor elements such as electrodes which are capable of measuring and a detectable signal and conducting this to a detection apparatus.
  • An illustrative example of this is a conductive constituent that can measure an increase or decrease in current in response to exposure to a stimuli such as the change in the concentration of an analyte or its byproduct as compared to a reference electrode that does not experience the change in the concentration of the analyte, a coreactant (e.g. oxygen) used when the analyte interacts with a composition (e.g. the enzyme glucose oxidase) present in analyte sensing constituent 110 or a reaction product of this interaction (e.g. hydrogen peroxide).
  • a stimuli such as the change in the concentration of an analyte or its byproduct as compared to a reference electrode that does not experience the change in the concentration of the analyte
  • a coreactant e.g. oxygen
  • a composition e.g. the enzyme glucose oxidase
  • a reaction product of this interaction e.g. hydrogen peroxide
  • Illustrative examples of such elements include electrode
  • a working electrode which can be made from non-corroding metal or carbon.
  • a carbon working electrode may be vitreous or graphitic and can be made from a solid or a paste.
  • a metallic working electrode may be made from platinum group metals, including palladium or gold, or a non-corroding metallically conducting oxide, such as ruthenium dioxide.
  • the electrode may comprise a silver/ silver chloride electrode composition.
  • the working electrode may be a wire or a thin conducting film applied to a substrate, for example, by coating or printing. Typically, only a portion of the surface of the metallic or carbon conductor is in electrolytic contact with the analyte-containing solution. This portion is called the working surface of the electrode.
  • the remaining surface of the electrode is typically isolated from the solution by an electrically insulating cover constituent 106.
  • an electrically insulating cover constituent 106 examples include polymers such as polyimides, polytetrafluoroethylene, polyhexafluoropropylene and silicones such as polysiloxanes.
  • the analyte sensors of the invention typically include a reference electrode or a combined reference and counter electrode (also termed a quasi-reference electrode or a counter/ reference electrode). If the sensor does not have a counter/reference electrode then it may include a separate counter electrode, which may be made from the same or different materials as the working electrode.
  • Typical sensors of the present invention have one or more working electrodes and one or more counter, reference, and/or counter/reference electrodes.
  • One embodiment of the sensor of the present invention has two, three or four or more working electrodes. These working electrodes in the sensor may be integrally connected or they may be kept separate.
  • embodiments of the present invention are implanted subcutaneously in the skin of a mammal for direct contact with the body fluids of the mammal, such as blood.
  • the sensors can be implanted into other regions within the body of a mammal such as in the intraperotineal space.
  • multiple working electrodes When multiple working electrodes are used, they may be implanted together or at different positions in the body.
  • the counter, reference, and/or counter/ reference electrodes may also be implanted either proximate to the working electrode(s) or at other positions within the body of the mammal.
  • Embodiments of the invention include sensors comprising electrodes constructed from nanostructured materials.
  • a “nanostructured material” is an object manufactured to have at least one dimension smaller than 100 nm. Examples include, but are not limited to, single-walled nanotubes, double-walled nanotubes, multi-walled nanotubes, bundles of nanotubes, fullerenes, cocoons, nanowires, nanofibres, onions and the like.
  • the electrochemical sensors of the invention optionally include an interference rejection constituent disposed between the surface of the electrode and the environment to be assayed.
  • an interference rejection constituent disposed between the surface of the electrode and the environment to be assayed.
  • certain sensor embodiments rely on the oxidation and/or reduction of hydrogen peroxide generated by enzymatic reactions on the surface of a working electrode at a constant potential applied. Because amperometric detection based on direct oxidation of hydrogen peroxide requires a relatively high oxidation potential, sensors employing this detection scheme may suffer interference from oxidizable species that are present in biological fluids such as ascorbic acid, uric acid and acetaminophen.
  • interference rejection constituent is used herein according to art accepted terminology and refers to a coating or membrane in the sensor that functions to inhibit spurious signals generated by such oxidizable species which interfere with the detection of the signal generated by the analyte to be sensed.
  • Certain interference rejection constituents function via size exclusion (e.g. by excluding interfering species of a specific size).
  • interference rejection constituents include one or more layers or coatings of compounds such as hydrophilic crosslinked pHEMA and polylysine polymers as well as cellulose acetate (including cellulose acetate incorporating agents such as polyethylene glycol)), polyethersulfones, polytetra- fluoroethylenes, the perfluoronated ionomer NAFION, polyphenylenediamine, epoxy and the like.
  • cellulose acetate including cellulose acetate incorporating agents such as polyethylene glycol
  • polyethersulfones polytetra- fluoroethylenes
  • the perfluoronated ionomer NAFION polyphenylenediamine
  • epoxy epoxy
  • interference rejection constituents include for example those observed to limit the movement of compounds based upon a molecular weight range, for example cellulose acetate as disclosed for example in U.S. Patent No. 5,755,939, the contents of which are incorporated by reference. Additional compositions having an unexpected constellation of material properties that make them ideal for use as interference rejection membranes in certain amperometric glucose sensors as well as methods for making and using them are disclosed herein, for example in U.S. Patent Application Serial Number 12/572,087.
  • the electrochemical sensors of the invention include an analyte sensing constituent disposed on the electrodes of the sensor (see, e.g. element 110 in FIG. 1).
  • analyte sensing constituent is used herein according to art accepted terminology and refers to a constituent comprising a material that is capable of recognizing or reacting with an analyte whose presence is to be detected by the analyte sensor apparatus. Typically this material in the analyte sensing constituent produces a detectable signal after interacting with the analyte to be sensed, typically via the electrodes of the conductive constituent.
  • the analyte sensing constituent and the electrodes of the conductive constituent work in combination to produce the electrical signal that is read by an apparatus associated with the analyte sensor.
  • the analyte sensing constituent comprises an oxidoreductase enzyme capable of reacting with and/ or producing a molecule whose change in concentration can be measured by measuring the change in the current at an electrode of the conductive constituent (e.g. oxygen and/or hydrogen peroxide), for example the enzyme glucose oxidase.
  • An enzyme capable of producing a molecule such as hydrogen peroxide can be disposed on the electrodes according to a number of processes known in the art.
  • the analyte sensing constituent can coat all or a portion of the various electrodes of the sensor.
  • the analyte sensing constituent may coat the electrodes to an equivalent degree.
  • the analyte sensing constituent may coat different electrodes to different degrees, with for example the coated surface of the working electrode being larger than the coated surface of the counter and/ or reference electrode.
  • Typical sensor embodiments of this element of the invention utilize an enzyme (e.g. glucose oxidase) that has been combined with a second protein (e.g. albumin) in a fixed ratio (e.g. one that is typically optimized for glucose oxidase stabilizing properties) and then applied on the surface of an electrode to form a thin enzyme constituent.
  • the analyte sensing constituent comprises a GOx and HSA mixture.
  • the GOx reacts with glucose present in the sensing environment (e.g. the body of a mammal) and generates hydrogen peroxide according to the reaction shown in Figure 1, wherein the hydrogen peroxide so generated is anodically detected at the working electrode in the conductive constituent.
  • the enzyme and the second protein are typically treated to form a crosslinked matrix (e.g. by adding a cross-linking agent to the protein mixture).
  • a cross-linking agent e.g. an albumin
  • crosslinking conditions may be manipulated to modulate factors such as the retained biological activity of the enzyme, its mechanical and/or operational stability.
  • Illustrative crosslinking procedures are described in U.S. Patent Application Serial Number 10/335,506 and PCT publication WO 03/035891 which are incorporated herein by reference.
  • an amine cross-linking reagent such as, but not limited to, glutaraldehyde, can be added to the protein mixture.
  • the electrochemical sensors of the invention optionally include a protein constituent disposed between the analyte sensing constituent and the analyte modulating constituent (see, e.g. element 116 in FIG. 1).
  • the term“protein constituent” is used herein according to art accepted terminology and refers to constituent containing a carrier protein or the like that is selected for compatibility with the analyte sensing constituent and/or the analyte modulating constituent.
  • the protein constituent comprises an albumin such as human serum albumin.
  • the HSA concentration may vary between about 0.5%-30% (w/v). Typically the HSA concentration is about 1-10% w/v, and most typically is about 5% w/v.
  • collagen or BSA or other structural proteins used in these contexts can be used instead of or in addition to HSA.
  • This constituent is typically crosslinked on the analyte sensing constituent according to art accepted protocols.
  • the electrochemical sensors of the invention can include one or more adhesion promoting (AP) constituents (see, e.g. element 114 in FIG. 1).
  • AP adhesion promoting
  • the term“adhesion promoting constituent” is used herein according to art accepted terminology and refers to a constituent that includes materials selected for their ability to promote adhesion between adjoining constituents in the sensor.
  • the adhesion promoting constituent is disposed between the analyte sensing constituent and the analyte modulating constituent.
  • the adhesion promoting constituent is disposed between the optional protein constituent and the analyte modulating constituent.
  • the adhesion promoter constituent can be made from any one of a wide variety of materials known in the art to facilitate the bonding between such constituents and can be applied by any one of a wide variety of methods known in the art.
  • the adhesion promoter constituent comprises a silane compound such as g- aminopropyltrimethoxysilane.
  • silane coupling reagents especially those of the formula R'Si(OR) 3 in which R' is typically an aliphatic group with a terminal amine and R is a lower alkyl group
  • R' is typically an aliphatic group with a terminal amine and R is a lower alkyl group
  • R' is typically an aliphatic group with a terminal amine and R is a lower alkyl group
  • R' is typically an aliphatic group with a terminal amine and R is a lower alkyl group
  • R is typically an aliphatic group with a terminal amine and R is a lower alkyl group
  • the adhesion promoting constituent further comprises one or more compounds that can also be present in an adjacent constituent such as the polydimethyl siloxane (PDMS) compounds that serves to limit the diffusion of analytes such as glucose through the analyte modulating constituent.
  • the formulation comprises 0.5-20% PDMS, typically 5-15% PDMS, and most typically 10% PDMS.
  • the adhesion promoting constituent is crosslinked within the layered sensor system and correspondingly includes an agent selected for its ability to crosslink a moiety present in a proximal constituent such as the analyte modulating constituent.
  • the adhesion promoting constituent includes an agent selected for its ability to crosslink an amine or carboxyl moiety of a protein present in a proximal constituent such a the analyte sensing constituent and/or the protein constituent and or a siloxane moiety present in a compound disposed in a proximal layer such as the analyte modulating layer.
  • the electrochemical sensors of the invention include an analyte modulating constituent disposed on the sensor (see, e.g. element 112 in FIG. 1).
  • the term“analyte modulating constituent” is used herein according to art accepted terminology and refers to a constituent that typically forms a membrane on the sensor that operates to modulate the diffusion of one or more analytes, such as glucose, through the constituent.
  • the analyte modulating constituent is an analyte- limiting membrane (e.g. a glucose limiting membrane) which operates to prevent or restrict the diffusion of one or more analytes, such as glucose, through the constituents.
  • the analyte-modulating constituent operates to facilitate the diffusion of one or more analytes, through the constituents.
  • analyte modulating constituents can be formed to prevent or restrict the diffusion of one type of molecule through the constituent (e.g. glucose), while at the same time allowing or even facilitating the diffusion of other types of molecules through the constituent (e.g. O2).
  • the analyte modulating constituent comprises a polycarbonate polymer composition as disclosed herein.
  • glucose and oxygen from blood diffuse through a primary membrane of the sensor.
  • an enzyme such as glucose oxidase, catalyzes the conversion of glucose to hydrogen peroxide and gluconolactone.
  • the hydrogen peroxide may diffuse back through the analyte modulating constituent, or it may diffuse to an electrode where it can be reacted to form oxygen and a proton to produce a current that is proportional to the glucose concentration.
  • the sensor membrane assembly serves several functions, including selectively allowing the passage of glucose therethrough.
  • an illustrative analyte modulating constituent is a semi-permeable membrane which permits passage of water, oxygen and at least one selective analyte and which has the ability to absorb water, the membrane having a water soluble, hydrophilic polymer.
  • analyte modulating composition includes the polycarbonate polymeric compositions disclosed herein.
  • COYER CONSTITUENT The electrochemical sensors of the invention include one or more cover constituents which are typically electrically insulating protective constituents (see, e.g. element 106 in FIG. 1).
  • such cover constituents can be in the form of a coating, sheath or tube and are disposed on at least a portion of the analyte modulating constituent.
  • Acceptable polymer coatings for use as the insulating protective cover constituent can include, but are not limited to, non-toxic biocompatible polymers such as silicone compounds, polyimides, biocompatible solder masks, epoxy acrylate copolymers, or the like. Further, these coatings can be photo-imageable to facilitate
  • a typical cover constituent comprises spun on silicone. As is known in the art, this constituent can be a commercially available RTV (room temperature vulcanized) silicone
  • composition A typical chemistry in this context is polydimethyl siloxane (acetoxy based).
  • the analyte sensor apparatus disclosed herein has a number of embodiments.
  • a general embodiment of the invention is an analyte sensor apparatus for implantation within a mammal. While the analyte sensors are typically designed to be implantable within the body of a mammal, the sensors are not limited to any particular environment and can instead be used in a wide variety of contexts, for example for the analysis of most liquid samples including biological fluids such as whole-blood, lymph, plasma, serum, saliva, urine, stool, perspiration, mucus, tears, cerebrospinal fluid, nasal secretion, cervical or vaginal secretion, semen, pleural fluid, amniotic fluid, peritoneal fluid, middle ear fluid, joint fluid, gastric aspirate or the like.
  • biological fluids such as whole-blood, lymph, plasma, serum, saliva, urine, stool, perspiration, mucus, tears, cerebrospinal fluid, nasal secretion, cervical or vaginal secretion, semen, pleural fluid
  • the sensor embodiments disclosed herein can be used to sense analytes of interest in one or more physiological environments.
  • the sensor can be in direct contact with interstitial fluids as typically occurs with subcutaneous sensors.
  • the sensors of the present invention may also be part of a skin surface system where interstitial glucose is extracted through the skin and brought into contact with the sensor (see, e.g. U.S. Patent Nos. 6,155,992 and 6,706,159 which are incorporated herein by reference).
  • the sensor can be in contact with blood as typically occurs for example with intravenous sensors.
  • the sensor embodiments of the invention further include those adapted for use in a variety of contexts.
  • the senor can be designed for use in mobile contexts, such as those employed by ambulatory users.
  • the sensor can be designed for use in stationary contexts such as those adapted for use in clinical settings.
  • Such sensor embodiments include, for example, those used to monitor one or more analytes present in one or more physiological environments in a hospitalized patient.
  • Sensors of the invention can also be incorporated in to a wide variety of medical systems known in the art. Sensors of the invention can be used, for example, in a closed loop infusion systems designed to control the rate that medication is infused into the body of a user.
  • a closed loop infusion system can include a sensor and an associated meter which generates an input to a controller which in turn operates a delivery system (e.g. one that calculates a dose to be delivered by a medication infusion pump).
  • the meter associated with the sensor may also transmit commands to, and be used to remotely control, the delivery system.
  • the senor is a subcutaneous sensor in contact with interstitial fluid to monitor the glucose concentration in the body of the user, and the liquid infused by the delivery system into the body of the user includes insulin.
  • Illustrative systems are disclosed for example in U. S. Patent Nos. 6,558,351 and 6,551,276; PCT Application Nos. US99/21703 and US99/22993; as well as WO 2004/008956 and WO 2004/009161, all of which are incorporated herein by reference.
  • Certain embodiments of the invention measure peroxide and have the advantageous characteristic of being suited for implantation in a variety of sites in the mammal including regions of subcutaneous implantation and intravenous implantation as well as implantation into a variety of non-vascular regions.
  • a peroxide sensor design that allows implantation into non-vascular regions has advantages over certain sensor apparatus designs that measure oxygen due to the problems with oxygen noise that can occur in oxygen sensors implanted into non-vascular regions. For example, in such implanted oxygen sensor apparatus designs, oxygen noise at the reference sensor can compromise the signal to noise ratio which consequently perturbs their ability to obtain stable glucose readings in this environment.
  • the peroxide sensors of the invention therefore overcome the difficulties observed with such oxygen sensors in non-vascular regions.
  • Certain peroxide sensor embodiments of the invention further include advantageous long term or“permanent” sensors which are suitable for implantation in a mammal for a time period of greater than 30 days.
  • medical devices such as the sensors described herein can be categorized into three groups based on implant duration: (1) “Limited” ( ⁇ 24 hours), (2) “Prolonged” (24 hours - 30 days), and (3) “Permanent” (> 30 days).
  • the design of the peroxide sensor of the invention allows for a“Permanent” implantation according to this categorization, i.e. > 30 days.
  • the highly stable design of the peroxide sensor of the invention allows for an implanted sensor to continue to function in this regard for 2, 3, 4, 5, 6 or 12 or more months.
  • the invention disclosed herein includes a number of embodiments including sensors having constellations of elements including polycarbonate polymeric membranes. Such embodiments of the invention allow artisans to generate a variety of permutations of the analyte sensor apparatus disclosed herein.
  • illustrative general embodiments of the sensor disclosed herein include a base layer, a cover layer and at least one layer having a sensor element such as an electrode disposed between the base and cover layers.
  • a sensor element such as an electrode disposed between the base and cover layers.
  • an exposed portion of one or more sensor elements e.g., a working electrode, a counter electrode, reference electrode, etc.
  • a very thin layer of material having an appropriate electrode chemistry.
  • FIG. 1 illustrates a cross-section of a typical sensor structure 100 of the present invention.
  • the sensor is formed from a plurality of layers of various conductive and non-conductive constituents disposed on each other according to a method of the invention to produce a sensor structure 100.
  • the various layers (e.g. the analyte sensing layer) of the sensors can have one or more bioactive and/or inert materials incorporated therein.
  • incorporated as used herein is meant to describe any state or condition by which the material incorporated is held on the outer surface of or within a solid phase or supporting matrix of the layer.
  • the material "incorporated” may, for example, be immobilized, physically entrapped, attached covalently to functional groups of the matrix layer(s).
  • any process, reagents, additives, or molecular linker agents which promote the "incorporation" of said material may be employed if these additional steps or agents are not detrimental to, but are consistent with the objectives of the present invention.
  • a bioactive molecule e.g. an enzyme such as glucose oxidase
  • certain layers of the sensors disclosed herein include a proteinaceous substance such as albumin which serves as a crosslinkable matrix.
  • a proteinaceous substance is meant to encompass substances which are generally derived from proteins whether the actual substance is a native protein, an inactivated protein, a denatured protein, a hydrolyzed species, or a derivatized product thereof.
  • suitable proteinaceous materials include, but are not limited to enzymes such as glucose oxidase and lactate oxidase and the like, albumins (e.g. human serum albumin, bovine serum albumin etc.), caseins, gamma-globulins, collagens and collagen derived products (e.g., fish gelatin, fish glue, animal gelatin, and animal glue) .
  • FIG. 1 An illustrative embodiment of the invention is shown in FIG. 1.
  • This embodiment includes an electrically insulating base layer 102 to support the sensor 100.
  • the electrically insulating layer base 102 can be made of a material such as a ceramic substrate, which may be self-supporting or further supported by another material as is known in the art.
  • the electrically insulating layer 102 comprises a polyimide substrate, for example a polyimide tape, dispensed from a reel. Providing the layer 102 in this form can facilitate clean, high density mass production. Further, in some production processes using such a polyimide tape, sensors 100 can be produced on both sides of the tape.
  • Typical embodiments of the invention include an analyte sensing layer disposed on the base layer 102.
  • the analyte sensing layer comprises a conductive layer 104 which is disposed on insulating base layer 102.
  • the conductive layer 104 comprises one or more electrodes.
  • the conductive layer 104 can be applied using many known techniques and materials as will be described hereafter, however, the electrical circuit of the sensor 100 is typically defined by etching the disposed conductive layer 104 into a desired pattern of conductive paths.
  • a typical electrical circuit for the sensor 100 comprises two or more adjacent conductive paths with regions at a proximal end to form contact pads and regions at a distal end to form sensor electrodes.
  • An electrically insulating protective cover layer 106 such as a polymer coating is typically disposed on portions of the conductive layer 104.
  • Acceptable polymer coatings for use as the insulating protective layer 106 can include, but are not limited to, non-toxic biocompatible polymers such as polyimide, biocompatible solder masks, epoxy acrylate copolymers, or the like. Further, these coatings can be photo-imageable to facilitate photolithographic forming of apertures 108 through to the conductive layer 104.
  • an analyte sensing layer is disposed upon a porous metallic and/ or ceramic and/ or polymeric matrix with this combination of elements functioning as an electrode in the sensor.
  • one or more exposed regions or apertures 108 can be made through the protective layer 106 to the conductive layer 104 to define the contact pads and electrodes of the sensor 100.
  • the apertures 108 can be formed by a number of techniques, including laser ablation, chemical milling or etching or the like.
  • a secondary photoresist can also be applied to the cover layer 106 to define the regions of the protective layer to be removed to form the apertures 108.
  • An operating sensor 100 typically includes a plurality of electrodes such as a working electrode and a counter electrode electrically isolated from each other, however typically situated in close proximity to one another. Other embodiments may also include a reference electrode. Still other embodiments may utilize a separate reference element not formed on the sensor.
  • the exposed electrodes and/or contact pads can also undergo secondary processing through the apertures 108, such as additional plating processing, to prepare the surfaces and/or strengthen the conductive regions.
  • An analyte sensing layer 110 is typically disposed on one or more of the exposed electrodes of the conductive layer 104 through the apertures 108.
  • the analyte sensing layer 110 is a sensor chemistry layer and most typically an enzyme layer.
  • the analyte sensing layer 110 comprises the enzyme glucose oxidase or the enzyme lactate oxidase.
  • the analyte sensing layer 110 reacts with glucose to produce hydrogen peroxide which modulates a current to the electrode which can be monitored to measure an amount of glucose present.
  • the sensor chemistry layer 110 can be applied over portions of the conductive layer or over the entire region of the conductive layer.
  • the sensor chemistry layer 110 is disposed on portions of a working electrode and a counter electrode that comprise a conductive layer.
  • Some methods for generating the thin sensor chemistry layer 110 include spin coating processes, dip and dry processes, low shear spraying processes, ink-jet printing processes, silk screen processes and the like. Most typically the thin sensor chemistry layer 110 is applied using a spin coating process.
  • the analyte sensing layer 110 is typically coated with one or more coating layers.
  • one such coating layer includes a membrane which can regulate the amount of analyte that can contact an enzyme of the analyte sensing layer.
  • a coating layer can comprise an analyte modulating membrane layer such as a glucose limiting membrane which regulates the amount of glucose that contacts the glucose oxidase enzyme layer on an electrode.
  • the analyte modulating layer comprises a linear polyurethane/polyurea polymer polycarbonate with a branched acrylate hydrophilic comb-copolymer having a central chain and a plurality of side chains coupled to the central chain, wherein at least one side chain comprises a silicone moiety.
  • a coating layer is a glucose limiting membrane layer 112 which is disposed above the sensor chemistry layer 110 to regulate glucose contact with the sensor chemistry layer 110.
  • an adhesion promoter layer 114 is disposed between the membrane layer 112 and the sensor chemistry layer 110 as shown in FIG. 1 in order to facilitate their contact and/ or adhesion.
  • the adhesion promoter layer 114 can be made from any one of a wide variety of materials known in the art to facilitate the bonding between such layers.
  • the adhesion promoter layer 114 comprises a silane compound.
  • protein or like molecules in the sensor chemistry layer 110 can be sufficiently crosslinked or otherwise prepared to allow the membrane layer 112 to be disposed in direct contact with the sensor chemistry layer 110 in the absence of an adhesion promoter layer 114.
  • embodiments of the present invention can include one or more functional coating layers.
  • the term "functional coating layer” denotes a layer that coats at least a portion of at least one surface of a sensor, more typically substantially all of a surface of the sensor, and that is capable of interacting with one or more analytes, such as chemical compounds, cells and fragments thereof, etc., in the environment in which the sensor is disposed.
  • functional coating layers include sensor chemistry layers (e.g., enzyme layers), analyte limiting layers, biocompatible layers; layers that increase the slipperiness of the sensor; layers that promote cellular attachment to the sensor; layers that reduce cellular attachment to the sensor; and the like.
  • analyte modulating layers operate to prevent or restrict the diffusion of one or more analytes, such as glucose, through the layers.
  • analytes such as glucose
  • Such layers can be formed to prevent or restrict the diffusion of one type of molecule through the layer (e.g. glucose), while at the same time allowing or even facilitating the diffusion of other types of molecules through the layer (e.g. O2).
  • An illustrative functional coating layer is a hydrogel such as those disclosed in U.S. Patent Nos. 5,786,439 and 5,391,250, the disclosures of each being incorporated herein by reference. The hydrogels described therein are particularly useful with a variety of implantable devices for which it is advantageous to provide a surrounding water layer.
  • the sensor embodiments disclosed herein can include layers having UV- absorbing polymers.
  • a sensor including at least one functional coating layer including an UV- absorbing polymer.
  • the UY-absorbing polymer is a polyurethane, a polyurea or a polyurethane/polyurea copolymer. More typically, the selected UY- absorbing polymer is formed from a reaction mixture including a diisocyanate, at least one diol, diamine or mixture thereof, and a polyfunctional UV-absorbing monomer.
  • UV-absorbing polymers are used with advantage in a variety of sensor fabrication methods, such as those described in U.S. Pat. No. 5,390,671, to Lord et al., entitled “Transcutaneous Sensor Insertion Set”; No. 5,165,407, to Wilson et al., entitled “Implantable Glucose Sensor”; and U.S. Pat. No. 4,890,620, to Gough, entitled “Two- Dimensional Diffusion Glucose Substrate Sensing Electrode”, which are incorporated herein in their entireties by reference.
  • any sensor production method which includes the step of forming an UV-absorbing polymer layer above or below a sensor element is considered to be within the scope of the present invention.
  • the inventive methods are not limited to thin-film fabrication methods, and can work with other sensor fabrication methods that utilize UV-laser cutting.
  • Embodiments can work with thick-film, planar or cylindrical sensors and the like, and other sensor shapes requiring laser cutting.
  • each sensor comprises a plurality of sensor elements, for example electrically conductive elements such as elongated thin film conductors, formed between an underlying insulative thin film base layer and an overlying insulative thin film cover layer.
  • electrically conductive elements such as elongated thin film conductors
  • a plurality of different sensor elements can be included in a single sensor.
  • both conductive and reactive sensor elements can be combined in one sensor, optionally with each sensor element being disposed on a different portion of the base layer.
  • One or more control elements can also be provided.
  • the sensor can have defined in its cover layer a plurality of openings or apertures.
  • One or more openings can also be defined in the cover layer directly over a portion of the base layer, in order to provide for interaction of the base layer with one or more analytes in the environment in which the sensor is disposed.
  • the base and cover layers can be comprised of a variety of materials, typically polymers. In more specific embodiments the base and cover layers are comprised of an insulative material such as a polyimide. Openings are typically formed in the cover layer to expose distal end electrodes and proximal end contact pads. In a glucose monitoring application, for example, the sensor can be placed transcutaneously so that the distal end electrodes are in contact with patient blood or extracellular fluid, and the contact pads are disposed externally for convenient connection to a monitoring device.
  • planar refers to the well-known procedure of fabricating a substantially planar structure comprising layers of relatively thin materials, for example, using the well-known thick or thin-film techniques. See, for example, Liu et ak, U.S. Pat. No. 4,571,292, and Papadakis et ah, U.S. Pat. No. 4,536,274, both of which are incorporated herein by reference.
  • embodiments of the invention disclosed herein have a wider range of geometrical configurations (e.g. planar) than existing sensors in the art.
  • certain embodiments of the invention include one or more of the sensors disclosed herein coupled to another apparatus such as a medication infusion pump.
  • Figure 2 provides a diagrammatic view of a typical analyte sensor configuration of the current invention.
  • Certain sensor configurations are of a relatively flat“ribbon” type configuration that can be made with the analyte sensor apparatus.
  • Such“ribbon” type configurations illustrate an advantage of the sensors disclosed herein that arises due to the spin coating of sensing enzymes such as glucose oxidase, a manufacturing step that produces extremely thin enzyme coatings that allow for the design and production of highly flexible sensor geometries.
  • Such thin enzyme coated sensors provide further advantages such as allowing for a smaller sensor area while maintaining sensor sensitivity, a highly desirable feature for implantable devices (e.g. smaller devices are easier to implant).
  • sensor embodiments of the invention that utilize very thin analyte sensing layers that can be formed by processes such as spin coating can have a wider range of geometrical configurations (e.g. planar) than those sensors that utilize enzyme layers formed via processes such as electrodeposition.
  • Certain sensor configurations include multiple conductive elements such as multiple working, counter and reference electrodes. Advantages of such configurations include increased surface area which provides for greater sensor sensitivity. For example, one sensor configuration introduces a third working sensor. One obvious advantage of such a configuration is signal averaging of three sensors which increases sensor accuracy. Other advantages include the ability to measure multiple analytes. In particular, analyte sensor configurations that include electrodes in this arrangement (e.g. multiple working, counter and reference electrodes) can be incorporated into multiple analyte sensors.
  • analytes such as oxygen, hydrogen peroxide, glucose, lactate, potassium, calcium, and any other physiologically relevant substance/analyte provides a number of advantages, for example the ability of such sensors to provide a linear response as well as ease in calibration and/ or recalibration.
  • An exemplary multiple sensor device comprises a single device having a first sensor which is polarized cathodically and designed to measure the changes in oxygen concentration that occur at the working electrode (a cathode) as a result of glucose interacting with glucose oxidase; and a second sensor which is polarized anodically and designed to measure changes in hydrogen peroxide concentration that occurs at the working electrode (an anode) as a result of glucose coming form the external environment and interacting with glucose oxidase.
  • the first oxygen sensor will typically experience a decrease in current at the working electrode as oxygen contacts the sensor while the second hydrogen peroxide sensor will typically experience an increase in current at the working electrode as the hydrogen peroxide generated as shown in Figure 1 contacts the sensor.
  • an observation of the change in current that occurs at the working electrodes as compared to the reference electrodes in the respective sensor systems correlates to the change in concentration of the oxygen and hydrogen peroxide molecules which can then be correlated to the concentration of the glucose in the external environment (e.g. the body of the mammal).
  • the analyte sensors of the invention can be coupled with other medical devices such as medication infusion pumps.
  • replaceable analyte sensors of the invention can be coupled with other medical devices such as medication infusion pumps, for example by the use of a port couple to the medical device (e.g. a subcutaneous port with a locking electrical connection).
  • Typical sensors for monitoring glucose concentration of diabetics are further described in Shichiri, et al., "In Vivo Characteristics of Needle-Type Glucose Sensor- Measurements of Subcutaneous Glucose Concentrations in Human Volunteers," Horm. Metab. Res., Suppl. Ser. 20:17-20 (1988); Bruckel, et al.,: “In Vivo Measurement of Subcutaneous Glucose Concentrations with an Enzymatic Glucose Sensor and a Wick Method," Klin. Weinschr.
  • a typical embodiment of the invention disclosed herein is a method of making a sensor apparatus for implantation within a mammal comprising the steps of: providing a base layer; forming a conductive layer on the base layer, wherein the conductive layer includes an electrode (and typically a working electrode, a reference electrode and a counter electrode); forming an analyte sensing layer on the conductive layer, wherein the analyte sensing layer includes a composition that can alter the electrical current at the electrode in the conductive layer in the presence of an analyte; optionally forming a protein layer on the analyte sensing layer; forming an adhesion promoting layer on the analyte sensing layer or the optional protein layer; forming an analyte modulating layer disposed on the adhesion promoting layer, wherein the analyte modulating layer includes a composition that modulates the diffusion of the analyte therethrough; and forming a cover layer disposed on at least a portion of the analyte
  • the analyte modulating layer comprises a linear polyurethane/ polyurea polymer polycarbonate with a branched acrylate copolymer having a central chain and a plurality of side chains coupled to the central chain.
  • the analyte sensor apparatus is formed in a planar geometric configuration
  • the various layers of the sensor can be manufactured to exhibit a variety of different characteristics which can be manipulated according to the specific design of the sensor.
  • the adhesion promoting layer includes a compound selected for its ability to stabilize the overall sensor structure, typically a silane composition.
  • the analyte sensing layer is formed by a spin coating process and is of a thickness selected from the group consisting of less than 1, 0.5, 0.25 and 0.1 microns in height.
  • a method of making the sensor includes the step of forming a protein layer on the analyte sensing layer, wherein a protein within the protein layer is an albumin selected from the group consisting of bovine serum albumin and human serum albumin.
  • a method of making the sensor includes the step of forming an analyte sensing layer that comprises an enzyme composition selected from the group consisting of glucose oxidase, glucose dehydrogenase, lactate oxidase, hexokinase and lactate dehydrogenase.
  • the analyte sensing layer typically comprises a carrier protein composition in a substantially fixed ratio with the enzyme, and the enzyme and the carrier protein are distributed in a substantially uniform manner throughout the analyte sensing layer.
  • Electrodes of the invention can be formed from a wide variety of materials known in the art.
  • the electrode may be made of a noble late transition metals.
  • Metals such as gold, platinum, silver, rhodium, iridium, ruthenium, palladium, or osmium can be suitable in various embodiments of the invention.
  • Other compositions such as carbon or mercury can also be useful in certain sensor embodiments.
  • silver, gold, or platinum is typically used as a reference electrode metal.
  • a silver electrode which is subsequently chloridized is typically used as the reference electrode.
  • metals can be deposited by any means known in the art, including the plasma deposition method cited, supra, or by an electroless method which may involve the deposition of a metal onto a previously metallized region when the substrate is dipped into a solution containing a metal salt and a reducing agent.
  • the electroless method proceeds as the reducing agent donates electrons to the conductive (metallized) surface with the concomitant reduction of the metal salt at the conductive surface. The result is a layer of adsorbed metal.
  • the base layer is initially coated with a thin film conductive layer by electrode deposition, surface sputtering, or other suitable process step.
  • this conductive layer may be provided as a plurality of thin film conductive layers, such as an initial chrome-based layer suitable for chemical adhesion to a polyimide base layer followed by subsequent formation of thin film gold-based and chrome-based layers in sequence.
  • other electrode layer conformations or materials can be used.
  • the conductive layer is then covered, in accordance with conventional photolithographic techniques, with a selected photoresist coating, and a contact mask can be applied over the photoresist coating for suitable photoimaging.
  • the contact mask typically includes one or more conductor trace patterns for appropriate exposure of the photoresist coating, followed by an etch step resulting in a plurality of conductive sensor traces remaining on the base layer.
  • each sensor trace can include three parallel sensor elements corresponding with three separate electrodes such as a working electrode, a counter electrode and a reference electrode.
  • an insulative cover layer typically of a material such as a silicon polymer and/or a polyimide.
  • the insulative cover layer can be applied in any desired manner.
  • the insulative cover layer is applied in a liquid layer over the sensor traces, after which the substrate is spun to distribute the liquid material as a thin film overlying the sensor traces and extending beyond the marginal edges of the sensor traces in sealed contact with the base layer.
  • This liquid material can then be subjected to one or more suitable radiation and/or chemical and/or heat curing steps as are known in the art.
  • the liquid material can be applied using spray techniques or any other desired means of application.
  • Various insulative layer materials may be used such as photoimagable epoxyacrylate, with an illustrative material comprising a photoimagable polyimide available from OCG, Inc. of West Paterson, N.J., under the product number
  • appropriate electrode chemistries defining the distal end electrodes can be applied to the sensor tips, optionally subsequent to exposure of the sensor tips through the openings.
  • an enzyme typically glucose oxidase
  • an enzyme is provided within one of the openings, thus coating one of the sensor tips to define a working electrode.
  • One or both of the other electrodes can be provided with the same coating as the working electrode.
  • the other two electrodes can be provided with other suitable chemistries, such as other enzymes, left uncoated, or provided with chemistries to define a reference electrode and a counter electrode for the electrochemical sensor.
  • Methods for producing the extremely thin enzyme coatings of the invention include spin coating processes, dip and dry processes, low shear spraying processes, ink- jet printing processes, silk screen processes and the like.
  • artisans can readily determine the thickness of an enzyme coat applied by process of the art, they can readily identify those methods capable of generating the extremely thin coatings of the invention.
  • coatings are vapor crosslinked subsequent to their application.
  • sensors produced by these processes have material properties that exceed those of sensors having coatings produced by electrodeposition including enhanced longevity, linearity, regularity as well as improved signal to noise ratios.
  • embodiments of the invention that utilize glucose oxidase coatings formed by such processes are designed to recycle hydrogen peroxide and improve the biocompatibility profiles of such sensors.
  • Sensors generated by processes such as spin coating processes also avoid other problems associated with electrodeposition, such as those pertaining to the material stresses placed on the sensor during the electrodeposition process.
  • the process of electrodeposition is observed to produce mechanical stresses on the sensor, for example mechanical stresses that result from tensile and/or compression forces.
  • mechanical stresses may result in sensors having coatings with some tendency to crack or delaminate. This is not observed in coatings disposed on sensor via spin coating or other low-stress processes. Consequently, yet another embodiment of the invention is a method of avoiding the electrodeposition influenced cracking and/ or delamination of a coating on a sensor comprising applying the coating via a spin coating process.
  • a related embodiment of the invention is a method of sensing an analyte within the body of a mammal, the method comprising implanting an analyte sensor embodiment disclosed herein in to the mammal and then sensing an alteration in current at the working electrode and correlating the alteration in current with the presence of the analyte, so that the analyte is sensed.
  • the analyte sensor can polarized anodically such that the working electrode where the alteration in current is sensed is an anode, or cathodically such that the working electrode where the alteration in current is sensed is a cathode.
  • the analyte sensor apparatus senses glucose in the mammal.
  • the analyte sensor apparatus senses lactate, potassium, calcium, oxygen, pH, and/or any physiologically relevant analyte in the mammal.
  • analyte sensors having the structure discussed above have a number of highly desirable characteristics which allow for a variety of methods for sensing analytes in a mammal.
  • the analyte sensor apparatus implanted in the mammal functions to sense an analyte within the body of a mammal for more than 1, 2, 3, 4, 5, or 6 months.
  • the analyte sensor apparatus so implanted in the mammal senses an alteration in current in response to an analyte within 15, 10, 5 or 2 minutes of the analyte contacting the sensor.
  • the sensors can be implanted into a variety of locations within the body of the mammal, for example in both vascular and non-vascular spaces.
  • Another formulation used in embodiments of the invention is termed a“half permeable GLM”, due to the observation that its glucose permeability is one-half of the standard formulation immediately above.
  • the Jeffamine/PDMS ration 3/1 (mole ratio).
  • This half-permeable GLM is can be used for example to reduce the weight % of GLM-urea in an overall polymer blend in order to reach a particular Isig (or glucose permeability).
  • the presence of more GLM- acrylate polymer in the polymer blend can enhance the adhesion between polycarbonate polymeric membrane layer and a proximal layer in a sensor (e.g. one comprising glucose oxidase).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Des modes de réalisation de l'invention concernent des compositions utiles dans des capteurs d'analytes ainsi que des procédés de fabrication et d'utilisation de ces compositions et capteurs. Selon des modes de réalisation typiques de l'invention, le capteur est un capteur de glucose comportant une membrane de modulation d'analytes formée à partir d'un mélange réactionnel de polymère formé pour inclure des quantités de limitation de composés de catalyseurs et/ou de polycarbonate pour procurer à de telles membranes des propriétés matérielles améliorées telles qu'une stabilité thermique et hydrolytique améliorée.
PCT/US2019/032660 2018-05-16 2019-05-16 Membrane de limitation de glucose thermiquement stable pour capteurs de glucose WO2019222499A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19728814.5A EP3794135A1 (fr) 2018-05-16 2019-05-16 Membrane de limitation de glucose thermiquement stable pour capteurs de glucose
CA3100384A CA3100384A1 (fr) 2018-05-16 2019-05-16 Membrane de limitation de glucose thermiquement stable pour capteurs de glucose
CN201980030243.0A CN112088217A (zh) 2018-05-16 2019-05-16 用于葡萄糖传感器的热稳定葡萄糖限制膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/981,681 2018-05-16
US15/981,681 US11134872B2 (en) 2016-06-06 2018-05-16 Thermally stable glucose limiting membrane for glucose sensors

Publications (1)

Publication Number Publication Date
WO2019222499A1 true WO2019222499A1 (fr) 2019-11-21

Family

ID=66770579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/032660 WO2019222499A1 (fr) 2018-05-16 2019-05-16 Membrane de limitation de glucose thermiquement stable pour capteurs de glucose

Country Status (4)

Country Link
EP (1) EP3794135A1 (fr)
CN (1) CN112088217A (fr)
CA (1) CA3100384A1 (fr)
WO (1) WO2019222499A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113304683A (zh) * 2021-06-17 2021-08-27 江南大学 葡糖酰胺封端聚醚型表面活性剂、其制备方法及应用
WO2021184843A1 (fr) * 2020-03-18 2021-09-23 微泰医疗器械(杭州)有限公司 Copolymère triséquencé pour biocapteur implantable, application associée et procédé de préparation associé
WO2022008394A1 (fr) * 2020-07-07 2022-01-13 F. Hoffmann-La Roche Ag Capteur d'analyte et son procédé de fabrication
WO2022164981A1 (fr) * 2021-01-29 2022-08-04 Medtronic Minimed, Inc. Membranes de rejet d'interférences utiles avec des capteurs d'analytes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115651525B (zh) * 2022-12-09 2023-03-21 乐普(北京)医疗器械股份有限公司 一种葡萄糖扩散限制性聚合物外膜及其制备方法和应用

Citations (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431004A (en) 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4536274A (en) 1983-04-18 1985-08-20 Diamond Shamrock Chemicals Company pH and CO2 sensing device and method of making the same
US4571292A (en) 1982-08-12 1986-02-18 Case Western Reserve University Apparatus for electrochemical measurements
US4678868A (en) 1979-06-25 1987-07-07 Medtronic, Inc. Hermetic electrical feedthrough assembly
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US4890620A (en) 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US4940858A (en) 1989-08-18 1990-07-10 Medtronic, Inc. Implantable pulse generator feedthrough
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5212050A (en) 1988-11-14 1993-05-18 Mier Randall M Method of forming a permselective layer
US5299571A (en) 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5390691A (en) 1994-01-27 1995-02-21 Sproule; Ronald Bleed valve for water supply for camping vehicle
US5391250A (en) 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5390671A (en) 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5482473A (en) 1994-05-09 1996-01-09 Minimed Inc. Flex circuit connector
US5494562A (en) 1994-06-27 1996-02-27 Ciba Corning Diagnostics Corp. Electrochemical sensors
WO1996018115A1 (fr) 1994-12-06 1996-06-13 Nps Pharmaceuticals, Inc. Appareil de detection de fluorescence
WO1996030431A1 (fr) 1995-03-27 1996-10-03 Minimed Inc. Compositions de polyurethane/polyuree contenant de la silicone pour membranes de biodetecteurs
US5568806A (en) 1995-02-16 1996-10-29 Minimed Inc. Transcutaneous sensor insertion set
US5605152A (en) 1994-07-18 1997-02-25 Minimed Inc. Optical glucose sensor
WO1998013685A1 (fr) 1996-09-26 1998-04-02 Minimed, Inc. Membranes biocompatibles contenant des silicones
WO1998017995A1 (fr) 1996-10-24 1998-04-30 Minimed, Inc. Revetements hydrophiles, susceptibles de gonfler, conçus pour des biocapteurs
US5755939A (en) 1996-04-30 1998-05-26 Medtronic, Inc. Polyion sensor with molecular weight differentiation
US5771868A (en) 1997-07-03 1998-06-30 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
US5985129A (en) 1989-12-14 1999-11-16 The Regents Of The University Of California Method for increasing the service life of an implantable sensor
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6119028A (en) 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6122536A (en) 1995-07-06 2000-09-19 Animas Corporation Implantable sensor and system for measurement and control of blood constituent levels
US6120676A (en) 1997-02-06 2000-09-19 Therasense, Inc. Method of using a small volume in vitro analyte sensor
US6141573A (en) 1995-09-12 2000-10-31 Cygnus, Inc. Chemical signal-impermeable mask
US6155992A (en) 1997-12-02 2000-12-05 Abbott Laboratories Method and apparatus for obtaining interstitial fluid for diagnostic tests
US6212416B1 (en) 1995-11-22 2001-04-03 Good Samaritan Hospital And Medical Center Device for monitoring changes in analyte concentration
WO2001058348A2 (fr) 2000-02-10 2001-08-16 Minimed Inc. Detecteur d'analyte ameliore et procede de fabrication associe
EP1153571A1 (fr) 2000-05-08 2001-11-14 A. Menarini Industrie Farmaceutiche Riunite S.R.L. Dispositif de mesure et de contrôle de la teneur en glucose, lactate où autres métabolismes dans des fluides biologiques
US6319540B1 (en) 1995-11-22 2001-11-20 Minimed Inc. Detection of biological molecules using chemical amplification and optical sensors
US6368274B1 (en) 1999-07-01 2002-04-09 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6400974B1 (en) 2000-06-29 2002-06-04 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method for processing implanted sensor output
US6413393B1 (en) 1999-07-07 2002-07-02 Minimed, Inc. Sensor including UV-absorbing polymer and method of manufacture
US20020090738A1 (en) 1988-11-14 2002-07-11 I-Stat Corporation System and method of microdispensing and arrays of biolayers provided by same
US6472122B1 (en) 1996-12-20 2002-10-29 Medtronic Minimed, Inc. Method of applying insulation for coating implantable components and other microminiature devices
US6512939B1 (en) 1997-10-20 2003-01-28 Medtronic Minimed, Inc. Implantable enzyme-based monitoring systems adapted for long term use
US6514718B2 (en) 1991-03-04 2003-02-04 Therasense, Inc. Subcutaneous glucose electrode
WO2003022128A2 (fr) 2001-09-07 2003-03-20 Medtronic Minimed, Inc. Appareil de detection et procede
WO2003023708A2 (fr) 2001-09-07 2003-03-20 Medtronic Minimed, Inc. Systeme et procede de delivrance d'une formulation de perfusion en boucle fermee
WO2003023388A1 (fr) 2001-09-07 2003-03-20 Medtronic Minimed, Inc. Substrat pour sonde et procede de fabrication
WO2003022352A1 (fr) 2001-09-07 2003-03-20 Medtronic Minimed, Inc. Conducteur electronique pour prothese medicale, procede de fabrication de ce dernier, et appareil destine a l'insertion de ce dernier
US6542765B1 (en) 1988-01-29 2003-04-01 The Regent Of The University Of California Method for the iontophoretic non-invasive determination of the in vivo concentration level of an inorganic or organic substance
US6551276B1 (en) 1998-08-18 2003-04-22 Medtronic Minimed, Inc. External infusion device with remote programming bolus estimator and/or vibration alarm capabilities
WO2003035891A2 (fr) 2001-10-23 2003-05-01 Medtronic Minimed, Inc. Procede de formulation et d'immobilisation d'une matrice proteique et matrice proteique a utiliser dans un capteur
WO2003034902A2 (fr) 2001-10-23 2003-05-01 Medtronic Minimed Inc. Procede et systeme d'implantation d'une sonde non vasculaire
WO2003035117A1 (fr) 2001-10-23 2003-05-01 Medtronic Minimed, Inc. Dispositif sterile et procede de production du dispositif
WO2003036255A2 (fr) 2001-10-23 2003-05-01 Medtronic Minimed, Inc. Procede de formulation d'enzyme glucose-oxydase a propriete(s) specifique(s), et enzyme resultante
WO2003036310A1 (fr) 2001-10-23 2003-05-01 Medtronic Minimed, Inc. Electrodes a capteur implantables et circuit electronique
US6558351B1 (en) 1999-06-03 2003-05-06 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US6595919B2 (en) 1998-05-13 2003-07-22 Cygnus, Inc. Device for signal processing for measurement of physiological analytes
WO2003074107A2 (fr) 2002-03-01 2003-09-12 Medtronic Minimed, Inc. Catheter multiluminal
US6632015B2 (en) 2000-04-26 2003-10-14 Seiko Instruments Inc. Thermal analysis apparatus
US6642015B2 (en) 2000-12-29 2003-11-04 Minimed Inc. Hydrophilic polymeric material for coating biosensors
WO2004009161A1 (fr) 2002-07-24 2004-01-29 Medtronic Minimed, Inc. Dispositif de surveillance physiologique pour controler un dispositif a perfusion pour medicament
WO2004008956A2 (fr) 2002-07-24 2004-01-29 Medtronic Minimed, Inc. Systeme d'envoi de mesures de la glycemie a un dispositif de perfusion
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
WO2004021877A1 (fr) 2002-09-04 2004-03-18 Pendragon Medical Ltd. Procede et dispositif pour mesurer le taux de glucose
US20050115832A1 (en) 2003-07-25 2005-06-02 Simpson Peter C. Electrode systems for electrochemical sensors
WO2008042625A2 (fr) 2006-10-04 2008-04-10 Dexcom, Inc. Capteur d'analyte
WO2017214173A1 (fr) * 2016-06-06 2017-12-14 Medtronic Minimed, Inc. Polymères de polycarbonate urée/uréthane destinés à être utilisés avec des capteurs d'analytes
US9922993B2 (en) 2015-08-10 2018-03-20 Stmicroelectronics, Inc. Transistor with self-aligned source and drain contacts and method of making same
US9921703B2 (en) 2012-11-27 2018-03-20 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with additional functional film(s)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110082356A1 (en) * 2009-10-01 2011-04-07 Medtronic Minimed, Inc. Analyte sensor apparatuses having interference rejection membranes and methods for making and using them
US8660628B2 (en) * 2009-12-21 2014-02-25 Medtronic Minimed, Inc. Analyte sensors comprising blended membrane compositions and methods for making and using them
US8808532B2 (en) * 2011-01-20 2014-08-19 Medtronic Minimed, Inc Electrode compositions for use with analyte sensors
US8608921B2 (en) * 2011-01-20 2013-12-17 Medtronic Minimed, Inc. Layered enzyme compositions for use with analyte sensors

Patent Citations (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678868A (en) 1979-06-25 1987-07-07 Medtronic, Inc. Hermetic electrical feedthrough assembly
US4431004A (en) 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4571292A (en) 1982-08-12 1986-02-18 Case Western Reserve University Apparatus for electrochemical measurements
US4536274A (en) 1983-04-18 1985-08-20 Diamond Shamrock Chemicals Company pH and CO2 sensing device and method of making the same
US4890620A (en) 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US6542765B1 (en) 1988-01-29 2003-04-01 The Regent Of The University Of California Method for the iontophoretic non-invasive determination of the in vivo concentration level of an inorganic or organic substance
US20020090738A1 (en) 1988-11-14 2002-07-11 I-Stat Corporation System and method of microdispensing and arrays of biolayers provided by same
US5212050A (en) 1988-11-14 1993-05-18 Mier Randall M Method of forming a permselective layer
US4940858A (en) 1989-08-18 1990-07-10 Medtronic, Inc. Implantable pulse generator feedthrough
US5985129A (en) 1989-12-14 1999-11-16 The Regents Of The University Of California Method for increasing the service life of an implantable sensor
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US6514718B2 (en) 1991-03-04 2003-02-04 Therasense, Inc. Subcutaneous glucose electrode
US5299571A (en) 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5390691A (en) 1994-01-27 1995-02-21 Sproule; Ronald Bleed valve for water supply for camping vehicle
US5390671A (en) 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5391250A (en) 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5482473A (en) 1994-05-09 1996-01-09 Minimed Inc. Flex circuit connector
US5494562A (en) 1994-06-27 1996-02-27 Ciba Corning Diagnostics Corp. Electrochemical sensors
US5605152A (en) 1994-07-18 1997-02-25 Minimed Inc. Optical glucose sensor
WO1996018115A1 (fr) 1994-12-06 1996-06-13 Nps Pharmaceuticals, Inc. Appareil de detection de fluorescence
US5568806A (en) 1995-02-16 1996-10-29 Minimed Inc. Transcutaneous sensor insertion set
WO1996030431A1 (fr) 1995-03-27 1996-10-03 Minimed Inc. Compositions de polyurethane/polyuree contenant de la silicone pour membranes de biodetecteurs
US5777060A (en) 1995-03-27 1998-07-07 Minimed, Inc. Silicon-containing biocompatible membranes
US5882494A (en) 1995-03-27 1999-03-16 Minimed, Inc. Polyurethane/polyurea compositions containing silicone for biosensor membranes
US6122536A (en) 1995-07-06 2000-09-19 Animas Corporation Implantable sensor and system for measurement and control of blood constituent levels
US6141573A (en) 1995-09-12 2000-10-31 Cygnus, Inc. Chemical signal-impermeable mask
US6212416B1 (en) 1995-11-22 2001-04-03 Good Samaritan Hospital And Medical Center Device for monitoring changes in analyte concentration
US6319540B1 (en) 1995-11-22 2001-11-20 Minimed Inc. Detection of biological molecules using chemical amplification and optical sensors
US5755939A (en) 1996-04-30 1998-05-26 Medtronic, Inc. Polyion sensor with molecular weight differentiation
WO1998013685A1 (fr) 1996-09-26 1998-04-02 Minimed, Inc. Membranes biocompatibles contenant des silicones
WO1998017995A1 (fr) 1996-10-24 1998-04-30 Minimed, Inc. Revetements hydrophiles, susceptibles de gonfler, conçus pour des biocapteurs
US5786439A (en) 1996-10-24 1998-07-28 Minimed Inc. Hydrophilic, swellable coatings for biosensors
US6472122B1 (en) 1996-12-20 2002-10-29 Medtronic Minimed, Inc. Method of applying insulation for coating implantable components and other microminiature devices
US6120676A (en) 1997-02-06 2000-09-19 Therasense, Inc. Method of using a small volume in vitro analyte sensor
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US5771868A (en) 1997-07-03 1998-06-30 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
US6119028A (en) 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6512939B1 (en) 1997-10-20 2003-01-28 Medtronic Minimed, Inc. Implantable enzyme-based monitoring systems adapted for long term use
US6155992A (en) 1997-12-02 2000-12-05 Abbott Laboratories Method and apparatus for obtaining interstitial fluid for diagnostic tests
US6595919B2 (en) 1998-05-13 2003-07-22 Cygnus, Inc. Device for signal processing for measurement of physiological analytes
US6551276B1 (en) 1998-08-18 2003-04-22 Medtronic Minimed, Inc. External infusion device with remote programming bolus estimator and/or vibration alarm capabilities
US6558351B1 (en) 1999-06-03 2003-05-06 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US6368274B1 (en) 1999-07-01 2002-04-09 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6413393B1 (en) 1999-07-07 2002-07-02 Minimed, Inc. Sensor including UV-absorbing polymer and method of manufacture
WO2001058348A2 (fr) 2000-02-10 2001-08-16 Minimed Inc. Detecteur d'analyte ameliore et procede de fabrication associe
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
US6632015B2 (en) 2000-04-26 2003-10-14 Seiko Instruments Inc. Thermal analysis apparatus
EP1153571A1 (fr) 2000-05-08 2001-11-14 A. Menarini Industrie Farmaceutiche Riunite S.R.L. Dispositif de mesure et de contrôle de la teneur en glucose, lactate où autres métabolismes dans des fluides biologiques
US6400974B1 (en) 2000-06-29 2002-06-04 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method for processing implanted sensor output
US6642015B2 (en) 2000-12-29 2003-11-04 Minimed Inc. Hydrophilic polymeric material for coating biosensors
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
WO2003022352A1 (fr) 2001-09-07 2003-03-20 Medtronic Minimed, Inc. Conducteur electronique pour prothese medicale, procede de fabrication de ce dernier, et appareil destine a l'insertion de ce dernier
WO2003023708A2 (fr) 2001-09-07 2003-03-20 Medtronic Minimed, Inc. Systeme et procede de delivrance d'une formulation de perfusion en boucle fermee
WO2003022128A2 (fr) 2001-09-07 2003-03-20 Medtronic Minimed, Inc. Appareil de detection et procede
WO2003023388A1 (fr) 2001-09-07 2003-03-20 Medtronic Minimed, Inc. Substrat pour sonde et procede de fabrication
WO2003035117A1 (fr) 2001-10-23 2003-05-01 Medtronic Minimed, Inc. Dispositif sterile et procede de production du dispositif
WO2003034902A2 (fr) 2001-10-23 2003-05-01 Medtronic Minimed Inc. Procede et systeme d'implantation d'une sonde non vasculaire
WO2003036310A1 (fr) 2001-10-23 2003-05-01 Medtronic Minimed, Inc. Electrodes a capteur implantables et circuit electronique
WO2003036255A2 (fr) 2001-10-23 2003-05-01 Medtronic Minimed, Inc. Procede de formulation d'enzyme glucose-oxydase a propriete(s) specifique(s), et enzyme resultante
WO2003035891A2 (fr) 2001-10-23 2003-05-01 Medtronic Minimed, Inc. Procede de formulation et d'immobilisation d'une matrice proteique et matrice proteique a utiliser dans un capteur
WO2003074107A2 (fr) 2002-03-01 2003-09-12 Medtronic Minimed, Inc. Catheter multiluminal
WO2004009161A1 (fr) 2002-07-24 2004-01-29 Medtronic Minimed, Inc. Dispositif de surveillance physiologique pour controler un dispositif a perfusion pour medicament
WO2004008956A2 (fr) 2002-07-24 2004-01-29 Medtronic Minimed, Inc. Systeme d'envoi de mesures de la glycemie a un dispositif de perfusion
WO2004021877A1 (fr) 2002-09-04 2004-03-18 Pendragon Medical Ltd. Procede et dispositif pour mesurer le taux de glucose
US20050115832A1 (en) 2003-07-25 2005-06-02 Simpson Peter C. Electrode systems for electrochemical sensors
WO2008042625A2 (fr) 2006-10-04 2008-04-10 Dexcom, Inc. Capteur d'analyte
US9921703B2 (en) 2012-11-27 2018-03-20 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with additional functional film(s)
US9922993B2 (en) 2015-08-10 2018-03-20 Stmicroelectronics, Inc. Transistor with self-aligned source and drain contacts and method of making same
WO2017214173A1 (fr) * 2016-06-06 2017-12-14 Medtronic Minimed, Inc. Polymères de polycarbonate urée/uréthane destinés à être utilisés avec des capteurs d'analytes

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
BRUCKEL ET AL.: "In Vivo Measurement of Subcutaneous Glucose Concentrations with an Enzymatic Glucose Sensor and a Wick Method", KLIN. WOCHENSCHR., vol. 67, 1989, pages 491 - 495
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 2781-10-4
CHOI ET AL., ANALYTICAL CHIMICA ACTA, vol. 461, 2002, pages 251 - 260
CLARK ET AL., ANN. N.Y. ACAD. SCI., vol. 102, 1962, pages 29
PEARLSTEIN, F.: "Modern Electroplating", 1974, WILEY, article "Electroless Plating"
PICKUP ET AL.: "In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer", DIABETOLOGIA, vol. 32, 1989, pages 213 - 217
REACH ET AL.: "ADVANCES IN IMPLANTABLE DEVICES", 1993, JAI PRESS
SHICHIRI ET AL.: "In Vivo Characteristics of Needle-Type Glucose Sensor-Measurements of Subcutaneous Glucose Concentrations in Human Volunteers", HORM. METAB. RES., SUPPL. SER., vol. 20, 1988, pages 17 - 20
SZYCHER: "SEMINAR ON ADVANCES IN MEDICAL GRADE POLYURETHANES", 1995, TECHNOMIC PUBLISHING
UPDIKE ET AL., NATURE, vol. 214, 1967, pages 986
WARD ET AL., BIOSENSORS AND BIOELECTRONICS, vol. 17, 2002, pages 181 - 189
WILKINS ET AL., MED. ENGIN. PHYSICS, vol. 18, 1996
WONG, K. ET AL., PLATING AND SURFACE FINISHING, vol. 75, 1988, pages 70 - 76
YANG ET AL., ELECTROANALYSIS, vol. 9, no. 16, 1997, pages 1252 - 1256
YAO, T, ANALYTICA CHIM. ACTA, vol. 148, 1983, pages 27 - 33

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021184843A1 (fr) * 2020-03-18 2021-09-23 微泰医疗器械(杭州)有限公司 Copolymère triséquencé pour biocapteur implantable, application associée et procédé de préparation associé
WO2022008394A1 (fr) * 2020-07-07 2022-01-13 F. Hoffmann-La Roche Ag Capteur d'analyte et son procédé de fabrication
WO2022164981A1 (fr) * 2021-01-29 2022-08-04 Medtronic Minimed, Inc. Membranes de rejet d'interférences utiles avec des capteurs d'analytes
US11998330B2 (en) 2021-01-29 2024-06-04 Medtronic Minimed, Inc. Interference rejection membranes useful with analyte sensors
CN113304683A (zh) * 2021-06-17 2021-08-27 江南大学 葡糖酰胺封端聚醚型表面活性剂、其制备方法及应用
CN113304683B (zh) * 2021-06-17 2022-12-13 江南大学 葡糖酰胺封端聚醚型表面活性剂、其制备方法及应用

Also Published As

Publication number Publication date
CN112088217A (zh) 2020-12-15
EP3794135A1 (fr) 2021-03-24
CA3100384A1 (fr) 2019-11-21

Similar Documents

Publication Publication Date Title
US12023155B2 (en) Polycarbonate urea/urethane polymers for use with analyte sensors
CA2783469C (fr) Capteurs d'analyte comprenant des compositions de membranes melangees et leurs methodes de fabrication et d'utilisation
CA2774778C (fr) Appareils de detection d'analytes comportant des membranes de rejet d'interferences, et procedes de fabrication et d'utilisation de ceux-ci
EP2800778B1 (fr) Polymères stabilisés pour une utilisation avec des détecteurs d'analytes et leurs procédés de fabrication et d'utilisation
WO2019222499A1 (fr) Membrane de limitation de glucose thermiquement stable pour capteurs de glucose
WO2017189764A1 (fr) Empilement de chimie in situ pour capteurs de glucose continus
US20210076993A1 (en) Immunosuppressant releasing coatings
US20230346274A1 (en) Thermally stable glucose limiting membrane for glucose sensors
US11998330B2 (en) Interference rejection membranes useful with analyte sensors
EP4310193A1 (fr) Membrane d'hydrogel d'acrylate pour double fonction de membrane limitant la diffusion et atténuation de la réponse de corps étranger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19728814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3100384

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019728814

Country of ref document: EP

Effective date: 20201216