WO2019221496A1 - Atmospheric gas sealing means for continuous-thermal treatment furnace and control method therefor - Google Patents

Atmospheric gas sealing means for continuous-thermal treatment furnace and control method therefor Download PDF

Info

Publication number
WO2019221496A1
WO2019221496A1 PCT/KR2019/005806 KR2019005806W WO2019221496A1 WO 2019221496 A1 WO2019221496 A1 WO 2019221496A1 KR 2019005806 W KR2019005806 W KR 2019005806W WO 2019221496 A1 WO2019221496 A1 WO 2019221496A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
pressure
nozzle
sealing device
steel sheet
Prior art date
Application number
PCT/KR2019/005806
Other languages
French (fr)
Korean (ko)
Inventor
김형수
Original Assignee
(주)넥스이앤에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)넥스이앤에스 filed Critical (주)넥스이앤에스
Publication of WO2019221496A1 publication Critical patent/WO2019221496A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • F27B9/045Furnaces with controlled atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0073Seals

Definitions

  • the present invention relates to an atmosphere gas sealing apparatus for controlling the hydrogen concentration of the rapid cooling zone of the continuous annealing furnace, and more particularly, is installed at the entry and exit side of the rapid cooling zone to up to 99% of the hydrogen gas concentration in the rapid cooling zone. While maintaining, the concentration of hydrogen in adjacent furnace bands relates to a non-contact gas seal that can maintain a low concentration level of 5%.
  • the steel sheet is heat-treated while passing through the heating table, the cracking zone and the cooling zone.
  • the heating zone and the cracking zone are heat treatment furnaces that raise the temperature of the steel sheet to the recrystallization temperature near about 800 ° C.
  • the cooling stage undergoes the heat treatment process while passing through the quick cooling stage and the slow cooling stage according to the required cooling conditions according to the heat treatment cycle of the steel sheet. Proceed.
  • the continuous heat treatment furnace In order to prevent oxidation of the steel sheet, the continuous heat treatment furnace generally uses a reducing gas containing hydrogen gas 5% and nitrogen gas 95% as an atmosphere gas, and to prevent external oxygen from penetrating into the furnace.
  • the internal pressure is maintained at a positive pressure of about 200 Pa.
  • a high concentration of hydrogen atmosphere is required in the rapid cooling zone, 5% hydrogen atmosphere is required in the peripheral heat treatment zone, and a sealing device is installed to prevent gas from being mixed between the rapid cooling zone and the surrounding furnace zone.
  • a non-contact gas sealing device has been devised. Especially, in the case of Japanese Patent No. 4291839, a sealing device having a duct for extracting a gas for sealing and a retractable member between two chambers, and a sealing device for exhausting gas between the ducts is provided.
  • the sealing device and the steel sheet is damaged by the frictional contact between the sealing device and the steel sheet is not proposed means for correcting the widthwise shape imbalance, such as C-shaped bending of the steel sheet appearing in the continuous heat treatment furnace.
  • Patent Document 1 Japanese Patent No. 03071114
  • Patent Document 2 Japanese Unexamined Patent Publication 2006-307244
  • Patent Document 3 Domestic Patent 10-1717960
  • Patent Document 4 Japanese Patent No. 4291839
  • This invention is made
  • the atmosphere gas sealing means and control method of the continuous heat treatment furnace according to the present invention, the first furnace band (quick cooling zone) of the hydrogen atmosphere and the second furnace zone (slow cooling zone or overaging zone of nitrogen atmosphere) A pair of rotary rolls installed between the plate and rotating while contacting the steel sheet; A pair of first nozzles installed on an upstream side of the rotary roll to inject gas sucked from the first furnace band toward each other with a steel plate therebetween; A pair of second nozzles installed on the downstream side of the rotary roll and for injecting the gas sucked from the second furnace band toward each other with the steel plates interposed therebetween; The distance between the first nozzle and the second nozzle and the steel sheet is maintained within a maximum of 50 mm; The pressure of the first nozzle and the second nozzle is greater than the pressure having the greater of the pressures of the first furnace band and the second furnace band; The sealing device is stably controlled by changing the pressure of the first nozzle and the pressure of the second nozzle in association with the pressure fluctuations
  • the widthwise shape of the steel sheet can be flattened by the rotational roll provided in the sealing means, so that the nozzle can be brought into close proximity to the steel sheet.
  • the rotary roll installed in the buffer space between the upstream and downstream nozzles prevents the leakage of gas through the rotary roll bearing part because the bearing portion does not penetrate the sealing chamber and contacts the steel sheet in the buffer space. It is effective.
  • the sealing device since the buffer space is sealed, a high stagnation pressure is stably formed by the gas injected from the nozzle, so that the sealing device can be stably operated for a long time without a mechanical shielding means, and a pair of nozzles respectively installed on the upstream side and the downstream side Since most of the gas injected from the gas is discharged into the furnace band in which the gas supplied to the nozzle is sucked, the inflow of the atmosphere gas of the opposite side into each furnace band is completely blocked. Accordingly, in the rapid cooling zone that requires a high concentration of hydrogen atmosphere, the conventional rapid cooling zone hydrogen concentration, which remained at the maximum 65% level, is stably increased up to 99% by the sealing means according to the present invention.
  • FIG. 1 is a schematic diagram of an atmosphere gas sealing apparatus of a continuous heat treatment furnace according to the present invention
  • FIG. 2 is a schematic view in cross section perpendicular to the steel plate traveling direction of the atmosphere gas sealing apparatus of the continuous heat treatment furnace according to the present invention
  • 3 is a pressure distribution of the sealing device and the adjacent furnace band by the pressure control method of the sealing device according to the present invention.
  • Figure 4 is an embodiment of the atmosphere gas concentration control by the pressure control method of the sealing device according to the present invention.
  • 5 is an embodiment for the stable operation of the atmospheric gas concentration by the pressure control method of the sealing device according to the present invention.
  • the present invention provides a sealing means provided between the first furnace band (quick cooling zone) of the hydrogen atmosphere and the second furnace zone (slow cooling zone or overaging zone) of the nitrogen atmosphere in the continuous heat treatment furnace of the steel sheet
  • the first furnace band 20 and the second furnace zone 22 to seal the dynamic pressures P 02 and P 03 of the impinging jets spraying the steel plates with the steel plates interposed therebetween in detail. It is related with the sealing means which stably prevents the gas of each furnace band flowing to an adjacent furnace zone by making it larger than a low pressure.
  • the sealing means is provided between the first furnace zone 20 and the second furnace zone 22 of the steel plate continuous heat treatment furnace, and the sealing gas is injected from the opposite side toward the steel plate with the moving steel plate 1 therebetween.
  • the gas chamber and the spray nozzles 2a, 2b, 3a, and 3b, the non-driven roller 5 for correcting the shape of the steel plate and preventing vibration, the feed mechanisms 7 and 8 of the roller, and the roller A buffer space 21 surrounded by the use gas chamber and the nozzle, and blowing means 9 for sucking gas in each furnace band and supplying gas to the injection chamber after heat exchange.
  • the first furnace zone 20 is a rapid cooling zone in which a high concentration of hydrogen gas atmosphere is maintained
  • the second furnace zone 22 represents a slow cooling zone or an overageing zone, but each furnace zone is a rapid cooling zone. It is not limited to cold or overaging, and can be extended to any furnace bands required to maintain different atmosphere gases.
  • rapid cooling is performed by spraying a high concentration of hydrogen gas on the steel sheet at high speed, and thus the pressure in the first furnace band 20 is maintained relatively higher than that of the second furnace band 20. do.
  • the steel sheet In the continuous heat treatment furnace, the steel sheet is uneven in the width direction while passing through a plurality of rolls, and the cross section of the steel sheet is curved in a C-shape.
  • the steel sheet having the C-bent shape passes through the spray nozzle of the sealing device, the steel sheet and the nozzle are in frictional contact, causing damage to the steel sheet and the nozzle.
  • the sealing device according to the present invention is provided with a pair of rotary rolls 5 in contact with the steel sheet in the buffer space 21 to correct the C-curve shape so that the distance h between the steel sheet and the nozzle is within a maximum of 50 mm. Close to maximize the impact pressure of the jet flow (4).
  • the rotation axis position of the two rotary rolls 5 may be in a different position in the advancing direction of the steel plate.
  • the two rotary rolls 5 may be located in the adjacent furnace bands 20 and 22 outside the buffer space 21 in the sealing device, but as described above, the C bending of the steel sheet is corrected by the rotary rolls 5. It must be within the limits of what can be done.
  • Fig. 2 is a schematic view of the sealing device in a cross section perpendicular to the traveling direction of the steel sheet, wherein the pair of rotary rolls 5 are conveyed in the thickness direction of the steel sheet by a conveying mechanism 8 and a motor 7 connected to the bearing part. This is possible, and the position of the rotary roll is changed in response to the thickness change of the steel sheet.
  • the width direction length including the bearing part of the rotary roll 5 is smaller than the width of the chamber 10 of the sealing device, so that the free movement in the thickness direction of the steel sheet is possible, and there is no driving part for the rotation of the roll 5. It rotates by the friction by the contact pressure of a steel plate.
  • the jets 4 sprayed from the spray nozzles 2a and 2b of the sealing device are sprayed uniformly over the entire width of the chamber 10, some of which impinge on the surface of the steel sheet, and some of which are sprayed in opposite directions. It collides with the jet flow to create stagnant pressure.
  • Figure 3 shows the pressure distribution and the regulation method in the sealing device and the adjacent furnace band according to the present invention.
  • the sealing device injection nozzle in the state where the pressure P 20 of the first furnace zone 20 in the hydrogen atmosphere is kept larger than the pressure P 22 of the second furnace zone 22 in the nitrogen atmosphere, the sealing device injection nozzle ( The stagnation pressure P 21 formed by the jet flows of 2a and 3a is adjusted by the blowing means 9 connected to the injection nozzle so as to be made larger than the pressure P 20 of the first furnace zone 20 (P 21 > P 20 > P 22 ).
  • the distance L2 between the nozzles of the sealing device must be at least larger than the size L1 of the sealing chamber (L2 > L1).
  • the size of the buffer space and the size of the sealing chamber means a space formed by the width of the L1, L2 and the sealing chamber.
  • the pressure barriers P 0_2 and P 0_3 are formed between the opposite injection nozzles of the sealing device, and the pressure P 21 of the buffer space between the pressure barriers is equal to the pressure P 20 of the first furnace band and the second.
  • the pressure P 21 of the buffer space between the pressure barriers is equal to the pressure P 20 of the first furnace band and the second.
  • the supply pressure P 0_3 of the first nozzles 3a and 3b and the supply pressure P 0_2 of the second nozzles 2a and 2b are equal to the pressure P 20 of the first furnace band and the second furnace band.
  • FIG. 4 shows an embodiment of controlling the hydrogen concentration in the first furnace zone 20 by the pressure control method of the sealing device according to the present invention.
  • Hydrogen and nitrogen are mixed in a certain ratio in the first furnace zone 20, only nitrogen is maintained in the second furnace zone 22, and the pressure P 20 of the first furnace zone 20 is the first furnace zone 22.
  • the hydrogen concentration in the first furnace zone 20 and the hydrogen concentration in the second furnace zone 22 are increased as the hydrogen supply amount is increased in the first furnace zone 20, and pressure of the first nozzle in the sealing apparatus (P 0_3) to the pressure of the second nozzle (P 0_2), the pressure of the first furnace zone (20) (P 20) can change is shown.
  • the hydrogen concentration of the first furnace band 20 may be increased without hydrogen leaking into the second furnace band 22, and finally, the second furnace band. It can be seen that the hydrogen concentration in the first furnace zone 20 increases stably to 99% while maintaining the hydrogen concentration of (22) at zero. At this time, when the hydrogen concentration of the first furnace band 20 increases rapidly, the pressure fluctuation of the first furnace band increases, and the pressure P of the first nozzle P 0_3 and the pressure P of the second nozzle with respect to the pressure fluctuation. 0_2 ) is linked to change the sealing device is stable operation.
  • Figure 5 shows an embodiment for the stable operation of the atmospheric gas concentration by the pressure control method of the sealing device according to the present invention. It can be seen that the hydrogen concentration of the first furnace zone 20 is maintained for a long time at the level of 98 to 99% under the conditions as shown in FIG. 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Furnace Details (AREA)

Abstract

The present invention relates to an atmospheric gas sealing device for controlling hydrogen concentration of a rapid cooling zone in a continuous-thermal treatment furnace for continuously heat-treating a steel plate, and a pressure control method for the atmospheric gas sealing device and, more specifically, to an atmospheric gas sealing device for a continuous-thermal treatment furnace, which is installed between a rapid cooling zone and an annealing zone or between the rapid cooling zone and an over-aging zone, forms a pressure barrier between a first nozzle and a second nozzle facing each other, and controls a pressure in a buffer space between pressure barriers to be higher than a pressure of a first furnace band and a pressure of a second furnace band, and to a sealing device which maintains hydrogen concentration in an adjacent furnace band to be in a low level of concentration of 5% while maintaining concentration of a hydrogen gas in a rapid cooling zone up to maximum of 99% on the basis of a volume thereof through a pressure control method.

Description

연속 열처리로의 분위기 가스 밀봉 수단 및 제어 방법Atmospheric gas sealing means and control method in continuous heat treatment furnace
본 발명은 연속소둔로 급속냉각대의 수소 농도를 제어하기 위한 분위기 가스 밀봉장치에 관한 것으로, 더욱 상세하게는 급속냉각대의 입측 및 출측에 설치되어 급속냉각대 내의 수소가스 농도를 체적기준 최대 99% 까지 유지하면서 인접한 노대역에서의 수소농도는 5%의 저농도 수준을 유지할 수 있는 비접촉 가스 밀봉장치에 관한 것이다.The present invention relates to an atmosphere gas sealing apparatus for controlling the hydrogen concentration of the rapid cooling zone of the continuous annealing furnace, and more particularly, is installed at the entry and exit side of the rapid cooling zone to up to 99% of the hydrogen gas concentration in the rapid cooling zone. While maintaining, the concentration of hydrogen in adjacent furnace bands relates to a non-contact gas seal that can maintain a low concentration level of 5%.
일반적으로 강판을 연속적으로 열처리하는 연속소둔로에 있어서 강판은 가열대와 균열대 및 냉각대를 통과하면서 열처리된다. 이 중에서 가열대와 균열대는 강판의 온도를 약 800°C 근처의 재결정 온도까지 상승시키는 열처리로이며, 냉각대는 강판의 열처리 사이클에 따른 요구 냉각조건에 따라 급속냉각대와 서냉대를 통과하면서 열처리과정을 진행한다.In general, in the continuous annealing furnace for continuously heat treatment of the steel sheet, the steel sheet is heat-treated while passing through the heating table, the cracking zone and the cooling zone. Among them, the heating zone and the cracking zone are heat treatment furnaces that raise the temperature of the steel sheet to the recrystallization temperature near about 800 ° C. The cooling stage undergoes the heat treatment process while passing through the quick cooling stage and the slow cooling stage according to the required cooling conditions according to the heat treatment cycle of the steel sheet. Proceed.
연속 열처리로는 강판의 산화를 방지하기 위해 일반적으로 수소가스 5%와 질소가스 95%가 혼합된 환원성 가스를 분위기 가스로 사용하며, 외부의 산소가 열처리로 내부로 침투하는 것을 방지하기 위해 열처리로 내부 압력을 200 Pa 정도의 양압으로 유지한다.In order to prevent oxidation of the steel sheet, the continuous heat treatment furnace generally uses a reducing gas containing hydrogen gas 5% and nitrogen gas 95% as an atmosphere gas, and to prevent external oxygen from penetrating into the furnace. The internal pressure is maintained at a positive pressure of about 200 Pa.
최근 수요가 증가하고 있는 초고장력강을 생산하기 위해서 연속 열처리로의 특정 구간, 즉 급속 냉각대에서는 100 oC/s 이상의 고속냉각이 필요하다. 고속냉각에는 급속 냉각대 내의 수소-질소 혼합가스를 취입하여 이동하는 강판에 분사함으로써 강판을 냉각시키는 가스제트냉각 방식이 주로 사용되고 있으며, 혼합가스중 수소의 농도가 증가할수록 냉각속도가 증가하기 때문에 통상 30 ~ 60%의 수소농도가 급속 냉각대에서 유지된다.In order to produce ultra-tensile steel with increasing demand in recent years, high-speed cooling of 100 o C / s or more is required in certain sections of continuous heat treatment furnaces, that is, rapid cooling zones. In the high-speed cooling, a gas jet cooling method of cooling the steel sheet by injecting the hydrogen-nitrogen mixed gas in the quick cooling zone and spraying the moving steel sheet is mainly used.As the cooling rate increases as the concentration of hydrogen in the mixed gas increases, the cooling rate increases. Hydrogen concentrations of 30 to 60% are maintained in the rapid cooling zone.
이에 따라 급속 냉각대에서는 고농도의 수소 분위기가 요구되고 주변 열처리대에서는 5%의 수소 분위기가 요구되며, 급속 냉각대와 주변 노대역 사이에 가스가 혼합되는 것을 방지하기 위해 밀봉 장치가 설치된다.Accordingly, a high concentration of hydrogen atmosphere is required in the rapid cooling zone, 5% hydrogen atmosphere is required in the peripheral heat treatment zone, and a sealing device is installed to prevent gas from being mixed between the rapid cooling zone and the surrounding furnace zone.
종래의 일반적인 연속열처리로의 분위기가스 밀봉 장치의 경우 일본 특허(JP 03071114)와 같이 단순히 강판과 밀봉용 롤 및 탄성재료를 접촉시켜 분위기 가스를 차단하는 방법이 사용되고 있으나 이 방법은 분위기 가스의 누설을 방지하기 위한 탄성 밀봉재료를 롤과 마찰 접촉시켜야 하므로 수시로 정비가 필요할 뿐만 아니라, 탄성 밀봉재료의 마모 및 변형에 따라 롤 사이의 간극을 통해서 가스가 누출되므로 효과적으로 분위기 가스를 차단하기에는 한계가 있다.In the case of a conventional atmospheric gas sealing device using a continuous heat treatment, a method of blocking atmospheric gas by simply contacting a steel plate, a sealing roll, and an elastic material, such as Japanese Patent (JP 03071114), is used. In order to prevent the elastic sealing material to be in frictional contact with the roll, not only maintenance is necessary, but also gas is leaked through the gap between the rolls according to the wear and deformation of the elastic sealing material, there is a limit to effectively block the atmospheric gas.
또한 국내특허 10-1717960과 일본 공개특허 2006-307244의 경우 이러한 밀봉용 롤을 사용하는 경우 강판 두께에 의해 롤과 강판이 접촉하지 않는 틈새에 가스를 분사함으로써 탄성의 밀봉재료를 사용하지 않고 분위기 가스를 밀봉하는 방법을 제시하고 있다. 그러나 이러한 방법은 밀봉용 롤의 축수부를 통한 가스의 누출 가능성과 밀봉용 롤과 노즐 사이의 틈새를 통한 가스의 출입을 안정적으로 제어할 수 없어 밀봉 효율이 저하되는 문제점이 있다.In addition, in case of using such a sealing roll, domestic patents 10-1717960 and Japanese Patent Laid-Open Publication No. 2006-307244 use an atmosphere gas without using an elastic sealing material by injecting a gas into a gap between the roll and the steel sheet due to the thickness of the steel sheet. It is presented a method of sealing. However, this method has a problem in that the sealing efficiency is deteriorated because the possibility of gas leakage through the bearing part of the sealing roll and the entry and exit of gas through the gap between the sealing roll and the nozzle cannot be controlled stably.
상기의 문제점으로 인해 비접촉식 가스 밀봉장치가 고안되어 있으며, 특히 일본특허 제 4291839의 경우 두 챔버 사이에 개폐식 부재와 밀봉을 위한 가스를 취출하는 덕트, 그리고 덕트 사이에 가스를 배기하는 방식의 밀봉 장치를 제시하고 있으나, 밀봉 장치에서 사용하는 혼합가스를 로 외부로 배기하고, 개폐식 부재를 강판과 완전히 접촉시킬 수 없는 한계로 인해 로내의 수소 농도를 유지하기 위한 수소 소모량이 증가하는 문제점이 있다. 또한 연속 열처리로에서 나타나는 강판의 C형 반곡과 같은 폭방향 형상 불균형을 교정할 수 있는 수단이 제시되지 않아 밀봉 장치와 강판의 마찰 접촉에 의한 밀봉 장치와 강판이 손상되는 문제점이 있다.Due to the above problems, a non-contact gas sealing device has been devised. Especially, in the case of Japanese Patent No. 4291839, a sealing device having a duct for extracting a gas for sealing and a retractable member between two chambers, and a sealing device for exhausting gas between the ducts is provided. Although it has been proposed, there is a problem in that the hydrogen consumption for exhausting the mixed gas used in the sealing apparatus to the outside of the furnace and maintaining the hydrogen concentration in the furnace due to the limitation that the openable member cannot be brought into full contact with the steel sheet. In addition, there is a problem that the sealing device and the steel sheet is damaged by the frictional contact between the sealing device and the steel sheet is not proposed means for correcting the widthwise shape imbalance, such as C-shaped bending of the steel sheet appearing in the continuous heat treatment furnace.
<선행 기술문헌><Preceding technical literature>
(특허문헌 1) 일본특허 제 03071114호(Patent Document 1) Japanese Patent No. 03071114
(특허문헌 2) 일본 공개특허 2006-307244(Patent Document 2) Japanese Unexamined Patent Publication 2006-307244
(특허문헌 3) 국내특허 10-1717960(Patent Document 3) Domestic Patent 10-1717960
(특허문헌 4) 일본특허 제 4291839호(Patent Document 4) Japanese Patent No. 4291839
본 발명은, 상기 종래의 문제점을 감안해서 이루어진 것으로, 상기 특허문헌 4와 같이 기체를 이용한 연속 열처리로의 밀봉 수단에 있어서, 고농도 수소 분위기의 급속냉각대와 인접해있는 고농도 질소 분위기의 서냉대 및 과시효대 사이에 설치되어, 밀봉 장치와 강판 사이의 틈새를 통해 누출되는 수소 가스가 밀봉 장치 외부로 배출되는 것을 방지함으로써 고가의 수소 소무량을 줄이고, 이동하는 강판의 형상을 밀봉 장치 내에서 평탄하게 교정하여 밀봉 장치 및 강판의 손상을 방지하며, 상기 특허문헌 3과 같이 밀봉용 회전롤을 통한 수소-질소 혼합가스의 누출 및 유동을 방지할 수 있는 연속 열처리로의 밀봉 수단과 밀봉 수단의 안정적인 운용을 위한 압력제어 방법을 제공하는 것을 목적으로 한다.This invention is made | formed in view of the said conventional problem, The slow cooling stand of the high concentration nitrogen atmosphere which adjoins the rapid cooling zone of high concentration hydrogen atmosphere in the sealing means of the continuous heat treatment furnace using gas like the said patent document 4, and Installed between overaging zones, it prevents the hydrogen gas leaking out of the sealing device through the gap between the sealing device and the steel plate to reduce the expensive hydrogen consumption, and flatten the shape of the moving steel plate in the sealing device. Stable operation of the sealing means and the sealing means in the continuous heat treatment furnace to prevent damage to the sealing device and the steel sheet by preventing the leakage and flow of the hydrogen-nitrogen mixed gas through the sealing rotary roll as in Patent Document 3 It is an object of the present invention to provide a pressure control method.
상기 목적을 달성하기 위해, 본 발명에 의한 연속 열처리로의 분위기 가스 밀봉 수단 및 제어 방법은, 수소 분위기의 제 1 노대역(급속냉각대)과 질소 분위기의 제 2 노대역(서냉대 또는 과시효대) 사이에 설치되어 강판과 접촉하면서 회전하는 한 쌍의 회전롤; 상기 회전롤의 상류측에 설치되어 제 1 노대역에서 흡입한 가스를 강판을 사이에 두고 서로 강판을 향해 분사하는 한 쌍의 제 1 노즐; 상기 회전롤의 하류측에 설치되어 제 2 노대역에서 흡입한 가스를 강판을 사이에 두고 서로 강판을 향해 분사하는 한 쌍의 제 2노즐; 상기 제 1노즐 및 제 2 노즐과 강판 사이의 거리가 최대 50 mm 이내에서 유지되고; 상기 제 1 노즐 및 제 2 노즐의 압력이 제 1 노대역과 제 2 노대역의 압력중 큰 값을 가지는 압력보다 크고; 제 1 노대역 및 제 2 노대역의 압력 변동에 대해 제 1 노즐의 압력과 제 2 노즐의 압력이 연동하여 변화함으로써 밀봉 장치가 안정적으로 제어되는 것을 특징으로 한다. 여기서, 상기의 회전롤은 축수부를 포함한 전체의 폭이 밀봉 챔버의 폭보다 작고, 축수부에 연결된 이송 기구를 통해 회전롤과 강판 사이의 간격이 조정된다.In order to achieve the above object, the atmosphere gas sealing means and control method of the continuous heat treatment furnace according to the present invention, the first furnace band (quick cooling zone) of the hydrogen atmosphere and the second furnace zone (slow cooling zone or overaging zone of nitrogen atmosphere) A pair of rotary rolls installed between the plate and rotating while contacting the steel sheet; A pair of first nozzles installed on an upstream side of the rotary roll to inject gas sucked from the first furnace band toward each other with a steel plate therebetween; A pair of second nozzles installed on the downstream side of the rotary roll and for injecting the gas sucked from the second furnace band toward each other with the steel plates interposed therebetween; The distance between the first nozzle and the second nozzle and the steel sheet is maintained within a maximum of 50 mm; The pressure of the first nozzle and the second nozzle is greater than the pressure having the greater of the pressures of the first furnace band and the second furnace band; The sealing device is stably controlled by changing the pressure of the first nozzle and the pressure of the second nozzle in association with the pressure fluctuations of the first furnace band and the second furnace band. Here, the width of the whole roll including the bearing portion is smaller than the width of the sealing chamber, the gap between the rotating roll and the steel sheet is adjusted through a transfer mechanism connected to the bearing portion.
본 발명에 따르면, 밀봉 수단 내에 설치된 회전롤에 의해 강판의 폭방향 형상이 평탄하게 교정되어 노즐을 강판에 매우 가까이 근접시키는 것이 가능하며, 근접한 노즐로부터 분사되는 가스의 높은 충돌압력으로 인해 밀봉 효율이 증가하는 효과가 있다, 상류측과 하류측에 설치된 노즐 사이의 완충 공간에 설치되는 회전롤은 축수부가 밀봉 챔버를 관통하지 않고 완충 공간 내에서 강판과 접촉하므로 회전롤 축수부를 통한 가스의 누출이 방지되는 효과가 있다. According to the present invention, the widthwise shape of the steel sheet can be flattened by the rotational roll provided in the sealing means, so that the nozzle can be brought into close proximity to the steel sheet. There is an increasing effect. The rotary roll installed in the buffer space between the upstream and downstream nozzles prevents the leakage of gas through the rotary roll bearing part because the bearing portion does not penetrate the sealing chamber and contacts the steel sheet in the buffer space. It is effective.
또한 완충 공간이 밀폐되어 있으므로 노즐로부터 분사되는 가스에 의해 높은 정체압이 안정적으로 형성되어 기계적인 차폐 수단이 없어도 밀봉 장치의 장시간 안정적인 운용이 가능하며, 상류측과 하류측에 각각 설치된 한 쌍의 노즐로부터 분사되는 가스의 대부분이 노즐에 공급되는 가스를 흡입한 노대역으로 방출되므로 각각의 노대역으로 상대측 분위기 가스의 유입이 완벽히 차단되는 효과가 있다. 이에 따라 고농도의 수소 분위기가 필요한 급속냉각대에 있어서, 최대 65% 수준에 머물던 종래의 급속냉각대 수소 농도가 본 발명에 따른 밀봉 수단에 의해 최대 99%까지 안정적으로 증가되는 효과가 있다.In addition, since the buffer space is sealed, a high stagnation pressure is stably formed by the gas injected from the nozzle, so that the sealing device can be stably operated for a long time without a mechanical shielding means, and a pair of nozzles respectively installed on the upstream side and the downstream side Since most of the gas injected from the gas is discharged into the furnace band in which the gas supplied to the nozzle is sucked, the inflow of the atmosphere gas of the opposite side into each furnace band is completely blocked. Accordingly, in the rapid cooling zone that requires a high concentration of hydrogen atmosphere, the conventional rapid cooling zone hydrogen concentration, which remained at the maximum 65% level, is stably increased up to 99% by the sealing means according to the present invention.
이상과 같이, 밀봉 장치 외부로 수소가스를 누출하지 않음으로써 밀봉 장치를 운용함에 있어 고가의 수소 소모량을 줄이고, 수소가스의 누출로 인한 화재 및 폭발의 위험성을 감소시켜 설비의 안전성을 증가시키고, 각 노대역의 분위기 가스 차단 효율를 향상시켜 강판의 급속냉각을 가능하게 하는 효과가 있다. As described above, by not leaking hydrogen gas to the outside of the sealing device, the expensive hydrogen consumption in operating the sealing device is reduced, and the risk of fire and explosion due to the leakage of hydrogen gas increases, thereby increasing the safety of the facility. There is an effect of enabling the rapid cooling of the steel sheet by improving the atmosphere gas blocking efficiency of the furnace.
도 1은 본 발명에 따른 연속 열처리로의 분위기 가스 밀봉 장치의 개략도1 is a schematic diagram of an atmosphere gas sealing apparatus of a continuous heat treatment furnace according to the present invention;
도 2는 본 발명에 따른 연속 열처리로의 분위기 가스 밀봉 장치의 강판 진행 방향에 수직한 단면에서의 개략도2 is a schematic view in cross section perpendicular to the steel plate traveling direction of the atmosphere gas sealing apparatus of the continuous heat treatment furnace according to the present invention;
도 3은 본 발명에 따른 밀봉 장치의 압력 제어 방법에 의한 밀봉 장치와 인접 노대역의 압력 분포3 is a pressure distribution of the sealing device and the adjacent furnace band by the pressure control method of the sealing device according to the present invention.
도 4는 본 발명에 따른 밀봉 장치의 압력 제어 방법에 의한 분위기 가스 농도 제어의 실시예Figure 4 is an embodiment of the atmosphere gas concentration control by the pressure control method of the sealing device according to the present invention
도 5는 본 발명에 따른 밀봉 장치의 압력 제어 방법에 의한 분위기 가스 농도의 안정적 운용에 대한 실시예이다.5 is an embodiment for the stable operation of the atmospheric gas concentration by the pressure control method of the sealing device according to the present invention.
상기 목적을 달성하기 위해, 본 발명은 강판의 연속 열처리로에서 수소 분위기의 제 1 노대역(급속냉각대)과 질소 분위기의 제 2 노대역(서냉대 또는 과시효대) 사이에 설치되는 밀봉 수단에 대한 기술로써, 보다 상세하게는 강판을 사이에 두고 서로 강판을 향해 분사하는 충돌 제트의 동압(P 02, P 03)을 밀봉하고자 하는 제1 노대역(20)과 제 2 노대역(22)의 로압보다 크게 함으로써 각 노대역의 가스가 인접한 노대역으로 유동하는 것을 안정적으로 방지하는 밀봉 수단에 관한 것이다. In order to achieve the above object, the present invention provides a sealing means provided between the first furnace band (quick cooling zone) of the hydrogen atmosphere and the second furnace zone (slow cooling zone or overaging zone) of the nitrogen atmosphere in the continuous heat treatment furnace of the steel sheet In more detail, the first furnace band 20 and the second furnace zone 22 to seal the dynamic pressures P 02 and P 03 of the impinging jets spraying the steel plates with the steel plates interposed therebetween in detail. It is related with the sealing means which stably prevents the gas of each furnace band flowing to an adjacent furnace zone by making it larger than a low pressure.
이하 본 발명을 도면을 참고하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.
도 1은 본 발명에 따른 대향 충돌제트 방식의 밀봉 수단을 나타낸다. 상기의 밀봉 수단은 강판 연속 열처리로의 제 1 노대역(20)과 제 2 노대역(22) 사이에 설치되어, 이동하는 강판(1)을 사이에 두고 서로 반대편에서 강판을 향해 밀봉 가스를 분사하는 가스 챔버와 분사 노즐(2a, 2b, 3a, 3b), 강판의 형상 교정 및 진동 방지를 위한 비구동 롤러(5), 롤러의 이송기구(7, 8), 롤러를 포함하고 있으면서 상기의 분사용 가스 챔버 및 노즐에 의해 둘러싸인 완충 공간(21), 그리고 각 노대역의 가스를 흡입하여 열교환 후 분사 챔버로 가스를 공급하는 송풍 수단(9)으로 구성된다.1 shows a sealing means of the opposite impact jet method according to the present invention. The sealing means is provided between the first furnace zone 20 and the second furnace zone 22 of the steel plate continuous heat treatment furnace, and the sealing gas is injected from the opposite side toward the steel plate with the moving steel plate 1 therebetween. The gas chamber and the spray nozzles 2a, 2b, 3a, and 3b, the non-driven roller 5 for correcting the shape of the steel plate and preventing vibration, the feed mechanisms 7 and 8 of the roller, and the roller A buffer space 21 surrounded by the use gas chamber and the nozzle, and blowing means 9 for sucking gas in each furnace band and supplying gas to the injection chamber after heat exchange.
상기의 제 1 노대역(20)은 고농도의 수소 가스 분위기가 유지되는 급속 냉각대이고, 제 2 노대역(22)은 서냉대 또는 과시효대를 나타내나, 각각의 노대역이 급속냉각대와 서냉대, 과시효대에 한정되는 것은 아니며, 서로 다른 분위기 가스를 유지하는 것이 필요한 임의의 노대역으로 확장되어 적용될 수 있다. 제 1 노대역(20)에서는 고농도의 수소 가스를 강판에 고속으로 분사함으로써 급속냉각이 이루어지며, 이에 따라 제 1 노대역(20)의 압력은 제 2 노대역(20)에 비해 상대적으로 높게 유지된다.The first furnace zone 20 is a rapid cooling zone in which a high concentration of hydrogen gas atmosphere is maintained, and the second furnace zone 22 represents a slow cooling zone or an overageing zone, but each furnace zone is a rapid cooling zone. It is not limited to cold or overaging, and can be extended to any furnace bands required to maintain different atmosphere gases. In the first furnace band 20, rapid cooling is performed by spraying a high concentration of hydrogen gas on the steel sheet at high speed, and thus the pressure in the first furnace band 20 is maintained relatively higher than that of the second furnace band 20. do.
연속 열처리로에서 강판은 다수의 롤을 통과하면서 폭방향으로 형상이 불균일해지며, 강판의 단면이 C형으로 만곡되는 특징을 나타낸다. 이와 같이 C반곡 형상을 가진 강판이 밀봉 장치의 분사 노즐을 통과하는 경우 강판과 노즐이 마찰 접촉함으로써 강판과 노즐의 손상을 유발한다. 본 발명에 따른 밀봉 장치는, 완충 공간(21) 내에 강판과 접촉하는 한 쌍의 회전롤(5)을 설치하여 이러한 C반곡 형상을 교정함으로써 강판과 노즐 사이의 거리(h)를 최대 50 mm 이내로 근접시켜 제트유동(4)의 충돌압력을 극대화한다. 여기서, 회전롤(5)의 위치가 도 1에서는 강판의 진행 방향으로 동일한 위치에 도시되어 있으나, 두 회전롤(5)의 회전축 위치가 강판의 진행 방향으로 서로 다른 위치에 있어도 무방하다. 이와 더불어 두 회전롤(5)은 밀봉 장치 내의 완충 공간(21)을 벗어난 인접 노대역(20, 22)에 위치해도 무방하나, 상기한 바와 같이 회전롤(5)에 의해 강판의 C반곡이 교정될 수 있는 한계 내에 존재해야 한다.In the continuous heat treatment furnace, the steel sheet is uneven in the width direction while passing through a plurality of rolls, and the cross section of the steel sheet is curved in a C-shape. As such, when the steel sheet having the C-bent shape passes through the spray nozzle of the sealing device, the steel sheet and the nozzle are in frictional contact, causing damage to the steel sheet and the nozzle. The sealing device according to the present invention is provided with a pair of rotary rolls 5 in contact with the steel sheet in the buffer space 21 to correct the C-curve shape so that the distance h between the steel sheet and the nozzle is within a maximum of 50 mm. Close to maximize the impact pressure of the jet flow (4). Here, although the position of the rotary roll 5 is shown in the same position in the advancing direction of the steel plate in FIG. 1, the rotation axis position of the two rotary rolls 5 may be in a different position in the advancing direction of the steel plate. In addition, the two rotary rolls 5 may be located in the adjacent furnace bands 20 and 22 outside the buffer space 21 in the sealing device, but as described above, the C bending of the steel sheet is corrected by the rotary rolls 5. It must be within the limits of what can be done.
도 2는 강판의 진행 방향에 수직한 단면에서의 밀봉 장치의 개략도이며, 한 쌍의 회전롤(5)은 축수부에 연결된 이송 기구(8)와 모터(7)에 의해 강판의 두께 방향으로 이송이 가능하며, 강판의 두께 변화에 대응하여 회전롤의 위치를 변화시킨다. 회전롤(5)의 축수부를 포함한 폭방향 길이는 밀봉 장치의 챔버(10) 폭보다 작아서 강판의 두께 방향으로 자유로운 이동이 가능하며, 롤(5)의 회전을 위한 구동부가 없으므로 롤(5)과 강판의 접촉 압력에 의한 마찰에 의해 회전한다. 밀봉 장치의 분사노즐(2a, 2b)에서 분사되는 제트(4)는 챔버(10)의 전체 폭에 걸쳐 균일하게 분사되며, 그 일부는 강판의 표면에 충돌하고, 다른 일부는 반대 방향에서 분사되는 제트유동과 충돌하여 정체압을 형성한다.Fig. 2 is a schematic view of the sealing device in a cross section perpendicular to the traveling direction of the steel sheet, wherein the pair of rotary rolls 5 are conveyed in the thickness direction of the steel sheet by a conveying mechanism 8 and a motor 7 connected to the bearing part. This is possible, and the position of the rotary roll is changed in response to the thickness change of the steel sheet. The width direction length including the bearing part of the rotary roll 5 is smaller than the width of the chamber 10 of the sealing device, so that the free movement in the thickness direction of the steel sheet is possible, and there is no driving part for the rotation of the roll 5. It rotates by the friction by the contact pressure of a steel plate. The jets 4 sprayed from the spray nozzles 2a and 2b of the sealing device are sprayed uniformly over the entire width of the chamber 10, some of which impinge on the surface of the steel sheet, and some of which are sprayed in opposite directions. It collides with the jet flow to create stagnant pressure.
도 3은 본 발명에 따른 밀봉 장치와 인접 노대역에서의 압력 분포 및 조절 방법을 나타낸다. 본 발명에 따르면, 수소 분위기의 제 1 노대역(20)의 압력(P 20)이 질소 분위기의 제 2 노대역(22)의 압력(P 22)보다 크게 유지되는 상태에서, 밀봉 장치 분사노즐(2a, 3a)의 제트유동에 의해 형성된 정체압(P 21)이 제 1 노대역(20)의 압력(P 20)에 비해 크게 형성되도록 분사노즐과 연결된 송풍 수단(9)에 의해 조절된다(P 21 > P 20 > P 22). 여기서, 분사노즐(2a, 3a)과 강판(1) 또는 대향의 분사노즐(2b, 3b) 사이의 간격(h)이 크게 되면 분사노즐(2a, 3a)과 강판(1) 또는 대향의 분사노즐(2b, 3b) 사이에 압력 장벽(P 0_2, P 0_3)이 형성되지 않아 완충공간(21)에 정체압(P 21)이 형성되지 않으므로, 밀봉 장치에 의한 정체압(P 21)이 안정적으로 유지될 수 있도록 노즐(2a, 2b, 3a, 3b)과 강판 사이의 거리(h)를 최대 50 mm 이내로 유지한다. 또한 밀봉장치의 노즐간 완충공간(21)이 협소할 경우 완충공간(21) 내의 압력(P 22)이 압력 장벽(P 0_2, P 0_3)보다 커져서 안정적으로 정체압(P 21)을 유지할 수 없기 때문에 밀봉장치의 노즐간 거리(L2)는 밀봉 챔버의 크기(L1)보다 최소한 커야(L2 > L1)한다. 여기서, 완충공간의 크기와 밀봉 챔버의 크기는 상기 L1, L2와 밀봉 챔버의 폭에 의해 형성되는 공간을 의미한다.Figure 3 shows the pressure distribution and the regulation method in the sealing device and the adjacent furnace band according to the present invention. According to the present invention, in the state where the pressure P 20 of the first furnace zone 20 in the hydrogen atmosphere is kept larger than the pressure P 22 of the second furnace zone 22 in the nitrogen atmosphere, the sealing device injection nozzle ( The stagnation pressure P 21 formed by the jet flows of 2a and 3a is adjusted by the blowing means 9 connected to the injection nozzle so as to be made larger than the pressure P 20 of the first furnace zone 20 (P 21 > P 20 > P 22 ). Here, when the distance h between the injection nozzles 2a and 3a and the steel sheet 1 or the opposite injection nozzles 2b and 3b becomes large, the injection nozzles 2a and 3a and the steel sheet 1 or the opposite injection nozzles are increased. (2b, 3b) static pressure in the pressure barrier (P 0_2, P 0_3), the buffer space 21 is not formed between the (P 21) is not formed, as a stagnant pressure by the sealing device (P 21), stably The distance h between the nozzles 2a, 2b, 3a, 3b and the steel sheet can be maintained within 50 mm so as to be maintained. In addition, when the buffer space 21 between the nozzles of the sealing device is narrow, the pressure P 22 in the buffer space 21 becomes larger than the pressure barriers P 0_2 and P 0_3 , so that stagnant pressure P 21 cannot be stably maintained. Therefore, the distance L2 between the nozzles of the sealing device must be at least larger than the size L1 of the sealing chamber (L2 > L1). Here, the size of the buffer space and the size of the sealing chamber means a space formed by the width of the L1, L2 and the sealing chamber.
이상과 같이 밀봉장치의 대향 분사노즐 사이에 압력장벽(P 0_2, P 0_3)을 형성하고, 압력장벽 사이의 완충공간의 압력(P 21)이 제 1 노대역의 압력(P 20)과 제 2 노대역의 압력(P 22)보다 크도록 제어함으로써, 제 1 노대역(20)과 제 2 노대역(22)으로부터 유입된 완충 공간 내의 혼합 가스가 각각의 노대역으로 유출되는 것을 방지한다.As described above, the pressure barriers P 0_2 and P 0_3 are formed between the opposite injection nozzles of the sealing device, and the pressure P 21 of the buffer space between the pressure barriers is equal to the pressure P 20 of the first furnace band and the second. By controlling it to be larger than the pressure P 22 of the furnace band, the mixed gas in the buffer space introduced from the first furnace band 20 and the second furnace band 22 is prevented from flowing into each furnace band.
또한, 제 1 노즐(3a, 3b)의 공급 압력(P 0_3)과 제 2 노즐(2a, 2b)의 공급 압력(P 0_2)은 제 1 노대역의 압력(P 20) 및 제 2 노대역의 압력(P 22) 변화에 대해 연동되도록 제어함으로써, 각각의 노대역과 밀봉장치의 압력 균형을 안정적으로 유지한다. In addition, the supply pressure P 0_3 of the first nozzles 3a and 3b and the supply pressure P 0_2 of the second nozzles 2a and 2b are equal to the pressure P 20 of the first furnace band and the second furnace band. By controlling the pressure P 22 to change, the pressure balance of each furnace zone and the sealing device is kept stable.
도 4는 본 발명에 따른 밀봉 장치의 압력 제어 방법에 의한 제 1 노대역(20)의 수소 농도를 제어하는 실시예를 나타낸다. 제 1 노대역(20)에는 수소와 질소가 일정 비율로 혼합되어 있고 제 2 노대역(22)에는 질소만 유지되며 제 1 노대역(20)의 압력(P 20)이 제 1 노대역(22)의 압력(P 22)보다 큰 상태에서, 제 1 노대역(20)에 수소 공급량을 증가시킴에 따라 제 1 노대역(20)의 수소 농도와 제 2 노대역(22)의 수소 농도, 그리고 밀봉 장치 내의 제 1 노즐의 압력(P 0_3)과 제 2 노즐의 압력(P 0_2), 제 1 노대역(20)의 압력(P 20) 변화가 나타나 있다. 제 1 노대역(20)으로 수소를 공급함에 따라 제 2 노대역(22)으로 수소가 누출되지 않고 제 1 노대역(20)의 수소 농도가 증가하는 것을 볼 수 있으며, 최종적으로 제 2 노대역(22)의 수소 농도를 0으로 유지하면서 제 1 노대역(20)에서의 수소 농도가 99% 까지 안정적으로 증가하는 것을 볼 수 있다. 이 때, 제 1 노대역(20)의 수소 농도가 급격히 증가하는 경우 제 1 노대역의 압력 변동이 커지고, 이러한 압력 변동에 대해 제 1 노즐의 압력(P 0_3)과 제 2 노즐의 압력(P 0_2)이 연동하여 변화함으로써 밀봉 장치가 안정적으로 동작하게 된다.4 shows an embodiment of controlling the hydrogen concentration in the first furnace zone 20 by the pressure control method of the sealing device according to the present invention. Hydrogen and nitrogen are mixed in a certain ratio in the first furnace zone 20, only nitrogen is maintained in the second furnace zone 22, and the pressure P 20 of the first furnace zone 20 is the first furnace zone 22. In a state greater than the pressure P 22 ), the hydrogen concentration in the first furnace zone 20 and the hydrogen concentration in the second furnace zone 22 are increased as the hydrogen supply amount is increased in the first furnace zone 20, and pressure of the first nozzle in the sealing apparatus (P 0_3) to the pressure of the second nozzle (P 0_2), the pressure of the first furnace zone (20) (P 20) can change is shown. As hydrogen is supplied to the first furnace band 20, the hydrogen concentration of the first furnace band 20 may be increased without hydrogen leaking into the second furnace band 22, and finally, the second furnace band. It can be seen that the hydrogen concentration in the first furnace zone 20 increases stably to 99% while maintaining the hydrogen concentration of (22) at zero. At this time, when the hydrogen concentration of the first furnace band 20 increases rapidly, the pressure fluctuation of the first furnace band increases, and the pressure P of the first nozzle P 0_3 and the pressure P of the second nozzle with respect to the pressure fluctuation. 0_2 ) is linked to change the sealing device is stable operation.
도 5에는 본 발명에 따른 밀봉 장치의 압력 제어 방법에 의한 분위기 가스 농도의 안정적 운용에 대한 실시예가 나타나 있다. 상기의 그림 4와 같은 조건에서 제 1 노대역(20)의 수소 농도가 98~99% 수준에서 장시간 안정적으로 유지되고 있음을 볼 수 있다.Figure 5 shows an embodiment for the stable operation of the atmospheric gas concentration by the pressure control method of the sealing device according to the present invention. It can be seen that the hydrogen concentration of the first furnace zone 20 is maintained for a long time at the level of 98 to 99% under the conditions as shown in FIG. 4.
<부호의 설명><Description of the code>
1 : 강판 1: steel sheet
2a, 2b : 밀봉 장치의 하류측 분사 노즐2a, 2b: injection nozzle downstream of the sealing device
3a, 3b : 밀봉 장치의 상류측 분사 노즐3a, 3b: upstream injection nozzle of the sealing device
4 : 노즐에서 분사되는 제트 유동4: jet flow injected from the nozzle
5 : 회전롤5: rolling roll
6 : 회전롤 이송 기구와 밀봉 챔버 사이의 실링 장치6: sealing device between rotary roll feed mechanism and sealing chamber
7 : 회전롤 이송용 모터 7: motor for rotating roll
8 : 회전롤 이송 기구8: rotary roll feed mechanism
9 : 송풍기 9: blower
10 : 밀봉 챔버10: sealing chamber
20 : 제 1 노대역 20: the first furnace band
21 : 밀봉 장치의 완충 공간21: buffer space of the sealing device
22 : 제 2 노대역22: second furnace band

Claims (5)

  1. 강판의 열처리 공정을 수행하는 연속 열처리로에서 수소 분위기의 제 1 노대역과 질소 분위기의 제 2 노대역 사이에 설치되어 두 노대역의 분위기 가스를 차단하는 밀봉 장치에 있어서,In the sealing device for blocking the atmosphere gas of the two furnace bands provided in the continuous furnace for performing a heat treatment process of the steel sheet between the first furnace band of the hydrogen atmosphere and the second furnace band of the nitrogen atmosphere,
    제 1 노대역에서 흡입한 가스를 강판을 사이에 두고 서로 강판을 향해 분사하는 한 쌍의 제 1 노즐;A pair of first nozzles for injecting the gas sucked from the first furnace band toward the steel sheets with the steel plates interposed therebetween;
    제 2 노대역에서 흡입한 가스를 강판을 사이에 두고 서로 강판을 향해 분사하는 한 쌍의 제 2노즐;A pair of second nozzles for injecting the gas sucked from the second furnace band toward the steel sheets with the steel plates interposed therebetween;
    상기 제 1 노즐과 제 2 노즐 사이에 설치되어 강판과 접촉하면서 회전하는 한 쌍의 회전롤을 포함하여 이루어지는 것을 특징으로 하는 연속 열처리로의 분위기 가스 밀봉 장치. And a pair of rotary rolls disposed between the first nozzle and the second nozzle and rotating while being in contact with the steel sheet.
  2. 제 1항에 있어서, The method of claim 1,
    상기 제 1노즐 및 제 2 노즐과 강판 사이의 거리가 최대 50 mm 이내에서 유지되고, 제 1노즐과 제 2 노즐 사이의 거리가 제 1 노즐 및 제 2 노즐 챔버의 강판 진행 방향에 따른 길이보다 최소한 같거나 크도록 형성된 것을 특징으로 하는 연속 열처리로의 분위기 가스 밀봉 장치.The distance between the first nozzle and the second nozzle and the steel sheet is maintained within a maximum of 50 mm, and the distance between the first nozzle and the second nozzle is at least smaller than the length along the direction of steel sheet advancement of the first nozzle and the second nozzle chamber. Atmospheric gas sealing apparatus of a continuous heat treatment furnace, characterized in that formed equal to or greater.
  3. 제 1항에 있어서,The method of claim 1,
    상기의 회전롤은 축수부를 포함한 전체의 폭이 밀봉 챔버의 폭보다 작고, 축수부에 연결된 이송 기구를 통해 회전롤과 강판 사이의 간격이 조정되는 것을 특징으로 하는 연속 열처리로의 분위기 가스 밀봉 장치.The rotation roll is the atmosphere gas sealing apparatus of the continuous heat treatment furnace, characterized in that the overall width including the bearing portion is smaller than the width of the sealing chamber, the distance between the rotating roll and the steel sheet is adjusted through a transfer mechanism connected to the bearing portion.
  4. 제 1항에 있어서, The method of claim 1,
    상기의 대향하는 제 1노즐 및 제 2 노즐 사이에 압력장벽을 형성하고, 압력장벽 사이의 완충공간의 압력을 제 1 노대역의 압력과 제 2 노대역의 압력보다 크도록 제어 것을 특징으로 하는 연속 열처리로의 분위기 가스 밀봉 장치의 압력 제어 방법.A pressure barrier is formed between the opposing first nozzle and the second nozzle, and the pressure in the buffer space between the pressure barriers is controlled to be greater than the pressure in the first furnace band and the pressure in the second furnace band. Pressure control method of the atmosphere gas sealing device in the heat treatment furnace.
  5. 제 1항에 있어서, The method of claim 1,
    제 1 노대역 및 제 2 노대역의 압력 변동에 대해 제 1 노즐의 압력(P 0_3)과 제 2 노즐의 압력(P 0_2)이 연동하여 변화함으로써 밀봉 장치가 안정적으로 동작하는 것을 특징으로 하는 연속 열처리로의 분위기 가스 밀봉 장치의 압력 제어 방법.The first furnace zone and the pressure of the first nozzle to the second pressure variation in the furnace zone (P 0_3) and a continuous, characterized in that the sealing device is operated stably by changing the pressure (P 0_2) interlocked in a second nozzle Pressure control method of the atmosphere gas sealing device in the heat treatment furnace.
PCT/KR2019/005806 2018-05-15 2019-05-14 Atmospheric gas sealing means for continuous-thermal treatment furnace and control method therefor WO2019221496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0055689 2018-05-15
KR1020180055689A KR20190130942A (en) 2018-05-15 2018-05-15 Atmospheric gas sealing apparatus and pressure control method

Publications (1)

Publication Number Publication Date
WO2019221496A1 true WO2019221496A1 (en) 2019-11-21

Family

ID=68540480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005806 WO2019221496A1 (en) 2018-05-15 2019-05-14 Atmospheric gas sealing means for continuous-thermal treatment furnace and control method therefor

Country Status (2)

Country Link
KR (1) KR20190130942A (en)
WO (1) WO2019221496A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961828B (en) * 2020-08-06 2022-08-09 安徽泫氏铸造有限责任公司 Furnace body for heat treatment processing of mechanical parts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060738A (en) * 2003-08-15 2005-03-10 Nippon Steel Corp Method and device for sealing atmospheric gas
KR20130032440A (en) * 2011-09-23 2013-04-02 주식회사 포스코 Sealing apparatus of annealing furnace
KR101717961B1 (en) * 2016-03-08 2017-03-20 (주)나우이엔씨 Cooling system for continuous heating furnace pressure controlling method thereof
KR101717960B1 (en) * 2016-03-03 2017-03-20 (주)나우이엔씨 Atmosphere gas sealing apparatus for continuous heating furnace
JP6179673B1 (en) * 2016-04-05 2017-08-16 新日鐵住金株式会社 Cooling equipment in continuous annealing furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371114A (en) 1989-08-11 1991-03-26 Nippon Telegr & Teleph Corp <Ntt> Optical switch
JP2006307244A (en) 2005-04-26 2006-11-09 Nippon Steel Corp Sealing unit and sealing method for cooling process in continuous heat treatment facility for steel strip
JP4291839B2 (en) 2006-09-14 2009-07-08 中外炉工業株式会社 Sealing device for continuous heat treatment furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060738A (en) * 2003-08-15 2005-03-10 Nippon Steel Corp Method and device for sealing atmospheric gas
KR20130032440A (en) * 2011-09-23 2013-04-02 주식회사 포스코 Sealing apparatus of annealing furnace
KR101717960B1 (en) * 2016-03-03 2017-03-20 (주)나우이엔씨 Atmosphere gas sealing apparatus for continuous heating furnace
KR101717961B1 (en) * 2016-03-08 2017-03-20 (주)나우이엔씨 Cooling system for continuous heating furnace pressure controlling method thereof
JP6179673B1 (en) * 2016-04-05 2017-08-16 新日鐵住金株式会社 Cooling equipment in continuous annealing furnace

Also Published As

Publication number Publication date
KR20190130942A (en) 2019-11-25

Similar Documents

Publication Publication Date Title
ZA200502382B (en) Atmosphere control during continuous heat treatment of metal strips
CA2287048C (en) Sealing apparatus in continuous heat-treatment furnace and sealing method
WO2019221496A1 (en) Atmospheric gas sealing means for continuous-thermal treatment furnace and control method therefor
JP4123690B2 (en) Method for supplying atmospheric gas into continuous annealing furnace
CN112195334A (en) Strip steel quenching and tempering system
JP5410652B2 (en) Heat treatment furnace
JP5392023B2 (en) Non-contact sealing device and continuous heat treatment furnace
JP4223882B2 (en) Atmospheric gas sealing method and sealing device
JP4000612B2 (en) Gas flow control device
JP2006144104A (en) Apparatus and method for continuously annealing steel sheet for hot dip galvanizing
KR101717961B1 (en) Cooling system for continuous heating furnace pressure controlling method thereof
US6126891A (en) System for high rate cooling furnace for metal strips
JPH08199246A (en) Continuous annealing furnace
KR101717960B1 (en) Atmosphere gas sealing apparatus for continuous heating furnace
CN212713685U (en) Strip steel quenching and tempering system
KR20100036914A (en) Bright annealin gfurnace including gas blocking member
WO2018190140A1 (en) Sealing device
KR100341771B1 (en) Cold gas jet cooling apparatus for cooling steel strip in continuous annealing line
JPH05339648A (en) Furnace body partition device for vertical type direct firing heating furnace
JPH11124634A (en) Heat treatment apparatus of steel strip in continuous annealing process and its heat treatment method
JPH06257950A (en) Continuous atmospheric furnace and its operation
JPH0553848B2 (en)
KR20030010924A (en) Apparatus for prevent transformation of strip in cooling zone of brightness annealing furnace
JP2789819B2 (en) Method of preventing drawing of steel strip in continuous annealing furnace
JPH0261009A (en) Continuous annealing furnace for steel strip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 19804196

Country of ref document: EP

Kind code of ref document: A1