WO2019221193A1 - Plated steel material - Google Patents

Plated steel material Download PDF

Info

Publication number
WO2019221193A1
WO2019221193A1 PCT/JP2019/019359 JP2019019359W WO2019221193A1 WO 2019221193 A1 WO2019221193 A1 WO 2019221193A1 JP 2019019359 W JP2019019359 W JP 2019019359W WO 2019221193 A1 WO2019221193 A1 WO 2019221193A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy layer
less
steel material
plating
layer
Prior art date
Application number
PCT/JP2019/019359
Other languages
French (fr)
Japanese (ja)
Inventor
完 齊藤
高橋 武寛
石塚 清和
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020207028999A priority Critical patent/KR102425278B1/en
Priority to JP2019568783A priority patent/JP6687175B1/en
Priority to CN201980025743.5A priority patent/CN111989420B/en
Publication of WO2019221193A1 publication Critical patent/WO2019221193A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • This disclosure relates to plated steel materials.
  • the first highly corrosion-resistant plated steel material for building materials is Zn-5% Al-plated steel material (galfan-plated steel material) in which Al is added to a Zn-based plated layer to improve corrosion resistance. It is a well-known fact that Al is added to the plating layer to improve the corrosion resistance. When 5% Al is added, an Al crystal is formed in the plating layer (specifically, the Zn phase), and the corrosion resistance is improved.
  • Si plated steel (galvalume steel) is also basically a plated steel with improved corrosion resistance for the same reason. Therefore, the planar portion corrosion resistance basically improves as the Al concentration increases. However, an increase in the Al concentration causes a decrease in sacrificial anticorrosive ability.
  • the attraction of Zn-based plated steel is its sacrificial anti-corrosion effect on the base steel.
  • the surrounding plating layer is eluted before corrosion of the base steel material, and the plating elution components are protected Form a film. Thereby, it is possible to prevent red rust from the base steel material to some extent.
  • the Al concentration is low and the Zn concentration is high. Accordingly, high corrosion-resistant plated steel materials in which the Al concentration is suppressed to a relatively low concentration of about 5% to 25% have been put into practical use in recent years.
  • a plated steel material that keeps the Al concentration low and contains about 1 to 3% Mg has better planar part corrosion resistance and sacrificial corrosion resistance than galfan-plated steel material. For this reason, it has become a market trend as a plated steel material and is widely known in the market today.
  • a plated steel material disclosed in Patent Document 1 has been developed as a plated steel material containing a certain amount of Al and Mg.
  • Patent Document 1 includes, on the surface of a steel material, Al: 5 to 18% by mass, Mg: 1 to 10% by mass, Si: 0.01 to 2% by mass, the balance Zn and inevitable impurities.
  • a molten Zn—Al—Mg—Si plated steel material having 200 or more Al phases per 1 mm 2 on the surface of a plated steel material having a plated layer is disclosed.
  • the present condition is that the plated steel material which has the stable high plane part corrosion resistance is calculated
  • an object of one aspect of the present disclosure is to provide a plated steel material having stable and high flat surface corrosion resistance.
  • a plated steel material comprising: a base steel material; and a plating layer including a Zn—Al—Mg alloy layer disposed on a surface of the base steel material,
  • the plating layer is mass%, Zn: more than 65.0%, Al: more than 5.0% to less than 25.0%, Mg: more than 3.0% to less than 12.5%, Sn: 0.1% to 20.0%, Bi: 0% to less than 5.0%, In: 0% to less than 2.0%, Ca: 0% to 3.00%, Y: 0% to 0.5%, La: 0% to less than 0.5%, Ce: 0% to less than 0.5%, Si: 0% to less than 2.5%, Cr: 0% to less than 0.25%, Ti: 0% to less than 0.25%, Ni: 0% to less than 0.25%, Co: 0% to less than 0.25%, V: 0% to less than 0.25% Nb: 0% to less than 0.25%, Cu: 0% to less than 0.25%, Mn: 0% to less than 65
  • 2 is an SEM reflected electron image (magnification 100 times) showing an example of a Zn—Al—Mg alloy layer of the plated steel material of the present disclosure.
  • 2 is an SEM reflected electron image (magnification 500 times) showing an example of a Zn—Al—Mg alloy layer of the plated steel material of the present disclosure.
  • 2 is an SEM reflected electron image (magnification of 10,000 times) showing an example of a Zn—Al—Mg alloy layer of the plated steel material of the present disclosure.
  • % display of content of each element of chemical composition means “mass%”.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the numerical range in the case where “over” or “less than” is added to the numerical values described before and after “to” means a range not including these numerical values as the lower limit value or the upper limit value.
  • the element content of the chemical composition may be expressed as an element concentration (for example, Zn concentration, Mg concentration, etc.).
  • process is not limited to an independent process, and is included in this term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes.
  • Plant surface corrosion resistance refers to the property of a plating layer (specifically, a Zn—Al—Mg alloy layer) that is not easily corroded.
  • “Sacrificial corrosion resistance” refers to the corrosion of the base steel material at the exposed part of the base steel material (for example, the cut end face part of the plated steel material, the cracked part of the plated layer during processing, and the part where the base steel material is exposed due to peeling of the plated layer). Inhibiting properties.
  • the plated steel material of the present disclosure is a plated steel material having a base steel material and a plating layer that is disposed on the surface of the base steel material and includes a Zn—Al—Mg alloy layer.
  • the plating layer has a predetermined chemical composition, and after polishing the surface of the Zn—Al—Mg alloy layer to 1 ⁇ 2 of the layer thickness, the magnification is 100 times by a scanning electron microscope. In the backscattered electron image of the Zn—Al—Mg alloy layer obtained when observed, Al crystals are present, and the average value of the total peripheral length of the Al crystals is 88 to 195 mm / mm 2 .
  • the plated steel material of the present disclosure becomes a plated steel material having stable high flat surface corrosion resistance due to the above configuration.
  • the plated steel material of this indication was discovered by the following knowledge.
  • the inventors analyzed the initial corrosion behavior of the plating layer containing the Zn—Al—Mg alloy layer. As a result, it was found that the corrosion of the plating layer (specifically, the Zn—Al—Mg alloy layer) locally progressed in the form of a ant nest, and the periphery of the Al crystal was preferentially corroded. This is estimated as follows. In comparison, potentiometric corrosion occurs between the Al crystal having a high potential and the surrounding structure having a low potential. Therefore, the larger the contact area between the Al crystal and the surrounding phase of the Al crystal, the more easily the corrosion around the Al crystal occurs, the flat portion corrosion resistance deteriorates, and the variation in the flat portion corrosion resistance also increases.
  • the inventors control the cooling conditions after immersion of the plating bath during the production of the plating layer to deposit the Al crystal coarsely. I was inspired by that. As a result, the following was found. As an index of the size of the Al crystal, the total circumference of the Al crystal by image analysis and the corrosion resistance of the plane portion correlate well. Then, when the average value of the cumulative peripheral length of the Al crystal is set within a predetermined range, the contact area between the Al crystal and the surrounding phase of the Al crystal is reduced. As a result, corrosion around the preferential Al crystal is suppressed, and stable flat surface corrosion resistance is obtained. However, if the average value of the cumulative peripheral length of Al crystals is excessively lowered, the workability is lowered.
  • the plated steel material of the present disclosure is a plated steel material having stable and high flat surface corrosion resistance.
  • the base steel material to be plated will be described.
  • the shape of the base steel material is not particularly limited.
  • the base steel material is steel plate, steel pipe, civil engineering construction material (fence fence, corrugated pipe, drainage ditch cover, flying sand prevention plate, bolt, wire mesh, guardrail, water blocking wall Etc.), home appliance members (such as a casing of an outdoor unit of an air conditioner), and automobile parts (such as suspension members).
  • civil engineering construction material finite fence, corrugated pipe, drainage ditch cover, flying sand prevention plate, bolt, wire mesh, guardrail, water blocking wall Etc.
  • home appliance members such as a casing of an outdoor unit of an air conditioner
  • automobile parts such as suspension members.
  • various plastic working methods such as press working, roll forming, and bending can be used.
  • the base steel is, for example, general steel, pre-plated steel, Al killed steel, ultra-low carbon steel, high carbon steel, various high-tensile steels, some high alloy steels (such as steel containing strengthening elements such as Ni and Cr), etc.
  • Various base steel materials can be applied.
  • the base steel material is not particularly limited with respect to conditions such as a manufacturing method of the base steel material and a manufacturing method of the base steel plate (hot rolling method, pickling method, cold rolling method, etc.).
  • the hot-rolled steel plate, hot-rolled steel strip, cold-rolled steel plate, and cold-rolled steel strip described in JIS G 3302 (2010) are also applicable.
  • the base steel material may be a pre-plated pre-plated steel material.
  • the pre-plated steel material is obtained by, for example, an electrolytic treatment method or a displacement plating method.
  • a pre-plated steel material is obtained by immersing the base steel material in a sulfuric acid bath or a chloride bath containing metal ions of various pre-plating components and subjecting it to an electrolytic treatment.
  • the displacement plating method a base steel material is immersed in an aqueous solution containing metal ions of various pre-plating components and adjusted in pH with sulfuric acid to displace and deposit the metal, thereby obtaining a pre-plated steel material.
  • a typical example of the pre-plated steel material is Ni pre-plated steel material.
  • the plating layer includes a Zn—Al—Mg alloy layer.
  • the plating layer may include an Al—Fe alloy layer in addition to the Zn—Al—Mg alloy layer.
  • the Al—Fe alloy layer is provided between the base steel material and the Zn—Al—Mg alloy layer.
  • the plating layer may have a single-layer structure of a Zn—Al—Mg alloy layer or a laminated structure including a Zn—Al—Mg alloy layer and an Al—Fe alloy layer.
  • the Zn—Al—Mg alloy layer is preferably a layer constituting the surface of the plating layer.
  • an oxide film of a plating layer constituent element is formed on the surface of the plating layer by about 50 nm, it is considered that the thickness of the plating layer is small with respect to the entire thickness of the plating layer and does not constitute the main body of the plating layer.
  • the thickness of the Zn—Al—Mg alloy layer is, for example, 2 ⁇ m to 95 ⁇ m (preferably 5 ⁇ m to 75 ⁇ m).
  • the thickness of the entire plating layer is, for example, about 100 ⁇ m or less. Since the thickness of the entire plating layer depends on the plating conditions, the upper limit and the lower limit of the thickness of the entire plating layer are not particularly limited. For example, the thickness of the entire plating layer is related to the viscosity and specific gravity of the plating bath in a normal hot dipping method. Further, the basis weight is adjusted by the drawing speed of the base steel material and the strength of wiping. Therefore, it may be considered that the lower limit of the thickness of the entire plating layer is about 2 ⁇ m.
  • the upper limit of the thickness of the plating layer that can be produced by the hot dipping method due to the weight and uniformity of the plated metal is approximately 95 ⁇ m. Since the thickness of the plating layer can be freely changed according to the drawing speed from the plating bath and the wiping conditions, formation of the plating layer having a thickness of 2 to 95 ⁇ m is not particularly difficult to produce.
  • the Al—Fe alloy layer is formed on the surface of the base steel material (specifically, between the base steel material and the Zn—Al—Mg alloy layer), and an Al 5 Fe phase is a main phase layer as a structure.
  • the Al—Fe alloy layer is formed by mutual atomic diffusion of the base steel material and the plating bath.
  • an Al—Fe alloy layer is easily formed in a plating layer containing an Al element. Since Al of a certain concentration or more is contained in the plating bath, the Al 5 Fe phase is most formed. However, atomic diffusion takes time, and there is a portion where the Fe concentration is high in a portion close to the base steel material.
  • the Al—Fe alloy layer may partially contain a small amount of an AlFe phase, an Al 3 Fe phase, an Al 5 Fe 2 phase, or the like.
  • the Al—Fe alloy layer contains a small amount of Zn.
  • corrosion resistance refers to corrosion resistance at a portion not affected by welding.
  • Si when Si is contained in the plating layer, Si is particularly likely to be taken into the Al—Fe alloy layer and may become an Al—Fe—Si intermetallic compound phase.
  • the identified intermetallic compound phase includes an AlFeSi phase, and isomers include ⁇ , ⁇ , q1, q2-AlFeSi phase, and the like. Therefore, the Al—Fe alloy layer may detect these AlFeSi phases.
  • These Al—Fe alloy layers containing the AlFeSi phase and the like are also referred to as Al—Fe—Si alloy layers. Since the Al—Fe—Si alloy layer is smaller in thickness than the Zn—Al—Mg alloy layer, the influence on the corrosion resistance of the entire plating layer is small.
  • the structure of the Al—Fe alloy layer may change depending on the amount of pre-plating. Specifically, when the pure metal layer used for the pre-plating remains around the Al—Fe alloy layer, an intermetallic compound phase in which the constituent components of the Zn—Al—Mg alloy layer and the pre-plating component are combined (for example, Al 3 Ni phase, etc.) forms an alloy layer, Al—Fe alloy layer in which some Al atoms and Fe atoms are substituted, or some Al atoms, Fe atoms, and Si atoms are substituted. In some cases, an Al—Fe—Si alloy layer is formed. In any case, since these alloy layers have a smaller thickness than the Zn—Al—Mg alloy layer, the influence on the corrosion resistance of the entire plating layer is small.
  • the Al—Fe alloy layer is a layer that includes the alloy layers of the various aspects described above in addition to the alloy layer mainly composed of the Al 5 Fe phase.
  • an Al—Ni—Fe alloy layer is formed as the Al—Fe alloy layer. Since the thickness of the Al—Ni—Fe alloy layer is smaller than that of the Zn—Al—Mg alloy layer, the influence on the corrosion resistance of the entire plating layer is small.
  • the thickness of the Al—Fe alloy layer is, for example, not less than 0 ⁇ m and not more than 5 ⁇ m. That is, the Al—Fe alloy layer may not be formed.
  • the thickness of the Al—Fe alloy layer is preferably 0.05 ⁇ m or more and 5 ⁇ m or less from the viewpoint of improving the adhesion of the plating layer (specifically, the Zn—Al—Mg alloy layer) and ensuring the workability.
  • an Al—Fe alloy layer of 100 nm or more may be formed between the base steel material and the Zn—Al—Mg alloy layer.
  • the lower limit of the thickness of the Al—Fe alloy layer is not particularly limited, and it has been found that an Al—Fe alloy layer is inevitably formed when forming a hot-dip plated layer containing Al. . Further, it is empirically determined that the thickness of about 100 nm is the thickness when the formation of the Al—Fe alloy layer is most suppressed, and the thickness sufficiently secures the adhesion between the plating layer and the base steel material.
  • the Al concentration is high unless special measures are taken, it is difficult to form an Al—Fe alloy layer thinner than 100 nm by the hot dipping method. However, even if the thickness of the Al—Fe alloy layer is less than 100 nm, and even if the Al—Fe alloy layer is not formed, it is estimated that the plating performance is not greatly affected.
  • the thickness of the Al—Fe alloy layer exceeds 5 ⁇ m, the Al component of the Zn—Al—Mg alloy layer formed on the Al—Fe alloy layer is insufficient, and the adhesion and workability of the plating layer are further reduced. Tend to be extremely worse. Therefore, the thickness of the Al—Fe alloy layer is preferably limited to 5 ⁇ m or less.
  • the Al—Fe alloy layer is also closely related to the Al concentration and the Sn concentration. Generally, the higher the Al concentration and the Sn concentration, the higher the growth rate.
  • the chemical composition of the Al—Fe alloy layer is as follows: Fe: 25 to 35%, Al: 65 to 75%, Zn: 5% or less, And the balance: a composition containing impurities can be exemplified.
  • the thickness of the Zn—Al—Mg alloy layer is usually larger than that of the Al—Fe alloy layer, the contribution of the Al—Fe alloy layer to the planar portion corrosion resistance as a plated steel material is Zn— Small compared to the Al—Mg alloy layer.
  • the Al—Fe alloy layer contains a certain concentration or more of Al and Zn, which are corrosion resistant elements, as estimated from the component analysis results. Therefore, the Al—Fe alloy layer has a certain degree of sacrificial anticorrosive ability and corrosion barrier effect with respect to the base steel material.
  • the Zn-Al-Mg alloy layer on the Al-Fe alloy layer is precisely removed by cutting from the surface of the plating layer by end milling, etc.
  • the Al-Fe alloy layer contains an Al component and a small amount of Zn component, when it has an Al-Fe alloy layer, red rust is generated in the form of dots, and there is no Al-Fe alloy layer, and the base steel material is exposed. Like time, the entire surface does not become red rust.
  • the thickness is preferably equal to or less than a certain thickness.
  • the thickness of the Al—Fe alloy layer is preferably 5 ⁇ m or less. When the thickness of the Al—Fe alloy layer is 5 ⁇ m or less, the amount of cracks and powdering generated from the plated Al—Fe alloy layer is reduced by a V-bending test or the like.
  • the thickness of the Al—Fe alloy layer is more preferably 2 ⁇ m or less.
  • the chemical composition of the plating layer will be described.
  • the component composition of the Zn—Al—Mg alloy layer contained in the plating layer the component composition ratio of the plating bath is almost maintained even in the Zn—Al—Mg alloy layer.
  • the hot dipping method since the formation of the Al—Fe alloy layer is completed in the plating bath, the reduction of the Al component and Zn component of the Zn—Al—Mg alloy layer by the formation of the Al—Fe alloy layer is usually There are few.
  • the chemical composition of the plating layer is as follows in order to realize stable corrosion resistance on the flat surface.
  • the chemical composition of the plating layer is mass%, Zn: more than 65.0%, Al: more than 5.0% to less than 25.0%, Mg: more than 3.0% to less than 12.5%, Sn: 0.1% to 20.0%, Bi: 0% to less than 5.0%, In: 0% to less than 2.0%, Ca: 0% to 3.00%, Y: 0% to 0.5%, La: 0% to less than 0.5%, Ce: 0% to less than 0.5%, Si: 0% to less than 2.5%, Cr: 0% to less than 0.25%, Ti: 0% to less than 0.25%, Ni: 0% to less than 0.25%, Co: 0% to less than 0.25%, V: 0% to less than 0.25% Nb: 0% to less than 0.25%, Cu: 0% to less than 0.25%, Mn: 0% to less than 0.25%, Fe: 0% to 5.0%, Sr: 0% to less than 0.5%, Sb: 0% to less than 0.5%, Pb: 0% to less to less than
  • Bi In, Ca, Y, La, Ce, Si, Cr, Ti, Ni, Co, V, Nb, Cu, Mn, Fe, Sr, Sb, Pb, and B are optional. It is an ingredient. That is, these elements may not be included in the plating layer. When these optional components are included, the content of the optional elements is preferably in the range described below.
  • the chemical composition of this plating layer is the average chemical composition of the entire plating layer (in the case where the plating layer has a single layer structure of a Zn—Al—Mg alloy layer, the average chemical composition of the Zn—Al—Mg alloy layer, the plating layer) In the case of a laminated structure of an Al—Fe alloy layer and a Zn—Al—Mg alloy layer, the total average chemical composition of the Al—Fe alloy layer and the Zn—Al—Mg alloy layer).
  • the chemical composition of the Zn—Al—Mg alloy layer is almost equal to the chemical composition of the plating bath because the formation reaction of the plating layer is almost completed in the plating bath.
  • the Al—Fe alloy layer is instantly formed and grown immediately after immersion in the plating bath.
  • the formation reaction of the Al—Fe alloy layer is completed in the plating bath, and the thickness thereof is often sufficiently smaller than that of the Zn—Al—Mg alloy layer. Therefore, the average chemical composition of the entire plated layer is substantially the same as the chemical composition of the Zn—Al—Mg alloy layer unless special heat treatment such as heat alloying treatment is performed after plating. Ingredients can be ignored.
  • Zn is an element necessary for obtaining sacrificial corrosion resistance in addition to planar surface corrosion resistance.
  • the Zn concentration is considered in terms of the atomic composition ratio, it is a plating layer composed of an element having a low specific gravity such as Al or Mg. Therefore, the atomic composition ratio needs to be mainly Zn. Therefore, the Zn concentration is over 65.0%.
  • the Zn concentration is preferably 70% or more. Note that the upper limit of the Zn concentration is the concentration which is the remainder other than the elements and impurities except Zn.
  • Al is an essential element for forming an Al crystal and ensuring both the flat surface corrosion resistance and the sacrificial corrosion resistance.
  • Al is an essential element in order to improve the adhesiveness of a plating layer and to ensure workability. Therefore, the lower limit of the Al concentration is more than 5.0% (preferably 10.0% or more).
  • the upper limit value of the Al concentration is less than 25.0% (preferably 23.0% or less).
  • Mg is an essential element for ensuring both the corrosion resistance and the sacrificial corrosion resistance of the planar portion. Therefore, the lower limit of the Mg concentration is over 3.0% (preferably over 5.0%). On the other hand, when the Mg concentration increases, the workability tends to deteriorate. Therefore, it is less than 12.5% (preferably 10.0% or less).
  • Sn is an essential element that imparts high sacrificial corrosion resistance. Therefore, the lower limit value of the Sn concentration is set to 0.1% or more (preferably 0.2% or more). On the other hand, when the Sn concentration increases, the planar portion corrosion resistance tends to deteriorate. Therefore, the upper limit value of the Sn concentration is 20.0% or less (preferably 5.0% or less).
  • Bi is an element contributing to sacrificial corrosion resistance. Therefore, the lower limit of the Bi concentration is preferably more than 0% (preferably 0.1% or more, more preferably 3.0% or more). On the other hand, when the Bi concentration increases, the flat surface corrosion resistance tends to deteriorate. Therefore, the upper limit of Bi concentration is less than 5.0% (preferably 4.8% or less).
  • ⁇ In 0% to less than 2.0%> In is an element that contributes to sacrificial corrosion resistance. Therefore, the lower limit of the In concentration is preferably more than 0% (preferably 0.1% or more, more preferably 1.0% or more). On the other hand, when the In concentration increases, the flat surface corrosion resistance tends to deteriorate. Therefore, the upper limit of In concentration is set to less than 2.0% (preferably 1.8% or less).
  • Ca is an element capable of adjusting the optimum Mg elution amount for imparting planar portion corrosion resistance and sacrificial corrosion resistance. Therefore, the lower limit value of the Ca concentration is preferably more than 0% (preferably 0.05% or more). On the other hand, when the Ca concentration increases, the flat surface corrosion resistance and workability tend to deteriorate. Therefore, the upper limit value of the Ca concentration is 3.00% or less (preferably 1.00% or less).
  • Y is an element contributing to sacrificial corrosion resistance. Therefore, the lower limit of the Y concentration is preferably more than 0% (preferably 0.1% or more). On the other hand, when the Y concentration increases, the flat surface corrosion resistance tends to deteriorate. Therefore, the upper limit of the Y concentration is 0.5% or less (preferably 0.3% or less).
  • La and Ce are elements that contribute to sacrificial corrosion resistance. Therefore, the lower limits of the La concentration and the Ce concentration are each preferably more than 0% (preferably 0.1% or more). On the other hand, when the La concentration and the Ce concentration increase, the flat surface corrosion resistance tends to deteriorate. Therefore, the upper limits of the La concentration and the Ce concentration are each less than 0.5% (preferably 0.4% or less).
  • Si is an element that contributes to improving the corrosion resistance by suppressing the growth of the Al—Fe alloy layer. Therefore, the Si concentration is preferably more than 0% (preferably 0.05% or more, more preferably 0.1% or more). On the other hand, when the Si concentration is increased, the flat portion corrosion resistance, sacrificial corrosion resistance, and workability tend to deteriorate. Therefore, the upper limit value of the Si concentration is less than 2.5%. In particular, from the viewpoint of the corrosion resistance and the sacrificial corrosion resistance, the Si concentration is preferably 2.4% or less, more preferably 1.8% or less, and further preferably 1.2% or less.
  • ⁇ Cr, Ti, Ni, Co, V, Nb, Cu and Mn 0% to less than 0.25%> Cr, Ti, Ni, Co, V, Nb, Cu and Mn are elements that contribute to sacrificial corrosion resistance. Therefore, the lower limit values of the concentrations of Cr, Ti, Ni, Co, V, Nb, Cu, and Mn each preferably exceed 0% (preferably 0.05% or more, more preferably 0.1% or more). On the other hand, when the concentration of Cr, Ti, Ni, Co, V, Nb, Cu, and Mn increases, the planar portion corrosion resistance tends to deteriorate. Therefore, the upper limit values of the concentrations of Cr, Ti, Ni, Co, V, Nb, Cu, and Mn are each less than 0.25%. The upper limit of the concentration of Cr, Ti, Ni, Co, V, Nb, Cu and Mn is preferably 0.22% or less.
  • the Zn—Al—Mg alloy layer and the Al—Fe alloy layer contain a certain Fe concentration. It has been confirmed that when the Fe concentration is up to 5.0%, the performance is not adversely affected even if it is contained in the plating layer (in particular, the Zn—Al—Mg alloy layer). Since much of Fe is often contained in the Al—Fe alloy layer, the Fe concentration generally increases as the thickness of this layer increases.
  • Sr, Sb, Pb and B 0% to less than 0.5%> Sr, Sb, Pb and B are elements that contribute to sacrificial corrosion resistance. Therefore, the lower limit values of the concentrations of Sr, Sb, Pb and B are each preferably greater than 0% (preferably 0.05% or more, more preferably 0.1% or more). On the other hand, when the concentrations of Sr, Sb, Pb and B are increased, the flat surface corrosion resistance tends to deteriorate. Therefore, the upper limit values of the concentrations of Sr, Sb, Pb, and B are each less than 0.5%.
  • An impurity refers to a component contained in a raw material or a component mixed in a manufacturing process and not intentionally included.
  • a component other than Fe may be mixed in the plating layer as impurities due to mutual atomic diffusion between the base steel material and the plating bath.
  • the chemical component of the plating layer is measured by the following method. First, an acid solution is obtained in which the plating layer is peeled and dissolved with an acid containing an inhibitor that suppresses corrosion of the base steel material. Next, by measuring the obtained acid solution by ICP analysis, the chemical composition of the plating layer (in the case where the plating layer is a single layer structure of a Zn—Al—Mg alloy layer, the chemical composition of the Zn—Al—Mg alloy layer) In the case where the plating layer has a laminated structure of an Al—Fe alloy layer and a Zn—Al—Mg alloy layer, the total chemical composition of the Al—Fe alloy layer and the Zn—Al—Mg alloy layer can be obtained.
  • the acid species is not particularly limited as long as it is an acid that can dissolve the plating layer.
  • the chemical composition is measured as an average chemical composition.
  • the metal structure of the Zn—Al—Mg alloy layer has Al crystals, and the average value of the total perimeter of Al crystals is 88 to 195 mm / mm 2 .
  • the average value of the total peripheral length of the Al crystal is set to 88 to 195 mm / mm 2 .
  • the lower limit value of the average value of the cumulative peripheral length of the Al crystal is preferably 95 mm / mm 2 or more, more preferably 105 mm / mm 2 or more.
  • the upper limit of the average value of the cumulative peripheral length of the Al crystal is preferably 185 mm / mm 2 or less, more preferably 170 mm / mm 2 or less.
  • the metal structure of the Zn—Al—Mg alloy layer has Al crystals.
  • the metal structure of the Zn—Al—Mg alloy layer may have a Zn—Al phase in addition to the Al crystal.
  • the Al crystal corresponds to “ ⁇ phase in which Zn having a concentration of 0 to 3% is dissolved”.
  • the Zn—Al phase corresponds to “ ⁇ phase containing 70% to 85% Zn phase ( ⁇ phase) and finely separating ⁇ phase and Zn phase ( ⁇ phase)”.
  • FIGS. 1 to 3 show examples of SEM reflected electron images of the Zn—Al—Mg alloy layer on the polished surface obtained by polishing the surface of the Zn—Al—Mg alloy layer to 1 ⁇ 2 of the layer thickness.
  • FIG. 1 is a reflected electron image of an SEM at a magnification of 100
  • FIG. 2 at a magnification of 500
  • FIG. 3 at a magnification of 10,000.
  • Al represents an Al crystal
  • Zn—Al represents a Zn—Al phase
  • MgZn 2 represents an MgZn 2 phase
  • Zn—Eu represents a Zn-based eutectic phase.
  • the area fraction of each structure is not particularly limited, but the area fraction of the Al crystal is preferably 8 to 45% from the viewpoint of stable improvement of the corrosion resistance of the plane portion. 15 to 35% is more preferable. That is, the Al crystal is preferably present in the range of the area fraction.
  • Examples of the remaining structure other than the Al crystal and the Zn—Al phase include an MgZn 2 phase and a Zn-based eutectic phase (specifically, Zn—Al—MgZn 2 —Mg 2 Sn).
  • the average value of the total perimeter of Al crystals and the area fraction of Al crystals were determined by polishing the surface of the Zn—Al—Mg alloy layer to half the layer thickness and then using a scanning electron microscope at a magnification of 100 times. It is measured using the backscattered electron image of the Zn—Al—Mg alloy layer obtained when observed. Specifically, it is as follows.
  • a sample is taken from the plated steel material to be measured. However, the sample is collected from a place where there is no defective portion of the plating layer other than the vicinity of the punched end surface portion (2 mm from the end surface) of the plated steel material.
  • polishing of the surface of the plating layer in the Z-axis direction is performed by polishing the surface of the Zn—Al—Mg alloy layer to 1 ⁇ 2 of the layer thickness.
  • the surface of the Zn—Al—Mg alloy layer is dry-polished with a # 1200 polishing sheet, and then a finishing solution containing alumina with an average particle size of 3 ⁇ m, a finishing solution containing alumina with an average particle size of 1 ⁇ m, and colloidal
  • a finishing solution containing silica is finished and polished in this order.
  • the Zn intensity on the surface of the Zn—Al—Mg alloy layer was measured by XRF (fluorescence X-ray analysis), and the Zn intensity after polishing became 1/2 of the Zn intensity before polishing.
  • the thickness of the Zn—Al—Mg alloy layer is 1 ⁇ 2.
  • SEM reflected electron image a reflected electron image of the Zn—Al—Mg alloy layer. Is also called).
  • the SEM observation conditions are an acceleration voltage: 15 kV, an irradiation current: 10 nA, and a field size: 1222.2 ⁇ m ⁇ 927.8 ⁇ m.
  • FE-SEM transmission electron microscope
  • EDS energy dispersive X-ray analyzer
  • each phase of the Zn—Al—Mg alloy layer is identified in the reflected electron image of the SEM.
  • EDS point analysis may be performed, and the result of EDS point analysis and the result of identification of the electron diffraction image of the TEM may be collated. Note that an EPMA apparatus may be used for identification of each phase.
  • the three values of gray scale brightness, hue and contrast value indicated by each phase in the Zn—Al—Mg alloy layer are determined. Since the three values of brightness, hue, and contrast value indicated by each phase reflect the atomic number of the element contained in each phase, usually the amount of Al with a small atomic number, the phase with a large content of Mg, black The phase with a large amount of Zn tends to exhibit a white color.
  • FIG. 4 is an example of an image obtained by performing image processing (binarization) so that an Al crystal can identify a reflected electron image (SEM reflected electron image) of a Zn—Al—Mg alloy layer.
  • Al indicates an Al crystal.
  • the area fraction of the Al crystal in the Zn—Al—Mg alloy layer is the average value of the area fraction of the Al crystal obtained by the above operation in three fields of view. If it is difficult to discriminate Al crystals, electron beam diffraction by TEM or EDS point analysis is performed.
  • the Al crystal in the reflected electron image of SEM (grayscale image stored in 8 bits, 256 colors display) Describe how to identify.
  • a gray scale image stored in 8 bits when the luminous intensity is 0, it represents black, and when the luminous intensity is 255, it represents white.
  • the reflected electron image of the SEM described above, it has been found from the identification results by FE-SEM and TEM that the Al crystal can be identified with high accuracy when the light intensity threshold is set to 10 and 95. Therefore, the image is processed so that the color range of these luminosities of 10 to 95 changes, and the Al crystal is identified.
  • the binarization process may use image analysis software other than WinROOF2015.
  • the perimeter length of the Al crystal identified by the image processing is accumulated to obtain the total perimeter length of the Al crystal.
  • the Al crystal cumulative perimeter is divided by the visual field area to calculate the Al crystal cumulative perimeter per unit area (mm 2 ). This operation is performed in three fields of view, and the arithmetic average of the Al crystal cumulative perimeter per unit area (mm 2 ) is defined as “the average value of the Al crystal total perimeter”.
  • the area fraction of Al crystal can be obtained by using the automatic shape feature measurement function of WinROOF2015 (image analysis software) manufactured by Mitani Corporation. Specifically, the area fraction (area fraction with respect to the visual field area) of the Al crystal identified by binarization in the reflected electron image of the Zn—Al—Mg alloy layer is calculated using this function. And this operation is implemented by 3 visual fields and the calculated average is made into the area fraction of an Al crystal.
  • WinROOF2015 image analysis software
  • the thickness of the Al—Fe alloy layer is measured as follows. SEM reflected electron image of the cross section of the plating layer (cut surface along the thickness direction of the plating layer) after embedding the resin with a resin (however, the magnification is 5000 times, the size of the field of view is 50 ⁇ m long ⁇ 200 ⁇ m wide, In the field of view in which the Al—Fe alloy layer is visually recognized), the thickness is measured at any five locations of the identified Al—Fe alloy layer. And the arithmetic average of five places is made into the thickness of an interface alloy layer.
  • the plated steel material of the present disclosure can be obtained by forming a plating layer having the above predetermined chemical composition and metal structure on the surface (that is, one surface or both surfaces) of a base steel material (base steel plate or the like) by a hot dipping method.
  • the hot dipping process is performed under the following conditions.
  • the temperature of the plating bath is set to the melting point of the plating bath + 20 ° C. or higher, and after pulling up the base steel material from the plating bath, the temperature range from the plating bath temperature to the plating solidification start temperature, from the plating solidification start temperature to the plating solidification start temperature ⁇ 30 ° C. Cooling at an average cooling rate greater than the average cooling rate in the temperature range.
  • the temperature range from the plating solidification start temperature to the plating solidification start temperature ⁇ 30 ° C. is cooled at an average cooling rate of 12 ° C./s or less.
  • the temperature range from the plating solidification start temperature ⁇ 30 ° C. to 300 ° C. is cooled at an average cooling rate larger than the average cooling rate in the temperature range from the plating solidification start temperature to the plating solidification start temperature ⁇ 30 ° C.
  • an example of a method for producing a plated steel material according to the present disclosure is that the plating bath temperature is set to the melting point of the plating bath + 20 ° C. or higher, the base steel material is pulled up from the plating bath, and then the average cooling in the temperature range from the plating bath temperature to the plating solidification start temperature is performed.
  • the average cooling rate in the temperature range from the plating solidification start temperature to the plating solidification start temperature -30 ° C is B
  • the average cooling rate from the plating solidification start temperature -30 ° C to 300 ° C is C
  • A> The base steel material is subjected to a hot dipping process under the three-stage cooling conditions of B, B ⁇ 12 ° C./s, and C> B.
  • Al crystal is produced by setting the plating bath temperature to the melting point of the plating bath + 20 ° C. or higher and pulling up the base steel material from the plating bath. Then, by cooling the temperature range from the plating solidification start temperature to the plating solidification start temperature ⁇ 30 ° C. at an average cooling rate of 12 ° C./s or less, Al crystals exist in the Zn—Al—Mg alloy layer, and Al crystals A metal structure is formed in which the average value of the cumulative perimeter lengths is in the above range.
  • the cooling at the average cooling rate is performed by, for example, air cooling in which the atmosphere is blown with a weak wind.
  • the lower limit value of the average cooling rate in the temperature range from the plating solidification start temperature to the plating solidification start temperature ⁇ 30 ° C. is 0.5 ° C./s or more.
  • the plating solidification start temperature can be measured by the following method. A temperature at which a suggested heat peak appears first when the sample is taken from the plating bath and heated by DSC to the melting point of the plating bath + 20 ° C. or higher and cooled at 10 ° C./min is the plating solidification start temperature.
  • the average cooling rate in the temperature range from the temperature at which the base steel material is pulled up from the plating bath (that is, the plating bath temperature) to the plating solidification start temperature is not particularly limited.
  • the temperature is preferably set to 0.5 ° C./s to 20 ° C./s.
  • the average cooling rate in the temperature range from the plating bath temperature to the plating solidification start temperature is higher than the average cooling rate in the temperature range from the plating solidification start temperature to the plating solidification start temperature ⁇ 30 ° C.
  • the average cooling rate in the temperature range from the plating solidification start temperature of ⁇ 30 ° C. to 300 ° C. is not particularly limited, but from the viewpoint of preventing plating winding on the top roll or the like, 0.5 ° C./s to 20 ° C. It is good to set it as deg.
  • the average cooling rate in the temperature range from the plating solidification start temperature ⁇ 30 ° C. to 300 ° C. is higher than the average cooling rate in the temperature range from the plating solidification start temperature to the plating solidification start temperature ⁇ 30 ° C. . Thereby, excessive coarsening of the Al crystal can be suppressed and workability can be ensured.
  • the Al—Fe alloy layer formed between the base steel and the base steel material is rapidly formed and grown immediately after plating immersion in a time of less than 1 second.
  • the growth rate is higher when the plating bath temperature is higher, and is further increased when the immersion time in the plating bath is longer.
  • the temperature of the plating bath is less than 500 ° C., it hardly grows. Therefore, it is better to reduce the immersion time or shift to the cooling process immediately after solidification.
  • the plated steel material if it is solidified once and then reheated to remelt the plating layer, all the constituent phases disappear and become a liquid phase state. Therefore, for example, even in a plated steel material that has been subjected to rapid cooling or the like, it is also possible to perform the structure control defined in the present disclosure in a process of reheating offline and performing an appropriate heat treatment. In this case, it is preferable that the reheating temperature of the plating layer is in the vicinity of the temperature just above the melting point of the plating bath so that the Al—Fe alloy layer does not grow excessively.
  • a film may be formed on the plating layer.
  • the coating can form one layer or two or more layers.
  • Examples of the type of film directly above the plating layer include a chromate film, a phosphate film, and a chromate-free film.
  • the chromate treatment, phosphate treatment, and chromate-free treatment for forming these films can be performed by known methods.
  • electrolytic chromate treatment which forms a chromate film by electrolysis, a film is formed by utilizing the reaction with the material, and then the reactive chromate treatment, in which excess treatment liquid is washed away, is applied to the substrate.
  • a coating-type chromate treatment in which a film is formed by drying without washing with water. Any processing may be adopted.
  • Electrolytic chromate treatment includes electrolytic chromate treatment using chromic acid, silica sol, resin (acrylic resin, vinyl ester resin, vinyl acetate acrylic emulsion, carboxylated styrene butadiene latex, diisopropanolamine-modified epoxy resin, etc.), and hard silica. It can be illustrated.
  • Examples of the phosphate treatment include zinc phosphate treatment, zinc calcium phosphate treatment, and manganese phosphate treatment.
  • Chromate-free treatment is particularly suitable because it has no environmental impact.
  • electrolytic chromate-free treatment that forms a chromate-free coating by electrolysis
  • reaction-type chromate-free treatment that removes excess treatment liquid
  • treatment solution that forms a film using the reaction with the material.
  • coating-type chromate-free treatment in which a film is formed by applying to an object and drying without washing with water. Any processing may be adopted.
  • organic resin films may be provided on the film immediately above the plating layer.
  • the organic resin is not limited to a specific type, and examples thereof include polyester resins, polyurethane resins, epoxy resins, acrylic resins, polyolefin resins, and modified products of these resins.
  • the modified product is obtained by reacting a reactive functional group contained in the structure of these resins with another compound (such as a monomer or a crosslinking agent) containing a functional group capable of reacting with the functional group in the structure. Refers to resin.
  • organic resin one or two or more organic resins (unmodified) may be mixed and used, or in the presence of at least one organic resin, at least one other One or two or more organic resins obtained by modifying the organic resin may be used.
  • the organic resin film may contain an arbitrary colored pigment or rust preventive pigment. What was made water-based by melt
  • Example 2 A predetermined amount of pure metal ingot was used to melt the ingot in a vacuum melting furnace so that a plating layer having the chemical composition shown in Tables 1 and 2 was obtained, and then a plating bath was built in the atmosphere.
  • a batch-type hot dipping apparatus was used for producing the plated steel sheet.
  • the base steel material a 2.3 mm general hot-rolled carbon steel plate (C concentration ⁇ 0.1%) was used, and degreasing and pickling were performed immediately before the plating step.
  • a Ni pre-plated steel sheet obtained by performing Ni pre-plating on a 2.3 mm general hot-rolled carbon steel sheet was used as the base steel material.
  • the Ni adhesion amount was 2 g / m 2 .
  • the example which used Ni pre-plated steel plate as a base steel material was described as "Ni pre-plating" in the column of "base steel material” in a table
  • the base steel material was subjected to an equivalent reduction treatment method until the plating bath was immersed. That is, the green body steel N 2 -H 2 (5%) ( a dew point of -40 °C or less, an oxygen concentration less than 25 ppm) environment, the temperature was raised in electrically heated to 800 ° C. from room temperature, after holding 60 sec, N 2 It was cooled to the plating bath temperature + 10 ° C. by gas blowing and immediately immersed in the plating bath. In any of the plated steel sheets, the immersion time in the plating bath was the time shown in the table. N2 gas wiping pressure was adjusted, and a plated steel sheet was prepared so that the plating thickness was 30 ⁇ m ( ⁇ 1 ⁇ m).
  • the plating bath temperature was based on a melting point of + 20 ° C., and the plating was performed by raising the temperature further at some levels.
  • the plating bath immersion time was 2 seconds. After the base steel material was pulled out of the plating bath, a plating layer was obtained by a cooling process in which the following average cooling rates in the first to third stages shown in Tables 1 and 2 were set as shown in Tables 1 and 2.
  • First stage average cooling rate Average cooling rate in the temperature range from plating bath temperature to plating solidification start temperature
  • Second stage average cooling rate Average cooling in the temperature range from plating solidification start temperature to plating solidification start temperature ⁇ 30 ° C
  • Speed ⁇ 3rd stage average cooling rate Plating solidification start temperature-Temperature range average cooling rate from -30 °C to 300 °C
  • the plated steel sheet was bent by 90 ° V, and a cellophane tape having a width of 24 mm was pressed against the valley of the V-bending and pulled apart, and the powdering was visually evaluated.
  • the case where powdering peeling powder did not adhere to the tape was evaluated as “A”, the case where it slightly adhered was evaluated as “A-”, and the case where it was adhered as “NG”.
  • the Example applicable to the plated steel material of this indication has the stable plane part corrosion resistance compared with a comparative example.
  • the average value of the cumulative perimeter of the Al crystal is excessively large in the comparative example (test No. 70) in which the average cooling rate is not changed at 15 ° C./s. It can be seen that stable flat surface corrosion resistance is not obtained.
  • a comparative example Comparative Example No. 71 in which the average cooling rate of the second stage is excessively low

Abstract

To provide a plated steel material having stable and high planar section corrosion resistance, and a method for manufacturing the same. A plated steel material and a method for manufacturing the same, the plated steel material having a steel material and a plating layer including a Zn-Al-Mg alloy layer disposed on the surface of the steel material, the plating layer having a predetermined chemical composition, Al crystals being present in a backscattered electron image of the Zn-Al-Mg alloy layer obtained when the surface of the Zn-Al-Mg alloy layer is observed at a magnification of 100x by a scanning electron microscope after being polished to a depth of 1/2 the layer thickness of the Zn-Al-Mg alloy layer, and the average value of the total circumference length of the Al crystals being 88-195 mm/mm2.

Description

めっき鋼材Plated steel
 本開示は、めっき鋼材に関する。 This disclosure relates to plated steel materials.
 例えば、建材分野では、多種多様なめっき鋼材が利用されている。その多くは、Znめっき鋼材である。建材の長寿命化ニーズから、Znめっき鋼材の高耐食性化の研究は古くから行われており、様々なめっき鋼材が開発されてきている。最初の建材用の高耐食性めっき鋼材は、Zn系めっき層中に、Alを添加し、耐食性を向上した、Zn-5%Alめっき鋼材(ガルファンめっき鋼材)である。めっき層にAlを添加して耐食性を向上させることは周知の事実であり、5%Al添加でめっき層(具体的にはZn相)中にAl晶が形成し耐食性が向上する。Zn-55%Al-1.6%Siめっき鋼材(ガルバリウム鋼材)も基本的には、同じ理由により耐食性が向上しためっき鋼材である。
 したがって、Al濃度が向上すると基本的に平面部耐食性は向上する。しかし、Al濃度の向上は、犠牲防食能の低下を引き起す。
For example, in the field of building materials, a wide variety of plated steel materials are used. Most of them are Zn-plated steel materials. In view of the need to extend the life of building materials, research on increasing the corrosion resistance of Zn-plated steel materials has been conducted for a long time, and various plated steel materials have been developed. The first highly corrosion-resistant plated steel material for building materials is Zn-5% Al-plated steel material (galfan-plated steel material) in which Al is added to a Zn-based plated layer to improve corrosion resistance. It is a well-known fact that Al is added to the plating layer to improve the corrosion resistance. When 5% Al is added, an Al crystal is formed in the plating layer (specifically, the Zn phase), and the corrosion resistance is improved. Zn-55% Al-1.6% Si plated steel (galvalume steel) is also basically a plated steel with improved corrosion resistance for the same reason.
Therefore, the planar portion corrosion resistance basically improves as the Al concentration increases. However, an increase in the Al concentration causes a decrease in sacrificial anticorrosive ability.
 ここで、Zn系めっき鋼材の魅力は、素地鋼材に対する犠牲防食効果である。すなわち、めっき鋼材の切断端面部、加工時のめっき層割れ部、および、めっき層の剥離等により現れる素地鋼材むき出し部において、素地鋼材の腐食前に周囲のめっき層が溶出しめっき溶出成分が保護皮膜を形成する。これにより、素地鋼材からの赤錆をある程度防ぐことが可能である。 Here, the attraction of Zn-based plated steel is its sacrificial anti-corrosion effect on the base steel. In other words, at the cut end surface of plated steel material, plated layer cracked part during processing, and exposed surface of the base steel material that appears due to peeling of the plated layer, the surrounding plating layer is eluted before corrosion of the base steel material, and the plating elution components are protected Form a film. Thereby, it is possible to prevent red rust from the base steel material to some extent.
 この作用は、一般的にはAl濃度が低く、Zn濃度が高い方が好ましい。従って、Al濃度を5%~25%程度の比較的低い濃度等に抑えた高耐食化めっき鋼材が近年実用化されている。特に、Al濃度を低く抑え、さらに、1~3%程度のMgを含有しためっき鋼材がガルファンめっき鋼材よりも優れた平面部耐食性および犠牲防食性を有する。そのため、めっき鋼材として市場のトレンドとなり、現在市場で広く知られている。 For this action, it is generally preferable that the Al concentration is low and the Zn concentration is high. Accordingly, high corrosion-resistant plated steel materials in which the Al concentration is suppressed to a relatively low concentration of about 5% to 25% have been put into practical use in recent years. In particular, a plated steel material that keeps the Al concentration low and contains about 1 to 3% Mg has better planar part corrosion resistance and sacrificial corrosion resistance than galfan-plated steel material. For this reason, it has become a market trend as a plated steel material and is widely known in the market today.
 この一定量のAlおよびMgを含有しためっき鋼材として、例えば、特許文献1に開示されためっき鋼材も開発されている。 For example, a plated steel material disclosed in Patent Document 1 has been developed as a plated steel material containing a certain amount of Al and Mg.
 具体的には、特許文献1は、鋼材の表面に、Al:5~18質量%、Mg:1~10質量%、Si:0.01~2質量%、残部Zn及び不可避的不純物とからなるめっき層を有するめっき鋼材表面に、Al相が1mm当たり200個以上存在する溶融Zn-Al-Mg-Siめっき鋼材が開示されている。 Specifically, Patent Document 1 includes, on the surface of a steel material, Al: 5 to 18% by mass, Mg: 1 to 10% by mass, Si: 0.01 to 2% by mass, the balance Zn and inevitable impurities. A molten Zn—Al—Mg—Si plated steel material having 200 or more Al phases per 1 mm 2 on the surface of a plated steel material having a plated layer is disclosed.
特開2001-355053号JP 2001-355053 A
 しかし、Al濃度を一定量含むめっき鋼材では、めっき層(具体的にはZn-Al-Mg合金層)の腐食が局所的に進行し、早期に素地鋼材まで到達する傾向が高い。その結果、平面部耐食性が劣化し、平面部耐食性のバラツキが大きくなることがある。そのため、安定した高い平面部耐食性を有するめっき鋼材が求められているのが現状である。 However, in a plated steel material containing a certain amount of Al concentration, corrosion of the plating layer (specifically, a Zn—Al—Mg alloy layer) proceeds locally, and tends to reach the base steel material at an early stage. As a result, the planar portion corrosion resistance may deteriorate, and the variation in the planar portion corrosion resistance may increase. Therefore, the present condition is that the plated steel material which has the stable high plane part corrosion resistance is calculated | required.
 そこで、本開示の一態様の課題は、安定した高い平面部耐食性を有するめっき鋼材を提供することである。 Therefore, an object of one aspect of the present disclosure is to provide a plated steel material having stable and high flat surface corrosion resistance.
 上記課題は、以下の手段により解決される。即ち、 The above problem can be solved by the following means. That is,
<1>
 素地鋼材と、前記素地鋼材の表面に配されたZn-Al-Mg合金層を含むめっき層と、を有するめっき鋼材であって、
 前記めっき層が、質量%で、
 Zn:65.0%超、
 Al:5.0%超~25.0%未満、
 Mg:3.0%超~12.5%未満、
 Sn:0.1%~20.0%、
 Bi:0%~5.0%未満、
 In:0%~2.0%未満、
 Ca:0%~3.00%、
 Y :0%~0.5%、
 La:0%~0.5%未満、
 Ce:0%~0.5%未満、
 Si:0%~2.5%未満、
 Cr:0%~0.25%未満、
 Ti:0%~0.25%未満、
 Ni:0%~0.25%未満、
 Co:0%~0.25%未満、
 V :0%~0.25%未満、
 Nb:0%~0.25%未満、
 Cu:0%~0.25%未満、
 Mn:0%~0.25%未満、
 Fe:0%~5.0%、
 Sr:0%~0.5%未満、
 Sb:0%~0.5%未満、
 Pb:0%~0.5%未満、
 B :0%~0.5%未満、及び
 不純物からなる化学組成を有し、
 Zn-Al-Mg合金層の表面を層厚の1/2まで研磨した後、走査型電子顕微鏡により倍率100倍で観察したときに得られる、Zn-Al-Mg合金層の反射電子像において、Al晶が存在し、前記Al晶の累計周囲長さの平均値が88~195mm/mmであるめっき鋼材。
<2>
 前記めっき層が、前記素地鋼材と前記Zn-Al-Mg合金層との間に、厚さ0.05~5μmのAl-Fe合金層を有する<1>に記載のめっき鋼材。
<1>
A plated steel material comprising: a base steel material; and a plating layer including a Zn—Al—Mg alloy layer disposed on a surface of the base steel material,
The plating layer is mass%,
Zn: more than 65.0%,
Al: more than 5.0% to less than 25.0%,
Mg: more than 3.0% to less than 12.5%,
Sn: 0.1% to 20.0%,
Bi: 0% to less than 5.0%,
In: 0% to less than 2.0%,
Ca: 0% to 3.00%,
Y: 0% to 0.5%,
La: 0% to less than 0.5%,
Ce: 0% to less than 0.5%,
Si: 0% to less than 2.5%,
Cr: 0% to less than 0.25%,
Ti: 0% to less than 0.25%,
Ni: 0% to less than 0.25%,
Co: 0% to less than 0.25%,
V: 0% to less than 0.25%
Nb: 0% to less than 0.25%,
Cu: 0% to less than 0.25%,
Mn: 0% to less than 0.25%,
Fe: 0% to 5.0%,
Sr: 0% to less than 0.5%,
Sb: 0% to less than 0.5%,
Pb: 0% to less than 0.5%,
B: having a chemical composition consisting of 0% to less than 0.5% and impurities,
In the backscattered electron image of the Zn—Al—Mg alloy layer, obtained by polishing the surface of the Zn—Al—Mg alloy layer to ½ of the layer thickness and then observing it at a magnification of 100 times with a scanning electron microscope, A plated steel material in which an Al crystal is present and an average value of the total peripheral length of the Al crystal is 88 to 195 mm / mm 2 .
<2>
The plated steel material according to <1>, wherein the plated layer has an Al—Fe alloy layer having a thickness of 0.05 to 5 μm between the base steel material and the Zn—Al—Mg alloy layer.
 本開示の一態様によれば、安定した高い平面部耐食性を有するめっき鋼材を提供できる。 According to one aspect of the present disclosure, it is possible to provide a plated steel material having stable and high flat surface corrosion resistance.
本開示のめっき鋼材のZn-Al-Mg合金層の一例を示すSEMの反射電子像(倍率100倍)である。2 is an SEM reflected electron image (magnification 100 times) showing an example of a Zn—Al—Mg alloy layer of the plated steel material of the present disclosure. 本開示のめっき鋼材のZn-Al-Mg合金層の一例を示すSEMの反射電子像(倍率500倍)である。2 is an SEM reflected electron image (magnification 500 times) showing an example of a Zn—Al—Mg alloy layer of the plated steel material of the present disclosure. 本開示のめっき鋼材のZn-Al-Mg合金層の一例を示すSEMの反射電子像(倍率10000倍)である。2 is an SEM reflected electron image (magnification of 10,000 times) showing an example of a Zn—Al—Mg alloy layer of the plated steel material of the present disclosure. 本開示のめっき鋼材のZn-Al-Mg合金層の反射電子像(SEMの反射電子像)をAl晶が識別できるように画像処理(2値化)した画像の一例を示す図である。It is a figure which shows an example of the image which image-processed (binarized) the reflected electron image (SEM reflected electron image) of the Zn-Al-Mg alloy layer of the plated steel material of this indication so that an Al crystal could be identified.
 以下、本開示の一例について説明する。
 なお、本開示において、化学組成の各元素の含有量の「%」表示は、「質量%」を意味する。
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 「~」の前後に記載される数値に「超」または「未満」が付されている場合の数値範囲は、これら数値を下限値または上限値として含まない範囲を意味する。
 化学組成の元素の含有量は、元素濃度(例えば、Zn濃度、Mg濃度等)と表記することがある。
 「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 「平面部耐食性」とは、めっき層(具体的にはZn-Al-Mg合金層)自体の腐食し難い性質を示す。
 「犠牲防食性」とは、素地鋼材むき出し部(例えばめっき鋼材の切断端面部、加工時のめっき層割れ部、およびめっき層の剥離により、素地鋼材が露出する箇所)での素地鋼材の腐食を抑制する性質を示す。
Hereinafter, an example of the present disclosure will be described.
In addition, in this indication, "%" display of content of each element of chemical composition means "mass%".
A numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
The numerical range in the case where “over” or “less than” is added to the numerical values described before and after “to” means a range not including these numerical values as the lower limit value or the upper limit value.
The element content of the chemical composition may be expressed as an element concentration (for example, Zn concentration, Mg concentration, etc.).
The term “process” is not limited to an independent process, and is included in this term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes.
“Plane surface corrosion resistance” refers to the property of a plating layer (specifically, a Zn—Al—Mg alloy layer) that is not easily corroded.
“Sacrificial corrosion resistance” refers to the corrosion of the base steel material at the exposed part of the base steel material (for example, the cut end face part of the plated steel material, the cracked part of the plated layer during processing, and the part where the base steel material is exposed due to peeling of the plated layer). Inhibiting properties.
 本開示のめっき鋼材は、素地鋼材と、素地鋼材の表面に配され、Zn-Al-Mg合金層を含むめっき層と、を有するめっき鋼材である。
 そして、本開示のめっき鋼材は、めっき層が所定の化学組成を有し、Zn-Al-Mg合金層の表面を層厚の1/2まで研磨した後、走査型電子顕微鏡により倍率100倍で観察したときに得られる、Zn-Al-Mg合金層の反射電子像において、Al晶が存在し、前記Al晶の累計周囲長さの平均値が88~195mm/mmである。
The plated steel material of the present disclosure is a plated steel material having a base steel material and a plating layer that is disposed on the surface of the base steel material and includes a Zn—Al—Mg alloy layer.
In the plated steel material of the present disclosure, the plating layer has a predetermined chemical composition, and after polishing the surface of the Zn—Al—Mg alloy layer to ½ of the layer thickness, the magnification is 100 times by a scanning electron microscope. In the backscattered electron image of the Zn—Al—Mg alloy layer obtained when observed, Al crystals are present, and the average value of the total peripheral length of the Al crystals is 88 to 195 mm / mm 2 .
 本開示のめっき鋼材は、上記構成により、安定した高い平面部耐食性を有するめっき鋼材となる。本開示のめっき鋼材は、次の知見により見出された。 The plated steel material of the present disclosure becomes a plated steel material having stable high flat surface corrosion resistance due to the above configuration. The plated steel material of this indication was discovered by the following knowledge.
 発明者らは、Zn-Al-Mg合金層を含むめっき層の初期腐食挙動を解析した。その結果、めっき層(具体的にはZn-Al-Mg合金層)の腐食が蟻の巣状に局所的に進行し、Al晶の周囲が優先的に腐食していることを知見した。
 これは、次の通り推定される。相対的に、電位が高いAl晶と電位が低い周囲の組織とで電位差腐食が起きている。そのため、Al晶とAl晶の周囲の相との接触面積が大きいほど、Al晶の周囲の腐食が起きやすくて平面部耐食性が劣化し、平面部耐食性のバラツキも大きくなる。
The inventors analyzed the initial corrosion behavior of the plating layer containing the Zn—Al—Mg alloy layer. As a result, it was found that the corrosion of the plating layer (specifically, the Zn—Al—Mg alloy layer) locally progressed in the form of a ant nest, and the periphery of the Al crystal was preferentially corroded.
This is estimated as follows. In comparison, potentiometric corrosion occurs between the Al crystal having a high potential and the surrounding structure having a low potential. Therefore, the larger the contact area between the Al crystal and the surrounding phase of the Al crystal, the more easily the corrosion around the Al crystal occurs, the flat portion corrosion resistance deteriorates, and the variation in the flat portion corrosion resistance also increases.
 そこで、発明者らは、Al晶とAl晶の周囲の相との接触面積を極力減らすため、めっき層の製造時に、めっき浴の浸漬後の冷却条件をコントロールしてAl晶を粗大に析出させることを着想した。
 その結果、次のことを知見した。Al晶の大きさの指標として、画像解析によるAl晶累計周囲長さと平面部耐食性がよく相関する。そして、Al晶の累計周囲長さの平均値を所定の範囲にすると、Al晶とAl晶の周囲の相との接触面積が低減する。その結果、優先的なAl晶の周囲の腐食が抑制され、安定した平面部耐食性が得られる。ただし、Al晶の累計周囲長さの平均値を過度に低くすると、加工性が低下する。
In order to reduce the contact area between the Al crystal and the surrounding phase of the Al crystal as much as possible, the inventors control the cooling conditions after immersion of the plating bath during the production of the plating layer to deposit the Al crystal coarsely. I was inspired by that.
As a result, the following was found. As an index of the size of the Al crystal, the total circumference of the Al crystal by image analysis and the corrosion resistance of the plane portion correlate well. Then, when the average value of the cumulative peripheral length of the Al crystal is set within a predetermined range, the contact area between the Al crystal and the surrounding phase of the Al crystal is reduced. As a result, corrosion around the preferential Al crystal is suppressed, and stable flat surface corrosion resistance is obtained. However, if the average value of the cumulative peripheral length of Al crystals is excessively lowered, the workability is lowered.
 以上から、本開示のめっき鋼材は、安定した高い平面部耐食性を有するめっき鋼材となることが見出された。 From the above, it has been found that the plated steel material of the present disclosure is a plated steel material having stable and high flat surface corrosion resistance.
 以下、本開示のめっき鋼材の詳細について説明する。 Hereinafter, the details of the plated steel material of the present disclosure will be described.
 めっきの対象となる素地鋼材について説明する。
 素地鋼材の形状には、特に制限はない、素地鋼材は、鋼板の他、鋼管、土木建築材(柵渠、コルゲートパイプ、排水溝蓋、飛砂防止板、ボルト、金網、ガードレール、止水壁等)、家電部材(エアコンの室外機の筐体等)、自動車部品(足回り部材等)など、成形加工された素地鋼材が挙げられる。成形加工は、例えば、プレス加工、ロールフォーミング、曲げ加工などの種々の塑性加工手法が利用できる。
The base steel material to be plated will be described.
The shape of the base steel material is not particularly limited. The base steel material is steel plate, steel pipe, civil engineering construction material (fence fence, corrugated pipe, drainage ditch cover, flying sand prevention plate, bolt, wire mesh, guardrail, water blocking wall Etc.), home appliance members (such as a casing of an outdoor unit of an air conditioner), and automobile parts (such as suspension members). For the forming process, for example, various plastic working methods such as press working, roll forming, and bending can be used.
 素地鋼材の材質には、特に制限はない。素地鋼材は、例えば、一般鋼、プレめっき鋼、Alキルド鋼、極低炭素鋼、高炭素鋼、各種高張力鋼、一部の高合金鋼(Ni、Cr等の強化元素含有鋼等)などの各種の素地鋼材が適用可能である。
 素地鋼材は、素地鋼材の製造方法、素地鋼板の製造方法(熱間圧延方法、酸洗方法、冷延方法等)等の条件についても、特に制限されるものではない。
 なお、素地鋼材としては、JIS G 3302(2010年)に記載されている熱延鋼板、熱延鋼帯、冷延鋼板、冷延鋼帯も適用できる。
There is no restriction | limiting in particular in the material of a base steel material. The base steel is, for example, general steel, pre-plated steel, Al killed steel, ultra-low carbon steel, high carbon steel, various high-tensile steels, some high alloy steels (such as steel containing strengthening elements such as Ni and Cr), etc. Various base steel materials can be applied.
The base steel material is not particularly limited with respect to conditions such as a manufacturing method of the base steel material and a manufacturing method of the base steel plate (hot rolling method, pickling method, cold rolling method, etc.).
In addition, as a base steel material, the hot-rolled steel plate, hot-rolled steel strip, cold-rolled steel plate, and cold-rolled steel strip described in JIS G 3302 (2010) are also applicable.
 素地鋼材は、プレめっきされたプレめっき鋼材でもよい。プレめっき鋼材は、例えば、電解処理方法または置換めっき方法により得られる。電解処理方法では、種々のプレめっき成分の金属イオンを含む硫酸浴又は塩化物浴に、素地鋼材を浸漬して電解処理することにより、プレめっき鋼材が得られる。置換めっき方法では、種々のプレめっき成分の金属イオンを含み、硫酸でpH調整した水溶液に、素地鋼材を浸漬して、金属を置換析出させて、プレめっき鋼材が得られる。
 プレめっき鋼材としては、Niプレめっき鋼材が代表例として挙げられる。
The base steel material may be a pre-plated pre-plated steel material. The pre-plated steel material is obtained by, for example, an electrolytic treatment method or a displacement plating method. In the electrolytic treatment method, a pre-plated steel material is obtained by immersing the base steel material in a sulfuric acid bath or a chloride bath containing metal ions of various pre-plating components and subjecting it to an electrolytic treatment. In the displacement plating method, a base steel material is immersed in an aqueous solution containing metal ions of various pre-plating components and adjusted in pH with sulfuric acid to displace and deposit the metal, thereby obtaining a pre-plated steel material.
A typical example of the pre-plated steel material is Ni pre-plated steel material.
 次に、めっき層について説明する。
 めっき層は、Zn-Al-Mg合金層を含む。めっき層は、Zn-Al-Mg合金層に加え、Al-Fe合金層を含んでもよい。Al-Fe合金層は、素地鋼材とZn-Al-Mg合金層との間に有する。
Next, the plating layer will be described.
The plating layer includes a Zn—Al—Mg alloy layer. The plating layer may include an Al—Fe alloy layer in addition to the Zn—Al—Mg alloy layer. The Al—Fe alloy layer is provided between the base steel material and the Zn—Al—Mg alloy layer.
 つまり、めっき層は、Zn-Al-Mg合金層の単層構造であってもよく、Zn-Al-Mg合金層とAl-Fe合金層とを含む積層構造であってもよい。積層構造の場合、Zn-Al-Mg合金層は、めっき層の表面を構成する層とすることがよい。
 ただし、めっき層の表面にめっき層構成元素の酸化被膜が50nm程度形成しているが、めっき層全体の厚さに対して厚さが薄くめっき層の主体を構成していないと見なす。
That is, the plating layer may have a single-layer structure of a Zn—Al—Mg alloy layer or a laminated structure including a Zn—Al—Mg alloy layer and an Al—Fe alloy layer. In the case of a laminated structure, the Zn—Al—Mg alloy layer is preferably a layer constituting the surface of the plating layer.
However, although an oxide film of a plating layer constituent element is formed on the surface of the plating layer by about 50 nm, it is considered that the thickness of the plating layer is small with respect to the entire thickness of the plating layer and does not constitute the main body of the plating layer.
 ここで、Zn-Al-Mg合金層の厚さは、例えば、2μm以上95μm以下(好ましくは5μm以上75μm以下)とする。 Here, the thickness of the Zn—Al—Mg alloy layer is, for example, 2 μm to 95 μm (preferably 5 μm to 75 μm).
 一方、めっき層全体の厚みは、例えば、100μm以下程度である。めっき層全体の厚みはめっき条件に左右されるため、めっき層全体の厚みの上限及び下限については特に限定されるものではない。例えば、めっき層全体の厚みは、通常の溶融めっき法ではめっき浴の粘性および比重が関連する。さらに素地鋼材の引抜速度およびワイピングの強弱によって、めっき量は目付調整される。そのため、めっき層全体の厚みの下限は、2μm程度であると考えてよい。
 一方、めっき金属の自重および均一性により、溶融めっき法で作製できる、めっき層の厚さの上限はおよそ95μmである。
 めっき浴からの引抜速度とワイピング条件によって、めっき層の厚みは自在に変更できるため、厚さ2~95μmのめっき層の形成は特に製造が難しいものではない。
On the other hand, the thickness of the entire plating layer is, for example, about 100 μm or less. Since the thickness of the entire plating layer depends on the plating conditions, the upper limit and the lower limit of the thickness of the entire plating layer are not particularly limited. For example, the thickness of the entire plating layer is related to the viscosity and specific gravity of the plating bath in a normal hot dipping method. Further, the basis weight is adjusted by the drawing speed of the base steel material and the strength of wiping. Therefore, it may be considered that the lower limit of the thickness of the entire plating layer is about 2 μm.
On the other hand, the upper limit of the thickness of the plating layer that can be produced by the hot dipping method due to the weight and uniformity of the plated metal is approximately 95 μm.
Since the thickness of the plating layer can be freely changed according to the drawing speed from the plating bath and the wiping conditions, formation of the plating layer having a thickness of 2 to 95 μm is not particularly difficult to produce.
 次にAl-Fe合金層について説明する。 Next, the Al—Fe alloy layer will be described.
 Al-Fe合金層は、素地鋼材表面(具体的には、素地鋼材とZn-Al-Mg合金層との間)に形成されており、組織としてAlFe相が主相の層である。Al-Fe合金層は、素地鋼材およびめっき浴の相互の原子拡散によって形成する。製法として溶融めっき法を用いた場合、Al元素を含有するめっき層では、Al-Fe合金層が形成され易い。めっき浴中に一定濃度以上のAlが含有されることから、AlFe相が最も多く形成する。しかし、原子拡散には時間がかかり、また、素地鋼材に近い部分では、Fe濃度が高くなる部分もある。そのため、Al-Fe合金層は、部分的には、AlFe相、AlFe相、AlFe相などが少量含まれる場合もある。また、めっき浴中にZnも一定濃度含まれることから、Al-Fe合金層には、Znも少量含有される。 The Al—Fe alloy layer is formed on the surface of the base steel material (specifically, between the base steel material and the Zn—Al—Mg alloy layer), and an Al 5 Fe phase is a main phase layer as a structure. The Al—Fe alloy layer is formed by mutual atomic diffusion of the base steel material and the plating bath. When the hot dipping method is used as a manufacturing method, an Al—Fe alloy layer is easily formed in a plating layer containing an Al element. Since Al of a certain concentration or more is contained in the plating bath, the Al 5 Fe phase is most formed. However, atomic diffusion takes time, and there is a portion where the Fe concentration is high in a portion close to the base steel material. Therefore, the Al—Fe alloy layer may partially contain a small amount of an AlFe phase, an Al 3 Fe phase, an Al 5 Fe 2 phase, or the like. In addition, since a certain concentration of Zn is contained in the plating bath, the Al—Fe alloy layer contains a small amount of Zn.
 耐食性においては、AlFe相、AlFe相、AlFe相、およびAlFe相のいずれの相であっても大差がない。ここでいう耐食性とは、溶接の影響を受けない部分での耐食性である。 In terms of corrosion resistance, there is no significant difference in any of the Al 5 Fe phase, Al 3 Fe phase, AlFe phase, and Al 5 Fe 2 phase. The term “corrosion resistance” as used herein refers to corrosion resistance at a portion not affected by welding.
 ここで、めっき層中にSiを含有する場合、Siは、特にAl-Fe合金層中に取り込まれ易く、Al-Fe-Si金属間化合物相となることがある。同定される金属間化合物相としては、AlFeSi相があり、異性体として、α、β、q1,q2-AlFeSi相等が存在する。そのため、Al-Fe合金層は、これらAlFeSi相等が検出されることがある。これらAlFeSi相等を含むAl-Fe合金層をAl-Fe-Si合金層とも称する。
 なお、Al-Fe-Si合金層もZn-Al-Mg合金層に対し、厚みは小さいため、めっき層全体における耐食性において与える影響は小さい。
Here, when Si is contained in the plating layer, Si is particularly likely to be taken into the Al—Fe alloy layer and may become an Al—Fe—Si intermetallic compound phase. The identified intermetallic compound phase includes an AlFeSi phase, and isomers include α, β, q1, q2-AlFeSi phase, and the like. Therefore, the Al—Fe alloy layer may detect these AlFeSi phases. These Al—Fe alloy layers containing the AlFeSi phase and the like are also referred to as Al—Fe—Si alloy layers.
Since the Al—Fe—Si alloy layer is smaller in thickness than the Zn—Al—Mg alloy layer, the influence on the corrosion resistance of the entire plating layer is small.
 また、素地鋼材(素地鋼板など)に各種プレめっき鋼材を使用した場合、プレめっきの付着量により、Al-Fe合金層の構造が変化することがある。具体的には、Al-Fe合金層周囲に、プレめっきに用いた純金属層が残存する場合、Zn-Al-Mg合金層の構成成分とプレめっき成分が結合した金属間化合物相(例えば、AlNi相等)が合金層を形成する場合、Al原子およびFe原子の一部が置換したAl-Fe合金層が形成する場合、または、Al原子、Fe原子およびSi原子の一部が置換したAl-Fe-Si合金層を形成する場合等がある。いずれにせよ、これらの合金層もZn-Al-Mg合金層に対し、厚みは小さいため、めっき層全体における耐食性において与える影響は小さい。 When various pre-plated steel materials are used for the base steel material (base steel plate, etc.), the structure of the Al—Fe alloy layer may change depending on the amount of pre-plating. Specifically, when the pure metal layer used for the pre-plating remains around the Al—Fe alloy layer, an intermetallic compound phase in which the constituent components of the Zn—Al—Mg alloy layer and the pre-plating component are combined (for example, Al 3 Ni phase, etc.) forms an alloy layer, Al—Fe alloy layer in which some Al atoms and Fe atoms are substituted, or some Al atoms, Fe atoms, and Si atoms are substituted. In some cases, an Al—Fe—Si alloy layer is formed. In any case, since these alloy layers have a smaller thickness than the Zn—Al—Mg alloy layer, the influence on the corrosion resistance of the entire plating layer is small.
 つまり、Al-Fe合金層とは、AlFe相を主体とする合金層以外に、上記種々の態様の合金層を包含する層である。 In other words, the Al—Fe alloy layer is a layer that includes the alloy layers of the various aspects described above in addition to the alloy layer mainly composed of the Al 5 Fe phase.
 なお、各種プレめっき鋼材のうち、Niプレめっき鋼材にめっき層を形成した場合、Al-Fe合金層として、Al-Ni-Fe合金層が形成されることになる。Al-Ni-Fe合金層も、Zn-Al-Mg合金層に対し、厚みは小さいため、めっき層全体における耐食性において与える影響は小さい。 In addition, when a plating layer is formed on a Ni pre-plated steel material among various pre-plated steel materials, an Al—Ni—Fe alloy layer is formed as the Al—Fe alloy layer. Since the thickness of the Al—Ni—Fe alloy layer is smaller than that of the Zn—Al—Mg alloy layer, the influence on the corrosion resistance of the entire plating layer is small.
 Al-Fe合金層の厚さは、例えば、0μm以上5μm以下である。
 つまり、Al-Fe合金層は、形成されていなくてもよい。Al-Fe合金層の厚さは、めっき層(具体的にはZn-Al-Mg合金層)の密着性を高め、加工性を確保する観点から、0.05μm以上5μm以下が好ましい。
The thickness of the Al—Fe alloy layer is, for example, not less than 0 μm and not more than 5 μm.
That is, the Al—Fe alloy layer may not be formed. The thickness of the Al—Fe alloy layer is preferably 0.05 μm or more and 5 μm or less from the viewpoint of improving the adhesion of the plating layer (specifically, the Zn—Al—Mg alloy layer) and ensuring the workability.
 ただし、通常、溶融めっき法により本開示で規定する化学組成のめっき層を形成すると、素地鋼材とZn-Al-Mg合金層との間に、100nm以上のAl-Fe合金層が形成することが多い。Al-Fe合金層の厚さの下限値は特に制限するものでなく、Alを含有する溶融めっき層を形成する際には、必然的にAl-Fe合金層が形成することが判明している。そして、経験的に100nm前後が最もAl-Fe合金層の形成が抑制された場合の厚みであり、めっき層と素地鋼材との密着性を十分確保する厚みと判断されている。特別な手段を講じない限りはAl濃度が高いため、溶融めっき法では、100nmよりも薄いAl-Fe合金層を形成することは困難である。しかし、Al-Fe合金層の厚さが100nm未満であってとしても、また、Al-Fe合金層が形成されていなくても、めっき性能に大きな影響は与えないと推測される。 However, usually, when a plating layer having a chemical composition specified in the present disclosure is formed by a hot dipping method, an Al—Fe alloy layer of 100 nm or more may be formed between the base steel material and the Zn—Al—Mg alloy layer. Many. The lower limit of the thickness of the Al—Fe alloy layer is not particularly limited, and it has been found that an Al—Fe alloy layer is inevitably formed when forming a hot-dip plated layer containing Al. . Further, it is empirically determined that the thickness of about 100 nm is the thickness when the formation of the Al—Fe alloy layer is most suppressed, and the thickness sufficiently secures the adhesion between the plating layer and the base steel material. Since the Al concentration is high unless special measures are taken, it is difficult to form an Al—Fe alloy layer thinner than 100 nm by the hot dipping method. However, even if the thickness of the Al—Fe alloy layer is less than 100 nm, and even if the Al—Fe alloy layer is not formed, it is estimated that the plating performance is not greatly affected.
 一方で、Al-Fe合金層の厚みが5μm超となると、Al-Fe合金層上に形成されるZn-Al-Mg合金層のAl成分が不足し、さらに、めっき層の密着性、加工性が極端に悪化する傾向にある。そのため、Al-Fe合金層の厚みは5μm以下に制限するのが好ましい。
 なお、Al-Fe合金層は、Al濃度およびSn濃度に関しても密接な関連があり、一般的にAl濃度およびSn濃度が高い方が、成長速度が速い傾向にある。
On the other hand, when the thickness of the Al—Fe alloy layer exceeds 5 μm, the Al component of the Zn—Al—Mg alloy layer formed on the Al—Fe alloy layer is insufficient, and the adhesion and workability of the plating layer are further reduced. Tend to be extremely worse. Therefore, the thickness of the Al—Fe alloy layer is preferably limited to 5 μm or less.
The Al—Fe alloy layer is also closely related to the Al concentration and the Sn concentration. Generally, the higher the Al concentration and the Sn concentration, the higher the growth rate.
 Al-Fe合金層はAlFe相が主構成となる場合が多いので、Al-Fe合金層の化学組成は、Fe:25~35%、Al:65~75%、Zn:5%以下、および残部:不純物を含む組成が例示できる。 Since the Al—Fe alloy layer is often mainly composed of an Al 5 Fe phase, the chemical composition of the Al—Fe alloy layer is as follows: Fe: 25 to 35%, Al: 65 to 75%, Zn: 5% or less, And the balance: a composition containing impurities can be exemplified.
 通常、Al-Fe合金層よりもZn-Al-Mg合金層の厚みの方が厚いことが常であることから、Al-Fe合金層のめっき鋼材としての平面部耐食性への寄与は、Zn-Al-Mg合金層と比較すると小さい。しかし、Al-Fe合金層には、成分分析結果から推測されるように耐食性元素であるAlおよびZnを一定濃度以上含有する。そのため、Al-Fe合金層は、素地鋼材に対してある程度の犠牲防食能と腐食バリア効果を有している。 Usually, since the thickness of the Zn—Al—Mg alloy layer is usually larger than that of the Al—Fe alloy layer, the contribution of the Al—Fe alloy layer to the planar portion corrosion resistance as a plated steel material is Zn— Small compared to the Al—Mg alloy layer. However, the Al—Fe alloy layer contains a certain concentration or more of Al and Zn, which are corrosion resistant elements, as estimated from the component analysis results. Therefore, the Al—Fe alloy layer has a certain degree of sacrificial anticorrosive ability and corrosion barrier effect with respect to the base steel material.
 ここで、厚みの薄いAl-Fe合金層の単独の耐食性寄与を定量的な測定で確認することは難しい。ただし、例えば、Al-Fe合金層に十分な厚みがある場合、Al-Fe合金層上のZn-Al-Mg合金層をエンドミル加工等でめっき層の表面からの切削で精密に取り除き、腐食試験をかけることによって、Al-Fe合金層の単独の耐食性を評価することはできる。Al-Fe合金層は、Al成分及び少量のZn成分を含んでいるため、Al-Fe合金層を有する場合、赤錆が点状に発生し、Al-Fe合金層を有さず、素地鋼材剥き出し時のように、全面赤錆とはならない。 Here, it is difficult to confirm the single corrosion resistance contribution of the thin Al—Fe alloy layer by quantitative measurement. However, for example, when the Al-Fe alloy layer has a sufficient thickness, the Zn-Al-Mg alloy layer on the Al-Fe alloy layer is precisely removed by cutting from the surface of the plating layer by end milling, etc. By applying the above, it is possible to evaluate the single corrosion resistance of the Al—Fe alloy layer. Since the Al-Fe alloy layer contains an Al component and a small amount of Zn component, when it has an Al-Fe alloy layer, red rust is generated in the form of dots, and there is no Al-Fe alloy layer, and the base steel material is exposed. Like time, the entire surface does not become red rust.
 また、腐食試験中、素地鋼材の赤錆発生直前までに至っためっき層の断面観察を実施すると、上層のZn-Al-Mg合金層が溶出および錆化してもAl-Fe合金層のみが残存し、素地鋼材を防食していることが確認できる。これは、電気化学的に、Al-Fe合金層がZn-Al-Mg層より貴になるが、素地鋼材より卑に位置するためである。これらのことから、Al-Fe合金層も一定の耐食性を有していると判断することができる。 Also, during the corrosion test, when the cross section of the plated layer up to just before the occurrence of red rust on the base steel material was observed, only the Al—Fe alloy layer remained even if the upper Zn—Al—Mg alloy layer was eluted and rusted. It can be confirmed that the base steel material is anticorrosive. This is because the Al—Fe alloy layer is electrochemically more noble than the Zn—Al—Mg layer, but is more base than the base steel material. From these, it can be determined that the Al—Fe alloy layer also has a certain corrosion resistance.
 腐食の観点からは、Al-Fe合金層は厚ければ厚いほど好ましく赤錆発生時間を遅らせる作用がある。しかしながら、厚いAl-Fe合金層は著しくめっき加工性を劣化させる原因となるから、厚みは一定厚み以下が好ましい。加工性の観点から、Al-Fe合金層の厚さは5μm以下が好ましい。Al-Fe合金層の厚さが5μm以下であると、V曲げ試験等により、めっきAl-Fe合金層を起点に発生するクラック及びパウダリング量が減少する。Al-Fe合金層の厚さは、さらに好ましくは2μm以下である。 From the viewpoint of corrosion, the thicker the Al—Fe alloy layer is, the more preferable it is to delay the red rust occurrence time. However, since a thick Al—Fe alloy layer causes a significant deterioration in plating processability, the thickness is preferably equal to or less than a certain thickness. From the viewpoint of workability, the thickness of the Al—Fe alloy layer is preferably 5 μm or less. When the thickness of the Al—Fe alloy layer is 5 μm or less, the amount of cracks and powdering generated from the plated Al—Fe alloy layer is reduced by a V-bending test or the like. The thickness of the Al—Fe alloy layer is more preferably 2 μm or less.
 次に、めっき層の化学組成について説明する。
 めっき層に含まれるZn-Al-Mg合金層の成分組成は、めっき浴の成分組成比率がZn-Al-Mg合金層でもほぼ保たれる。溶融めっき法における、Al-Fe合金層の形成はめっき浴内で反応が完了しているため、Al-Fe合金層形成によるZn-Al-Mg合金層のAl成分、Zn成分の減少は通常、僅かである。
Next, the chemical composition of the plating layer will be described.
As for the component composition of the Zn—Al—Mg alloy layer contained in the plating layer, the component composition ratio of the plating bath is almost maintained even in the Zn—Al—Mg alloy layer. In the hot dipping method, since the formation of the Al—Fe alloy layer is completed in the plating bath, the reduction of the Al component and Zn component of the Zn—Al—Mg alloy layer by the formation of the Al—Fe alloy layer is usually There are few.
 そして、安定した平面部耐食性を実現するために、めっき層の化学組成は、次の通りとする。 And the chemical composition of the plating layer is as follows in order to realize stable corrosion resistance on the flat surface.
 つまり、めっき層の化学組成は、質量%で、
 Zn:65.0%超、
 Al:5.0%超~25.0%未満、
 Mg:3.0%超~12.5%未満、
 Sn:0.1%~20.0%、
 Bi:0%~5.0%未満、
 In:0%~2.0%未満、
 Ca:0%~3.00%、
 Y :0%~0.5%、
 La:0%~0.5%未満、
 Ce:0%~0.5%未満、
 Si:0%~2.5%未満、
 Cr:0%~0.25%未満、
 Ti:0%~0.25%未満、
 Ni:0%~0.25%未満、
 Co:0%~0.25%未満、
 V :0%~0.25%未満、
 Nb:0%~0.25%未満、
 Cu:0%~0.25%未満、
 Mn:0%~0.25%未満、
 Fe:0%~5.0%、
 Sr:0%~0.5%未満、
 Sb:0%~0.5%未満、
 Pb:0%~0.5%未満、
 B :0%~0.5%未満、及び
 不純物からなる化学組成とする。
In other words, the chemical composition of the plating layer is mass%,
Zn: more than 65.0%,
Al: more than 5.0% to less than 25.0%,
Mg: more than 3.0% to less than 12.5%,
Sn: 0.1% to 20.0%,
Bi: 0% to less than 5.0%,
In: 0% to less than 2.0%,
Ca: 0% to 3.00%,
Y: 0% to 0.5%,
La: 0% to less than 0.5%,
Ce: 0% to less than 0.5%,
Si: 0% to less than 2.5%,
Cr: 0% to less than 0.25%,
Ti: 0% to less than 0.25%,
Ni: 0% to less than 0.25%,
Co: 0% to less than 0.25%,
V: 0% to less than 0.25%
Nb: 0% to less than 0.25%,
Cu: 0% to less than 0.25%,
Mn: 0% to less than 0.25%,
Fe: 0% to 5.0%,
Sr: 0% to less than 0.5%,
Sb: 0% to less than 0.5%,
Pb: 0% to less than 0.5%,
B: A chemical composition comprising 0% to less than 0.5% and impurities.
 めっき層の化学組成において、Bi、In、Ca、Y、La、Ce、Si、Cr、Ti、Ni、Co、V、Nb、Cu、Mn、Fe、Sr、Sb、Pb、およびBは、任意成分である。つまり、これら元素は、めっき層中に含まなくてもよい。これら任意成分を含む場合、任意元素の各含有量は、後述する範囲が好ましい。 In the chemical composition of the plating layer, Bi, In, Ca, Y, La, Ce, Si, Cr, Ti, Ni, Co, V, Nb, Cu, Mn, Fe, Sr, Sb, Pb, and B are optional. It is an ingredient. That is, these elements may not be included in the plating layer. When these optional components are included, the content of the optional elements is preferably in the range described below.
 ここで、このめっき層の化学組成は、めっき層全体の平均化学組成(めっき層がZn-Al-Mg合金層の単層構造の場合、Zn-Al-Mg合金層の平均化学組成、めっき層がAl-Fe合金層及びZn-Al-Mg合金層の積層構造の場合、Al-Fe合金層及びZn-Al-Mg合金層の合計の平均化学組成)である。 Here, the chemical composition of this plating layer is the average chemical composition of the entire plating layer (in the case where the plating layer has a single layer structure of a Zn—Al—Mg alloy layer, the average chemical composition of the Zn—Al—Mg alloy layer, the plating layer) In the case of a laminated structure of an Al—Fe alloy layer and a Zn—Al—Mg alloy layer, the total average chemical composition of the Al—Fe alloy layer and the Zn—Al—Mg alloy layer).
 通常、溶融めっき法において、Zn-Al-Mg合金層の化学組成は、めっき層の形成反応がめっき浴内で完了することがほとんどであるため、ほぼめっき浴の化学組成と同等になる。また、溶融めっき法において、Al-Fe合金層は、めっき浴浸漬直後、瞬時に形成し成長する。そして、Al-Fe合金層は、めっき浴内で形成反応が完了しており、その厚みも、Zn-Al-Mg合金層に対して十分に小さいことが多い。
 したがって、めっき後、加熱合金化処理等、特別な熱処理をしない限りは、めっき層全体の平均化学組成は、Zn-Al-Mg合金層の化学組成と実質的に等しく、Al-Fe合金層の成分を無視することができる。
Usually, in the hot dipping method, the chemical composition of the Zn—Al—Mg alloy layer is almost equal to the chemical composition of the plating bath because the formation reaction of the plating layer is almost completed in the plating bath. In the hot dipping method, the Al—Fe alloy layer is instantly formed and grown immediately after immersion in the plating bath. The formation reaction of the Al—Fe alloy layer is completed in the plating bath, and the thickness thereof is often sufficiently smaller than that of the Zn—Al—Mg alloy layer.
Therefore, the average chemical composition of the entire plated layer is substantially the same as the chemical composition of the Zn—Al—Mg alloy layer unless special heat treatment such as heat alloying treatment is performed after plating. Ingredients can be ignored.
 以下、めっき層の各元素について説明する。 Hereinafter, each element of the plating layer will be described.
<Zn:65.0%超>
 Znは、平面部耐食性に加え、犠牲防食性を得るために必要な元素である。Zn濃度は、原子組成比で考慮した場合、Al、Mg等の低比重の元素と共に構成されるめっき層であることから、原子組成比率でもZn主体とする必要がある。
 よって、Zn濃度は、65.0%超とする。Zn濃度は、70%以上が好ましい。なお、Zn濃度の上限は、Znを除く元素及び不純物以外の残部となる濃度である。
<Zn: more than 65.0%>
Zn is an element necessary for obtaining sacrificial corrosion resistance in addition to planar surface corrosion resistance. When the Zn concentration is considered in terms of the atomic composition ratio, it is a plating layer composed of an element having a low specific gravity such as Al or Mg. Therefore, the atomic composition ratio needs to be mainly Zn.
Therefore, the Zn concentration is over 65.0%. The Zn concentration is preferably 70% or more. Note that the upper limit of the Zn concentration is the concentration which is the remainder other than the elements and impurities except Zn.
<Al:5.0%超~25.0%未満>
 Alは、Al晶を形成し、平面部耐食性および犠牲防食性を共に確保するために必須の元素である。そして、Alは、めっき層の密着性を高め、加工性を確保するためにも、必須の元素である。よって、Al濃度の下限値は、5.0%超え(好ましくは10.0%以上)とする。
 一方、Al濃度が増加すると、犠牲防食性が劣化する傾向となる。よって、Al濃度の上限値は、25.0%未満(好ましくは23.0%以下)とする。
<Al: more than 5.0% to less than 25.0%>
Al is an essential element for forming an Al crystal and ensuring both the flat surface corrosion resistance and the sacrificial corrosion resistance. And Al is an essential element in order to improve the adhesiveness of a plating layer and to ensure workability. Therefore, the lower limit of the Al concentration is more than 5.0% (preferably 10.0% or more).
On the other hand, when the Al concentration increases, the sacrificial corrosion resistance tends to deteriorate. Therefore, the upper limit value of the Al concentration is less than 25.0% (preferably 23.0% or less).
<Mg:3.0%超~12.5%未満>
 Mgは、平面部耐食性および犠牲防食性を共に確保するために必須の元素である。よって、Mg濃度の下限値は、3.0%超え(好ましくは5.0%超え)とする。
 一方、Mg濃度が増加すると、加工性が劣化する傾向となる。よって、12.5%未満(好ましくは10.0%以下)とする。
<Mg: more than 3.0% to less than 12.5%>
Mg is an essential element for ensuring both the corrosion resistance and the sacrificial corrosion resistance of the planar portion. Therefore, the lower limit of the Mg concentration is over 3.0% (preferably over 5.0%).
On the other hand, when the Mg concentration increases, the workability tends to deteriorate. Therefore, it is less than 12.5% (preferably 10.0% or less).
<Sn:0.1%~20.0%>
 Snは、高い犠牲防食性を付与する必須の元素である。よって、Sn濃度の下限値は、0.1%以上(好ましくは0.2%以上)とする。
 一方、Sn濃度が増加すると、平面部耐食性が劣化する傾向となる。よって、Sn濃度の上限値は20.0%以下(好ましくは5.0%以下)とする。
<Sn: 0.1% to 20.0%>
Sn is an essential element that imparts high sacrificial corrosion resistance. Therefore, the lower limit value of the Sn concentration is set to 0.1% or more (preferably 0.2% or more).
On the other hand, when the Sn concentration increases, the planar portion corrosion resistance tends to deteriorate. Therefore, the upper limit value of the Sn concentration is 20.0% or less (preferably 5.0% or less).
<Bi:0%~5.0%未満>
 Biは、犠牲防食性に寄与する元素である。よって、Bi濃度の下限値は、0%超え(好ましくは0.1%以上、より好ましくは3.0%以上)が好ましい。
 一方、Bi濃度が増加すると、平面部耐食性が劣化する傾向となる。よって、Bi濃度の上限値は5.0%未満(好ましくは4.8%以下)とする。
<Bi: 0% to less than 5.0%>
Bi is an element contributing to sacrificial corrosion resistance. Therefore, the lower limit of the Bi concentration is preferably more than 0% (preferably 0.1% or more, more preferably 3.0% or more).
On the other hand, when the Bi concentration increases, the flat surface corrosion resistance tends to deteriorate. Therefore, the upper limit of Bi concentration is less than 5.0% (preferably 4.8% or less).
<In:0%~2.0%未満>
 Inは、犠牲防食性に寄与する元素である。よって、In濃度の下限値は、0%超え(好ましくは0.1%以上、より好ましくは1.0%以上)が好ましい。
 一方、In濃度が増加すると、平面部耐食性が劣化する傾向となる。よって、In濃度の上限値は2.0%未満(好ましくは1.8%以下)とする。
<In: 0% to less than 2.0%>
In is an element that contributes to sacrificial corrosion resistance. Therefore, the lower limit of the In concentration is preferably more than 0% (preferably 0.1% or more, more preferably 1.0% or more).
On the other hand, when the In concentration increases, the flat surface corrosion resistance tends to deteriorate. Therefore, the upper limit of In concentration is set to less than 2.0% (preferably 1.8% or less).
<Ca:0%~3.00%>
 Caは、平面部耐食性及び犠牲防食性を付与するのに最適なMg溶出量を調整することができる元素である。よって、Ca濃度の下限値は、0%超え(好ましくは0.05%以上)が好ましい。
 一方、Ca濃度が増加すると、平面部耐食性および加工性が劣化する傾向となる。よって、Ca濃度の上限値は3.00%以下(好ましくは1.00%以下)とする。
<Ca: 0% to 3.00%>
Ca is an element capable of adjusting the optimum Mg elution amount for imparting planar portion corrosion resistance and sacrificial corrosion resistance. Therefore, the lower limit value of the Ca concentration is preferably more than 0% (preferably 0.05% or more).
On the other hand, when the Ca concentration increases, the flat surface corrosion resistance and workability tend to deteriorate. Therefore, the upper limit value of the Ca concentration is 3.00% or less (preferably 1.00% or less).
<Y :0%~0.5%>
 Yは、犠牲防食性に寄与する元素である。よって、Y濃度の下限値は、0%超え(好ましくは0.1%以上)が好ましい。
 一方、Y濃度が増加すると、平面部耐食性が劣化する傾向となる。よって、Y濃度の上限値は0.5%以下(好ましくは0.3%以下)とする。
<Y: 0% to 0.5%>
Y is an element contributing to sacrificial corrosion resistance. Therefore, the lower limit of the Y concentration is preferably more than 0% (preferably 0.1% or more).
On the other hand, when the Y concentration increases, the flat surface corrosion resistance tends to deteriorate. Therefore, the upper limit of the Y concentration is 0.5% or less (preferably 0.3% or less).
<LaおよびCe:0%~0.5%未満>
 LaおよびCeは、犠牲防食性に寄与する元素である。よって、La濃度およびCe濃度の下限値は、各々、0%超え(好ましくは0.1%以上)が好ましい。
 一方、La濃度およびCe濃度が増加すると、平面部耐食性が劣化する傾向となる。よって、La濃度およびCe濃度の上限値は、各々、0.5%未満(好ましくは0.4%以下)とする。
<La and Ce: 0% to less than 0.5%>
La and Ce are elements that contribute to sacrificial corrosion resistance. Therefore, the lower limits of the La concentration and the Ce concentration are each preferably more than 0% (preferably 0.1% or more).
On the other hand, when the La concentration and the Ce concentration increase, the flat surface corrosion resistance tends to deteriorate. Therefore, the upper limits of the La concentration and the Ce concentration are each less than 0.5% (preferably 0.4% or less).
<Si:0%~2.5%未満>
 Siは、Al-Fe合金層の成長を抑制して耐食性向上に寄与する元素である。よって、Si濃度は0%超え(好ましくは0.05%以上、より好ましくは0.1%以上)が好ましい。
 一方、Si濃度が増加すると、平面部耐食性、犠牲防食性および加工性が劣化する傾向となる。よって、Si濃度の上限値は、2.5%未満とする。特に、平面部耐食性および犠牲防食性の観点からは、Si濃度は、好ましくは2.4%以下、より好ましくは1.8%以下、さらに好ましくは1.2%以下である。
<Si: 0% to less than 2.5%>
Si is an element that contributes to improving the corrosion resistance by suppressing the growth of the Al—Fe alloy layer. Therefore, the Si concentration is preferably more than 0% (preferably 0.05% or more, more preferably 0.1% or more).
On the other hand, when the Si concentration is increased, the flat portion corrosion resistance, sacrificial corrosion resistance, and workability tend to deteriorate. Therefore, the upper limit value of the Si concentration is less than 2.5%. In particular, from the viewpoint of the corrosion resistance and the sacrificial corrosion resistance, the Si concentration is preferably 2.4% or less, more preferably 1.8% or less, and further preferably 1.2% or less.
<Cr、Ti、Ni、Co、V、Nb、CuおよびMn:0%~0.25%未満>
 Cr、Ti、Ni、Co、V、Nb、CuおよびMnは、犠牲防食性に寄与する元素である。よって、Cr、Ti、Ni、Co、V、Nb、CuおよびMnの濃度の下限値は、各々、0%超え(好ましくは0.05%以上、より好ましくは0.1%以上)が好ましい。
 一方、Cr、Ti、Ni、Co、V、Nb、CuおよびMnの濃度が増加すると、平面部耐食性が劣化する傾向となる。よって、Cr、Ti、Ni、Co、V、Nb、CuおよびMnの濃度の上限値は、各々、0.25%未満とする。Cr、Ti、Ni、Co、V、Nb、CuおよびMnの濃度の上限値は、好ましくは0.22%以下である。
<Cr, Ti, Ni, Co, V, Nb, Cu and Mn: 0% to less than 0.25%>
Cr, Ti, Ni, Co, V, Nb, Cu and Mn are elements that contribute to sacrificial corrosion resistance. Therefore, the lower limit values of the concentrations of Cr, Ti, Ni, Co, V, Nb, Cu, and Mn each preferably exceed 0% (preferably 0.05% or more, more preferably 0.1% or more).
On the other hand, when the concentration of Cr, Ti, Ni, Co, V, Nb, Cu, and Mn increases, the planar portion corrosion resistance tends to deteriorate. Therefore, the upper limit values of the concentrations of Cr, Ti, Ni, Co, V, Nb, Cu, and Mn are each less than 0.25%. The upper limit of the concentration of Cr, Ti, Ni, Co, V, Nb, Cu and Mn is preferably 0.22% or less.
<Fe:0%~5.0%>
 溶融めっき法によって、めっき層を形成する場合、Zn-Al-Mg合金層およびAl-Fe合金層に一定のFe濃度が含有される。
 Fe濃度が5.0%までは、めっき層(特にZn-Al-Mg合金層)に含まれても性能に悪影響がないことが確認されている。Feの多くは、Al-Fe合金層に含まれていることが多いため、この層の厚みが大きいと一般的にFe濃度は大きくなる。
<Fe: 0% to 5.0%>
When the plating layer is formed by the hot dipping method, the Zn—Al—Mg alloy layer and the Al—Fe alloy layer contain a certain Fe concentration.
It has been confirmed that when the Fe concentration is up to 5.0%, the performance is not adversely affected even if it is contained in the plating layer (in particular, the Zn—Al—Mg alloy layer). Since much of Fe is often contained in the Al—Fe alloy layer, the Fe concentration generally increases as the thickness of this layer increases.
<Sr、Sb、PbおよびB:0%~0.5%未満>
 Sr、Sb、PbおよびBは、犠牲防食性に寄与する元素である。よって、Sr、Sb、PbおよびBの濃度の下限値は、各々、0%超え(好ましくは0.05%以上、より好ましくは0.1%以上)が好ましい。
 一方、Sr、Sb、PbおよびBの濃度が増加すると、平面部耐食性が劣化する傾向となる。よって、Sr、Sb、PbおよびBの濃度の上限値は、各々、0.5%未満とする。
<Sr, Sb, Pb and B: 0% to less than 0.5%>
Sr, Sb, Pb and B are elements that contribute to sacrificial corrosion resistance. Therefore, the lower limit values of the concentrations of Sr, Sb, Pb and B are each preferably greater than 0% (preferably 0.05% or more, more preferably 0.1% or more).
On the other hand, when the concentrations of Sr, Sb, Pb and B are increased, the flat surface corrosion resistance tends to deteriorate. Therefore, the upper limit values of the concentrations of Sr, Sb, Pb, and B are each less than 0.5%.
<不純物>
 不純物は、原材料に含まれる成分、または、製造の工程で混入する成分であって、意図的に含有させたものではない成分を指す。例えば、めっき層には、素地鋼材とめっき浴との相互の原子拡散によって、不純物として、Fe以外の成分も微量混入することがある。
<Impurity>
An impurity refers to a component contained in a raw material or a component mixed in a manufacturing process and not intentionally included. For example, a component other than Fe may be mixed in the plating layer as impurities due to mutual atomic diffusion between the base steel material and the plating bath.
 めっき層の化学成分は、次の方法により測定する。
 まず、素地鋼材の腐食を抑制するインヒビターを含有した酸でめっき層を剥離溶解した酸液を得る。次に、得られた酸液をICP分析で測定することで、めっき層の化学組成(めっき層がZn-Al-Mg合金層の単層構造の場合、Zn-Al-Mg合金層の化学組成、めっき層がAl-Fe合金層及びZn-Al-Mg合金層の積層構造の場合、Al-Fe合金層及びZn-Al-Mg合金層の合計の化学組成)を得ることができる。酸種は、めっき層を溶解できる酸であれば、特に制限はない。なお、化学組成は、平均化学組成として測定される。
The chemical component of the plating layer is measured by the following method.
First, an acid solution is obtained in which the plating layer is peeled and dissolved with an acid containing an inhibitor that suppresses corrosion of the base steel material. Next, by measuring the obtained acid solution by ICP analysis, the chemical composition of the plating layer (in the case where the plating layer is a single layer structure of a Zn—Al—Mg alloy layer, the chemical composition of the Zn—Al—Mg alloy layer) In the case where the plating layer has a laminated structure of an Al—Fe alloy layer and a Zn—Al—Mg alloy layer, the total chemical composition of the Al—Fe alloy layer and the Zn—Al—Mg alloy layer can be obtained. The acid species is not particularly limited as long as it is an acid that can dissolve the plating layer. The chemical composition is measured as an average chemical composition.
 次に、Zn-Al-Mg合金層の金属組織について説明する。 Next, the metal structure of the Zn—Al—Mg alloy layer will be described.
 Zn-Al-Mg合金層の金属組織は、Al晶が存在し、Al晶の累計周囲長さの平均値が88~195mm/mmである。 The metal structure of the Zn—Al—Mg alloy layer has Al crystals, and the average value of the total perimeter of Al crystals is 88 to 195 mm / mm 2 .
 Al晶の累計周囲長さの平均値が88mm/mm未満であると、Al晶が粗大化し過ぎて、加工性が劣化する。
 一方、Al晶の累計周囲長さの平均値が195mm/mm超であると、Al晶が微細化され、Al晶とAl晶の周囲の相との接触面積が増加する。その結果、Al晶とAl晶の周囲の相との接触面積が大きいほど、Al晶の周囲の腐食が起きやすくて平面部耐食性が劣化し、平面部耐食性のバラツキも大きくなる。
 よって、Al晶の累計周囲長さの平均値が88~195mm/mmとする。Al晶の累計周囲長さの平均値の下限値は、好ましくは95mm/mm以上、より好ましくは105mm/mm以上である。Al晶の累計周囲長さの平均値の上限値は、好ましくは185mm/mm以下、より好ましくは170mm/mm以下である。
If the average value of the total peripheral length of the Al crystal is less than 88 mm / mm 2 , the Al crystal is excessively coarsened and the workability is deteriorated.
On the other hand, if the average value of the cumulative perimeter length of the Al crystal exceeds 195 mm / mm 2 , the Al crystal is refined, and the contact area between the Al crystal and the surrounding phase of the Al crystal increases. As a result, the larger the contact area between the Al crystal and the surrounding phase of the Al crystal, the easier the corrosion around the Al crystal occurs and the flat surface corrosion resistance deteriorates, and the variation in the flat surface corrosion resistance also increases.
Therefore, the average value of the total peripheral length of Al crystals is set to 88 to 195 mm / mm 2 . The lower limit value of the average value of the cumulative peripheral length of the Al crystal is preferably 95 mm / mm 2 or more, more preferably 105 mm / mm 2 or more. The upper limit of the average value of the cumulative peripheral length of the Al crystal is preferably 185 mm / mm 2 or less, more preferably 170 mm / mm 2 or less.
 Zn-Al-Mg合金層の金属組織は、Al晶を有する。Zn-Al-Mg合金層の金属組織は、Al晶以外に、Zn-Al相を有していてもよい。 The metal structure of the Zn—Al—Mg alloy layer has Al crystals. The metal structure of the Zn—Al—Mg alloy layer may have a Zn—Al phase in addition to the Al crystal.
 Al晶は「濃度0~3%のZnを固溶するα相」が該当する。一方、Zn-Al相は「70%超え~85%のZn相(η相)を含有し、α相とZn相(η相)とが微細に分離したβ相」が該当する。 The Al crystal corresponds to “α phase in which Zn having a concentration of 0 to 3% is dissolved”. On the other hand, the Zn—Al phase corresponds to “β phase containing 70% to 85% Zn phase (η phase) and finely separating α phase and Zn phase (η phase)”.
 ここで、図1~図3に、Zn-Al-Mg合金層の表面を層厚の1/2まで研磨した研磨面におけるZn-Al-Mg合金層のSEMの反射電子像の一例を示す。図1は、倍率100倍、図2は倍率500倍、図3は倍率10000倍のSEMの反射電子像である。
 なお、図1~図3中、AlはAl晶、Zn-AlはZn-Al相、MgZnはMgZn相、Zn-EuはZn系共晶相を示す。
Here, FIGS. 1 to 3 show examples of SEM reflected electron images of the Zn—Al—Mg alloy layer on the polished surface obtained by polishing the surface of the Zn—Al—Mg alloy layer to ½ of the layer thickness. FIG. 1 is a reflected electron image of an SEM at a magnification of 100, FIG. 2 at a magnification of 500, and FIG. 3 at a magnification of 10,000.
1 to 3, Al represents an Al crystal, Zn—Al represents a Zn—Al phase, MgZn 2 represents an MgZn 2 phase, and Zn—Eu represents a Zn-based eutectic phase.
 Zn-Al-Mg合金層の反射電子像において、それぞれの組織の面積分率は特に限定されないが、Al晶の面積分率は、安定した平面部耐食性向上の観点から、8~45%が好ましく、15~35%がより好ましい。つまり、Al晶は上記面積分率の範囲で存在していることが好ましい。 In the reflected electron image of the Zn—Al—Mg alloy layer, the area fraction of each structure is not particularly limited, but the area fraction of the Al crystal is preferably 8 to 45% from the viewpoint of stable improvement of the corrosion resistance of the plane portion. 15 to 35% is more preferable. That is, the Al crystal is preferably present in the range of the area fraction.
 Al晶およびZn-Al相以外の残部組織としては、MgZn相、Zn系共晶相(具体的にはZn-Al-MgZn-MgSn等)などが挙げられる。
 
Examples of the remaining structure other than the Al crystal and the Zn—Al phase include an MgZn 2 phase and a Zn-based eutectic phase (specifically, Zn—Al—MgZn 2 —Mg 2 Sn).
 ここで、Al晶の累計周囲長さの平均値、およびAl晶の面積分率の測定方法について説明する。 Here, a method for measuring the average value of the total perimeter of Al crystals and the area fraction of Al crystals will be described.
 Al晶の累計周囲長さの平均値、およびAl晶の面積分率は、Zn-Al-Mg合金層の表面を層厚の1/2まで研磨した後、走査型電子顕微鏡により倍率100倍で観察したときに得られる、Zn-Al-Mg合金層の反射電子像を利用して測定される。具体的には、次の通りである。 The average value of the total perimeter of Al crystals and the area fraction of Al crystals were determined by polishing the surface of the Zn—Al—Mg alloy layer to half the layer thickness and then using a scanning electron microscope at a magnification of 100 times. It is measured using the backscattered electron image of the Zn—Al—Mg alloy layer obtained when observed. Specifically, it is as follows.
 まず、測定対象となる、めっき鋼材から試料を採取する。ただし、試料は、めっき鋼材の打ち抜き端面部近傍(端面から2mm)以外で、めっき層の欠陥部がない場所から採取する。 First, a sample is taken from the plated steel material to be measured. However, the sample is collected from a place where there is no defective portion of the plating layer other than the vicinity of the punched end surface portion (2 mm from the end surface) of the plated steel material.
 次に、試料のめっき層(具体的にはZn-Al-Mg合金層)の表面を、めっき層の厚み方向(以下「Z軸方向」とも称する)に研磨する。
 めっき層の表面のZ軸方向の研磨は、Zn-Al-Mg合金層の表面を層厚の1/2まで研磨する。この研磨は、Zn-Al-Mg合金層の表面を、#1200番手の研磨シートで乾式研磨した後、平均粒径3μmのアルミナを含む仕上げ液、平均粒径1μmのアルミナを含む仕上げ液、コロイダルシリカを含む仕上げ液をそれぞれ、この順に用いて仕上げ研磨する。
 なお、研磨前後で、Zn-Al-Mg合金層の表面のZn強度をXRF(蛍光X線分析)で測定し、研磨後のZn強度が研磨前のZn強度の1/2となったときを、Zn-Al-Mg合金層の層厚の1/2とする。
Next, the surface of the sample plating layer (specifically, the Zn—Al—Mg alloy layer) is polished in the thickness direction of the plating layer (hereinafter also referred to as “Z-axis direction”).
Polishing of the surface of the plating layer in the Z-axis direction is performed by polishing the surface of the Zn—Al—Mg alloy layer to ½ of the layer thickness. In this polishing, the surface of the Zn—Al—Mg alloy layer is dry-polished with a # 1200 polishing sheet, and then a finishing solution containing alumina with an average particle size of 3 μm, a finishing solution containing alumina with an average particle size of 1 μm, and colloidal Each of the finishing liquids containing silica is finished and polished in this order.
Before and after polishing, the Zn intensity on the surface of the Zn—Al—Mg alloy layer was measured by XRF (fluorescence X-ray analysis), and the Zn intensity after polishing became 1/2 of the Zn intensity before polishing. The thickness of the Zn—Al—Mg alloy layer is ½.
 次に、試料のZn-Al-Mg合金層の研磨面を走査型電子顕微鏡(SEM)により倍率100倍で観察し、Zn-Al-Mg合金層の反射電子像(以下「SEMの反射電子像」とも称する)を得る。SEM観察条件は、加速電圧:15kV、照射電流:10nA、視野の大きさ:1222.2μm×927.8μmとする。 Next, the polished surface of the sample Zn—Al—Mg alloy layer was observed with a scanning electron microscope (SEM) at a magnification of 100 times, and a reflected electron image of the Zn—Al—Mg alloy layer (hereinafter referred to as “SEM reflected electron image”). Is also called). The SEM observation conditions are an acceleration voltage: 15 kV, an irradiation current: 10 nA, and a field size: 1222.2 μm × 927.8 μm.
 Zn-Al-Mg合金層に有する各相を同定するためには、EDS(エネルギー分散型X線分析装置)を搭載したFE-SEMまたはTEM(透過型電子顕微鏡)を使用する。TEMを使用する場合、同じ測定対象となる試料のZn-Al-Mg合金層の研磨面にFIB(集束イオンビーム)加工を施す。FIB加工後、Zn-Al-Mg合金層の研磨面のTEMの電子回折像を得る。そして、Zn-Al-Mg合金層に含まれる金属を同定する。 In order to identify each phase in the Zn—Al—Mg alloy layer, an FE-SEM or TEM (transmission electron microscope) equipped with an EDS (energy dispersive X-ray analyzer) is used. When TEM is used, FIB (focused ion beam) processing is performed on the polished surface of the Zn—Al—Mg alloy layer of the sample to be measured. After FIB processing, a TEM electron diffraction image of the polished surface of the Zn—Al—Mg alloy layer is obtained. Then, the metal contained in the Zn—Al—Mg alloy layer is identified.
 次に、SEMの反射電子像とFE-SEMまたはTEMの電子回折像の同定結果とを比較し、SEMの反射電子像において、Zn-Al-Mg合金層に有する各相を同定する。なお、Zn-Al-Mg合金層に有する各相の同定において、EDS点分析し、EDS点分析の結果とTEMの電子回折像の同定結果とを照合するとよい。なお、各相の同定に、EPMA装置を使用してもよい。 Next, the reflected electron image of the SEM and the identification result of the electron diffraction image of the FE-SEM or TEM are compared, and each phase of the Zn—Al—Mg alloy layer is identified in the reflected electron image of the SEM. In identification of each phase in the Zn—Al—Mg alloy layer, EDS point analysis may be performed, and the result of EDS point analysis and the result of identification of the electron diffraction image of the TEM may be collated. Note that an EPMA apparatus may be used for identification of each phase.
 次に、SEMの反射電子像において、Zn-Al-Mg合金層に有する各相が示すグレースケールの明度、色相及びコントラスト値の3値を判定する。各相が示す明度、色相及びコントラスト値の3値は、各相が含有する元素の原子番号を反映することから、通常、原子番号が小さいAl量、Mg量の含有量が多い相程、黒色を呈し、Zn量が多い相程、白色を呈する傾向がある。 Next, in the reflected electron image of SEM, the three values of gray scale brightness, hue and contrast value indicated by each phase in the Zn—Al—Mg alloy layer are determined. Since the three values of brightness, hue, and contrast value indicated by each phase reflect the atomic number of the element contained in each phase, usually the amount of Al with a small atomic number, the phase with a large content of Mg, black The phase with a large amount of Zn tends to exhibit a white color.
 上記EDSの照合結果から、SEMの反射電子像と整合するように、Zn-Al-Mg合金層中に含まれるAl晶が示す上記3値の範囲のみ、色変わりするような画像処理(2値化)を実施する(たとえば、特定の相のみ、白色画像で表示するようにして、視野における各相の面積(ピクセル数)等を算出する。図4参照)。この画像処理を実施することにより、SEMの反射電子像中に占めるZn-Al-Mg合金層中のAl晶の面積分率を求める。
 なお、図4は、Zn-Al-Mg合金層の反射電子像(SEMの反射電子像)をAl晶が識別できるように画像処理(2値化)した画像の一例である。図4中AlはAl晶を示す。
From the EDS collation result, image processing (binarization) that changes the color only in the above three value range indicated by the Al crystal contained in the Zn—Al—Mg alloy layer so as to match the SEM reflected electron image. (For example, only a specific phase is displayed as a white image, and the area (number of pixels) of each phase in the visual field is calculated. See FIG. 4). By performing this image processing, the area fraction of the Al crystal in the Zn—Al—Mg alloy layer in the SEM reflected electron image is obtained.
FIG. 4 is an example of an image obtained by performing image processing (binarization) so that an Al crystal can identify a reflected electron image (SEM reflected electron image) of a Zn—Al—Mg alloy layer. In FIG. 4, Al indicates an Al crystal.
 そして、Zn-Al-Mg合金層のAl晶の面積分率は、3視野において、上記操作により求めたAl晶の面積分率の平均値とする。
 なお、Al晶の判別が難しい場合は、TEMによる電子線回折又はEDS点分析を実施する。
The area fraction of the Al crystal in the Zn—Al—Mg alloy layer is the average value of the area fraction of the Al crystal obtained by the above operation in three fields of view.
If it is difficult to discriminate Al crystals, electron beam diffraction by TEM or EDS point analysis is performed.
 一例として、三谷商事製WinROOF2015(画像解析ソフト)の2つのしきい値による2値処理機能を用いて、SEMの反射電子像(8bitで保存されたグレースケール画像、256色表示)におけるAl晶を識別する方法について記載する。なお、8bitで保存されたグレースケール画像では、光度が0のときは黒、最大値255のときは白を表す。既述したSEMの反射電子像の場合、光度のしきい値として10と95とを設定すると、Al晶が精度よく識別されることが、FE-SEMやTEMによる同定結果から判明している。そこで、これらの光度10~95の範囲が色変わりするよう画像を処理し、Al晶を識別する。なお、2値化処理はWinROOF2015以外の画像解析ソフトを使用してもよい。 As an example, using the binary processing function with two thresholds of WinROOF2015 (image analysis software) manufactured by Mitani Corporation, the Al crystal in the reflected electron image of SEM (grayscale image stored in 8 bits, 256 colors display) Describe how to identify. In a gray scale image stored in 8 bits, when the luminous intensity is 0, it represents black, and when the luminous intensity is 255, it represents white. In the case of the reflected electron image of the SEM described above, it has been found from the identification results by FE-SEM and TEM that the Al crystal can be identified with high accuracy when the light intensity threshold is set to 10 and 95. Therefore, the image is processed so that the color range of these luminosities of 10 to 95 changes, and the Al crystal is identified. The binarization process may use image analysis software other than WinROOF2015.
 次に、三谷商事製WinROOF2015(画像解析ソフト)の自動形状特徴測定機能を用いて、上記画像処理により識別されたAl晶の周囲長さを累計し、Al晶累計周囲長さを求める。そして、Al晶累計周囲長さを視野の面積で除して、単位面積(mm)当たりのAl晶累計周囲長さを算出する。
 この操作を3視野で実施し、単位面積(mm)当たりのAl晶累計周囲長の算術平均を「Al晶の累計周囲長さの平均値」とする。
Next, by using the automatic shape feature measurement function of WinROOF2015 (image analysis software) manufactured by Mitani Corporation, the perimeter length of the Al crystal identified by the image processing is accumulated to obtain the total perimeter length of the Al crystal. Then, the Al crystal cumulative perimeter is divided by the visual field area to calculate the Al crystal cumulative perimeter per unit area (mm 2 ).
This operation is performed in three fields of view, and the arithmetic average of the Al crystal cumulative perimeter per unit area (mm 2 ) is defined as “the average value of the Al crystal total perimeter”.
 また、Al晶の面積分率についても、三谷商事製WinROOF2015(画像解析ソフト)の自動形状特徴測定機能を用いて求めることができる。具体的には、上記Zn-Al-Mg合金層の反射電子像において、2値化して識別されたAl晶の面積分率(視野面積に対する面積分率)を、本機能を用いて算出する。そして、この操作を3視野で実施し、その算出平均をAl晶の面積分率とする。 Also, the area fraction of Al crystal can be obtained by using the automatic shape feature measurement function of WinROOF2015 (image analysis software) manufactured by Mitani Corporation. Specifically, the area fraction (area fraction with respect to the visual field area) of the Al crystal identified by binarization in the reflected electron image of the Zn—Al—Mg alloy layer is calculated using this function. And this operation is implemented by 3 visual fields and the calculated average is made into the area fraction of an Al crystal.
 Al-Fe合金層の厚さは、次の通り測定する。
 試料を樹脂埋め込み後、研磨してめっき層断面(めっき層の厚さ方向に沿った切断面)のSEMの反射電子像(ただし、倍率5000倍、視野の大きさ:縦50μm×横200μmで、Al-Fe合金層が視認される視野とする。)において、同定されたAl-Fe合金層の任意の5箇所について、厚さを測定する。そして、5箇所の算術平均を界面合金層の厚さとする。
The thickness of the Al—Fe alloy layer is measured as follows.
SEM reflected electron image of the cross section of the plating layer (cut surface along the thickness direction of the plating layer) after embedding the resin with a resin (however, the magnification is 5000 times, the size of the field of view is 50 μm long × 200 μm wide, In the field of view in which the Al—Fe alloy layer is visually recognized), the thickness is measured at any five locations of the identified Al—Fe alloy layer. And the arithmetic average of five places is made into the thickness of an interface alloy layer.
 次に、本開示のめっき鋼材の製造方法の一例について説明する。 Next, an example of a method for producing a plated steel material according to the present disclosure will be described.
 本開示のめっき鋼材は、素地鋼材(素地鋼板など)の表面(つまり、片面又は両面)に溶融めっき法により、上記所定の化学組成および金属組織を有するめっき層を形成することで得られる。 The plated steel material of the present disclosure can be obtained by forming a plating layer having the above predetermined chemical composition and metal structure on the surface (that is, one surface or both surfaces) of a base steel material (base steel plate or the like) by a hot dipping method.
 具体的には、一例として、次の条件で溶融めっき処理を行う。
 まず、めっき浴温をめっき浴の融点+20℃以上とし、めっき浴から素地鋼材を引き上げ後、めっき浴温からめっき凝固開始温度まで温度域を、めっき凝固開始温度からめっき凝固開始温度-30℃までの温度域の平均冷却速度よりも大きい平均冷却速度で冷却する。
 次に、めっき凝固開始温度からめっき凝固開始温度-30℃までの温度域を、平均冷却速度12℃/s以下で冷却する。
 次に、めっき凝固開始温度-30℃から300℃までの温度域を、めっき凝固開始温度からめっき凝固開始温度-30℃までの温度域の平均冷却速度よりも大きい平均冷却速度で冷却する。
Specifically, as an example, the hot dipping process is performed under the following conditions.
First, the temperature of the plating bath is set to the melting point of the plating bath + 20 ° C. or higher, and after pulling up the base steel material from the plating bath, the temperature range from the plating bath temperature to the plating solidification start temperature, from the plating solidification start temperature to the plating solidification start temperature −30 ° C. Cooling at an average cooling rate greater than the average cooling rate in the temperature range.
Next, the temperature range from the plating solidification start temperature to the plating solidification start temperature −30 ° C. is cooled at an average cooling rate of 12 ° C./s or less.
Next, the temperature range from the plating solidification start temperature −30 ° C. to 300 ° C. is cooled at an average cooling rate larger than the average cooling rate in the temperature range from the plating solidification start temperature to the plating solidification start temperature −30 ° C.
 つまり、本開示のめっき鋼材の製造方法の一例は、めっき浴温をめっき浴の融点+20℃以上とし、めっき浴から素地鋼材を引き上げ後、めっき浴温からめっき凝固開始温度まで温度域の平均冷却速度をA、めっき凝固開始温度からめっき凝固開始温度-30℃までの温度域の平均冷却速度をB、めっき凝固開始温度-30℃から300℃までの平均冷却速度をCとしたとき、A>B、B≦12℃/s、C>Bとなる三段階冷却する条件で、素地鋼材に対して溶融めっき処理を行う方法とする。 In other words, an example of a method for producing a plated steel material according to the present disclosure is that the plating bath temperature is set to the melting point of the plating bath + 20 ° C. or higher, the base steel material is pulled up from the plating bath, and then the average cooling in the temperature range from the plating bath temperature to the plating solidification start temperature is performed. Assuming that the rate is A, the average cooling rate in the temperature range from the plating solidification start temperature to the plating solidification start temperature -30 ° C is B, and the average cooling rate from the plating solidification start temperature -30 ° C to 300 ° C is C, A> The base steel material is subjected to a hot dipping process under the three-stage cooling conditions of B, B ≦ 12 ° C./s, and C> B.
 めっき浴温をめっき浴の融点+20℃以上とし、めっき浴から素地鋼材を引き上げることで、Al晶が生成する。
 そして、めっき凝固開始温度からめっき凝固開始温度-30℃までの温度域を平均冷却速度12℃/s以下で冷却することで、Zn-Al-Mg合金層において、Al晶が存在し、Al晶の累計周囲長さの平均値が上記範囲となる金属組織が形成される。この平均冷却速度の冷却は、例えば、大気を弱風で吹き付ける空冷により実施する。
 ただし、トップロール等へのめっき巻つき防止の観点から、めっき凝固開始温度からめっき凝固開始温度-30℃までの温度域の平均冷却速度の下限値は、0.5℃/s以上とする。
Al crystal is produced by setting the plating bath temperature to the melting point of the plating bath + 20 ° C. or higher and pulling up the base steel material from the plating bath.
Then, by cooling the temperature range from the plating solidification start temperature to the plating solidification start temperature −30 ° C. at an average cooling rate of 12 ° C./s or less, Al crystals exist in the Zn—Al—Mg alloy layer, and Al crystals A metal structure is formed in which the average value of the cumulative perimeter lengths is in the above range. The cooling at the average cooling rate is performed by, for example, air cooling in which the atmosphere is blown with a weak wind.
However, from the viewpoint of preventing plating winding on the top roll or the like, the lower limit value of the average cooling rate in the temperature range from the plating solidification start temperature to the plating solidification start temperature −30 ° C. is 0.5 ° C./s or more.
 なお、めっき凝固開始温度は、次の方法により測定できる。めっき浴から試料を採取してDSCで試料をめっき浴の融点+20℃以上に加熱した後、10℃/minで冷却したときに最初に示唆熱のピークが現れる温度がめっき凝固開始温度である。 The plating solidification start temperature can be measured by the following method. A temperature at which a suggested heat peak appears first when the sample is taken from the plating bath and heated by DSC to the melting point of the plating bath + 20 ° C. or higher and cooled at 10 ° C./min is the plating solidification start temperature.
 本開示のめっき鋼材の製造方法において、めっき浴から素地鋼材を引き上げる際の温度(つまりめっき浴温)からめっき凝固開始温度までの温度域の平均冷却速度は、特に制限はないが、トップロール等へのめっき巻つき防止や風紋等の外観不良抑制等の観点から、0.5℃/s~20℃/sとすることがよい。
 ただし、めっき浴温からめっき凝固開始温度まで温度域の平均冷却速度は、めっき凝固開始温度からめっき凝固開始温度-30℃までの温度域の平均冷却速度よりも大きい平均冷却速度とする。それにより、Al晶の核形成サイトを増やすことができ、過度なAl晶の粗大化を抑制することができる。
In the method for producing a plated steel material according to the present disclosure, the average cooling rate in the temperature range from the temperature at which the base steel material is pulled up from the plating bath (that is, the plating bath temperature) to the plating solidification start temperature is not particularly limited. From the viewpoints of preventing plating winding on the surface and suppressing appearance defects such as wind ripples, the temperature is preferably set to 0.5 ° C./s to 20 ° C./s.
However, the average cooling rate in the temperature range from the plating bath temperature to the plating solidification start temperature is higher than the average cooling rate in the temperature range from the plating solidification start temperature to the plating solidification start temperature −30 ° C. Thereby, the nucleation site of Al crystal can be increased, and excessive coarsening of Al crystal can be suppressed.
 また、めっき凝固開始温度-30℃から300℃までの温度域の平均冷却速度も、特に制限はないが、トップロール等へのめっき巻つき防止等の観点から、0.5℃/s~20℃/sとすることがよい。
 ただし、めっき凝固開始温度-30℃から300℃までの温度域の平均冷却速度は、めっき凝固開始温度からめっき凝固開始温度-30℃までの温度域の平均冷却速度よりも大きい平均冷却速度とする。それにより、Al晶の過度な粗大化を抑制し、加工性を担保することができる。
Further, the average cooling rate in the temperature range from the plating solidification start temperature of −30 ° C. to 300 ° C. is not particularly limited, but from the viewpoint of preventing plating winding on the top roll or the like, 0.5 ° C./s to 20 ° C. It is good to set it as deg.
However, the average cooling rate in the temperature range from the plating solidification start temperature −30 ° C. to 300 ° C. is higher than the average cooling rate in the temperature range from the plating solidification start temperature to the plating solidification start temperature −30 ° C. . Thereby, excessive coarsening of the Al crystal can be suppressed and workability can be ensured.
 なお、素地鋼材との間に形成するAl-Fe合金層は、めっき浸漬直後、1秒にも満たない時間で急速に形成および成長する。その成長速度はめっき浴温が高い方が大きく、めっき浴への浸漬時間が長い方がさらに大きくなる。ただし、めっき浴温が500℃未満の温度となると、ほとんど成長しなくなるため、浸漬時間を少なくするか、凝固から直ぐ冷却過程に移った方がよい。 Note that the Al—Fe alloy layer formed between the base steel and the base steel material is rapidly formed and grown immediately after plating immersion in a time of less than 1 second. The growth rate is higher when the plating bath temperature is higher, and is further increased when the immersion time in the plating bath is longer. However, when the temperature of the plating bath is less than 500 ° C., it hardly grows. Therefore, it is better to reduce the immersion time or shift to the cooling process immediately after solidification.
 また、めっき鋼材については、一度凝固させた後、再加熱してめっき層を再溶融すれば、構成相は全て消失して液相状態となる。従って、例えば、一度、急冷等を実施しためっき鋼材でも、オフラインにて再加熱して適切な熱処理する工程で、本開示で規定する組織制御を実施することも可能である。この場合、めっき層の再加熱温度は、めっき浴の融点直上付近にしておき、Al-Fe合金層が過剰に成長しない温度域とすることが好ましい。 In addition, regarding the plated steel material, if it is solidified once and then reheated to remelt the plating layer, all the constituent phases disappear and become a liquid phase state. Therefore, for example, even in a plated steel material that has been subjected to rapid cooling or the like, it is also possible to perform the structure control defined in the present disclosure in a process of reheating offline and performing an appropriate heat treatment. In this case, it is preferable that the reheating temperature of the plating layer is in the vicinity of the temperature just above the melting point of the plating bath so that the Al—Fe alloy layer does not grow excessively.
 以下、本開示のめっき鋼材に適用できる後処理について説明する。 Hereinafter, post-processing applicable to the plated steel material of the present disclosure will be described.
 本開示のめっき鋼材には、めっき層上に皮膜を形成してもよい。皮膜は、1層または2層以上を形成することができる。めっき層直上の皮膜の種類としては、例えば、クロメート皮膜、りん酸塩皮膜、クロメートフリー皮膜が挙げられる。これら皮膜を形成する、クロメート処理、りん酸塩処理、クロメートフリー処理は既知の方法で行うことができる。 In the plated steel material of the present disclosure, a film may be formed on the plating layer. The coating can form one layer or two or more layers. Examples of the type of film directly above the plating layer include a chromate film, a phosphate film, and a chromate-free film. The chromate treatment, phosphate treatment, and chromate-free treatment for forming these films can be performed by known methods.
 クロメート処理には、電解によってクロメート皮膜を形成する電解クロメート処理、素材との反応を利用して皮膜を形成させ、その後余分な処理液を洗い流す反応型クロメート処理、処理液を被塗物に塗布し水洗することなく乾燥して皮膜を形成させる塗布型クロメート処理がある。いずれの処理を採用してもよい。 For chromate treatment, electrolytic chromate treatment, which forms a chromate film by electrolysis, a film is formed by utilizing the reaction with the material, and then the reactive chromate treatment, in which excess treatment liquid is washed away, is applied to the substrate. There is a coating-type chromate treatment in which a film is formed by drying without washing with water. Any processing may be adopted.
 電解クロメート処理としては、クロム酸、シリカゾル、樹脂(アクリル樹脂、ビニルエステル樹脂、酢酸ビニルアクリルエマルション、カルボキシル化スチレンブタジエンラテックス、ジイソプロパノールアミン変性エポキシ樹脂等)、および硬質シリカを使用する電解クロメート処理を例示することができる。 Electrolytic chromate treatment includes electrolytic chromate treatment using chromic acid, silica sol, resin (acrylic resin, vinyl ester resin, vinyl acetate acrylic emulsion, carboxylated styrene butadiene latex, diisopropanolamine-modified epoxy resin, etc.), and hard silica. It can be illustrated.
 りん酸塩処理としては、例えば、りん酸亜鉛処理、りん酸亜鉛カルシウム処理、りん酸マンガン処理を例示することができる。 Examples of the phosphate treatment include zinc phosphate treatment, zinc calcium phosphate treatment, and manganese phosphate treatment.
 クロメートフリー処理は、特に、環境に負荷がなく好適である。クロメートフリー処理には、電解によってクロメートフリー皮膜を形成する電解型クロメートフリー処理、素材との反応を利用して皮膜を形成させ、その後、余分な処理液を洗い流す反応型クロメートフリー処理、処理液を被塗物に塗布し水洗することなく乾燥して皮膜を形成させる塗布型クロメートフリー処理がある。いずれの処理を採用してもよい。 Chromate-free treatment is particularly suitable because it has no environmental impact. For chromate-free treatment, electrolytic chromate-free treatment that forms a chromate-free coating by electrolysis, a reaction-type chromate-free treatment that removes excess treatment liquid, and a treatment solution that forms a film using the reaction with the material. There is a coating-type chromate-free treatment in which a film is formed by applying to an object and drying without washing with water. Any processing may be adopted.
 さらに、めっき層直上の皮膜の上に、有機樹脂皮膜を1層もしくは2層以上有してもよい。有機樹脂としては、特定の種類に限定されず、例えば、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アクリル樹脂、ポリオレフィン樹脂、又はこれらの樹脂の変性体等を挙げられる。ここで変性体とは、これらの樹脂の構造中に含まれる反応性官能基に、その官能基と反応し得る官能基を構造中に含む他の化合物(モノマーや架橋剤など)を反応させた樹脂のことを指す。 Further, one or more organic resin films may be provided on the film immediately above the plating layer. The organic resin is not limited to a specific type, and examples thereof include polyester resins, polyurethane resins, epoxy resins, acrylic resins, polyolefin resins, and modified products of these resins. Here, the modified product is obtained by reacting a reactive functional group contained in the structure of these resins with another compound (such as a monomer or a crosslinking agent) containing a functional group capable of reacting with the functional group in the structure. Refers to resin.
 このような有機樹脂としては、1種又は2種以上の有機樹脂(変性していないもの)を混合して用いてもよいし、少なくとも1種の有機樹脂の存在下で、少なくとも1種のその他の有機樹脂を変性することによって得られる有機樹脂を1種又は2種以上混合して用いてもよい。また有機樹脂皮膜中には任意の着色顔料や防錆顔料を含んでもよい。水に溶解又は分散することで水系化したものも使用することができる。 As such an organic resin, one or two or more organic resins (unmodified) may be mixed and used, or in the presence of at least one organic resin, at least one other One or two or more organic resins obtained by modifying the organic resin may be used. The organic resin film may contain an arbitrary colored pigment or rust preventive pigment. What was made water-based by melt | dissolving or disperse | distributing in water can also be used.
本開示の実施例について説明するが、実施例での条件は、本開示の実施可能性及び効果を確認するために採用した一条件例であり、本開示は、この一条件例に限定されるものではない。本開示は、本開示の要旨を逸脱せず、本開示の目的を達成する限りにおいて、種々の条件を採用し得るものである。 An embodiment of the present disclosure will be described, but the conditions in the embodiment are one condition example adopted to confirm the feasibility and effect of the present disclosure, and the present disclosure is limited to this one condition example. It is not a thing. The present disclosure can adopt various conditions as long as the object of the present disclosure is achieved without departing from the gist of the present disclosure.
(実施例)
 表1~表2に示す化学組成のめっき層が得られるように、所定量の純金属インゴットを使用して、真空溶解炉で、インゴットを溶解した後、大気中でめっき浴を建浴した。めっき鋼板の作製には、バッチ式溶融めっき装置を使用した。
 素地鋼材としては、2.3mmの一般材熱延炭素鋼板(C濃度<0.1%未満)を使用し、めっき工程直前に、脱脂、酸洗を実施した。
 また、いくつかの例では、素地鋼材としては、2.3mmの一般材熱延炭素鋼板にNiプレめっきを施したNiプレめっき鋼板を使用した。Ni付着量は2g/mとした。なお、素地鋼材として、Niプレめっき鋼板を使用した例は、表中の「素地鋼材」の欄に「Niプレめっき」と表記した。
(Example)
A predetermined amount of pure metal ingot was used to melt the ingot in a vacuum melting furnace so that a plating layer having the chemical composition shown in Tables 1 and 2 was obtained, and then a plating bath was built in the atmosphere. A batch-type hot dipping apparatus was used for producing the plated steel sheet.
As the base steel material, a 2.3 mm general hot-rolled carbon steel plate (C concentration <0.1%) was used, and degreasing and pickling were performed immediately before the plating step.
In some examples, a Ni pre-plated steel sheet obtained by performing Ni pre-plating on a 2.3 mm general hot-rolled carbon steel sheet was used as the base steel material. The Ni adhesion amount was 2 g / m 2 . In addition, the example which used Ni pre-plated steel plate as a base steel material was described as "Ni pre-plating" in the column of "base steel material" in a table | surface.
 いずれのサンプル作製においても、素地鋼材について、めっき浴浸漬時までの工程は同等の還元処理方法を実施した。すなわち、素地鋼材をN-H(5%)(露点-40℃以下、酸素濃度25ppm未満)環境下、室温から800℃までを通電加熱で昇温し、60秒保持した後、Nガス吹き付けにて、めっき浴温+10℃まで冷却し、直ちにめっき浴に浸漬した。
 なお、いずれのめっき鋼板も、めっき浴への浸漬時間は表中の時間とした。N2ガスワイピング圧力を調整し、めっき厚みが30μm(±1μm)となるようにめっき鋼板を作製した。
In any sample preparation, the base steel material was subjected to an equivalent reduction treatment method until the plating bath was immersed. That is, the green body steel N 2 -H 2 (5%) ( a dew point of -40 ℃ or less, an oxygen concentration less than 25 ppm) environment, the temperature was raised in electrically heated to 800 ° C. from room temperature, after holding 60 sec, N 2 It was cooled to the plating bath temperature + 10 ° C. by gas blowing and immediately immersed in the plating bath.
In any of the plated steel sheets, the immersion time in the plating bath was the time shown in the table. N2 gas wiping pressure was adjusted, and a plated steel sheet was prepared so that the plating thickness was 30 μm (± 1 μm).
 めっき浴温は融点+20℃を基本とし、一部の水準でさらに温度を上げてめっきした。めっき浴浸漬時間は2秒とした。素地鋼材をめっき浴から引き上げ後、表1~表2に示す下記1~3段目の平均冷却速度を表1~表2に示す条件とする冷却プロセスでめっき層を得た。
・1段目平均冷却速度:めっき浴温からめっき凝固開始温度まで温度域の平均冷却速度
・2段目平均冷却速度:めっき凝固開始温度からめっき凝固開始温度-30℃までの温度域の平均冷却速度
・3段目平均冷却速度:めっき凝固開始温度-30℃から300℃までの温度域平均冷却速度
The plating bath temperature was based on a melting point of + 20 ° C., and the plating was performed by raising the temperature further at some levels. The plating bath immersion time was 2 seconds. After the base steel material was pulled out of the plating bath, a plating layer was obtained by a cooling process in which the following average cooling rates in the first to third stages shown in Tables 1 and 2 were set as shown in Tables 1 and 2.
・ First stage average cooling rate: Average cooling rate in the temperature range from plating bath temperature to plating solidification start temperature ・ Second stage average cooling rate: Average cooling in the temperature range from plating solidification start temperature to plating solidification start temperature −30 ° C Speed ・ 3rd stage average cooling rate: Plating solidification start temperature-Temperature range average cooling rate from -30 ℃ to 300 ℃
-各種の測定-
 得られためっき鋼板から試料を切り出した。そして、既述の方法にしたがって、下記事項を測定した。
・Al晶の累計周囲長さの平均値(表中「Al晶の周囲長」と表記)
・Al晶の面積分率
・Al-Fe合金層の厚さ(ただし、素地鋼材としてNiプレめっき鋼板を使用した例では、Al-Ni-Fe合金層の厚さを示す。)
-Various measurements-
A sample was cut out from the obtained plated steel sheet. The following items were measured according to the method described above.
・ Average value of the total perimeter of Al crystal (indicated as “Al crystal perimeter” in the table)
-Area fraction of Al crystal-Thickness of Al-Fe alloy layer (however, in the example using Ni pre-plated steel sheet as the base steel material, the thickness of the Al-Ni-Fe alloy layer is shown)
-平面部耐食性-
 安定した平面部耐食性を比較するため、製造サンプルを腐食促進試験(JASO M609-91)に120サイクル供して、常温の30%クロム酸水溶液に浸漬して白錆を除去し、腐食減量から平面部耐食性を評価した。試験は5回実施し、平均腐食減量が80g/m以下で、かつn=5中の腐食減量の最大値と最小値が平均値の±100%以内である場合を「A+」評価、平均腐食減量が100g/m以下で、かつn=5中の腐食減量の最大値と最小値が平均値の±100%以内である場合を「A」評価、それ以外を「NG」評価とした。
-Corrosion resistance of flat surface-
In order to compare stable flat surface corrosion resistance, the manufactured sample was subjected to 120 cycles of corrosion acceleration test (JASO M609-91) and immersed in 30% chromic acid aqueous solution at room temperature to remove white rust. Corrosion resistance was evaluated. The test was performed 5 times, and the average corrosion weight loss was 80 g / m 2 or less, and the maximum value and the minimum value of corrosion weight loss when n = 5 were within ± 100% of the average value. The case where the corrosion weight loss is 100 g / m 2 or less and the maximum value and the minimum value of the corrosion weight loss during n = 5 are within ± 100% of the average value, and “NG” evaluation is given otherwise. .
-犠牲防食性(切断部端面耐食性)-
 犠牲防食性(切断部端面耐食性)を比較するため、試料を50mm×100mmにシャー切断し、上下端面をシールして腐食促進試験(JASO M609-91)に120サイクル供して、側面部の端面露出部の赤錆発生面積率の平均値を評価した。赤錆発生面積率が50%以下を「A+」評価、70%以下を「A」評価、70%超を「NG」評価とした。
-Sacrificial anti-corrosion (corrosion resistance at the edge of the cut part)
In order to compare the sacrificial corrosion resistance (corrosion resistance at the edge of the cut part), the specimen was cut into a shear of 50 mm × 100 mm, the upper and lower ends were sealed, and subjected to a corrosion acceleration test (JASO M609-91) for 120 cycles. The average value of the area ratio of red rust occurrence was evaluated. A red rust occurrence area ratio of 50% or less was evaluated as “A +”, 70% or less as “A”, and more than 70% as “NG”.
-加工性-
 めっき層の加工性を評価するために、めっき鋼板を90°V曲げし、V曲げ谷部に幅24mmのセロハンテープを押し当てて引き離し、目視でパウダリングを評価した。テープにパウダリング剥離粉が付着しなかったものを「A」評価、わずかに付着したものを「A-」評価、付着したものを「NG」評価とした。
-Processability-
In order to evaluate the workability of the plating layer, the plated steel sheet was bent by 90 ° V, and a cellophane tape having a width of 24 mm was pressed against the valley of the V-bending and pulled apart, and the powdering was visually evaluated. The case where powdering peeling powder did not adhere to the tape was evaluated as “A”, the case where it slightly adhered was evaluated as “A-”, and the case where it was adhered as “NG”.
-総合評価-
 平面部耐食性、犠牲防食性および加工性評価の評価結果が全て「A」、「A+」又は「A-」である例を「A]、一つでも「NG」があるもの「NG」と評価した。
-Comprehensive evaluation-
Examples where the evaluation results of the corrosion resistance evaluation, sacrificial anticorrosion property and workability evaluation are all “A”, “A +” or “A−” as “A”, and at least “NG” is evaluated as “NG” did.
 実施例について表1~表2に一覧にして示す。 Examples are listed in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記結果から、本開示のめっき鋼材に該当する実施例は、比較例に比べ、安定した平面部耐食性を有することがわかる。
 特に、本開示のめっき層の化学組成を満たしても、平均冷却速度を15℃/sで変更しない比較例(試験No70)は、Al晶の累計周囲長さの平均値が過度に大きくなり、安定した平面部耐食性が得られていないことがわかる。
 一方、2段目の平均冷却速度が過度に低い比較例(比較例No.71)、平均冷却速度を2段階しか変更しなかった比較例(試験No72)、平均冷却速度を6℃/sで変更しない比較例(試験No73)は、Al晶の累計周囲長さの平均値が過度に小さくなり、加工性が劣化しているがわかる。
From the said result, it turns out that the Example applicable to the plated steel material of this indication has the stable plane part corrosion resistance compared with a comparative example.
In particular, even if the chemical composition of the plating layer of the present disclosure is satisfied, the average value of the cumulative perimeter of the Al crystal is excessively large in the comparative example (test No. 70) in which the average cooling rate is not changed at 15 ° C./s. It can be seen that stable flat surface corrosion resistance is not obtained.
On the other hand, a comparative example (Comparative Example No. 71) in which the average cooling rate of the second stage is excessively low, a comparative example (Test No. 72) in which the average cooling rate was changed only in two stages, and the average cooling rate at 6 ° C / s It can be seen that the comparative example (Test No. 73) which is not changed has an average value of the total peripheral length of Al crystals that is excessively small and the workability is deteriorated.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present disclosure belongs can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present disclosure.
 符号の説明は、次の通りである。
Al Al晶
Zn-Al Zn-Al相
MgZn MgZn
Zn-Eu Zn系共晶相
The description of the symbols is as follows.
Al Al crystal Zn-Al Zn-Al phase MgZn 2 MgZn 2 phase Zn-Eu Zn-based eutectic phase
 なお、日本国特許出願第2018-094481号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The entire disclosure of Japanese Patent Application No. 2018-094481 is incorporated herein by reference.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (2)

  1.  素地鋼材と、前記素地鋼材の表面に配されたZn-Al-Mg合金層を含むめっき層と、を有するめっき鋼材であって、
     前記めっき層が、質量%で、
     Zn:65.0%超、
     Al:5.0%超~25.0%未満、
     Mg:3.0%超~12.5%未満、
     Sn:0.1%~20.0%、
     Bi:0%~5.0%未満、
     In:0%~2.0%未満、
     Ca:0%~3.00%、
     Y :0%~0.5%、
     La:0%~0.5%未満、
     Ce:0%~0.5%未満、
     Si:0%~2.5%未満、
     Cr:0%~0.25%未満、
     Ti:0%~0.25%未満、
     Ni:0%~0.25%未満、
     Co:0%~0.25%未満、
     V :0%~0.25%未満、
     Nb:0%~0.25%未満、
     Cu:0%~0.25%未満、
     Mn:0%~0.25%未満、
     Fe:0%~5.0%、
     Sr:0%~0.5%未満、
     Sb:0%~0.5%未満、
     Pb:0%~0.5%未満、
     B :0%~0.5%未満、及び
     不純物からなる化学組成を有し、
     Zn-Al-Mg合金層の表面を層厚の1/2まで研磨した後、走査型電子顕微鏡により倍率100倍で観察したときに得られる、Zn-Al-Mg合金層の反射電子像において、Al晶が存在し、前記Al晶の累計周囲長さの平均値が88~195mm/mmであるめっき鋼材。
    A plated steel material comprising: a base steel material; and a plating layer including a Zn—Al—Mg alloy layer disposed on a surface of the base steel material,
    The plating layer is mass%,
    Zn: more than 65.0%,
    Al: more than 5.0% to less than 25.0%,
    Mg: more than 3.0% to less than 12.5%,
    Sn: 0.1% to 20.0%,
    Bi: 0% to less than 5.0%,
    In: 0% to less than 2.0%,
    Ca: 0% to 3.00%,
    Y: 0% to 0.5%,
    La: 0% to less than 0.5%,
    Ce: 0% to less than 0.5%,
    Si: 0% to less than 2.5%,
    Cr: 0% to less than 0.25%,
    Ti: 0% to less than 0.25%,
    Ni: 0% to less than 0.25%,
    Co: 0% to less than 0.25%,
    V: 0% to less than 0.25%
    Nb: 0% to less than 0.25%,
    Cu: 0% to less than 0.25%,
    Mn: 0% to less than 0.25%,
    Fe: 0% to 5.0%,
    Sr: 0% to less than 0.5%,
    Sb: 0% to less than 0.5%,
    Pb: 0% to less than 0.5%,
    B: having a chemical composition consisting of 0% to less than 0.5% and impurities,
    In the backscattered electron image of the Zn—Al—Mg alloy layer, obtained by polishing the surface of the Zn—Al—Mg alloy layer to ½ of the layer thickness and then observing it at a magnification of 100 times with a scanning electron microscope, A plated steel material in which an Al crystal is present and an average value of the total peripheral length of the Al crystal is 88 to 195 mm / mm 2 .
  2.  前記めっき層が、前記素地鋼材と前記Zn-Al-Mg合金層との間に、厚さ0.05~5μmのAl-Fe合金層を有する請求項1に記載のめっき鋼材。 2. The plated steel material according to claim 1, wherein the plated layer has an Al—Fe alloy layer having a thickness of 0.05 to 5 μm between the base steel material and the Zn—Al—Mg alloy layer.
PCT/JP2019/019359 2018-05-16 2019-05-15 Plated steel material WO2019221193A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207028999A KR102425278B1 (en) 2018-05-16 2019-05-15 plated steel
JP2019568783A JP6687175B1 (en) 2018-05-16 2019-05-15 Plated steel
CN201980025743.5A CN111989420B (en) 2018-05-16 2019-05-15 Plated steel material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018094481 2018-05-16
JP2018-094481 2018-05-16

Publications (1)

Publication Number Publication Date
WO2019221193A1 true WO2019221193A1 (en) 2019-11-21

Family

ID=68540376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019359 WO2019221193A1 (en) 2018-05-16 2019-05-15 Plated steel material

Country Status (5)

Country Link
JP (1) JP6687175B1 (en)
KR (1) KR102425278B1 (en)
CN (1) CN111989420B (en)
TW (1) TWI686510B (en)
WO (1) WO2019221193A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826551A (en) * 2020-07-16 2020-10-27 江苏麟龙新材料股份有限公司 Novel zinc-aluminum-magnesium alloy material and production method thereof
JP2021085089A (en) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn-Al-Mg BASED HOT-DIP METAL COATED STEEL SHEET
JP2021085088A (en) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn-Al-Mg BASED HOT-DIP METAL COATED STEEL SHEET
WO2021106260A1 (en) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn-Al-Mg HOT-DIPPED STEEL SHEET
EP4060075A4 (en) * 2019-11-14 2022-09-21 Nippon Steel Corporation Plated steel material
WO2023037396A1 (en) 2021-09-07 2023-03-16 日本製鉄株式会社 Hot-dip galvanized steel material
CN116457483A (en) * 2020-11-18 2023-07-18 日本制铁株式会社 Plated steel material
JP7464849B2 (en) 2020-10-21 2024-04-10 日本製鉄株式会社 Plated steel product and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2022010485A (en) * 2020-02-27 2022-09-21 Nippon Steel Corp Plated steel material.
TWI825475B (en) * 2021-09-07 2023-12-11 日商日本製鐵股份有限公司 Hot plated steel
CN115478239A (en) * 2022-08-23 2022-12-16 马鞍山钢铁股份有限公司 Aluminum-zinc-magnesium coated steel plate with excellent forming performance and manufacturing method thereof
WO2024047883A1 (en) * 2022-08-31 2024-03-07 日本製鉄株式会社 Plated steel material and method for manufacturing plated steel material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355055A (en) * 2000-04-11 2001-12-25 Nippon Steel Corp HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN CORROSION RESISTANCE OF UNCOATED PART AND COATED EDGE FACE PART
WO2004038060A1 (en) * 2002-10-28 2004-05-06 Nippon Steel Corporation High corrosion-resistant hot dip coated steel product excellent in surface smoothness and formability, and method for producing hot dip coated steel product
WO2013002358A1 (en) * 2011-06-30 2013-01-03 新日鐵住金株式会社 High-corrosion-resistance hot-dip galvanized steel plate having highly uniform appearance and manufacturing method therefor
WO2016162982A1 (en) * 2015-04-08 2016-10-13 新日鐵住金株式会社 Zn-Al-Mg-PLATED STEEL SHEET AND METHOD FOR MANUFACTURING Zn-Al-Mg-PLATED STEEL SHEET

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465114B1 (en) * 1999-05-24 2002-10-15 Nippon Steel Corporation -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same
JP4136286B2 (en) * 1999-08-09 2008-08-20 新日本製鐵株式会社 Zn-Al-Mg-Si alloy plated steel with excellent corrosion resistance and method for producing the same
JP2001295015A (en) * 2000-02-09 2001-10-26 Nisshin Steel Co Ltd HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET
TW495559B (en) * 2000-02-29 2002-07-21 Nippon Steel Corp Coated steel material having corrosion resistance and improved workability and a method for producing the same
JP4555499B2 (en) 2000-04-11 2010-09-29 新日本製鐵株式会社 Hot-dip Zn-Al-Mg-Si plated steel with excellent surface properties and method for producing the same
NZ528816A (en) * 2002-07-24 2005-10-28 Nisshin Steel Co Ltd Zinc-based hot-dip galvanized steel sheet excellent in retention of gloss
JP4551268B2 (en) * 2005-04-20 2010-09-22 新日本製鐵株式会社 Method for producing alloyed hot-dip galvanized steel sheet
AU2007228054B2 (en) * 2006-03-20 2011-03-10 Nippon Steel Corporation Highly corrosion-resistant hot dip galvanized steel stock
KR101168730B1 (en) * 2007-03-15 2012-07-26 신닛뽄세이테쯔 카부시키카이샤 Mg-BASED ALLOY PLATED STEEL MATERIAL
CN102292464B (en) * 2009-01-16 2014-02-12 新日铁住金株式会社 Hot-dip Zn-Al-Mg-Si-Cr alloy coated steel material with excellent corrosion resistance
EP2447389A4 (en) * 2009-06-25 2016-08-17 Nippon Steel & Sumitomo Metal Corp High-strength zn-al-plated steel wire for bridges which has excellent corrosion resistance and fatigue properties, and process for production thereof
JP2011157579A (en) * 2010-01-29 2011-08-18 Nisshin Steel Co Ltd ROUGHENED HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET, METHOD FOR PRODUCING THE SAME, AND COMPOSITE OBTAINED BY JOINING HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET WITH THERMOPLASTIC RESIN MOLDED BODY, AND METHOD FOR PRODUCING THE SAME
TW201711798A (en) * 2015-06-18 2017-04-01 Sumitomo Chemical Co Abrasive grains, abrasive slurry and method for polishing hard, brittle materials, and method for producing hard, brittle materials
US10563296B2 (en) * 2015-09-29 2020-02-18 Nippon Steel Corporation Coated steel
JP6787002B2 (en) * 2015-09-29 2020-11-18 日本製鉄株式会社 Al-Mg hot-dip galvanized steel
JP6528627B2 (en) * 2015-09-29 2019-06-12 日本製鉄株式会社 Plating steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355055A (en) * 2000-04-11 2001-12-25 Nippon Steel Corp HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN CORROSION RESISTANCE OF UNCOATED PART AND COATED EDGE FACE PART
WO2004038060A1 (en) * 2002-10-28 2004-05-06 Nippon Steel Corporation High corrosion-resistant hot dip coated steel product excellent in surface smoothness and formability, and method for producing hot dip coated steel product
WO2013002358A1 (en) * 2011-06-30 2013-01-03 新日鐵住金株式会社 High-corrosion-resistance hot-dip galvanized steel plate having highly uniform appearance and manufacturing method therefor
WO2016162982A1 (en) * 2015-04-08 2016-10-13 新日鐵住金株式会社 Zn-Al-Mg-PLATED STEEL SHEET AND METHOD FOR MANUFACTURING Zn-Al-Mg-PLATED STEEL SHEET

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4060075A4 (en) * 2019-11-14 2022-09-21 Nippon Steel Corporation Plated steel material
US11787156B2 (en) 2019-11-14 2023-10-17 Nippon Steel Corporation Coated steel material
AU2020384747B2 (en) * 2019-11-14 2023-09-07 Nippon Steel Corporation Coated Steel Material
US20220371302A1 (en) * 2019-11-14 2022-11-24 Nippon Steel Corporation Coated steel material
JP7381865B2 (en) 2019-11-29 2023-11-16 日本製鉄株式会社 Zn-Al-Mg hot-dipped steel sheet
WO2021106260A1 (en) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn-Al-Mg HOT-DIPPED STEEL SHEET
JP2021085088A (en) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn-Al-Mg BASED HOT-DIP METAL COATED STEEL SHEET
JP2021085089A (en) * 2019-11-29 2021-06-03 日本製鉄株式会社 Zn-Al-Mg BASED HOT-DIP METAL COATED STEEL SHEET
JP7381864B2 (en) 2019-11-29 2023-11-16 日本製鉄株式会社 Zn-Al-Mg hot-dipped steel sheet
CN111826551A (en) * 2020-07-16 2020-10-27 江苏麟龙新材料股份有限公司 Novel zinc-aluminum-magnesium alloy material and production method thereof
JP7464849B2 (en) 2020-10-21 2024-04-10 日本製鉄株式会社 Plated steel product and method for manufacturing the same
CN116457483A (en) * 2020-11-18 2023-07-18 日本制铁株式会社 Plated steel material
CN116457483B (en) * 2020-11-18 2024-04-19 日本制铁株式会社 Plated steel material
WO2023037396A1 (en) 2021-09-07 2023-03-16 日本製鉄株式会社 Hot-dip galvanized steel material
KR20230038660A (en) 2021-09-07 2023-03-21 닛폰세이테츠 가부시키가이샤 hot-dip galvanized steel
US11814732B2 (en) 2021-09-07 2023-11-14 Nippon Steel Corporation Hot-dip plated steel

Also Published As

Publication number Publication date
KR20200130850A (en) 2020-11-20
TW201947061A (en) 2019-12-16
JPWO2019221193A1 (en) 2020-05-28
KR102425278B1 (en) 2022-07-27
JP6687175B1 (en) 2020-04-22
TWI686510B (en) 2020-03-01
CN111989420B (en) 2022-11-08
CN111989420A (en) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2019221193A1 (en) Plated steel material
JP6428974B1 (en) Plated steel
CN110234780B (en) Plated steel material
JP6394843B1 (en) Plated steel sheet
JP7315826B2 (en) Plated steel and method for producing plated steel
CN113508186B (en) Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same
CN117026132A (en) Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same
WO2019130534A1 (en) MOLTEN Zn-BASED PLATED STEEL SHEET HAVING SUPERIOR CORROSION RESISTANCE AFTER BEING COATED
AU2020305070B2 (en) Coated Steel Product
US11827984B2 (en) Coated steel product
JP7031787B2 (en) Plated steel
JP7464849B2 (en) Plated steel product and method for manufacturing the same
WO2023176075A1 (en) Plated steel material and method for manufacturing plated steel material
WO2024047883A1 (en) Plated steel material and method for manufacturing plated steel material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019568783

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207028999

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803700

Country of ref document: EP

Kind code of ref document: A1