WO2019221069A1 - Rubber-modified styrene-based resin composition - Google Patents

Rubber-modified styrene-based resin composition Download PDF

Info

Publication number
WO2019221069A1
WO2019221069A1 PCT/JP2019/018966 JP2019018966W WO2019221069A1 WO 2019221069 A1 WO2019221069 A1 WO 2019221069A1 JP 2019018966 W JP2019018966 W JP 2019018966W WO 2019221069 A1 WO2019221069 A1 WO 2019221069A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
polybutadiene
resin composition
less
mass
Prior art date
Application number
PCT/JP2019/018966
Other languages
French (fr)
Japanese (ja)
Inventor
井上 修治
圭太 秋葉
勝典 今野
利春 蔵田
Original Assignee
東洋スチレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋スチレン株式会社 filed Critical 東洋スチレン株式会社
Priority to CN201980031154.8A priority Critical patent/CN112105692A/en
Priority to JP2020519629A priority patent/JPWO2019221069A1/en
Publication of WO2019221069A1 publication Critical patent/WO2019221069A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a rubber-modified styrene resin composition.
  • Thermoplastic resins have been used in many products such as food packaging containers, miscellaneous goods, building materials, automotive materials, OA equipment, electronic parts, and home appliance casings, taking advantage of their excellent moldability.
  • thermoplastic resin is flammable, and there was concern about the safety of the product. Then, in order to eliminate this flammability, the flame retardant examination using various flame retardants has been performed conventionally (patent document 1).
  • thermoplastic resins in order to increase the flame retardancy of thermoplastic resins, adding a brominated or phosphorous flame retardant having an excellent flame retardant effect to an aromatic resin typified by a styrene resin will reduce the environmental impact. There is a problem that it occurs.
  • thermoplastic resin containing a flame retardant containing no bromine or phosphorus such as magnesium hydroxide, aluminum hydroxide, or a nitrogen-based flame retardant
  • the flame retardant not only needs to be added in a larger amount than bromine-based or phosphorus-based flame retardant in order to satisfy the flame retardancy, but also tends to cause a problem that impact resistance and heat resistance are lowered.
  • An object of the present invention is to provide a rubber-modified styrene resin composition having excellent flame retardancy.
  • the total calorific value at a cracking furnace temperature of 200 ° C. to 600 ° C. measured based on ASTM D7309 Method A using a microscale combustion calorimeter is 40.0 kJ / g or less, and from 200 ° C. to 425 ° C.
  • a polybutadiene having a ratio (m2 / m1) of the maximum heat release rate (m1) and the maximum heat release rate (m2) from 425 ° C. to 600 ° C. of 6.0 or less is 3.0% by mass or more and 15.0% by mass or less.
  • a rubber-modified styrenic resin composition characterized by (2) The rubber-modified styrene resin according to (1), wherein the polybutadiene has a number average molecular weight of 100,000 to 300,000. (3) The rubber-modified styrene according to (1) or (2), which is obtained by graft polymerization of a styrene monomer having a total of ⁇ -methylstyrene and phenylacetylene of 100 ppm to 300 ppm and the polybutadiene.
  • -Based resin composition characterized by (2) The rubber-modified styrenic resin according to (1), wherein the polybutadiene has a number average molecular weight of 100,000 to 300,000.
  • the resin composition of the present invention is advantageous for use in a field where a flame retardant styrene resin containing no bromine or phosphorus flame retardant is required.
  • Example 3 is a result of MCC measurement of polybutadiene used in Example 2.
  • the microscale combustion calorimeter (MCC) used in the present invention is an apparatus for evaluating the combustion characteristics of combustible materials based on ASTM D7309, and has a cracking furnace and a combustion furnace in the apparatus. . While flowing nitrogen or a mixed gas of nitrogen and oxygen to the cracking furnace where the sample is installed, the temperature is raised at an arbitrary speed, and the cracked gas generated from this is introduced into the combustion furnace, and the cracked gas is burned in the presence of nitrogen and oxygen.
  • the heat release rate (Heat Release Rate, HRR) is calculated from the amount of oxygen consumed.
  • the calorific value of the present invention is a value obtained by multiplying the heat release rate (HRR) at each measurement point by the measurement interval (time) when measured using a microscale combustion calorimeter (MCC).
  • the total calorific value is the total calorific value between 200 ° C. and 600 ° C. of the cracking furnace temperature.
  • the styrenic resin of the present invention is obtained by polymerizing an aromatic vinyl compound monomer, and the rubber-modified styrenic resin is a rubber-modified styrenic resin obtained by adding polybutadiene as a rubbery polymer.
  • the polymerization method it can be produced by a known method, for example, a bulk polymerization method, a bulk / suspension two-stage polymerization method, a solution polymerization method or the like.
  • aromatic vinyl compound monomer known monomers such as styrene, ⁇ -methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene can be used, and styrene is preferable.
  • monomers such as acrylonitrile, (meth) acrylic acid, (meth) acrylic acid ester, and maleic anhydride that can be copolymerized with these aromatic vinyl compound monomers do not impair the performance of the resin composition. It may be used as long as it is moderate.
  • a polymer obtained by adding a crosslinking agent such as divinylbenzene to an aromatic vinyl compound monomer may be used.
  • the total calorific value of polybutadiene must be 40.0 kJ / g or less.
  • the burning rate becomes slow and a resin composition excellent in flame retardancy can be obtained.
  • the total calorific value of polybutadiene exceeds 40.0 kJ / g, there is no flame retardant effect because the combustion rate increases.
  • the ratio (m2 / m1) of the maximum heat release rate (m1) of polybutadiene from 200 ° C. to 425 ° C. and the maximum heat release rate (m2) from 425 ° C. to 600 ° C. is 6.0 or less.
  • the ratio (m2 / m1) of the maximum heat dissipation rate of polybutadiene is 6.0 or less, a resin composition having an excellent combustion balance can be obtained.
  • the ratio of the maximum heat release rate (m2 / m1) exceeds 6.0, the combustion rate is rapidly increased at a predetermined temperature, and there is no flame retardant effect.
  • the number average molecular weight (Mn) of the polybutadiene is preferably 100,000 or more and 300,000 or less.
  • Mn number average molecular weight of polybutadiene
  • a resin composition excellent in flame retardancy can be obtained.
  • the above-mentioned polybutadiene content must be 3.0% by mass or more and 15.0% by mass or less.
  • the polybutadiene content is 3.0% by mass or more and 15.0% by mass or less, a resin composition having an excellent balance between impact resistance and rigidity can be obtained. More preferably, it is 5.0 mass% or more and 15.0 mass% or less.
  • the content of polybutadiene is less than 3.0% by mass, there is no sufficient flame retardant effect. If the content of polybutadiene exceeds 15.0% by mass, the rigidity decreases.
  • the average particle size of the polybutadiene in the rubber-modified styrene resin is preferably from 0.1 ⁇ m to 5.0 ⁇ m, particularly preferably from 1.0 ⁇ m to 4.0 ⁇ m.
  • the average particle size of the polybutadiene is 0.1 ⁇ m or more and 5.0 ⁇ m or less, a significant impact resistance improvement effect is obtained.
  • the total of ⁇ -methylstyrene and phenylacetylene in the styrene monomer is preferably 100 ppm or more and 300 ppm or less.
  • the total of ⁇ -methylstyrene and phenylacetylene in the styrene monomer is 100 ppm or more and 300 ppm or less, a resin composition having excellent flame retardancy upon graft polymerization with polybutadiene can be obtained.
  • the resin composition of the present invention includes various additives within a range not exceeding the gist of the present invention, such as flame retardants, flame retardant aids, dyes and pigments, coloring inhibitors, lubricants, antioxidants, anti-aging agents, Known additives such as light stabilizers, antistatic agents, fillers and compatibilizers, and modifiers such as colorants such as titanium oxide and carbon black can be added.
  • additives such as light stabilizers, antistatic agents, fillers and compatibilizers, and modifiers such as colorants such as titanium oxide and carbon black can be added.
  • These addition methods are not particularly limited, and are known methods, for example, before the start of polymerization of the thermoplastic resin to be used, with respect to the reaction solution in the middle of the polymerization, or after the completion of the polymerization, further, an extruder or a molding It can also be added in the machine.
  • a known mixing technique can be applied to the method for mixing the resin composition of the present invention.
  • a uniform resin composition can be obtained by melt-kneading a mixture preliminarily mixed with a mixing apparatus such as a mixer-type mixer, a V-type blender, and a tumbler-type mixer.
  • a mixing apparatus such as a mixer-type mixer, a V-type blender, and a tumbler-type mixer.
  • melt kneaders include Banbury mixers, kneaders, rolls, single screw extruders, special single screw extruders, and twin screw extruders.
  • an additive such as a flame retardant from the middle of a melt-kneading apparatus such as an extruder.
  • the molding method for obtaining a molded product from the resin composition of the present invention includes injection molding.
  • the rubber-modified styrenic resin used in the examples was produced as follows.
  • the conditions of each reactor were as follows. First reactor: [Number of stirring] 100 rpm, [Reaction temperature] 125 ° C. Second reactor: [Number of stirring] 60 rpm, [Reaction temperature] Adjusted so that a temperature gradient is created from 128 ° C. to 130 ° C. in the flow direction. Third reactor: [Number of stirring] 30 rpm, [Reaction temperature] 128 ° C. Fourth reactor: [Reaction temperature] Adjusted so that a temperature gradient is created from 140 ° C to 168 ° C in the flow direction.
  • Example 1 A raw material solution in which 75.5% by mass of a styrene monomer, 15.4% by mass of ethylbenzene, and 9.1% by mass of polybutadiene are dissolved.
  • the raw material liquid was continuously supplied to the first reactor at a supply rate of 20 L / hr for polymerization, and then charged continuously into the second reactor for polymerization.
  • the rubber-like polymer polybutadiene
  • the dispersion has been completed.
  • the conversion was 27%.
  • the polymerization liquid from the outlet of the second reactor was continuously charged into the third reactor, and the polymerization conversion rate at this time was 45%. Further, the polymerization was allowed to proceed in the fourth reactor until the polymerization conversion reached 82%.
  • the obtained polymerization solution was introduced into a vacuum devolatilization tank with a preheater composed of two stages in series, and after separating unreacted styrene and unreacted ethylbenzene, it was extruded into a strand and cooled, then cut. It was set as a pellet.
  • the resin temperature in the first devolatilization tank is set to 210 ° C.
  • the pressure in the vacuum devolatilization tank is set to 53 kPa
  • the resin temperature in the second devolatilization tank is set to 220 ° C.
  • the pressure in the volatilization tank was 2.7 kPa.
  • 1.5% by mass of liquid paraffin was added to 98.5% by mass of the resin obtained by polymerization, and blended uniformly using a twin screw extruder to obtain a rubber-modified styrene resin.
  • the amounts of phenylacetylene and ⁇ -methylstyrene in the styrene monomer can be determined by a known method, but generally can be determined by gas chromatography. In this example, the measurement was performed under the following conditions.
  • the number average molecular weight (Mn) of polybutadiene was calculated from a molecular weight distribution curve obtained by gel permeation chromatography using tetrahydrofuran as a solvent, using a calibration curve prepared using standard polystyrene as a standard substance.
  • Mn number average molecular weight
  • GPC model Shodex GPC-101 manufactured by Showa Denko Column: PLgel 10 ⁇ m MIXED-B, 300 ⁇ 7.5 mm manufactured by Polymer Laboratories
  • Mobile phase Tetrahydrofuran 1.0 ml / min Sample concentration: 0.2% by mass
  • Temperature Oven 40 ° C, inlet 35 ° C, detector 35 ° C
  • Detector Differential refractometer
  • MCC MCC-3
  • ASTM D7309 Method A the heat release rate [W / g] was measured under the following conditions, and the total temperature at a decomposition furnace temperature of 200 ° C. to 600 ° C. was measured.
  • the calorific value [kJ / g] and the ratio (m2 / m1) of the maximum heat release rate (m1) from 200 ° C. to 425 ° C. and the maximum heat release rate (m2) from 425 ° C. to 600 ° C. were determined.
  • the measurement conditions are as follows.
  • the content of rubber-like polymer (polybutadiene) particles in the obtained rubber-modified styrene resin composition is obtained by the following method.
  • ⁇ Rubber content> 0.4 g of the rubber-modified styrenic resin composition is placed in a 100 ml volumetric flask and precisely weighed (W). After 75 ml of chloroform is added and well dispersed, 20 ml of a solution of 18 g of iodine monochloride dissolved in 1000 ml of carbon tetrachloride is added and stored in a cool dark place. After 8 hours, the mark is adjusted to the mark with chloroform.
  • Rubber-like polymer particle content (% by mass) 10.8 ⁇ xx (BA) / W
  • ⁇ Flame retardance> In accordance with UL94 HB IEC60695-11-10 A, a 1.5 mm thick test piece was held horizontally, a 20 mm flame was indirectly flamed for 30 seconds, and a burning rate of 75 mm between marked lines was evaluated.
  • the test piece for combustion (125 ⁇ 13 ⁇ 1.5 mm) was prepared using an injection molding machine (“J100E-P” manufactured by Nippon Steel Works). At this time, the cylinder temperature of the injection molding machine was 220 ° C., and the mold temperature was 45 ° C.
  • FIG. 1 shows the MCC measurement results of the polybutadiene used in Example 2.
  • styrene monomer is NS styrene monomer
  • polybutadiene number average molecular weight Mn: 7.7 ⁇ 10 4
  • polybutadiene number average molecular weight Mn: 16 ⁇ 10 4
  • Is BR-15HB manufactured by Ube Industries, Ltd. polybutadiene (number average molecular weight Mn: 24 ⁇ 10 4 ) is 730AX manufactured by Asahi Kasei Chemicals, and polybutadiene (number average molecular weight Mn: 32 ⁇ 10 4 ) is PR-040 manufactured by Chimei Corporation. used.
  • the ratio of the maximum heat release rate (m1) from 200 ° C. to 425 ° C. and the maximum heat release rate (m 2) from 425 ° C. to 600 ° C. (m 2 / m 1) It can be seen that the rubber-modified styrene resin containing 3.0% by mass or more and 15.0% by mass or less of polybutadiene having an A of 6.0 or less has a slow combustion rate and excellent flame retardancy and rigidity.
  • the number average molecular weight (Mn) of the polybutadiene used in the graft polymerization is 100,000 or more and 300,000 or less and the total amount of phenylacetylene and ⁇ -methylstyrene in the styrene monomer is 100 ppm or more and 300 ppm or less, the rubber It can be seen that the modified styrene resin has a slow burning rate in the horizontal burning test and improves flame retardancy.
  • the resin composition of the present invention is excellent in flame retardancy, it can be advantageously used in a wide range of fields such as OA equipment, electronic equipment, and miscellaneous goods.

Abstract

Provided is a rubber-modified styrene-based resin composition having excellent flame retardant properties. This rubber-modified styrene-based resin composition contains 3.0-15.0 mass% of a polybutadiene which has a total calorific value of 40.0 kJ/g or less at a cracking furnace temperature of 200-600°C as measured in accordance with ASTM D7309 Method A using a microscale combustion calorimeter, and in which the ratio (m2/m1) of the highest heat release rate (m2) thereof at 425-600°C to the highest heat release rate (m1) at 200-425°C is 6.0 or less.

Description

ゴム変性スチレン系樹脂組成物Rubber-modified styrenic resin composition
 本発明は、ゴム変性スチレン系樹脂組成物に関する。 The present invention relates to a rubber-modified styrene resin composition.
 熱可塑性樹脂はその優れた成形性を生かし、食品包装容器、雑貨、建築材料、自動車材料、OA機器、電子部品および家電筐体など多くの製品に使用されてきた。 Thermoplastic resins have been used in many products such as food packaging containers, miscellaneous goods, building materials, automotive materials, OA equipment, electronic parts, and home appliance casings, taking advantage of their excellent moldability.
 一方、熱可塑性樹脂は燃え易く、製品としての安全性に不安があった。そこで、この燃え易さを解消するため、従来から種々の難燃剤を用いた難燃化検討が行われてきた(特許文献1)。 On the other hand, the thermoplastic resin is flammable, and there was concern about the safety of the product. Then, in order to eliminate this flammability, the flame retardant examination using various flame retardants has been performed conventionally (patent document 1).
 しかし、熱可塑性樹脂の難燃性を高めるために、スチレン系樹脂を代表とする芳香族系樹脂に対して難燃効果に優れている臭素系やリン系の難燃剤を配合すると、環境負荷が生じるという問題点がある。 However, in order to increase the flame retardancy of thermoplastic resins, adding a brominated or phosphorous flame retardant having an excellent flame retardant effect to an aromatic resin typified by a styrene resin will reduce the environmental impact. There is a problem that it occurs.
 そこで、環境に適合する、臭素やリンを含有しないスチレン系樹脂の難燃性を向上させることが求められている。 Therefore, there is a demand for improving the flame retardancy of styrene-based resins that do not contain bromine or phosphorus that are compatible with the environment.
 そこで、近年では臭素やリンを含有しない難燃剤である水酸化マグネシウム、水酸化アルミニウム、窒素系難燃剤等を熱可塑性樹脂に配合させたものが知られている。しかしながら、前記難燃剤は、難燃性を満たすために臭素系やリン系難燃剤と比べて多量に添加する必要があるだけではなく、耐衝撃性や耐熱性が低下する問題を生じさせやすい。 Therefore, in recent years, a thermoplastic resin containing a flame retardant containing no bromine or phosphorus, such as magnesium hydroxide, aluminum hydroxide, or a nitrogen-based flame retardant, is known. However, the flame retardant not only needs to be added in a larger amount than bromine-based or phosphorus-based flame retardant in order to satisfy the flame retardancy, but also tends to cause a problem that impact resistance and heat resistance are lowered.
特開平8-73684号公報JP-A-8-73684
 本発明は、難燃性に優れたゴム変性スチレン系樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a rubber-modified styrene resin composition having excellent flame retardancy.
 (1)マイクロスケール燃焼熱量計を用いるASTM D7309 Method Aに基づいて測定される、分解炉温度200℃から600℃においての総発熱量が40.0kJ/g以下であり、200℃から425℃における最大放熱率(m1)と425℃から600℃における最大放熱率(m2)の比(m2/m1)が6.0以下であるポリブタジエンを3.0質量%以上15.0質量%以下含有することを特徴するゴム変性スチレン系樹脂組成物。
 (2)前記ポリブタジエンの数平均分子量が10万以上30万以下であることを特徴とする(1)に記載のゴム変性スチレン樹脂。
 (3)α-メチルスチレンとフェニルアセチレンの合計が100ppm以上300ppm以下のスチレンモノマーと、前記ポリブタジエンと、をグラフト重合して得られることを特徴する(1)又は(2)に記載のゴム変性スチレン系樹脂組成物。
(1) The total calorific value at a cracking furnace temperature of 200 ° C. to 600 ° C. measured based on ASTM D7309 Method A using a microscale combustion calorimeter is 40.0 kJ / g or less, and from 200 ° C. to 425 ° C. A polybutadiene having a ratio (m2 / m1) of the maximum heat release rate (m1) and the maximum heat release rate (m2) from 425 ° C. to 600 ° C. of 6.0 or less is 3.0% by mass or more and 15.0% by mass or less. A rubber-modified styrenic resin composition characterized by
(2) The rubber-modified styrene resin according to (1), wherein the polybutadiene has a number average molecular weight of 100,000 to 300,000.
(3) The rubber-modified styrene according to (1) or (2), which is obtained by graft polymerization of a styrene monomer having a total of α-methylstyrene and phenylacetylene of 100 ppm to 300 ppm and the polybutadiene. -Based resin composition.
 本発明の樹脂組成物は、臭素系やリン系難燃剤を含有しない難燃性スチレン系樹脂を要求される分野での使用が有利になる。 The resin composition of the present invention is advantageous for use in a field where a flame retardant styrene resin containing no bromine or phosphorus flame retardant is required.
実施例2で使用したポリブタジエンのMCC測定結果である。3 is a result of MCC measurement of polybutadiene used in Example 2.
 本発明において使用するマイクロスケール燃焼熱量計(Microscale Combustion Calorimeter、MCC)とは、ASTM D7309に基づいた可燃物の燃焼特性を評価する装置であり、装置内に分解炉と燃焼炉を有している。サンプルを設置した分解炉に窒素または窒素と酸素の混合気体を流しながら任意の速度で昇温させ、そこから発生した分解ガスを燃焼炉へ導入し、窒素と酸素の存在下で分解ガスを燃焼させて、消費される酸素量から放熱率(Heat Release Rate、HRR)が計算される。 The microscale combustion calorimeter (MCC) used in the present invention is an apparatus for evaluating the combustion characteristics of combustible materials based on ASTM D7309, and has a cracking furnace and a combustion furnace in the apparatus. . While flowing nitrogen or a mixed gas of nitrogen and oxygen to the cracking furnace where the sample is installed, the temperature is raised at an arbitrary speed, and the cracked gas generated from this is introduced into the combustion furnace, and the cracked gas is burned in the presence of nitrogen and oxygen. The heat release rate (Heat Release Rate, HRR) is calculated from the amount of oxygen consumed.
 本発明の発熱量とは、マイクロスケール燃焼熱量計(MCC)を用いて測定した際、各測定点での放熱率(HRR)に測定間隔(時間)を乗じた値である。総発熱量は分解炉温度200℃から600℃間の発熱量の合計である。 The calorific value of the present invention is a value obtained by multiplying the heat release rate (HRR) at each measurement point by the measurement interval (time) when measured using a microscale combustion calorimeter (MCC). The total calorific value is the total calorific value between 200 ° C. and 600 ° C. of the cracking furnace temperature.
 本発明のスチレン系樹脂とは芳香族ビニル化合物系単量体を重合して得られるものであり、ゴム状重合体としてポリブタジエンを加えてゴム変性を行ったスチレン系樹脂をゴム変性スチレン系樹脂と呼ぶ。重合方法としては公知の方法、例えば、塊状重合法、塊状・懸濁二段重合法、溶液重合法等により製造することができる。芳香族ビニル化合物系単量体は、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン等の公知のものが使用できるが、好ましくはスチレンである。また、これらの芳香族ビニル化合物系単量体と共重合可能なアクリロニトリル、(メタ)アクリル酸、(メタ)アクリル酸エステル、無水マレイン酸等の単量体も、樹脂組成物の性能を損なわない程度ものであれば使用しても良い。さらに本発明ではジビニルベンゼン等の架橋剤を芳香族ビニル化合物系単量体に対し添加して重合したものであっても差し支えない。 The styrenic resin of the present invention is obtained by polymerizing an aromatic vinyl compound monomer, and the rubber-modified styrenic resin is a rubber-modified styrenic resin obtained by adding polybutadiene as a rubbery polymer. Call. As the polymerization method, it can be produced by a known method, for example, a bulk polymerization method, a bulk / suspension two-stage polymerization method, a solution polymerization method or the like. As the aromatic vinyl compound monomer, known monomers such as styrene, α-methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene can be used, and styrene is preferable. In addition, monomers such as acrylonitrile, (meth) acrylic acid, (meth) acrylic acid ester, and maleic anhydride that can be copolymerized with these aromatic vinyl compound monomers do not impair the performance of the resin composition. It may be used as long as it is moderate. Furthermore, in the present invention, a polymer obtained by adding a crosslinking agent such as divinylbenzene to an aromatic vinyl compound monomer may be used.
 上記、ポリブタジエンの総発熱量は40.0kJ/g以下が必須である。ポリブタジエンの総発熱量が40.0kJ/g以下だと燃焼速度が遅くなり難燃性に優れた樹脂組成物が得られる。ただし、ポリブタジエンの総発熱量が40.0kJ/gを超えると燃焼速度が速くなるため難燃効果はない。 The total calorific value of polybutadiene must be 40.0 kJ / g or less. When the total calorific value of polybutadiene is 40.0 kJ / g or less, the burning rate becomes slow and a resin composition excellent in flame retardancy can be obtained. However, if the total calorific value of polybutadiene exceeds 40.0 kJ / g, there is no flame retardant effect because the combustion rate increases.
 上記、ポリブタジエンの200℃から425℃における最大放熱率(m1)と425℃から600℃における最大放熱率(m2)の比(m2/m1)が6.0以下であることが必須である。ポリブタジエンの最大放熱率の比(m2/m1)が6.0以下だと燃焼バランスに優れた樹脂組成物が得られる。ただし、最大放熱率の比(m2/m1)が6.0を超えると所定の温度で急速に燃焼速度が速くなり難燃効果はない。 It is essential that the ratio (m2 / m1) of the maximum heat release rate (m1) of polybutadiene from 200 ° C. to 425 ° C. and the maximum heat release rate (m2) from 425 ° C. to 600 ° C. is 6.0 or less. When the ratio (m2 / m1) of the maximum heat dissipation rate of polybutadiene is 6.0 or less, a resin composition having an excellent combustion balance can be obtained. However, when the ratio of the maximum heat release rate (m2 / m1) exceeds 6.0, the combustion rate is rapidly increased at a predetermined temperature, and there is no flame retardant effect.
 上記、ポリブタジエンの数平均分子量(Mn)は、10万以上30万以下が好ましい。ポリブタジエンの数平均分子量(Mn)が10万以上30万以下だと難燃性に優れた樹脂組成物が得られる。 The number average molecular weight (Mn) of the polybutadiene is preferably 100,000 or more and 300,000 or less. When the number average molecular weight (Mn) of polybutadiene is 100,000 or more and 300,000 or less, a resin composition excellent in flame retardancy can be obtained.
 上記、ポリブタジエンの含有量は、3.0質量%以上15.0質量%以下が必須である。ポリブタジエンの含有量が3.0質量%以上15.0質量%以下だと耐衝撃性と剛性のバランスに優れた樹脂組成物が得られる。より好ましくは5.0質量%以上15.0質量%以下である。ただし、ポリブタジエンの含有量が3.0質量%未満だと十分な難燃効果がない。ポリブタジエンの含有量が15.0質量%を超えると剛性が低下する。 The above-mentioned polybutadiene content must be 3.0% by mass or more and 15.0% by mass or less. When the polybutadiene content is 3.0% by mass or more and 15.0% by mass or less, a resin composition having an excellent balance between impact resistance and rigidity can be obtained. More preferably, it is 5.0 mass% or more and 15.0 mass% or less. However, if the content of polybutadiene is less than 3.0% by mass, there is no sufficient flame retardant effect. If the content of polybutadiene exceeds 15.0% by mass, the rigidity decreases.
 上記、ゴム変性スチレン系樹脂中のポリブタジエンの平均粒子径は、0.1μm以上5.0μm以下が好ましく、特に好ましくは1.0μm以上4.0μm以下が好ましい。ポリブタジエンの平均粒子径が0.1μm以上5.0μm以下だと顕著な耐衝撃性向上効果が得られる。 The average particle size of the polybutadiene in the rubber-modified styrene resin is preferably from 0.1 μm to 5.0 μm, particularly preferably from 1.0 μm to 4.0 μm. When the average particle size of the polybutadiene is 0.1 μm or more and 5.0 μm or less, a significant impact resistance improvement effect is obtained.
 芳香族ビニル化合物系単量体がスチレンである場合、スチレンモノマー中のα-メチルスチレンとフェニルアセチレンの合計は、100ppm以上300ppm以下が好ましい。スチレンモノマー中のα-メチルスチレンとフェニルアセチレンの合計が100ppm以上300ppm以下だとポリブタジエンとグラフト重合した際に難燃性に優れた樹脂組成物が得られる。 When the aromatic vinyl compound monomer is styrene, the total of α-methylstyrene and phenylacetylene in the styrene monomer is preferably 100 ppm or more and 300 ppm or less. When the total of α-methylstyrene and phenylacetylene in the styrene monomer is 100 ppm or more and 300 ppm or less, a resin composition having excellent flame retardancy upon graft polymerization with polybutadiene can be obtained.
 また、本発明の樹脂組成物には、本発明の要旨を超えない範囲で各種添加物、例えば難燃剤、難燃助剤、染顔料、着色防止剤、滑剤、酸化防止剤、老化防止剤、光安定剤、帯電防止剤、充填剤、相溶化剤等の公知の添加剤、酸化チタンやカーボンブラックなどの着色剤などの改質剤を添加できる。これらの添加方法は特に限定される訳では無く、公知の方法、例えば、使用する熱可塑性樹脂の重合開始前、重合途中の反応液に対して、または重合終了後、更には、押出機や成形機においても添加することができる。 Further, the resin composition of the present invention includes various additives within a range not exceeding the gist of the present invention, such as flame retardants, flame retardant aids, dyes and pigments, coloring inhibitors, lubricants, antioxidants, anti-aging agents, Known additives such as light stabilizers, antistatic agents, fillers and compatibilizers, and modifiers such as colorants such as titanium oxide and carbon black can be added. These addition methods are not particularly limited, and are known methods, for example, before the start of polymerization of the thermoplastic resin to be used, with respect to the reaction solution in the middle of the polymerization, or after the completion of the polymerization, further, an extruder or a molding It can also be added in the machine.
 本発明の樹脂組成物の混合方法は、公知の混合技術を適用することが出来る。例えばミキサー型混合機、V型ブレンダー、及びタンブラー型混合機等の混合装置であらかじめ予備混合しておいた混合物を、溶融混練することで均一な樹脂組成物とすることが出来る。溶融混練機に特段の制限は無い。好適な溶融混練機として、バンバリー型ミキサー、ニーダー、ロール、単軸押出機、特殊単軸押出機、及び二軸押出機等がある。更に押出機等の溶融混練装置の途中から難燃剤等の添加剤を別途に添加する方法がある。 A known mixing technique can be applied to the method for mixing the resin composition of the present invention. For example, a uniform resin composition can be obtained by melt-kneading a mixture preliminarily mixed with a mixing apparatus such as a mixer-type mixer, a V-type blender, and a tumbler-type mixer. There are no particular restrictions on the melt kneader. Suitable melt kneaders include Banbury mixers, kneaders, rolls, single screw extruders, special single screw extruders, and twin screw extruders. Furthermore, there is a method of separately adding an additive such as a flame retardant from the middle of a melt-kneading apparatus such as an extruder.
 本発明の樹脂組成物から成形品を得る成形法には射出成形等がある。 The molding method for obtaining a molded product from the resin composition of the present invention includes injection molding.
 以下に本発明を実施例及び比較例によって詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 実施例で使用したゴム変性スチレン系樹脂は以下のように製造した。 The rubber-modified styrenic resin used in the examples was produced as follows.
 (1)ゴム変性スチレン系樹脂の製造
 下記第1反応器から第4反応器を直列に接続して重合工程を構成した。
(1) Production of rubber-modified styrenic resin A polymerization process was configured by connecting the following first to fourth reactors in series.
 第1反応器:容積25Lの攪拌翼付完全混合型反応器
 第2反応器:容積39Lの攪拌翼付プラグフロー反応器
 第3反応器:容積50Lの攪拌翼付プラグフロー反応器
 第4反応器:容積50Lのスタティックミキサー付プラグフロー反応器
1st reactor: 25 L capacity complete mixing reactor with stirring blades 2nd reactor: 39 L capacity plug flow reactor with stirring blades 3rd reactor: 50 L capacity plug flow reactor with stirring blades 4th reactor : 50L capacity plug flow reactor with static mixer
 各反応器の条件は以下の通りとした。
 第1反応器:[攪拌数]100rpm、[反応温度]125℃
 第2反応器:[攪拌数]60rpm、[反応温度]流れ方向に128℃から130℃まで温度勾配がつくように調整
 第3反応器:[攪拌数]30rpm、[反応温度]128℃
 第4反応器:[反応温度]流れ方向に140℃から168℃まで温度勾配がつくように調整
The conditions of each reactor were as follows.
First reactor: [Number of stirring] 100 rpm, [Reaction temperature] 125 ° C.
Second reactor: [Number of stirring] 60 rpm, [Reaction temperature] Adjusted so that a temperature gradient is created from 128 ° C. to 130 ° C. in the flow direction. Third reactor: [Number of stirring] 30 rpm, [Reaction temperature] 128 ° C.
Fourth reactor: [Reaction temperature] Adjusted so that a temperature gradient is created from 140 ° C to 168 ° C in the flow direction.
 また、実施例1の原料としては、以下のものを用いた。
 スチレン単量体75.5質量%、エチルベンゼン15.4質量%、ポリブタジエン9.1質量%を溶解させた原料液。
Moreover, the following were used as a raw material of Example 1.
A raw material solution in which 75.5% by mass of a styrene monomer, 15.4% by mass of ethylbenzene, and 9.1% by mass of polybutadiene are dissolved.
 まず、原料液を20L/hrの供給速度で第1反応器に連続的に供給し重合した後、第2反応器に連続的に装入して重合した。第1反応器の出口では、いまだゴム状重合体(ポリブタジエン)が分散粒子化(相反転)していない状態で、第2反応器の出口では分散粒子化が終了した状態となり、このときの重合転化率は27%であった。次いで、第2反応器の出口からの重合液を第3反応器に連続的に装入し、このときの重合転化率は45%であった。さらに第4反応器にて重合転化率が82%になるまで重合を進行させた。得られた重合液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、未反応スチレン及び未反応エチルベンゼンを分離した後、ストランド状に押し出しして冷却した後、切断してペレットとした。なお、1段目の脱揮槽内の樹脂温度は210℃に設定し、真空脱揮槽の圧力は53kPaとし、2段目の脱揮槽内の樹脂温度は220℃に設定し、真空脱揮槽の圧力は2.7kPaとした。次に、重合で得られた樹脂98.5質量%に対して流動パラフィンを1.5質量%添加し、二軸押出機を用いて均一にブレンドしゴム変性スチレン系樹脂を得た。 First, the raw material liquid was continuously supplied to the first reactor at a supply rate of 20 L / hr for polymerization, and then charged continuously into the second reactor for polymerization. At the outlet of the first reactor, the rubber-like polymer (polybutadiene) has not yet been dispersed into particles (phase inversion), and at the outlet of the second reactor, the dispersion has been completed. The conversion was 27%. Subsequently, the polymerization liquid from the outlet of the second reactor was continuously charged into the third reactor, and the polymerization conversion rate at this time was 45%. Further, the polymerization was allowed to proceed in the fourth reactor until the polymerization conversion reached 82%. The obtained polymerization solution was introduced into a vacuum devolatilization tank with a preheater composed of two stages in series, and after separating unreacted styrene and unreacted ethylbenzene, it was extruded into a strand and cooled, then cut. It was set as a pellet. The resin temperature in the first devolatilization tank is set to 210 ° C., the pressure in the vacuum devolatilization tank is set to 53 kPa, the resin temperature in the second devolatilization tank is set to 220 ° C. The pressure in the volatilization tank was 2.7 kPa. Next, 1.5% by mass of liquid paraffin was added to 98.5% by mass of the resin obtained by polymerization, and blended uniformly using a twin screw extruder to obtain a rubber-modified styrene resin.
 スチレン単量体中のフェニルアセチレン及びα-メチルスチレンの量は公知の方法で求めることができるが、一般的にはガスクロマトグラフ法により求めることができる。本実施例では、下記の条件で測定した。
 <GC>
GC機種   :島津製ガスクマトグラフ GC-2014
検出器    :FID
カラム    :SPB-1(無極性)
カラム温度  :40℃(5分保持)-昇温速度(10℃/min)→300℃
カラムサイズ :0.53mm×30m 膜厚1.5μm
注入口温度  :250℃
検出器温度  :300℃
注入量    :0.2μL
注入法    :スプリットレス
The amounts of phenylacetylene and α-methylstyrene in the styrene monomer can be determined by a known method, but generally can be determined by gas chromatography. In this example, the measurement was performed under the following conditions.
<GC>
GC model: Shimadzu Gas Kumatomograph GC-2014
Detector: FID
Column: SPB-1 (Nonpolar)
Column temperature: 40 ° C. (held for 5 minutes) -temperature increase rate (10 ° C./min)→300° C.
Column size: 0.53 mm x 30 m Film thickness 1.5 μm
Inlet temperature: 250 ° C
Detector temperature: 300 ° C
Injection volume: 0.2 μL
Injection method: Splitless
 ポリブタジエンの数平均分子量(Mn)の測定はテトラヒドロフランを溶媒としたゲルパーミエーションクロマトグラフィーにより得られた分子量分布曲線から、標準ポリスチレンを標準物質として作成した検量線を用いて計算した。
 <GPC>
GPC機種:昭和電工社製Shodex GPC-101
カラム  :ポリマーラボラトリーズ社製PLgel 10μm MIXED-B,300×7.5mm
移動相  :テトラヒドロフラン 1.0ml/min
試料濃度 :0.2質量%
温度   :オーブン40℃、注入口35℃、検出器35℃
検出器  :示差屈折計
The number average molecular weight (Mn) of polybutadiene was calculated from a molecular weight distribution curve obtained by gel permeation chromatography using tetrahydrofuran as a solvent, using a calibration curve prepared using standard polystyrene as a standard substance.
<GPC>
GPC model: Shodex GPC-101 manufactured by Showa Denko
Column: PLgel 10 μm MIXED-B, 300 × 7.5 mm manufactured by Polymer Laboratories
Mobile phase: Tetrahydrofuran 1.0 ml / min
Sample concentration: 0.2% by mass
Temperature: Oven 40 ° C, inlet 35 ° C, detector 35 ° C
Detector: Differential refractometer
 ポリブタジエンは、MCC(DETAK製「MCC-3」)を用い、ASTM D7309 Method Aに基づいて、以下に示す条件で放熱率[W/g]を測定し、分解炉温度200℃から600℃における総発熱量[kJ/g]及び、200℃から425℃における最大放熱率(m1)と425℃から600℃における最大放熱率(m2)の比(m2/m1)をそれぞれ求めた。測定条件は以下の通りである。
 <MCC>
サンプル重量 :3.0mg
規格     :ASTM D7309 Method A
分解炉昇温速度:1.0℃/sec
分解炉到達温度:750℃
燃焼炉温度  :900℃
分解炉雰囲気 :窒素(嫌気条件)
燃焼炉雰囲気 :酸素20%、窒素80%
流量     :酸素20cc/min、窒素80cc/min
For polybutadiene, MCC (“MCC-3” manufactured by DETAK) was used, and based on ASTM D7309 Method A, the heat release rate [W / g] was measured under the following conditions, and the total temperature at a decomposition furnace temperature of 200 ° C. to 600 ° C. was measured. The calorific value [kJ / g] and the ratio (m2 / m1) of the maximum heat release rate (m1) from 200 ° C. to 425 ° C. and the maximum heat release rate (m2) from 425 ° C. to 600 ° C. were determined. The measurement conditions are as follows.
<MCC>
Sample weight: 3.0mg
Standard: ASTM D7309 Method A
Decomposition furnace heating rate: 1.0 ° C / sec
Decomposition furnace temperature: 750 ° C
Combustion furnace temperature: 900 ° C
Decomposition furnace atmosphere: Nitrogen (anaerobic condition)
Combustion furnace atmosphere: 20% oxygen, 80% nitrogen
Flow rate: Oxygen 20cc / min, nitrogen 80cc / min
 得られたゴム変性スチレン系樹脂組成物中のゴム状重合体(ポリブタジエン)粒子の含有率は、以下の方法により得られるものである。
 <ゴム含有率>
 ゴム変性スチレン系樹脂組成物0.4gを100mlのメスフラスコに入れて精秤する(W)。クロロホルム75mlを加えてよく分散させた後、一塩化ヨウ素18gを1000mlの四塩化炭素に溶かした溶液20mlを加えて冷暗所に保存し、8時間後にクロロホルムで標線に合わせる。これを25ml採取し、ヨウ化カリウム10gを水800ml、エタノール200mlの混合液に溶かした溶液60mlを加え、チオ硫酸ナトリウム10gを1000mlの水に溶かした溶液(モル濃度x)で滴定する。本試験Aml、空試験Bmlとし、ゴム状重合体粒子の含有率(質量%)は以下の式により求められる。
   ゴム状重合体粒子含有率(質量%)=10.8×x×(B-A)/W
The content of rubber-like polymer (polybutadiene) particles in the obtained rubber-modified styrene resin composition is obtained by the following method.
<Rubber content>
0.4 g of the rubber-modified styrenic resin composition is placed in a 100 ml volumetric flask and precisely weighed (W). After 75 ml of chloroform is added and well dispersed, 20 ml of a solution of 18 g of iodine monochloride dissolved in 1000 ml of carbon tetrachloride is added and stored in a cool dark place. After 8 hours, the mark is adjusted to the mark with chloroform. 25 ml of this was collected, 60 ml of a solution prepared by dissolving 10 g of potassium iodide in a mixed solution of 800 ml of water and 200 ml of ethanol was added, and titrated with a solution (molar concentration x) of 10 g of sodium thiosulfate dissolved in 1000 ml of water. This test Aml and blank test Bml are used, and the content (% by mass) of the rubber-like polymer particles is obtained by the following formula.
Rubber-like polymer particle content (% by mass) = 10.8 × xx (BA) / W
 <曲げ弾性率(剛性)>
 ゴム変性スチレン系樹脂組成物に関して射出成形機を用いて試験片を作成し、JIS K-7171により求めた。
<Bending elastic modulus (rigidity)>
With respect to the rubber-modified styrenic resin composition, a test piece was prepared using an injection molding machine and determined according to JIS K-7171.
 <難燃性>
 UL94のHB IEC60695-11-10 Aに準拠し、厚さ1.5mmの試験片を水平に保持し、20mm炎を30秒間接炎し、標線間75mmの燃焼速度を評価した。尚、燃焼用試験片(125×13×1.5mm)は、射出成形機(日本製鋼所社製「J100E-P」)を用いて作製した。この際、射出成形機のシリンダー温度は220℃、金型温度は45℃とした。
<Flame retardance>
In accordance with UL94 HB IEC60695-11-10 A, a 1.5 mm thick test piece was held horizontally, a 20 mm flame was indirectly flamed for 30 seconds, and a burning rate of 75 mm between marked lines was evaluated. The test piece for combustion (125 × 13 × 1.5 mm) was prepared using an injection molding machine (“J100E-P” manufactured by Nippon Steel Works). At this time, the cylinder temperature of the injection molding machine was 220 ° C., and the mold temperature was 45 ° C.
 グラフト重合時に使用するポリブタジエンの数平均分子量(Mn)、スチレン単量体中のフェニルアセチレン及びα-メチルスチレンの合計量、ゴム含有率を変えて評価した結果(実施例2から5、比較例1から4)を下記表1に示す。また、図1に実施例2で使用したポリブタジエンのMCC測定結果を示す。 Results of evaluation by changing the number average molecular weight (Mn) of polybutadiene used during graft polymerization, the total amount of phenylacetylene and α-methylstyrene in the styrene monomer, and the rubber content (Examples 2 to 5, Comparative Example 1) To 4) are shown in Table 1 below. FIG. 1 shows the MCC measurement results of the polybutadiene used in Example 2.
 なお、原料としてスチレン単量体はNSスチレンモノマー社製、ポリブタジエン(数平均分子量Mn:7.7×104)は宇部興産社製MBR-500、ポリブタジエン(数平均分子量Mn:16×104)は宇部興産社製BR-15HB、ポリブタジエン(数平均分子量Mn:24×104)は旭化成ケミカルズ社製730AX、ポリブタジエン(数平均分子量Mn:32×104)はチーメイ社製PR-040のものを使用した。 As raw materials, styrene monomer is NS styrene monomer, polybutadiene (number average molecular weight Mn: 7.7 × 10 4 ) is Ube Industries MBR-500, polybutadiene (number average molecular weight Mn: 16 × 10 4 ). Is BR-15HB manufactured by Ube Industries, Ltd., polybutadiene (number average molecular weight Mn: 24 × 10 4 ) is 730AX manufactured by Asahi Kasei Chemicals, and polybutadiene (number average molecular weight Mn: 32 × 10 4 ) is PR-040 manufactured by Chimei Corporation. used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の実施例より、総発熱量が40.0kJ/g以下且つ200℃から425℃における最大放熱率(m1)と425℃から600℃における最大放熱率(m2)の比(m2/m1)が6.0以下であるポリブタジエンを、3.0質量%以上15.0質量%以下含有するゴム変性スチレン樹脂は、燃焼速度が遅く難燃性と剛性に優れていることがわかる。また、グラフト重合時に使用するポリブタジエンの数平均分子量(Mn)が10万以上30万以下、スチレン単量体中のフェニルアセチレン及びα-メチルスチレンの合計量が100ppm以上300ppm以下であれば、そのゴム変性スチレン樹脂は水平燃焼試験の燃焼速度が遅くなり難燃性が向上することがわかる。 From the examples in Table 1, the ratio of the maximum heat release rate (m1) from 200 ° C. to 425 ° C. and the maximum heat release rate (m 2) from 425 ° C. to 600 ° C. (m 2 / m 1) It can be seen that the rubber-modified styrene resin containing 3.0% by mass or more and 15.0% by mass or less of polybutadiene having an A of 6.0 or less has a slow combustion rate and excellent flame retardancy and rigidity. If the number average molecular weight (Mn) of the polybutadiene used in the graft polymerization is 100,000 or more and 300,000 or less and the total amount of phenylacetylene and α-methylstyrene in the styrene monomer is 100 ppm or more and 300 ppm or less, the rubber It can be seen that the modified styrene resin has a slow burning rate in the horizontal burning test and improves flame retardancy.
 一方、比較例より、本発明の規定を満足しないポリブタジエンを含有するゴム変性スチレン樹脂(比較例1,2)、ポリブタジエンの含有量が本発明の規定を満足しないゴム変性スチレン樹脂(比較例3,4)は難燃性に劣る。 On the other hand, from Comparative Examples, rubber-modified styrene resins containing polybutadiene that do not satisfy the provisions of the present invention (Comparative Examples 1 and 2), rubber-modified styrene resins that do not satisfy the provisions of the present invention (Comparative Examples 3 and 3). 4) is inferior in flame retardancy.
 本発明の樹脂組成物は、難燃性に優れているため、OA機器、電子機器、雑貨等の幅広い分野での利用が有利になる。 Since the resin composition of the present invention is excellent in flame retardancy, it can be advantageously used in a wide range of fields such as OA equipment, electronic equipment, and miscellaneous goods.

Claims (3)

  1.  マイクロスケール燃焼熱量計を用いるASTM D7309 Method Aに基づいて測定される、分解炉温度200℃から600℃においての総発熱量が40.0kJ/g以下であり、200℃から425℃における最大放熱率(m1)と425℃から600℃における最大放熱率(m2)の比(m2/m1)が6.0以下であるポリブタジエンを3.0質量%以上15.0質量%以下含有することを特徴とするゴム変性スチレン系樹脂組成物。 Measured based on ASTM D7309 Method A using a micro-scale combustion calorimeter, the total heat generation at a cracking furnace temperature of 200 ° C. to 600 ° C. is 40.0 kJ / g or less, and the maximum heat release rate at 200 ° C. to 425 ° C. A polybutadiene having a ratio (m2 / m1) of (m1) to a maximum heat release rate (m2) from 425 ° C. to 600 ° C. of 6.0 or less is 3.0% by mass or more and 15.0% by mass or less. A rubber-modified styrenic resin composition.
  2.  前記ポリブタジエンの数平均分子量が10万以上30万以下であることを特徴とする請求項1に記載のゴム変性スチレン系樹脂組成物。 The rubber-modified styrene resin composition according to claim 1, wherein the polybutadiene has a number average molecular weight of 100,000 or more and 300,000 or less.
  3.  α-メチルスチレンとフェニルアセチレンの合計が100ppm以上300ppm以下のスチレンモノマーと、前記ポリブタジエンと、をグラフト重合して得られることを特徴とする請求項1又は2に記載のゴム変性スチレン系樹脂組成物。 The rubber-modified styrenic resin composition according to claim 1 or 2, which is obtained by graft polymerization of a styrene monomer having a total of α-methylstyrene and phenylacetylene of 100 ppm to 300 ppm and the polybutadiene. .
PCT/JP2019/018966 2018-05-14 2019-05-13 Rubber-modified styrene-based resin composition WO2019221069A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980031154.8A CN112105692A (en) 2018-05-14 2019-05-13 Rubber modified styrene resin composition
JP2020519629A JPWO2019221069A1 (en) 2018-05-14 2019-05-13 Rubber-modified styrene resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018093282 2018-05-14
JP2018-093282 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019221069A1 true WO2019221069A1 (en) 2019-11-21

Family

ID=68539847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018966 WO2019221069A1 (en) 2018-05-14 2019-05-13 Rubber-modified styrene-based resin composition

Country Status (3)

Country Link
JP (1) JPWO2019221069A1 (en)
CN (1) CN112105692A (en)
WO (1) WO2019221069A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075865A (en) * 2002-08-20 2004-03-11 Idemitsu Petrochem Co Ltd Rubber-modified styrene resin composition for blow molding, and its molded article
JP2017002237A (en) * 2015-06-12 2017-01-05 東洋スチレン株式会社 Rubber modified styrene resin composition and molded body using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873684A (en) * 1994-09-01 1996-03-19 Daicel Chem Ind Ltd Flame-retardant resin composition
JP5437606B2 (en) * 2008-08-06 2014-03-12 東洋スチレン株式会社 Rubber-modified styrenic resin composition, and sheet and container using the same
JP2013108032A (en) * 2011-11-24 2013-06-06 Toyo Styrene Co Ltd Styrenic flame retardant resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075865A (en) * 2002-08-20 2004-03-11 Idemitsu Petrochem Co Ltd Rubber-modified styrene resin composition for blow molding, and its molded article
JP2017002237A (en) * 2015-06-12 2017-01-05 東洋スチレン株式会社 Rubber modified styrene resin composition and molded body using the same

Also Published As

Publication number Publication date
JPWO2019221069A1 (en) 2021-05-27
CN112105692A (en) 2020-12-18

Similar Documents

Publication Publication Date Title
JP5237640B2 (en) Aromatic vinyl compound- (meth) acrylic acid copolymer resin-containing composition and method for producing the same
US20130144013A1 (en) Process for Preparing High Impact Monovinylaromatic Polymers in the Presence of a Borane Complex
JP2018048248A (en) Resin composition, method for producing resin composition, molded body obtained from resin composition, and method for producing molded body
JPS63146960A (en) Thermoplastic resin composition
WO2015125707A1 (en) Thermoplastic resin composition, and molded article and method for producing same
KR101562093B1 (en) Flame retardant thermoplastic resin composition and article comprising the same
JP2016528370A (en) Heat resistant styrene copolymer and styrene resin composition containing the same
KR101827613B1 (en) Rubber-modified vinyl-based graft copolymer and thermoplastic resin composition comprising the same
WO2019221069A1 (en) Rubber-modified styrene-based resin composition
EP3412726B1 (en) Non-halogen flame-retardant resin composition
JP2006336007A (en) Polycarbonate based resin composition
KR20130068871A (en) Heat-resistant abs resin composition with excellent processability and resistance for discoloration at high temperature and method for preparing the same
US20060142487A1 (en) Process for the production of a transparent rubber-modified monovinylidene aromatic resin
JP6235301B2 (en) Resin composition and molded body comprising the same
JP6267925B2 (en) Resin composition and molded body comprising the same
CN115850898B (en) Styrene composition and preparation method and application thereof
JP2004277676A (en) Flame retardant and rubber-modified styrene-based resin composition
US11661510B2 (en) Thermoplastic resin composition and molded product manufactured therefrom
JP3926343B2 (en) Vinyl chloride resin composition
JPH08225709A (en) Flame-retardant thermoplastic resin composition
KR100788590B1 (en) Production method for monovinylaromatic polymer with improved environmental stress crack resistance
JP3243046B2 (en) High rigidity flame-retardant resin composition with excellent surface impact strength
JP2837738B2 (en) Light-resistant flame-retardant resin composition
JPS62260852A (en) Impact-resistant resin composition
CN116783227A (en) High impact monovinylidene aromatic polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802508

Country of ref document: EP

Kind code of ref document: A1