WO2019221009A1 - Biomass bunker and boiler plant comprising same - Google Patents
Biomass bunker and boiler plant comprising same Download PDFInfo
- Publication number
- WO2019221009A1 WO2019221009A1 PCT/JP2019/018599 JP2019018599W WO2019221009A1 WO 2019221009 A1 WO2019221009 A1 WO 2019221009A1 JP 2019018599 W JP2019018599 W JP 2019018599W WO 2019221009 A1 WO2019221009 A1 WO 2019221009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bunker
- biomass
- valve
- conveyor
- water
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K1/00—Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
Definitions
- the present invention relates to a biomass bunker that stores biomass fuel and a boiler plant that burns biomass fuel.
- Woody biomass pellets are used as biomass fuel applied to thermal power plants because they are easy to handle. Woody biomass pellets are obtained by forming woody biomass into pellets. The woody biomass pellets are stored in a biomass bunker, conveyed from the biomass bunker to a vertical crusher, and crushed.
- pulverization is more appropriate as a term representing the size of the woody biomass pellets suitable for combustion, in the present specification, “pulverization” is used in accordance with the example of coal. The pulverized woody biomass pellets are supplied to a boiler device and burned.
- Biomass fuel has a large amount of volatile components, and thus tends to burn quickly if not properly managed. For this reason, the biomass bunker that stores the woody biomass pellets is required to be manageable so that the stored woody biomass pellets do not reach rapid combustion.
- Patent Document 1 includes a temperature detector for monitoring the temperature in the hopper in a pyrite hopper attached to the coal-fired boiler plant, and a spray water header for injecting spray water into the hopper. When the detected temperature becomes equal to or higher than the set temperature, there is known one that sprays spray water from the spray water header into the hopper (see Patent Document 1).
- Patent Document 2 states that “in a vertical crushing apparatus in which a contracted flow area is formed between a housing and a mortar-shaped hopper, A flow rate adjusting member for adjusting the rising speed is provided (summary excerpt). "A vertical crusher capable of crushing both coal and biomass is disclosed. If the biomass bunker is also provided with a temperature detector and a spray water header similar to those of the pyrite hopper, an excessive temperature rise of the woody biomass pellets can be suppressed, and rapid combustion can be prevented. In addition, spraying water can suppress the generation of dust in the biomass bunker, which can reduce the mixture concentration of dust and air in highly flammable biomass fuel. From this point also, rapid combustion occurs in the biomass bunker. Can be suppressed.
- woody biomass pellets stored in the biomass bunker are highly water-absorbing and have characteristics not found in coal that collapse when they get wet and become fine particles. It is inappropriate to install the spray water header as it is in the biomass bunker.
- woody biomass pellets applied to thermal power plants include those called black pellets and those called white pellets because of the appearance color.
- Black pellets are obtained by roasting biomass and semi-carbonizing it to bring it closer to the properties of coal.
- white pellets are obtained by solidifying a finely ground biomass chip into a cylindrical shape.
- Black pellets have relatively high water resistance, so no special problem will occur even if spray water is sprayed in the bunker.
- white pellets are highly water-absorbing and disintegrate into fine particles when wetted with water, making it easier to absorb water. If a large amount of spray water is injected in the bunker, the combustion efficiency is poor. In addition, the water swells to a large extent and becomes a compacted state, which tends to cause a problem that the evacuation from the bunker is deteriorated.
- white pellets have high water absorption, they tend to adhere to the contact surfaces of the bunker and the transport equipment provided on the downstream side, and the problem of hindering transport tends to occur. Furthermore, white pellets are easily fermented when a large amount of water is absorbed, and volatilization of volatilization increases due to the heat of fermentation. Therefore, there is a concern that spraying spray water may easily cause rapid combustion.
- the present invention has been made to solve such problems of the prior art, and its purpose is to reliably prevent rapid combustion of stored biomass fuel and to prevent deterioration of biomass fuel due to water absorption. It is to provide a possible biomass bunker and a boiler plant equipped with the same.
- the present invention has the structure described in the claims.
- the present invention includes a bunker main body for storing biomass fuel, a humidity monitor for detecting humidity in the bunker main body, a two-fluid nozzle for injecting a mixed fluid of water and air, and the two A water supply pipe and an air supply pipe connected to the fluid nozzle, a flow control valve provided in the water supply pipe, an on-off valve provided in the air supply pipe, and switching between the flow control valve and the open / close valve.
- a control panel that controls, when the control panel determines that the detected value of the humidity monitor is lower than a set value set in the control panel, the flow control valve and the on-off valve from the closed state It switches to an open state, The mixed fluid of water and air is injected into the said bunker from the said 2 fluid nozzle, It is characterized by the above-mentioned.
- the present invention has the above-described configuration, it is possible to provide a biomass bunker and a boiler plant that can reliably prevent rapid combustion of stored biomass pellets and can prevent deterioration of biomass fuel due to water absorption. Problems, configurations, and effects other than those described above will become apparent from the description of the embodiments described below.
- FIG. 2 is a configuration diagram of a coal / biomass-fired boiler plant according to the embodiment.
- the coal / biomass-fired boiler plant 1 according to the embodiment includes a furnace 2 that burns coal and biomass fuel, a pulverized coal supply unit 3 that supplies pulverized coal to the furnace 2, and biomass in the furnace 2. It is mainly composed of a biomass fuel supply unit 4 that supplies fuel and an exhaust gas purification device 5 that purifies combustion exhaust gas generated in the furnace 2.
- the furnace 2 includes a pulverized coal-burning burner 11 and a biomass-burning burner 12, and co-fires pulverized coal supplied from the pulverized coal supply unit 3 and biomass fuel supplied from the biomass fuel supply unit 4. It is configured as follows.
- the pulverized coal supply unit 3 includes a raw coal bunker 21 that stores raw coal, a raw coal carry-in conveyor 22 that carries raw coal into a raw coal bunker 21 from a coal storage not shown, and raw coal supplied from the raw coal bunker 21. Is pulverized into a predetermined size to produce pulverized coal as fuel, and the pulverized coal generated by the first vertical pulverizer 23 is supplied to the pulverized coal-burning burner 11. And a coal supply pipe 24. The pulverized coal generated by the first vertical crushing device 23 is dried by the transfer gas 25 blown into the first vertical crushing device 23, and passes through the coal supply pipe 24 to burn the pulverized coal exclusively burner 11. To be supplied.
- the biomass fuel supply unit 4 has a predetermined size of the biomass bunker 31 that stores the biomass fuel, the biomass carry-in conveyor 33 that carries the biomass fuel from the biomass silo 32 into the biomass bunker 31, and the biomass fuel that is supplied from the biomass bunker 31.
- a second vertical crusher 34 that generates a pulverized biomass fuel that is pulverized into fuel, and a biomass feed pipe that supplies the pulverized biomass fuel generated by the second vertical pulverizer 34 to the biomass-burning burner 12 35.
- the pulverized biomass fuel produced by the second vertical pulverizer 34 is dried by the transfer gas 36 blown into the second vertical pulverizer 34, and passes through the biomass feed pipe 35 to burn the biomass exclusively. 12 is supplied.
- As the second vertical crusher 34 a coal vertical crusher similar to the first vertical crusher 23 can be used.
- a conductive material such as steel or conductive rubber is used as the material of the conveyor.
- a static elimination device 50 for example, an ionizer or a static elimination rod
- woody biomass pellets such as black pellets or white pellets and woody biomass chips such as thinned wood or offcuts can be used.
- the transfer gases 25 and 36 combustion exhaust gas generated in the furnace 2 or a mixed gas of combustion exhaust gas and primary air can be used.
- the exhaust gas purification device 5 includes a denitration device 41, an air preheater 42, and an electric dust collector 43.
- the combustion exhaust gas generated in the furnace 2 is purified through the denitration device 41, the air preheater 42, and the electric dust collector 43, and released from the chimney (not shown) to the atmosphere.
- the configuration of the exhaust gas purification device 5 is not limited to this, and for example, another device such as a wet desulfurization device may be added, or a bag filter may be provided instead of the electric dust collector 43.
- FIG. 1 is a configuration diagram of a biomass bunker according to the first embodiment.
- a biomass bunker 31 according to the first embodiment includes a bunker body 51 that stores biomass fuel, a humidity monitor 52 that detects humidity in the bunker body 51, and a mixed fluid of water and air.
- the on-off valve 57 provided on the provided flow control valve 56 and the air supply pipe 55 and the control panel 58 for controlling the switching of the flow control valve 56 and the on-off valve 57 are provided.
- the biomass bunker 31 is earth
- the bunker body 51 has a hopper structure in which an upper part from a substantially central part is formed in a cylindrical shape and a lower part from the substantially central part is formed in an inverted conical shape.
- a biomass fuel inlet (not shown) is opened at the top of the bunker body 51, and a biomass fuel outlet (not shown) is opened at the bottom.
- the humidity monitor 52 may be one that monitors the absolute humidity in the bunker body 51 or one that monitors the relative humidity in the bunker body 51. However, the humidity monitor 52 can more easily generate static electricity in the bunker body 51. It is more advantageous to monitor the relative humidity because it can be monitored directly.
- the two-fluid nozzle 53 ejects fine water droplets according to the so-called spraying principle.
- fine water droplets can be injected into the bunker main body 51 as compared with the case where the spray water header is used. Therefore, the bunker main body 51 is not submerged without immersing the biomass fuel stored in the bunker main body 51. Inside humidity can be adjusted.
- the supply start and supply stop of the mixed fluid into the bunker main body 51 are performed by switching control of the flow rate adjusting valve 56 and the on-off valve 57 by a switching signal output from the control panel 58.
- the control panel 58 determines that the detected value of the humidity monitor 52 is equal to or less than the set value set in the control panel 58, the flow control valve 56 and the on-off valve 57 are switched from the closed state to the open state, and the two-fluid nozzle 53 Further, a mixed fluid of water and air is injected into the bunker body 51.
- control panel 58 determines that the detected value of the humidity monitor 52 exceeds the set value set in the control panel 58, the control panel 58 switches the flow control valve 56 and the on-off valve 57 from the open state to the closed state. The ejection of the mixed fluid from the fluid nozzle 53 is stopped.
- FIG. 3 is a functional block diagram of the control panel according to the first embodiment.
- the control panel 58 includes a signal input unit 62, a signal output unit 63, a CPU (Central Processing Unit) 64, and a ROM (Read Only Memory) 65 connected to each other via a bus. And a computer having hardware resources such as a RAM (Random Access Memory) 66.
- the signal input unit 62 receives a detection signal from the humidity monitor 52 and an output signal from an input device 61 such as a keyboard input device or a touch panel input device.
- the signal output unit 63 is connected to a drive operation unit of the flow rate adjustment valve 56 and a drive operation unit of the on-off valve 57.
- the operator of the coal / biomass-fired boiler plant 1 operates the input device 61 to set the flow rate of the flow rate control valve 56 and the humidity threshold value for regulating the drive timing of the flow rate control valve 56 and the on-off valve 57. be able to.
- the humidity threshold is set in the range of 30-40% relative humidity. When the relative humidity in the bunker body 51 falls below the range of 30 to 40%, the biomass fuel stored in the bunker body 51 is likely to be charged with static electricity, and rapid combustion occurs in the volatile components volatilized from the biomass fuel by discharge. This is because it becomes easier.
- the humidity threshold value is not limited to the above value, and can be set to an appropriate value in accordance with the operation of the coal / biomass-fired boiler plant 1.
- the ROM 65 is a nonvolatile semiconductor memory that can retain programs and data even when the power is turned off.
- the ROM 65 stores a control program for the flow rate control valve 56 and the on-off valve 57 and a set flow rate and humidity threshold value of the flow rate control valve 56 input from the input device 61.
- the ROM 65 includes an SD memory card, a USB (Universal Serial Bus) memory, and the like.
- the RAM 66 is a volatile semiconductor memory that temporarily stores programs and data.
- the CPU 64 reads out the control program for the flow rate control valve 56 and the on-off valve 57 from the ROM 65, the set flow rate and the humidity threshold value of the flow rate control valve 56, and develops them on the RAM 66, and executes the control program for the flow rate control valve 56 and the on-off valve 57 .
- the CPU 64 functions as a control device that appropriately switches and controls the flow rate adjustment valve 56 and the on-off valve 57 according to the humidity in the bunker body 51.
- FIG. 4 is a flowchart showing a switching control procedure of the flow rate control valve and the on-off valve according to the first embodiment.
- the CPU 64 repeatedly fetches the detection value of the humidity monitor 52 into the RAM 66 (procedure S1). Further, each time the CPU 64 fetches the detection value of the humidity monitor 52 into the RAM 66, it determines whether or not the fetched detection value of the humidity monitor 52 falls below the humidity threshold value (set value) stored in the ROM 65 ( Procedure S2). If it is determined in step S2 that the detected value of the humidity monitor 52 is below the humidity threshold (set value) (Yes in step S2), the process proceeds to step S3, and the flow rate adjustment valve 56 and the on-off valve 57 are turned on. By switching from the closed state to the open state, a mixed fluid of water and air is injected into the bunker body 51.
- step S2 when it is determined in step S2 that the detected value of the humidity monitor 52 is equal to or higher than the humidity threshold (set value) (No in step S2), the process proceeds to step S4, and the flow rate control valve 56 and the on-off valve 57 is switched from the open state to the closed state, and the injection of the mixed fluid into the bunker body 51 is stopped.
- the injection of the mixed fluid can be performed before and after the biomass fuel is introduced into the bunker main body 51.
- the biomass bunker 31 according to the embodiment and the boiler plant 1 equipped with the biomass bunker 31 can maintain the relative humidity in the bunker main body 51 at a humidity at which static electricity is unlikely to be generated. Combustion can be prevented. Moreover, since the biomass bunker 31 and the boiler plant 1 equipped with the biomass bunker 31 according to the embodiment can impart appropriate moisture in the bunker body 51, generation of dust from the biomass fuel can be suppressed, and rapid mixing of dust mixed with air can be achieved. Combustion can be prevented.
- the biomass bunker 31 according to the embodiment and the boiler plant 1 including the same are injected with a mixed fluid of air and water into the bunker body 51, the bunker body 51 is different from the case where water is injected from the spray water header. It is possible to prevent the biomass fuel inside from becoming soaked. Therefore, according to the biomass bunker 31 and the boiler plant 1 including the same according to the embodiment, even when white pellets or woody biomass chips are used as the biomass fuel, the collapse or excessive expansion of the biomass fuel is prevented, and the bunker Ejectability from the main body 51 and transportability by transport equipment can be appropriately maintained. Moreover, since fermentation by the feed water of biomass fuel can be suppressed, volatilization of volatile matter can be suppressed, and the occurrence of rapid combustion can also be suppressed from this point.
- the second embodiment is an embodiment in which the injection control process of the mixed fluid is switched between a state in which biomass fuel is input (loaded) into the bunker body 51 and a state in which the biomass fuel is stored but not input.
- 1st Embodiment pays attention only to the detected value of the humidity monitor 52, determines whether to inject or stop the fluid mixture of water and air, and does not pay attention to whether biomass fuel is thrown in or not. This is different from the second embodiment.
- the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
- Injection control of a mixed gas in an injection control process (corresponding to the first control process) in a state where biomass fuel is input and an injection control process (corresponding to a second control process) in a state where biomass fuel is not input The reason for changing is that the biomass fuel is more likely to be charged with static electricity than coal, and in particular, the friction between the biomass powders is more increased during charging, so that the charging property is further increased.
- the charge amount and the powder resistivity of the biomass powder were measured, it was confirmed that the charge amount was 10 to 100 times larger than the coal powder, and the low powder efficiency was 10 7 orders of magnitude larger. .
- the risk level of charging can be evaluated as “medium”.
- the energy required for the biomass powder to ignite is several mJ to several tens of mJ, which may be ignited with an energy level of static electricity.
- coal powder does not ignite without a relatively large energy of several hundred mJ.
- the device is a device that can measure the potential of a charged object in accordance with JIS C61340-2-1: 2006, and the temperature and humidity can be controlled to be constant in an environmental test machine.
- FIG. 6 is a configuration diagram of the biomass bunker according to the second embodiment. As shown in FIG. 6, the biomass bunker 31 a according to the second embodiment further includes a fuel gauge 81 that measures the storage amount in the bunker body 51.
- FIG. 7 is a functional block diagram of the control panel according to the second embodiment. As shown in FIG. 7, the detection signal of the fuel gauge 81 is input to the control panel 58.
- a conveyor ON / OFF signal is input to the control panel 58 from a conveyor activation switch 82 that switches activation / deactivation of the biomass carry-in conveyor 33.
- Control board 58 further includes a timer 83. And the injection time of the mixed gas of water and air is measured, and if it becomes more than predetermined time, injection will be stopped.
- the predetermined time means, for example, that when the input biomass pellets uniformly absorb moisture, the amount of water is such that the increase in the amount of moisture allowed from the viewpoint of adhesion to the wall surface and the collapse of the pellets is less than 0.1%. And determined based on the injection amount per unit time. Further, for example, it may set a time for humidifying the volume V m 3 of biomass bunker to the target humidity.
- the target humidity is set in the bunker when the design minimum absolute humidity x kg-w / kg-air, target absolute humidity y kg-w / kg-air, air density ⁇ kg / m 3 , and correction coefficient a are set.
- FIG. 8 is a flowchart showing a switching control procedure of the flow rate control valve and the on-off valve according to the second embodiment.
- FIG. 9 is a timing chart showing a switching process between the flow rate control valve and the on-off valve according to the second embodiment.
- the process of transition from S10 OFF to S11 and S12 corresponds to a first control process performed in a state where biomass fuel is not input. Further, the process of transition from ON of S10 to S1 corresponds to a second control process that is performed while the biomass fuel is being charged.
- the fuel gauge is input to the control panel 58.
- the detection value 82 is input (S11).
- the detected value (remaining amount) indicated by the fuel gauge 82 exceeds a predetermined remaining amount threshold value (S12 / No)
- the biomass carry-in conveyor 33 When the detected value (remaining amount) indicated by the fuel gauge 82 becomes equal to or less than a predetermined remaining amount threshold value (S12 / Yes; T1 in FIG. 9), the biomass carry-in conveyor 33 has not yet started, but the bunker main body 51 It is predicted that the biomass carry-in conveyor 33 will start soon in order to input the biomass fuel. Then, it progresses to procedure S1 and the detected value of a humidity monitor is input into the control panel 58 (S1).
- a predetermined remaining amount threshold value S12 / Yes; T1 in FIG. 9
- the monitoring process of the injection duration using the timer 83 is added to the mixed fluid injection control process in the first embodiment. That is, when the detected value of the humidity monitor is equal to or lower than the lower limit value of the relative humidity target range in step S2 (S2 / Yes), the timer 83 is turned on (S51) and measurement of the injection duration time is started. If the injection duration is less than the predetermined time (S52 / Yes), the mixed fluid is injected into the bunker (S3).
- the mixed fluid can be injected to increase the relative humidity. Since cone discharge may occur when biomass fuel is input to the bunker main body 51, the bunker humidity is temporarily increased before the bunker is input. If a large amount of water is used, the biomass pellets may get wet and the shape may collapse. Therefore, in step S51, the elapsed time is measured, and when the predetermined time or more is reached (S52 / No), the mixed fluid is injected. Stop (S4) and turn off the timer 83 (S53). In order to prevent the necessary wetting of the bimus pellets, the above-described method was adopted because a large amount of water cannot be used.
- the biomass fuel in the bunker main body 51 is carried out and the remaining amount decreases. If the biomass carry-in conveyor 33 is activated again and a conveyor ON signal is input (S10 / ON) and the detected value of the humidity monitor at that time is equal to or lower than the lower limit (S2 / Yes; T5 in FIG. 9), the mixing is performed again. Restart fluid injection.
- the injection of the mixed fluid can be started in order to increase the relative humidity to the target range, and the occurrence of cone discharge can be suppressed in advance.
- the third embodiment is a mode in which the mixed fluid is forcibly jetted while the biomass carry-in conveyor 33 is activated.
- This embodiment is an embodiment in which the conveyor ON / OFF signal is handled as a higher order command.
- control panel 58 When the control panel 58 receives the input of the conveyor ON signal (S61 / Yes; T11 in FIG. 11), it injects the mixed fluid into the bunker (S3).
- control panel 58 When the control panel 58 receives the input of the conveyor OFF signal (S62 / Yes; T12 in FIG. 11), the timer 83 is started and measurement of elapsed time is started (S63).
- the control panel 58 continues to inject the mixed gas until the elapsed time reaches the stop margin time ⁇ T (T13-T12) (S64 / No).
- the control panel 58 stops the injection of the mixed gas (S4) and stops the timer 83 (S65).
- the mixed fluid is forcibly injected while the biomass carry-in conveyor 33 is activated, and the mixed fluid is injected until the biomass fuel settles immediately after the stop, so that charging can be suppressed.
- the injection of the mixed fluid is stopped after the stop margin time has elapsed.
- the detected value of the humidity monitor 52 is the target value even after the stop margin time has elapsed.
- the mixed fluid may be ejected.
- the first to third embodiments may be combined as appropriate.
- Denitration apparatus 42 ... Air preheater, 43 ... Electric dust collector, 51 ... Bunker main body, 52 ... Humidity monitor, 53 ... Two-fluid nozzle, 54 ... Water supply pipe, 55 ... Air supply pipe, 56 ... Flow control valve, 57 ... On-off valve, 58 ... Control panel, 81 ... Fuel gauge, 82 ... Conveyor start switch.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Of Fluid Fuel (AREA)
Abstract
A biomass bunker (31) comprises: a bunker (51) that stores biomass fuel; a humidity monitoring meter (52) that detects the humidity in the bunker (51); a two-fluid nozzle (53) that injects a mixed fluid of water and air; a water supply pipe (54) and an air supply pipe (55) that are connected to the two-fluid nozzle (53); a flow rate regulating valve (56) provided in the water supply pipe (54) and an on-off valve (57) provided in the air supply pipe (55); and a control panel (58) that controls switching of the flow rate regulating valve (56) and the on-off valve (57). The control panel (58) switches the flow rate regulating valve (56) and the on-off valve (57) from the closed state to the open state when the detected value from the humidity monitoring meter (52) drops below a set value that is set in the control panel (58).
Description
本発明は、バイオマス燃料を貯蔵するバイオマスバンカ及びバイオマス燃料を燃焼するボイラプラントに関する。
The present invention relates to a biomass bunker that stores biomass fuel and a boiler plant that burns biomass fuel.
近年、火力発電プラントにおいては、経済性や環境問題に配慮し、微粉炭の代替燃料として又は微粉炭との混焼用燃料としてバイオマス燃料を用いるプラントの新設・改造が進められている。火力発電プラントに適用されるバイオマス燃料として、取り扱いが容易であることから木質バイオマスペレットが用いられている。木質バイオマスペレットは、木質バイオマスをペレット状に成形したものである。木質バイオマスペレットは、バイオマスバンカに貯蔵され、バイオマスバンカから竪型粉砕装置に搬送されて粉砕される。木質バイオマスペレットを燃焼に適した大きさにすることを表す用語としては「解砕」がより適切であるが、本明細書においては、石炭の例に倣って「粉砕」という。粉砕された木質バイオマスペレットは、ボイラ装置に供給されて燃焼される。
In recent years, in thermal power plants, in consideration of economic efficiency and environmental problems, new construction and remodeling of plants using biomass fuel as an alternative fuel for pulverized coal or as a mixed combustion fuel with pulverized coal are being promoted. Woody biomass pellets are used as biomass fuel applied to thermal power plants because they are easy to handle. Woody biomass pellets are obtained by forming woody biomass into pellets. The woody biomass pellets are stored in a biomass bunker, conveyed from the biomass bunker to a vertical crusher, and crushed. Although “pulverization” is more appropriate as a term representing the size of the woody biomass pellets suitable for combustion, in the present specification, “pulverization” is used in accordance with the example of coal. The pulverized woody biomass pellets are supplied to a boiler device and burned.
バイオマス燃料は、揮発分が多いため、適切に管理しないと急速燃焼を起こしやすい。このため、木質バイオマスペレットを貯蔵するバイオマスバンカには、貯蔵されている木質バイオマスペレットが急速燃焼に至らないように管理可能であることが求められる。
∙ Biomass fuel has a large amount of volatile components, and thus tends to burn quickly if not properly managed. For this reason, the biomass bunker that stores the woody biomass pellets is required to be manageable so that the stored woody biomass pellets do not reach rapid combustion.
そこで、特許文献1には、石炭焚きボイラプラントに付設されるパイライトホッパに、ホッパ内の温度を監視する温度検出器と、ホッパ内にスプレー水を噴射するスプレー水ヘッダとを備え、温度検出器の検出温度が設定温度以上になったときに、スプレー水ヘッダからホッパ内にスプレー水を噴射するものが知られている(特許文献1参照)。
Therefore, Patent Document 1 includes a temperature detector for monitoring the temperature in the hopper in a pyrite hopper attached to the coal-fired boiler plant, and a spray water header for injecting spray water into the hopper. When the detected temperature becomes equal to or higher than the set temperature, there is known one that sprays spray water from the spray water header into the hopper (see Patent Document 1).
また、特許文献2には、「ハウジングとすり鉢状ホッパの間に縮流領域が形成された竪型粉砕装置において、縮流領域に粉砕粉と搬送用気体の混合物からなる固気二相流の上昇速度を調整するための流速調整部材を設けた(要約抜粋)」石炭とバイオマスの両方が粉砕できる竪型粉砕装置が開示されている。バイオマスバンカについても、パイライトホッパと同様の温度検出器及びスプレー水ヘッダを備えれば、木質バイオマスペレットの過剰な温度上昇を抑制できて、急速燃焼の発生を防止できる。また、スプレー水を噴射することによりバイオマスバンカ内における粉塵の発生を抑制できるので、可燃性の高いバイオマス燃料の粉塵と空気の混合濃度を低下でき、この点からもバイオマスバンカ内における急速燃焼の発生を抑制できる。
Patent Document 2 states that “in a vertical crushing apparatus in which a contracted flow area is formed between a housing and a mortar-shaped hopper, A flow rate adjusting member for adjusting the rising speed is provided (summary excerpt). "A vertical crusher capable of crushing both coal and biomass is disclosed. If the biomass bunker is also provided with a temperature detector and a spray water header similar to those of the pyrite hopper, an excessive temperature rise of the woody biomass pellets can be suppressed, and rapid combustion can be prevented. In addition, spraying water can suppress the generation of dust in the biomass bunker, which can reduce the mixture concentration of dust and air in highly flammable biomass fuel. From this point also, rapid combustion occurs in the biomass bunker. Can be suppressed.
しかしながら、バイオマスバンカに貯えられる木質バイオマスペレットには、吸水性が高く、水に濡れると崩壊して細かな粒子となるという石炭にはない特質を有しているので、パイライトホッパに備えられているスプレー水ヘッダをそのままバイオマスバンカに備えることは不適当である。
However, the woody biomass pellets stored in the biomass bunker are highly water-absorbing and have characteristics not found in coal that collapse when they get wet and become fine particles. It is inappropriate to install the spray water header as it is in the biomass bunker.
この点について詳細に説明すると、火力発電プラントに適用される木質バイオマスペレットには、外観の色味からブラックペレットと呼ばれるものと、ホワイトペレットと呼ばれるものとがある。ブラックペレットは、バイオマスを焙煎して半炭化し、石炭の性状に近づけたものである。これに対してホワイトペレットは、細かく粉砕したバイオマスチップを円筒状に固めたものである。
Describing in detail this point, woody biomass pellets applied to thermal power plants include those called black pellets and those called white pellets because of the appearance color. Black pellets are obtained by roasting biomass and semi-carbonizing it to bring it closer to the properties of coal. On the other hand, white pellets are obtained by solidifying a finely ground biomass chip into a cylindrical shape.
ブラックペレットは、比較的耐水性が高いので、バンカ内でスプレー水が噴射されても格別な問題を生じない。これに対して、ホワイトペレットは、吸水性が高く、水に濡れると崩壊して細かな粒子となり、更に吸水しやすくなるため、バンカ内でスプレー水が大量に噴射されると、燃焼効率が悪くなるだけでなく、吸水により大きく膨張して圧密状態となり、バンカからの排出性が悪くなるという問題を生じやすい。また、ホワイトペレットは、吸水性が高いことから、バンカ及びその後流側に備えられた搬送機器類の接触面に付着しやすく、搬送に支障を生じるという問題も生じやすい。更に、ホワイトペレットは、多量に吸水すると発酵しやすくなり、発酵熱によって揮発分の揮散が増加するため、スプレー水を噴射することによって却って急速燃焼が生じやすくなることも懸念される。
¡Black pellets have relatively high water resistance, so no special problem will occur even if spray water is sprayed in the bunker. In contrast, white pellets are highly water-absorbing and disintegrate into fine particles when wetted with water, making it easier to absorb water. If a large amount of spray water is injected in the bunker, the combustion efficiency is poor. In addition, the water swells to a large extent and becomes a compacted state, which tends to cause a problem that the evacuation from the bunker is deteriorated. In addition, since white pellets have high water absorption, they tend to adhere to the contact surfaces of the bunker and the transport equipment provided on the downstream side, and the problem of hindering transport tends to occur. Furthermore, white pellets are easily fermented when a large amount of water is absorbed, and volatilization of volatilization increases due to the heat of fermentation. Therefore, there is a concern that spraying spray water may easily cause rapid combustion.
なお、このような問題は、ホワイトペレットを貯蔵する場合だけでなく、間伐材や端材等の木質バイオマスチップを貯蔵する場合にも同様に発生する。
Such a problem occurs not only when storing white pellets, but also when storing woody biomass chips such as thinned wood and offcuts.
本発明は、このような従来技術の問題点を解決するためになされたものであり、その目的は、貯蔵されたバイオマス燃料の急速燃焼を確実に防止でき、かつ吸水によるバイオマス燃料の変質を防止可能なバイオマスバンカと、これを備えたボイラプラントとを提供することにある。
The present invention has been made to solve such problems of the prior art, and its purpose is to reliably prevent rapid combustion of stored biomass fuel and to prevent deterioration of biomass fuel due to water absorption. It is to provide a possible biomass bunker and a boiler plant equipped with the same.
上記目的を達成するために、本発明は請求の範囲に記載の構成を備える。その一例をあげるならば、本発明は、バイオマス燃料を貯蔵するバンカ本体と、前記バンカ本体内の湿度を検出する湿度監視計と、水と空気の混合流体を噴射する二流体ノズルと、前記二流体ノズルに接続された水供給管及び空気供給管と、前記水供給管に備えられた流量調節弁及び前記空気供給管に備えられた開閉弁と、前記流量調節弁及び前記開閉弁の切換を制御する制御盤と、を備え、前記制御盤は、前記湿度監視計の検出値が前記制御盤に設定された設定値を下回ったと判定したとき、前記流量調節弁及び前記開閉弁を閉状態から開状態に切り換えて、前記二流体ノズルより前記バンカ内に、水及び空気の混合流体を噴射することを特徴とする。
In order to achieve the above object, the present invention has the structure described in the claims. For example, the present invention includes a bunker main body for storing biomass fuel, a humidity monitor for detecting humidity in the bunker main body, a two-fluid nozzle for injecting a mixed fluid of water and air, and the two A water supply pipe and an air supply pipe connected to the fluid nozzle, a flow control valve provided in the water supply pipe, an on-off valve provided in the air supply pipe, and switching between the flow control valve and the open / close valve. A control panel that controls, when the control panel determines that the detected value of the humidity monitor is lower than a set value set in the control panel, the flow control valve and the on-off valve from the closed state It switches to an open state, The mixed fluid of water and air is injected into the said bunker from the said 2 fluid nozzle, It is characterized by the above-mentioned.
本発明は、上記の構成を備えているので、貯蔵されたバイオマスペレットの急速燃焼を確実に防止でき、かつ吸水によるバイオマス燃料の変質を防止可能なバイオマスバンカ及びボイラプラントを提供できる。上記した以外の課題、構成及び効果は、以下に記載する実施形態の説明により明らかにされる。
Since the present invention has the above-described configuration, it is possible to provide a biomass bunker and a boiler plant that can reliably prevent rapid combustion of stored biomass pellets and can prevent deterioration of biomass fuel due to water absorption. Problems, configurations, and effects other than those described above will become apparent from the description of the embodiments described below.
まず、本発明に係るボイラプラントの実施形態を図に基づいて説明する。なお、以下においては石炭・バイオマス焚きボイラプラントを例にとって説明するが、本発明の要旨はこれに限定されるものではなく、バイオマス専焼ボイラプラントにも適用できる。
First, an embodiment of a boiler plant according to the present invention will be described with reference to the drawings. In the following, a coal / biomass-fired boiler plant will be described as an example. However, the gist of the present invention is not limited to this and can be applied to a biomass-fired boiler plant.
図2は、実施形態に係る石炭・バイオマス焚きボイラプラントの構成図である。図2に示すように、実施形態に係る石炭・バイオマス焚きボイラプラント1は、石炭及びバイオマス燃料を燃焼する火炉2と、火炉2に微粉炭を供給する微粉炭供給部3と、火炉2にバイオマス燃料を供給するバイオマス燃料供給部4と、火炉2内で発生した燃焼排ガスを浄化する排ガス浄化装置5と、から主に構成されている。
FIG. 2 is a configuration diagram of a coal / biomass-fired boiler plant according to the embodiment. As shown in FIG. 2, the coal / biomass-fired boiler plant 1 according to the embodiment includes a furnace 2 that burns coal and biomass fuel, a pulverized coal supply unit 3 that supplies pulverized coal to the furnace 2, and biomass in the furnace 2. It is mainly composed of a biomass fuel supply unit 4 that supplies fuel and an exhaust gas purification device 5 that purifies combustion exhaust gas generated in the furnace 2.
火炉2には、微粉炭専焼バーナ11及びバイオマス専焼バーナ12が備えられており、微粉炭供給部3から供給される微粉炭と、バイオマス燃料供給部4から供給されるバイオマス燃料と、を混焼するように構成されている。
The furnace 2 includes a pulverized coal-burning burner 11 and a biomass-burning burner 12, and co-fires pulverized coal supplied from the pulverized coal supply unit 3 and biomass fuel supplied from the biomass fuel supply unit 4. It is configured as follows.
微粉炭供給部3は、原炭を貯える原炭バンカ21と、図示しない貯炭場から原炭バンカ21内に原炭を搬入する原炭搬入コンベア22と、原炭バンカ21から供給される原炭を所定の大きさに粉砕して燃料である微粉炭を生成する第1の竪型粉砕装置23と、第1の竪型粉砕装置23で生成された微粉炭を微粉炭専焼バーナ11に供給する給炭管24と、を含んで構成されている。第1の竪型粉砕装置23で生成された微粉炭は、第1の竪型粉砕装置23に吹き込まれた搬送用気体25により乾燥されると共に、給炭管24を通って微粉炭専焼バーナ11に供給される。
The pulverized coal supply unit 3 includes a raw coal bunker 21 that stores raw coal, a raw coal carry-in conveyor 22 that carries raw coal into a raw coal bunker 21 from a coal storage not shown, and raw coal supplied from the raw coal bunker 21. Is pulverized into a predetermined size to produce pulverized coal as fuel, and the pulverized coal generated by the first vertical pulverizer 23 is supplied to the pulverized coal-burning burner 11. And a coal supply pipe 24. The pulverized coal generated by the first vertical crushing device 23 is dried by the transfer gas 25 blown into the first vertical crushing device 23, and passes through the coal supply pipe 24 to burn the pulverized coal exclusively burner 11. To be supplied.
バイオマス燃料供給部4は、バイオマス燃料を貯えるバイオマスバンカ31と、バイオマスサイロ32からバイオマスバンカ31内にバイオマス燃料を搬入するバイオマス搬入コンベア33と、バイオマスバンカ31から供給されるバイオマス燃料を所定の大きさに粉砕して燃料である粉砕バイオマス燃料を生成する第2の竪型粉砕装置34と、第2の竪型粉砕装置34で生成された粉砕バイオマス燃料をバイオマス専焼バーナ12に供給するバイオマス送給管35と、を含んで構成されている。第2の竪型粉砕装置34で生成された粉砕バイオマス燃料は、第2の竪型粉砕装置34に吹き込まれた搬送用気体36により乾燥されると共に、バイオマス送給管35を通ってバイオマス専焼バーナ12に供給される。なお、第2の竪型粉砕装置34としては、第1の竪型粉砕装置23と同様の石炭用の竪型粉砕装置を利用できる。
The biomass fuel supply unit 4 has a predetermined size of the biomass bunker 31 that stores the biomass fuel, the biomass carry-in conveyor 33 that carries the biomass fuel from the biomass silo 32 into the biomass bunker 31, and the biomass fuel that is supplied from the biomass bunker 31. A second vertical crusher 34 that generates a pulverized biomass fuel that is pulverized into fuel, and a biomass feed pipe that supplies the pulverized biomass fuel generated by the second vertical pulverizer 34 to the biomass-burning burner 12 35. The pulverized biomass fuel produced by the second vertical pulverizer 34 is dried by the transfer gas 36 blown into the second vertical pulverizer 34, and passes through the biomass feed pipe 35 to burn the biomass exclusively. 12 is supplied. As the second vertical crusher 34, a coal vertical crusher similar to the first vertical crusher 23 can be used.
バイオマス燃料の搬送時にバイオマス搬入コンベア33の搬送ベルトとの間の摩擦により静電気が発生し、バイオマス搬入コンベア33が帯電することがある。そこで、コンベヤの材質を導電性材料、例えば、鋼や導電性ゴムなどを用いる。また、バイオマス搬入コンベア33の搬送ベルトや搬送ベルトで搬送される木質ペレットの静電気を除去する静電気除去装置50(例えば、イオナイザーや除電棒など)が設けられる場合もある。バイオマス燃料としては、ブラックペレット又はホワイトペレット等の木質バイオマスペレット並びに間伐材又は端材等の木質バイオマスチップを利用できる。また、搬送用気体25、36としては、火炉2内で発生する燃焼排ガス或いは燃焼排ガスと1次空気の混合ガスを利用できる。
When the biomass fuel is conveyed, static electricity may be generated due to friction with the conveyor belt of the biomass carry-in conveyor 33, and the biomass carry-in conveyor 33 may be charged. Therefore, a conductive material such as steel or conductive rubber is used as the material of the conveyor. In addition, there may be a static elimination device 50 (for example, an ionizer or a static elimination rod) that removes static electricity from the conveyance belt of the biomass carry-in conveyor 33 or the wood pellets conveyed by the conveyance belt. As biomass fuel, woody biomass pellets such as black pellets or white pellets and woody biomass chips such as thinned wood or offcuts can be used. Further, as the transfer gases 25 and 36, combustion exhaust gas generated in the furnace 2 or a mixed gas of combustion exhaust gas and primary air can be used.
排ガス浄化装置5は、脱硝装置41、空気予熱器42及び電気集塵機43をもって構成されている。火炉2内で発生した燃焼排ガスは、脱硝装置41、空気予熱器42及び電気集塵機43を通って浄化され、図示しない煙突から大気へ放出される。なお、排ガス浄化装置5の構成はこれに限定されるものではなく、例えば湿式脱硫装置等の他の装置を追加すること、電気集塵機43に代えてバグフィルタを備えることも可能である。
The exhaust gas purification device 5 includes a denitration device 41, an air preheater 42, and an electric dust collector 43. The combustion exhaust gas generated in the furnace 2 is purified through the denitration device 41, the air preheater 42, and the electric dust collector 43, and released from the chimney (not shown) to the atmosphere. The configuration of the exhaust gas purification device 5 is not limited to this, and for example, another device such as a wet desulfurization device may be added, or a bag filter may be provided instead of the electric dust collector 43.
<第1実施形態>
次に、本発明に係るバイオマスバンカの第1実施形態を図に基づいて説明する。 <First Embodiment>
Next, a first embodiment of a biomass bunker according to the present invention will be described with reference to the drawings.
次に、本発明に係るバイオマスバンカの第1実施形態を図に基づいて説明する。 <First Embodiment>
Next, a first embodiment of a biomass bunker according to the present invention will be described with reference to the drawings.
図1は、第1実施形態に係るバイオマスバンカの構成図である。図1に示すように、第1実施形態に係るバイオマスバンカ31は、バイオマス燃料を貯蔵するバンカ本体51と、バンカ本体51内の湿度を検出する湿度監視計52と、水と空気の混合流体をバンカ本体51内に向けて噴射する複数(図1の例では3個)の二流体ノズル53と、二流体ノズル53に接続された水供給管54及び空気供給管55と、水供給管54に備えられた流量調節弁56及び空気供給管55に備えられた開閉弁57と、流量調節弁56及び開閉弁57の切換を制御する制御盤58と、を備えて構成されている。なお、図示を省略するものの、バイオマスバンカ31は、貯蔵されたバイオマス粉体の帯電防止に必要な処置として、アースがとられる。
FIG. 1 is a configuration diagram of a biomass bunker according to the first embodiment. As shown in FIG. 1, a biomass bunker 31 according to the first embodiment includes a bunker body 51 that stores biomass fuel, a humidity monitor 52 that detects humidity in the bunker body 51, and a mixed fluid of water and air. A plurality of (three in the example of FIG. 1) two-fluid nozzles 53 that inject into the bunker body 51, a water supply pipe 54 and an air supply pipe 55 connected to the two-fluid nozzle 53, and a water supply pipe 54. The on-off valve 57 provided on the provided flow control valve 56 and the air supply pipe 55 and the control panel 58 for controlling the switching of the flow control valve 56 and the on-off valve 57 are provided. In addition, although illustration is abbreviate | omitted, the biomass bunker 31 is earth | grounded as a treatment required for antistatic of the stored biomass powder.
バンカ本体51は、略中央部から上方が円筒形に形成され、略中央部から下方が逆円錐形に形成されたホッパ構造になっている。バンカ本体51の上部には、図示しないバイオマス燃料の導入口が開設され、下部には図示しないバイオマス燃料の搬出口が開設されている。
The bunker body 51 has a hopper structure in which an upper part from a substantially central part is formed in a cylindrical shape and a lower part from the substantially central part is formed in an inverted conical shape. A biomass fuel inlet (not shown) is opened at the top of the bunker body 51, and a biomass fuel outlet (not shown) is opened at the bottom.
湿度監視計52としては、バンカ本体51内の絶対湿度を監視するものでも良いし、バンカ本体51内の相対湿度を監視するものでも良いが、バンカ本体51内における静電気の発生しやすさをより直接的に監視できることから、相対湿度を監視するものの方が有利である。
The humidity monitor 52 may be one that monitors the absolute humidity in the bunker body 51 or one that monitors the relative humidity in the bunker body 51. However, the humidity monitor 52 can more easily generate static electricity in the bunker body 51. It is more advantageous to monitor the relative humidity because it can be monitored directly.
二流体ノズル53は、所謂霧吹きの原理により微細な水滴を噴射するものである。二流体ノズル53を用いると、スプレー水ヘッダを用いる場合に比べて微細な水滴をバンカ本体51内に噴射できるので、バンカ本体51内に貯えられたバイオマス燃料を水浸しにすることなく、バンカ本体51内の湿度調節を行うことができる。
The two-fluid nozzle 53 ejects fine water droplets according to the so-called spraying principle. When the two-fluid nozzle 53 is used, fine water droplets can be injected into the bunker main body 51 as compared with the case where the spray water header is used. Therefore, the bunker main body 51 is not submerged without immersing the biomass fuel stored in the bunker main body 51. Inside humidity can be adjusted.
バンカ本体51内への混合流体の供給開始及び供給停止は、制御盤58から出力される切換信号により流量調節弁56及び開閉弁57を切換制御することにより行われる。制御盤58は、湿度監視計52の検出値が制御盤58に設定された設定値以下と判定したとき、流量調節弁56及び開閉弁57を閉状態から開状態に切り換えて、二流体ノズル53よりバンカ本体51内に水及び空気の混合流体を噴射する。また、制御盤58は、湿度監視計52の検出値が制御盤58に設定された設定値を超えたと判定したとき、流量調節弁56及び開閉弁57を開状態から閉状態に切り換えて、二流体ノズル53からの混合流体の噴射を停止する。
The supply start and supply stop of the mixed fluid into the bunker main body 51 are performed by switching control of the flow rate adjusting valve 56 and the on-off valve 57 by a switching signal output from the control panel 58. When the control panel 58 determines that the detected value of the humidity monitor 52 is equal to or less than the set value set in the control panel 58, the flow control valve 56 and the on-off valve 57 are switched from the closed state to the open state, and the two-fluid nozzle 53 Further, a mixed fluid of water and air is injected into the bunker body 51. Further, when the control panel 58 determines that the detected value of the humidity monitor 52 exceeds the set value set in the control panel 58, the control panel 58 switches the flow control valve 56 and the on-off valve 57 from the open state to the closed state. The ejection of the mixed fluid from the fluid nozzle 53 is stopped.
図3は、第1実施形態に係る制御盤の機能ブロック図である。図3に示すように、実施形態に係る制御盤58は、バスを介して相互に接続された信号入力部62、信号出力部63、CPU(Central Processing Unit)64、ROM(Read Only Memory)65及びRAM(Random Access Memory)66等のハードウエア資源を備えたコンピュータによって構成されている。信号入力部62には、湿度監視計52の検出信号とキーボード入力装置又はタッチパネル入力装置等の入力装置61の出力信号が入力される。また、信号出力部63には、流量調節弁56の駆動操作部と開閉弁57の駆動操作部とが接続される。石炭・バイオマス焚きボイラプラント1のオペレータは、入力装置61を操作することによって、流量調節弁56の流量設定と、流量調節弁56及び開閉弁57の駆動タイミングを規制するための湿度閾値設定を行うことができる。
FIG. 3 is a functional block diagram of the control panel according to the first embodiment. As shown in FIG. 3, the control panel 58 according to the embodiment includes a signal input unit 62, a signal output unit 63, a CPU (Central Processing Unit) 64, and a ROM (Read Only Memory) 65 connected to each other via a bus. And a computer having hardware resources such as a RAM (Random Access Memory) 66. The signal input unit 62 receives a detection signal from the humidity monitor 52 and an output signal from an input device 61 such as a keyboard input device or a touch panel input device. The signal output unit 63 is connected to a drive operation unit of the flow rate adjustment valve 56 and a drive operation unit of the on-off valve 57. The operator of the coal / biomass-fired boiler plant 1 operates the input device 61 to set the flow rate of the flow rate control valve 56 and the humidity threshold value for regulating the drive timing of the flow rate control valve 56 and the on-off valve 57. be able to.
湿度閾値は、相対湿度で30~40%の範囲に設定される。バンカ本体51内の相対湿度が30~40%の範囲を下回ると、バンカ本体51内に貯えられたバイオマス燃料に静電気が帯電しやすくなり、放電によってバイオマス燃料から揮散した揮発分に急速燃焼が生じやすくなるからである。なお、湿度閾値は、上記の値に限定されるものではなく、石炭・バイオマス焚きボイラプラント1の運用に即した適宜の値に設定できる。
The humidity threshold is set in the range of 30-40% relative humidity. When the relative humidity in the bunker body 51 falls below the range of 30 to 40%, the biomass fuel stored in the bunker body 51 is likely to be charged with static electricity, and rapid combustion occurs in the volatile components volatilized from the biomass fuel by discharge. This is because it becomes easier. The humidity threshold value is not limited to the above value, and can be set to an appropriate value in accordance with the operation of the coal / biomass-fired boiler plant 1.
ROM65は、電源を切ってもプログラムやデータを保持することができる不揮発性の半導体メモリである。ROM65には、流量調節弁56及び開閉弁57の制御プログラムや、入力装置61から入力された流量調節弁56の設定流量及び湿度閾値が格納される。なお、ROM65には、SDメモリカード及びUSB(Universal Serial Bus)メモリ等が含まれる。
The ROM 65 is a nonvolatile semiconductor memory that can retain programs and data even when the power is turned off. The ROM 65 stores a control program for the flow rate control valve 56 and the on-off valve 57 and a set flow rate and humidity threshold value of the flow rate control valve 56 input from the input device 61. The ROM 65 includes an SD memory card, a USB (Universal Serial Bus) memory, and the like.
RAM66は、プログラムやデータを一時保持する揮発性の半導体メモリである。
The RAM 66 is a volatile semiconductor memory that temporarily stores programs and data.
CPU64は、ROM65から流量調節弁56及び開閉弁57の制御プログラム、流量調節弁56の設定流量及び湿度閾値を読み出してRAM66上に展開し、流量調節弁56及び開閉弁57の制御プログラムを実行する。これにより、CPU64は、バンカ本体51内の湿度に応じて流量調節弁56及び開閉弁57を適切に切換制御する制御装置として機能する。
The CPU 64 reads out the control program for the flow rate control valve 56 and the on-off valve 57 from the ROM 65, the set flow rate and the humidity threshold value of the flow rate control valve 56, and develops them on the RAM 66, and executes the control program for the flow rate control valve 56 and the on-off valve 57 . Thus, the CPU 64 functions as a control device that appropriately switches and controls the flow rate adjustment valve 56 and the on-off valve 57 according to the humidity in the bunker body 51.
以下、図4を用いて実施形態に係る流量調節弁56及び開閉弁57の切換制御手順について説明する。図4は、第1実施形態に係る流量調節弁及び開閉弁の切換制御手順を示すフローチャートである。
Hereinafter, the switching control procedure of the flow rate control valve 56 and the on-off valve 57 according to the embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing a switching control procedure of the flow rate control valve and the on-off valve according to the first embodiment.
CPU64は、湿度監視計52の検出値を繰り返しRAM66に取り込んでいる(手順S1)。また、CPU64は、湿度監視計52の検出値をRAM66に取り込む毎に、取り込まれた湿度監視計52の検出値がROM65に格納された湿度閾値(設定値)を下回ったか否かを判定する(手順S2)。そして、手順S2で、湿度監視計52の検出値は湿度閾値(設定値)を下回ったと判定(手順S2でYes)したときは、手順S3に移行して、流量調節弁56及び開閉弁57を閉状態から開状態に切り換えて、バンカ本体51内に水と空気の混合流体を噴射する。これに対して、手順S2で、湿度監視計52の検出値は湿度閾値(設定値)以上と判定(手順S2でNo)したときは、手順S4に移行して、流量調節弁56及び開閉弁57を開状態から閉状態に切り換えて、バンカ本体51内への混合流体の噴射を停止する。混合流体の噴射は、バンカ本体51内へのバイオマス燃料の投入前及び投入後において行うことができる。
The CPU 64 repeatedly fetches the detection value of the humidity monitor 52 into the RAM 66 (procedure S1). Further, each time the CPU 64 fetches the detection value of the humidity monitor 52 into the RAM 66, it determines whether or not the fetched detection value of the humidity monitor 52 falls below the humidity threshold value (set value) stored in the ROM 65 ( Procedure S2). If it is determined in step S2 that the detected value of the humidity monitor 52 is below the humidity threshold (set value) (Yes in step S2), the process proceeds to step S3, and the flow rate adjustment valve 56 and the on-off valve 57 are turned on. By switching from the closed state to the open state, a mixed fluid of water and air is injected into the bunker body 51. On the other hand, when it is determined in step S2 that the detected value of the humidity monitor 52 is equal to or higher than the humidity threshold (set value) (No in step S2), the process proceeds to step S4, and the flow rate control valve 56 and the on-off valve 57 is switched from the open state to the closed state, and the injection of the mixed fluid into the bunker body 51 is stopped. The injection of the mixed fluid can be performed before and after the biomass fuel is introduced into the bunker main body 51.
これにより、実施形態に係るバイオマスバンカ31及びこれを備えたボイラプラント1は、バンカ本体51内の相対湿度を静電気が発生しにくい湿度に保つことができるので、バイオマス燃料から揮散する揮発分の急速燃焼を防止できる。また、実施形態に係るバイオマスバンカ31及びこれを備えたボイラプラント1は、バンカ本体51内に適度の湿り気を付与できるので、バイオマス燃料からの粉塵の発生を抑制でき、空気と混合した粉塵の急速燃焼を防止できる。
Thereby, the biomass bunker 31 according to the embodiment and the boiler plant 1 equipped with the biomass bunker 31 can maintain the relative humidity in the bunker main body 51 at a humidity at which static electricity is unlikely to be generated. Combustion can be prevented. Moreover, since the biomass bunker 31 and the boiler plant 1 equipped with the biomass bunker 31 according to the embodiment can impart appropriate moisture in the bunker body 51, generation of dust from the biomass fuel can be suppressed, and rapid mixing of dust mixed with air can be achieved. Combustion can be prevented.
更に、実施形態に係るバイオマスバンカ31及びこれを備えたボイラプラント1は、バンカ本体51内に空気と水の混合流体を噴射するので、スプレー水ヘッダから水を噴射する場合とは異なりバンカ本体51内のバイオマス燃料が水浸しになることを防止できる。従って、実施形態に係るバイオマスバンカ31及びこれを備えたボイラプラント1によれば、バイオマス燃料としてホワイトペレットや木質バイオマスチップを用いた場合にも、バイオマス燃料の崩壊や過剰な膨張が防止され、バンカ本体51からの排出性及び搬送機器類による搬送性を適切に維持できる。また、バイオマス燃料の給水による発酵を抑制できるので、揮発分の揮散を抑制できて、この点からも急速燃焼の発生を抑制できる。
Furthermore, since the biomass bunker 31 according to the embodiment and the boiler plant 1 including the same are injected with a mixed fluid of air and water into the bunker body 51, the bunker body 51 is different from the case where water is injected from the spray water header. It is possible to prevent the biomass fuel inside from becoming soaked. Therefore, according to the biomass bunker 31 and the boiler plant 1 including the same according to the embodiment, even when white pellets or woody biomass chips are used as the biomass fuel, the collapse or excessive expansion of the biomass fuel is prevented, and the bunker Ejectability from the main body 51 and transportability by transport equipment can be appropriately maintained. Moreover, since fermentation by the feed water of biomass fuel can be suppressed, volatilization of volatile matter can be suppressed, and the occurrence of rapid combustion can also be suppressed from this point.
<第2実施形態>
第2実施形態は、バンカ本体51にバイオマス燃料が投入(搬入)されている状態と、貯蔵はされているが投入されていない状態とで混合流体の噴射制御処理を切り替える実施形態である。第1実施形態は、湿度監視計52の検出値のみに着目して水と空気の混合流体を噴射するか停止するかを判定し、バイオマス燃料が投入されているか否かについては着目していない点で、第2実施形態とは異なる。以下の説明において、第1実施形態と同一の構成については同一の符号を用い、重複説明を省略する。 Second Embodiment
The second embodiment is an embodiment in which the injection control process of the mixed fluid is switched between a state in which biomass fuel is input (loaded) into thebunker body 51 and a state in which the biomass fuel is stored but not input. 1st Embodiment pays attention only to the detected value of the humidity monitor 52, determines whether to inject or stop the fluid mixture of water and air, and does not pay attention to whether biomass fuel is thrown in or not. This is different from the second embodiment. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
第2実施形態は、バンカ本体51にバイオマス燃料が投入(搬入)されている状態と、貯蔵はされているが投入されていない状態とで混合流体の噴射制御処理を切り替える実施形態である。第1実施形態は、湿度監視計52の検出値のみに着目して水と空気の混合流体を噴射するか停止するかを判定し、バイオマス燃料が投入されているか否かについては着目していない点で、第2実施形態とは異なる。以下の説明において、第1実施形態と同一の構成については同一の符号を用い、重複説明を省略する。 Second Embodiment
The second embodiment is an embodiment in which the injection control process of the mixed fluid is switched between a state in which biomass fuel is input (loaded) into the
バイオマス燃料の投入している状況の噴射制御処理(第1の制御処理に相当する)と、投入されていない状況の噴射制御処理(第2の制御処理に相当する)とで混合気体の噴射制御を変える理由は、バイオマス燃料が石炭に比べて静電気を帯びやすく、特に、投入中はバイオマスの粉体同士の摩擦がより生じるため更に帯電性が高まるためである。
Injection control of a mixed gas in an injection control process (corresponding to the first control process) in a state where biomass fuel is input and an injection control process (corresponding to a second control process) in a state where biomass fuel is not input The reason for changing is that the biomass fuel is more likely to be charged with static electricity than coal, and in particular, the friction between the biomass powders is more increased during charging, so that the charging property is further increased.
即ち、バイオマス粉体の帯電量と粉体抵抗率を計測した例では、石炭粉体に比べ、帯電量は、10倍~100倍大きく、粉体低効率は、107オーダ大きいことを確認した。この際、静電気安全指針2007((独)労働安全衛生総合研究所)を参照すると、帯電性の危険性レベルは「中」と評価できる。
That is, in the example in which the charge amount and the powder resistivity of the biomass powder were measured, it was confirmed that the charge amount was 10 to 100 times larger than the coal powder, and the low powder efficiency was 10 7 orders of magnitude larger. . At this time, referring to the static electricity safety guideline 2007 (Occupational Safety and Health Research Institute), the risk level of charging can be evaluated as “medium”.
加えて、バイオマス粉体が着火するために必要なエネルギーは、数mJ~数10mJであり、静電気程度のエネルギーで着火する可能性がある。一方で、石炭粉体は数100mJと比較的大きなエネルギーがないと着火しないことを確認した。
In addition, the energy required for the biomass powder to ignite is several mJ to several tens of mJ, which may be ignited with an energy level of static electricity. On the other hand, it was confirmed that coal powder does not ignite without a relatively large energy of several hundred mJ.
上述のように、バイオマス粉体は静電気を帯びやすい粉体であるにもかかわらず、着火に必要なエネルギーも小さいため、なんらかの安全対策をとる必要がある。そこで、本実施形態では、着火元としてバイオマスバンカに投入される際に発生するコーン放電(放電エネルギー:数10mJ)を防止すべく、バイオマス燃料の投入時とそうでないときとで水の噴射制御処理を切り替える。
As mentioned above, despite the fact that biomass powder is easily charged with static electricity, the energy required for ignition is small, so it is necessary to take some safety measures. Therefore, in this embodiment, in order to prevent cone discharge (discharge energy: several tens of mJ) that is generated when the biomass bunker is input as an ignition source, water injection control processing is performed when the biomass fuel is input and when it is not. Switch.
上記の湿度の影響を評価した例を図5に示す。装置は、JIS C61340-2-1:2006に準拠した帯電した物体の電位を計測可能な装置であり、環境試験機中にて温湿度を一定に制御することが出来る。
An example of evaluating the influence of the humidity is shown in FIG. The device is a device that can measure the potential of a charged object in accordance with JIS C61340-2-1: 2006, and the temperature and humidity can be controlled to be constant in an environmental test machine.
初期の電位をV0として、一定時間後の電位をVとしたときの電位差V/V0は、時間とともに低下することを確認した。湿度が大きいほど、素早く低下することが分かった。このことから、夏場などの高湿度においては、素早く除電されるため、静電気による発火リスクは小さいが、冬場の湿度が低い場合に関しては、電位の低下が遅いため、湿度を増加させることで静電気による発火リスクを低減できると考えられる。
It was confirmed that the potential difference V / V0 when the initial potential was V0 and the potential after a certain time was V decreased with time. It was found that the higher the humidity, the faster it decreases. For this reason, static electricity is discharged quickly at high humidity such as in summer, so the risk of ignition due to static electricity is small. However, when the humidity in winter is low, the potential drops slowly, so increasing the humidity causes static electricity. It is thought that the ignition risk can be reduced.
図6は、第2実施形態に係るバイオマスバンカの構成図である。図6に示すように、第2実施形態に係るバイオマスバンカ31aは、バンカ本体51内の貯蔵量を計測する残量計81を更に備える。
FIG. 6 is a configuration diagram of the biomass bunker according to the second embodiment. As shown in FIG. 6, the biomass bunker 31 a according to the second embodiment further includes a fuel gauge 81 that measures the storage amount in the bunker body 51.
図7は、第2実施形態に係る制御盤の機能ブロック図である。図7に示すように、残量計81の検出信号は制御盤58に入力される。
FIG. 7 is a functional block diagram of the control panel according to the second embodiment. As shown in FIG. 7, the detection signal of the fuel gauge 81 is input to the control panel 58.
また制御盤58には、バイオマス搬入コンベア33の起動・停止を切り替えるコンベア起動スイッチ82から、コンベアON・OFF信号が入力される。
Further, a conveyor ON / OFF signal is input to the control panel 58 from a conveyor activation switch 82 that switches activation / deactivation of the biomass carry-in conveyor 33.
制御盤58は、タイマ83を更に含む。そして水と空気の混合気体の噴射時間を計測し、所定時間以上となると噴射を停止する。ここでいう所定時間とは、例えば、投入されたバイオマスペレットが均一に吸湿したとき、壁面への付着やペレットの崩壊の観点から許容される水分量増加が0.1%未満となるように水量と単位時間当たりの噴射量に基づき決められる。また、例えば、バイオマスバンカの体積V m3を目標湿度まで加湿するための時間を設定してもよい。ここで、設計最低絶対湿度x kg-w/kg-air、目標絶対湿度y kg-w/kg-air、空気密度ρ kg/m3、補正係数aとしたときのバンカ内を目標湿度にするために必要な水量W=a×V×ρ×(y-x)となり、単位時間当たりの噴射量により噴射時間が決定する。
Control board 58 further includes a timer 83. And the injection time of the mixed gas of water and air is measured, and if it becomes more than predetermined time, injection will be stopped. The predetermined time here means, for example, that when the input biomass pellets uniformly absorb moisture, the amount of water is such that the increase in the amount of moisture allowed from the viewpoint of adhesion to the wall surface and the collapse of the pellets is less than 0.1%. And determined based on the injection amount per unit time. Further, for example, it may set a time for humidifying the volume V m 3 of biomass bunker to the target humidity. Here, the target humidity is set in the bunker when the design minimum absolute humidity x kg-w / kg-air, target absolute humidity y kg-w / kg-air, air density ρ kg / m 3 , and correction coefficient a are set. The amount of water required for this is W = a × V × ρ × (y−x), and the injection time is determined by the injection amount per unit time.
図8は、第2実施形態に係る流量調節弁及び開閉弁の切換制御手順を示すフローチャートである。図9は、第2実施形態に係る流量調節弁及び開閉弁の切換処理を示すタイミングチャートである。
FIG. 8 is a flowchart showing a switching control procedure of the flow rate control valve and the on-off valve according to the second embodiment. FIG. 9 is a timing chart showing a switching process between the flow rate control valve and the on-off valve according to the second embodiment.
図8において、S10のOFFからS11、S12と遷移する工程は、バイオマス燃料を投入していない状態で行う第1の制御処理に相当する。またS10のONからS1へと遷移する工程は、バイオマス燃料投入中に行う第2の制御処理に相当する。
In FIG. 8, the process of transition from S10 OFF to S11 and S12 corresponds to a first control process performed in a state where biomass fuel is not input. Further, the process of transition from ON of S10 to S1 corresponds to a second control process that is performed while the biomass fuel is being charged.
バイオマス搬入コンベア33が起動していない場合、即ち、制御盤58にコンベアOFF信号が入力され(S10/OFF;図9のT0)コンベアON信号が入力されていない場合、制御盤58に残量計82の検出値が入力される(S11)。残量計82が示す検出値(残量)が予め定められた残量閾値を上回ると(S12/No)、直近ではバイオマス搬入コンベア33が起動しないと予測されるため、手順S10へ戻り、混合流体を噴射することなく待機する(図9のT0~T1)。
When the biomass carry-in conveyor 33 is not activated, that is, when the conveyor OFF signal is input to the control panel 58 (S10 / OFF; T0 in FIG. 9), the fuel gauge is input to the control panel 58. The detection value 82 is input (S11). When the detected value (remaining amount) indicated by the fuel gauge 82 exceeds a predetermined remaining amount threshold value (S12 / No), it is predicted that the biomass carry-in conveyor 33 will not be activated most recently, so the procedure returns to step S10 and mixing. Waiting without ejecting fluid (T0 to T1 in FIG. 9).
残量計82が示す検出値(残量)が予め定められた残量閾値以下になると(S12/Yes;図9のT1)、バイオマス搬入コンベア33は未だ起動していないものの、バンカ本体51へバイオマス燃料を投入するためにバイオマス搬入コンベア33が近々起動することが予測される。そこで、手順S1へ進み、湿度監視計の検出値が制御盤58に入力される(S1)。
When the detected value (remaining amount) indicated by the fuel gauge 82 becomes equal to or less than a predetermined remaining amount threshold value (S12 / Yes; T1 in FIG. 9), the biomass carry-in conveyor 33 has not yet started, but the bunker main body 51 It is predicted that the biomass carry-in conveyor 33 will start soon in order to input the biomass fuel. Then, it progresses to procedure S1 and the detected value of a humidity monitor is input into the control panel 58 (S1).
本実施形態では、第1実施形態における混合流体噴射制御処理に、タイマ83を用いた噴射継続時間の監視処理を追加する。即ち、手順S2において湿度監視計の検出値が相対湿度の目標範囲の下限値以下となると(S2/Yes)、タイマ83をONにして(S51)噴射継続時間の計測を開始する。噴射継続時間が所定時間未満であれば(S52/Yes)、バンカ内に混合流体を噴射する(S3)。
In this embodiment, the monitoring process of the injection duration using the timer 83 is added to the mixed fluid injection control process in the first embodiment. That is, when the detected value of the humidity monitor is equal to or lower than the lower limit value of the relative humidity target range in step S2 (S2 / Yes), the timer 83 is turned on (S51) and measurement of the injection duration time is started. If the injection duration is less than the predetermined time (S52 / Yes), the mixed fluid is injected into the bunker (S3).
これにより、バイオマス搬入コンベア33の起動に先駆けて(図9のT1~T2)、混合流体を噴射し相対湿度を上昇させることができる。コーン放電は、バイオマス燃料をバンカ本体51へ投入時発生する可能性があるため、バンカ投入よりも前に、バンカ湿度を一時的に増加させる。なお、多量に水を使うと、バイオマスペレットが湿潤し、形状が崩壊する可能性があるため、手順S51では経過時間を計測し、所定時間以上となると(S52/No)、混合流体の噴射を停止し(S4)、タイマ83をOFFにする(S53)。バイマスペレットの必要の湿潤を防ぐため、水を多量には使用できないことから上述のような手法を採用した。
Thus, prior to the start of the biomass carry-in conveyor 33 (T1 to T2 in FIG. 9), the mixed fluid can be injected to increase the relative humidity. Since cone discharge may occur when biomass fuel is input to the bunker main body 51, the bunker humidity is temporarily increased before the bunker is input. If a large amount of water is used, the biomass pellets may get wet and the shape may collapse. Therefore, in step S51, the elapsed time is measured, and when the predetermined time or more is reached (S52 / No), the mixed fluid is injected. Stop (S4) and turn off the timer 83 (S53). In order to prevent the necessary wetting of the bimus pellets, the above-described method was adopted because a large amount of water cannot be used.
その後、制御盤58にコンベアON信号が入力されると(S10/ON、図9のT2)、上記と同様、S1以下の処理が実行される。
Thereafter, when a conveyor ON signal is input to the control panel 58 (S10 / ON, T2 in FIG. 9), the processing from S1 is executed as described above.
コンベアON信号が入力され(S10/ON、図9のT2)、加湿された結果、相対湿度の検出値が目標上限値に達すると(S2/No、S21/Yes;図9のT3)、バイオマス搬入コンベア33が起動していても十分な湿度が確保されていることから、一旦混合流体の噴射を停止させる(S4)。
When the conveyor ON signal is input (S10 / ON, T2 in FIG. 9) and the humidity is increased, the detected value of relative humidity reaches the target upper limit value (S2 / No, S21 / Yes; T3 in FIG. 9). Since sufficient humidity is secured even if the carry-in conveyor 33 is activated, the injection of the mixed fluid is temporarily stopped (S4).
その後、バイオマス搬入コンベア33が停止すると、コンベアOFF信号が入力される(S10/OFF;図9のT4)。
Then, when the biomass carry-in conveyor 33 stops, a conveyor OFF signal is input (S10 / OFF; T4 in FIG. 9).
バンカ本体51内のバイオマス燃料が搬出され、残量が低下する。再度バイオマス搬入コンベア33が起動し、コンベアON信号が入力され(S10/ON)、そのときの湿度監視計の検出値が下限値以下であれば(S2/Yes;図9のT5)、再度混合流体の噴射を再開する。
The biomass fuel in the bunker main body 51 is carried out and the remaining amount decreases. If the biomass carry-in conveyor 33 is activated again and a conveyor ON signal is input (S10 / ON) and the detected value of the humidity monitor at that time is equal to or lower than the lower limit (S2 / Yes; T5 in FIG. 9), the mixing is performed again. Restart fluid injection.
第2実施形態によれば、バイオマス搬入コンベア33がONになる前から、相対湿度を目標範囲へと増加させるために混合流体の噴射を開始し、コーン放電の発生を事前に抑止することができる。
According to the second embodiment, before the biomass carry-in conveyor 33 is turned on, the injection of the mixed fluid can be started in order to increase the relative humidity to the target range, and the occurrence of cone discharge can be suppressed in advance. .
<第3実施形態>
第3実施形態は、バイオマス搬入コンベア33が起動中は、強制的に混合流体を噴射する態様である。本実施形態は、コンベアON・OFF信号を上位命令として扱う実施態様である。 <Third Embodiment>
The third embodiment is a mode in which the mixed fluid is forcibly jetted while the biomass carry-inconveyor 33 is activated. This embodiment is an embodiment in which the conveyor ON / OFF signal is handled as a higher order command.
第3実施形態は、バイオマス搬入コンベア33が起動中は、強制的に混合流体を噴射する態様である。本実施形態は、コンベアON・OFF信号を上位命令として扱う実施態様である。 <Third Embodiment>
The third embodiment is a mode in which the mixed fluid is forcibly jetted while the biomass carry-in
制御盤58はコンベアON信号の入力を受け付けると(S61/Yes;図11のT11)、バンカ内に混合流体を噴射する(S3)。
When the control panel 58 receives the input of the conveyor ON signal (S61 / Yes; T11 in FIG. 11), it injects the mixed fluid into the bunker (S3).
制御盤58はコンベアOFF信号の入力を受け付けると(S62/Yes;図11のT12)、タイマ83を起動し、経過時間の計測を開始する(S63)。
When the control panel 58 receives the input of the conveyor OFF signal (S62 / Yes; T12 in FIG. 11), the timer 83 is started and measurement of elapsed time is started (S63).
制御盤58は経過時間が停止マージン時間ΔT(T13-T12)に達するまでは(S64/No)、混合気体の噴射を継続する。
The control panel 58 continues to inject the mixed gas until the elapsed time reaches the stop margin time ΔT (T13-T12) (S64 / No).
制御盤58は経過時間が停止マージン時間に達すると(S64/Yes;図11のT13)、混合気体の噴射を停止し(S4)、タイマ83を停止する(S65)。
When the elapsed time reaches the stop margin time (S64 / Yes; T13 in FIG. 11), the control panel 58 stops the injection of the mixed gas (S4) and stops the timer 83 (S65).
第3実施形態によれば、バイオマス搬入コンベア33が起動中は、強制的に混合流体を噴射し、停止直後もバイオマス燃料が落ち着くまでは混合流体を噴射するので、帯電を抑止することができる。なお、上記第3実施形態では、コンベアOFF信号が入力されている間は停止マージン時間経過後は混合流体の噴射を停止したが、停止マージン時間経過後においても湿度監視計52の検出値が目標範囲の下限値以下である場合は、混合流体を噴射してもよい。即ち、第1~第3実施形態を適宜組み合わせて実施してもよい。
According to the third embodiment, the mixed fluid is forcibly injected while the biomass carry-in conveyor 33 is activated, and the mixed fluid is injected until the biomass fuel settles immediately after the stop, so that charging can be suppressed. In the third embodiment, while the conveyor OFF signal is being input, the injection of the mixed fluid is stopped after the stop margin time has elapsed. However, the detected value of the humidity monitor 52 is the target value even after the stop margin time has elapsed. When it is below the lower limit of the range, the mixed fluid may be ejected. In other words, the first to third embodiments may be combined as appropriate.
上記各実施形態は、本発明の範囲を限定するものではなく、本発明の趣旨を逸脱しない範囲で前記実施形態に記載した発明の構成要素に変更を加えたもの、及び、前記実施形態に記載した発明の構成要素を周知の構成要素に置き換えたものも含まれる。例えば、前記実施形態においては、バンカ本体51に湿度監視計52を1つのみ設置したが、複数の湿度監視計52を設置することもできる。複数の湿度監視計52を設置すると、バンカ本体51内の湿度分布を検出できるので、急速燃焼の発生をより確実に防止できる。
Each of the above embodiments does not limit the scope of the present invention, and changes are made to the components of the invention described in the above embodiments without departing from the spirit of the present invention, and are described in the above embodiments. What replaced the component of this invention with the well-known component is also contained. For example, in the above-described embodiment, only one humidity monitor 52 is installed in the bunker main body 51, but a plurality of humidity monitors 52 may be installed. When a plurality of humidity monitoring meters 52 are installed, the humidity distribution in the bunker body 51 can be detected, so that rapid combustion can be prevented more reliably.
1…石炭・バイオマス焚きボイラプラント、2…火炉、3…微粉炭供給部、4…バイオマス燃料供給部、5…排ガス浄化装置、11…微粉炭専焼バーナ、12…バイオマス専焼バーナ、21…原炭バンカ、22…原炭搬入コンベア、23…第1の竪型粉砕装置、24…給炭管、25…搬送用気体、31、31a…バイオマスバンカ、32…バイオマスサイロ、33…バイオマス搬入コンベア、34…第2の竪型粉砕装置、35…バイオマス送給管、36…搬送用気体、41…脱硝装置、42…空気予熱器、43…電気集塵機、51…バンカ本体、52…湿度監視計、53…二流体ノズル、54…水供給管、55…空気供給管、56…流量調節弁、57…開閉弁、58…制御盤、81…残量計、82…コンベア起動スイッチ。
DESCRIPTION OF SYMBOLS 1 ... Coal / biomass fired boiler plant, 2 ... Furnace, 3 ... Pulverized coal supply part, 4 ... Biomass fuel supply part, 5 ... Exhaust gas purification device, 11 ... Pulverized coal burner, 12 ... Biomass burner, 21 ... Raw coal Bunker, 22 ... Raw coal carry-in conveyor, 23 ... First vertical crusher, 24 ... Coal feed pipe, 25 ... Gas for conveyance, 31, 31a ... Biomass bunker, 32 ... Biomass silo, 33 ... Biomass carry-in conveyor, 34 DESCRIPTION OF SYMBOLS 2nd vertical crushing apparatus, 35 ... Biomass feed pipe, 36 ... Gas for conveyance, 41 ... Denitration apparatus, 42 ... Air preheater, 43 ... Electric dust collector, 51 ... Bunker main body, 52 ... Humidity monitor, 53 ... Two-fluid nozzle, 54 ... Water supply pipe, 55 ... Air supply pipe, 56 ... Flow control valve, 57 ... On-off valve, 58 ... Control panel, 81 ... Fuel gauge, 82 ... Conveyor start switch.
Claims (8)
- バイオマス燃料を貯蔵するバンカ本体と、前記バンカ本体内の湿度を検出する湿度監視計と、水と空気の混合流体を噴射する二流体ノズルと、前記二流体ノズルに接続された水供給管及び空気供給管と、前記水供給管に備えられた流量調節弁及び前記空気供給管に備えられた開閉弁と、前記流量調節弁及び前記開閉弁の切換を制御する制御盤と、を備え、
前記制御盤は、前記湿度監視計の検出値が前記制御盤に設定された設定値を下回ったと判定したとき、前記流量調節弁及び前記開閉弁を閉状態から開状態に切り換えて、前記二流体ノズルより前記バンカ本体内に、水及び空気の混合流体を噴射することを特徴とするバイオマスバンカ。 A bunker body for storing biomass fuel, a humidity monitor for detecting humidity in the bunker body, a two-fluid nozzle for injecting a mixed fluid of water and air, a water supply pipe and air connected to the two-fluid nozzle A supply pipe, a flow control valve provided in the water supply pipe and an open / close valve provided in the air supply pipe, and a control panel for controlling switching of the flow control valve and the open / close valve,
When the control panel determines that the detected value of the humidity monitor is lower than a set value set in the control panel, the flow control valve and the on-off valve are switched from a closed state to an open state, and the two fluids A biomass bunker characterized by injecting a mixed fluid of water and air into the bunker body from a nozzle. - 請求項1に記載のバイオマスバンカにおいて、
前記湿度監視計は、前記バンカ本体内の相対湿度を検出するものであり、前記制御盤は、前記バンカ本体内の相対湿度が30~40%の範囲に設定された前記設定値を下回ったと判定したとき、前記開閉弁及び前記流量調節弁を閉状態から開状態に切り換えて、前記バンカ本体内に水及び空気の混合流体を噴射することを特徴とするバイオマスバンカ。 In the biomass bunker according to claim 1,
The humidity monitor detects relative humidity in the bunker body, and the control panel determines that the relative humidity in the bunker body is below the set value set in a range of 30 to 40%. Then, the on-off valve and the flow rate control valve are switched from a closed state to an open state, and a mixed fluid of water and air is injected into the bunker body. - 請求項1に記載のバイオマスバンカにおいて、
前記二流体ノズルは、前記バンカ本体の上部に設置され、前記バンカ本体の下方に向けて水及び空気の混合流体を噴射することを特徴とするバイオマスバンカ。 In the biomass bunker according to claim 1,
The biomass bunker, wherein the two-fluid nozzle is installed at an upper part of the bunker body and injects a mixed fluid of water and air toward the lower side of the bunker body. - 火炉と、前記火炉に供給されるバイオマス燃料を貯えるバイオマスバンカと、を備え、
前記バイオマスバンカは、バイオマス燃料を貯蔵するバンカ本体と、前記バンカ本体内の湿度を検出する湿度監視計と、水と空気の混合流体を噴射する二流体ノズルと、前記二流体ノズルに接続された水供給管及び空気供給管と、前記水供給管に備えられた流量調節弁及び前記空気供給管に備えられた開閉弁と、前記流量調節弁及び前記開閉弁の切換を制御する制御盤と、を備え、
前記制御盤は、前記湿度監視計の検出値が前記制御盤に設定された設定値を下回ったと判定したとき、前記流量調節弁及び前記開閉弁を閉状態から開状態に切り換えて、前記二流体ノズルより前記バンカ本体内に、水及び空気の混合流体を噴射することを特徴とするボイラプラント。 A furnace, and a biomass bunker for storing biomass fuel supplied to the furnace,
The biomass bunker is connected to the bunker main body for storing biomass fuel, a humidity monitor for detecting humidity in the bunker main body, a two-fluid nozzle for injecting a mixed fluid of water and air, and the two-fluid nozzle. A water supply pipe and an air supply pipe; a flow control valve provided in the water supply pipe; an open / close valve provided in the air supply pipe; a control panel for controlling switching of the flow control valve and the open / close valve; With
When the control panel determines that the detected value of the humidity monitor is lower than a set value set in the control panel, the flow control valve and the on-off valve are switched from a closed state to an open state, and the two fluids A boiler plant, wherein a mixed fluid of water and air is jetted from a nozzle into the bunker body. - バイオマス燃料を貯蔵するバンカ本体と、前記バイオマス燃料を前記バンカに搬入するバイオマス搬入コンベアと、前記バンカ本体内の湿度を検出する湿度監視計と、水及び空気の混合流体を噴射する二流体ノズルと、前記二流体ノズルに接続された水供給管及び空気供給管と、前記水供給管に備えられた流量調節弁及び前記空気供給管に備えられた開閉弁と、前記流量調節弁及び前記開閉弁の切換を制御する制御盤と、を備え、
前記制御盤は、前記バイオマス搬入コンベアが起動したことを示すコンベアON信号、及び前記バイオマス搬入コンベアが停止したことを示すコンベアOFF信号の入力を受け付け、前記バンカ本体に前記バイオマス燃料が投入されている間に行う第1の制御処理と、前記第1の制御処理とは異なる第2の制御処理であって、前記バンカ本体に前記バイオマス燃料が貯蔵されているが投入はされていない間に行う第2の制御処理と、を実行し、
前記コンベアON信号の入力を受け付けると、前記第1の制御処理として、前記流量調節弁及び前記開閉弁を閉状態から開状態に切り換えて、前記二流体ノズルより前記バンカ本体内に、水及び空気の混合流体を噴射する制御処理を実行し、
前記コンベアOFF信号の入力を受け付けると、前記第2の制御処理として、前記湿度監視計の検出値が前記制御盤に設定された設定値以下となっているかを判定し、前記検出値が前記設定値以下の場合に前記流量調節弁及び前記開閉弁を閉状態から開状態に切り換えて、前記二流体ノズルより前記バンカ本体内に、水及び空気の混合流体を噴射する制御処理を実行することを特徴とするバイオマスバンカ。 A bunker body for storing biomass fuel, a biomass carry-in conveyor for carrying the biomass fuel into the bunker, a humidity monitor for detecting humidity in the bunker body, and a two-fluid nozzle for injecting a mixed fluid of water and air A water supply pipe and an air supply pipe connected to the two-fluid nozzle, a flow control valve provided in the water supply pipe, an on-off valve provided in the air supply pipe, the flow control valve and the on-off valve A control panel for controlling the switching of
The control panel receives an input of a conveyor ON signal indicating that the biomass carry-in conveyor is started and a conveyor OFF signal indicating that the biomass carry-in conveyor is stopped, and the biomass fuel is input to the bunker main body. A first control process performed in between and a second control process different from the first control process, wherein the biomass fuel is stored in the bunker body but is not put in 2 control processing,
When the input of the conveyor ON signal is received, as the first control process, the flow control valve and the on-off valve are switched from a closed state to an open state, and water and air are introduced into the bunker body from the two-fluid nozzle. Control process for injecting a mixed fluid of
When receiving the input of the conveyor OFF signal, as the second control process, it is determined whether the detected value of the humidity monitor is equal to or less than a set value set in the control panel, and the detected value is set to the setting When the flow rate control valve and the on-off valve are switched from a closed state to an open state when the value is less than or equal to the value, a control process for injecting a mixed fluid of water and air into the bunker body from the two-fluid nozzle is executed. A featured biomass bunker. - 請求項5に記載のバイオマスバンカにおいて、
前記バイオマスバンカは、前記バンカ本体に貯蔵された前記バイオマス燃料の残量を検出する残量計を更に備え、
前記制御盤は、前記残量計の検出値の入力を受け付け、
前記コンベアOFF信号が入力され、かつ前記残量計の検出値が予め定められた残量閾値以下の場合には、前記第2の制御処理として、前記流量調節弁及び前記開閉弁を閉状態から開状態に切り換えて、前記二流体ノズルより前記バンカ本体内に、水及び空気の混合流体を噴射する制御処理を更に実行することを特徴とするバイオマスバンカ。 In the biomass bunker according to claim 5,
The biomass bunker further comprises a fuel gauge for detecting the remaining amount of the biomass fuel stored in the bunker body,
The control panel receives an input of a detection value of the fuel gauge,
When the conveyor OFF signal is input and the detected value of the fuel gauge is equal to or less than a predetermined remaining amount threshold value, the flow control valve and the on-off valve are closed from the closed state as the second control process. A biomass bunker characterized by further performing a control process of switching to an open state and injecting a mixed fluid of water and air into the bunker body from the two-fluid nozzle. - 請求項5に記載のバイオマスバンカにおいて、
前記制御盤は、前記第1の制御処理として、前記コンベアON信号が入力されている間は、前記流量調節弁及び前記開閉弁を閉状態から開状態に切り換えて、前記二流体ノズルより前記バンカ本体内に、水及び空気の混合流体を噴射し、前記コンベアOFF信号が入力されてから予め定められた停止マージン時間経過後に、前記流量調節弁及び前記開閉弁を開状態から閉状態に切り換える制御処理を実行することを特徴とするバイオマスバンカ。 In the biomass bunker according to claim 5,
As the first control process, the control panel switches the flow rate adjustment valve and the on-off valve from a closed state to an open state while the conveyor ON signal is being input, and the bunker from the two-fluid nozzle. Control that switches the flow rate control valve and the on-off valve from the open state to the closed state after a predetermined stop margin time has elapsed since the mixed fluid of water and air was injected into the body and the conveyor OFF signal was input. Biomass bunker characterized by executing processing. - 火炉と、前記火炉に供給されるバイオマス燃料を貯えるバイオマスバンカと、を備え、
前記バイオマスバンカは、バイオマス燃料を貯蔵するバンカ本体と、前記バイオマス燃料を搬送するバイオマス搬入コンベアと、前記バンカ本体内の湿度を検出する湿度監視計と、水及び空気の混合流体を噴射する二流体ノズルと、前記二流体ノズルに接続された水供給管及び空気供給管と、前記水供給管に備えられた流量調節弁及び前記空気供給管に備えられた開閉弁と、前記流量調節弁及び前記開閉弁の切換を制御する制御盤と、を備え、
前記制御盤は、前記バイオマス搬入コンベアが起動したことを示すコンベアON信号、及び前記バイオマス搬入コンベアが停止したことを示すコンベアOFF信号の入力を受け付け、前記バンカ本体に前記バイオマス燃料が投入されている間に行う第1の制御処理と、前記第1の制御処理とは異なる第2の制御処理であって、前記バンカ本体に前記バイオマス燃料が投入されていない間に行う第2の制御処理と、を実行し、
前記コンベアON信号の入力を受け付けると、前記第1の制御処理として、前記流量調節弁及び前記開閉弁を閉状態から開状態に切り換えて、前記二流体ノズルより前記バンカ本体内に、水及び空気の混合流体を噴射する制御処理を実行し、
前記コンベアOFF信号の入力を受け付けると、前記第2の制御処理として、前記湿度監視計の検出値が前記制御盤に設定された設定値を下回ったと判定したとき、前記流量調節弁及び前記開閉弁を閉状態から開状態に切り換えて、前記二流体ノズルより前記バンカ本体内に、水及び空気の混合流体を噴射する制御処理を実行することを特徴とするボイラプラント。 A furnace, and a biomass bunker for storing biomass fuel supplied to the furnace,
The biomass bunker includes a bunker body that stores biomass fuel, a biomass carry-in conveyor that transports the biomass fuel, a humidity monitor that detects humidity in the bunker body, and two fluids that inject a mixed fluid of water and air A nozzle, a water supply pipe and an air supply pipe connected to the two-fluid nozzle, a flow control valve provided in the water supply pipe, an on-off valve provided in the air supply pipe, the flow control valve and the A control panel for controlling switching of the on-off valve,
The control panel receives an input of a conveyor ON signal indicating that the biomass carry-in conveyor is started and a conveyor OFF signal indicating that the biomass carry-in conveyor is stopped, and the biomass fuel is input to the bunker main body. A first control process performed in between and a second control process different from the first control process, the second control process performed while the biomass fuel is not charged in the bunker body, Run
When the input of the conveyor ON signal is received, as the first control process, the flow control valve and the on-off valve are switched from a closed state to an open state, and water and air are introduced into the bunker body from the two-fluid nozzle. Control process for injecting a mixed fluid of
When the input of the conveyor OFF signal is received, as the second control process, when it is determined that the detected value of the humidity monitor is lower than a set value set in the control panel, the flow control valve and the on-off valve The boiler plant is characterized in that a control process is performed in which a mixed fluid of water and air is injected into the bunker body from the two-fluid nozzle by switching from a closed state to an open state.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018095511A JP2021167674A (en) | 2018-05-17 | 2018-05-17 | Biomass bunker, and boiler plant comprising the same |
JP2018-095511 | 2018-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019221009A1 true WO2019221009A1 (en) | 2019-11-21 |
Family
ID=68539954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/018599 WO2019221009A1 (en) | 2018-05-17 | 2019-05-09 | Biomass bunker and boiler plant comprising same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021167674A (en) |
WO (1) | WO2019221009A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001314725A (en) * | 2000-05-12 | 2001-11-13 | Nkk Corp | Method and device for cooling exhaust gas |
JP2007046797A (en) * | 2005-08-05 | 2007-02-22 | Jfe Engineering Kk | Heat treatment device and heat treatment method for treating object containing inflammable dust |
JP2008082651A (en) * | 2006-09-28 | 2008-04-10 | Mitsubishi Heavy Ind Ltd | Coal-biomass mixed firing system and method |
CN205832425U (en) * | 2016-07-26 | 2016-12-28 | 安徽香杨林业有限公司 | A kind of biomass fuel storage bin |
-
2018
- 2018-05-17 JP JP2018095511A patent/JP2021167674A/en active Pending
-
2019
- 2019-05-09 WO PCT/JP2019/018599 patent/WO2019221009A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001314725A (en) * | 2000-05-12 | 2001-11-13 | Nkk Corp | Method and device for cooling exhaust gas |
JP2007046797A (en) * | 2005-08-05 | 2007-02-22 | Jfe Engineering Kk | Heat treatment device and heat treatment method for treating object containing inflammable dust |
JP2008082651A (en) * | 2006-09-28 | 2008-04-10 | Mitsubishi Heavy Ind Ltd | Coal-biomass mixed firing system and method |
CN205832425U (en) * | 2016-07-26 | 2016-12-28 | 安徽香杨林业有限公司 | A kind of biomass fuel storage bin |
Also Published As
Publication number | Publication date |
---|---|
JP2021167674A (en) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5905463B2 (en) | Drying conveyor device and thermal power generation system including the same | |
JP4368964B2 (en) | Method and apparatus for producing solid fuel | |
CN103393209A (en) | Tobacco shred feeding treatment device and method capable of improving the heat energy and feed liquid absorption efficiency of tobacco shred | |
CA2780314A1 (en) | Process for drying coal | |
KR20180064561A (en) | Crushing and drying plant | |
CN205965496U (en) | Efficient dry desulfurization dust collector | |
CN105617861A (en) | Device for removing SO3 through flue injection of dry powder adsorbent | |
CN101641553B (en) | Improved direct sorbent preparation/feed apparatus and method for circulating fluidized bed boiler systems | |
WO2019221009A1 (en) | Biomass bunker and boiler plant comprising same | |
JPS6233485B2 (en) | ||
AU709529B2 (en) | Non-draining type human waste disposal method by pulse combustion drying | |
KR102403109B1 (en) | Grinder and its operation method | |
CN108224430B (en) | Household garbage collaborative sludge incineration device | |
CN203467649U (en) | Tobacco shred feeding and processing device for improving heat energy and material liquid absorbing efficiency of tobacco shreds | |
US20110070549A1 (en) | System for ash recycling | |
KR102373306B1 (en) | Grinder and its operation method | |
CN202747364U (en) | Paper sludge recycling system | |
JP4387213B2 (en) | Pulverized charcoal combustion apparatus and pulverized charcoal combustion method | |
FI128502B (en) | Method for operating a fluidised bed boiler, and fluidised bed boiler | |
KR102400696B1 (en) | How to operate the grinder and grinder | |
WO2022158439A1 (en) | Method for producing fuel, device for producing fuel, plant, combustion facility, and fuel | |
Higgins et al. | Biomass co-firing retrofit with ROFA for NOx reduction | |
JPS63226511A (en) | Operation controller for fluidized-bed combustion device | |
JP6249882B2 (en) | Sludge drying apparatus and sludge drying method | |
WO2014112075A1 (en) | Drying conveyor device, drying plant, thermal power generation system, method for operating drying conveyor device, and method for operating thermal power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19803227 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19803227 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |