WO2019220827A1 - Vertical multi-joint welding robot - Google Patents

Vertical multi-joint welding robot Download PDF

Info

Publication number
WO2019220827A1
WO2019220827A1 PCT/JP2019/015906 JP2019015906W WO2019220827A1 WO 2019220827 A1 WO2019220827 A1 WO 2019220827A1 JP 2019015906 W JP2019015906 W JP 2019015906W WO 2019220827 A1 WO2019220827 A1 WO 2019220827A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
robot
vertical
rail
column
Prior art date
Application number
PCT/JP2019/015906
Other languages
French (fr)
Japanese (ja)
Inventor
司 竹中
隆士 桐本
Original Assignee
株式会社アットロボティクス
株式会社アンズスタジオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アットロボティクス, 株式会社アンズスタジオ filed Critical 株式会社アットロボティクス
Publication of WO2019220827A1 publication Critical patent/WO2019220827A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms

Definitions

  • the present invention relates to a robot attached to a steel column that welds a steel column used as a column structure of a high-rise building or the like, and a robot that moves on a circular rail attached to the steel column and welds the steel column. And relates to a vertical articulated welding robot.
  • Patent Document 1 proposes a technique such as a robot for welding a steel column used as a column structure of a high-rise building or the like. That is, Patent Document 1 proposes a robot that moves and welds on a linear rail.
  • Patent Document 1 since the robot proposed in Patent Document 1 needs to move on a rail that is laid in a straight line in order to move to a place to be welded, a space for laying the rail in a straight line is necessary. In high-rise workplaces where it is not possible to secure sufficient space, robots cannot be used to weld steel columns, and there was no way other than human welding.
  • the present invention has been made in view of such problems, and proposes a vertical articulated welding robot capable of welding a steel column with little space.
  • the vertical articulated welding robot includes a base part fixedly supported by a column, a turning part pivotally supported by the base part and turning in a horizontal direction around the vertical axis, and a base end part rotatable in the turning part.
  • a lower arm that swings in the front-rear direction by being supported, an upper arm that swings in the vertical direction by a base end portion being rotatably supported by the distal end portion of the lower arm, and a distal end portion of the upper arm
  • a welding head attached to the column, and the column is welded by controlling the posture.
  • the vertical articulated welding robot includes a circular rail fixedly supported by a column, a connecting portion connected to the rail, a base portion fixedly supported by the connecting portion, and a shaft supported by the base portion.
  • a swivel portion that swivels horizontally around a vertical axis, a lower arm that swings in the front-rear direction by a base end portion rotatably supported by the swivel portion, and a base end portion at a distal end portion of the lower arm
  • An upper arm that swings in the vertical direction by being rotatably supported, and a welding head attached to the tip of the upper arm, and the column is welded by controlling the posture.
  • the vertical articulated welding robot is characterized by being suspended from a rail.
  • the vertical articulated welding robot is characterized in that a column is welded by a plurality of vertical articulated welding robots.
  • the vertical articulated welding robot According to the vertical articulated welding robot according to the present invention, it is possible to weld a steel column without relying on a person's hand even in a high-rise work place where a space for the robot to perform work can hardly be secured. .
  • this robot is a vertical articulated welding robot 1, a swing arm unit 4 that can be turned on a column mounting base unit 3 that is attached to a column 2, and a swing arm unit.
  • 4 is supported by a robot base 5 that pivots in a horizontal plane about a vertical axis, and a lower arm (robot arm) that has a base end pivotally supported by the robot base 5 and swings back and forth about a horizontal axis 6.
  • a lower arm (robot arm) that has a base end pivotally supported by the robot base 5 and swings back and forth about a horizontal axis 6.
  • an upper arm (robot arm) 9 whose base end is pivotally supported by the distal end of the lower arm 7 and swings in the vertical direction around the horizontal axis 8, and a horizontal axis attached to the distal end of the upper arm 9.
  • a wrist portion 11 that can be pivoted up and down about 10 times, and a hand portion 12 that is attached to the wrist portion 11 and that can turn freely.
  • a welding head 20 that performs arc discharge and welding is coupled to the hand portion 12, and a welding wire supply device 21 that supplies a welding wire 22 to a welding location by the welding head 20 is provided.
  • the hand unit 12 is provided with a sensor 31 that scans the welded portion and recognizes the shape (groove shape) of the welded portion.
  • a CPU 32 for controlling each part of the vertical articulated welding robot 1 and controlling image recognition by the sensor 31, position information of the part to be welded, data obtained by scanning by the sensor 31, and the like.
  • a storage unit 33 for saving is provided inside the robot.
  • a shield gas nozzle that supplies a shield gas for protecting the welded portion toward the welded portion may be attached to the hand portion 12. Further, the welding wire supply device 21 sends the welding wire 22 from the tip of the wire supply pipe 23 toward the welding location at a controlled speed.
  • the welding head 20 that performs welding and the sensor 31 that scans the welding portion are configured as shown in FIG. 3, and can be selectively used by rotating and moving the welding head 20 and the sensor 31 during welding and scanning.
  • the back side of the column mounting base portion 3 is a mechanism that sticks to the column 2 by having a permanent magnet or the like.
  • the articulated robot 1 is controlled to a posture for scanning the welded portion, and the welded portion is scanned.
  • the CPU 32 controls the articulated robot 1 based on the position information of the welded portion stored in the storage unit 33.
  • the CPU 32 issues a command, the swing arm unit 4 turns to position the entire articulated robot 1, and the robot base unit 5
  • the sensor 31 is turned in the horizontal direction so that the sensor 31 is directed in the direction in which the welded portion exists, the lower arm 7 is moved back and forth, and the upper arm 9 is moved up and down to direct the tip of the sensor 31 toward the welded portion.
  • the welded portion is scanned, and the obtained scan data is stored in the storage unit 33.
  • the CPU 32 analyzes the welded portion based on the scan data stored in the storage unit 33, and derives a welding method.
  • welding is performed by controlling the articulated robot 1 to a welding posture based on the derived welding method.
  • the CPU 32 issues an operation instruction, controls the sensor 31 of the hand unit 12 to perform welding using the welding head 20, and directs the tip of the wire supply pipe 23 of the wire supply device 21 to the welding portion. Then, the welding wire 22 is supplied and the arc is discharged from the welding head 20 to weld the welded portion.
  • One robot is arranged on each surface of the square pillar 2.
  • the four robots are a vertical articulated welding robot 101, a vertical articulated welding robot 102, a vertical articulated welding robot 103, and a vertical articulated welding robot 104, respectively.
  • a computer 34 that performs overall control so that the robots do not cross or come into contact with each other.
  • the computer 34 is connected to each CPU 32 and storage unit 33 of four robots to transmit data and the like. Based on the positional information of the four robots, the computer 34 calculates the movements of the robots so that they do not cross or touch each other, and sends the movement information to the four robots. Send and control each robot.
  • Example 2 (Example 2) Explaining based on FIG. 5, a mechanism using a circular rail or the like as a whole is adopted as a mechanism for moving the vertical articulated welding robot 1 ⁇ / b> A to a welding point.
  • the vertical articulated welding robot 1 ⁇ / b> A, the rail 13 having a substantially circular shape as a whole, the rail fixing portion 14 that fixes the rail 13 to the column 2, and the position where the rail 13 is fixed to the column 2 are firmly fixed.
  • a hinge portion 15 In order to adjust the distance between the rail 13 and the rail fixing portion 14, a hinge portion 15, a robot connecting portion 16 that connects and fixes the rail 13 and the vertical articulated welding robot 1A, and a rail And a tire portion 17 composed of three tires for horizontally moving 13.
  • fixed part 14 is a mechanism attached to the pillar 2 by having a permanent magnet etc.
  • the vertical articulated welding robot 1A includes a swing arm unit 4A that is turnable on the robot coupling unit 16, a robot base unit 5A that is pivotally supported by the swing arm unit 4A and rotates about a vertical axis in a horizontal plane, and a robot base A lower arm (robot arm) 7A that pivots in the front-rear direction around the horizontal axis 6A with a base end pivotally supported by the portion 5A, and a base end that is pivotally supported at the distal end of the lower arm 7A around the horizontal axis 8A
  • An upper arm (robot arm) 9A that swings in the vertical direction, a wrist portion 11A that is attached to the tip of the upper arm 9A and is rotatable about the horizontal axis 10A, and is attached to the wrist portion 11A.
  • a hand portion 12A that is freely turnable.
  • a welding head 20A that performs welding by arc discharge is coupled to the hand portion 12A, and a welding wire supply device 21A that supplies a welding wire 22A to a welding location by the welding head 20A is connected to the hand portion 12A.
  • a sensor 31A that scans the welded portion and recognizes the shape (groove shape) of the welded portion.
  • a CPU 32 for controlling each part of the vertical articulated welding robot 1A and controlling image recognition by the sensor 31A, position information of the part to be welded, data obtained by scanning with the sensor 31A, and the like.
  • a storage unit 33 for saving is provided.
  • a shield gas nozzle that supplies a shield gas for protecting the welded portion toward the welded portion may be attached to the hand portion 12A.
  • the welding wire supply device 21A sends the welding wire 22A from the tip of the wire supply pipe 23A toward the welding location at a controlled speed.
  • the welding head 20A for welding and the sensor 31A for scanning the welded portion are configured as shown in FIG. 3, and can be selectively used by rotating and moving the welding head 20A and the sensor 31A during welding and during scanning. it can.
  • the rail fixing part 14 is attached to the side of the pillar 2 at the desired position, and then the hinge part 15 is loosened so that the rail 13 is the tire.
  • the rail 13 is put on the tire portion 17 in a state where it can be moved via the portion 17, and finally the hinge portion 15 is tightened so that the rail 13 does not move and is fixed to the column 2.
  • the pillar 2 that is a square pillar will be described.
  • the four rail fixing portions 14 are attached to the side surfaces of the pillar 2 and the hinge portion 15 is loosened.
  • the rail 13 can be moved via the tire portion 17, the rail 13 is placed on the tire portion 17, the hinge portions 15 are tightened one by one to prevent the rail 13 from moving, and the rail 13 can be moved to the pillar 2. Secure to.
  • the multi-joint robot 1A is moved to a place to be welded.
  • the CPU 32 issues a command based on the position information of the welded portion stored in the storage unit 33, and the tire of the tire unit 17 rotates and horizontally moves the rail 13 according to the operation instruction of the CPU 32.
  • the joint robot 1A is moved to a predetermined position.
  • the articulated robot 1A is controlled to a posture for scanning the welded portion, and the welded portion is scanned.
  • the swing arm portion 4A turns to position the entire articulated robot 1A, the robot base portion 5A turns to the horizontal direction, the sensor 31A faces in the direction where the welded portion exists, and the lower arm 7A. Is moved back and forth, and the upper arm 9A is moved up and down to point the tip of the sensor 31A toward the welded portion. Then, the welded portion is scanned, and the obtained scan data is stored in the storage unit 33.
  • the CPU 32 analyzes the welded portion based on the scan data stored in the storage unit 33, and derives a welding method.
  • welding is performed by controlling the articulated robot 1 ⁇ / b> A to a welding posture based on the derived welding method.
  • the CPU 32 issues an operation instruction, controls the sensor 31A of the hand portion 12A to perform welding using the welding head 20A, and directs the tip of the wire supply pipe 23A of the wire supply device 21A to the welding portion. Then, the welding wire 22A is supplied and the arc is discharged from the welding head 20A to weld the welded portion.
  • the vertical articulated welding robot 1 ⁇ / b> A, the rail 13, and the tire portion 17 of Example 2 are simply turned over and turned downward.
  • the hinge portion 15 is completely loosened and removed, and the tire portion 17 is turned over, and then the hinge portion 15 is tightened again to connect the turned over rail 13 and the vertical articulated welding robot 1A.
  • the rail 13 since the rail 13 is firmly fitted to the three tires of the tire portion 17, the rail 13 does not fall even if it is directed downward.
  • the welding operation can be performed by the plurality of robots described in the modification of the first embodiment.
  • the tire portion 17 does not exist, that is, the rail 13 moves.
  • the vertical articulated welding robot 1 ⁇ / b> A may move to the welding point on the rail 13.
  • the vertical articulated robot has been described by taking a 6-axis robot as an example, but a robot with a different number of axes such as 7 axes may be used.
  • Multi-axis swing arm 4 In the embodiments (Example 1) and (Example 2), a plurality of swing arm portions 4 may be connected. In this case, a plurality of swing arm portions 4 are connected and provided between the column mounting base portion 3 and the robot base portion 5.
  • the number of the swing arm portions 4 is not particularly limited. For example, 2 to 5 swing arm portions 4 can be connected (multi-axis of the swing arm portions 4). Thereby, the individual swing arm portions 4 can turn around the axes of the plurality of swing arm portions 4. Thereby, the positioning freedom degree of the welding head 20 improves and exact position alignment can be performed.
  • the column mounting base portion 3 can be compared with a configuration in which one swing arm portion 4 is provided. It becomes possible to weld a distant position.
  • the welding head 20 is turned around the side surface and the back surface of the column 2 starting from the column mounting base portion 3 mounted on the entire surface of the column 2 (modified example of the first embodiment) It is possible to weld the four surfaces of the column 2 with one straight articulated welding robot 1 without providing four straight articulated welding robots 1 as in FIG.
  • the direct articulated welding robot 1 can also be implemented from the following viewpoints.
  • ⁇ Viewpoint 1> A base portion configured to be fixable to a pillar;
  • a swing arm portion provided on the surface of the base portion and pivotable about an axis perpendicular to the surface;
  • a swivel part pivotally supported by the swing arm part and swiveling horizontally around a vertical axis;
  • a lower arm that swings in the front-rear direction by a base end portion rotatably supported by the swivel unit;
  • An upper arm that swings in a vertical direction by a base end portion being rotatably supported by a distal end portion of the lower arm;
  • a welding head attached to the tip of the upper arm;
  • With Vertical articulated welding robot characterized by welding the column with controlled posture.
  • ⁇ Viewpoint 2-1> It has a base part, swing arm part, lower arm, upper arm, welding head and CPU,
  • the base portion is configured to be fixable to a pillar
  • the swing arm portion is provided on the surface of the base portion, and is configured to be pivotable about an axis perpendicular to the surface
  • the lower arm is provided directly or indirectly on the swing arm and is configured to be swingable in the front-rear direction with respect to a vertical plane.
  • the upper arm is configured such that the first end is rotatably supported by the lower arm, and is swingable in a vertical direction with respect to a horizontal plane.
  • the welding head is provided at a second end of the upper arm, and the second end is an end opposite to the first end;
  • the CPU is configured to be able to control the swing arm portion, the lower arm, and the upper arm based on position information of a welded portion to be welded by the welding head.
  • Vertical articulated welding robot Vertical articulated welding robot.
  • (Viewpoint 2-2) can be combined with (Viewpoint 2-1).
  • (Viewpoint 2-2) With sensors, The sensor is configured to scan the welded portion, The CPU is configured to be able to determine a welding method by the welding head based on a result of the scan. Vertical articulated welding robot.
  • 1 straight joint welding robot, 2: column, 3: column mounting base, 4: swing arm, 5: robot base, 6: horizontal axis, 7: lower arm, 8: horizontal axis, 9: upper arm 10: Horizontal axis, 11: Wrist part, 12: Hand part, 13: Rail, 14: Rail fixing part, 15: Hinge part, 16: Robot connecting part, 17: Tire part, 20: Welding head, 21: Welding Wire supply device, 22: welding wire, 23: wire supply pipe, 31: sensor, 32: CPU, 33: storage unit, 34: computer

Abstract

[Problem] To provide a vertical multi-joint welding robot which can perform steel column welding operations with very little space. [Solution] This vertical multi-joint welding robot is provided with a base which is fixed on and supported by a column, a swivel unit which is axially supported on the base and which swivels in the horizontal direction around a vertical axis, a lower arm which swings in the forward-back direction by the base end being rotatably supported on the swivel unit, an upper arm which can swing in the vertical direction by the base end being rotatably supported on the distal end of the lower arm, and a welding head which is attached to the distal end of the upper arm, wherein the attitude of the robot is controlled to weld the column.

Description

垂直多関節溶接ロボットVertical articulated welding robot
本発明は、高層ビルなどの柱構造として用いられる鉄骨柱を溶接する鉄骨柱にくっ付いたロボット、また、鉄骨柱にくっ付いた円形のレール上を移動して鉄骨柱を溶接するロボットに関するものであり、垂直多関節溶接ロボットに関するものである。 The present invention relates to a robot attached to a steel column that welds a steel column used as a column structure of a high-rise building or the like, and a robot that moves on a circular rail attached to the steel column and welds the steel column. And relates to a vertical articulated welding robot.
従来、高層ビルなどの柱構造として用いられる鉄骨柱を溶接するためのロボットとして特許文献1のような技術が提案されている。すなわち、特許文献1では直線状に敷かれたレール上を移動して溶接するロボットが提案されている。 Conventionally, a technique such as Patent Document 1 has been proposed as a robot for welding a steel column used as a column structure of a high-rise building or the like. That is, Patent Document 1 proposes a robot that moves and welds on a linear rail.
特開2013-202673号公報JP 2013-202673 A
しかしながら、特許文献1に提案されたロボットは、溶接する箇所に移動するために直線状に敷かれたレール上を移動する必要があることから直線状にレールを敷くスペースが必要であり、そのようなスペースを確保することができない高層の作業場では、鉄骨柱を溶接するのにロボットを使用することができず、人間が溶接する以外に方法がなかった。 However, since the robot proposed in Patent Document 1 needs to move on a rail that is laid in a straight line in order to move to a place to be welded, a space for laying the rail in a straight line is necessary. In high-rise workplaces where it is not possible to secure sufficient space, robots cannot be used to weld steel columns, and there was no way other than human welding.
本発明はこのような問題点に鑑みてなされたものであり、スペースをほとんど必要とせずに鉄骨柱の溶接作業をすることができる垂直多関節溶接ロボットを提案する。 The present invention has been made in view of such problems, and proposes a vertical articulated welding robot capable of welding a steel column with little space.
垂直多関節溶接ロボットは、柱に固定支持されているベース部と、前記ベース部に軸支されて垂直軸周りに水平方向に旋回する旋回部と、前記旋回部に基端部が回転自在に支持されることで前後方向に揺動する下部アームと、前記下部アームの先端部に基端部が回転自在に支持されることで上下方向に揺動する上部アームと、前記上部アームの先端部に取り付けられた溶接ヘッドと、を備えており、姿勢を制御して柱を溶接することを特徴とする。 The vertical articulated welding robot includes a base part fixedly supported by a column, a turning part pivotally supported by the base part and turning in a horizontal direction around the vertical axis, and a base end part rotatable in the turning part. A lower arm that swings in the front-rear direction by being supported, an upper arm that swings in the vertical direction by a base end portion being rotatably supported by the distal end portion of the lower arm, and a distal end portion of the upper arm A welding head attached to the column, and the column is welded by controlling the posture.
また、垂直多関節溶接ロボットは、柱に固定支持されている円形状のレールと、レールに連結する連結部と、前記連結部に固定支持されているベース部と、前記ベース部に軸支されて垂直軸周りに水平方向に旋回する旋回部と、前記旋回部に基端部が回転自在に支持されることで前後方向に揺動する下部アームと、前記下部アームの先端部に基端部が回転自在に支持されることで上下方向に揺動する上部アームと、前記上部アームの先端部に取り付けられた溶接ヘッドと、を備えており、姿勢を制御して柱を溶接することを特徴とする。
また、垂直多関節溶接ロボットはレールから吊り下がった状態であることを特徴とする。
The vertical articulated welding robot includes a circular rail fixedly supported by a column, a connecting portion connected to the rail, a base portion fixedly supported by the connecting portion, and a shaft supported by the base portion. A swivel portion that swivels horizontally around a vertical axis, a lower arm that swings in the front-rear direction by a base end portion rotatably supported by the swivel portion, and a base end portion at a distal end portion of the lower arm An upper arm that swings in the vertical direction by being rotatably supported, and a welding head attached to the tip of the upper arm, and the column is welded by controlling the posture. And
The vertical articulated welding robot is characterized by being suspended from a rail.
また、垂直多関節溶接ロボットは、複数台の該垂直多関節溶接ロボットにより柱を溶接することを特徴とする。 The vertical articulated welding robot is characterized in that a column is welded by a plurality of vertical articulated welding robots.
本発明に係る垂直多関節溶接ロボットによれば、ロボットが作業を行うためのスペースをほとんど確保することができない高層の作業場であっても人の手に頼らずに鉄骨柱を溶接することができる。 According to the vertical articulated welding robot according to the present invention, it is possible to weld a steel column without relying on a person's hand even in a high-rise work place where a space for the robot to perform work can hardly be secured. .
柱に固定された垂直多関節溶接ロボットの全体構成を示す図である。It is a figure which shows the whole structure of the vertical articulated welding robot fixed to the column. ハンド部を拡大した図である。It is the figure which expanded the hand part. センサーで溶接部分をスキャンしている時の図である。It is a figure when scanning the welding part with a sensor. 4台のロボットで溶接作業をしている時の図である。It is a figure at the time of welding work with four robots. レール上部に垂直多関節溶接ロボットがある場合の全体構成を示す図である。It is a figure which shows the whole structure when there exists a vertical articulated welding robot in the rail upper part. レール下部に垂直多関節溶接ロボットがある場合の全体構成を示す図である。It is a figure which shows the whole structure in case a vertical articulated welding robot exists in the rail lower part.
(実施例1)
図1および図2に基づいて説明すると、このロボットは垂直多関節溶接ロボット1であり、柱2にくっ付いている柱取付ベース部3上にあり旋回可能なスウィングアーム部4と、スウィングアーム部4に軸支されて垂直軸回りに水平面内で旋回するロボットベース部5と、ロボットベース部5に基端部が軸支されて水平軸6回りに前後方向に揺動する下部アーム(ロボットアーム)7と、下部アーム7の先端部に基端部が軸支されて水平軸8回りに上下方向に揺動する上部アーム(ロボットアーム)9と、上部アーム9の先端に取り付けられて水平軸10回りに上下方向回動自在とされた手首部11と、手首部11に取り付けられて旋回自在とされたハンド部12と、を備えている。
(Example 1)
1 and 2, this robot is a vertical articulated welding robot 1, a swing arm unit 4 that can be turned on a column mounting base unit 3 that is attached to a column 2, and a swing arm unit. 4 is supported by a robot base 5 that pivots in a horizontal plane about a vertical axis, and a lower arm (robot arm) that has a base end pivotally supported by the robot base 5 and swings back and forth about a horizontal axis 6. ) 7, an upper arm (robot arm) 9 whose base end is pivotally supported by the distal end of the lower arm 7 and swings in the vertical direction around the horizontal axis 8, and a horizontal axis attached to the distal end of the upper arm 9. There are provided a wrist portion 11 that can be pivoted up and down about 10 times, and a hand portion 12 that is attached to the wrist portion 11 and that can turn freely.
そして、ハンド部12にはアーク放電して溶接を行う溶接ヘッド20が結合されており、また、溶接ワイヤ22を溶接ヘッド20による溶接箇所に供給する溶接ワイヤ供給装置21が設けられている。 A welding head 20 that performs arc discharge and welding is coupled to the hand portion 12, and a welding wire supply device 21 that supplies a welding wire 22 to a welding location by the welding head 20 is provided.
また、ハンド部12には溶接部分をスキャンして溶接部分の形状(開先形状)を認識するセンサー31が設けられている。 The hand unit 12 is provided with a sensor 31 that scans the welded portion and recognizes the shape (groove shape) of the welded portion.
さらに、ロボット内部には垂直多関節溶接ロボット1の各部を制御したりセンサー31による画像認識を制御したりするCPU32と、溶接する部分の位置情報やセンサー31によってスキャンして得られたデータなどを保存する記憶部33が設けられている。 Furthermore, inside the robot, there are a CPU 32 for controlling each part of the vertical articulated welding robot 1 and controlling image recognition by the sensor 31, position information of the part to be welded, data obtained by scanning by the sensor 31, and the like. A storage unit 33 for saving is provided.
ハンド部12には必要に応じて、溶接部分を保護するためのシールドガスを溶接箇所に向けて供給するシールドガスノズルが取り付けられていてもよい。また、溶接ワイヤ供給装置21はワイヤ供給管23の先端から溶接ワイヤ22を溶接箇所に向けて制御された速度で送り出す。 If necessary, a shield gas nozzle that supplies a shield gas for protecting the welded portion toward the welded portion may be attached to the hand portion 12. Further, the welding wire supply device 21 sends the welding wire 22 from the tip of the wire supply pipe 23 toward the welding location at a controlled speed.
溶接を行う溶接ヘッド20と溶接部分をスキャンするセンサー31は図3のように構成されており、溶接時とスキャン時とで溶接ヘッド20とセンサー31を回転して動かすことで使い分けることができる。 The welding head 20 that performs welding and the sensor 31 that scans the welding portion are configured as shown in FIG. 3, and can be selectively used by rotating and moving the welding head 20 and the sensor 31 during welding and scanning.
なお、柱取付ベース部3の裏側は永久磁石等があることで柱2にくっ付く仕組みである。 In addition, the back side of the column mounting base portion 3 is a mechanism that sticks to the column 2 by having a permanent magnet or the like.
次に、溶接するにあたり、まず、多関節ロボット1を溶接部分のスキャンを行う姿勢に制御して溶接部分をスキャンする。 Next, in welding, first, the articulated robot 1 is controlled to a posture for scanning the welded portion, and the welded portion is scanned.
具体的には、CPU32は記憶部33に記憶されている溶接部分の位置情報に基づき多関節ロボット1を制御する。 Specifically, the CPU 32 controls the articulated robot 1 based on the position information of the welded portion stored in the storage unit 33.
より具体的には、記憶部33に記憶されている溶接部分の位置情報に基づき、CPU32は命令を出し、スウィングアーム部4が旋回して多関節ロボット1全体の位置決めをし、ロボットベース部5を水平方向に旋回してセンサー31を溶接部分が存在する方向に向かせ、下部アーム7を前後に動かし、上部アーム9を上下に動かしてセンサー31の先端を溶接部分に指向させる。そして、溶接部分をスキャンし、得られたスキャンデータを記憶部33に保存し、CPU32は記憶部33に記憶されたスキャンデータに基づいて溶接部分を解析し、溶接方法を導き出す。 More specifically, based on the position information of the welded portion stored in the storage unit 33, the CPU 32 issues a command, the swing arm unit 4 turns to position the entire articulated robot 1, and the robot base unit 5 The sensor 31 is turned in the horizontal direction so that the sensor 31 is directed in the direction in which the welded portion exists, the lower arm 7 is moved back and forth, and the upper arm 9 is moved up and down to direct the tip of the sensor 31 toward the welded portion. Then, the welded portion is scanned, and the obtained scan data is stored in the storage unit 33. The CPU 32 analyzes the welded portion based on the scan data stored in the storage unit 33, and derives a welding method.
次に、導き出された溶接方法に基づいて多関節ロボット1を溶接する姿勢に制御して溶接を行う。具体的には、CPU32は動作指示を出し、ハンド部12のセンサー31を溶接ヘッド20にして溶接を行う体制に制御し、ワイヤ供給装置21のワイヤ供給管23の先端を溶接部分に指向するように位置決めして溶接ワイヤ22を供給し、溶接ヘッド20からアーク放電して溶接部分を溶接する。 Next, welding is performed by controlling the articulated robot 1 to a welding posture based on the derived welding method. Specifically, the CPU 32 issues an operation instruction, controls the sensor 31 of the hand unit 12 to perform welding using the welding head 20, and directs the tip of the wire supply pipe 23 of the wire supply device 21 to the welding portion. Then, the welding wire 22 is supplied and the arc is discharged from the welding head 20 to weld the welded portion.
(実施例1の変形例)
実施例1は1台の垂直多関節溶接ロボットが作業する場合について説明したが、その変形例として複数台の垂直多関節溶接ロボットが作業することができる。ここでは四角柱の柱2について4台の垂直多関節溶接ロボットが作業する場合について説明する。
(Modification of Example 1)
Although the first embodiment has been described for the case where one vertical articulated welding robot works, as a modification thereof, a plurality of vertical articulated welding robots can work. Here, a case where four vertical articulated welding robots work on the quadrangular column 2 will be described.
四角柱の柱2についてそれぞれの面に1台のロボットを配置する。具体的には図4のように配置し、4台のロボットをそれぞれ垂直多関節溶接ロボット101、垂直多関節溶接ロボット102、垂直多関節溶接ロボット103、垂直多関節溶接ロボット104とする。 One robot is arranged on each surface of the square pillar 2. Specifically, as shown in FIG. 4, the four robots are a vertical articulated welding robot 101, a vertical articulated welding robot 102, a vertical articulated welding robot 103, and a vertical articulated welding robot 104, respectively.
この場合において、垂直多関節溶接ロボット101~104がそれぞれ互いに交錯したり接触したりすることがないように制御する必要がある。 In this case, it is necessary to perform control so that the vertical articulated welding robots 101 to 104 do not cross or contact each other.
具体的には、それぞれのロボットが交錯したり接触したりすることがないように統括制御するコンピュータ34があり、コンピュータ34は4台のロボットの各CPU32や記憶部33とつながっていてデータ等をやり取りできるようになっており、コンピュータ34は4台のロボットの位置情報などに基づいてそれぞれのロボットが交錯したり接触したりしない動作となるように計算して4台のロボットに動作情報等を送信して各ロボットを制御する。 Specifically, there is a computer 34 that performs overall control so that the robots do not cross or come into contact with each other. The computer 34 is connected to each CPU 32 and storage unit 33 of four robots to transmit data and the like. Based on the positional information of the four robots, the computer 34 calculates the movements of the robots so that they do not cross or touch each other, and sends the movement information to the four robots. Send and control each robot.
(実施例2)
図5に基づいて説明すると、垂直多関節溶接ロボット1Aを溶接個所に移動させるための仕組みとして全体が円形状のレール等を使う仕組みを採用している。
(Example 2)
Explaining based on FIG. 5, a mechanism using a circular rail or the like as a whole is adopted as a mechanism for moving the vertical articulated welding robot 1 </ b> A to a welding point.
具体的には、垂直多関節溶接ロボット1Aと、全体がほぼ円形状のレール13と、レール13を柱2に固定するレール固定部14と、レール13を柱2に固定したい位置にしっかり固定するためにレール13とレール固定部14との距離を調整するために設けられているヒンジ部15と、レール13と垂直多関節溶接ロボット1Aとを連結・固定しているロボット連結部16と、レール13を水平移動させるためのタイヤ3個から構成されるタイヤ部17と、を備えている。 Specifically, the vertical articulated welding robot 1 </ b> A, the rail 13 having a substantially circular shape as a whole, the rail fixing portion 14 that fixes the rail 13 to the column 2, and the position where the rail 13 is fixed to the column 2 are firmly fixed. In order to adjust the distance between the rail 13 and the rail fixing portion 14, a hinge portion 15, a robot connecting portion 16 that connects and fixes the rail 13 and the vertical articulated welding robot 1A, and a rail And a tire portion 17 composed of three tires for horizontally moving 13.
なお、レール固定部14の裏側は永久磁石等があることで柱2にくっ付く仕組みである。 In addition, the back side of the rail fixing | fixed part 14 is a mechanism attached to the pillar 2 by having a permanent magnet etc.
垂直多関節溶接ロボット1Aは、ロボット連結部16上にあり旋回可能なスウィングアーム部4Aと、スウィングアーム部4Aに軸支されて垂直軸回りに水平面内で旋回するロボットベース部5Aと、ロボットベース部5Aに基端部が軸支されて水平軸6A回りに前後方向に揺動する下部アーム(ロボットアーム)7Aと、下部アーム7Aの先端部に基端部が軸支されて水平軸8A回りに上下方向に揺動する上部アーム(ロボットアーム)9Aと、上部アーム9Aの先端に取り付けられて水平軸10A回りに上下方向回動自在とされた手首部11Aと、手首部11Aに取り付けられて旋回自在とされたハンド部12Aと、を備えている。 The vertical articulated welding robot 1A includes a swing arm unit 4A that is turnable on the robot coupling unit 16, a robot base unit 5A that is pivotally supported by the swing arm unit 4A and rotates about a vertical axis in a horizontal plane, and a robot base A lower arm (robot arm) 7A that pivots in the front-rear direction around the horizontal axis 6A with a base end pivotally supported by the portion 5A, and a base end that is pivotally supported at the distal end of the lower arm 7A around the horizontal axis 8A An upper arm (robot arm) 9A that swings in the vertical direction, a wrist portion 11A that is attached to the tip of the upper arm 9A and is rotatable about the horizontal axis 10A, and is attached to the wrist portion 11A. And a hand portion 12A that is freely turnable.
そして、ハンド部12Aにはアーク放電して溶接を行う溶接ヘッド20Aが結合されており、また、ハンド部12Aには、溶接ワイヤ22Aを溶接ヘッド20Aによる溶接箇所に供給する溶接ワイヤ供給装置21Aが設けられている。また、ハンド部12Aには溶接部分をスキャンして溶接部分の形状(開先形状)を認識するセンサー31Aが設けられている。 A welding head 20A that performs welding by arc discharge is coupled to the hand portion 12A, and a welding wire supply device 21A that supplies a welding wire 22A to a welding location by the welding head 20A is connected to the hand portion 12A. Is provided. In addition, the hand portion 12A is provided with a sensor 31A that scans the welded portion and recognizes the shape (groove shape) of the welded portion.
さらに、ロボット内部には垂直多関節溶接ロボット1Aの各部を制御したりセンサー31Aによる画像認識を制御したりするCPU32と、溶接する部分の位置情報やセンサー31Aによってスキャンして得られたデータなどを保存する記憶部33が設けられている。 Furthermore, inside the robot, there are a CPU 32 for controlling each part of the vertical articulated welding robot 1A and controlling image recognition by the sensor 31A, position information of the part to be welded, data obtained by scanning with the sensor 31A, and the like. A storage unit 33 for saving is provided.
ハンド部12Aには必要に応じて、溶接部分を保護するためのシールドガスを溶接箇所に向けて供給するシールドガスノズルが取り付けられていてもよい。また、溶接ワイヤ供給装置21Aはワイヤ供給管23Aの先端から溶接ワイヤ22Aを溶接箇所に向けて制御された速度で送り出す。 If necessary, a shield gas nozzle that supplies a shield gas for protecting the welded portion toward the welded portion may be attached to the hand portion 12A. The welding wire supply device 21A sends the welding wire 22A from the tip of the wire supply pipe 23A toward the welding location at a controlled speed.
なお、溶接を行う溶接ヘッド20Aと溶接部分をスキャンするセンサー31Aは図3のように構成されており、溶接時とスキャン時とで溶接ヘッド20Aとセンサー31Aを回転して動かすことで使い分けることができる。 Note that the welding head 20A for welding and the sensor 31A for scanning the welded portion are configured as shown in FIG. 3, and can be selectively used by rotating and moving the welding head 20A and the sensor 31A during welding and during scanning. it can.
また、レール13を柱2の所望の位置にしっかり固定するため、まず、所望の位置にレール固定部14を柱2の側面にくっ付け、次にヒンジ部15を緩めておいてレール13がタイヤ部17を介して動かせる状態にしておいてレール13をタイヤ部17に乗せ、最後にヒンジ部15を締めてレール13が動かない状態にして柱2に固定する。 Further, in order to firmly fix the rail 13 to the desired position of the pillar 2, first, the rail fixing part 14 is attached to the side of the pillar 2 at the desired position, and then the hinge part 15 is loosened so that the rail 13 is the tire. The rail 13 is put on the tire portion 17 in a state where it can be moved via the portion 17, and finally the hinge portion 15 is tightened so that the rail 13 does not move and is fixed to the column 2.
具体的に四角柱である柱2について説明すると、レール13を柱2に固定する位置が決まったら4つあるレール固定部14を柱2の側面にくっ付いた状態にし、ヒンジ部15を緩めておいてレール13がタイヤ部17を介して動かせる状態にしておいてレール13をタイヤ部17に乗せ、ヒンジ部15を一つずつ締めてレール13が動かない状態にすることでレール13を柱2に固定する。 Specifically, the pillar 2 that is a square pillar will be described. When the position for fixing the rail 13 to the pillar 2 is determined, the four rail fixing portions 14 are attached to the side surfaces of the pillar 2 and the hinge portion 15 is loosened. In this case, the rail 13 can be moved via the tire portion 17, the rail 13 is placed on the tire portion 17, the hinge portions 15 are tightened one by one to prevent the rail 13 from moving, and the rail 13 can be moved to the pillar 2. Secure to.
次に、溶接するにあたり、多関節ロボット1Aを溶接する箇所に移動させる。具体的な動作としては、CPU32は記憶部33に記憶されている溶接部分の位置情報に基づき命令を出し、CPU32の動作指示に従ってタイヤ部17のタイヤが回転してレール13を水平移動させて多関節ロボット1Aを所定の位置に移動させる。 Next, when welding, the multi-joint robot 1A is moved to a place to be welded. As a specific operation, the CPU 32 issues a command based on the position information of the welded portion stored in the storage unit 33, and the tire of the tire unit 17 rotates and horizontally moves the rail 13 according to the operation instruction of the CPU 32. The joint robot 1A is moved to a predetermined position.
次に、多関節ロボット1Aを溶接部分のスキャンを行う姿勢に制御して溶接部分をスキャンする。 Next, the articulated robot 1A is controlled to a posture for scanning the welded portion, and the welded portion is scanned.
具体的には、スウィングアーム部4Aが旋回して多関節ロボット1A全体の位置決めをし、ロボットベース部5Aを水平方向に旋回してセンサー31Aを溶接部分が存在する方向に向かせ、下部アーム7Aを前後に動かし、上部アーム9Aを上下に動かしてセンサー31Aの先端を溶接部分に指向させる。そして、溶接部分をスキャンし、得られたスキャンデータを記憶部33に保存し、CPU32は記憶部33に記憶されたスキャンデータに基づいて溶接部分を解析し、溶接方法を導き出す。 Specifically, the swing arm portion 4A turns to position the entire articulated robot 1A, the robot base portion 5A turns to the horizontal direction, the sensor 31A faces in the direction where the welded portion exists, and the lower arm 7A. Is moved back and forth, and the upper arm 9A is moved up and down to point the tip of the sensor 31A toward the welded portion. Then, the welded portion is scanned, and the obtained scan data is stored in the storage unit 33. The CPU 32 analyzes the welded portion based on the scan data stored in the storage unit 33, and derives a welding method.
次に、導き出された溶接方法に基づいて多関節ロボット1Aを溶接する姿勢に制御して溶接を行う。具体的には、CPU32は動作指示を出し、ハンド部12Aのセンサー31Aを溶接ヘッド20Aにして溶接を行う体制に制御し、ワイヤ供給装置21Aのワイヤ供給管23Aの先端を溶接部分に指向するように位置決めして溶接ワイヤ22Aを供給し、溶接ヘッド20Aからアーク放電して溶接部分を溶接する。 Next, welding is performed by controlling the articulated robot 1 </ b> A to a welding posture based on the derived welding method. Specifically, the CPU 32 issues an operation instruction, controls the sensor 31A of the hand portion 12A to perform welding using the welding head 20A, and directs the tip of the wire supply pipe 23A of the wire supply device 21A to the welding portion. Then, the welding wire 22A is supplied and the arc is discharged from the welding head 20A to weld the welded portion.
(実施例2の変形例)
実施例2はロボットがレール上に乗っている場合について説明したが、その変形例としてロボットがレールに吊り下がっている場合について説明する。
(Modification of Example 2)
In the second embodiment, the case where the robot is on the rail has been described. As a modification, the case where the robot is suspended on the rail will be described.
具体的には図6に示す通りだが、実施例2の垂直多関節溶接ロボット1A、レール13、タイヤ部17をひっくり返して下向きにしただけである。 Specifically, as shown in FIG. 6, the vertical articulated welding robot 1 </ b> A, the rail 13, and the tire portion 17 of Example 2 are simply turned over and turned downward.
具体的には、ヒンジ部15を完全に緩めて取り外してタイヤ部17をひっくり返した後、再度ヒンジ部15を締め、ひっくり返したレール13と垂直多関節溶接ロボット1Aを連結する。なお、レール13はタイヤ部17のタイヤ3個にがっちりはまっているので、下向きになってもレール13が落ちることはない。 Specifically, the hinge portion 15 is completely loosened and removed, and the tire portion 17 is turned over, and then the hinge portion 15 is tightened again to connect the turned over rail 13 and the vertical articulated welding robot 1A. In addition, since the rail 13 is firmly fitted to the three tires of the tire portion 17, the rail 13 does not fall even if it is directed downward.
実施例2および実施例2の変形例の場合でも、実施例1の変形例で説明した複数台のロボットにより溶接作業を行うことが可能である。 Even in the case of the second embodiment and the modification of the second embodiment, the welding operation can be performed by the plurality of robots described in the modification of the first embodiment.
また、実施例2および実施例2の変形例でレール13が動くことで垂直多関節溶接ロボット1Aを溶接個所に移動させる場合について説明したが、タイヤ部17が存在せず、つまりレール13は動かずに固定されていて、レール13上を垂直多関節溶接ロボット1Aが溶接個所まで移動するようにしてもよい。 Moreover, although the case where the vertical articulated welding robot 1A is moved to the welding location by moving the rail 13 in the modification of the second embodiment and the second embodiment has been described, the tire portion 17 does not exist, that is, the rail 13 moves. The vertical articulated welding robot 1 </ b> A may move to the welding point on the rail 13.
また、垂直多関節ロボットは6軸のロボットを例に挙げて説明したが、7軸など軸の数が異なるロボットでもよい。 The vertical articulated robot has been described by taking a 6-axis robot as an example, but a robot with a different number of axes such as 7 axes may be used.
さらに、溶接はガスシールドアーク溶接に基づいて説明したが、ガスシールドアーク溶接に変えてレーザー溶接でもよい。 Furthermore, although the welding has been described based on gas shielded arc welding, laser welding may be used instead of gas shielded arc welding.
(スウィングアーム部4の多軸化)
(実施例1)及び(実施例2)の態様において、複数のスウィングアーム部4を連結する構成としてもよい。この場合、柱取付ベース部3とロボットベース部5の間に、複数のスウィングアーム部4を連結して設けることになる。ここで、スウィングアーム部4の個数は特に限定されないが、例えば、2~5個のスウィングアーム部4を連結することができる(スウィングアーム部4の多軸化)。これにより、複数のスウィングアーム部4の軸のそれぞれを中心として個々のスウィングアーム部4が旋回可能になる。これにより、溶接ヘッド20の位置決め自由度が向上し、正確な位置合わせをすることができる。
(Multi-axis swing arm 4)
In the embodiments (Example 1) and (Example 2), a plurality of swing arm portions 4 may be connected. In this case, a plurality of swing arm portions 4 are connected and provided between the column mounting base portion 3 and the robot base portion 5. Here, the number of the swing arm portions 4 is not particularly limited. For example, 2 to 5 swing arm portions 4 can be connected (multi-axis of the swing arm portions 4). Thereby, the individual swing arm portions 4 can turn around the axes of the plurality of swing arm portions 4. Thereby, the positioning freedom degree of the welding head 20 improves and exact position alignment can be performed.
さらに、スウィングアーム部4を多軸化することにより、柱取付ベース部3と溶接ヘッド20の距離が大きくなるので、スウィングアーム部4を1つ設ける構成と比較して、柱取付ベース部3から遠い位置を溶接することが可能になる。例えば、スウィングアーム部4の多軸化により、柱2の全面に取り付けた柱取付ベース部3を起点として溶接ヘッド20を柱2の側面及び背面に回り込ませることで、(実施例1の変形例)のように直多関節溶接ロボット1を4つ設けることなく、1つの直多関節溶接ロボット1で柱2の4面を溶接することが可能になる。 Furthermore, since the distance between the column mounting base portion 3 and the welding head 20 is increased by making the swing arm portion 4 multi-axial, the column mounting base portion 3 can be compared with a configuration in which one swing arm portion 4 is provided. It becomes possible to weld a distant position. For example, by making the swing arm portion 4 multi-axial, the welding head 20 is turned around the side surface and the back surface of the column 2 starting from the column mounting base portion 3 mounted on the entire surface of the column 2 (modified example of the first embodiment) It is possible to weld the four surfaces of the column 2 with one straight articulated welding robot 1 without providing four straight articulated welding robots 1 as in FIG.
本発明の一実施形態に係る直多関節溶接ロボット1は、以下の観点でも実施可能である。

<観点1>
 柱に固定可能に構成されたベース部と、
 前記ベース部の面上に設けられ、且つ、前記面に垂直な軸を中心として旋回可能なスウィングアーム部と、
 前記スウィングアーム部に軸支されて垂直軸周りに水平方向に旋回する旋回部と、
 前記旋回部に基端部が回転自在に支持されることで前後方向に揺動する下部アームと、
 前記下部アームの先端部に基端部が回転自在に支持されることで上下方向に揺動する上部アームと、
 前記上部アームの先端部に取り付けられた溶接ヘッドと、
 を備えており、
 姿勢を制御して柱を溶接することを特徴とする垂直多関節溶接ロボット。

<観点2-1>
 ベース部、スウィングアーム部、下部アーム、上部アーム、溶接ヘッド及びCPUを備え、
 前記ベース部は、柱に固定可能に構成され、
 前記スウィングアーム部は、前記ベース部の面上に設けられ、且つ、前記面に垂直な軸を中心として旋回可能に構成され、
 前記下部アームは、前記スウィングアーム部に直接又は間接的に設けられ、且つ、垂直面に対して前後方向に揺動可能に構成され、
 前記上部アームは、前記下部アームに第1端部を回転自在に支持され、且つ、水平面に対して上下方向に揺動可能に構成され、
 前記溶接ヘッドは、前記上部アームの第2端部に設けられ、且つ、第2端部は、第1端部と逆側の端部であり、
 前記CPUは、前記溶接ヘッドにより溶接される溶接部分の位置情報に基づいて、前記スウィングアーム部、前記下部アーム及び前記上部アームを制御可能に構成される、
 垂直多関節溶接ロボット。
The direct articulated welding robot 1 according to an embodiment of the present invention can also be implemented from the following viewpoints.

<Viewpoint 1>
A base portion configured to be fixable to a pillar;
A swing arm portion provided on the surface of the base portion and pivotable about an axis perpendicular to the surface;
A swivel part pivotally supported by the swing arm part and swiveling horizontally around a vertical axis;
A lower arm that swings in the front-rear direction by a base end portion rotatably supported by the swivel unit;
An upper arm that swings in a vertical direction by a base end portion being rotatably supported by a distal end portion of the lower arm;
A welding head attached to the tip of the upper arm;
With
Vertical articulated welding robot characterized by welding the column with controlled posture.

<Viewpoint 2-1>
It has a base part, swing arm part, lower arm, upper arm, welding head and CPU,
The base portion is configured to be fixable to a pillar,
The swing arm portion is provided on the surface of the base portion, and is configured to be pivotable about an axis perpendicular to the surface,
The lower arm is provided directly or indirectly on the swing arm and is configured to be swingable in the front-rear direction with respect to a vertical plane.
The upper arm is configured such that the first end is rotatably supported by the lower arm, and is swingable in a vertical direction with respect to a horizontal plane.
The welding head is provided at a second end of the upper arm, and the second end is an end opposite to the first end;
The CPU is configured to be able to control the swing arm portion, the lower arm, and the upper arm based on position information of a welded portion to be welded by the welding head.
Vertical articulated welding robot.
 さらに、(観点2-2)を(観点2-1)に組み合わせることも可能である。

<観点2-2>
 センサーを備え、
 前記センサーは、前記溶接部分をスキャン可能に構成され、
 前記CPUは、前記スキャンの結果に基づいて、前記溶接ヘッドによる溶接方法を決定可能に構成される、
 垂直多関節溶接ロボット。
Furthermore, (Viewpoint 2-2) can be combined with (Viewpoint 2-1).

<Viewpoint 2-2>
With sensors,
The sensor is configured to scan the welded portion,
The CPU is configured to be able to determine a welding method by the welding head based on a result of the scan.
Vertical articulated welding robot.
以上説明した発明及び実施例は一例であり、これ以外に当業者が考えうるあらゆる改良発明が含まれるのは言うまでもない。 The invention and the embodiments described above are merely examples, and it is needless to say that all other improved inventions that can be considered by those skilled in the art are included.
1:直多関節溶接ロボット、2:柱、3:柱取付ベース部、4:スウィングアーム部、5:ロボットベース部、6:水平軸、7:下部アーム、8:水平軸、9:上部アーム、10:水平軸、11:手首部、12:ハンド部、13:レール、14:レール固定部、15:ヒンジ部、16:ロボット連結部、17:タイヤ部、20:溶接ヘッド、21:溶接ワイヤ供給装置、22:溶接ワイヤ、23:ワイヤ供給管、31:センサー、32:CPU、33:記憶部、34:コンピュータ 1: straight joint welding robot, 2: column, 3: column mounting base, 4: swing arm, 5: robot base, 6: horizontal axis, 7: lower arm, 8: horizontal axis, 9: upper arm 10: Horizontal axis, 11: Wrist part, 12: Hand part, 13: Rail, 14: Rail fixing part, 15: Hinge part, 16: Robot connecting part, 17: Tire part, 20: Welding head, 21: Welding Wire supply device, 22: welding wire, 23: wire supply pipe, 31: sensor, 32: CPU, 33: storage unit, 34: computer

Claims (4)

  1. 柱に固定支持されているベース部と、
    前記ベース部に軸支されて垂直軸周りに水平方向に旋回する旋回部と、
    前記旋回部に基端部が回転自在に支持されることで前後方向に揺動する下部アームと、
    前記下部アームの先端部に基端部が回転自在に支持されることで上下方向に揺動する上部アームと、
    前記上部アームの先端部に取り付けられた溶接ヘッドと、
    を備えており、
    姿勢を制御して柱を溶接することを特徴とする垂直多関節溶接ロボット。
    A base part fixedly supported by a pillar;
    A revolving part that is pivotally supported by the base part and revolves horizontally around a vertical axis;
    A lower arm that swings in the front-rear direction by a base end portion rotatably supported by the swivel unit;
    An upper arm that swings in a vertical direction by a base end portion being rotatably supported by a distal end portion of the lower arm;
    A welding head attached to the tip of the upper arm;
    With
    A vertical articulated welding robot characterized by welding a column with controlled posture.
  2. 柱に固定支持されている円形状のレールと、
    レールに連結する連結部と、
    前記連結部に固定支持されているベース部と、
    前記ベース部に軸支されて垂直軸周りに水平方向に旋回する旋回部と、
    前記旋回部に基端部が回転自在に支持されることで前後方向に揺動する下部アームと、
    前記下部アームの先端部に基端部が回転自在に支持されることで上下方向に揺動する上部アームと、
    前記上部アームの先端部に取り付けられた溶接ヘッドと、
    を備えており、
    姿勢を制御して柱を溶接することを特徴とする垂直多関節溶接ロボット。
    A circular rail fixedly supported by a pillar;
    A connecting part connected to the rail;
    A base portion fixedly supported by the connecting portion;
    A revolving part that is pivotally supported by the base part and revolves horizontally around a vertical axis;
    A lower arm that swings in the front-rear direction by a base end portion rotatably supported by the swivel unit;
    An upper arm that swings in a vertical direction by a base end portion being rotatably supported by a distal end portion of the lower arm;
    A welding head attached to the tip of the upper arm;
    With
    A vertical articulated welding robot characterized by welding a column with controlled posture.
  3. 請求項2に記載の垂直多関節溶接ロボットはレールから吊り下がった状態であることを特徴とする垂直多関節溶接ロボット。 The vertical articulated welding robot according to claim 2, wherein the vertical articulated welding robot is suspended from a rail.
  4. 請求項1~3のいずれか1項に記載の垂直多関節溶接ロボットであって、
    複数台の該垂直多関節溶接ロボットにより柱を溶接することを特徴とする垂直多関節溶接ロボット。
    The vertical articulated welding robot according to any one of claims 1 to 3,
    A vertical articulated welding robot characterized in that a column is welded by a plurality of vertical articulated welding robots.
PCT/JP2019/015906 2018-05-18 2019-04-12 Vertical multi-joint welding robot WO2019220827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018095825 2018-05-18
JP2018-095825 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019220827A1 true WO2019220827A1 (en) 2019-11-21

Family

ID=68540386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015906 WO2019220827A1 (en) 2018-05-18 2019-04-12 Vertical multi-joint welding robot

Country Status (1)

Country Link
WO (1) WO2019220827A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012250A (en) * 2021-11-25 2022-02-08 重庆川宜机电设备有限公司 Arc welding cutting type robot with flexible angle adjusting mechanism

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333369A (en) * 1991-05-07 1992-11-20 Hitachi Zosen Corp Welding equipment for column of structure
JPH0671581A (en) * 1992-08-26 1994-03-15 Mitsubishi Heavy Ind Ltd Positioning device for manipulator
JPH06320446A (en) * 1993-05-17 1994-11-22 Mitsubishi Heavy Ind Ltd Guide rail device for welding robot
JPH0857781A (en) * 1994-08-19 1996-03-05 Hitachi Zosen Corp Welding equipment
JP2001334364A (en) * 2000-05-26 2001-12-04 Maeda Corp Method for welding steel frame column by articulated welding robot
JP2006206370A (en) * 2005-01-27 2006-08-10 Ohara Inc Method and apparatus for cleaning glass forming mold and cleaning apparatus
EP3078774A1 (en) * 2015-04-07 2016-10-12 VolkerRail Nederland BV Mobile robot station and repair method
JP2017039141A (en) * 2015-08-18 2017-02-23 鹿島建設株式会社 Welding apparatus
CN106624514A (en) * 2016-12-16 2017-05-10 浙江大成智能装备股份有限公司 Pipe pile welding robot

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333369A (en) * 1991-05-07 1992-11-20 Hitachi Zosen Corp Welding equipment for column of structure
JPH0671581A (en) * 1992-08-26 1994-03-15 Mitsubishi Heavy Ind Ltd Positioning device for manipulator
JPH06320446A (en) * 1993-05-17 1994-11-22 Mitsubishi Heavy Ind Ltd Guide rail device for welding robot
JPH0857781A (en) * 1994-08-19 1996-03-05 Hitachi Zosen Corp Welding equipment
JP2001334364A (en) * 2000-05-26 2001-12-04 Maeda Corp Method for welding steel frame column by articulated welding robot
JP2006206370A (en) * 2005-01-27 2006-08-10 Ohara Inc Method and apparatus for cleaning glass forming mold and cleaning apparatus
EP3078774A1 (en) * 2015-04-07 2016-10-12 VolkerRail Nederland BV Mobile robot station and repair method
JP2017039141A (en) * 2015-08-18 2017-02-23 鹿島建設株式会社 Welding apparatus
CN106624514A (en) * 2016-12-16 2017-05-10 浙江大成智能装备股份有限公司 Pipe pile welding robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012250A (en) * 2021-11-25 2022-02-08 重庆川宜机电设备有限公司 Arc welding cutting type robot with flexible angle adjusting mechanism
CN114012250B (en) * 2021-11-25 2023-10-20 重庆川宜机电设备有限公司 Arc welding cutting type robot with flexible angle adjusting mechanism

Similar Documents

Publication Publication Date Title
JPH01301082A (en) Welding robot
JP2018122404A (en) Multi-joint welding robot
JP5458769B2 (en) Robot control device
RU2000104508A (en) ROBOT SYSTEM AND METHOD
WO2018142893A1 (en) Robot-arm harness connection structure, and multi-jointed welding robot
JPWO2015141196A1 (en) Laser processing robot
JP2007136590A (en) Control device and control method for redundant robot having redundant joint
JP6665554B2 (en) Concrete spraying system
WO2019220827A1 (en) Vertical multi-joint welding robot
JP2011045934A (en) Arc welding robot and weaving method of the same
JP5056241B2 (en) Robot system controller
JP7095980B2 (en) Robot system
JP3638676B2 (en) 6-axis vertical articulated robot for bending
KR102603904B1 (en) robotic device
JP2010240664A (en) Welding robot and method for controlling weaving operation in welding
JP5074021B2 (en) Work assistance device
JP5112599B2 (en) Arc welding robot, its weaving method and its weaving program
JP5090871B2 (en) Robot equipment
CN115297985A (en) Circumferential welding method
KR200281772Y1 (en) Circle / Ellipse Tracking Welding Robot
JP2009050949A (en) Method and apparatus for teaching track of robot arm
JP3435447B2 (en) Traveling robot
JP3944419B2 (en) Method for controlling welding robot apparatus
JP2012016806A (en) Welding robot
JP2012240102A (en) Robot system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP