WO2019220779A1 - Rotor and rotating electrical machine - Google Patents

Rotor and rotating electrical machine Download PDF

Info

Publication number
WO2019220779A1
WO2019220779A1 PCT/JP2019/012878 JP2019012878W WO2019220779A1 WO 2019220779 A1 WO2019220779 A1 WO 2019220779A1 JP 2019012878 W JP2019012878 W JP 2019012878W WO 2019220779 A1 WO2019220779 A1 WO 2019220779A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
wedge
hole
cooling gas
wedge hole
Prior art date
Application number
PCT/JP2019/012878
Other languages
French (fr)
Japanese (ja)
Inventor
仁 荒川
哲也 永安
石川 博章
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020519492A priority Critical patent/JP6854975B2/en
Publication of WO2019220779A1 publication Critical patent/WO2019220779A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing

Definitions

  • the present invention relates to a rotor having a cooling mechanism and a rotating electric machine.
  • a rotor core of a turbine generator that employs a radial flow cooling system has a plurality of coil slots that are radially formed around the rotation axis.
  • Each coil slot extends in the axial direction, and a plurality of rotor coils are stacked in each coil slot, and a turn insulator is inserted to insulate the rotor coils from each other.
  • the rotor coils stacked in a plurality of stages are fixed by a wedge via an insulator.
  • the wedge has a function of preventing the rotor coil from coming out of the coil slot against a centrifugal force acting when the rotor rotates.
  • a channel having a U-shaped cross section is formed at the bottom of each coil slot where the rotor coils are stacked on the rotating shaft side over the entire length in the axial direction.
  • Each coil slot is formed with this U-shaped channel and at least one radial path penetrating the rotor coil in the radial direction.
  • the radial path is a radial ventilation path of the rotor.
  • the cooling gas of the rotor is introduced into the U-shaped channel from both ends of the rotor and flows to the center in the axial direction of the rotor. Then, the cooling gas flows into each radial path from the U-shaped channel, and then is discharged into a gap between the rotor and the stator through a hole provided in the insulator and the wedge.
  • the gap between the rotor and the stator is referred to as an air gap.
  • the cooling gas absorbs the heat generated in the rotor coil and cools the rotor.
  • the rotor of the rotating electrical machine of Patent Document 1 has a V-shaped groove that has a radially outward velocity component with respect to the high-speed gas flow generated in the air gap when the rotor rotates, and the high-speed gas flow at the opening of the wedge hole.
  • a V-shaped groove that has a radially outward velocity component with respect to the high-speed gas flow generated in the air gap when the rotor rotates, and the high-speed gas flow at the opening of the wedge hole.
  • an inclined surface inclined with respect to the radial direction so as to guide the exhaust flow from the wedge hole in the high-speed gas flow direction is provided on the downstream side of the wedge exhaust hole at the high-speed gas flow.
  • the rotor of the rotary electric machine of patent document 2 describes providing the protrusion which guides the cooling gas flow injected from the wedge hole of a rotor in an air gap in the upstream of the cooling gas flow in an air gap.
  • Patent Document 2 describes that an inclined surface is provided on the downstream side of the wedge hole for enlarging the cross-sectional area of the jet cooling gas flow.
  • JP-A-8-340653 Japanese Patent Laid-Open No. 10-178754 JP 2017-184529 A
  • the cooling gas flow in the air gap in the radial flow cooling method is formed by combining the axial flow by the fan and the flow swirling in the circumferential direction by the rotating rotor. Therefore, the flow of the cooling gas in the air gap varies depending on the position in the axial direction.
  • the present invention has been made to solve the above-described problems, and has a simple structure, obtaining a stable reduction effect of ventilation resistance when cooling gas is ejected from the inside of the rotor to the outside,
  • An object of the present invention is to obtain a rotor and a rotating electrical machine that improve the cooling capacity.
  • a rotor according to the present invention includes a cylindrical rotor core in which a plurality of axially extending coil slots are provided on an outer peripheral surface, a rotor coil disposed in the coil slot, and an opening of the coil slot.
  • One or more wedge holes that are provided in a portion and fix the rotor coil in the coil slot and allow the cooling gas to flow from the inside of the coil slot to the outside by extending in the radial direction of the rotor core.
  • at least one of the wedge holes is disposed on a radially outer side of the rotor core than the first portion, and at least one of the wedge holes is a wedge.
  • a second portion having a second inner diameter larger than the first inner diameter over the entire circumference of the hole.
  • the cooling gas when the cooling gas is ejected from the inside of the rotor to the outside through the wedge hole, the cooling gas is passed through the second portion having a large inner diameter.
  • the cooling gas flow is gently deflected.
  • FIG. 10 is a diagram illustrating an example of a rotor of a conventional rotating electrical machine described in Patent Document 3.
  • FIG. 1 shows the flow velocity distribution of the cooling gas in an air gap. It is a fragmentary sectional view which shows the wedge vicinity of the common rotor as a comparative example. It is a figure which shows an example of the rotor of the conventional rotary electric machine described in patent document 1.
  • FIG. 1 shows the wedge of patent document 1 seen from the radial direction outer side of the rotor core.
  • FIG. shows an example of the rotor of the conventional rotary electric machine described in patent document 2.
  • FIG. It is a figure which shows the wedge of patent document 2 seen from the radial direction outer side of the rotor iron core.
  • 10 is a diagram illustrating an example of a rotor of a conventional rotating electrical machine described in Patent Document 3.
  • FIG. 1 is a schematic diagram of a rotating electrical machine 100 on which a rotor 1 according to Embodiment 1 of the present invention is mounted.
  • the rotating electrical machine 100 of FIG. 1 is a turbine generator, for example.
  • FIG. 2 is a partial cross-sectional view in the radial direction of the rotor 1 according to the first embodiment.
  • FIG. 3 is an enlarged view of the wedge hole 81 portion of the wedge 8 of the rotor 1 according to the first embodiment.
  • FIG. 4 is a diagram illustrating the rotor wedge 8 according to the first embodiment of the present invention as viewed from the radially outer side of the rotor core 2.
  • FIG. 5 is a view showing the wedge 8 of the rotor 1 according to the first embodiment.
  • the rotating electrical machine 100 includes a rotor 1 and a stator 110. Further, the rotating electrical machine 100 includes a cooler 130, two fans 140, and a rotating shaft 150.
  • the stator 110 is formed in a cylindrical shape.
  • the rotor 1 is disposed in the stator 110 such that the inner peripheral surface of the stator 110 faces the outer peripheral surface of the rotor 1.
  • the inner peripheral surface of the stator 110 is referred to as a stator inner peripheral surface 111
  • the outer peripheral surface of the rotor 1 is referred to as a rotor outer peripheral surface 10.
  • the stator 110 is disposed via the air gap 120 with respect to the outer periphery of the rotor 1.
  • the rotor 1 includes a rotor core 2 and a rotor coil 5.
  • the rotor core 2 is fixed to the rotating shaft 150 and rotates by the rotation of the rotating shaft 150.
  • the two fans 140 are respectively fixed to the rotating shaft 150 at the positions of both end portions of the rotor 1.
  • Each fan 140 rotates by the rotation of the rotating shaft 150 to circulate the cooling gas 160 in the rotating electrical machine 100.
  • the arrows in FIG. 1 indicate the flow of the cooling gas 160.
  • the cooler 130 collects and cools the cooling gas 160 that has absorbed the heat of the rotating electrical machine 100.
  • the cooled cooling gas 160 is circulated through the rotating electrical machine 100 again by the fan 140.
  • a plurality of coil slots 3 extending in the axial direction of the rotor core 2 are provided on the outer peripheral surface of the rotor core 2 constituting the rotor 1. These coil slots 3 are formed at intervals in the circumferential direction of the rotor core 2.
  • FIG. 2 shows only one coil slot 3 among the plurality of coil slots 3. Since each coil slot 3 has the same configuration as that of the coil slot 3 shown in FIG. 2, only one coil slot 3 will be described here.
  • the coil slot 3 is formed from one end side to the other end side of the rotor core 2 along the axial direction of the rotor core 2. As shown in FIG. 2, the coil slot 3 is a U-shaped recess, and has an opening on the rotor outer peripheral surface 10 side of the rotor core 2. A plurality of rotor coils 5 are stacked in the coil slot 3. These rotor coils 5 are fixed by a wedge 8 fitted in an opening of the coil slot 3 via an insulator 7. As shown in FIGS. 2, 4, and 5, the wedge 8 has at least one wedge hole 81 that penetrates in the radial direction of the rotor core 2 and communicates the inside and the outside of the coil slot 3. Yes. Further, a turn insulator 6 is interposed between the rotor coils 5.
  • each of the plurality of rotor coils 5 and the turn insulator 6 is formed with at least one radial path 9 that penetrates them in the radial direction of the rotor core 2.
  • the insulator 7 has an insulator hole 71 penetrating in the radial direction of the rotor core 2.
  • the insulator hole 71 communicates with the radial path 9 and also communicates with the wedge hole 81.
  • the wedge hole 81 is composed of, for example, a circular through hole.
  • a U-shaped channel 4 is formed at the bottom of each coil slot 3.
  • the inside of the channel 4 is a cavity.
  • the channel 4, the radial path 9, the insulator hole 71, and the wedge hole 81 form a ventilation path through which the cooling gas 160 flows.
  • the cooling gas 160 enters each coil slot 3 from the channel 4 and flows into the air gap 120 through the radial path 9, the insulator hole 71, and the wedge hole 81.
  • the inner diameter of the wedge hole 81 is the first inner diameter and the second inner diameter larger than the first inner diameter. Is included.
  • the second portion 85 having the second inner diameter of the wedge hole 81 is arranged on the outer side in the radial direction of the rotor core 2 than the first portion 86 having the first inner diameter of the wedge hole 81.
  • the second portion is referred to as a “hole diameter enlarged portion 85”.
  • a hole diameter enlarged portion 85 is provided at the hole outlet of the wedge hole 81 located on the rotor outer peripheral surface 10 of the rotor 1. ing.
  • the hole diameter enlarged portion 85 is configured by forming an L-shaped stepped portion 85a by providing a L-shaped notch from the hole outlet of the wedge hole 81 to a preset depth ⁇ H. Has been.
  • the hole diameter enlarged portion 85 is provided evenly over the entire circumference of the wedge hole 81, that is, is configured in an annular shape and has no directivity in the structure.
  • the hole diameter enlarged portion 85 does not have a configuration that intentionally controls the direction of the cooling gas flow 11 in the rotor 1 ejected from the wedge hole 81 toward the air gap 120 in a specific direction.
  • FIG. 2 and FIG. 3 as can be seen from the fact that the inner wall of the hole diameter expanding portion 85 is shown symmetrically about the central axis of the wedge hole 81, the inner wall of the hole diameter expanding portion 85 is the whole of the wedge hole 81. It is configured to have an axisymmetric shape around the circumference, that is, 360 °, with the central axis of the wedge hole 81 as an axis. In other words, as shown in FIG.
  • FIG. 5 shows a part of the wedge 8 alone.
  • the inner diameter of the hole diameter expanding portion 85 is the second inner diameter and the inner diameter of the other portion of the wedge hole 81 is the first inner diameter
  • the second inner diameter is equal to the first step depth of the stepped portion 85a. It is larger than the inner diameter.
  • both the first inner diameter and the second inner diameter are constant along the radial direction without gradually increasing or decreasing toward the radially outer side.
  • the hole diameter enlarged portion 85 portion is defined as the “second portion having the second inner diameter of the wedge hole 81”, and the wedge.
  • the portion 86 other than the hole diameter enlarged portion 85 of the hole 81 is a “first portion having the first inner diameter of the wedge hole 81”
  • the wedge hole 81 has the first portion 86 having the first inner diameter.
  • a second portion that is disposed radially outside the rotor core 2 relative to the first portion 86 and has a second inner diameter that is larger than the first inner diameter over the entire circumference of the wedge hole 81. Yes.
  • FIG. 6 shows a circumferential flow velocity distribution of the cooling gas 160 in the air gap 120.
  • the vertical axis represents a dimensionless velocity V / V R obtained by dividing the flow velocity V of the cooling gas 160 in the circumferential direction of the rotor by the circumferential velocity V R on the outer circumferential surface 10 of the rotor.
  • the horizontal axis represents a dimensionless distance x / L obtained by dividing the distance x in the air gap width direction in the air gap 120 when the stator inner peripheral surface 111 is a reference by the air gap width L. Accordingly, the dimensionless distance x / L of the rotor outer circumferential surface 10 is 1, and the dimensionless distance x / L of the stator inner circumferential surface 111 is 0.
  • the average peripheral velocity of the cooling gas flow 121 of the cooling gas 160 in the circumferential direction of the rotor 1 is outside the region affected by the boundary layer between the rotor outer peripheral surface 10 and the stator inner peripheral surface 111. Is considered to be about 1 ⁇ 2 of the peripheral velocity of the cooling gas flow 121a on the rotor outer peripheral surface 10.
  • the cooling gas 160 pushed out from the two fans 140 provided at both ends of the rotor 1 flows from the inlet of the air gap 120 and flows in the air gap 120 in the axial direction.
  • the cooling gas flow 121b of the cooling gas 160 is also generated in the axial direction.
  • the amount and speed of this axial cooling gas flow 121b are determined by the amount of cooling gas 160 flowing from the inlet of the air gap 120 into the air gap 120, the amount of cooling gas 160 flowing from the rotor 1 to the air gap 120, and The amount of cooling gas 160 flowing from the air gap 120 to the stator 110 is determined.
  • the cooling gas flow 121 in the air gap 120 is a combination of the axial flow of the rotor 1 and the circumferential flow of the rotor 1, and the cooling gas flow 121 in the air gap 120 is combined.
  • a very sophisticated design is required for accurate prediction.
  • FIG. 7 illustrates the formed swirl flow, that is, the state of the cooling gas flow 121 in the air gap 120.
  • a solid line 122 is a flow velocity distribution viewed from the rotating coordinate system taken on the rotor 1.
  • the cooling gas flow 121 in the actual air gap 120 is a combination of the axial flow and the circumferential flow, but in FIG. 7, only the flow velocity distribution of the circumferential flow is shown for simplicity. It explains using.
  • a turbulent boundary layer having a steep flow velocity gradient develops on the stator inner peripheral surface 111 and the rotor outer peripheral surface 10 as shown in the flow velocity distribution 122.
  • the cooling gas flow 11 in the rotor 1 ejected from the wedge hole 81 toward the air gap 120 requires a large amount of energy to break through this boundary layer.
  • the cooling gas flow 11 in the rotor 1 causes ventilation resistance when ejected.
  • FIG. 8 shows a configuration of a hole outlet portion of a general rotor wedge hole.
  • the ventilation resistance in the wedge hole 81 during the rotation of the rotor 1 is increased about three times that when the rotor 1 is stationary. Therefore, in order to keep the temperature of the rotor coil 5 below a certain standard, it is necessary to employ a ventilation fan having a large differential pressure. However, when a ventilating fan with a large differential pressure is employed, the power loss of the fan increases, and there is a problem that the operating efficiency of the rotating electrical machine decreases.
  • the hole diameter enlarged portion 85 is provided over the entire circumference of the hole outlet of the wedge hole 81. As described above with reference to FIG. 7, a turbulent boundary layer having a steep flow velocity gradient is formed on the rotor outer peripheral surface 10. At this time, when the hole diameter enlarged portion 85 is provided as in the first embodiment, the cooling gas flow 11 in the rotor 1 collides with the turbulent boundary layer formed on the rotor outer peripheral surface 10. In this case, the cooling gas flow 11 in the rotor 1 can be gently deflected as compared with the case where the hole diameter enlarged portion 85 is not provided. Therefore, the collision angle of the cooling gas flow 11 with the turbulent boundary layer can be reduced.
  • the energy required when the cooling gas flow 11 is ejected can be reduced. Ventilation resistance when the cooling gas flow 11 in the rotor 1 is ejected into the air gap 120 is reduced. Therefore, in the first embodiment, it is not necessary to employ a fan having a large differential pressure. As a result, fan power loss can be suppressed and the motion efficiency of the rotating electrical machine can be improved.
  • the wedge hole 81 has a directional structure.
  • a V-shaped groove 902 is provided on the upstream side of the opening of the wedge hole 81 as shown in FIGS. Some have an inclined surface 903 provided on the downstream side (see, for example, Patent Document 1).
  • the said wedge 8 when seen from the radial direction outer side of the rotor core 2, it looks like a structure as shown in FIG.
  • the wedge 8 of the rotor 1 as described in Patent Document 1 is highly effective when the circumferential component of the flow of the cooling gas 121 in the air gap 120 is dominant.
  • the effect at locations where the axial flow is large, such as the child end, is reduced. Therefore, there is a problem that the effect is changed at a place where the directional wedge hole is applied.
  • a protrusion 901 is provided on the upstream side of the opening of the wedge hole 81.
  • Some have an inclined surface 902 on the downstream side (see, for example, Patent Document 2).
  • the said wedge 8 when seen from the radial direction outer side of the rotor core 2, it looks like a structure as shown in FIG.
  • the effect of reducing the ventilation resistance of the wedge hole 81 varies greatly depending on the installation position of the protrusion 901. That is, a large reduction effect can be obtained if the protrusion 901 can be accurately installed on the upstream side of the cooling gas flow 121 in the air gap 120, but the reduction effect cannot be obtained unless the installation position is appropriate.
  • the cooling gas flow 121 in the air gap 120 is a combination of the axial flow of the rotor 1 and the circumferential flow of the rotor 1. Therefore, in order to accurately predict the cooling gas flow 121 in the air gap 120, a very advanced design is required, and it is difficult to obtain the expected reduction effect.
  • the above problem can be avoided by making the wedge hole 81 a non-directional structure. In other words, regardless of the direction of the cooling gas flow 121 in the air gap 120, a constant ventilation resistance reduction effect can be obtained.
  • a tapered portion 905 is provided at a radially outer portion of a ventilation hole 906 provided in a conductor bar 904 inserted in a coil slot of the rotor. Is formed (see, for example, Patent Document 3). In that case, since the taper process is performed on the entire peripheral surface of the vent hole outlet of the conductor bar, a certain effect can be expected no matter which direction the cooling gas flows in the air gap. As shown in FIG. 14, when the wedge 8 is viewed from the outside in the radial direction of the rotor core 2, it appears to have the same configuration as that in FIG. 4.
  • the flow rate of the cooling gas 160 in each part of the rotating electrical machine 100 varies.
  • the flow rate of the air gap 120 also varies.
  • the ventilation resistance reduction effect of the wedge hole 81 also varies in accordance with the variation of the cooling gas 160 in the air gap 120.
  • the structure in which the wedge hole 81 has no directivity and can reduce the ventilation resistance is applied to the wedge hole 81 as in the first embodiment, the stable wedge hole 81 regardless of the pulsation of the fan 140. Can be expected to reduce the ventilation resistance.
  • the flow distribution of the cooling gas 160 in the air gap 120 may be biased.
  • the cooling gas 160 is sucked from the upper side of the fan 140 and tends to be pushed downward.
  • the flow rate distribution of the cooling gas 160 when flowing into the air gap 120 is uneven in the circumferential direction.
  • the wedge hole 81 has a directional structure, the air flow resistance reduction effect of the wedge hole 81 also varies in accordance with the bias of the cooling gas 160 in the air gap 120.
  • the ventilation resistance of the wedge hole 81 is stably reduced regardless of the drift of the fan 140. The effect can be expected.
  • a local high temperature portion may be generated in the rotor coil 5 due to an uneven flow distribution of the cooling gas 160 to each radial path 9.
  • this local high-temperature portion is referred to as a hot spot.
  • a hot spot When a hot spot is generated, there may be a case where a rotating shaft is shaken due to poor insulation of the rotating electrical machine 100 or thermal deformation of the rotor 1. As a result, there is a possibility that the rotating electrical machine 100 will eventually be damaged.
  • the diameter of the wedge hole 81 communicated with the radial path 9 in advance which may cause the flow rate of the cooling gas 160 to be insufficient, is wider than that of the wedge hole 81 communicated with the other radial path 9.
  • the diameter of the wedge hole 81 communicated with the radial path 9 in which the flow rate of the cooling gas 160 may become excessive is made smaller than that of the wedge hole 81 communicated with the other radial path 9. The flow distribution of the cooling gas 160 supplied to each radial path 9 is adjusted.
  • the hole diameter enlarged portion 85 is provided only for the wedge hole 81 communicated with the radial path 9 where the flow rate of the cooling gas 160 may be insufficient in advance. In that case, the flow rate of the cooling gas 160 supplied to the radial path 9 provided with the hole diameter enlarged portion 85 can be increased. As a result, the generation of hot spots can be suppressed and the rotor coil 5 can be cooled uniformly.
  • a plurality of coil slots 3 extending in the axial direction are formed in the rotor core 2, and a channel 4 is formed in each coil slot 3. Yes.
  • a plurality of rotor coils 5 and turn insulators 6 are stacked and fixed with wedges 8 via insulators 7.
  • at least one radial path 9 that penetrates the plurality of rotor coils 5 and the turn insulator 6 in the radial direction and communicates with the channel 4 is formed.
  • the insulator 7 and the wedge 8 are formed with an insulator hole 71 and a wedge hole 81 that communicate with at least one of the radial paths 9 and open to the outer peripheral side.
  • the channel 4, at least one radial path 9, the insulator hole 71 formed in the insulator 7 and the wedge 8, and the wedge hole 81 form an air passage for the cooling gas 160. Further, a hole diameter expanding portion 85 is provided at a hole outlet located on the outer side in the radial direction of the rotor 1 of the wedge hole 81 formed in the wedge 8.
  • the ventilation resistance of the rotor 1 of the rotary electric machine 100 is stably reduced by using a simple structure without increasing the copper loss of the rotor coil 5.
  • the cooling capacity of the rotor 1 can be further improved.
  • FIG. 16 is a partial cross-sectional view showing a wedge 8 portion of rotor 1 according to Embodiment 2 of the present invention.
  • FIG. 17 is a view showing the wedge 8 of the rotor 1 according to the second embodiment of the present invention as seen from the radially outer side of the rotor core 2.
  • the wedge diameter 81 of the rotor 1 is provided with a hole diameter expanding portion 82 constituted by an inclined surface 82 a. While the hole diameter of the hole diameter expanding portion 85 according to the first embodiment is constant along the radial direction, the inner diameter of the hole diameter expanding section 82 according to the second embodiment, that is, the second inner diameter is It is different from the first embodiment in that it increases continuously outward in the radial direction. Other configurations are the same as those in the first embodiment.
  • the inner portion of the tip of the hole outlet of the wedge hole 81 of the rotor 1 is an inclined surface 82a. That is, the shape of the hole outlet of the wedge hole 81 is a reverse taper shape, and the opening portion has the largest inner diameter.
  • the wedge hole 81 of the rotor 1 is provided with the hole diameter enlarged portion 82 formed of the inclined surface 82a.
  • the hole diameter expanding portion 82 may be configured from the curved surface 82b instead of the inclined surface 82a. Also in the case of the curved surface 82b, the inner diameter of the hole diameter enlarged portion 82 continuously increases toward the outer side in the radial direction of the rotor 1, similarly to the inclined surface 82a.
  • the inner wall of the hole diameter expanding portion 82 is shown symmetrically about the central axis of the wedge hole 81
  • the inner wall of the hole diameter expanding portion 82 is the wedge hole 81.
  • the hole diameter enlarged portion 82 formed of the inclined surface 82a or the curved surface 82b is provided over the entire circumference of the wedge hole 81. Therefore, when the cooling gas flow 11 in the rotor 1 collides with the turbulent boundary layer formed on the rotor outer peripheral surface 10, the cooling gas flow 11 in the rotor 1 follows the inclined surface 82a or the curved surface 82b. Gently deflect. Thereby, the energy required when the cooling gas flow 11 is ejected can be reduced.
  • the separation region 124 generated when the cooling gas flow 11 in the rotor 1 passes through the hole diameter enlarged portion 82 is provided. Since it can be reduced as compared with the first embodiment, a higher ventilation resistance reduction effect than that of the first embodiment can be expected.
  • this reduction effect is higher when the curved surface 82b is provided than when the inclined surface 82a is provided in the wedge hole 81.
  • the flow rate of the cooling gas 160 in each part of the rotating electrical machine 100 varies.
  • the flow rate of the air gap 120 also varies.
  • the ventilation resistance reduction effect of the wedge hole 81 also varies in accordance with the variation of the cooling gas 160 in the air gap 120.
  • the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the second embodiment, the stable ventilation of the wedge hole 81 regardless of the pulsation of the fan 140. A resistance reduction effect can be expected.
  • the flow distribution of the cooling gas 160 in the air gap 120 may be biased.
  • the air flow resistance reduction effect of the wedge hole 81 also varies in accordance with the bias of the cooling gas 160 in the air gap 120.
  • the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the second embodiment, the stable ventilation of the wedge hole 81 regardless of the drift of the fan 140. A resistance reduction effect can be expected.
  • the hole diameter enlarged portion 82 of the second embodiment may be applied only to the wedge hole 81 communicated with the radial path 9 where the flow rate of the cooling gas 160 may be insufficient in advance. In that case, the flow rate of the cooling gas 160 supplied to the applied radial path 9 can be increased, generation of hot spots can be suppressed, and the rotor coil 5 can be cooled uniformly.
  • the hole diameter enlarged portion 82 is defined as “a second portion having the second inner diameter of the wedge hole 81” with the position where the inclined surface 82 a or the curved surface 82 b starts as a boundary.
  • the portion other than the hole diameter enlarged portion 82 is a “first portion having the first inner diameter of the wedge hole 81”, in the second embodiment as well, the wedge hole 81 is similar to the first embodiment.
  • the ventilation resistance of the rotor 1 of the rotating electrical machine 100 is reduced without increasing the copper loss of the rotor coil 5 using a simple structure. And the cooling capacity of the rotor 1 can be further improved.
  • FIG. 19 is a partial cross-sectional view showing a wedge 8 portion of rotor 1 according to Embodiment 3 of the present invention.
  • FIG. 20 is a diagram illustrating the wedge 8 of the rotor 1 according to the third embodiment of the present invention as viewed from the radially outer side of the rotor core 2.
  • the third embodiment is different from the first and second embodiments in that a groove 86 is formed on the surface of the wedge 8 with respect to the wedge hole 81 of the rotor 1. .
  • Other configurations are the same as those in the first and second embodiments.
  • the groove 86 is wedge-shaped over the entire circumference of the wedge hole 81, ie, 360 °.
  • the hole 81 is configured to be axisymmetric about the central axis. Therefore, also in the third embodiment, the structure of the wedge hole 81 does not have directivity.
  • the said wedge 8 is seen from the radial direction outer side of the rotor core 2, it looks like a structure as shown in FIG.
  • the groove 86 is provided in the wedge hole 81 so that the cooling gas flow 121 in the air gap 120 collides with the cooling gas flow 11 in the rotor ejected from the wedge hole 81. Before it is deflected, it is deflected by the groove 86. Therefore, the collision angle between the cooling gas flow 121 in the air gap 120 and the cooling gas flow 11 in the rotor ejected from the wedge hole 81 is equal to the amount by which the cooling gas flow 121 in the air gap 120 is deflected by the groove 86. , Get even bigger. As a result, it is possible to expect a higher ventilation resistance reduction effect than in the first and second embodiments.
  • the structure of the wedge hole 81 does not have directivity, a constant ventilation resistance reduction effect can be expected regardless of the direction of the cooling gas flow 121 in the air gap 120. Therefore, unlike the prior art such as Patent Document 2, for example, it is not necessary to predict the cooling gas flow 121 in the air gap 120, and the rotor 1 with improved cooling performance can be obtained more easily.
  • the flow rate of the cooling gas 160 in each part of the rotating electrical machine 100 varies.
  • the flow rate of the air gap 120 also varies.
  • the ventilation resistance reduction effect of the wedge hole 81 also varies in accordance with the variation of the cooling gas 160 in the air gap 120.
  • the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the third embodiment, the stable ventilation of the wedge hole 81 regardless of the pulsation of the fan 140. A resistance reduction effect can be expected.
  • the flow distribution of the cooling gas 160 in the air gap 120 may be biased.
  • the air flow resistance reduction effect of the wedge hole 81 also varies in accordance with the bias of the cooling gas 160 in the air gap 120.
  • the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the second embodiment, the stable ventilation of the wedge hole 81 regardless of the drift of the fan 140. A resistance reduction effect can be expected.
  • the hole diameter enlarged portion 82 of the second embodiment may be applied only to the wedge hole 81 communicated with the radial path 9 where the flow rate of the cooling gas 160 may be insufficient in advance. In that case, the flow rate of the cooling gas 160 supplied to the applied radial path 9 can be increased, generation of hot spots can be suppressed, and the rotor coil 5 can be cooled uniformly.
  • the ventilation resistance of the rotor 1 of the rotating electrical machine 100 is reduced without increasing the copper loss of the rotor coil 5 using a simple structure.
  • the cooling capacity of the rotor 1 can be further improved.
  • FIG. 21 is a partial cross-sectional view showing wedge 8 of rotor 1 according to the fourth embodiment of the present invention.
  • FIG. 22 is a view showing the wedge 8 of the rotor 1 according to the fourth embodiment of the present invention as seen from the radially outer side of the rotor core 2.
  • the fourth embodiment is different from the first to third embodiments in that the wedge hole 81 has a protruding edge composed of a protrusion 83a.
  • the hole diameter enlarged portion 83 as the second portion having the second inner diameter is configured by the protruding edge.
  • Other configurations are the same as those in the first to third embodiments.
  • a protrusion 83a is formed over the entire circumference of the hole outlet of the wedge hole 81 located on the outer side in the radial direction of the rotor 1, thereby forming a protruding edge of the wedge hole 81.
  • the protrusion 83 a is provided so as to protrude from the rotor outer peripheral surface 10 of the rotor core 2.
  • the protruding edge formed of the protrusion 83a has a short cylindrical shape, and the wall thickness is constant over the entire circumference.
  • a portion surrounded by the protrusion 83a is referred to as a hole diameter enlarged portion 83.
  • the inner diameter of the hole diameter enlarged portion 83 formed of the protrusion 83a is larger than the inner diameter of the other part over the entire circumference of the wedge hole 81, that is, the first inner diameter.
  • the inner wall and the outer wall of the hole diameter expanding portion 83 are shown symmetrically about the central axis of the wedge hole 81, so that the inner wall and the outer wall of the hole diameter expanding portion 83 are wedge holes.
  • the entire circumference of 81 that is, 360 °, is configured to be axisymmetric with respect to the central axis of the wedge hole 81. Therefore, also in the fourth embodiment, the structure of the wedge hole 81 does not have directivity. Note that, when the wedge 8 is viewed from the outside in the radial direction of the rotor core 2, it looks as shown in FIG.
  • the hole diameter enlarged portion 83 surrounded by the protrusion 83a is referred to as a “second portion having the second inner diameter of the wedge hole 81”, and other than the hole diameter enlarged portion 83 of the wedge hole 81.
  • the other part is defined as “a first part having the first inner diameter of the wedge hole 81”, in the fourth embodiment as well, the wedge hole 81 has the first inner diameter as in the first embodiment.
  • the projection 83a is provided over the entire circumference of the hole outlet of the wedge hole 81 located on the radially outer side of the rotor 1, so that the cooling gas flow 121 in the air gap 120 is ejected from the wedge hole 81.
  • a part is separated by colliding with the protrusion 83 a, and a separation region is formed around the wedge hole 81.
  • FIG. 23 illustrates the state of the cooling gas flow 121 in the air gap 120 when the protrusion 83a is provided over the entire circumference of the hole outlet of the wedge hole 81 located on the radially outer side of the rotor 1.
  • a solid line 122 is a flow velocity distribution viewed from the rotating coordinate system taken on the rotor 1.
  • the cooling gas flow 121 in the actual air gap 120 is a combination of the axial flow and the circumferential flow.
  • FIG. 23 will be described using the flow velocity distribution of the circumferential flow.
  • the cooling gas flow 121 in the air gap 120 collides with the protrusion 83a and is deflected above the protrusion 83a, that is, in the outer diameter direction of the rotor core 2. As shown in FIG. Furthermore, after the cooling gas flow 121 reaches the upper end of the protrusion 83a, a part thereof is peeled off. Along with this peeling phenomenon, the flow velocity distribution downstream of the protrusion 83a causes a reverse flow like the flow velocity distribution of FIG. 23, and a dead water region 123 is formed. The speed of the cooling gas flow 121 in the dead water region 123 is slightly smaller than the speed of the main flow of the cooling gas flow 121 in the air gap 120. Moreover, the static pressure in the dead water area
  • the stronger the turbulent shear layer the greater the energy required to break it and eject the fluid, so that the cooling gas flow 11 is ejected to the dead water region 123 formed by the protrusion 83a.
  • a small amount of energy is sufficient.
  • the protrusion 83a is provided over the entire circumference of the hole outlet of the wedge hole 81 located on the rotor outer peripheral surface 10.
  • the cooling gas flow 121 in the air gap 120 collides with the protrusion 83 a before colliding with the cooling gas flow 11 in the rotor 1 ejected from the wedge hole 81 of the rotor 1.
  • the airflow resistance when the cooling gas flow 11 in the rotor 1 passes through the wedge hole 81 and is discharged to the air gap 120 can be suppressed.
  • the height of the projection 83a is sufficiently smaller than the width of the air gap 120, so the ventilation resistance associated with passing through the projection 83a is small. Therefore, the increase in ventilation resistance due to the collision of the cooling gas flow 11 in the rotor 1 ejected from the wedge hole 81 with the protrusion 83a downstream of the wedge hole 81 is slight, and the ventilation resistance is reduced as a whole.
  • the ventilation resistance when the cooling gas flow 121 in the air gap 120 collides with the protrusion 83a on the downstream side is within the air gap 120. Therefore, the rotor 1 of the rotating electrical machine 100 having higher cooling capacity can be obtained.
  • the structure of the wedge hole 81 does not have directivity, so the cooling gas flow 121 in the air gap 120 flows from any direction. A certain reduction effect of ventilation resistance can be expected. Therefore, unlike the prior art of Patent Document 2, there is no need to predict the cooling gas flow 121 in the air gap 120, and the cooling performance of the rotor 1 can be improved more easily.
  • the fan 140 pulsates, the flow rate of the cooling gas 160 in each part of the rotating electrical machine 100 varies.
  • the flow rate of the air gap 120 also varies.
  • the ventilation resistance reduction effect of the wedge hole 81 also varies in accordance with the variation of the cooling gas 160 in the air gap 120.
  • the structure having no directivity and reducing ventilation resistance is applied to the wedge hole 81 as in the fourth embodiment, the stable ventilation of the wedge hole 81 regardless of the pulsation of the fan 140. A resistance reduction effect can be expected.
  • the flow distribution of the cooling gas 160 in the air gap 120 may be biased.
  • the air flow resistance reduction effect of the wedge hole 81 also varies in accordance with the bias of the cooling gas 160 in the air gap 120.
  • the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the fourth embodiment, the stable ventilation of the wedge hole 81 regardless of the drift of the fan 140. A resistance reduction effect can be expected.
  • the applied radial path 9 can be applied.
  • the flow rate of the supplied cooling gas 160 can be increased, generation of hot spots can be suppressed, and the rotor coil 5 can be cooled uniformly.
  • the ventilation resistance of the rotor 1 of the rotating electrical machine 100 is reduced without increasing the copper loss of the rotor coil 5 using a simple structure.
  • the cooling capacity of the rotor 1 can be further improved.
  • the degree of the effect varies depending on how the second inner diameter of the wedge hole 81 is expanded.
  • the ratio of the second inner diameter with respect to the first inner diameter is set to be the expansion of the second inner diameter of the wedge hole 81, and the ratio of the second inner diameter with respect to the first inner diameter is preferably about 1.6 times or less.
  • FIG. 24 is a partial cross-sectional view showing a wedge 8 portion of rotor 1 according to the fifth embodiment of the present invention.
  • FIG. 25 is a view showing the wedge 8 of the rotor 1 according to the fifth embodiment of the present invention as viewed from the radially outer side of the rotor core 2.
  • an inclined surface that protrudes outward from the rotor outer peripheral surface 10 over the entire circumference of the hole outlet of the wedge hole 81 located on the radially outer side of the rotor 1.
  • the difference from Embodiments 1 to 4 is that 84a is applied.
  • Other configurations are the same as those in the first to fourth embodiments.
  • an inclined surface 84a is provided over the entire circumference of the hole outlet of the wedge hole 81 located on the radially outer side of the rotor 1.
  • a part of the inclined surface 84a protrudes from the outer circumferential surface 10 of the rotor, so that the wedge hole 81 has a projecting edge constituted by a protrusion.
  • a part of the hole diameter enlarged portion 83 as the second part having the second inner diameter is configured by the protruding edge.
  • a portion surrounded by the inclined surface 84a is referred to as a hole diameter enlarged portion 84.
  • the thickness of a general wedge 8 as shown in FIG. 8 is increased by a preset thickness.
  • the tip of the wedge 8 protrudes from the rotor outer peripheral surface 10 toward the radially outer side of the rotor by the thickness.
  • the inclined surface 84a can be formed by forming the inner surface at the tip of the wedge 8 to be an inclined surface having a certain angle.
  • the hole diameter enlarged part 84 can be formed by forming similarly in an outer surface.
  • the hole diameter enlarged portion 84 surrounded by the inclined surface 84 a is referred to as a “second portion having the second inner diameter of the wedge hole 81”, and the hole diameter enlarged portion 84 of the wedge hole 81.
  • the wedge hole 81 is similar to the first portion having the first inner diameter, as in the first embodiment.
  • the shape of the inner surface at the tip of the wedge 8 is not limited to the inclined surface 84a shown in FIG. 24, and may be a curved surface 84b as shown in FIG.
  • the outer surface of the protruding portion of the hole diameter enlarged portion 84 does not need to be perpendicular to the rotor outer peripheral surface 10, and is, for example, an inclined surface 84c as shown in FIG. May be.
  • the inclined surface 84 c is inclined at a certain angle from the apex of the inclined surface 84 a toward the rotor outer peripheral surface 10.
  • the portion formed by the two inclined surfaces 84a and 84c has a mountain shape as shown in FIG. .
  • 27 shows an example in which the inclined surface 84c is provided for the configuration of FIG. 24, while FIG. 28 shows an example in which the inclined surface 84c is provided for the configuration of FIG.
  • the outer surface of the hole diameter enlarged portion 84 formed from the curved surface 84b may be configured from an inclined surface 84c.
  • a groove 86 may be provided on the outer surface of the protruding portion of the hole diameter expanding portion 84.
  • the inner wall and the outer wall of the hole diameter expanding portion 84 are shown symmetrically about the central axis of the wedge hole 81, the inner wall and the outer wall of the hole diameter expanding portion 84 are
  • the entire circumference of the wedge hole 81 that is, 360 °, is configured to have an axisymmetric shape with the central axis of the wedge hole 81 as an axis. Therefore, also in the fifth embodiment, the structure of the wedge hole 81 does not have directivity.
  • the wedge 8 when the wedge 8 is seen from the radial direction outer side of the rotor core 2, it looks like a structure as shown in FIG.
  • the inner wall and outer wall of the enlarged diameter portion 84 and the groove 86 are shown symmetrically about the central axis of the wedge hole 81
  • the inner wall and the outer wall of the enlarged diameter portion 84 are
  • the entire circumference of the wedge hole 81 that is, 360 °, is configured to have an axisymmetric shape with the central axis of the wedge hole 81 as an axis. Therefore, also in the fifth embodiment, the structure of the wedge hole 81 does not have directivity.
  • FIG. 30 shows the rotation of the rotor 1 when the hole diameter enlarged portion 84 protruding from the rotor outer peripheral surface 10 is provided over the entire circumference of the hole outlet of the wedge hole 81 located on the radially outer side of the rotor 1. It is a flow velocity distribution figure seen from a coordinate system. As described above, the cooling gas flow 121 in the actual air gap 120 is a combination of the axial flow and the circumferential flow. In FIG. 30, for the sake of simplicity, description will be made using only the flow velocity distribution of the circumferential flow.
  • the cooling gas flow 121 in the air gap 120 is as follows, as in the case of the fourth embodiment. That is, the cooling gas flow 121 collides with the outer surface of the projecting hole diameter enlarged portion 84 before colliding with the cooling gas flow 11 in the rotor ejected from the wedge hole 81. As a result, a dead water region 123 is formed around the wedge hole 81. Due to the decrease in static pressure accompanying the formation of the dead water region 123, the ventilation resistance when the cooling gas flow 11 in the rotor 1 passes through the wedge hole 81 decreases. Further, since the inclined surface 84a or the curved surface 84b is provided inside the wedge hole 81, the collision angle with the cooling gas flow 121 in the air gap 120 can be relaxed, and an even higher ventilation resistance reduction effect can be expected.
  • the flow rate of the cooling gas 160 in each part of the rotating electrical machine 100 varies.
  • the flow rate of the air gap 120 also varies.
  • the ventilation resistance reduction effect of the wedge hole 81 also varies in accordance with the variation of the cooling gas 160 in the air gap 120.
  • the structure having no directivity and capable of reducing the ventilation resistance is applied to the wedge hole 81 as in the fifth embodiment, the stable ventilation of the wedge hole 81 regardless of the pulsation of the fan 140. A resistance reduction effect can be expected.
  • the flow distribution of the cooling gas 160 in the air gap 120 may be biased.
  • the air flow resistance reduction effect of the wedge hole 81 also varies in accordance with the bias of the cooling gas 160 in the air gap 120.
  • the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the fifth embodiment, the stable ventilation of the wedge hole 81 regardless of the drift of the fan 140. A resistance reduction effect can be expected.
  • the hole diameter enlarged portion 84 of the fifth embodiment is applied only to the wedge hole 81 communicated with the radial path 9 where the flow rate of the cooling gas 160 may be insufficient in advance, the applied radial path is applied. 9 can increase the flow rate of the cooling gas 160, suppress the occurrence of hot spots, and cool the rotor coil 5 uniformly.
  • the ventilation resistance of the rotor 1 of the rotating electrical machine 100 is reduced without increasing the copper loss of the rotor coil 5 using a simple structure. And the cooling capacity of the rotor 1 can be further improved.
  • the degree of the effect varies depending on how the second inner diameter of the wedge hole 81 is expanded, as in the fourth embodiment.
  • the ratio of the second inner diameter with respect to the first inner diameter is set to be the expansion of the second inner diameter of the wedge hole 81, and the ratio of the second inner diameter with respect to the first inner diameter is preferably about 1.6 times or less.
  • Embodiments 1 to 5 show some embodiments of the present invention, and the present invention is not limited thereto.
  • the present invention can be appropriately modified and omitted within the scope of the invention. Further, the present invention does not depend on the type of the cooling gas 160.

Abstract

A wedge hole 81 is provided to a wedge 8 and has: a first section 86 having a first inner diameter; and a second section 85 having a second inner diameter greater than the first inner diameter, the second section 85 being disposed further outward in the radial direction of a rotor iron core 2 of a rotor 1 than the first section 86. The provision of the first section 86 and the second section 85 stably reduces flow resistance outside the hole exit of the wedge hole 81. As a result, the volume of a cooling gas discharged from the hole exit of the wedge hole 81 is increased, and the cooling capacity of the rotor 1 is enhanced.

Description

回転子および回転電機Rotor and rotating electric machine
 本発明は、冷却機構を有する回転子および回転電機に関するものである。 The present invention relates to a rotor having a cooling mechanism and a rotating electric machine.
 従来、ラジアルフロー冷却方式は、構造が簡単で冷却性能が高いため、発電機などの回転電機に広く採用されている。ラジアルフロー冷却方式を採用したタービン発電機の回転子鉄心には、回転軸を中心として放射状に複数のコイルスロットが形成されている。各コイルスロットは軸方向に延出しており、各コイルスロット内には、それぞれ回転子コイルが複数段積層され、回転子コイルを相互に絶縁するためにターン絶縁物が介挿されている。また、複数段積層された回転子コイルは絶縁物を介してウェッジによって固定されている。ウェッジは回転子の回転時に働く遠心力に対して、回転子コイルがコイルスロットから出るのを防止する働きを有している。 Conventionally, the radial flow cooling method is widely used in rotating electrical machines such as generators because of its simple structure and high cooling performance. A rotor core of a turbine generator that employs a radial flow cooling system has a plurality of coil slots that are radially formed around the rotation axis. Each coil slot extends in the axial direction, and a plurality of rotor coils are stacked in each coil slot, and a turn insulator is inserted to insulate the rotor coils from each other. Further, the rotor coils stacked in a plurality of stages are fixed by a wedge via an insulator. The wedge has a function of preventing the rotor coil from coming out of the coil slot against a centrifugal force acting when the rotor rotates.
 回転子コイルが積層された、各コイルスロットの回転軸側の底部には、軸方向の全長にわたって、断面がU字状のチャンネルが形成されている。各コイルスロットには、このU字状のチャンネルと、回転子コイルを径方向に貫通した少なくとも一つ以上のラジアルパスとが形成されている。ラジアルパスは、回転子の径方向の通風路である。回転子の冷却ガスは、回転子の両端部からU字状のチャンネルに導入され、回転子の軸方向の中央へと流れる。そして、冷却ガスは、U字状のチャンネルから各ラジアルパスへと流入した後、絶縁物とウェッジとに設けられた孔により、回転子と固定子との間の間隙へと排出される。なお、以下では、回転子と固定子との間の間隙を、エアギャップと呼ぶこととする。この一連の働きの中で,冷却ガスは回転子コイルで発生した熱を吸収し、回転子を冷却している。 A channel having a U-shaped cross section is formed at the bottom of each coil slot where the rotor coils are stacked on the rotating shaft side over the entire length in the axial direction. Each coil slot is formed with this U-shaped channel and at least one radial path penetrating the rotor coil in the radial direction. The radial path is a radial ventilation path of the rotor. The cooling gas of the rotor is introduced into the U-shaped channel from both ends of the rotor and flows to the center in the axial direction of the rotor. Then, the cooling gas flows into each radial path from the U-shaped channel, and then is discharged into a gap between the rotor and the stator through a hole provided in the insulator and the wedge. Hereinafter, the gap between the rotor and the stator is referred to as an air gap. In this series of operations, the cooling gas absorbs the heat generated in the rotor coil and cools the rotor.
 近年、回転電機の小型化・大容量化に伴って回転子の発熱密度または発熱量が増加している。そのため、回転子の冷却能力のさらなる向上が要求されており、回転子を流れる冷却ガスの流量を増やすことが必要となっている。 In recent years, the heat generation density or the heat generation amount of the rotor has increased with the reduction in size and capacity of the rotating electrical machine. Therefore, further improvement in the cooling capacity of the rotor is required, and it is necessary to increase the flow rate of the cooling gas flowing through the rotor.
 ウェッジ孔からエアギャップへ回転子内の冷却ガスが排出される際に、回転子内の冷却ガスの流れが、エアギャップ内の高速な冷却ガスの流れと衝突する。その場合には、ウェッジ孔からエアギャップに排出される回転子内の冷却ガスの流れが妨げられる。 When the cooling gas in the rotor is discharged from the wedge hole to the air gap, the flow of the cooling gas in the rotor collides with the high-speed cooling gas flow in the air gap. In that case, the flow of the cooling gas in the rotor discharged from the wedge hole into the air gap is hindered.
 そこで、回転子内の冷却ガスの流れが妨げられない構成について提案されている(例えば、特許文献1および特許文献2参照)。 Therefore, there has been proposed a configuration in which the flow of the cooling gas in the rotor is not hindered (see, for example, Patent Document 1 and Patent Document 2).
 特許文献1の回転電機の回転子は、回転子の回転時にエアギャップで生じる高速ガス流に対して半径方向外向きの速度成分を持たせるV字形溝を、ウェッジ孔の開口部の高速ガス流上流側に設けている。さらに、ウェッジ孔からの排気流を高速ガス流方向に導くように半径方向に対して傾斜した傾斜面を、楔排気孔の高速ガス流下流側に設けている。これにより、高速ガス流と排気流との合流角度が小さくなる。その結果、楔排気孔の出口における排気流の圧力損失を低減することができる。 The rotor of the rotating electrical machine of Patent Document 1 has a V-shaped groove that has a radially outward velocity component with respect to the high-speed gas flow generated in the air gap when the rotor rotates, and the high-speed gas flow at the opening of the wedge hole. Provided on the upstream side. Further, an inclined surface inclined with respect to the radial direction so as to guide the exhaust flow from the wedge hole in the high-speed gas flow direction is provided on the downstream side of the wedge exhaust hole at the high-speed gas flow. Thereby, the merging angle between the high-speed gas flow and the exhaust flow is reduced. As a result, the pressure loss of the exhaust flow at the outlet of the wedge exhaust hole can be reduced.
 また、特許文献2の回転電機の回転子は、回転子のウェッジ孔から噴出される冷却ガス流れをエアギャップ内に導く突起物を、エアギャップ内の冷却ガス流れの上流側に設けることが記載されている。また、特許文献2には、ウェッジ孔の下流側に、噴出冷却ガス流れの流路断面積を拡大させる傾斜面を設けることが記載されている。 Moreover, the rotor of the rotary electric machine of patent document 2 describes providing the protrusion which guides the cooling gas flow injected from the wedge hole of a rotor in an air gap in the upstream of the cooling gas flow in an air gap. Has been. Patent Document 2 describes that an inclined surface is provided on the downstream side of the wedge hole for enlarging the cross-sectional area of the jet cooling gas flow.
特開平8-340653号公報JP-A-8-340653 特開平10-178754号公報Japanese Patent Laid-Open No. 10-178754 特開2017-184529号公報JP 2017-184529 A
 しかしながら、ラジアルフロー冷却方式におけるエアギャップ内の冷却ガス流れは、ファンによる軸方向の流れと回転する回転子による周方向に旋回する流れとが合成することで形成される。そのため、エアギャップ内の冷却ガスの流れは、軸方向の位置によって異なる。 However, the cooling gas flow in the air gap in the radial flow cooling method is formed by combining the axial flow by the fan and the flow swirling in the circumferential direction by the rotating rotor. Therefore, the flow of the cooling gas in the air gap varies depending on the position in the axial direction.
 特許文献1に記載された回転電機の回転子においては、エアギャップ内の流れの周方向成分が支配的になる回転子中央付近では冷却効果が期待できる。しかしながら、軸方向成分が大きくなるエアギャップ入口付近では期待した冷却効果を得ることは難しい。 In the rotor of the rotating electrical machine described in Patent Document 1, a cooling effect can be expected near the center of the rotor where the circumferential component of the flow in the air gap is dominant. However, it is difficult to obtain the expected cooling effect near the air gap entrance where the axial component increases.
 また、上述したように、エアギャップ内の流れは、2つの流れが合流して形成されるものであるため、容易に予測できるものではない。そのため、特許文献2に記載された回転電機の回転子を用いて、意図した効果を得るためには、正確に、エアギャップ内の流れの向きを予測する必要があり、非常に高度な設計を要求される。 Also, as described above, since the flow in the air gap is formed by merging two flows, it cannot be easily predicted. Therefore, in order to obtain the intended effect using the rotor of the rotating electrical machine described in Patent Document 2, it is necessary to accurately predict the direction of the flow in the air gap. Required.
 一方、ファンの脈動、偏流などにより、エアギャップ内を流れる冷却ガスの流量が変動する、あるいは、流量分布に偏りが生じると、特許文献1および特許文献2に記載されるような指向性のある構造では、安定した通風抵抗低減効果が得られない場合がある。 On the other hand, when the flow rate of the cooling gas flowing in the air gap fluctuates due to fan pulsation, drift, or the like, or the flow distribution is biased, there is directivity as described in Patent Document 1 and Patent Document 2. In the structure, a stable ventilation resistance reduction effect may not be obtained.
 本発明は、上記のような課題を解決するためになされたものであり、簡易な構造で、回転子の内部から外部に冷却ガスが噴出する際の通風抵抗の安定した低減効果を得て、冷却能力の向上を図る、回転子および回転電機を得ることを目的としている。 The present invention has been made to solve the above-described problems, and has a simple structure, obtaining a stable reduction effect of ventilation resistance when cooling gas is ejected from the inside of the rotor to the outside, An object of the present invention is to obtain a rotor and a rotating electrical machine that improve the cooling capacity.
 本発明に係る回転子は、軸方向に延びた複数のコイルスロットが外周面に設けられた円筒状の回転子鉄心と、前記コイルスロット内に配置された回転子コイルと、前記コイルスロットの開口部に設けられ、前記回転子コイルを前記コイルスロット内に固定させるとともに、前記回転子鉄心の径方向に延びて前記コイルスロットの内部から外部に向かって冷却ガスを流通させる1以上のウェッジ孔を有する、ウェッジとを備え、前記ウェッジ孔のうちの少なくとも1つは、第1の内径を有する第1の部分と、前記第1の部分よりも前記回転子鉄心の径方向外側に配置され、ウェッジ孔全周にわたって前記第1の内径よりも大きい第2の内径を有する第2の部分とを有する。 A rotor according to the present invention includes a cylindrical rotor core in which a plurality of axially extending coil slots are provided on an outer peripheral surface, a rotor coil disposed in the coil slot, and an opening of the coil slot. One or more wedge holes that are provided in a portion and fix the rotor coil in the coil slot and allow the cooling gas to flow from the inside of the coil slot to the outside by extending in the radial direction of the rotor core. And at least one of the wedge holes is disposed on a radially outer side of the rotor core than the first portion, and at least one of the wedge holes is a wedge. And a second portion having a second inner diameter larger than the first inner diameter over the entire circumference of the hole.
 本発明に係る回転電機の回転子によれば、ウェッジ孔を介して回転子の内部から外部に向かって冷却ガスが噴出する際に、内径の大きい第2の部分を通ることで、回転子内の冷却ガスの流れが穏やかに偏向される。それにより、噴出する冷却ガスが、回転子外部の高速な冷却ガスの流れと衝突する際の通風抵抗を安定的に低減させることができるので、噴出する冷却ガスの風量が増加し、回転子の冷却能力を向上させることができる。 According to the rotor of the rotating electrical machine according to the present invention, when the cooling gas is ejected from the inside of the rotor to the outside through the wedge hole, the cooling gas is passed through the second portion having a large inner diameter. The cooling gas flow is gently deflected. As a result, it is possible to stably reduce the ventilation resistance when the cooling gas that is jetted collides with the flow of the high-speed cooling gas outside the rotor, so that the air volume of the jetted cooling gas increases, The cooling capacity can be improved.
本発明に係る回転電機の回転子が適用される、タービン発電機の概略図である。It is the schematic of the turbine generator to which the rotor of the rotary electric machine which concerns on this invention is applied. 本発明の実施の形態1に係る回転電機の回転子の部分断面図である。It is a fragmentary sectional view of the rotor of the rotary electric machine which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転子のウェッジ近傍を示す部分断面図である。It is a fragmentary sectional view which shows the wedge vicinity of the rotor which concerns on Embodiment 1 of this invention. 回転子鉄心の径方向外側からみた本発明の実施の形態1に係る回転子のウェッジを示す図である。It is a figure which shows the wedge of the rotor which concerns on Embodiment 1 of this invention seen from the radial direction outer side of the rotor core. 本発明の実施の形態1に係る回転子のウェッジを示す図である。It is a figure which shows the wedge of the rotor which concerns on Embodiment 1 of this invention. エアギャップ内の冷却ガスの周方向流速を示す図である。It is a figure which shows the circumferential direction flow rate of the cooling gas in an air gap. エアギャップ内の冷却ガスの流速分布を示す図である。It is a figure which shows the flow velocity distribution of the cooling gas in an air gap. 比較例としての一般的な回転子のウェッジ近傍を示す部分断面図である。It is a fragmentary sectional view which shows the wedge vicinity of the common rotor as a comparative example. 特許文献1に記載の従来の回転電機の回転子の一例を示す図である。It is a figure which shows an example of the rotor of the conventional rotary electric machine described in patent document 1. FIG. 回転子鉄心の径方向外側からみた特許文献1に記載のウェッジ示す図である。It is a figure which shows the wedge of patent document 1 seen from the radial direction outer side of the rotor core. 特許文献2に記載の従来の回転電機の回転子の一例を示す図である。It is a figure which shows an example of the rotor of the conventional rotary electric machine described in patent document 2. FIG. 回転子鉄心の径方向外側からみた特許文献2に記載のウェッジ示す図である。It is a figure which shows the wedge of patent document 2 seen from the radial direction outer side of the rotor iron core. 特許文献3に記載の従来の回転電機の回転子の一例を示す図である。10 is a diagram illustrating an example of a rotor of a conventional rotating electrical machine described in Patent Document 3. FIG. 回転子鉄心の径方向外側からみた特許文献3に記載のウェッジ示す図である。It is a figure which shows the wedge of patent document 3 seen from the radial direction outer side of the rotor core. 本発明に係る回転電機の回転子が適用される、タービン発電機端部を示す概略図である。It is the schematic which shows the turbine generator end part to which the rotor of the rotary electric machine which concerns on this invention is applied. 本発明の実施の形態2に係る回転子のウェッジ近傍を示す部分断面図である。It is a fragmentary sectional view which shows the wedge vicinity of the rotor which concerns on Embodiment 2 of this invention. 回転子鉄心の径方向外側からみた本発明の実施の形態2に係る回転子のウェッジを示す図である。It is a figure which shows the wedge of the rotor which concerns on Embodiment 2 of this invention seen from the radial direction outer side of the rotor core. 本発明の実施の形態2に係る傾斜面の第1変形例を示す図である。It is a figure which shows the 1st modification of the inclined surface which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る回転子のウェッジ近傍を示す部分断面図である。It is a fragmentary sectional view which shows the wedge vicinity of the rotor which concerns on Embodiment 3 of this invention. 回転子鉄心の径方向外側からみた本発明の実施の形態3に係る回転子のウェッジを示す図である。It is a figure which shows the wedge of the rotor which concerns on Embodiment 3 of this invention seen from the radial direction outer side of the rotor core. 本発明の実施の形態4に係る回転子のウェッジ近傍を示す部分断面図である。It is a fragmentary sectional view which shows the wedge vicinity of the rotor which concerns on Embodiment 4 of this invention. 回転子鉄心の径方向外側からみた本発明の実施の形態4に係る回転子のウェッジを示す図である。It is a figure which shows the wedge of the rotor which concerns on Embodiment 4 of this invention seen from the radial direction outer side of the rotor core. 本発明の実施の形態4におけるエアギャップ内の冷却ガスの流れを示す図である。It is a figure which shows the flow of the cooling gas in the air gap in Embodiment 4 of this invention. 本発明の実施の形態5に係る回転子のウェッジ近傍を示す部分断面図である。It is a fragmentary sectional view which shows the wedge vicinity of the rotor which concerns on Embodiment 5 of this invention. 回転子鉄心の径方向外側からみた本発明の実施の形態5に係る回転子のウェッジを示す図である。It is a figure which shows the wedge of the rotor which concerns on Embodiment 5 of this invention seen from the radial direction outer side of the rotor core. 本発明の実施の形態5に係る突出した傾斜面の第1変形例を示す図である。It is a figure which shows the 1st modification of the protruding inclined surface which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る突出した傾斜面の第2変形例を示す図である。It is a figure which shows the 2nd modification of the protruding inclined surface which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る突出した傾斜面の第3変形例を示す図である。It is a figure which shows the 3rd modification of the protruding inclined surface which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る突出した傾斜面の第4変形例を示す図である。It is a figure which shows the 4th modification of the protruding inclined surface which concerns on Embodiment 5 of this invention. 本発明の実施の形態5におけるエアギャップ内の冷却ガスの流れを示す図である。It is a figure which shows the flow of the cooling gas in the air gap in Embodiment 5 of this invention.
 以下、本発明に係る回転電機の回転子の好適な実施の形態につき、図面を用いて説明する。 Hereinafter, preferred embodiments of a rotor of a rotating electrical machine according to the present invention will be described with reference to the drawings.
 実施の形態1.
 図1は、本発明の実施の形態1に係る回転子1が搭載された回転電機100の概略図である。図1の回転電機100は、例えばタービン発電機である。図2は、実施の形態1に係る回転子1の径方向の部分断面図である。さらに、図3は、実施の形態1に係る回転子1のウェッジ8のウェッジ孔81部分の拡大図である。図4は、回転子鉄心2の径方向外側からみた本発明の実施の形態1の回転子のウェッジ8を示す図である。また、図5は、実施の形態1に係る回転子1のウェッジ8を示す図である。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram of a rotating electrical machine 100 on which a rotor 1 according to Embodiment 1 of the present invention is mounted. The rotating electrical machine 100 of FIG. 1 is a turbine generator, for example. FIG. 2 is a partial cross-sectional view in the radial direction of the rotor 1 according to the first embodiment. Further, FIG. 3 is an enlarged view of the wedge hole 81 portion of the wedge 8 of the rotor 1 according to the first embodiment. FIG. 4 is a diagram illustrating the rotor wedge 8 according to the first embodiment of the present invention as viewed from the radially outer side of the rotor core 2. FIG. 5 is a view showing the wedge 8 of the rotor 1 according to the first embodiment.
 図1に示すように、回転電機100は、回転子1と、固定子110とを備えている。さらに、回転電機100は、冷却器130と、2つのファン140と、回転軸150とを備えている。固定子110は、円筒状に形成されている。固定子110の内周面が回転子1の外周面に対向するように、回転子1は、固定子110内に配置されている。以下では、固定子110の内周面を、固定子内周面111と呼び、回転子1の外周面を回転子外周面10と呼ぶこととする。固定子内周面111と回転子外周面10との間には空隙があり、以下では、当該空隙を、エアギャップ120と呼ぶこととする。このように、固定子110は、回転子1の外周に対してエアギャップ120を介して配置されている。 As shown in FIG. 1, the rotating electrical machine 100 includes a rotor 1 and a stator 110. Further, the rotating electrical machine 100 includes a cooler 130, two fans 140, and a rotating shaft 150. The stator 110 is formed in a cylindrical shape. The rotor 1 is disposed in the stator 110 such that the inner peripheral surface of the stator 110 faces the outer peripheral surface of the rotor 1. Hereinafter, the inner peripheral surface of the stator 110 is referred to as a stator inner peripheral surface 111, and the outer peripheral surface of the rotor 1 is referred to as a rotor outer peripheral surface 10. There is an air gap between the stator inner peripheral surface 111 and the rotor outer peripheral surface 10, and hereinafter, the air gap will be referred to as an air gap 120. As described above, the stator 110 is disposed via the air gap 120 with respect to the outer periphery of the rotor 1.
 回転子1は、回転子鉄心2と回転子コイル5とを備えて構成されている。回転子鉄心2は回転軸150に固定され、回転軸150の回転により回転する。また、2つのファン140は、それぞれ、回転子1の両端部の位置で回転軸150に固定されている。各ファン140は、回転軸150の回転により回転し、回転電機100内に冷却ガス160を循環させる。図1の矢印は、冷却ガス160の流れを示す。冷却器130は、回転電機100の熱を吸収した冷却ガス160を回収して冷却する。冷却された冷却ガス160は、再び、ファン140によって、回転電機100内を循環する。 The rotor 1 includes a rotor core 2 and a rotor coil 5. The rotor core 2 is fixed to the rotating shaft 150 and rotates by the rotation of the rotating shaft 150. Further, the two fans 140 are respectively fixed to the rotating shaft 150 at the positions of both end portions of the rotor 1. Each fan 140 rotates by the rotation of the rotating shaft 150 to circulate the cooling gas 160 in the rotating electrical machine 100. The arrows in FIG. 1 indicate the flow of the cooling gas 160. The cooler 130 collects and cools the cooling gas 160 that has absorbed the heat of the rotating electrical machine 100. The cooled cooling gas 160 is circulated through the rotating electrical machine 100 again by the fan 140.
 回転子1を構成する回転子鉄心2の外周面には、回転子鉄心2の軸方向に延びた複数のコイルスロット3が設けられている。それらのコイルスロット3は、回転子鉄心2の周方向に間隔をおいて形成されている。図2では、複数のコイルスロット3のうち、1つのコイルスロット3のみを示している。なお、各コイルスロット3は、すべて、図2に示したコイルスロット3と同様の構成を有しているため、ここでは、1つのコイルスロット3についてのみ説明する。 A plurality of coil slots 3 extending in the axial direction of the rotor core 2 are provided on the outer peripheral surface of the rotor core 2 constituting the rotor 1. These coil slots 3 are formed at intervals in the circumferential direction of the rotor core 2. FIG. 2 shows only one coil slot 3 among the plurality of coil slots 3. Since each coil slot 3 has the same configuration as that of the coil slot 3 shown in FIG. 2, only one coil slot 3 will be described here.
 コイルスロット3は、回転子鉄心2の軸方向に沿って、回転子鉄心2の一端側から他端側に亘って形成されている。図2に示すように、コイルスロット3は、U字型の凹部となっており、回転子鉄心2の回転子外周面10側に開口部を有している。コイルスロット3内には、複数の回転子コイル5が積層されて配置されている。これらの回転子コイル5は、絶縁物7を介して、コイルスロット3の開口部に嵌合されたウェッジ8によって固定されている。ウェッジ8は、図2、図4および図5に示すように、回転子鉄心2の径方向に貫通して、コイルスロット3の内部と外部とを連通させるウェッジ孔81を少なくとも1つ有している。さらに、各回転子コイル5の間には、ターン絶縁物6が介挿されている。 The coil slot 3 is formed from one end side to the other end side of the rotor core 2 along the axial direction of the rotor core 2. As shown in FIG. 2, the coil slot 3 is a U-shaped recess, and has an opening on the rotor outer peripheral surface 10 side of the rotor core 2. A plurality of rotor coils 5 are stacked in the coil slot 3. These rotor coils 5 are fixed by a wedge 8 fitted in an opening of the coil slot 3 via an insulator 7. As shown in FIGS. 2, 4, and 5, the wedge 8 has at least one wedge hole 81 that penetrates in the radial direction of the rotor core 2 and communicates the inside and the outside of the coil slot 3. Yes. Further, a turn insulator 6 is interposed between the rotor coils 5.
 また、図2に示すように、複数の回転子コイル5とターン絶縁物6には、それぞれ、それらを回転子鉄心2の径方向に貫通する少なくとも一つ以上のラジアルパス9が形成されている。また、絶縁物7は、回転子鉄心2の径方向に貫通する絶縁物孔71を有している。絶縁物孔71は、ラジアルパス9と連通するとともに、ウェッジ孔81と連通している。ウェッジ孔81は、例えば円型の貫通孔から構成されている。 Further, as shown in FIG. 2, each of the plurality of rotor coils 5 and the turn insulator 6 is formed with at least one radial path 9 that penetrates them in the radial direction of the rotor core 2. . Further, the insulator 7 has an insulator hole 71 penetrating in the radial direction of the rotor core 2. The insulator hole 71 communicates with the radial path 9 and also communicates with the wedge hole 81. The wedge hole 81 is composed of, for example, a circular through hole.
 また、各コイルスロット3の底部には、U字型のチャンネル4が形成されている。チャンネル4の内部は、空洞である。チャンネル4と、ラジアルパス9と、絶縁物孔71と、ウェッジ孔81とは、冷却ガス160が流れる通風路を形成している。冷却ガス160は、チャンネル4から各コイルスロット3内に入り、ラジアルパス9、絶縁物孔71、および、ウェッジ孔81を通って、エアギャップ120に流れ込む。 Further, a U-shaped channel 4 is formed at the bottom of each coil slot 3. The inside of the channel 4 is a cavity. The channel 4, the radial path 9, the insulator hole 71, and the wedge hole 81 form a ventilation path through which the cooling gas 160 flows. The cooling gas 160 enters each coil slot 3 from the channel 4 and flows into the air gap 120 through the radial path 9, the insulator hole 71, and the wedge hole 81.
 また、本実施の形態1においては、図2、図3、図4および図5に示すように、ウェッジ孔81の内径は、第1の内径と、第1の内径より大きい第2の内径とを含んでいる。ウェッジ孔81の第2の内径を有する第2の部分85は、ウェッジ孔81の第1の内径を有する第1の部分86よりも、回転子鉄心2の径方向外側に配置されている。以下では、第2の部分を「孔径拡大部85」と呼ぶこととする。 In the first embodiment, as shown in FIGS. 2, 3, 4 and 5, the inner diameter of the wedge hole 81 is the first inner diameter and the second inner diameter larger than the first inner diameter. Is included. The second portion 85 having the second inner diameter of the wedge hole 81 is arranged on the outer side in the radial direction of the rotor core 2 than the first portion 86 having the first inner diameter of the wedge hole 81. Hereinafter, the second portion is referred to as a “hole diameter enlarged portion 85”.
 本実施の形態1では、図2、図3、図4および図5に示すように、回転子1の回転子外周面10に位置するウェッジ孔81の孔出口に、孔径拡大部85が設けられている。孔径拡大部85は、ウェッジ孔81の孔出口から、予め設定された深さΔHにかけて、断面L字型の切欠きを設けることにより、L字型の段付き部85aを形成することで、構成されている。孔径拡大部85は、ウェッジ孔81の全周にわたって均等に偏りなく設けられており、すなわち、環状に構成されており、構造に指向性を持たない。すなわち、孔径拡大部85は、ウェッジ孔81からエアギャップ120に向けて噴出される回転子1内の冷却ガス流れ11の向きを意図的に特定の方向に制御する構成は有していない。図2および図3において、孔径拡大部85の内壁が、ウェッジ孔81の中心軸を軸として左右対称に図示されていることから分かるように、孔径拡大部85の内壁は、ウェッジ孔81の全周、すなわち、360°にわたって、ウェッジ孔81の中心軸を軸として軸対称な形状になるように構成されている。換言すれば、図4に示すように、回転子鉄心2の径方向外側からウェッジ8を見ると、ウェッジ孔81の中心軸に対して対称の構成になっている。また、図5は、ウェッジ8単体の一部を示している。孔径拡大部85の内径を第2の内径とし、ウェッジ孔81の他の部分の内径を第1の内径とすると、第2の内径は、段付き部85aの段差の奥行き分だけ、第1の内径よりも大きい。なお、本実施の形態1においては、第1の内径および第2の内径は、共に、径方向外側に向かって徐々に増減することなく、径方向に沿って一定である。 In the first embodiment, as shown in FIGS. 2, 3, 4, and 5, a hole diameter enlarged portion 85 is provided at the hole outlet of the wedge hole 81 located on the rotor outer peripheral surface 10 of the rotor 1. ing. The hole diameter enlarged portion 85 is configured by forming an L-shaped stepped portion 85a by providing a L-shaped notch from the hole outlet of the wedge hole 81 to a preset depth ΔH. Has been. The hole diameter enlarged portion 85 is provided evenly over the entire circumference of the wedge hole 81, that is, is configured in an annular shape and has no directivity in the structure. That is, the hole diameter enlarged portion 85 does not have a configuration that intentionally controls the direction of the cooling gas flow 11 in the rotor 1 ejected from the wedge hole 81 toward the air gap 120 in a specific direction. In FIG. 2 and FIG. 3, as can be seen from the fact that the inner wall of the hole diameter expanding portion 85 is shown symmetrically about the central axis of the wedge hole 81, the inner wall of the hole diameter expanding portion 85 is the whole of the wedge hole 81. It is configured to have an axisymmetric shape around the circumference, that is, 360 °, with the central axis of the wedge hole 81 as an axis. In other words, as shown in FIG. 4, when the wedge 8 is viewed from the radially outer side of the rotor core 2, the configuration is symmetrical with respect to the central axis of the wedge hole 81. FIG. 5 shows a part of the wedge 8 alone. Assuming that the inner diameter of the hole diameter expanding portion 85 is the second inner diameter and the inner diameter of the other portion of the wedge hole 81 is the first inner diameter, the second inner diameter is equal to the first step depth of the stepped portion 85a. It is larger than the inner diameter. In the first embodiment, both the first inner diameter and the second inner diameter are constant along the radial direction without gradually increasing or decreasing toward the radially outer side.
 このように、本実施の形態1においては、段付き部85aの段付き位置を境にして、孔径拡大部85部分を「ウェッジ孔81の第2の内径を有する第2の部分」とし、ウェッジ孔81の孔径拡大部85以外の他の部分86を「ウェッジ孔81の第1の内径を有する第1の部分」としたとき、ウェッジ孔81は、第1の内径を有する第1の部分86と、第1の部分86よりも回転子鉄心2の径方向外側に配置され、ウェッジ孔81の全周にわたって第1の内径よりも大きい第2の内径を有する第2の部分とを有している。 As described above, in the first embodiment, with the stepped position of the stepped portion 85a as a boundary, the hole diameter enlarged portion 85 portion is defined as the “second portion having the second inner diameter of the wedge hole 81”, and the wedge. When the portion 86 other than the hole diameter enlarged portion 85 of the hole 81 is a “first portion having the first inner diameter of the wedge hole 81”, the wedge hole 81 has the first portion 86 having the first inner diameter. And a second portion that is disposed radially outside the rotor core 2 relative to the first portion 86 and has a second inner diameter that is larger than the first inner diameter over the entire circumference of the wedge hole 81. Yes.
 ところで、回転子1の回転で生じる回転子外周面10の壁面剪断力により、粘性を有する冷却ガス160は、エアギャップ120内で回転子1の周方向に加速され、周方向の冷却ガス流れ121が生じる。図6に、エアギャップ120内の冷却ガス160の周方向流速分布を示す。縦軸は、冷却ガス160の回転子周方向の流速Vを回転子外周面10における周速度VRで除した無次元速度V/VRである。横軸は、固定子内周面111を基準としたときのエアギャップ120内のエアギャップ幅方向の距離xをエアギャップ幅Lで除した無次元距離x/Lである。従って、回転子外周面10の無次元距離x/Lの値は1で、固定子内周面111の無次元距離x/Lの値は0となる。 The viscous cooling gas 160 is accelerated in the circumferential direction of the rotor 1 in the air gap 120 by the wall shearing force of the rotor outer circumferential surface 10 generated by the rotation of the rotor 1, and the circumferential cooling gas flow 121 is generated. Occurs. FIG. 6 shows a circumferential flow velocity distribution of the cooling gas 160 in the air gap 120. The vertical axis represents a dimensionless velocity V / V R obtained by dividing the flow velocity V of the cooling gas 160 in the circumferential direction of the rotor by the circumferential velocity V R on the outer circumferential surface 10 of the rotor. The horizontal axis represents a dimensionless distance x / L obtained by dividing the distance x in the air gap width direction in the air gap 120 when the stator inner peripheral surface 111 is a reference by the air gap width L. Accordingly, the dimensionless distance x / L of the rotor outer circumferential surface 10 is 1, and the dimensionless distance x / L of the stator inner circumferential surface 111 is 0.
 図6に示されるように、回転子外周面10および固定子内周面111の境界層の影響を受ける領域以外では、回転子1の周方向の冷却ガス160の冷却ガス流れ121の平均周速度は、回転子外周面10における冷却ガス流れ121aの周速度の約1/2であると考えられている。 As shown in FIG. 6, the average peripheral velocity of the cooling gas flow 121 of the cooling gas 160 in the circumferential direction of the rotor 1 is outside the region affected by the boundary layer between the rotor outer peripheral surface 10 and the stator inner peripheral surface 111. Is considered to be about ½ of the peripheral velocity of the cooling gas flow 121a on the rotor outer peripheral surface 10.
 また、図1に示すように、回転子1の両端に設けられた2つのファン140から押し出された冷却ガス160がエアギャップ120の入口から流入し、エアギャップ120内を軸方向に流れることにより、軸方向にも冷却ガス160の冷却ガス流れ121bが生じる。 Further, as shown in FIG. 1, the cooling gas 160 pushed out from the two fans 140 provided at both ends of the rotor 1 flows from the inlet of the air gap 120 and flows in the air gap 120 in the axial direction. The cooling gas flow 121b of the cooling gas 160 is also generated in the axial direction.
 この軸方向の冷却ガス流れ121bの量および速度は、エアギャップ120の入口からエアギャップ120内への冷却ガス160の流入量、回転子1からエアギャップ120への冷却ガス160の流入量、および、エアギャップ120から固定子110への冷却ガス160の流出量から決定される。 The amount and speed of this axial cooling gas flow 121b are determined by the amount of cooling gas 160 flowing from the inlet of the air gap 120 into the air gap 120, the amount of cooling gas 160 flowing from the rotor 1 to the air gap 120, and The amount of cooling gas 160 flowing from the air gap 120 to the stator 110 is determined.
 このように、エアギャップ120内の冷却ガス流れ121は、回転子1の軸方向の流れと回転子1の周方向の流れとが合成したものであり、エアギャップ120内の冷却ガス流れ121を正確に予測するためには非常に高度な設計を要する。 Thus, the cooling gas flow 121 in the air gap 120 is a combination of the axial flow of the rotor 1 and the circumferential flow of the rotor 1, and the cooling gas flow 121 in the air gap 120 is combined. A very sophisticated design is required for accurate prediction.
 図7は、形成された旋回流、即ち、エアギャップ120内の冷却ガス流れ121の様子を図示したものである。図中、実線122は、回転子1上にとった回転座標系からみた流速分布である。上記の通り、実際のエアギャップ120内の冷却ガス流れ121は、軸方向流れと周方向流れとが合成されたものであるが、図7では、簡単のため、周方向流れの流速分布のみを用いて説明する。エアギャップ120内の冷却ガス流れ121には、流速分布122に示されるように、固定子内周面111および回転子外周面10では、急峻な流速勾配を有する乱流境界層が発達する。従って、ウェッジ孔81からエアギャップ120に向けて噴出される回転子1内の冷却ガス流れ11は、この境界層を打ち破るために大きなエネルギを要する。換言すれば、回転子1内の冷却ガス流れ11は、噴出の際に通風抵抗を生じることになる。 FIG. 7 illustrates the formed swirl flow, that is, the state of the cooling gas flow 121 in the air gap 120. In the figure, a solid line 122 is a flow velocity distribution viewed from the rotating coordinate system taken on the rotor 1. As described above, the cooling gas flow 121 in the actual air gap 120 is a combination of the axial flow and the circumferential flow, but in FIG. 7, only the flow velocity distribution of the circumferential flow is shown for simplicity. It explains using. In the cooling gas flow 121 in the air gap 120, a turbulent boundary layer having a steep flow velocity gradient develops on the stator inner peripheral surface 111 and the rotor outer peripheral surface 10 as shown in the flow velocity distribution 122. Therefore, the cooling gas flow 11 in the rotor 1 ejected from the wedge hole 81 toward the air gap 120 requires a large amount of energy to break through this boundary layer. In other words, the cooling gas flow 11 in the rotor 1 causes ventilation resistance when ejected.
 ここで、本実施の形態1の効果を説明するために、比較例として、図8に、一般的な回転子のウェッジ孔の孔出口部分の構成について示す。ウェッジ孔81からエアギャップ120へ回転子1内の冷却ガスが排出される際に、エアギャップ120内の高速な冷却ガス流れと衝突することによって、ウェッジ孔81から排出される回転子1内の冷却ガス流れ11が妨げられる。その結果として通風抵抗が発生する。回転子1は定格運転時には高速で回転するため、エアギャップ120内の冷却ガス160は周方向に高速で流れる。そのため、回転子1の回転時のウェッジ孔81での通風抵抗は、回転子1の静止時の約3倍に増加する。従って、回転子コイル5の温度を一定基準以下に保つためには、差圧の大きな通風ファンを採用する必要がある。しかし、差圧の大きな通風ファンを採用すると、ファン動力損が大きくなるため、回転電機の運転効率が低下してしまう問題点があった。 Here, in order to explain the effect of the first embodiment, as a comparative example, FIG. 8 shows a configuration of a hole outlet portion of a general rotor wedge hole. When the cooling gas in the rotor 1 is discharged from the wedge hole 81 to the air gap 120, it collides with the high-speed cooling gas flow in the air gap 120, thereby causing the inside of the rotor 1 to be discharged from the wedge hole 81. The cooling gas flow 11 is obstructed. As a result, ventilation resistance is generated. Since the rotor 1 rotates at a high speed during rated operation, the cooling gas 160 in the air gap 120 flows at a high speed in the circumferential direction. Therefore, the ventilation resistance in the wedge hole 81 during the rotation of the rotor 1 is increased about three times that when the rotor 1 is stationary. Therefore, in order to keep the temperature of the rotor coil 5 below a certain standard, it is necessary to employ a ventilation fan having a large differential pressure. However, when a ventilating fan with a large differential pressure is employed, the power loss of the fan increases, and there is a problem that the operating efficiency of the rotating electrical machine decreases.
 そのため、本実施の形態1では、ウェッジ孔81の孔出口の全周にわたって孔径拡大部85を設けている。図7を用いて上述したように、回転子外周面10には、急峻な流速勾配を有する乱流境界層が形成されている。このとき、本実施の形態1のように、孔径拡大部85を設けている場合には、回転子1内の冷却ガス流れ11が、回転子外周面10に形成される乱流境界層に衝突する際に、孔径拡大部85が無い場合に比べて、回転子1内の冷却ガス流れ11は穏やかに偏向することができる。したがって、冷却ガス流れ11の乱流境界層との衝突角を小さくすることができる。その結果、冷却ガス流れ11の噴出の際に必要なエネルギを低減することができる。回転子1内の冷却ガス流れ11がエアギャップ120内へ噴出する際の通風抵抗は低減される。そのため、本実施の形態1では、差圧の大きなファンを採用する必要が無い。その結果、ファン動力損を抑え、回転電機の運動効率の向上を図ることができる。 Therefore, in the first embodiment, the hole diameter enlarged portion 85 is provided over the entire circumference of the hole outlet of the wedge hole 81. As described above with reference to FIG. 7, a turbulent boundary layer having a steep flow velocity gradient is formed on the rotor outer peripheral surface 10. At this time, when the hole diameter enlarged portion 85 is provided as in the first embodiment, the cooling gas flow 11 in the rotor 1 collides with the turbulent boundary layer formed on the rotor outer peripheral surface 10. In this case, the cooling gas flow 11 in the rotor 1 can be gently deflected as compared with the case where the hole diameter enlarged portion 85 is not provided. Therefore, the collision angle of the cooling gas flow 11 with the turbulent boundary layer can be reduced. As a result, the energy required when the cooling gas flow 11 is ejected can be reduced. Ventilation resistance when the cooling gas flow 11 in the rotor 1 is ejected into the air gap 120 is reduced. Therefore, in the first embodiment, it is not necessary to employ a fan having a large differential pressure. As a result, fan power loss can be suppressed and the motion efficiency of the rotating electrical machine can be improved.
 なお、本実施の形態1では、孔径拡大部85を設けたことによる孔径拡大に伴い、孔径拡大部85には回転子1内の冷却ガス流れ11の一部が剥離したことで、剥離領域124が形成されるため、拡流損失を生じるが、当該拡流損失は微々たるものであり、全体として通風損失は低減される。 In the first embodiment, along with the increase in the hole diameter due to the provision of the hole diameter enlargement portion 85, a part of the cooling gas flow 11 in the rotor 1 is peeled off from the hole diameter enlargement portion 85, thereby causing the separation region 124. However, the current spreading loss is insignificant and the ventilation loss is reduced as a whole.
 ところで、回転子1内の冷却ガス流れ11とエアギャップ120内の冷却ガス流れ121の衝突を緩和する従来の技術としてウェッジ孔81に指向性の構造を持たしたものがある。 Incidentally, as a conventional technique for mitigating the collision between the cooling gas flow 11 in the rotor 1 and the cooling gas flow 121 in the air gap 120, there is one in which the wedge hole 81 has a directional structure.
 指向性ウェッジ孔を有する従来の回転電機の回転子の例として、図9および図10に示すように、V字溝902をウェッジ孔81の開口部の上流側に設け、さらに、ウェッジ孔81の下流側に傾斜面903を設けたものがある(例えば、特許文献1参照)。なお、上記ウェッジ8を回転子鉄心2の径方向外側からみると図10に示すような構成に見える。 As an example of a rotor of a conventional rotating electrical machine having a directional wedge hole, a V-shaped groove 902 is provided on the upstream side of the opening of the wedge hole 81 as shown in FIGS. Some have an inclined surface 903 provided on the downstream side (see, for example, Patent Document 1). In addition, when the said wedge 8 is seen from the radial direction outer side of the rotor core 2, it looks like a structure as shown in FIG.
 図10より明らかなように、特許文献1に記載されるような回転子1のウェッジ8は、エアギャップ120内の冷却ガス121の流れの周方向成分が支配的な時に効果が高いが、回転子端部のような、軸方向流れが大きい箇所での効果は低くなる。そのため、指向性ウェッジ孔を適用する箇所で効果が変化してしまう課題がある。 As apparent from FIG. 10, the wedge 8 of the rotor 1 as described in Patent Document 1 is highly effective when the circumferential component of the flow of the cooling gas 121 in the air gap 120 is dominant. The effect at locations where the axial flow is large, such as the child end, is reduced. Therefore, there is a problem that the effect is changed at a place where the directional wedge hole is applied.
 指向性ウェッジ孔を有する従来の回転電機の回転子の他の例として、図11および図12に示すように、突起901をウェッジ孔81の開口部の上流側に設け、さらに、ウェッジ孔81の下流側に傾斜面902を設けたものがある(例えば、特許文献2参照)。なお、上記ウェッジ8を回転子鉄心2の径方向外側からみると図12に示すような構成に見える。 As another example of a rotor of a conventional rotating electric machine having a directional wedge hole, as shown in FIGS. 11 and 12, a protrusion 901 is provided on the upstream side of the opening of the wedge hole 81. Some have an inclined surface 902 on the downstream side (see, for example, Patent Document 2). In addition, when the said wedge 8 is seen from the radial direction outer side of the rotor core 2, it looks like a structure as shown in FIG.
 図11より明らかなように、上記ウェッジ孔81の通風抵抗低減効果は突起901の設置位置で大きく変化する。すなわち、突起901を正確にエアギャップ120内の冷却ガス流れ121の上流側に設置できれば大きな低減効果を得ることができるが、設置位置が適切でないと低減効果は得ることができない。しかし、上述の通り、エアギャップ120内の冷却ガス流れ121は回転子1の軸方向の流れと回転子1の周方向の流れとが合成したものである。そのため、エアギャップ120内の冷却ガス流れ121を正確に予測するためには非常に高度な設計を要し、期待した低減効果を得ることは難しい。 As is clear from FIG. 11, the effect of reducing the ventilation resistance of the wedge hole 81 varies greatly depending on the installation position of the protrusion 901. That is, a large reduction effect can be obtained if the protrusion 901 can be accurately installed on the upstream side of the cooling gas flow 121 in the air gap 120, but the reduction effect cannot be obtained unless the installation position is appropriate. However, as described above, the cooling gas flow 121 in the air gap 120 is a combination of the axial flow of the rotor 1 and the circumferential flow of the rotor 1. Therefore, in order to accurately predict the cooling gas flow 121 in the air gap 120, a very advanced design is required, and it is difficult to obtain the expected reduction effect.
 そこで、ウェッジ孔81を無指向性構造とすることで、上記課題を回避することができる。すなわち、エアギャップ120内の冷却ガス流れ121がどの方向からきても、一定の通風抵抗低減効果を得ることができる。 Therefore, the above problem can be avoided by making the wedge hole 81 a non-directional structure. In other words, regardless of the direction of the cooling gas flow 121 in the air gap 120, a constant ventilation resistance reduction effect can be obtained.
 なお、従来の回転電機の回転子として、図13および図14に示すように、回転子のコイルスロットに挿入された導体バー904に設けられた通風孔906の径方向外側部分に、テーパー部905が形成されているものがある(例えば、特許文献3参照)。その場合、導体バーの通風孔出口の全周面に対してテーパー加工を行うため、どの方向からエアギャップ内の冷却ガスが流れてきても一定の効果が期待できる。なお、図14に示す通り、回転子鉄心2の径方向外側からウェッジ8をみると図4と同様な構成になっているように見える。しかしながら、通電加熱する導体バー904にテーパー加工を施すことにより、通電する導体バー904の断面積が減少し、銅損が増大するという問題が生じる。一方、本実施の形態1においては、通電加熱を伴わないウェッジ8に対して加工を施すため、特許文献3に記載の従来技術のように、銅損増大を招くこともない。 As shown in FIGS. 13 and 14, as a rotor of a conventional rotating electrical machine, a tapered portion 905 is provided at a radially outer portion of a ventilation hole 906 provided in a conductor bar 904 inserted in a coil slot of the rotor. Is formed (see, for example, Patent Document 3). In that case, since the taper process is performed on the entire peripheral surface of the vent hole outlet of the conductor bar, a certain effect can be expected no matter which direction the cooling gas flows in the air gap. As shown in FIG. 14, when the wedge 8 is viewed from the outside in the radial direction of the rotor core 2, it appears to have the same configuration as that in FIG. 4. However, when the conductive bar 904 to be energized and heated is tapered, there is a problem that the cross-sectional area of the conductive bar 904 to be energized decreases and the copper loss increases. On the other hand, in Embodiment 1, since processing is performed on the wedge 8 that is not energized and heated, the copper loss is not increased as in the conventional technique described in Patent Document 3.
 ところで、ファン140が脈動を起こした際には、回転電機100の各部における冷却ガス160の流量が変動することになる。当然のことながら、エアギャップ120の流量も変動する。このような場合、ウェッジ孔81が指向性をもつ構造であった場合、エアギャップ120の冷却ガス160の変動に合わせて、ウェッジ孔81の通風抵抗低減効果も変動する。一方、本実施の形態1のように、ウェッジ孔81が指向性が無く、通風抵抗を低減できるような構造をウェッジ孔81に適用した場合、ファン140の脈動に関係なく、安定したウェッジ孔81の通風抵抗低減効果を期待できる。 By the way, when the fan 140 pulsates, the flow rate of the cooling gas 160 in each part of the rotating electrical machine 100 varies. As a matter of course, the flow rate of the air gap 120 also varies. In such a case, when the wedge hole 81 has a directional structure, the ventilation resistance reduction effect of the wedge hole 81 also varies in accordance with the variation of the cooling gas 160 in the air gap 120. On the other hand, when the structure in which the wedge hole 81 has no directivity and can reduce the ventilation resistance is applied to the wedge hole 81 as in the first embodiment, the stable wedge hole 81 regardless of the pulsation of the fan 140. Can be expected to reduce the ventilation resistance.
 また、ファン140に偏流が発生した際にも、エアギャップ120の冷却ガス160の流量分布に偏りが生じる可能性がある。例えば図15のように、冷却器130が回転電機100の上側のみに設置されている場合、冷却ガス160はファン140の上側から吸い込まれ、下側に押し出される傾向が強くなる。結果として、エアギャップ120に流入する際の冷却ガス160の流量分布は周方向で偏りが生じる。このような場合、ウェッジ孔81が指向性をもつ構造であった場合、エアギャップ120の冷却ガス160の偏りに合わせて、ウェッジ孔81の通風抵抗低減効果も変動する。一方、本実施の形態1のように、指向性が無く、通風抵抗を低減できるような構造をウェッジ孔81に適用した場合、ファン140の偏流に関係なく、安定したウェッジ孔81の通風抵抗低減効果を期待できる。 Also, when a drift occurs in the fan 140, the flow distribution of the cooling gas 160 in the air gap 120 may be biased. For example, as shown in FIG. 15, when the cooler 130 is installed only on the upper side of the rotating electrical machine 100, the cooling gas 160 is sucked from the upper side of the fan 140 and tends to be pushed downward. As a result, the flow rate distribution of the cooling gas 160 when flowing into the air gap 120 is uneven in the circumferential direction. In such a case, when the wedge hole 81 has a directional structure, the air flow resistance reduction effect of the wedge hole 81 also varies in accordance with the bias of the cooling gas 160 in the air gap 120. On the other hand, when the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the first embodiment, the ventilation resistance of the wedge hole 81 is stably reduced regardless of the drift of the fan 140. The effect can be expected.
 ところで、回転電機100の運転時には、各ラジアルパス9への冷却ガス160の流量分配の偏りなどのため、局所的な高温部が回転子コイル5に発生する場合がある。以下では、この局所的な高温部をホットスポットと呼ぶこととする。ホットスポットが発生した場合、回転電機100の絶縁不良または回転子1の熱変形に伴う回転軸ぶれを起こす場合がある。また、その結果、最終的に回転電機100の破損につながる可能性がある。そのため、従来の技術では、予め冷却ガス160の流量が不足する可能性があるラジアルパス9に連通されたウェッジ孔81の孔径を他のラジアルパス9に連通されたウェッジ孔81と比べ広く、逆に、冷却ガス160の流量が過剰になる可能性があるラジアルパス9に連通されたウェッジ孔81の孔径を他のラジアルパス9に連通されたウェッジ孔81と比べ狭くするなどして、回転子1の各ラジアルパス9に供給される冷却ガス160の流量分配を調整してきた。 By the way, during operation of the rotating electrical machine 100, a local high temperature portion may be generated in the rotor coil 5 due to an uneven flow distribution of the cooling gas 160 to each radial path 9. Hereinafter, this local high-temperature portion is referred to as a hot spot. When a hot spot is generated, there may be a case where a rotating shaft is shaken due to poor insulation of the rotating electrical machine 100 or thermal deformation of the rotor 1. As a result, there is a possibility that the rotating electrical machine 100 will eventually be damaged. Therefore, in the prior art, the diameter of the wedge hole 81 communicated with the radial path 9 in advance, which may cause the flow rate of the cooling gas 160 to be insufficient, is wider than that of the wedge hole 81 communicated with the other radial path 9. In addition, the diameter of the wedge hole 81 communicated with the radial path 9 in which the flow rate of the cooling gas 160 may become excessive is made smaller than that of the wedge hole 81 communicated with the other radial path 9. The flow distribution of the cooling gas 160 supplied to each radial path 9 is adjusted.
 本実施の形態1においては、予め冷却ガス160の流量が不足する可能性があるラジアルパス9に連通されたウェッジ孔81に対してのみ、孔径拡大部85を設けるようにする。その場合、孔径拡大部85が設けられたラジアルパス9に供給される冷却ガス160の流量を増やすことができる。その結果、ホットスポットの発生を抑制し、回転子コイル5を均一に冷却することができる。 In the first embodiment, the hole diameter enlarged portion 85 is provided only for the wedge hole 81 communicated with the radial path 9 where the flow rate of the cooling gas 160 may be insufficient in advance. In that case, the flow rate of the cooling gas 160 supplied to the radial path 9 provided with the hole diameter enlarged portion 85 can be increased. As a result, the generation of hot spots can be suppressed and the rotor coil 5 can be cooled uniformly.
 あるいは、個々のウェッジ孔81の孔径を調節する従来の技術と本実施の形態1とを併せて回転電機100に適用することにより、回転子1の冷却能力を向上できるだけでなく従来よりも均一に冷却できる。 Alternatively, by applying the conventional technique for adjusting the hole diameter of each wedge hole 81 and the first embodiment to the rotating electrical machine 100, not only can the cooling capacity of the rotor 1 be improved, but also more uniform than in the past. Can be cooled.
 以上のように構成された実施の形態1の回転子1によれば、回転子鉄心2に、軸方向に延びた複数のコイルスロット3を形成し、各コイルスロット3にチャンネル4を形成している。そして、各コイルスロット3に、複数の回転子コイル5とターン絶縁物6とを積層して絶縁物7を介してウェッジ8で固定している。さらに、複数の回転子コイル5とターン絶縁物6に、それぞれ径方向に貫通するとともに、チャンネル4と連通する少なくとも一つ以上のラジアルパス9を形成している。絶縁物7とウェッジ8には、これら少なくとも一つ以上のラジアルパス9と連通するとともに、外周側に開口する、絶縁物孔71とウェッジ孔81とを形成している。そして、チャンネル4と、少なくとも一つ以上のラジアルパス9と、絶縁物7およびウェッジ8に形成された絶縁物孔71とウェッジ孔81により、冷却ガス160の通風路を形成している。さらに、ウェッジ8に穿てられたウェッジ孔81の回転子1の径方向外側に位置する孔出口には孔径拡大部85が設けられている。 According to the rotor 1 of the first embodiment configured as described above, a plurality of coil slots 3 extending in the axial direction are formed in the rotor core 2, and a channel 4 is formed in each coil slot 3. Yes. In each coil slot 3, a plurality of rotor coils 5 and turn insulators 6 are stacked and fixed with wedges 8 via insulators 7. Furthermore, at least one radial path 9 that penetrates the plurality of rotor coils 5 and the turn insulator 6 in the radial direction and communicates with the channel 4 is formed. The insulator 7 and the wedge 8 are formed with an insulator hole 71 and a wedge hole 81 that communicate with at least one of the radial paths 9 and open to the outer peripheral side. The channel 4, at least one radial path 9, the insulator hole 71 formed in the insulator 7 and the wedge 8, and the wedge hole 81 form an air passage for the cooling gas 160. Further, a hole diameter expanding portion 85 is provided at a hole outlet located on the outer side in the radial direction of the rotor 1 of the wedge hole 81 formed in the wedge 8.
 これにより、実施の形態1の回転子1によれば、簡単な構造を用いて、回転子コイル5の銅損を増加させることなく、回転電機100の回転子1の通風抵抗を安定して低減することができ、回転子1の冷却能力をより向上できる。 Thereby, according to the rotor 1 of Embodiment 1, the ventilation resistance of the rotor 1 of the rotary electric machine 100 is stably reduced by using a simple structure without increasing the copper loss of the rotor coil 5. The cooling capacity of the rotor 1 can be further improved.
 実施の形態2.
 図16および図17を用いて、本発明の実施の形態2に係る回転子1に設けられたウェッジ孔81について説明する。図16は、本発明の実施の形態2に係る回転子1のウェッジ8部分を示す部分断面図である。図17は、回転子鉄心2の径方向外側からみた本発明の実施の形態2に係る回転子1のウェッジ8を示す図である。
Embodiment 2. FIG.
A wedge hole 81 provided in the rotor 1 according to the second embodiment of the present invention will be described with reference to FIGS. 16 and 17. FIG. 16 is a partial cross-sectional view showing a wedge 8 portion of rotor 1 according to Embodiment 2 of the present invention. FIG. 17 is a view showing the wedge 8 of the rotor 1 according to the second embodiment of the present invention as seen from the radially outer side of the rotor core 2.
 図16に示すように、実施の形態2においては、回転子1のウェッジ孔81に、傾斜面82aから構成された孔径拡大部82が設けられている。実施の形態1に係る孔径拡大部85の孔径が径方向に沿って一定だったのに対し、実施の形態2に係る孔径拡大部82の内径、すなわち、第2の内径が、回転子1の径方向外側に向かって連続的に増加している点が実施の形態1と異なる。他の構成は実施の形態1と同様である。 As shown in FIG. 16, in the second embodiment, the wedge diameter 81 of the rotor 1 is provided with a hole diameter expanding portion 82 constituted by an inclined surface 82 a. While the hole diameter of the hole diameter expanding portion 85 according to the first embodiment is constant along the radial direction, the inner diameter of the hole diameter expanding section 82 according to the second embodiment, that is, the second inner diameter is It is different from the first embodiment in that it increases continuously outward in the radial direction. Other configurations are the same as those in the first embodiment.
 本実施の形態2においては、図16に示すように、回転子1のウェッジ孔81の孔出口の先端の内側部分が、傾斜面82aになっている。すなわち、ウェッジ孔81の孔出口の形状が、逆テーパー状になっており、開口部分が最も内径が大きくなっている。 In the second embodiment, as shown in FIG. 16, the inner portion of the tip of the hole outlet of the wedge hole 81 of the rotor 1 is an inclined surface 82a. That is, the shape of the hole outlet of the wedge hole 81 is a reverse taper shape, and the opening portion has the largest inner diameter.
 上述したように、本実施の形態2においては、回転子1のウェッジ孔81に、傾斜面82aから構成された孔径拡大部82が設けられているが、この場合に限らず、図18に示すように、傾斜面82aの代わりに、曲面82bから孔径拡大部82を構成するようにしてもよい。曲面82bの場合も、傾斜面82aと同様に、孔径拡大部82の内径は、回転子1の径方向外側に向かって連続的に増加している。 As described above, in the second embodiment, the wedge hole 81 of the rotor 1 is provided with the hole diameter enlarged portion 82 formed of the inclined surface 82a. As described above, the hole diameter expanding portion 82 may be configured from the curved surface 82b instead of the inclined surface 82a. Also in the case of the curved surface 82b, the inner diameter of the hole diameter enlarged portion 82 continuously increases toward the outer side in the radial direction of the rotor 1, similarly to the inclined surface 82a.
 なお、図16および図18において、孔径拡大部82の内壁が、ウェッジ孔81の中心軸を軸として左右対称に図示されていることから分かるように、孔径拡大部82の内壁は、ウェッジ孔81の全周、すなわち、360°にわたって、ウェッジ孔81の中心軸を軸として軸対称な形状になるように構成されている。従って、本実施の形態2においても、ウェッジ孔81の構造は指向性を有さない。なお、ウェッジ8を回転子鉄心2の径方向外側からみると、図17に示すような構成に見える。 In FIGS. 16 and 18, as can be seen from the fact that the inner wall of the hole diameter expanding portion 82 is shown symmetrically about the central axis of the wedge hole 81, the inner wall of the hole diameter expanding portion 82 is the wedge hole 81. Is formed so as to have an axisymmetric shape about the central axis of the wedge hole 81 over the entire circumference, that is, 360 °. Therefore, also in the second embodiment, the structure of the wedge hole 81 does not have directivity. Note that, when the wedge 8 is viewed from the outside in the radial direction of the rotor core 2, it looks as shown in FIG. 17.
 このように、本実施の形態2においては、ウェッジ孔81の全周にわたって傾斜面82aまたは曲面82bからなる孔径拡大部82を設けている。そのため、回転子1内の冷却ガス流れ11が、回転子外周面10に形成される乱流境界層に衝突する際に、回転子1内の冷却ガス流れ11が傾斜面82aまたは曲面82bに沿って緩やかに偏向する。これにより、冷却ガス流れ11の噴出の際に必要なエネルギを低減できる。すなわち、ウェッジ孔81の孔出口の全周にわたって、傾斜面82aまたは曲面82bを設けることにより、回転子1内の冷却ガス流れ11がエアギャップ120内へ噴出する際の通風抵抗は抑制される。 As described above, in the second embodiment, the hole diameter enlarged portion 82 formed of the inclined surface 82a or the curved surface 82b is provided over the entire circumference of the wedge hole 81. Therefore, when the cooling gas flow 11 in the rotor 1 collides with the turbulent boundary layer formed on the rotor outer peripheral surface 10, the cooling gas flow 11 in the rotor 1 follows the inclined surface 82a or the curved surface 82b. Gently deflect. Thereby, the energy required when the cooling gas flow 11 is ejected can be reduced. That is, by providing the inclined surface 82a or the curved surface 82b over the entire circumference of the hole outlet of the wedge hole 81, the ventilation resistance when the cooling gas flow 11 in the rotor 1 is ejected into the air gap 120 is suppressed.
 このとき、本実施の形態2においては、ウェッジ孔81に傾斜面82aまたは曲面82bを設けることで、回転子1内の冷却ガス流れ11が孔径拡大部82を通過する際に生じる剥離領域124を、実施の形態1よりも低減することができるため、実施の形態1よりも高い通風抵抗低減効果が期待できる。 At this time, in the second embodiment, by providing the wedge hole 81 with the inclined surface 82a or the curved surface 82b, the separation region 124 generated when the cooling gas flow 11 in the rotor 1 passes through the hole diameter enlarged portion 82 is provided. Since it can be reduced as compared with the first embodiment, a higher ventilation resistance reduction effect than that of the first embodiment can be expected.
 なお、この低減効果は、ウェッジ孔81に傾斜面82aを設けた場合よりも、曲面82bを設けた場合の方が高い。 In addition, this reduction effect is higher when the curved surface 82b is provided than when the inclined surface 82a is provided in the wedge hole 81.
 また、本実施の形態2においても、ウェッジ孔81の構造は指向性を持たないため、エアギャップ120内の冷却ガス流れ121がどの方向からきても一定の通風抵抗低減効果が期待できる。そのため、例えば特許文献2などの従来技術のように、エアギャップ120内の冷却ガス流れ121を予測する必要がなく、より簡便に冷却性能が向上した回転子1を得ることができる。 Also in the second embodiment, since the structure of the wedge hole 81 does not have directivity, a constant ventilation resistance reduction effect can be expected regardless of the direction of the cooling gas flow 121 in the air gap 120. Therefore, unlike the prior art such as Patent Document 2, for example, it is not necessary to predict the cooling gas flow 121 in the air gap 120, and the rotor 1 with improved cooling performance can be obtained more easily.
 また、通電加熱を伴わないウェッジ8に対して加工を施すため、特許文献3に記載の従来技術のように銅損増大を招くこともない。 Further, since the wedge 8 that is not energized and heated is processed, there is no increase in copper loss unlike the prior art described in Patent Document 3.
 ところで、ファン140が脈動を起こした際には、回転電機100の各部における冷却ガス160の流量が変動することになる。当然のことながら、エアギャップ120の流量も変動する。このとき、ウェッジ孔81が指向性をもつ構造であった場合、エアギャップ120の冷却ガス160の変動に合わせて、ウェッジ孔81の通風抵抗低減効果も変動する。一方、本実施の形態2のように、指向性が無く、且つ、通風抵抗を低減できるような構造をウェッジ孔81に適用した場合、ファン140の脈動に関係なく、安定したウェッジ孔81の通風抵抗低減効果を期待できる。 By the way, when the fan 140 pulsates, the flow rate of the cooling gas 160 in each part of the rotating electrical machine 100 varies. As a matter of course, the flow rate of the air gap 120 also varies. At this time, when the wedge hole 81 has a directional structure, the ventilation resistance reduction effect of the wedge hole 81 also varies in accordance with the variation of the cooling gas 160 in the air gap 120. On the other hand, when the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the second embodiment, the stable ventilation of the wedge hole 81 regardless of the pulsation of the fan 140. A resistance reduction effect can be expected.
 また、ファン140に偏流が発生した際にも、エアギャップ120の冷却ガス160の流量分布に偏りが生じる可能性がある。このような場合、ウェッジ孔81が指向性をもつ構造であった場合、エアギャップ120の冷却ガス160の偏りに合わせて、ウェッジ孔81の通風抵抗低減効果も変動する。一方、本実施の形態2のように、指向性が無く、且つ、通風抵抗を低減できるような構造をウェッジ孔81に適用した場合、ファン140の偏流に関係なく、安定したウェッジ孔81の通風抵抗低減効果を期待できる。 Also, when a drift occurs in the fan 140, the flow distribution of the cooling gas 160 in the air gap 120 may be biased. In such a case, when the wedge hole 81 has a directional structure, the air flow resistance reduction effect of the wedge hole 81 also varies in accordance with the bias of the cooling gas 160 in the air gap 120. On the other hand, when the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the second embodiment, the stable ventilation of the wedge hole 81 regardless of the drift of the fan 140. A resistance reduction effect can be expected.
 さらに、予め冷却ガス160の流量が不足する可能性があるラジアルパス9に連通されたウェッジ孔81に対してのみ本実施の形態2の孔径拡大部82を適用してもよい。その場合には、適用されたラジアルパス9に供給される冷却ガス160の流量を増やすことができ、ホットスポットの発生を抑制し、回転子コイル5を均一に冷却することができる。 Furthermore, the hole diameter enlarged portion 82 of the second embodiment may be applied only to the wedge hole 81 communicated with the radial path 9 where the flow rate of the cooling gas 160 may be insufficient in advance. In that case, the flow rate of the cooling gas 160 supplied to the applied radial path 9 can be increased, generation of hot spots can be suppressed, and the rotor coil 5 can be cooled uniformly.
 そして、上述の個々のウェッジ孔81の孔径を調節する従来の技術と本実施の形態2を併せて回転電機100に適用することにより、回転子1の冷却能力を向上できるだけでなく従来よりも均一に冷却することが期待できる。 Then, by applying the conventional technique for adjusting the hole diameter of the individual wedge holes 81 described above and the second embodiment to the rotating electrical machine 100, not only the cooling capacity of the rotor 1 can be improved but also more uniform than the conventional one. You can expect to cool down.
 なお、本実施の形態2において、傾斜面82aまたは曲面82bが始まる位置を境にして、孔径拡大部82を「ウェッジ孔81の第2の内径を有する第2の部分」とし、ウェッジ孔81の孔径拡大部82以外の他の部分を「ウェッジ孔81の第1の内径を有する第1の部分」としたとき、実施の形態2においても、実施の形態1と同様に、ウェッジ孔81は、第1の内径を有する第1の部分と、第1の部分よりも回転子鉄心2の径方向外側に配置され、第1の内径よりも大きい第2の内径を有する第2の部分とを有している。 In the second embodiment, the hole diameter enlarged portion 82 is defined as “a second portion having the second inner diameter of the wedge hole 81” with the position where the inclined surface 82 a or the curved surface 82 b starts as a boundary. When the portion other than the hole diameter enlarged portion 82 is a “first portion having the first inner diameter of the wedge hole 81”, in the second embodiment as well, the wedge hole 81 is similar to the first embodiment. A first portion having a first inner diameter; and a second portion having a second inner diameter larger than the first inner diameter, which is disposed radially outside the rotor core 2 relative to the first portion. doing.
 これにより、実施の形態2による回転子1のウェッジ8によれば、簡単な構造を用いて、回転子コイル5の銅損を増加させることなく、回転電機100の回転子1の通風抵抗を低減することができ、回転子1の冷却能力をより向上できる。 Thereby, according to the wedge 8 of the rotor 1 according to the second embodiment, the ventilation resistance of the rotor 1 of the rotating electrical machine 100 is reduced without increasing the copper loss of the rotor coil 5 using a simple structure. And the cooling capacity of the rotor 1 can be further improved.
 実施の形態3.
 図19および図20を用いて、本発明の実施の形態3に係る回転子1に設けられたウェッジ孔81について説明する。図19は、本発明の実施の形態3に係る回転子1のウェッジ8部分を示す部分断面図である。図20は、回転子鉄心2の径方向外側からみた本発明の実施の形態3の回転子1のウェッジ8を示す図である。
Embodiment 3 FIG.
A wedge hole 81 provided in the rotor 1 according to the third embodiment of the present invention will be described with reference to FIGS. 19 and 20. FIG. 19 is a partial cross-sectional view showing a wedge 8 portion of rotor 1 according to Embodiment 3 of the present invention. FIG. 20 is a diagram illustrating the wedge 8 of the rotor 1 according to the third embodiment of the present invention as viewed from the radially outer side of the rotor core 2.
 図19に示すように、実施の形態3においては、回転子1のウェッジ孔81に対して、溝86がウェッジ8の表面に形成されている点が実施の形態1および実施の形態2と異なる。他の構成は実施の形態1および実施の形態2と同様である。 As shown in FIG. 19, the third embodiment is different from the first and second embodiments in that a groove 86 is formed on the surface of the wedge 8 with respect to the wedge hole 81 of the rotor 1. . Other configurations are the same as those in the first and second embodiments.
 なお、図19において、溝86が、ウェッジ孔81の中心軸を軸として左右対称に図示されていることから分かるように、溝86は、ウェッジ孔81の全周、すなわち、360°にわたって、ウェッジ孔81の中心軸を軸として軸対称な形状になるように構成されている。従って、本実施の形態3においても、ウェッジ孔81の構造は指向性を有さない。なお、上記ウェッジ8を回転子鉄心2の径方向外側からみると図20に示すような構成に見える。 In FIG. 19, as can be seen from the fact that the groove 86 is shown symmetrically about the central axis of the wedge hole 81, the groove 86 is wedge-shaped over the entire circumference of the wedge hole 81, ie, 360 °. The hole 81 is configured to be axisymmetric about the central axis. Therefore, also in the third embodiment, the structure of the wedge hole 81 does not have directivity. In addition, when the said wedge 8 is seen from the radial direction outer side of the rotor core 2, it looks like a structure as shown in FIG.
 このとき、本実施の形態3においては、ウェッジ孔81に溝86を設けることで、エアギャップ120内の冷却ガス流れ121は、ウェッジ孔81から噴出される回転子内の冷却ガス流れ11と衝突する前に、溝86によって偏向する。そのため、エアギャップ120内の冷却ガス流れ121とウェッジ孔81から噴出される回転子内の冷却ガス流れ11との衝突角は、エアギャップ120内の冷却ガス流れ121が溝86によって偏向した分だけ、さらに大きくなる。結果として、実施の形態1および実施の形態2よりも高い通風抵抗低減効果が期待できる。 At this time, in the third embodiment, the groove 86 is provided in the wedge hole 81 so that the cooling gas flow 121 in the air gap 120 collides with the cooling gas flow 11 in the rotor ejected from the wedge hole 81. Before it is deflected, it is deflected by the groove 86. Therefore, the collision angle between the cooling gas flow 121 in the air gap 120 and the cooling gas flow 11 in the rotor ejected from the wedge hole 81 is equal to the amount by which the cooling gas flow 121 in the air gap 120 is deflected by the groove 86. , Get even bigger. As a result, it is possible to expect a higher ventilation resistance reduction effect than in the first and second embodiments.
 また、本実施の形態3においても、ウェッジ孔81の構造は指向性を持たないため、エアギャップ120内の冷却ガス流れ121がどの方向からきても一定の通風抵抗低減効果が期待できる。そのため、例えば特許文献2などの従来技術のように、エアギャップ120内の冷却ガス流れ121を予測する必要がなく、より簡便に冷却性能が向上した回転子1を得ることができる。 Also in the third embodiment, since the structure of the wedge hole 81 does not have directivity, a constant ventilation resistance reduction effect can be expected regardless of the direction of the cooling gas flow 121 in the air gap 120. Therefore, unlike the prior art such as Patent Document 2, for example, it is not necessary to predict the cooling gas flow 121 in the air gap 120, and the rotor 1 with improved cooling performance can be obtained more easily.
 また、通電加熱を伴わないウェッジ8に対して加工を施すため、特許文献3に記載の従来技術のように銅損増大を招くこともない。 Further, since the wedge 8 that is not energized and heated is processed, there is no increase in copper loss unlike the prior art described in Patent Document 3.
 ところで、ファン140が脈動を起こした際には、回転電機100の各部における冷却ガス160の流量が変動することになる。当然のことながら、エアギャップ120の流量も変動する。このとき、ウェッジ孔81が指向性をもつ構造であった場合、エアギャップ120の冷却ガス160の変動に合わせて、ウェッジ孔81の通風抵抗低減効果も変動する。一方、本実施の形態3のように、指向性が無く、且つ、通風抵抗を低減できるような構造をウェッジ孔81に適用した場合、ファン140の脈動に関係なく、安定したウェッジ孔81の通風抵抗低減効果を期待できる。 By the way, when the fan 140 pulsates, the flow rate of the cooling gas 160 in each part of the rotating electrical machine 100 varies. As a matter of course, the flow rate of the air gap 120 also varies. At this time, when the wedge hole 81 has a directional structure, the ventilation resistance reduction effect of the wedge hole 81 also varies in accordance with the variation of the cooling gas 160 in the air gap 120. On the other hand, when the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the third embodiment, the stable ventilation of the wedge hole 81 regardless of the pulsation of the fan 140. A resistance reduction effect can be expected.
 また、ファン140に偏流が発生した際にも、エアギャップ120の冷却ガス160の流量分布に偏りが生じる可能性がある。このような場合、ウェッジ孔81が指向性をもつ構造であった場合、エアギャップ120の冷却ガス160の偏りに合わせて、ウェッジ孔81の通風抵抗低減効果も変動する。一方、本実施の形態2のように、指向性が無く、且つ、通風抵抗を低減できるような構造をウェッジ孔81に適用した場合、ファン140の偏流に関係なく、安定したウェッジ孔81の通風抵抗低減効果を期待できる。 Also, when a drift occurs in the fan 140, the flow distribution of the cooling gas 160 in the air gap 120 may be biased. In such a case, when the wedge hole 81 has a directional structure, the air flow resistance reduction effect of the wedge hole 81 also varies in accordance with the bias of the cooling gas 160 in the air gap 120. On the other hand, when the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the second embodiment, the stable ventilation of the wedge hole 81 regardless of the drift of the fan 140. A resistance reduction effect can be expected.
 さらに、予め冷却ガス160の流量が不足する可能性があるラジアルパス9に連通されたウェッジ孔81に対してのみ本実施の形態2の孔径拡大部82を適用してもよい。その場合には、適用されたラジアルパス9に供給される冷却ガス160の流量を増やすことができ、ホットスポットの発生を抑制し、回転子コイル5を均一に冷却することができる。 Furthermore, the hole diameter enlarged portion 82 of the second embodiment may be applied only to the wedge hole 81 communicated with the radial path 9 where the flow rate of the cooling gas 160 may be insufficient in advance. In that case, the flow rate of the cooling gas 160 supplied to the applied radial path 9 can be increased, generation of hot spots can be suppressed, and the rotor coil 5 can be cooled uniformly.
 そして、上述の個々のウェッジ孔81の孔径を調節する従来の技術と本実施の形態3を併せて回転電機100に適用することにより、回転子1の冷却能力を向上できるだけでなく従来よりも均一に冷却することが期待できる。 Then, by applying the conventional technique for adjusting the hole diameter of the individual wedge holes 81 described above and the third embodiment to the rotating electrical machine 100, not only the cooling capacity of the rotor 1 can be improved but also more uniform than the conventional one. You can expect to cool down.
 これにより、実施の形態3による回転子1のウェッジ8によれば、簡単な構造を用いて、回転子コイル5の銅損を増加させることなく、回転電機100の回転子1の通風抵抗を低減することができ、回転子1の冷却能力をより向上できる。 Thereby, according to the wedge 8 of the rotor 1 according to the third embodiment, the ventilation resistance of the rotor 1 of the rotating electrical machine 100 is reduced without increasing the copper loss of the rotor coil 5 using a simple structure. The cooling capacity of the rotor 1 can be further improved.
 実施の形態4.
 図21および図22を用いて、本発明の実施の形態4による回転子1を構成するウェッジ孔81について説明する。図21は、本発明の実施の形態4による回転子1のウェッジ8を示す部分断面図である。図22は、回転子鉄心2の径方向外側からみた本発明の実施の形態4の回転子1のウェッジ8を示す図である。実施の形態4においては、ウェッジ孔81が、突起83aから構成された突縁を有している点が、実施の形態1~3とは異なる。本実施の形態4では、第2の内径を有する第2の部分としての孔径拡大部83が、当該突縁によって構成されている。他の構成は実施の形態1~3と同様である。
Embodiment 4 FIG.
A wedge hole 81 constituting the rotor 1 according to the fourth embodiment of the present invention will be described with reference to FIGS. FIG. 21 is a partial cross-sectional view showing wedge 8 of rotor 1 according to the fourth embodiment of the present invention. FIG. 22 is a view showing the wedge 8 of the rotor 1 according to the fourth embodiment of the present invention as seen from the radially outer side of the rotor core 2. The fourth embodiment is different from the first to third embodiments in that the wedge hole 81 has a protruding edge composed of a protrusion 83a. In the fourth embodiment, the hole diameter enlarged portion 83 as the second portion having the second inner diameter is configured by the protruding edge. Other configurations are the same as those in the first to third embodiments.
 本実施の形態4においては、図21に示すように、回転子1の径方向外側に位置するウェッジ孔81の孔出口の全周にわたって突起83aが施されて、ウェッジ孔81の突縁が形成されている。突起83aは、図21に示すように、回転子鉄心2の回転子外周面10から突出するように設けられている。突起83aからなる突縁は、短円筒形状を有し、その壁厚は、全周にわたって一定である。本実施の形態4では、突起83aで囲まれている部分を、孔径拡大部83と呼ぶこととする。ここで、突起83aは、図21に示すように、ウェッジ孔81の出口孔よりも外側の部分に設けられているため、突起83aから構成された孔径拡大部83の内径、すなわち、第2の内径は、ウェッジ孔81の全周にわたって他の部分の内径、すなわち、第1の内径よりも大きい。 In the fourth embodiment, as shown in FIG. 21, a protrusion 83a is formed over the entire circumference of the hole outlet of the wedge hole 81 located on the outer side in the radial direction of the rotor 1, thereby forming a protruding edge of the wedge hole 81. Has been. As shown in FIG. 21, the protrusion 83 a is provided so as to protrude from the rotor outer peripheral surface 10 of the rotor core 2. The protruding edge formed of the protrusion 83a has a short cylindrical shape, and the wall thickness is constant over the entire circumference. In the fourth embodiment, a portion surrounded by the protrusion 83a is referred to as a hole diameter enlarged portion 83. Here, as shown in FIG. 21, since the protrusion 83a is provided in a portion outside the outlet hole of the wedge hole 81, the inner diameter of the hole diameter enlarged portion 83 formed of the protrusion 83a, that is, the second The inner diameter is larger than the inner diameter of the other part over the entire circumference of the wedge hole 81, that is, the first inner diameter.
 なお、図21において、孔径拡大部83の内壁および外壁が、ウェッジ孔81の中心軸を軸として左右対称に図示されていることから分かるように、孔径拡大部83の内壁および外壁は、ウェッジ孔81の全周、すなわち、360°にわたって、ウェッジ孔81の中心軸を軸として軸対称な形状になるように構成されている。従って、本実施の形態4においても、ウェッジ孔81の構造は指向性を有さない。なお、上記ウェッジ8を回転子鉄心2の径方向外側からみると、図22に示すような構成に見える。 In FIG. 21, the inner wall and the outer wall of the hole diameter expanding portion 83 are shown symmetrically about the central axis of the wedge hole 81, so that the inner wall and the outer wall of the hole diameter expanding portion 83 are wedge holes. The entire circumference of 81, that is, 360 °, is configured to be axisymmetric with respect to the central axis of the wedge hole 81. Therefore, also in the fourth embodiment, the structure of the wedge hole 81 does not have directivity. Note that, when the wedge 8 is viewed from the outside in the radial direction of the rotor core 2, it looks as shown in FIG.
 このように、本実施の形態4において、突起83aで囲まれている孔径拡大部83を「ウェッジ孔81の第2の内径を有する第2の部分」とし、ウェッジ孔81の孔径拡大部83以外の他の部分を「ウェッジ孔81の第1の内径を有する第1の部分」としたとき、本実施の形態4においても、実施の形態1と同様に、ウェッジ孔81は、第1の内径を有する第1の部分と、第1の部分よりも回転子鉄心2の径方向外側に配置され、第1の内径よりも大きい第2の内径を有する第2の部分とを有している。 As described above, in the fourth embodiment, the hole diameter enlarged portion 83 surrounded by the protrusion 83a is referred to as a “second portion having the second inner diameter of the wedge hole 81”, and other than the hole diameter enlarged portion 83 of the wedge hole 81. When the other part is defined as “a first part having the first inner diameter of the wedge hole 81”, in the fourth embodiment as well, the wedge hole 81 has the first inner diameter as in the first embodiment. And a second portion having a second inner diameter that is larger than the first inner diameter and is disposed on the outer side in the radial direction of the rotor core 2 than the first portion.
 本実施の形態4では、回転子1の径方向外側に位置するウェッジ孔81の孔出口全周にわたって突起83aを設けることにより、エアギャップ120内の冷却ガス流れ121は、ウェッジ孔81から噴出される回転子内の冷却ガス流れ11と衝突する前に、突起83aに衝突することで一部が剥離し、ウェッジ孔81の周囲には剥離領域が形成される。 In the fourth embodiment, the projection 83a is provided over the entire circumference of the hole outlet of the wedge hole 81 located on the radially outer side of the rotor 1, so that the cooling gas flow 121 in the air gap 120 is ejected from the wedge hole 81. Before colliding with the cooling gas flow 11 in the rotor, a part is separated by colliding with the protrusion 83 a, and a separation region is formed around the wedge hole 81.
 図23は、回転子1の径方向外側に位置するウェッジ孔81の孔出口全周にわたって突起83aが施されている場合における、エアギャップ120内の冷却ガス流れ121の様子を図示したものである。図23において、実線122は、回転子1上にとった回転座標系からみた流速分布である。上記の通り、実際のエアギャップ120内の冷却ガス流れ121は、軸方向流れと周方向流れが合成されたものである。但し、図23では、簡単のため、周方向流れの流速分布を用いて説明する。 FIG. 23 illustrates the state of the cooling gas flow 121 in the air gap 120 when the protrusion 83a is provided over the entire circumference of the hole outlet of the wedge hole 81 located on the radially outer side of the rotor 1. . In FIG. 23, a solid line 122 is a flow velocity distribution viewed from the rotating coordinate system taken on the rotor 1. As described above, the cooling gas flow 121 in the actual air gap 120 is a combination of the axial flow and the circumferential flow. However, for the sake of simplicity, FIG. 23 will be described using the flow velocity distribution of the circumferential flow.
 図23に示すように、エアギャップ120内の冷却ガス流れ121は、突起83aに衝突し、突起83aの上方、すなわち、回転子鉄心2の外径方向に偏向される。さらに、冷却ガス流れ121は、突起83aの上端に達した後、その一部が剥離する。この剥離現象に伴い、突起83aの下流の流速分布は、図23の流速分布のように逆流が生じ、死水領域123が形成される。この死水領域123での冷却ガス流れ121の速さは、エアギャップ120内の冷却ガス流れ121の主流の速さと比較して微々たるものである。また、死水領域123内の静圧は低くなっている。即ち、乱流剪断層が強ければ強いほど、それを打ち破って流体を噴出させるのに要するエネルギは大きいことを考えれば、突起83aによって形成される死水領域123に冷却ガス流れ11を噴出させるには小さなエネルギで十分であることは明らかである。 23, the cooling gas flow 121 in the air gap 120 collides with the protrusion 83a and is deflected above the protrusion 83a, that is, in the outer diameter direction of the rotor core 2. As shown in FIG. Furthermore, after the cooling gas flow 121 reaches the upper end of the protrusion 83a, a part thereof is peeled off. Along with this peeling phenomenon, the flow velocity distribution downstream of the protrusion 83a causes a reverse flow like the flow velocity distribution of FIG. 23, and a dead water region 123 is formed. The speed of the cooling gas flow 121 in the dead water region 123 is slightly smaller than the speed of the main flow of the cooling gas flow 121 in the air gap 120. Moreover, the static pressure in the dead water area | region 123 is low. That is, the stronger the turbulent shear layer, the greater the energy required to break it and eject the fluid, so that the cooling gas flow 11 is ejected to the dead water region 123 formed by the protrusion 83a. Clearly, a small amount of energy is sufficient.
 本実施の形態4においては、回転子外周面10に位置するウェッジ孔81の孔出口の全周にわたって、突起83aを設けている。それにより、エアギャップ120内の冷却ガス流れ121が、回転子1のウェッジ孔81から噴出される回転子1内の冷却ガス流れ11と衝突する前に、突起83aと衝突する。その結果、回転子1内の冷却ガス流れ11がウェッジ孔81を通過してエアギャップ120へ排出される際の通風抵抗を抑制できる。 In the fourth embodiment, the protrusion 83a is provided over the entire circumference of the hole outlet of the wedge hole 81 located on the rotor outer peripheral surface 10. As a result, the cooling gas flow 121 in the air gap 120 collides with the protrusion 83 a before colliding with the cooling gas flow 11 in the rotor 1 ejected from the wedge hole 81 of the rotor 1. As a result, the airflow resistance when the cooling gas flow 11 in the rotor 1 passes through the wedge hole 81 and is discharged to the air gap 120 can be suppressed.
 また、図21から分かるように、突起83aの高さはエアギャップ120の幅に比べて十分に小さいため、突起83aを通過するために伴う通風抵抗は小さい。そのため、ウェッジ孔81から噴出した回転子1内の冷却ガス流れ11がウェッジ孔81の下流にある突起83aとの衝突に伴う通風抵抗の増加は微々たるものであり、全体として通風抵抗は低減される。 Further, as can be seen from FIG. 21, the height of the projection 83a is sufficiently smaller than the width of the air gap 120, so the ventilation resistance associated with passing through the projection 83a is small. Therefore, the increase in ventilation resistance due to the collision of the cooling gas flow 11 in the rotor 1 ejected from the wedge hole 81 with the protrusion 83a downstream of the wedge hole 81 is slight, and the ventilation resistance is reduced as a whole. The
 また、下流側に位置する突起83aを死水領域123内に納まるように設置した場合、エアギャップ120内の冷却ガス流れ121が下流側の突起83aと衝突する際の通風抵抗は、エアギャップ120内の冷却ガス流れ121が上流側の突起83aと衝突する際の通風抵抗に比べ小さくなるため、より高い冷却能力をもつ回転電機100の回転子1が得られる。 Further, when the protrusion 83a located on the downstream side is installed so as to be accommodated in the dead water region 123, the ventilation resistance when the cooling gas flow 121 in the air gap 120 collides with the protrusion 83a on the downstream side is within the air gap 120. Therefore, the rotor 1 of the rotating electrical machine 100 having higher cooling capacity can be obtained.
 本発明の実施の形態4においても、実施の形態1,2と同様に、ウェッジ孔81の構造が指向性を持たないため、エアギャップ120内の冷却ガス流れ121がどの方向から流れてきても一定の通風抵抗低減効果が期待できる。そのため、特許文献2の従来技術のように、エアギャップ120内の冷却ガス流れ121を予測する必要がなく、より簡便に回転子1の冷却性能を向上することができる。 Also in the fourth embodiment of the present invention, as in the first and second embodiments, the structure of the wedge hole 81 does not have directivity, so the cooling gas flow 121 in the air gap 120 flows from any direction. A certain reduction effect of ventilation resistance can be expected. Therefore, unlike the prior art of Patent Document 2, there is no need to predict the cooling gas flow 121 in the air gap 120, and the cooling performance of the rotor 1 can be improved more easily.
 また、通電加熱を伴わないウェッジ8に対して加工を施すため、特許文献3に記載の技術のように銅損増大を招くこともない。 Further, since the wedge 8 that is not energized and heated is processed, the copper loss is not increased unlike the technique described in Patent Document 3.
 ところで、ファン140が脈動を起こした際には、回転電機100の各部における冷却ガス160の流量が変動することになる。当然のことながら、エアギャップ120の流量も変動する。このような場合、ウェッジ孔81が指向性をもつ構造であった場合、エアギャップ120の冷却ガス160の変動に合わせて、ウェッジ孔81の通風抵抗低減効果も変動する。一方、本実施の形態4のように、指向性が無く、且つ、通風抵抗を低減できるような構造をウェッジ孔81に適用した場合、ファン140の脈動に関係なく、安定したウェッジ孔81の通風抵抗低減効果を期待できる。 By the way, when the fan 140 pulsates, the flow rate of the cooling gas 160 in each part of the rotating electrical machine 100 varies. As a matter of course, the flow rate of the air gap 120 also varies. In such a case, when the wedge hole 81 has a directional structure, the ventilation resistance reduction effect of the wedge hole 81 also varies in accordance with the variation of the cooling gas 160 in the air gap 120. On the other hand, when the structure having no directivity and reducing ventilation resistance is applied to the wedge hole 81 as in the fourth embodiment, the stable ventilation of the wedge hole 81 regardless of the pulsation of the fan 140. A resistance reduction effect can be expected.
 また、ファン140に偏流が発生した際にも、エアギャップ120の冷却ガス160の流量分布に偏りが生じる可能性がある。このような場合、ウェッジ孔81が指向性をもつ構造であった場合、エアギャップ120の冷却ガス160の偏りに合わせて、ウェッジ孔81の通風抵抗低減効果も変動する。一方、本実施の形態4のように、指向性が無く、且つ、通風抵抗を低減できるような構造をウェッジ孔81に適用した場合、ファン140の偏流に関係なく、安定したウェッジ孔81の通風抵抗低減効果を期待できる。 Also, when a drift occurs in the fan 140, the flow distribution of the cooling gas 160 in the air gap 120 may be biased. In such a case, when the wedge hole 81 has a directional structure, the air flow resistance reduction effect of the wedge hole 81 also varies in accordance with the bias of the cooling gas 160 in the air gap 120. On the other hand, when the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the fourth embodiment, the stable ventilation of the wedge hole 81 regardless of the drift of the fan 140. A resistance reduction effect can be expected.
 さらに、予め冷却ガス160の流量が不足する可能性があるラジアルパス9に連通されたウェッジ孔81に対してのみ、本実施の形態4の突起83aを適用すれば、適用されたラジアルパス9に供給される冷却ガス160の流量を増やすことができ、ホットスポットの発生を抑制し、回転子コイル5を均一に冷却することができる。 Furthermore, if the projection 83a of the fourth embodiment is applied only to the wedge hole 81 communicated with the radial path 9 where the flow rate of the cooling gas 160 may be insufficient in advance, the applied radial path 9 can be applied. The flow rate of the supplied cooling gas 160 can be increased, generation of hot spots can be suppressed, and the rotor coil 5 can be cooled uniformly.
 そして、個々のウェッジ孔81の孔径を調節する従来の技術と本実施の形態4の突起83aとを併せて回転電機100に適用することにより、回転子1の冷却能力を向上できるだけでなく従来よりも均一に冷却することが期待できる。 Then, by applying the conventional technique for adjusting the diameter of each wedge hole 81 and the protrusion 83a of the fourth embodiment to the rotating electrical machine 100, not only can the cooling capacity of the rotor 1 be improved, but also the conventional technique. Can be expected to cool evenly.
 これにより、実施の形態4による回転子1のウェッジ8によれば、簡単な構造を用いて、回転子コイル5の銅損を増加させることなく、回転電機100の回転子1の通風抵抗を低減することができ、回転子1の冷却能力をより向上できる。 Thus, according to the wedge 8 of the rotor 1 according to the fourth embodiment, the ventilation resistance of the rotor 1 of the rotating electrical machine 100 is reduced without increasing the copper loss of the rotor coil 5 using a simple structure. The cooling capacity of the rotor 1 can be further improved.
 なお、本実施の形態4において、ウェッジ孔81の第2の内径の拡がり方によっても効果の程度が異なる。たとえば、第1の内径に対する第2の内径の比を、ウェッジ孔81の第2の内径の拡がりとして、第1の内径に対する第2の内径の比を、1.6倍以下程度とすると良い。 In the fourth embodiment, the degree of the effect varies depending on how the second inner diameter of the wedge hole 81 is expanded. For example, the ratio of the second inner diameter with respect to the first inner diameter is set to be the expansion of the second inner diameter of the wedge hole 81, and the ratio of the second inner diameter with respect to the first inner diameter is preferably about 1.6 times or less.
 実施の形態5.
 図24および図25を用いて、実施の形態5による回転子1を構成するウェッジ孔81について説明する。図24は、本発明の実施の形態5による回転子1のウェッジ8部分を示す部分断面図である。図25は、回転子鉄心2の径方向外側からみた本発明の実施の形態5の回転子1のウェッジ8を示す図である。図24に示すように、実施の形態5においては、回転子1の径方向外側に位置するウェッジ孔81の孔出口の全周にわたって、回転子外周面10よりも外側に向かって突出した傾斜面84aが施されている点が、実施の形態1~4とは異なる。他の構成は実施の形態1~4と同様である。
Embodiment 5. FIG.
A wedge hole 81 constituting the rotor 1 according to the fifth embodiment will be described with reference to FIGS. FIG. 24 is a partial cross-sectional view showing a wedge 8 portion of rotor 1 according to the fifth embodiment of the present invention. FIG. 25 is a view showing the wedge 8 of the rotor 1 according to the fifth embodiment of the present invention as viewed from the radially outer side of the rotor core 2. As shown in FIG. 24, in the fifth embodiment, an inclined surface that protrudes outward from the rotor outer peripheral surface 10 over the entire circumference of the hole outlet of the wedge hole 81 located on the radially outer side of the rotor 1. The difference from Embodiments 1 to 4 is that 84a is applied. Other configurations are the same as those in the first to fourth embodiments.
 本実施の形態5においては、図24に示すように、回転子1の径方向外側に位置するウェッジ孔81の孔出口全周にわたって、傾斜面84aが施されている。実施の形態5においては、傾斜面84aの一部が回転子外周面10から突出することで、ウェッジ孔81が、突起から構成された突縁を有している点が、実施の形態2とは異なる。すなわち、本実施の形態4では、第2の内径を有する第2の部分としての孔径拡大部83の一部が、当該突縁によって構成されている。以下では、傾斜面84aで囲まれている部分を、孔径拡大部84と呼ぶこととする。 In the fifth embodiment, as shown in FIG. 24, an inclined surface 84a is provided over the entire circumference of the hole outlet of the wedge hole 81 located on the radially outer side of the rotor 1. In the fifth embodiment, a part of the inclined surface 84a protrudes from the outer circumferential surface 10 of the rotor, so that the wedge hole 81 has a projecting edge constituted by a protrusion. Is different. That is, in the fourth embodiment, a part of the hole diameter enlarged portion 83 as the second part having the second inner diameter is configured by the protruding edge. Hereinafter, a portion surrounded by the inclined surface 84a is referred to as a hole diameter enlarged portion 84.
 孔径拡大部84の製造方法としては、例えば、図8に示すような一般的なウェッジ8の厚みを予め設定された厚み分だけ厚くする。その場合、回転子外周面10から、回転子の径方向外側に向かって、当該厚み分だけ、ウェッジ8の先端が突出することになる。このとき、ウェッジ8の先端の内側面が一定の角度の傾斜面になるように形成することにより、傾斜面84aを形成することができる。また、外側面においても同様に形成することで、孔径拡大部84を形成することができる。 As a manufacturing method of the hole diameter enlarged portion 84, for example, the thickness of a general wedge 8 as shown in FIG. 8 is increased by a preset thickness. In that case, the tip of the wedge 8 protrudes from the rotor outer peripheral surface 10 toward the radially outer side of the rotor by the thickness. At this time, the inclined surface 84a can be formed by forming the inner surface at the tip of the wedge 8 to be an inclined surface having a certain angle. Moreover, the hole diameter enlarged part 84 can be formed by forming similarly in an outer surface.
 このように、本実施の形態5において、傾斜面84aで囲まれている孔径拡大部84を「ウェッジ孔81の第2の内径を有する第2の部分」とし、ウェッジ孔81の孔径拡大部84以外の他の部分を「ウェッジ孔81の第1の内径を有する第1の部分」としたとき、実施の形態1と同様に、ウェッジ孔81は、第1の内径を有する第1の部分と、第1の部分よりも回転子鉄心2の径方向外側に配置され、ウェッジ孔81の全周にわたって第1の内径よりも大きい第2の内径を有する第2の部分とを有している。 As described above, in the fifth embodiment, the hole diameter enlarged portion 84 surrounded by the inclined surface 84 a is referred to as a “second portion having the second inner diameter of the wedge hole 81”, and the hole diameter enlarged portion 84 of the wedge hole 81. When the other portion than “the first portion having the first inner diameter of the wedge hole 81” is used, the wedge hole 81 is similar to the first portion having the first inner diameter, as in the first embodiment. And a second portion having a second inner diameter larger than the first inner diameter over the entire circumference of the wedge hole 81, which is disposed on the radially outer side of the rotor core 2 with respect to the first portion.
 なお、ウェッジ8の先端の内側面の形状は、図24に示す傾斜面84aに限定されるものではなく、例えば、図26に示すように、曲面84bであってもよい。 It should be noted that the shape of the inner surface at the tip of the wedge 8 is not limited to the inclined surface 84a shown in FIG. 24, and may be a curved surface 84b as shown in FIG.
 また、孔径拡大部84の突起部分の外側面は、図24に示すように、回転子外周面10に対して直角である必要はなく、例えば、図27に示すように、傾斜面84cであってもよい。傾斜面84cは、図27に示されるように、傾斜面84aの頂点から回転子外周面10に向かって一定の角度で傾斜している。このとき、傾斜面84cが、傾斜面84aと反対側に向かって傾斜しているため、2つの傾斜面84a,84cから形成された部分は、図27に示すように、山状になっている。なお、図27は、図24の構成に対して傾斜面84cを設けた例を示しているが、図28は、図26の構成に対して、傾斜面84cを設けた例を示す。図28に示すように、曲面84bから形成された孔径拡大部84の外側面を傾斜面84cから構成するようにしてもよい。 Further, as shown in FIG. 24, the outer surface of the protruding portion of the hole diameter enlarged portion 84 does not need to be perpendicular to the rotor outer peripheral surface 10, and is, for example, an inclined surface 84c as shown in FIG. May be. As shown in FIG. 27, the inclined surface 84 c is inclined at a certain angle from the apex of the inclined surface 84 a toward the rotor outer peripheral surface 10. At this time, since the inclined surface 84c is inclined toward the opposite side to the inclined surface 84a, the portion formed by the two inclined surfaces 84a and 84c has a mountain shape as shown in FIG. . 27 shows an example in which the inclined surface 84c is provided for the configuration of FIG. 24, while FIG. 28 shows an example in which the inclined surface 84c is provided for the configuration of FIG. As shown in FIG. 28, the outer surface of the hole diameter enlarged portion 84 formed from the curved surface 84b may be configured from an inclined surface 84c.
 また、孔径拡大部84の突起部分の外側面に、図29に示すように、溝86を設けるように構成してもよい。 Further, as shown in FIG. 29, a groove 86 may be provided on the outer surface of the protruding portion of the hole diameter expanding portion 84.
 なお、図24~図28において、孔径拡大部84の内壁および外壁が、ウェッジ孔81の中心軸を軸として左右対称に図示されていることから分かるように、孔径拡大部84の内壁および外壁は、ウェッジ孔81の全周、すなわち、360°にわたって、ウェッジ孔81の中心軸を軸として軸対称な形状になるように構成されている。従って、本実施の形態5においても、ウェッジ孔81の構造は指向性を有さない。なお、ウェッジ8を回転子鉄心2の径方向外側からみると図25に示すような構成に見える。 24 to 28, as can be seen from the fact that the inner wall and the outer wall of the hole diameter expanding portion 84 are shown symmetrically about the central axis of the wedge hole 81, the inner wall and the outer wall of the hole diameter expanding portion 84 are The entire circumference of the wedge hole 81, that is, 360 °, is configured to have an axisymmetric shape with the central axis of the wedge hole 81 as an axis. Therefore, also in the fifth embodiment, the structure of the wedge hole 81 does not have directivity. In addition, when the wedge 8 is seen from the radial direction outer side of the rotor core 2, it looks like a structure as shown in FIG.
 図29においても、径拡大部84の内壁および外壁、そして溝86が、ウェッジ孔81の中心軸を軸として左右対称に図示されていることから分かるように、孔径拡大部84の内壁および外壁は、ウェッジ孔81の全周、すなわち、360°にわたって、ウェッジ孔81の中心軸を軸として軸対称な形状になるように構成されている。従って、本実施の形態5においても、ウェッジ孔81の構造は指向性を有さない。 Also in FIG. 29, as can be seen from the fact that the inner wall and outer wall of the enlarged diameter portion 84 and the groove 86 are shown symmetrically about the central axis of the wedge hole 81, the inner wall and the outer wall of the enlarged diameter portion 84 are The entire circumference of the wedge hole 81, that is, 360 °, is configured to have an axisymmetric shape with the central axis of the wedge hole 81 as an axis. Therefore, also in the fifth embodiment, the structure of the wedge hole 81 does not have directivity.
 図30は、回転子1の径方向外側に位置するウェッジ孔81の孔出口の全周にわたって、回転子外周面10から突出した孔径拡大部84が施されている場合において、回転子1の回転座標系からみた流速分布図である。上記の通り、実際のエアギャップ120内の冷却ガス流れ121は、軸方向流れと周方向流れとが合成されたものである。図30では、簡単のため、周方向流れの流速分布のみを用いて説明する。各ウェッジ孔81の孔出口全周にわたって突出した孔径拡大部84を設けることにより、実施の形態4の場合と同様に、エアギャップ120内の冷却ガス流れ121は、以下のようになる。すなわち、冷却ガス流れ121は、ウェッジ孔81から噴出される回転子内の冷却ガス流れ11と衝突する前に、突出した孔径拡大部84の外側面に衝突する。それにより、ウェッジ孔81の周囲には死水領域123が形成される。死水領域123の形成に伴う静圧低下により、回転子1内の冷却ガス流れ11がウェッジ孔81を通過する際の通風抵抗は低下する。また、ウェッジ孔81内側には傾斜面84aまたは曲面84bが施されているため、エアギャップ120内の冷却ガス流れ121との衝突角を緩和でき、よりいっそう高い通風抵抗低減効果が期待できる。 FIG. 30 shows the rotation of the rotor 1 when the hole diameter enlarged portion 84 protruding from the rotor outer peripheral surface 10 is provided over the entire circumference of the hole outlet of the wedge hole 81 located on the radially outer side of the rotor 1. It is a flow velocity distribution figure seen from a coordinate system. As described above, the cooling gas flow 121 in the actual air gap 120 is a combination of the axial flow and the circumferential flow. In FIG. 30, for the sake of simplicity, description will be made using only the flow velocity distribution of the circumferential flow. By providing the hole diameter enlarged portion 84 protruding over the entire circumference of the hole outlet of each wedge hole 81, the cooling gas flow 121 in the air gap 120 is as follows, as in the case of the fourth embodiment. That is, the cooling gas flow 121 collides with the outer surface of the projecting hole diameter enlarged portion 84 before colliding with the cooling gas flow 11 in the rotor ejected from the wedge hole 81. As a result, a dead water region 123 is formed around the wedge hole 81. Due to the decrease in static pressure accompanying the formation of the dead water region 123, the ventilation resistance when the cooling gas flow 11 in the rotor 1 passes through the wedge hole 81 decreases. Further, since the inclined surface 84a or the curved surface 84b is provided inside the wedge hole 81, the collision angle with the cooling gas flow 121 in the air gap 120 can be relaxed, and an even higher ventilation resistance reduction effect can be expected.
 本実施の形態5に係るウェッジ孔81の構造は、指向性を持たないため、エアギャップ120内の冷却ガス流れ121がどの方向からきても一定の通風抵抗低減効果が期待できる。そのため、特許文献2の従来技術のようにエアギャップ120内の冷却ガス流れ121を予測する必要がなく、より簡便に回転子1の冷却性能を向上することができる。 Since the structure of the wedge hole 81 according to the fifth embodiment does not have directivity, a constant ventilation resistance reduction effect can be expected regardless of the direction of the cooling gas flow 121 in the air gap 120. Therefore, unlike the prior art of Patent Document 2, there is no need to predict the cooling gas flow 121 in the air gap 120, and the cooling performance of the rotor 1 can be improved more easily.
 また、通電加熱を伴わないウェッジ8に対して加工を施すため、特許文献3に記載の技術のように銅損増大を招くこともない。 Further, since the wedge 8 that is not energized and heated is processed, the copper loss is not increased unlike the technique described in Patent Document 3.
 ところで、ファン140が脈動を起こした際には、回転電機100の各部における冷却ガス160の流量が変動することになる。当然のことながら、エアギャップ120の流量も変動する。このような場合、ウェッジ孔81が指向性をもつ構造であった場合、エアギャップ120の冷却ガス160の変動に合わせて、ウェッジ孔81の通風抵抗低減効果も変動する。一方、本実施の形態5のように、指向性が無く、且つ、通風抵抗を低減できるような構造をウェッジ孔81に適用した場合、ファン140の脈動に関係なく、安定したウェッジ孔81の通風抵抗低減効果を期待できる。 By the way, when the fan 140 pulsates, the flow rate of the cooling gas 160 in each part of the rotating electrical machine 100 varies. As a matter of course, the flow rate of the air gap 120 also varies. In such a case, when the wedge hole 81 has a directional structure, the ventilation resistance reduction effect of the wedge hole 81 also varies in accordance with the variation of the cooling gas 160 in the air gap 120. On the other hand, when the structure having no directivity and capable of reducing the ventilation resistance is applied to the wedge hole 81 as in the fifth embodiment, the stable ventilation of the wedge hole 81 regardless of the pulsation of the fan 140. A resistance reduction effect can be expected.
 また、ファン140に偏流が発生した際にも、エアギャップ120の冷却ガス160の流量分布に偏りが生じる可能性がある。このような場合、ウェッジ孔81が指向性をもつ構造であった場合、エアギャップ120の冷却ガス160の偏りに合わせて、ウェッジ孔81の通風抵抗低減効果も変動する。一方、本実施の形態5のように、指向性が無く、且つ、通風抵抗を低減できるような構造をウェッジ孔81に適用した場合、ファン140の偏流に関係なく、安定したウェッジ孔81の通風抵抗低減効果を期待できる。 Also, when a drift occurs in the fan 140, the flow distribution of the cooling gas 160 in the air gap 120 may be biased. In such a case, when the wedge hole 81 has a directional structure, the air flow resistance reduction effect of the wedge hole 81 also varies in accordance with the bias of the cooling gas 160 in the air gap 120. On the other hand, when the structure having no directivity and reducing the ventilation resistance is applied to the wedge hole 81 as in the fifth embodiment, the stable ventilation of the wedge hole 81 regardless of the drift of the fan 140. A resistance reduction effect can be expected.
 さらに、予め冷却ガス160の流量が不足する可能性があるラジアルパス9に連通されたウェッジ孔81に対してのみ、本実施の形態5の孔径拡大部84を適用すれば、適用されたラジアルパス9に供給される冷却ガス160の流量を増やすことができ、ホットスポットの発生を抑制し、回転子コイル5を均一に冷却することができる。 Furthermore, if the hole diameter enlarged portion 84 of the fifth embodiment is applied only to the wedge hole 81 communicated with the radial path 9 where the flow rate of the cooling gas 160 may be insufficient in advance, the applied radial path is applied. 9 can increase the flow rate of the cooling gas 160, suppress the occurrence of hot spots, and cool the rotor coil 5 uniformly.
 そして、個々のウェッジ孔81の孔径を調節する従来の技術と本発明の実施の形態5を併せて回転電機100に適用することにより、回転子1の冷却能力を向上できるだけでなく従来よりも均一に冷却することが期待できる。 Then, by applying the conventional technique for adjusting the hole diameter of each wedge hole 81 and the fifth embodiment of the present invention to the rotating electrical machine 100, not only can the cooling capacity of the rotor 1 be improved, but also more uniform than in the past. You can expect to cool down.
 これにより、実施の形態5による回転子1のウェッジ8によれば、簡単な構造を用いて、回転子コイル5の銅損を増加させることなく、回転電機100の回転子1の通風抵抗を低減することができ、回転子1の冷却能力をより向上できる。 Thereby, according to the wedge 8 of the rotor 1 according to the fifth embodiment, the ventilation resistance of the rotor 1 of the rotating electrical machine 100 is reduced without increasing the copper loss of the rotor coil 5 using a simple structure. And the cooling capacity of the rotor 1 can be further improved.
 なお、本実施の形態5においても、実施の形態4と同様に、ウェッジ孔81の第2の内径の拡がり方によっても効果の程度が異なる。たとえば、第1の内径に対する第2の内径の比を、ウェッジ孔81の第2の内径の拡がりとして、第1の内径に対する第2の内径の比を、1.6倍以下程度とすると良い。 Note that, also in the fifth embodiment, the degree of the effect varies depending on how the second inner diameter of the wedge hole 81 is expanded, as in the fourth embodiment. For example, the ratio of the second inner diameter with respect to the first inner diameter is set to be the expansion of the second inner diameter of the wedge hole 81, and the ratio of the second inner diameter with respect to the first inner diameter is preferably about 1.6 times or less.
 上記の実施の形態1~5は、本発明のいくつかの実施形態を示すものであり、本発明は、それに限定されるものではない。本発明は、その発明の範囲内において、適宜、変形、省略することが可能である。また、本発明は、冷却ガス160の種類に依存するものではない。 The above Embodiments 1 to 5 show some embodiments of the present invention, and the present invention is not limited thereto. The present invention can be appropriately modified and omitted within the scope of the invention. Further, the present invention does not depend on the type of the cooling gas 160.
 1 回転子、2 回転子鉄心、3 コイルスロット、4 チャンネル、5 回転子コイル、6 ターン絶縁物、7 絶縁物、 8 ウェッジ、9 ラジアルパス、10 回転子外周面、11 冷却ガス流れ、71 絶縁物孔、81 ウェッジ孔、82,83,84,85 溝、86 孔径拡大部、82a 傾斜面、82b 曲面、83a 突起、84a 傾斜面、84b 曲面、84c 傾斜面、100 回転電機、110 固定子、111 固定子内周面、120 エアギャップ、121 冷却ガス流れ、122 冷却ガス流速分布、123 死水領域、124 剥離領域、130 冷却器、140 ファン、150 回転軸、160 冷却ガス、901 突起、902,903 傾斜面、904 導体バー、905 テーパー部、906 通風孔。 1 Rotor, 2 Rotor Core, 3 Coil Slot, 4 Channels, 5 Rotor Coil, 6 Turn Insulator, 7 Insulator, 8 Wedge, 9 Radial Pass, 10 Rotor Outer Surface, 11 Cooling Gas Flow, 71 Insulation Object hole, 81 wedge hole, 82, 83, 84, 85 groove, 86 hole diameter enlarged part, 82a inclined surface, 82b curved surface, 83a protrusion, 84a inclined surface, 84b curved surface, 84c inclined surface, 100 rotating electrical machine, 110 stator, 111 Stator inner peripheral surface, 120 air gap, 121 cooling gas flow, 122 cooling gas flow velocity distribution, 123 dead water region, 124 peeling region, 130 cooler, 140 fan, 150 rotating shaft, 160 cooling gas, 901 protrusion, 902 903 inclined surface, 904 conductor bar, 905 taper, 90 Ventilation holes.

Claims (8)

  1.  軸方向に延びた複数のコイルスロットが外周面に設けられた円筒状の回転子鉄心と、
     前記コイルスロット内に配置された回転子コイルと、
     前記コイルスロットの開口部に設けられ、前記回転子コイルを前記コイルスロット内に固定させるとともに、前記回転子鉄心の径方向に延びて前記コイルスロットの内部から外部に向かって冷却ガスを流通させる1以上のウェッジ孔を有する、ウェッジと
     を備え、
     前記ウェッジ孔のうちの少なくとも1つは、
     第1の内径を有する第1の部分と、
     前記第1の部分よりも前記回転子鉄心の径方向外側に配置され、
    ウェッジ孔の全周にわたって前記第1の内径よりも大きい第2の内径を有する第2の部分と
     を有する、
     回転子。
    A cylindrical rotor core provided with a plurality of axially extending coil slots on the outer peripheral surface;
    A rotor coil disposed in the coil slot;
    1 provided in the opening of the coil slot, for fixing the rotor coil in the coil slot, and extending the radial direction of the rotor core to allow cooling gas to flow from the inside of the coil slot to the outside. A wedge having the above wedge holes, and
    At least one of the wedge holes is
    A first portion having a first inner diameter;
    It is arranged on the outer side in the radial direction of the rotor core than the first part,
    A second portion having a second inner diameter greater than the first inner diameter over the entire circumference of the wedge hole;
    Rotor.
  2.  前記第1の内径は、前記回転子鉄心の径方向に沿って一定である、
     請求項1に記載の回転子。
    The first inner diameter is constant along the radial direction of the rotor core.
    The rotor according to claim 1.
  3.  前記第2の内径は、前記回転子鉄心の径方向に沿って一定である、
     請求項1または2に記載の回転子。
    The second inner diameter is constant along the radial direction of the rotor core.
    The rotor according to claim 1 or 2.
  4.  前記第2の内径は、前記回転子鉄心の径方向外側に向かって連続的に増加する、
     請求項1または2に記載の回転子。
    The second inner diameter continuously increases toward the radially outer side of the rotor core.
    The rotor according to claim 1 or 2.
  5.  前記ウェッジ孔のうちの前記少なくとも1つは、
     前記ウェッジ孔の径方向外側のウェッジ表面に溝を有した、
     請求項1から4までのいずれか1項に記載の回転子。
    The at least one of the wedge holes is
    Having a groove on the wedge surface radially outside the wedge hole,
    The rotor according to any one of claims 1 to 4.
  6.  前記ウェッジ孔のうちの前記少なくとも1つは、前記回転子鉄心の前記外周面から突出した突縁を有し、
     前記第2の部分の全部または一部は、前記突縁によって構成される、
     請求項1から5までのいずれか1項に記載の回転子。
    The at least one of the wedge holes has a protruding edge protruding from the outer peripheral surface of the rotor core;
    All or part of the second part is constituted by the protruding edge,
    The rotor according to any one of claims 1 to 5.
  7.  前記第2の部分の内壁は、前記ウェッジ孔の全周にわたって、前記ウェッジ孔の中心軸を中心として軸対称な形状になるように構成されている、
     請求項1から6までのいずれか1項に記載の回転子。
    The inner wall of the second portion is configured to have an axisymmetric shape around the central axis of the wedge hole over the entire circumference of the wedge hole.
    The rotor according to any one of claims 1 to 6.
  8.  請求項1から7までのいずれか1項に記載の回転子と、
     前記回転子の外周に対して空隙を介して配置された固定子と
     を備えた回転電機。
    The rotor according to any one of claims 1 to 7,
    A rotating electrical machine comprising: a stator disposed through a gap with respect to the outer periphery of the rotor.
PCT/JP2019/012878 2018-05-14 2019-03-26 Rotor and rotating electrical machine WO2019220779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020519492A JP6854975B2 (en) 2018-05-14 2019-03-26 Rotor and rotating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018093235 2018-05-14
JP2018-093235 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019220779A1 true WO2019220779A1 (en) 2019-11-21

Family

ID=68540241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012878 WO2019220779A1 (en) 2018-05-14 2019-03-26 Rotor and rotating electrical machine

Country Status (2)

Country Link
JP (1) JP6854975B2 (en)
WO (1) WO2019220779A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150805A (en) * 1974-05-23 1975-12-03
JPH08340653A (en) * 1995-06-09 1996-12-24 Mitsubishi Electric Corp Rotor of rotating machine
JP2003348796A (en) * 2002-05-23 2003-12-05 Toshiba Corp Dynamo-electric machine
JP2009060763A (en) * 2007-09-03 2009-03-19 Hitachi Ltd Rotatary electric machine
JP2010200578A (en) * 2009-02-27 2010-09-09 Hitachi Ltd Rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150805A (en) * 1974-05-23 1975-12-03
JPH08340653A (en) * 1995-06-09 1996-12-24 Mitsubishi Electric Corp Rotor of rotating machine
JP2003348796A (en) * 2002-05-23 2003-12-05 Toshiba Corp Dynamo-electric machine
JP2009060763A (en) * 2007-09-03 2009-03-19 Hitachi Ltd Rotatary electric machine
JP2010200578A (en) * 2009-02-27 2010-09-09 Hitachi Ltd Rotary electric machine

Also Published As

Publication number Publication date
JP6854975B2 (en) 2021-04-07
JPWO2019220779A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US6268668B1 (en) Gas cooled generator stator structure and method for impingement cooling of generator stator coil
JP4682893B2 (en) Rotating electric machine rotor
US6956313B2 (en) Method and apparatus for reducing hot spot temperatures on stacked field windings
JP3721361B2 (en) Improved cooling of generator coil ends
US6362545B1 (en) Dynamoelectric machines having rotor windings with turbulated cooling passages
JP2010104225A (en) Heat transfer enhancement of dynamoelectric machine rotor
US5698924A (en) Rotor for dynamo-electric machine with improved cooling device
US6465917B2 (en) Spaceblock deflector for increased electric generator endwinding cooling
JP2007282488A (en) Streamline-shaped body wedge block and method for improving cooling of generator rotor
JP2010200578A (en) Rotary electric machine
KR100467389B1 (en) Gas cooled endwindings for dynamoelectric machine rotor and endwinding cooling method
KR100851098B1 (en) Spaceblock scoops for enhanced rotor cavity heat transfer
US6720687B2 (en) Wake reduction structure for enhancing cavity flow in generator rotor endwindings
WO2019220779A1 (en) Rotor and rotating electrical machine
JPH10178754A (en) Rotary electric machine
US20210296952A1 (en) Rotor of rotating electrical machine
WO2016171079A1 (en) Rotor for rotary electric machine, and rotary electric machine
EP3070816B1 (en) Method and assembly for cooling an electric machine
US20020127096A1 (en) Gas-cooled machine, in particular a turbo-generator
JP6696698B2 (en) Rotating electric machine stator
JP2021065072A (en) Rotor of rotating electric machine
JP2020182325A (en) Rotor of rotating electric machine
JP3635812B2 (en) Rotating machine rotor
JP2010200536A (en) Rotating electrical machine
JPH099542A (en) Rotor for electric rotating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804233

Country of ref document: EP

Kind code of ref document: A1