JP2010200578A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2010200578A
JP2010200578A JP2009045726A JP2009045726A JP2010200578A JP 2010200578 A JP2010200578 A JP 2010200578A JP 2009045726 A JP2009045726 A JP 2009045726A JP 2009045726 A JP2009045726 A JP 2009045726A JP 2010200578 A JP2010200578 A JP 2010200578A
Authority
JP
Japan
Prior art keywords
intake
rotor
wedge
cooling medium
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009045726A
Other languages
Japanese (ja)
Inventor
Shigeki Karashi
茂樹 唐司
Kengo Iwashige
健五 岩重
Ryuichiro Iwano
龍一郎 岩野
Kenichi Tsuzawa
健一 通澤
Yasunori Satake
恭典 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009045726A priority Critical patent/JP2010200578A/en
Publication of JP2010200578A publication Critical patent/JP2010200578A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary electric machine cooled by a gap-pickup cooling system capable of ensuring cooling performance of a rotor cooled by the gap-pickup cooling system, achieving a simplified structure, improving productivity, and producing it at low cost. <P>SOLUTION: A ventilating passage 8 is formed for ventilating a cooling medium 6 into a conductor 7 serving as the field coil of the rotor 3. In a wedge 19 mounted in the outer periphery of the rotor to fix the field coil, an air-intake hole 10 is formed to guide the cooling medium 6 in an air gap between the rotor and a stator into the ventilating passage 8. On the outer surface of the wedge 19, an intake-air guiding passage 26 is formed to guide the cooling medium into the air-intake hole 10. The intake-air guiding passage 26 is arranged circumferentially at the upstream of the air-intake hole 10 in the rotor from the stream of the cooling medium in the air gap. The intake-air guiding passage 26 is directed from the upstream side of the wedge towards its downstream to communicate with the air-intake hole 10 at the downstream side, and changes to widen its passage width in the axial direction of the rotor from the downstream side towards the upstream side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、タービン発電機などの回転子(ロータ)を冷却媒体で冷却する通風機構を備えた回転電機に関する。   The present invention relates to a rotating electrical machine including a ventilation mechanism that cools a rotor (rotor) such as a turbine generator with a cooling medium.

一般にタービン発電機などの回転電機では、固定子(ステータ)や回転子に通風流路を設け、この通風流路に冷却媒体である空気や水素を循環させて、ジュール損や鉄損などによって発熱するコイルや鉄心(コア)などを冷却する構造が知られている。回転子の冷却方式には、冷却性能が高いことから、コイルを冷却媒体と接触させて冷却する直接冷却方式が広く用いられているが、大容量化と低コスト化の両立可能な構造が要求されている。大容量化に対しては、長軸化の傾向にある。   Generally, in a rotating electrical machine such as a turbine generator, an air passage is provided in a stator (stator) or rotor, and air or hydrogen as a cooling medium is circulated through the air passage to generate heat due to Joule loss or iron loss. A structure for cooling a coil or an iron core (core) is known. Since the cooling performance of the rotor is high, a direct cooling system that cools the coil by contacting it with a cooling medium is widely used, but a structure that can achieve both large capacity and low cost is required. Has been. There is a tendency to increase the axis for large capacity.

ここで、代表的な従来構造について、図12〜16を用いて説明する。   Here, a typical conventional structure will be described with reference to FIGS.

図12は、回転電機の一例として、大容量機に用いられるギャップピックアップ冷却方式の回転子を備えたタービン発電機の概略構成を示す縦断面である。   FIG. 12 is a longitudinal sectional view showing a schematic configuration of a turbine generator provided with a gap pickup cooling type rotor used in a large capacity machine as an example of a rotating electric machine.

タービン発電機1は、回転子軸4に固定された回転子3及びその外側にエアギャップ9を介して配置された固定子2を備える。エアギャップ9は、固定子2の内周面と回転子3の外周面間に設けた間隙である。   The turbine generator 1 includes a rotor 3 fixed to the rotor shaft 4 and a stator 2 disposed outside the rotor 3 via an air gap 9. The air gap 9 is a gap provided between the inner peripheral surface of the stator 2 and the outer peripheral surface of the rotor 3.

固定子2は、固定子コア12と固定子コイル14を有する。   The stator 2 has a stator core 12 and a stator coil 14.

回転子3は、図15に示すように、回転子コア(回転子鉄心)30と、回転子コアの各スロット31に内挿されたプレートタイプの界磁コイル(積層導体)7と、界磁コイルを固定するためにスロット31の上部の組み込まれたウエッジ19を有する。界磁コイル7とウエッジ19との間には、両者を電気的に絶縁するためのクリページブロック20が配置されている。   As shown in FIG. 15, the rotor 3 includes a rotor core (rotor core) 30, a plate type field coil (laminated conductor) 7 inserted in each slot 31 of the rotor core, and a field magnet. It has a built-in wedge 19 at the top of the slot 31 to secure the coil. A clear page block 20 is disposed between the field coil 7 and the wedge 19 to electrically insulate them from each other.

界磁コイル7及びウエッジ19には、例えば空気或いは水素などの冷却媒体を流通させるための斜め流路8(8a,8b)が複数形成されている。すなわち、界磁コイル7は、斜め方向の複数の通風孔を有した導体を径方向に複数枚積層して構成され、各層導体の通風孔が連通することで、界磁コイル7内に通風流路となる斜め流路8が形成される構造となっている。   The field coil 7 and the wedge 19 are formed with a plurality of oblique channels 8 (8a, 8b) for circulating a cooling medium such as air or hydrogen. That is, the field coil 7 is configured by laminating a plurality of conductors having a plurality of oblique ventilation holes in the radial direction, and the ventilation holes of the respective layer conductors communicate with each other so that the ventilation current flows in the field coil 7. It has the structure in which the diagonal flow path 8 used as a path | route is formed.

斜め流路8は、例えば、界磁コイル7の端面に設けた吸気孔8´から冷却媒体が流入して、ウエッジ19の外面に設けた排気孔11を介してエアギャップ9に放出される通風流路8aと、ウエッジ19(ウエッジは、図12では、図示省略され、図15に示してある)の外面に設けた吸気孔10から冷却媒体が流入してウエッジの外面に設けた排気孔11を介してエアギャップ9に放出されるV字形の通風流路8bとがある。   In the oblique flow path 8, for example, the cooling medium flows from an intake hole 8 ′ provided in the end face of the field coil 7 and is discharged to the air gap 9 through the exhaust hole 11 provided in the outer surface of the wedge 19. The cooling medium flows in from the air inlet 10 provided on the outer surface of the air flow path 8a and the wedge 19 (the wedge is not shown in FIG. 12 and shown in FIG. 15), and the exhaust hole 11 provided on the outer surface of the wedge. And a V-shaped ventilation channel 8b that is discharged to the air gap 9 through the air gap 9.

図13は、大容量機に用いられる界磁コイル7の積層導体の概略平面図である。また、図14は、界磁コイル7の各導体を積層して形成されるV字形の通風流路の縦断面を示した図で、(a)が径方向(R方向)−周方向(Θ方向)の2次元断面図、(b)が径方向(R方向)−軸方向(Z方向)の2次元断面図である。図14(b)では、ウエッジ19の吸気孔10及び排気孔11を介して界磁コイル7の積層導体内に形成されるV字形の通風流路8bの流路形状が分かりやすいように、1流路のみを白抜きで示した。ここでは、界磁コイル7の各積層導体に通風流路8となるべき通風孔が回転子3の周方向(Θ方向)に2列になって回転子の軸方向(Z方向)に複数配列される例を示した。なお、界磁コイル7の各導体に設ける2列の通風孔8とウエッジ19に設ける吸気孔10及び排気孔11は、孔同士が接するように配置される。   FIG. 13 is a schematic plan view of the laminated conductor of the field coil 7 used in the large capacity machine. FIG. 14 is a view showing a longitudinal section of a V-shaped ventilation channel formed by laminating the conductors of the field coil 7, and FIG. 14A shows the radial direction (R direction) -circumferential direction (Θ). (B) is a two-dimensional cross-sectional view in the radial direction (R direction) -axial direction (Z direction). In FIG. 14B, the flow path shape of the V-shaped ventilation flow path 8b formed in the laminated conductor of the field coil 7 through the intake hole 10 and the exhaust hole 11 of the wedge 19 is easily understood. Only the flow path is shown in white. Here, a plurality of ventilation holes to be ventilation channels 8 are arranged in each laminated conductor of the field coil 7 in the circumferential direction (Θ direction) of the rotor 3 and arranged in a plurality in the axial direction (Z direction) of the rotor. An example to be shown. The two rows of ventilation holes 8 provided in each conductor of the field coil 7 and the intake holes 10 and the exhaust holes 11 provided in the wedge 19 are arranged so that the holes are in contact with each other.

本例では、吸気孔10のグループと排気孔11のグループとが交互になって配置されている。図14に示すように、吸気孔10及び排気孔11に対応して、各V字形通風流路8bは、一方の列の吸気孔10から他方の列の排気孔11に通じるように形成されている。   In this example, the groups of the intake holes 10 and the groups of the exhaust holes 11 are alternately arranged. As shown in FIG. 14, corresponding to the intake holes 10 and the exhaust holes 11, the V-shaped ventilation channels 8 b are formed so as to communicate from the intake holes 10 in one row to the exhaust holes 11 in the other row. Yes.

一方、固定子2の固定子コア(固定子鉄心)12には、回転子の吸気孔10のグループと排気孔11のグループに対応して複数の固定子冷却ダクト13が固定子コアの径方向(R方向)に設けられている。これらの固定子冷却ダクト13によって、冷却媒体6が固定子冷却ダクト13内を径方向外向きに流れるフォワードゾーン18と、逆に径方向内向きに流れるリバースゾーン17が形成される。   On the other hand, the stator core (stator core) 12 of the stator 2 has a plurality of stator cooling ducts 13 corresponding to the groups of the rotor intake holes 10 and the exhaust holes 11 in the radial direction of the stator core. (R direction). These stator cooling ducts 13 form a forward zone 18 in which the cooling medium 6 flows radially outward in the stator cooling duct 13 and a reverse zone 17 in which the cooling medium 6 flows radially inward.

回転子軸4の端部側の一部に、軸流ファン5が配置される。さらに、発電機1内には、各部位の冷却によって昇温した冷却媒体6を冷却するための主(第1)冷却器15と補助(第2)冷却器16とが内装されている。固定子2の周りを囲むように、リバースゾーン17及びフォワードゾーン18を区画する筒体34が設けられている。   An axial fan 5 is disposed on a part of the end side of the rotor shaft 4. Further, the generator 1 includes a main (first) cooler 15 and an auxiliary (second) cooler 16 for cooling the cooling medium 6 raised in temperature by cooling each part. A cylindrical body 34 that partitions the reverse zone 17 and the forward zone 18 is provided so as to surround the stator 2.

冷却媒体(例えば水素、流れを矢印で表示)6は、軸流ファン5によってタービン発電機1の各部位に送風される。具体的には、軸流ファン5によって、冷却媒体の一部は、回転子コイル(積層導体)7の一端の吸気口8´から通風流路8aに送られる。冷却媒体6の残りは、固定子コイル14の端部を冷却した後、冷却媒体ダクト16aを介して補助冷却器15に流入する。補助冷却器16で再冷却された冷却媒体は、リバースゾーン17の各固定子冷却ダクト13に流入し、鉄心12や固定子コイル14を冷却し、エアギャップ10内に排出される。その冷却媒体6は、回転子3の外表面に設置した吸気孔10より斜め流路8(8b:通風流路)に導かれ、斜め内向きに流れて界磁コイル7を冷却する。その後、冷却媒体6は、界磁コイル7の底部で方向を変換し、通風流路8bを介して斜め外向きに流れて界磁コイル7を冷却し、排気孔11よりエアギャップ9内に排出される。エアギャップ9内に排出された冷却媒体6は、フォワードゾーン18の各固定子冷却ダクト13内に流入し、鉄心12や固定子コイル14を冷却した後、主冷却器15に流入して降温され、軸流ファン5に戻る一巡した流れを形成する。   A cooling medium (for example, hydrogen, a flow is indicated by an arrow) 6 is blown to each part of the turbine generator 1 by an axial fan 5. Specifically, a part of the cooling medium is sent from the intake port 8 ′ at one end of the rotor coil (laminated conductor) 7 to the ventilation passage 8 a by the axial fan 5. The remainder of the cooling medium 6 cools the end of the stator coil 14 and then flows into the auxiliary cooler 15 via the cooling medium duct 16a. The cooling medium recooled by the auxiliary cooler 16 flows into each stator cooling duct 13 in the reverse zone 17, cools the iron core 12 and the stator coil 14, and is discharged into the air gap 10. The cooling medium 6 is guided to an oblique flow path 8 (8b: ventilation flow path) from an intake hole 10 provided on the outer surface of the rotor 3 and flows obliquely inward to cool the field coil 7. Thereafter, the cooling medium 6 changes its direction at the bottom of the field coil 7, flows obliquely outward through the ventilation channel 8 b to cool the field coil 7, and is discharged into the air gap 9 from the exhaust hole 11. Is done. The cooling medium 6 discharged into the air gap 9 flows into each stator cooling duct 13 in the forward zone 18, cools the iron core 12 and the stator coil 14, and then flows into the main cooler 15 to be cooled. Then, a circular flow returning to the axial fan 5 is formed.

図15は、ギャップピックアップ冷却方式回転子表面の吸排気孔が隣接する部位の従来例を示す鳥瞰図である。ウエッジ19は、回転子3のスロット31内に内挿した界磁コイル7が遠心力により動くことを防止するための固定材である。回転子3の回転により、回転子3の表面には、回転子の回転と相対的に冷却媒体6の流れが回転子の周方向に生じる。回転子3の外面には、回転子3の表面上に流れる冷却媒体6を吸気孔10に導くための吸気ガイド流路21が設けられている。この吸気ガイド流路21は、ウエッジ19表面に設けた通風溝(傾斜溝)22と回転子コア30の表面に設けた通風溝(傾斜溝)23とが結合することで形成される。すなわち、吸気ガイド流路21は、回転子3内にウエッジ19が設置されたときに形成される構造である。また、吸気ガイド流路21は、ウエッジ19に設けた吸気孔10と連通される。   FIG. 15 is a bird's-eye view showing a conventional example of a portion where the intake / exhaust holes on the surface of the gap pickup cooling type rotor are adjacent to each other. The wedge 19 is a fixing member for preventing the field coil 7 inserted in the slot 31 of the rotor 3 from moving due to centrifugal force. The rotation of the rotor 3 causes a flow of the cooling medium 6 in the circumferential direction of the rotor relative to the rotation of the rotor on the surface of the rotor 3. An intake guide channel 21 for guiding the cooling medium 6 flowing on the surface of the rotor 3 to the intake hole 10 is provided on the outer surface of the rotor 3. The intake guide channel 21 is formed by combining a ventilation groove (inclined groove) 22 provided on the surface of the wedge 19 and a ventilation groove (inclined groove) 23 provided on the surface of the rotor core 30. That is, the intake guide channel 21 has a structure formed when the wedge 19 is installed in the rotor 3. In addition, the intake guide channel 21 communicates with the intake hole 10 provided in the wedge 19.

図16は、図15におけるギャップピックアップ冷却方式回転子の吸気構造の縦断面図である。図16を用いて、ギャップピックアップによる冷却媒体6の吸気メカニズムについて説明する。   16 is a longitudinal sectional view of the air intake structure of the gap pickup cooling type rotor in FIG. The intake mechanism of the cooling medium 6 by the gap pickup will be described with reference to FIG.

回転子3が回転すると、エアギャップ9内には、冷却媒体6の相対的な周方向(Θ方向)流れが発生する。エアギャップ9内に生じる冷却媒体6の流れは、回転子3の回転数と径に基づく周速相当の速度を有する。その周速度は、約100〜200m/sである。   When the rotor 3 rotates, a relative circumferential direction (Θ direction) flow of the cooling medium 6 is generated in the air gap 9. The flow of the cooling medium 6 generated in the air gap 9 has a speed corresponding to the peripheral speed based on the rotational speed and diameter of the rotor 3. The peripheral speed is about 100 to 200 m / s.

従来構造では、このように速い速度を有する冷却媒体6を効率良く吸気孔10に導くために、回転子3表面に回転子周方向に向けた吸気ガイド流路21を設ける。吸気ガイド流路21の軸方向の開口幅は、図15に示すように、吸気孔10の径と同一で、周方向の流路長は、吸気孔10の径に対して約5倍の距離を有する。   In the conventional structure, in order to efficiently guide the cooling medium 6 having such a high speed to the intake hole 10, the intake guide flow path 21 oriented in the circumferential direction of the rotor is provided on the surface of the rotor 3. As shown in FIG. 15, the opening width in the axial direction of the intake guide channel 21 is the same as the diameter of the intake hole 10, and the circumferential channel length is about five times the distance of the diameter of the intake hole 10. Have

エアギャップ9内の冷却媒体6の周方向流れに対し、吸気ガイド流路21の最上流部より、吸気ガイド流路21を介して吸気孔10に徐々に向かう流れを形成させる。しかし、回転子3表面の周速度が速いため慣性力が強く、吸気ガイド流路21の流路長が短いと、吸気孔10に向かう流れが形成され難い。   With respect to the circumferential flow of the cooling medium 6 in the air gap 9, a flow gradually moving from the most upstream portion of the intake guide flow channel 21 toward the intake hole 10 through the intake guide flow channel 21 is formed. However, since the inertial force is strong because the peripheral speed of the surface of the rotor 3 is fast, and the flow path length of the intake guide flow path 21 is short, the flow toward the intake hole 10 is difficult to be formed.

その場合、回転子3内の界磁コイル7に冷却媒体6を導くことができなくなり、界磁コイル7の冷却性能が不十分となるおそれがある。従来構造では、ウエッジ19表面の通風溝22と回転子3表面の通風溝23とで吸気ガイド流路21の十分な流路長を確保している。また、通風溝22や23に径方向(R方向)内向きの傾斜を設け、徐々に径方向内向きの流れを生じさせ、冷却媒体6を安定して吸気孔10に導く構造となっている。   In that case, the cooling medium 6 cannot be guided to the field coil 7 in the rotor 3, and the cooling performance of the field coil 7 may be insufficient. In the conventional structure, a sufficient flow path length of the intake guide flow path 21 is secured by the ventilation groove 22 on the surface of the wedge 19 and the ventilation groove 23 on the surface of the rotor 3. Further, the ventilation grooves 22 and 23 are provided with an inward slope in the radial direction (R direction) so as to gradually generate a radially inward flow to stably guide the cooling medium 6 to the intake hole 10. .

吸気孔10に導かれた冷却媒体6は、吸気孔10の下流内壁面に衝突する方向に流れ、内壁面に近づくに従い静圧が回復し、吸気孔10内には昇圧域24が発生する。すなわち、冷却媒体6の動圧が静圧に変換されることになる。そのため、吸気孔10に向かう冷却媒体6の速度が大きいほど、昇圧域24での静圧上昇も大きくなる。界磁コイル7内の冷却媒体6の流れは、吸気孔10の昇圧域24と排気孔11との圧力差によって形成される。そのため、界磁コイル7の冷却性能を向上させるためには、より多くの冷却媒体6を界磁コイル7内に導くことが重要となる。   The cooling medium 6 guided to the intake hole 10 flows in the direction of colliding with the downstream inner wall surface of the intake hole 10, the static pressure is recovered as it approaches the inner wall surface, and a pressure increasing region 24 is generated in the intake hole 10. That is, the dynamic pressure of the cooling medium 6 is converted into a static pressure. Therefore, as the speed of the cooling medium 6 toward the intake hole 10 increases, the increase in static pressure in the pressure increasing region 24 increases. The flow of the cooling medium 6 in the field coil 7 is formed by the pressure difference between the pressure increasing area 24 of the intake hole 10 and the exhaust hole 11. Therefore, in order to improve the cooling performance of the field coil 7, it is important to introduce more cooling medium 6 into the field coil 7.

従来構造では、回転子3とウエッジ19表面に設けた周方向に長い流路長を有する吸気ガイド流路21によって、エアギャップ9内の冷却媒体6を、より多く吸気孔10内に吸気させる構造となっている。   In the conventional structure, a structure in which more cooling medium 6 in the air gap 9 is sucked into the intake hole 10 by the intake guide passage 21 having a long passage length in the circumferential direction provided on the surfaces of the rotor 3 and the wedge 19. It has become.

以上のような構造を有するギャップピックアップ冷却方式回転子によれば、エアギャップ9における冷却媒体6を界磁コイル7内に導き冷却するための吸排気構造を、軸方向に繰り返すことが可能になる。したがって、界磁コイル7の軸方向に対して同様な複数の冷却経路を実現でき、回転子3の長軸化が可能で、大容量化に対応できると言う利点がある。しかし、界磁コイル7内への冷却媒体6の流量を十分に確保するためには、回転子3表面に流路長の長い吸気ガイド流路21を設ける必要がある。そのため、ウエッジ19のみならず、回転子3表面の加工も必要となり、回転子3製作工数が多く、低コスト化が困難になるという問題があった。   According to the gap pickup cooling type rotor having the above-described structure, the intake / exhaust structure for guiding the cooling medium 6 in the air gap 9 into the field coil 7 for cooling can be repeated in the axial direction. . Therefore, a plurality of similar cooling paths can be realized with respect to the axial direction of the field coil 7, the rotor 3 can be elongated, and there is an advantage that the capacity can be increased. However, in order to ensure a sufficient flow rate of the cooling medium 6 into the field coil 7, it is necessary to provide the intake guide passage 21 having a long passage length on the surface of the rotor 3. Therefore, it is necessary to process not only the wedge 19 but also the surface of the rotor 3, which increases the number of steps for manufacturing the rotor 3 and makes it difficult to reduce the cost.

また、界磁コイル7内への冷却媒体6の吸気流量を増大させる構造として、特開平10−178754号公報に記載されたものが公知である。図17にその概略を示す。図17において、(a)が吸気部の鳥瞰図、(b)が断面図である。この従来構造では、回転子3表面の吸気孔10の下流側に突起物25を設置したことを特徴とする。本構造によれば、回転子3より突き出させた突起物25の内表面に、エアギャップ9に流れる冷却媒体6を衝突させ、冷却媒体6を吸気孔10内に導くことが可能となる。突起物25の突起高さを利用し、より多くの冷却媒体6を吸気孔10内に導くことが可能となる。そのため、回転子3の外周部に設ける通風ガイド流路を短くしても界磁コイル7を冷却するに十分な冷却媒体6の吸気流量を確保できる可能性がある。これにより、回転子3の通風溝を排除し、その製作工数を削減できる可能性がある。   Further, a structure described in Japanese Patent Laid-Open No. 10-178754 is known as a structure for increasing the intake flow rate of the cooling medium 6 into the field coil 7. The outline is shown in FIG. In FIG. 17, (a) is a bird's-eye view of the intake section, and (b) is a cross-sectional view. This conventional structure is characterized in that a protrusion 25 is provided on the rotor 3 surface on the downstream side of the intake hole 10. According to this structure, it is possible to cause the cooling medium 6 flowing in the air gap 9 to collide with the inner surface of the protrusion 25 protruding from the rotor 3 and guide the cooling medium 6 into the intake hole 10. It becomes possible to guide more cooling medium 6 into the intake hole 10 by using the height of the protrusion 25. Therefore, there is a possibility that a sufficient intake air flow rate of the cooling medium 6 can be secured to cool the field coil 7 even if the ventilation guide flow path provided in the outer peripheral portion of the rotor 3 is shortened. Thereby, there is a possibility that the ventilation groove of the rotor 3 can be eliminated and the number of manufacturing steps can be reduced.

しかし、回転子3の表面に突起物25を設置するため、固定子2内に長い回転子3を挿入する際に、固定子2内表面への突起物25の接触による機器の損傷および組み立て工数の増大を招くおそれがある。   However, in order to install the protrusion 25 on the surface of the rotor 3, when inserting the long rotor 3 into the stator 2, damage to equipment due to the contact of the protrusion 25 with the inner surface of the stator 2 and assembly man-hours. May increase.

特開平10−178754号公報Japanese Patent Laid-Open No. 10-178754 特開2000−139050号公報JP 2000-139050 A

従来構造のギャップピックアップ冷却方式回転子は、その通風構造の複雑さにより製作工数が多く、コスト高になる傾向がある。本発明は、ギャップピックアップ冷却方式回転子の冷却性能を確保しつつ、且つ、構造の簡略化を図り、製作性の向上、低コスト化を図り得るギャップピックアップ冷却方式の回転電機を提供することにある。   The gap pickup cooling type rotor having a conventional structure has a large number of manufacturing steps due to the complexity of the ventilation structure, and tends to be expensive. It is an object of the present invention to provide a gap pickup cooling type rotating electrical machine that can ensure the cooling performance of a gap pickup cooling type rotor, simplify the structure, improve the manufacturability, and reduce the cost. is there.

上記目的を達成するために、本発明は、回転子の外周部に設置するウエッジ表面部の加工のみで冷却媒体を界磁コイル内に導くための吸気ガイド流路を構成する。さらに、この吸気ガイド流路は、固定子・回転子間のエアギャップの冷却媒体の流れを基準にして、回転子の周方向における吸気孔の上流部に配置され、且つウエッジの上流側から下流側の前記吸気孔に向かってこの吸気孔に連通する。さらに、この吸気ガイド流路の回転子軸方向の流路幅が下流側より上流側に向かって広がるように変化する構造を有していることを特徴とする。   In order to achieve the above object, the present invention constitutes an intake guide flow path for guiding the cooling medium into the field coil only by processing the wedge surface portion installed on the outer peripheral portion of the rotor. Further, the intake guide flow path is arranged at the upstream portion of the intake hole in the circumferential direction of the rotor with respect to the flow of the cooling medium in the air gap between the stator and the rotor, and downstream from the upstream side of the wedge. The air intake hole communicates with the air intake hole on the side. Further, the intake guide flow path has a structure in which the flow path width in the rotor axial direction changes so as to expand from the downstream side toward the upstream side.

本発明の吸気構造を備えた回転電機のギャプピックアップ冷却方式回転子によれば、回転子表面上(エアギャップ)で流れる冷却媒体を、広い領域から集中的に吸気孔内に取り込むことができる。それにより、回転子の周方向に短い吸気ガイド流路でもあっても、界磁コイルの冷却に十分な冷却媒体の吸気流量を確保できる。よって、その吸気ガイド流路をウエッジ表面部の加工のみで構成でき、従来技術に比べて、回転子の製作工数を削減でき、低コスト化が可能となる。   According to the gap pickup cooling system rotor of the rotating electrical machine having the intake structure of the present invention, the cooling medium flowing on the rotor surface (air gap) can be intensively taken into the intake holes from a wide area. Thereby, even if the intake guide flow path is short in the circumferential direction of the rotor, a sufficient intake air flow rate of the cooling medium for cooling the field coil can be secured. Therefore, the intake guide channel can be configured only by processing the wedge surface portion, and the number of manufacturing steps of the rotor can be reduced and the cost can be reduced as compared with the prior art.

その結果、例えば、大容量の発電機に用いられるギャップピックアップ冷却方式回転子のコストを低減させるという目的を、界磁コイルの冷却性能を損なわずに実現できる。   As a result, for example, the object of reducing the cost of a gap pickup cooling type rotor used in a large-capacity generator can be realized without impairing the cooling performance of the field coil.

本発明の実施例1における吸排気構造を示した鳥瞰図。The bird's-eye view which showed the intake / exhaust structure in Example 1 of this invention. 図2(a)は、実施例1の吸気構造のウエッジ部における断面図、図2(b)は、その吸気構造をウエッジ上面からみた部分上面図。2A is a cross-sectional view of the wedge portion of the intake structure of the first embodiment, and FIG. 2B is a partial top view of the intake structure as viewed from the upper surface of the wedge. 本発明の界磁コイルの積層導体の概略平面図Schematic plan view of the laminated conductor of the field coil of the present invention 図4(a)は、本発明の通風流路を示した径方向(R方向)−周方向(Θ方向)の2次元断面図、図4(b)は、その径方向(R方向)−軸方向(Z方向)の2次元断面図。4A is a two-dimensional cross-sectional view in the radial direction (R direction) -circumferential direction (Θ direction) showing the ventilation channel of the present invention, and FIG. 4B is the radial direction (R direction) −. The two-dimensional sectional view of an axial direction (Z direction). 実施例1の吸気構造をウエッジ上面からみた上面図であり、ウエッジの長さ方向の範囲を、図2(b)よりも広げて見た図。FIG. 3 is a top view of the intake structure according to the first embodiment when viewed from the upper surface of the wedge, and is a view in which the range in the length direction of the wedge is expanded from FIG. 本発明の実施例2を示すものであり、図6(a)はその吸気構造のウエッジ部における断面図、図6(b)は、その吸気構造をウエッジ上面からみた部分上面図。FIG. 6A shows a second embodiment of the present invention, and FIG. 6A is a cross-sectional view of the wedge portion of the intake structure, and FIG. 6B is a partial top view of the intake structure as viewed from the upper surface of the wedge. 本発明の実施例2の吸排気構造の鳥瞰図。The bird's-eye view of the intake / exhaust structure of Example 2 of this invention. 実施例2の変形例を示すウエッジの一部上面図。FIG. 10 is a partial top view of a wedge showing a modification of the second embodiment. 本発明の実施例3における吸排気構造を示す鳥瞰図。The bird's-eye view which shows the intake / exhaust structure in Example 3 of this invention. 実施例3の吸排気構造の変形例を示す鳥瞰図。FIG. 10 is a bird's-eye view showing a modification of the intake / exhaust structure of the third embodiment. 本発明の実施例4の吸気構造を示すウエッジの部分上面図。The partial top view of the wedge which shows the intake structure of Example 4 of this invention. 従来例のギャップピックアップ斜流冷却方式回転子を備えたタービン発電機の縦断面構造概略を示した説明図。Explanatory drawing which showed the longitudinal cross-section structure outline of the turbine generator provided with the gap pick-up mixed flow cooling system rotor of the prior art example. 従来例の界磁コイルの積層導体の概略平面図Schematic plan view of conventional field coil laminated conductor 図14(a)は、上記従来例のV字形の通風流路を示した径方向(R方向)−周方向(Θ方向)の2次元断面図、図14(b)は、その径方向(R方向)−軸方向(Z方向)の2次元断面図。14A is a two-dimensional cross-sectional view in the radial direction (R direction) -circumferential direction (Θ direction) showing the V-shaped ventilation channel of the above-described conventional example, and FIG. R direction) -Axis direction (Z direction) two-dimensional sectional view. 上記従来例の吸排気構造を示す鳥瞰図。The bird's-eye view which shows the intake / exhaust structure of the said prior art example. 上記従来例の吸気構造を示す断面図。Sectional drawing which shows the intake structure of the said prior art example. 図17(a)は、上記従来例とは別の従来例の吸気構造を示す鳥瞰図、図17(b)はその断面図。FIG. 17A is a bird's-eye view showing a conventional intake structure different from the conventional example, and FIG. 17B is a cross-sectional view thereof.

本発明の実施例1について、図1〜図4を用いて説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1は、実施例1のギャップピックアップ冷却方式回転子の吸排気部及び吸気ガイド流路構造を示す一部拡大の鳥瞰図である。図2(a)は、その吸気構造のウエッジ部における断面図、図2(b)は、その吸気構造をウエッジ上面からみた部分上面図である。図3は、本発明の実施例1を適用する界磁コイルの積層導体の概略平面図である。また、図4は、界磁コイルの各導体を積層して形成される通風流路の2次元断面を示した図で、(a)が径方向(R方向)−周方向(Θ方向)の2次元断面図、(b)が径方向(R方向)−軸方向(Z方向)の2次元断面図である。図4(b)では、ウエッジ19の吸気孔10及び排気孔11を介して界磁コイル7の積層導体内に形成される通風流路8の流路形状が分かりやすいように、1流路のみを白抜きで示した。ここでは、界磁コイルの各積層導体に通風流路となるべき通風孔が回転子の周方向(Θ方向)に1列になって回転子の軸方向(Z方向)に複数配列される例を示した。   FIG. 1 is a partially enlarged bird's-eye view showing an intake / exhaust portion and an intake guide channel structure of a gap pickup cooling type rotor according to a first embodiment. 2A is a sectional view of the wedge portion of the intake structure, and FIG. 2B is a partial top view of the intake structure as viewed from the upper surface of the wedge. FIG. 3 is a schematic plan view of a laminated conductor of a field coil to which the first embodiment of the present invention is applied. FIG. 4 is a diagram showing a two-dimensional cross section of the ventilation channel formed by laminating the conductors of the field coil. FIG. 4A shows the radial direction (R direction) -circumferential direction (Θ direction). A two-dimensional cross-sectional view, (b) is a two-dimensional cross-sectional view in the radial direction (R direction) -axial direction (Z direction). In FIG. 4B, only one flow path is shown so that the flow path shape of the ventilation flow path 8 formed in the laminated conductor of the field coil 7 through the intake hole 10 and the exhaust hole 11 of the wedge 19 can be easily understood. Is shown in white. Here, an example in which a plurality of ventilation holes to be ventilation channels in each laminated conductor of the field coil are arranged in a row in the circumferential direction (Θ direction) of the rotor and arranged in the axial direction (Z direction) of the rotor showed that.

本発明の実施例1は、回転子3内の通風流路8が、径方向一様に形成されるラジアルフロー冷却方式の回転電機に適用した例である。   The first embodiment of the present invention is an example applied to a radial flow cooling type rotating electrical machine in which the ventilation flow path 8 in the rotor 3 is uniformly formed in the radial direction.

本実施例におけるウエッジ19の外表面に設ける吸気孔10及び排気孔11は、互いに一つ置きで交互に配列されている。   In the present embodiment, the intake holes 10 and the exhaust holes 11 provided on the outer surface of the wedge 19 are alternately arranged alternately.

さらに、吸気ガイド流路26の構成が、従来技術とは次のように相違する。   Further, the configuration of the intake guide channel 26 is different from the conventional technology as follows.

吸気ガイド流路26は、回転子3表面近傍の冷却媒体6を吸気孔10に導くために、ウエッジ19の外表面に回転子の周方向に向けて設けられている。   The intake guide channel 26 is provided on the outer surface of the wedge 19 in the circumferential direction of the rotor in order to guide the cooling medium 6 near the surface of the rotor 3 to the intake hole 10.

まず、吸気ガイド流路26は、ウエッジ19において、エアギャップを流れる冷却媒体6の回転子周方向の流れを基準にして、回転子3のスロット31壁と接する上流端側より吸気孔10に向かうにしたがい、その溝深さが変化する。すなわち、吸気ガイド流路26は、上流側より下流側に向かうにつれて、回転子3の径方向(R方向)内向きに傾斜を有するスロープ構造になっている。また、吸気ガイド流路26は、その上流端側より吸気孔10に向かうにしたがい、回転子軸方向(Z方向)の流路幅が徐々に変化する。   First, the intake guide channel 26 is directed to the intake hole 10 from the upstream end side in contact with the wall of the slot 31 of the rotor 3 on the wedge 19 with reference to the circumferential flow of the cooling medium 6 flowing through the air gap. Accordingly, the groove depth changes. That is, the intake guide channel 26 has a slope structure having an inclination inward in the radial direction (R direction) of the rotor 3 as it goes downstream from the upstream side. Further, the intake guide channel 26 gradually changes its channel width in the rotor axial direction (Z direction) from the upstream end side toward the intake hole 10.

具体的には、ウエッジ19の上流側(回転子3と接触する側)ほど吸気孔10の径より広く、下流側(吸気孔10側)に向かうほど吸気孔10の径に合わせて狭くなり、最下流部で吸気孔10と連通する構造となっている。   Specifically, the upstream side of the wedge 19 (the side in contact with the rotor 3) is wider than the diameter of the intake hole 10, and the downstream side (the intake hole 10 side) becomes narrower in accordance with the diameter of the intake hole 10, The structure is in communication with the intake hole 10 at the most downstream portion.

図2(b)において、吸気ガイド流路26の上流端および下流端での流路幅(回転子の軸方向の幅)を、それぞれW1、W2で定義した。ここでは、上流端側の幅W1を取り得る最大とし、下流端側の幅W2を吸気孔10の径と同一とし、上流から下流に向かうほど流路幅が連続的に狭くなる構造を示したが、段階的に変化する構造も考えられる。ここで、上流端側の幅W1を取り得る最大について、図5を参照して説明する。   In FIG. 2B, the flow path widths (widths in the axial direction of the rotor) at the upstream end and the downstream end of the intake guide flow path 26 are defined as W1 and W2, respectively. Here, the maximum width W1 on the upstream end side can be taken, the width W2 on the downstream end side is made the same as the diameter of the intake hole 10, and the flow path width continuously narrows from upstream to downstream. However, a structure that changes in stages is also conceivable. Here, the maximum possible width W1 on the upstream end side will be described with reference to FIG.

図5は、図2(b)同様に、吸気構造をウエッジ上面からみた上面図であり、ウエッジの長さ方向の範囲を、図2(b)よりも広げて見た図である。   FIG. 5 is a top view of the intake structure as seen from the upper surface of the wedge, as in FIG. 2B, and is a view in which the range in the length direction of the wedge is expanded as compared with FIG. 2B.

本実施例のように吸気孔10及び排気孔11を交互に配置した場合には、図5に示すように、吸気ガイド流路26の上流端幅W1の取り得る最大は、吸気孔10と排気孔11のピッチをWPとした場合に、2WPとなる。このようにW1=2WP或いはW1≒2WP(ただしW1<2WP)のように設定した場合には、吸気孔10をウエッジ19の幅W3(回転子の周方向の幅)の中心に配置しても、吸気ガイド流路26の吸気ガイド壁26´の長さL1をウエッジ19内に充分に確保することができる(W3/2≪W1)。W1は、好ましくは、WP<W1≦2WPである。また、吸気ガイド壁26´の傾斜角αは、一例を挙げるとα=15〜30度程度が望ましい。   When the intake holes 10 and the exhaust holes 11 are alternately arranged as in the present embodiment, as shown in FIG. 5, the maximum possible upstream end width W1 of the intake guide channel 26 is the intake hole 10 and the exhaust gas. When the pitch of the holes 11 is WP, it becomes 2WP. Thus, when W1 = 2WP or W1≈2WP (where W1 <2WP) is set, the intake hole 10 may be arranged at the center of the width W3 of the wedge 19 (the circumferential width of the rotor). The length L1 of the intake guide wall 26 'of the intake guide channel 26 can be sufficiently secured in the wedge 19 (W3 / 2 << W1). W1 is preferably WP <W1 ≦ 2WP. Further, the inclination angle α of the intake guide wall 26 ′ is preferably about α = 15 to 30 degrees as an example.

本発明の吸気構造を備えた回転子3が回転すると、従来構造と同様にエアギャップ内に相対的な冷却媒体6の周方向(Θ方向)流れが生じる。エアギャップ9内の冷却媒体6は、吸気ガイド流路26を介して、ウエッジ19に設けた吸気孔10に導かれ、回転子3内の界磁コイル7へと流通する。   When the rotor 3 having the intake structure of the present invention is rotated, a relative circumferential direction (Θ direction) flow of the cooling medium 6 is generated in the air gap as in the conventional structure. The cooling medium 6 in the air gap 9 is guided to the intake hole 10 provided in the wedge 19 via the intake guide channel 26 and flows to the field coil 7 in the rotor 3.

本発明の構造によれば、吸気ガイド流路26の流路幅が回転子鉄心のスロット31の壁面と接触する上流端側でワイドに展開するため、回転子3表面近傍の冷却媒体6を広領域から吸気ガイド流路26に取り込むことができる。そのため、吸気ガイド流路26の周方向の流路距離が短くても、界磁コイル7の冷却に十分な冷却媒体6の流量を確保できる。また、吸気ガイド流路26は、下流側の吸気孔10に向かうほど径方向(R方向)内向きの傾斜を有し、軸方向の流路幅も吸気孔10の径に合わせて変化させた構造であるため、冷却媒体6を吸気ガイド流路26に導いた後、吸気孔10に集中する流れを形成できる。すなわち、回転子3表面近傍の広領域から取り込んだ冷却媒体6を効率良く吸気孔10に導くことがでる構造である。   According to the structure of the present invention, since the flow path width of the intake guide flow path 26 is widened on the upstream end side in contact with the wall surface of the slot 31 of the rotor core, the cooling medium 6 near the rotor 3 surface is widened. The intake guide channel 26 can be taken from the region. Therefore, even if the flow path distance in the circumferential direction of the intake guide flow path 26 is short, a sufficient flow rate of the cooling medium 6 for cooling the field coil 7 can be secured. In addition, the intake guide channel 26 has an inward slope in the radial direction (R direction) toward the intake hole 10 on the downstream side, and the axial channel width is also changed in accordance with the diameter of the intake hole 10. Due to the structure, a flow concentrated on the intake hole 10 after the cooling medium 6 is guided to the intake guide channel 26 can be formed. That is, the cooling medium 6 taken from a wide area near the surface of the rotor 3 can be efficiently guided to the intake hole 10.

以上のように本発明の実施例1によれば、吸気ガイド流路25の径方向流路長が短くても回転子3内の界磁コイル7を冷却するに十分な冷却媒体6の流量を確保できる。そのため、吸気ガイド流路26をウエッジ19のみの加工で構成でき、回転子3の製作工数を削減できる。これにより、回転子3のコスト低減の効果が期待できる。また、本構造で示した吸排気構造を軸方向に繰り返すことで発電機の長軸化にも容易に対応でき、大容量化にも適用できる。   As described above, according to the first embodiment of the present invention, the flow rate of the cooling medium 6 sufficient to cool the field coil 7 in the rotor 3 even when the radial flow path length of the intake guide flow path 25 is short. It can be secured. Therefore, the intake guide channel 26 can be configured by processing only the wedge 19, and the number of manufacturing steps for the rotor 3 can be reduced. Thereby, the effect of cost reduction of the rotor 3 can be expected. Further, by repeating the intake / exhaust structure shown in this structure in the axial direction, it is possible to easily cope with the increase in the axis of the generator, and it can be applied to increase in capacity.

ちなみに、図15の従来構造においては、通風流路8内の断面平均流速は、代表的な1例を挙げれば15〜25m/sであるのに対して、本実施例では、同等以上を確保できる。   Incidentally, in the conventional structure of FIG. 15, the average cross-sectional flow velocity in the ventilation channel 8 is 15 to 25 m / s in a typical example, but in this embodiment, equal or higher is ensured. it can.

本発明の実施例2について、図6及び図7を用いて説明する。   A second embodiment of the present invention will be described with reference to FIGS.

図7(a)はその吸気構造のウエッジ部における断面図、図7(b)は、その吸気構造をウエッジ上面からみた部分上面図である。   FIG. 7A is a sectional view of the wedge portion of the intake structure, and FIG. 7B is a partial top view of the intake structure as viewed from the upper surface of the wedge.

実施例2の構造は、吸気孔10の設置位置を、回転子の周方向(Θ方向)の下流端側に設けた点が、実施例1との相違点である。ウエッジ19内に設ける吸気孔10を周方向の下流端から中心位置に向けて貫通させて構成する場合、吸気孔10が径方向(R方向)内周部に向かうに従い傾斜を有する構造となる。ウエッジ19内の吸気孔10は、ドリルを用いた加工であるため、傾斜を有した構造でも製作性が困難になることや製作工数が増えることは無い。また、実施例1に比べて、吸気ガイド流路26から吸気孔10での冷却媒体6の曲りが大きくなり、流動抵抗が増大し、冷却媒体6の吸気流量減少が懸念される可能性がある。しかし、吸気孔10から排気孔11までの一連の通風流路内において、流動抵抗が支配的となる部位が他にあるため、その影響は小さい。流動抵抗が支配的なのは、例えば、通風流路の流路形状が大幅に変化する吸気孔10と界磁コイル7内の通風路8との接続部(図4参照)などである。   The structure of the second embodiment is different from the first embodiment in that the installation position of the intake hole 10 is provided on the downstream end side in the circumferential direction (Θ direction) of the rotor. When the intake hole 10 provided in the wedge 19 is configured to penetrate from the downstream end in the circumferential direction toward the center position, the intake hole 10 has a structure that is inclined toward the inner peripheral portion in the radial direction (R direction). Since the intake hole 10 in the wedge 19 is processed using a drill, even if it has an inclined structure, it does not become difficult to manufacture and increase the number of manufacturing steps. Further, as compared with the first embodiment, the bending of the cooling medium 6 from the intake guide channel 26 to the intake hole 10 becomes larger, the flow resistance increases, and there is a possibility that the intake flow rate of the cooling medium 6 may be reduced. . However, in the series of ventilation channels from the intake hole 10 to the exhaust hole 11, there are other parts where the flow resistance is dominant, so the influence is small. The flow resistance is dominant, for example, in a connection portion (see FIG. 4) between the intake hole 10 and the ventilation path 8 in the field coil 7 where the flow path shape of the ventilation path changes significantly.

本発明の実施例2は、ウエッジ19の吸気孔10の設置位置を、回転子の周方向に対し、より下流側に設けることで、吸気ガイド流路26の流路長ΔL及びガイド壁長L1を実施例1に比べて長く確保できる構造を実現した。吸気ガイド流路26の周方向の流路長を実施例1よりも長くできるため、回転子3の表面近傍を周方向に流れる冷却媒体6を吸気ガイド流路26内に導く流れを形成しやすくなり、実施例1に比べて冷却媒体6の吸気流量を増大させることができ、界磁コイル7の冷却性能がさらに向上する。   In the second embodiment of the present invention, the installation position of the intake hole 10 of the wedge 19 is provided further downstream with respect to the circumferential direction of the rotor, so that the flow path length ΔL and the guide wall length L1 of the intake guide flow path 26 are obtained. As compared with Example 1, a structure capable of securing a longer length was realized. Since the circumferential flow path length of the intake guide flow path 26 can be made longer than that in the first embodiment, it is easy to form a flow for guiding the cooling medium 6 flowing in the circumferential direction near the surface of the rotor 3 into the intake guide flow path 26. Thus, the intake air flow rate of the cooling medium 6 can be increased as compared with the first embodiment, and the cooling performance of the field coil 7 is further improved.

図7は、本発明の実施例2の変形例である吸気部構造の鳥瞰図である。27は吸気ガイド流路26の最下流部に設けた切り欠き(開口部)であり、この点が前記した実施例2との相違点である。吸気ガイド流路26の切り欠き27によって、ウエッジ19を回転子3に固定した際に、その部位には、回転子3内のスロット31の内壁面が表われる。本実施例の構造によれば、吸気ガイド流路26内に導かれた冷却媒体6は、切り欠き27との接触部である回転子3のスロット内壁面に衝突し、その後、吸気孔10内に導かれることになる。すなわち、冷却媒体6を回転子3のスロット内壁面に衝突させ、冷却媒体6を吸気孔10に取り込む構造であり、これは、吸気孔10の下流側に突起物を設置した構造と等価の効果を得ることができる。   FIG. 7 is a bird's-eye view of an intake portion structure that is a modification of the second embodiment of the present invention. Reference numeral 27 denotes a notch (opening) provided in the most downstream portion of the intake guide channel 26, and this point is different from the second embodiment. When the wedge 19 is fixed to the rotor 3 by the notch 27 of the intake guide channel 26, the inner wall surface of the slot 31 in the rotor 3 appears at that portion. According to the structure of the present embodiment, the cooling medium 6 guided into the intake guide channel 26 collides with the inner wall surface of the slot of the rotor 3 that is a contact portion with the notch 27, and then the intake medium 10. Will be led to. That is, the cooling medium 6 collides with the inner wall surface of the slot of the rotor 3 and the cooling medium 6 is taken into the intake hole 10, which is equivalent to a structure in which a protrusion is installed on the downstream side of the intake hole 10. Can be obtained.

本実施例によれば、ウエッジ19の吸気孔10との接触部位を気にすることなく吸気ガイド流路26を加工できるため、その製作性がさらに向上する。   According to the present embodiment, since the intake guide channel 26 can be processed without worrying about the contact portion of the wedge 19 with the intake hole 10, the manufacturability thereof is further improved.

図8は、本実施例の変形例を示すウエッジの一部上面図である。   FIG. 8 is a partial top view of the wedge showing a modification of the present embodiment.

本実施例では、吸気ガイド流路26の上流端の流路幅W1(コイルスロットと接する位置)を、エアギャップの軸流の方向に合わせて、回転子軸方向の片側のみを長くし、他方は吸気孔10の回転子軸方向の径一端の位置と一致させたものである。吸気孔10の半径をR/2とし、吸気孔10と排気孔11間のピッチをWpとした場合、上流端流路幅W1は、Wp+R/2或いはその近辺値となる。本実施例によれば、既述した実施例1、2同様の効果を期待できるほかに、隣合う排気孔11との干渉も極力緩和させることができる。   In this embodiment, the flow path width W1 (position in contact with the coil slot) at the upstream end of the intake guide flow path 26 is adjusted to the axial direction of the air gap, and only one side in the rotor axial direction is lengthened, while the other Is the same as the position of one end of the diameter of the intake hole 10 in the rotor axial direction. When the radius of the intake hole 10 is R / 2 and the pitch between the intake hole 10 and the exhaust hole 11 is Wp, the upstream end flow path width W1 is Wp + R / 2 or a value in the vicinity thereof. According to the present embodiment, the same effects as those of the first and second embodiments can be expected, and interference with the adjacent exhaust holes 11 can be reduced as much as possible.

本発明の実施例3について、図9及び図10を用いて説明する。   A third embodiment of the present invention will be described with reference to FIGS.

図9は、実施例3の吸気部構造の鳥瞰図である。本実施例の吸気ガイド流路28も、今まで述べた吸気ガイド流路26同様に、回転子3表面近傍の冷却媒体6を吸気孔10に導くためにウエッジ19表面にのみ設けられている。実施例3の吸気ガイド流路28は、回転子3と接するウエッジ19上流端側より吸気孔10に向かって溝深さ(流路深さ)が一定、すなわち平坦であることが実施例1との相違点である。そのため、本実施例の構造では、回転子3にウエッジ19を固定した際に、吸気ガイド流路28の最上流部と回転子3との接触部において、吸気ガイド流路28の溝深さに相当する段差ΔHが形成される。この段差が、回転子3の表面を流れる冷却媒体6を吸気ガイド流路28に導く流れの形成を阻害する恐れがある。しかし、本発明の構造では、吸気ガイド流路28の上流側で軸方向の流路幅が広く、回転子3の表面を流れる冷却媒体6を広領域から取り込むことができるため、段差ΔHによる冷却媒体6の吸気流量低減への影響は小さいと考えられる。   FIG. 9 is a bird's-eye view of the air intake structure of the third embodiment. The intake guide channel 28 of the present embodiment is also provided only on the surface of the wedge 19 in order to guide the cooling medium 6 in the vicinity of the surface of the rotor 3 to the intake hole 10 as in the intake guide channel 26 described so far. The intake guide flow path 28 of the third embodiment has a constant groove depth (flow path depth) from the upstream end side of the wedge 19 in contact with the rotor 3 toward the intake hole 10, that is, is flat. Is the difference. Therefore, in the structure of the present embodiment, when the wedge 19 is fixed to the rotor 3, the groove depth of the intake guide channel 28 is set at the contact portion between the most upstream portion of the intake guide channel 28 and the rotor 3. A corresponding step ΔH is formed. This step may hinder the formation of a flow that guides the cooling medium 6 flowing on the surface of the rotor 3 to the intake guide flow path 28. However, in the structure of the present invention, the flow path width in the axial direction is wide on the upstream side of the intake guide flow path 28 and the cooling medium 6 flowing on the surface of the rotor 3 can be taken in from a wide area. It is considered that the influence of the medium 6 on the intake flow rate reduction is small.

本発明によれば、ウエッジ19に設ける吸気ガイド流路28の構造が単純化され、その製作性が大幅に向上できる。   According to the present invention, the structure of the intake guide channel 28 provided in the wedge 19 is simplified, and its manufacturability can be greatly improved.

図10は、本発明の実施例3の変形例である吸気構造の鳥瞰図である。本例では、回転子3の回転子コア30における吸気ガイド流路28上流端との境界付近に切削面(傾斜面)29を設けたものであり、この点が前記した実施例3との相違点である。本構造によれば、回転子3にウエッジ19を固定した際に、回転子3に設けた傾斜面29によって、実施例3で形成された吸気ガイド流路28の最上流部と回転子3との接触部の段差を回避できる。   FIG. 10 is a bird's-eye view of an intake structure that is a modification of the third embodiment of the present invention. In this example, a cutting surface (inclined surface) 29 is provided in the vicinity of the boundary between the rotor core 30 of the rotor 3 and the upstream end of the intake guide flow path 28, and this point is different from the above-described third embodiment. Is a point. According to this structure, when the wedge 19 is fixed to the rotor 3, the most upstream portion of the intake guide flow path 28 formed in the third embodiment and the rotor 3 are formed by the inclined surface 29 provided on the rotor 3. The step of the contact portion can be avoided.

本発明によれば、回転子3に切削面29を設けるための製作工数が必要となるが、簡単な加工で対応できるため、それによるコスト増大は抑制できる。簡単な加工のみで吸気孔10への冷却媒体6の吸気流量を確保できる。   According to the present invention, the number of manufacturing steps for providing the cutting surface 29 on the rotor 3 is required. However, since it can be handled by simple processing, an increase in cost due to this can be suppressed. The intake air flow rate of the cooling medium 6 to the intake hole 10 can be secured by simple processing.

本発明の実施例4について、図11を用いて説明する。   A fourth embodiment of the present invention will be described with reference to FIG.

図11は、実施例4の吸排気部構造の断面図である。32はウエッジ19の軸方向に吸気孔10を所定間隔で複数個配置させて構成した吸気ゾーン(吸気孔グループ)、33はウエッジ19の軸方向に排気孔11を所定間隔で複数個配置させて構成した排気ゾーン(排気グループ)である。本発明の実施例4は、従来技術に示したような、ウエッジ19の吸気孔10や排気孔11が、軸方向に複数個づつ配置される回転電機に適用した例である。   FIG. 11 is a cross-sectional view of the intake / exhaust portion structure of the fourth embodiment. Reference numeral 32 denotes an intake zone (intake hole group) formed by arranging a plurality of intake holes 10 in the axial direction of the wedge 19, and 33 denotes a plurality of exhaust holes 11 arranged in the axial direction of the wedge 19 at predetermined intervals. This is a configured exhaust zone (exhaust group). Embodiment 4 of the present invention is an example applied to a rotating electrical machine in which a plurality of intake holes 10 and exhaust holes 11 of the wedge 19 are arranged in the axial direction as shown in the prior art.

このように吸気孔10や排気孔11を軸方向に複数個づつ配置されている本実施例においては、複数個の吸気孔10は、軸方向に間隔Wpを有して配置される。この場合、吸気ガイド流路26の最上流部の流路幅W1は、最大でも吸気孔10の配置間隔Wpとなる。すなわち、吸気孔10を軸方向に連続して複数個配置する場合、吸気ガイド流路26における最上流部の流路幅W1の最大取り得る流路幅はW1=Wpとなる。吸気孔10の最大流路幅W1は、配置間隔Wpと同等もしくはそれ以下とし、下流側(吸気孔10側)に向かうほど吸気孔10の径に合わせて流路幅が狭まるように変化させ、最下流部で吸気孔10と連通する構造となる。流路幅W1の好ましい範囲は、WP/2<W1≦Wpである。   In this embodiment in which a plurality of intake holes 10 and exhaust holes 11 are arranged in the axial direction as described above, the plurality of intake holes 10 are arranged with a gap Wp in the axial direction. In this case, the flow path width W1 at the most upstream portion of the intake guide flow path 26 is the arrangement interval Wp of the intake holes 10 at the maximum. That is, when a plurality of intake holes 10 are continuously arranged in the axial direction, the maximum possible flow path width of the flow path width W1 of the most upstream portion in the intake guide flow path 26 is W1 = Wp. The maximum flow path width W1 of the intake hole 10 is set to be equal to or less than the arrangement interval Wp, and is changed so that the flow path width becomes narrower in accordance with the diameter of the intake hole 10 toward the downstream side (the intake hole 10 side). The structure is in communication with the intake hole 10 at the most downstream portion. A preferable range of the channel width W1 is WP / 2 <W1 ≦ Wp.

さらに、本実施例によれば、図11に示す吸気ゾーン32及び排気ゾーン33を形成することにより、固定子側の通風流路の流れが径方向内向きとなるリバースゾーンと、径方向外向きとなるフォワードゾーンを有する固定子に対し、リバースゾーンと回転子3の吸気ゾーン32を、フォワードゾーンと排気ゾーン33をそれぞれ対応させた流路構造を構成することができる。ウエッジ19に設ける吸気孔10や排気孔11の配置個数は、固定子のリバースゾーンやフォワードゾーンの軸方向長さに合わせて、任意に選定すれば良い。
本発明によれば、タービン発電機全体として、流動抵抗の少ない冷却媒体6の循環パターンを形成でき、内部を循環させる冷却媒体6の流量を確保でき、固定子など他部位の冷却性能の向上にも寄与できる。
Furthermore, according to the present embodiment, by forming the intake zone 32 and the exhaust zone 33 shown in FIG. 11, the reverse zone in which the flow of the ventilation passage on the stator side is radially inward, and the radially outward direction For the stator having the forward zone, the flow path structure in which the reverse zone and the intake zone 32 of the rotor 3 are respectively associated with the forward zone and the exhaust zone 33 can be configured. The number of intake holes 10 and exhaust holes 11 provided in the wedge 19 may be arbitrarily selected according to the axial length of the reverse zone or forward zone of the stator.
According to the present invention, as a whole turbine generator, a circulation pattern of the cooling medium 6 with low flow resistance can be formed, the flow rate of the cooling medium 6 circulating inside can be secured, and the cooling performance of other parts such as a stator can be improved. Can also contribute.

固定子と回転子を備えた回転電機であれば、タービン発電機に限らず、回転子を本発明の吸気構造とすることにより、長軸化による大容量化と低コスト化を実現できる。   If it is a rotary electric machine provided with the stator and the rotor, not only a turbine generator but the rotor is made into the air intake structure of the present invention, it is possible to realize a large capacity and cost reduction by increasing the length of the shaft.

1…タービン発電機、2…固定子(ステータ)、3…回転子(ロータ)、4…回転子軸(シャフト)、5…軸流ファン、6…冷却媒体、7…界磁コイル、8…斜め流路(通風流路)、9…エアギャップ、10…吸気孔、11…排気孔、12…鉄心(コア)、13…固定子冷却ダクト、14…固定子コイル、15…主冷却器、16…補助冷却器、17…リバースゾーン、18…フォワードゾーン、19…ウエッジ、26…吸気ガイド流路、27…切り欠き、28…吸気ガイド流路、29…切削面、30…回転子コア、31…スロット、32…吸気ゾーン、33…排気ゾーン、34…筒体。   DESCRIPTION OF SYMBOLS 1 ... Turbine generator, 2 ... Stator (stator), 3 ... Rotor (rotor), 4 ... Rotor shaft (shaft), 5 ... Axial fan, 6 ... Cooling medium, 7 ... Field coil, 8 ... Oblique flow path (ventilation flow path), 9 ... air gap, 10 ... intake hole, 11 ... exhaust hole, 12 ... iron core (core), 13 ... stator cooling duct, 14 ... stator coil, 15 ... main cooler, DESCRIPTION OF SYMBOLS 16 ... Auxiliary cooler, 17 ... Reverse zone, 18 ... Forward zone, 19 ... Wedge, 26 ... Intake guide flow path, 27 ... Notch, 28 ... Intake guide flow path, 29 ... Cutting surface, 30 ... Rotor core, 31 ... Slot, 32 ... Intake zone, 33 ... Exhaust zone, 34 ... Cylindrical body.

Claims (8)

冷却媒体が流通する回転子側の通風流路を有する界磁コイルを装着した回転子と、
前記回転子の外周側にエアギャップを介して配置され、内部に冷却媒体が流通する固定子側の通風流路を有する固定子と、
前記界磁コイルを固定するために回転子の外周部に装着されるウエッジと、
前記界磁コイル内の前記回転子側の通風流路に連通するように前記ウエッジに配設された吸気孔及び排気孔と、を備え、前記エアギャップ内の前記冷却媒体を前記ウエッジの吸気孔より前記界磁コイル内に導き、前記ウエッジの排気孔より前記エアギャップ内に放出させる流れを形成して前記界磁コイルを冷却する回転電機において、
前記ウエッジの外表面には、前記エアギャップ内で前記回転子の回転に対して相対的に流れる冷却媒体を前記吸気孔に導く吸気ガイド流路が形成され、
この吸気ガイド流路は、前記エアギャップの冷却媒体の流れを基準にして、前記回転子の周方向における前記吸気孔の上流部に配置され、且つ前記ウエッジの上流側から下流側の前記吸気孔に向かってこの吸気孔に連通し、この吸気ガイド流路の回転子軸方向の流路幅が下流側より上流側に向かって広がるように変化する構造を有していることを特徴とする回転電機。
A rotor equipped with a field coil having a ventilation passage on the rotor side through which the cooling medium flows;
A stator that is disposed on the outer peripheral side of the rotor via an air gap, and has a stator-side ventilation channel through which a cooling medium flows;
A wedge mounted on the outer periphery of the rotor to fix the field coil;
An intake hole and an exhaust hole disposed in the wedge so as to communicate with the rotor-side ventilation channel in the field coil, and the cooling medium in the air gap is used as the intake hole of the wedge In the rotating electrical machine that cools the field coil by forming a flow that is guided into the field coil and discharged from the exhaust hole of the wedge into the air gap,
An intake guide channel is formed on the outer surface of the wedge to guide the cooling medium flowing relative to the rotation of the rotor in the air gap to the intake hole.
The intake guide flow path is disposed at the upstream portion of the intake hole in the circumferential direction of the rotor with respect to the flow of the cooling medium in the air gap, and the intake hole from the upstream side to the downstream side of the wedge Rotation characterized by having a structure in which the passage width in the rotor axial direction of the intake guide passage changes so as to expand from the downstream side toward the upstream side. Electric.
前記ウエッジの外表面に設けた前記吸気ガイド流路は、前記流路幅が変化するに加えて、前記エアギャップ内の前記冷却媒体の流れを基準にして、上流側より下流側に向かって流路を形成する溝の深さが深くなるように変化する傾斜を有している請求項1記載の回転電機。   The intake guide flow path provided on the outer surface of the wedge flows in the direction from the upstream side toward the downstream side based on the flow of the cooling medium in the air gap in addition to the change in the flow path width. The rotating electrical machine according to claim 1, wherein the rotating electric machine has a slope that changes so that a depth of a groove forming the path becomes deep. 前記ウエッジの外表面に設けた前記吸気ガイド流路は、前記流路幅が変化するに加えて、前記エアギャップ内の前記冷却媒体の流れを基準にして、上流側より下流側に向かって流路を形成する溝の深さが一定にしてある請求項1記載の回転電機。   The intake guide flow path provided on the outer surface of the wedge flows in the direction from the upstream side toward the downstream side based on the flow of the cooling medium in the air gap in addition to the change in the flow path width. The rotating electrical machine according to claim 1, wherein the depth of the groove forming the path is constant. 前記ウエッジの外表面に設けた前記吸気ガイド流路は、前記流路幅が上流側では前記吸気孔の径より広く、下流に向かうほど前記吸気孔の径に合わせて狭くなり、下流部で前記吸気孔と連通している請求項1ないし3のいずれか1項記載の回転電機。   The intake guide flow path provided on the outer surface of the wedge has a flow path width that is wider than the diameter of the intake hole on the upstream side, and narrows in accordance with the diameter of the intake hole toward the downstream side, and The rotating electrical machine according to any one of claims 1 to 3, wherein the rotating electrical machine communicates with the air intake hole. 前記ウエッジに設けた前記吸気孔は、前記エアギャップ内の前記冷却媒体の流れを基準にして、前記回転子の周方向で下流側の前記ウエッジの一端近くに配置されている請求項1ないし4のいずれか1項記載の回転電機。   5. The intake hole provided in the wedge is arranged near one end of the wedge on the downstream side in the circumferential direction of the rotor with reference to the flow of the cooling medium in the air gap. The rotating electrical machine according to any one of the above. 前記ウエッジの外表面に設けた前記吸気ガイド流路は、前記エアギャップ内を流れる前記冷却媒体の流れを基準にして、下流側のウエッジ一端に切り欠き部が形成され、この切り欠き部が回転子鉄心に設けたスロットの壁面一部によりカバーされている請求項1ないし5のいずれか1項記載の回転電機。   The intake guide channel provided on the outer surface of the wedge has a notch formed at one end of the downstream wedge with reference to the flow of the cooling medium flowing in the air gap, and the notch rotates. The rotating electrical machine according to claim 1, wherein the rotating electrical machine is covered by a part of a wall surface of a slot provided in the core. 前記エアギャップ内の前記冷却媒体の流れを基準にして、前記ウエッジの外表面に設けた前記吸気ガイド流路の上流側の端部に隣接する回転子外表面部位に、前記吸気ガイド流路に向けて上流側から下流側に傾斜する斜面が形成され、この斜面を介して前記回転子の外表面と前記吸気ガイド流路とが滑らかに接続している請求項1ないし6のいずれか1項記載の回転電機。   Based on the flow of the cooling medium in the air gap, on the rotor outer surface portion adjacent to the upstream end of the intake guide channel provided on the outer surface of the wedge, the intake guide channel 7. An inclined surface inclined from the upstream side toward the downstream side is formed, and the outer surface of the rotor and the intake guide flow path are smoothly connected via the inclined surface. The rotating electrical machine described. 前記ウエッジに設けた前記吸気孔及び排気孔は、前記回転子の軸方向に一定の間隔を有して吸気孔同士及び排気孔同士が複数個づつ並んで配置され、前記ウエッジの外表面に設けた前記吸気ガイド流路も前記吸気孔の数に合わせて軸方向に複数個づつ配置され、前記吸気ガイド流路の流路幅が上流側では前記吸気孔の径より広く前記吸気孔の配置間隔よりも狭く、下流に向かうほど前記吸気孔の径に合わせて狭くなり、下流部で前記吸気孔と連通している請求項1から請求項7のいずれか1項記載の回転電機。   The intake holes and exhaust holes provided in the wedge are arranged on the outer surface of the wedge, with a plurality of intake holes and exhaust holes arranged in a line at a constant interval in the axial direction of the rotor. A plurality of the intake guide channels are also arranged in the axial direction according to the number of the intake holes, and the intake guide channel is wider on the upstream side than the diameter of the intake holes on the upstream side. The rotating electrical machine according to any one of claims 1 to 7, wherein the rotating electrical machine is narrower and narrows in accordance with the diameter of the intake hole toward the downstream, and communicates with the intake hole at a downstream portion.
JP2009045726A 2009-02-27 2009-02-27 Rotary electric machine Pending JP2010200578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009045726A JP2010200578A (en) 2009-02-27 2009-02-27 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045726A JP2010200578A (en) 2009-02-27 2009-02-27 Rotary electric machine

Publications (1)

Publication Number Publication Date
JP2010200578A true JP2010200578A (en) 2010-09-09

Family

ID=42824687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045726A Pending JP2010200578A (en) 2009-02-27 2009-02-27 Rotary electric machine

Country Status (1)

Country Link
JP (1) JP2010200578A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593991A (en) * 2012-03-12 2012-07-18 无锡欧瑞京机电有限公司 Connecting structure of cast-aluminum rotor ventilating channel
AT12977U1 (en) * 2011-06-10 2013-03-15 Seewald Hansjoerg Ing CLOSING WEDGE
CN104871408A (en) * 2012-12-19 2015-08-26 三菱电机株式会社 Rotating electrical machine
US20160020673A1 (en) * 2014-07-18 2016-01-21 Hamilton Sundstrand Corporation Rotor cooling
KR101680101B1 (en) * 2015-03-20 2016-11-29 한국에너지기술연구원 generator of turbo-compound system with Air path for improving cooling of rotor
JPWO2016059700A1 (en) * 2014-10-16 2017-04-27 三菱電機株式会社 Rotating electric machine
WO2019220779A1 (en) * 2018-05-14 2019-11-21 三菱電機株式会社 Rotor and rotating electrical machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT12977U1 (en) * 2011-06-10 2013-03-15 Seewald Hansjoerg Ing CLOSING WEDGE
WO2012167299A3 (en) * 2011-06-10 2013-07-18 Seewald Hansjoerg Locking key
CN102593991A (en) * 2012-03-12 2012-07-18 无锡欧瑞京机电有限公司 Connecting structure of cast-aluminum rotor ventilating channel
CN104871408A (en) * 2012-12-19 2015-08-26 三菱电机株式会社 Rotating electrical machine
CN104871408B (en) * 2012-12-19 2017-05-10 三菱电机株式会社 Rotating electrical machine
US20160020673A1 (en) * 2014-07-18 2016-01-21 Hamilton Sundstrand Corporation Rotor cooling
JPWO2016059700A1 (en) * 2014-10-16 2017-04-27 三菱電機株式会社 Rotating electric machine
KR101680101B1 (en) * 2015-03-20 2016-11-29 한국에너지기술연구원 generator of turbo-compound system with Air path for improving cooling of rotor
WO2019220779A1 (en) * 2018-05-14 2019-11-21 三菱電機株式会社 Rotor and rotating electrical machine

Similar Documents

Publication Publication Date Title
JP2010200578A (en) Rotary electric machine
JP4486114B2 (en) Rotating electric machine
JP4682893B2 (en) Rotating electric machine rotor
JP4417970B2 (en) Rotating electric machine and rotating electric machine rotor
JP3721361B2 (en) Improved cooling of generator coil ends
JP2010104225A (en) Heat transfer enhancement of dynamoelectric machine rotor
CN101490931B (en) Cooling arrangement for an electrical machine
US7342345B2 (en) Paddled rotor spaceblocks
EP3136550A1 (en) Rotor assembly having improved cooling path
US7541714B2 (en) Streamlined body wedge blocks and method for enhanced cooling of generator rotor
US8049379B2 (en) Dynamoelectric machine rotors having enhanced heat transfer and method therefor
KR101426622B1 (en) Rotor Structure of Electric Rotating Machine
JP2009124806A (en) Rotating electrical machine
US7816825B2 (en) Heat transfer enhancement of ventilation chimneys for dynamoelectric machine rotors
JP2006074866A (en) Dynamo-electric machine
JP2021065072A (en) Rotor of rotating electric machine
JP2010104202A (en) Rotor of rotating electrical machine
CN111953107A (en) Stator of rotating electric machine
JP2019022257A (en) Rotary electric machine
US20090295239A1 (en) Heat transfer enhancement of ventilation chimneys for dynamoelectric machine rotors
JP2018026925A (en) Rotary electric machine
JP2003189543A (en) Rotor of dynamo-electric machine
WO2019220779A1 (en) Rotor and rotating electrical machine
JP6612102B2 (en) Rotating electric machine
CN117296228A (en) Air duct assembly for a rotor, associated rotor and motor