WO2019220643A1 - User terminal and wireless base station - Google Patents
User terminal and wireless base station Download PDFInfo
- Publication number
- WO2019220643A1 WO2019220643A1 PCT/JP2018/019401 JP2018019401W WO2019220643A1 WO 2019220643 A1 WO2019220643 A1 WO 2019220643A1 JP 2018019401 W JP2018019401 W JP 2018019401W WO 2019220643 A1 WO2019220643 A1 WO 2019220643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- resource
- transmission
- user terminal
- base station
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present invention relates to a user terminal and a radio base station in a next-generation mobile communication system.
- LTE Long Term Evolution
- LTE-A also referred to as LTE Advanced, LTE Rel. 10-13, etc.
- LTE Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), NR (New RAT: Radio Access Technology), LTE Rel. 14 ⁇
- FRA Full Radio Access
- 5G 5th generation mobile communication system
- NR New RAT: Radio Access Technology
- TBS transport block size
- AMC Adaptive Modulation and Coding
- the TB when the TBS exceeds a predetermined threshold (for example, 6144 bits), the TB is divided into one or more segments (code block (CB: Code Block)), and encoding in segment units is performed. Performed (Code Block Segmentation). Each encoded code block is concatenated and transmitted.
- a predetermined threshold for example, 6144 bits
- HARQ Hybrid Automatic Repeat reQuest
- ACK Acknowledge
- NACK Negative ACK
- a / N retransmission control information
- future wireless communication systems for example, 5G, NR, etc.
- high speed and large capacity for example, eMBB: enhanced Mobile Broad Band
- very large number of terminals for example, mMTC: massive Machine Type Communication, IoT: Internet of Things
- Multiple services also referred to as use cases, communication types, etc.
- URLLC Ultra Reliable and Low Latency Communications
- preemption occurs between a plurality of DL signals corresponding to different services. If preemption is not performed properly, system performance may be degraded.
- the present invention has been made in view of this point, and an object of the present invention is to provide a user terminal and a radio base station capable of appropriately performing preemption between a plurality of DL signals.
- a user terminal includes: a reception unit that receives a downlink signal in a first resource assigned to a first downlink signal to the user terminal; and the first resource is a second resource to the user terminal.
- a control unit that decodes the first downlink signal based on a downlink signal received in a resource excluding the second resource among the first resources when the second resource allocated to the downlink signal is included. It is characterized by that.
- preemption can be appropriately performed between a plurality of DL signals.
- 1A and 1B are diagrams illustrating an example of preemption.
- 2A and 2B are diagrams illustrating an example of preemption between a plurality of DL signals to a plurality of UEs.
- 3A and 3B are diagrams illustrating an example of preemption between a plurality of DL signals to one UE. It is a figure which shows an example of the preemption during the some DL signal to one UE with a preemption instruction
- eMBB enhanced Mobile Broad Band
- mMTC massive Machine Type Communication
- IoT Internet of Things
- ultra-high reliability and low latency for example, URLLC: Ultra Reliable and Low Latency Communications
- the communication requirement may be related to at least one of delay, reliability, capacity (capacity), speed, and performance, for example.
- the difference between the URLLC communication requirement and the eMBB communication requirement may be that the URLLC latency may be smaller than the eMBB latency, or the URLLC communication requirement may include a reliability communication requirement.
- the eMBB U-plane latency requirement may include a downlink U-plane latency of 4 ms and an uplink U-plane latency of 4 ms.
- URLLC U-plane latency requirements may include a downlink U-plane latency of 0.5 ms and an uplink U-plane latency of 0.5 ms.
- the URLLC reliability requirement may also include a 32-byte error rate of 10 ⁇ 5 at 1 ms U-plane latency.
- a short TTI that is a TTI having a relatively short time length is suitable.
- end-to-end short delay eg, frame fragmentation delay and / or transmission (Tx) delay, etc.
- Tx transmission
- high reliability due to short round trip time ie short term
- a long TTI which is a TTI having a relatively long time length, is suitable for a service that requires high speed and large capacity such as eMBB. This is because long TTI has little overhead due to control signals.
- the long TTI may be composed of, for example, 14 symbols in a subcarrier interval of 15 kHz and a normal cyclic prefix (NCP: Normal Cyclic Prefix).
- NCP Normal Cyclic Prefix
- the long TTI may be called a normal TTI (normal TTI), a subframe, or the like.
- the short TTI may be configured with the same number of symbols as the long TTI and a shorter number of symbols than the long TTI (for example, the subcarrier interval is 15 kHz, 1 or 2 symbols in NCP).
- the short TTI may be configured with the same or different number of symbols as the long TTI with a higher (wider) subcarrier interval than the long TTI (for example, 14 symbols in a subcarrier interval of 60 kHz and NCP).
- a short TTI may be realized by a combination of both.
- TTI may be some symbols, some minislots, some slots, etc.
- long TTI and short TTI are supported in order to satisfy requirements for different services (for example, eMBB, URLLC, etc.).
- long TTI and short TTI are supported, it is assumed that the short TTI is scheduled after the start of transmission in the long TTI in order to meet the requirements for delay reduction and / or reliability.
- a part of the DL data of the long TTI is preempted (also referred to as hollow or puncture) and the DL data of the short TTI is inserted.
- the radio base station may puncture and transmit the part where the short TTI is scheduled with respect to the data of the long TTI. Therefore, there arises a problem that the user terminal that receives the long TTI data cannot appropriately receive the long TTI data (for example, demodulation and / or decoding) (see FIG. 1A).
- the user terminal determines that the data of the long TTI is a detection error (decoding failure), but cannot recognize that the data has been punctured by the short TTI. For this reason, the user terminal determines that the data scheduled in the short TTI (interrupted short TTI data) is also the data addressed to the user terminal, and stores the data in the UE buffer (soft buffer).
- the UE buffer soft buffer
- the radio base station transmits the instruction information regarding the preemption of the long TTI by the short TTI to the user terminal of the long TTI (see FIG. 1B).
- the instruction information related to preemption may be called preemption instruction (preemption indication: PI, interrupted transmission instruction), preemption instruction information, puncture instruction information, punctured resource information, or impacted resource information.
- the preemption instruction may be transmitted in DCI format 2_1.
- the DCI format 2_1 may be used for notification of preemption resources (eg, at least one PRB and at least one OFDM symbol).
- the UE may perform DL signal decoding assuming that there is no transmission to the UE in this resource.
- the DCI format 2_1 may include a CRC (Cyclic Redundancy Check) scrambled by INT (interruption) -RNTI (Radio Network Temporary Identifier).
- INT interruption
- -RNTI Radio Network Temporary Identifier
- Several preemption instructions (fields) may be transmitted by the DCI format 2_1.
- the size of the DCI format 2_1 may be set by an upper layer.
- the resource (several symbols) indicated in the field in the DCI format 2_1 is a symbol before the CORESET. May be included.
- Each bit of the field in DCI format 2_1 may be mapped to a resource (at least one of several symbols and several PRBs) to indicate whether there is a transmission to the UE on the corresponding resource.
- the user terminal When a preemption occurs for a DL signal to the user terminal, the user terminal is likely to fail to decode the DL signal and cause retransmission of the DL signal.
- the user terminal accumulates the received DL signal in a buffer, synthesizes all DL signals including initial transmission of DL signals and several retransmissions, and decodes the synthesized result.
- the user terminal can improve the decoding performance by recognizing the preemption part and reducing the influence of this part on the decoding.
- the user terminal can recognize that a part of the long TTI data is punctured by the preemption instruction notified from the radio base station. By notifying the user terminal of the punctured portion, the user terminal can select only the data addressed to itself and store it in the UE buffer. For example, the user terminal removes (flushes, discards) the soft bits in the data area corresponding to the puncture part (for example, replaces the log likelihood ratio (LLR) with zero (0)) and the soft buffer. Control the accumulation to.
- LLR log likelihood ratio
- UE1 supports eMBB and URLLC
- UE2 supports only URLLC
- UE3 supports only eMBB.
- the communication requirements may include eMBB, URLLC, and combinations thereof, for example.
- Communication requirements include setting information (for example, MCS (Modulation and Code Scheme) table, CQI (Channel Quality Indication) table, neurology, frequency band, frequency range, higher layer parameters, DCI) to meet the communication requirements. Field, DCI format, etc.).
- MCS Modulation and Code Scheme
- CQI Channel Quality Indication
- URLLC data may be PDSCH based on setting information for URLLC.
- the eMBB data may be a PDSCH based on eMBB setting information. At least a part of the setting information may be different between URLLC and eMBB.
- the setting information for eMBB and the setting information for URLCC may be defined in the specification.
- the setting information may be at least one of an MCS (Modulation and Code Scheme) table and a CQI (Channel Quality Indication) table.
- MCS Modulation and Code Scheme
- CQI Channel Quality Indication
- Each entry in the MCS table includes at least one of an MCS index (IMCS) that identifies the entry, a modulation order (Qm), a target coding rate (target code rate, R), and a spectral efficiency (spectral efficiency). But you can.
- MCS Modulation and Code Scheme
- CQI Channel Quality Indication
- UE1 and UE3 supporting eMBB are set to monitor PI.
- the radio base station when transmitting the URLLC data to UE1 and the URLLC data to UE2 during the eMBB data transmission to UE3, the radio base station transmits a preemption instruction (PI) after the transmission of these data.
- This preemption instruction indicates resources (at least one of a time resource and a frequency resource) of URLLC data to UE1 and URLLC data to UE2.
- UE3 may remove the soft bits corresponding to the URLLC data to UE1 and the URLLC data to UE2 from the buffer (soft buffer) based on the preemption instruction.
- UE3 may decode the eMBB data to UE3 using the soft bit in the buffer, or synthesizes this soft bit and the soft bit corresponding to the eMBB data to UE3 to be retransmitted later to UE3.
- the eMBB data may be decoded.
- the radio base station when transmitting the URLLC data to UE2 during the transmission of eMBB data to UE1, the radio base station transmits a preemption instruction after transmitting the data.
- This preemption instruction indicates a resource of URLLC data to UE 2 (at least one of a time resource and a frequency resource).
- UE1 may remove the soft bit corresponding to the URLLC data to UE2 from the buffer based on the preemption instruction.
- UE1 may decode the eMBB data to UE1 using the soft bit in the buffer, or synthesizes this soft bit and the soft bit corresponding to the eMBB data to UE1 to be retransmitted later to UE1.
- the eMBB data may be decoded.
- one UE uses a plurality of services (communication requirements). In this case, it is conceivable to perform preemption between a plurality of DL signals for one UE. However, there is a problem of how to perform preemption between a plurality of DL signals for one UE.
- the present inventors have conceived a method of appropriately performing preemption between a plurality of DL signals for one UE.
- a DL data channel for example, PDSCH: Physical Downlink Shared Channel
- PDSCH Physical Downlink Shared Channel
- RAR random access response
- Preemption between a plurality of DL signals addressed to the same UE may not be accompanied by a preemption instruction.
- the UE may process preemption between a plurality of DL signals for the UE without setting monitoring of the preemption instruction.
- preemption since the UE receives DCI for scheduling of each of the plurality of DL signals, the UE recognizes resources allocated to each of the plurality of DL signals even if there is no preemption instruction.
- the preempted DL signal can be processed.
- the DCI for scheduling of each DL signal may be received before the corresponding DL signal.
- the DCI for scheduling each DL signal may have a DCI format 1_0, 1_1, etc.
- the UE When the UE detects the second DL signal having the second communication requirement in the resource overlapping the resource allocated to the first DL signal having the first communication requirement, the UE performs the second DL signal when decoding the first DL signal. Decoding may be performed by ignoring soft bits generated from overlapping resources. Further, when the UE fails to decode the first DL signal, the UE removes the soft bit generated from the resource in which the second DL signal overlaps (or zero) when storing the soft bit in the buffer (soft buffer). And may be controlled to be stored in the buffer.
- the UE may decode the first DL signal based on the soft bits in the buffer, or the soft bits in the buffer and the soft bits of the first DL signal retransmitted later May be combined and decoded.
- the UE when the UE detects the second DL signal in the resource overlapping with the resource allocated to the first DL signal, the soft bit generated from the resource overlapping the second DL signal when decoding the second DL signal You may perform decoding using.
- the UE may decode the second DL signal based on the soft bit generated from the resource in which the second DL signal overlaps in storing the soft bit in the buffer. Good. Thereafter, the UE may remove the soft bit from the buffer and decode the first DL signal based on the soft bit in the buffer, or the soft bit in the buffer and the soft bit of the first DL signal retransmitted later May be combined and decoded.
- UE1 supports eMBB and URLLC.
- UE1 may remove the soft bit corresponding to the URLLC data from the soft bits in the buffer.
- the eMBB data may be decoded based on the soft bits in the buffer, or the soft bits in the buffer and the soft bits of the eMBB data retransmitted later may be combined and decoded.
- the UE1 may decode the URLLC data based on the soft bits corresponding to the URLLC data among the soft bits in the buffer. . Thereafter, UE1 may remove the soft bit from the buffer and decode the eMBB data based on the soft bit in the buffer, or may combine the soft bit in the buffer and the soft bit of the eMBB data retransmitted later. And may be decrypted.
- a part of the retransmitted DL signal may be removed, which may degrade the decoding performance.
- preemption between a plurality of DL signals addressed to the same UE is permitted for the initial transmission of the DL signal and may not be permitted for the retransmission of the DL signal.
- the UE may not expect to receive the first DL signal preempted (interrupted) by the second DL signal when the first DL signal is a retransmission.
- the first DL signal and the second DL signal may have different services (communication requirements).
- the first DL signal may be eMBB data (PDSCH), for example.
- the second DL signal may be URLLC data (PDSCH).
- the DCI for scheduling of the first DL signal may include HARQ information (at least one of NDI (New Data Indicator), RV (Redundancy Version), HARQ process ID (HARQ process number: HPN)).
- HARQ information at least one of NDI (New Data Indicator), RV (Redundancy Version), HARQ process ID (HARQ process number: HPN)).
- the UE may identify whether the first DL signal is an initial transmission or a retransmission based on the HARQ information.
- the UE may identify whether it is initial transmission or retransmission by NDI toggle.
- NDI is an identifier indicating either initial transmission or retransmission. For example, if NDI is not toggled in the same HPN (the same value as the previous time), it indicates retransmission, and if NDI is toggled (a value different from the previous time), it is the first transmission.
- Indicates. RV indicates a difference in redundancy of transmission data. The value of RV is, for example, 0, 1, 2, 3, and 0 is used for initial transmission because the degree of redundancy is the lowest.
- the UE may remove the soft bit corresponding to the HPN in the buffer.
- the recognition of initial transmission or retransmission may not match between the radio base station and the UE. This is a case where the UE recognizes initial transmission when the radio base station performs retransmission. Since the radio base station does not perform preemption for retransmission, the UE does not need to perform special processing in this case.
- preemption between a plurality of DL signals addressed to different UEs may be accompanied by a preemption instruction.
- the UE may assume that the DL signal addressed to the UE is not preempted with the DL signal addressed to the other UE.
- monitoring of a preemption instruction is set in UE1.
- the overhead of control information can be suppressed and the resource utilization efficiency can be improved by not transmitting a preemption instruction for preemption between DL signals addressed to the same UE. it can.
- preemption for DL signal retransmission is not performed, degradation in decoding performance can be prevented.
- Preemption between a plurality of DL signals addressed to the same UE may be accompanied by a preemption instruction.
- the radio base station may set monitoring of a preemption instruction for the UE when applying preemption for retransmission.
- the UE may process preemption between a plurality of DL signals addressed to the same UE based on the preemption instruction.
- the preemption instruction does not distinguish whether the data indicated in the preemption instruction is URLLC data or eMBB data. Therefore, the UE may not be able to decode URLLC data.
- UE1 receives eMBB data, and receives URLLC data in the middle of eMBB data.
- the preemption instruction indicates the resource of the URLLC data, it means that the preemption instruction is not transmitted to the UE1. Therefore, when the eMBB data is stored in the buffer, the UE1 generates eMBB data generated from the resource in which the URLLC data is duplicated. Remove soft bits.
- the soft bit storage of URLLC data may be performed independently of the soft bit storage of eMBB data. In this case, retransmission control and soft bit synthesis are also performed independently of eMBB data and URLLC data.
- UE1 When UE group common signaling for performing a preemption instruction (UE group common DCI in UE group common PDCCH) is set, UE1 performs control so as not to synthesize soft bits generated from a specified resource in accordance with the preemption instruction. For example, the user terminal controls to delete the soft bit. In this case, data may be discarded based on the preemption instruction, and thus received data may not be correctly decoded.
- UE group common signaling for performing a preemption instruction UE group common DCI in UE group common PDCCH
- the UE may perform control so as not to remove the soft bit corresponding to the preemption.
- the predetermined condition may be that at least one of the following conditions 1 to 3 is satisfied.
- the specific communication requirement may be URLLC.
- the DL signal may be data (PDSCH).
- the specific DCI may have a new DCI format.
- the DCI format may be identified by a DCI format identifier field (for example, 1 bit) in DCI.
- the DCI format may be identified by a new DCIDCI format size.
- the DCI format may have a CRC scrambled with a specific RNTI (eg, URLLC-RNTI).
- the DCI format may be detected in the middle of the slot (it may not be detected at the beginning of the slot).
- the specific DCI may be received before the DL signal having specific requirements.
- the specific DCI may be DCI obtained by scrambling the CRC with an RNTI different from the C-RNTI.
- the specific relationship may be that the resource size R1 of the data is equal to or smaller than the resource size R2 indicated by the preemption instruction (R1 ⁇ R2).
- the PDSCH start position in the slot is selected from preset candidate symbols, and the number of PDSCH allocation symbols (PDSCH length) is within a range from a predetermined value (X) to 14. Selected.
- Candidate symbols that are candidates for the start position correspond to, for example, predetermined symbol indexes (for example, # 0, # 1, # 2, and # 3) in the slot.
- X may be 3, for example.
- mapping type B When mapping type B is applied to PDSCH transmission, the number of PDSCH allocation symbols (PDSCH length) is selected from the preset number of candidate symbols, and the start position of PDSCH in the slot is set to any location (symbol) in the slot. To do.
- the number of PDSCH-length candidate symbols corresponds to, for example, a predetermined number (2, 4, or 7 symbols). That is, the PDSCH start position is set flexibly.
- the base station may set PDSCH start symbol (S) and data length (L) indication information (SLIV: Start and length indicator value), PDSCH mapping type combination candidate, and slot offset in the UE.
- the slot offset corresponds to an offset between a slot in which DCI is transmitted and a PDSCH slot scheduled by the DCI.
- preemption by the second DL signal having the second communication requirement is performed, and when the UE receives the preemption instruction and the predetermined condition is not satisfied,
- the UE may perform the decoding by ignoring the soft bits generated from the resources in which the second DL signal overlaps. Further, when the decoding of the first DL signal fails, the UE removes the soft bit generated from the resource in which the second DL signal overlaps (or zero) when storing the soft bit in the buffer (soft buffer). It may be controlled to store in the buffer.
- the UE may decode the first DL signal based on the soft bits in the buffer, or the soft bits in the buffer and the soft bits of the first DL signal retransmitted later May be combined and decoded.
- preemption by the second DL signal having the second communication requirement is performed, and when the UE receives the preemption instruction and the predetermined condition is satisfied,
- the UE may perform decoding using soft bits generated from resources in which the second DL signal overlaps.
- the UE may decode the second DL signal based on the soft bit generated from the resource in which the second DL signal overlaps in storing the soft bit in the buffer. . Thereafter, the UE may remove the soft bit from the buffer and decode the first DL signal based on the soft bit in the buffer, or the soft bit in the buffer and the soft bit of the first DL signal retransmitted later May be combined and decoded.
- the preemption of the 2nd DL signal to the same UE can be performed with respect to a 1st DL signal. Also, even if the UE is the second DL signal indicated in the preemption instruction, the UE can appropriately decode the second DL signal by not removing the soft bits corresponding to the second DL signal under a predetermined condition.
- wireless communication system Wireless communication system
- communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
- FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
- carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
- DC dual connectivity
- the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
- the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
- the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
- CC cells
- Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
- a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
- the same carrier may be used.
- the configuration of the frequency band used by each radio base station is not limited to this.
- the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell.
- TDD time division duplex
- FDD frequency division duplex
- a single neurology may be applied, or a plurality of different neurology may be applied.
- the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
- the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
- the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
- RNC radio network controller
- MME mobility management entity
- Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
- the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
- the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
- the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
- Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
- orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
- SC-FDMA single carrier-frequency division multiple access
- Frequency Division Multiple Access and / or OFDMA is applied.
- OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
- SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
- the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
- downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
- PDSCH downlink shared channel
- PBCH Physical Broadcast Channel
- SIB System Information Block
- MIB Master Information Block
- Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
- Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
- scheduling information may be notified by DCI.
- DCI for scheduling DL data reception may be referred to as DL assignment
- DCI for scheduling UL data transmission may be referred to as UL grant.
- the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
- the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
- HARQ Hybrid Automatic Repeat reQuest
- EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
- an uplink shared channel (PUSCH) shared by each user terminal 20
- an uplink control channel (PUCCH: Physical Uplink Control Channel)
- a random access channel (PRACH: Physical Random Access Channel)
- User data, higher layer control information, etc. are transmitted by PUSCH.
- downlink radio quality information CQI: Channel Quality Indicator
- delivery confirmation information SR
- scheduling request etc.
- a random access preamble for establishing connection with the cell is transmitted by the PRACH.
- a cell-specific reference signal CRS
- CSI-RS channel state information reference signal
- DMRS demodulation reference signal
- PRS Positioning Reference Signal
- a measurement reference signal SRS: Sounding Reference Signal
- a demodulation reference signal DMRS
- the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
- FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
- the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
- the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may be configured to include one or more.
- User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access
- Retransmission control for example, HARQ transmission processing
- scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
- IFFT Inverse Fast Fourier Transform
- precoding processing precoding processing, and other transmission processing
- the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
- the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
- the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
- the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention.
- the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
- the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
- the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
- the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
- the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
- the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
- the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
- the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
- CPRI Common Public Radio Interface
- X2 interface May be.
- the transmission / reception unit 103 transmits a transport block (TB) including one or more code block groups (CBG) and receives a delivery confirmation signal corresponding to the TB and / or CBG.
- the transmission / reception unit 103 transmits information regarding the presence / absence of communication control notification based on CBG and the presence / absence of communication control notification based on the TB and / or CBG preemption instruction.
- the transmission / reception unit 103 transmits downlink control information including retransmission scheduling information and / or preemption instruction information of a predetermined CBG.
- FIG. 7 is a diagram illustrating an example of a functional configuration of the radio base station according to the embodiment of the present invention.
- the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
- the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the radio base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
- the control unit (scheduler) 301 controls the entire radio base station 10.
- the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
- the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
- the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
- the control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control).
- the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
- the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
- control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, Scheduling of the uplink reference signal and the like.
- uplink data signal for example, a signal transmitted on PUSCH
- uplink control signal for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.
- a random access preamble for example, Scheduling of the uplink reference signal and the like.
- the control unit 301 controls transmission and / or retransmission control based on CBG and scheduling using preemption. For example, the control unit 301 performs control so that retransmission scheduling information of the predetermined CBG and preemption instruction information are included in the downlink control information and transmitted.
- the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
- the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
- the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
- the DL assignment and UL grant are both DCI and follow the DCI format.
- the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
- CSI Channel State Information
- the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
- the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
- the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
- the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
- the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
- the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
- the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
- the measurement unit 305 performs measurement on the received signal.
- the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
- the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
- the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
- Signal strength for example, RSSI (Received Signal Strength Indicator)
- propagation path information for example, CSI
- the measurement result may be output to the control unit 301.
- the transmission / reception unit 103 may transmit the downlink signal in the first resource allocated to the first downlink signal to the user terminal 20.
- the control unit 301 uses the first downlink signal in a resource excluding the second resource among the first resources. Transmission of the second downlink signal may be controlled in the second resource.
- FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
- the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
- the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may be configured to include one or more.
- the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
- the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
- the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
- the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
- the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
- the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
- the downlink user data is transferred to the application unit 205.
- the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
- uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
- the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
- the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
- the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
- the transmission / reception unit 203 receives a transport block (TB) including one or more code block groups (CBG) and transmits a delivery confirmation signal corresponding to the TB and / or CBG.
- the transmission / reception unit 203 receives information regarding the presence / absence of communication control notification based on CBG and the presence / absence of communication control notification based on the TB and / or CBG preemption instruction.
- the transmission / reception unit 203 receives downlink control information including retransmission scheduling information and / or preemption instruction information of a predetermined CBG.
- FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
- the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
- the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
- the control unit 401 controls the entire user terminal 20.
- the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
- the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
- the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
- the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
- the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
- the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
- the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
- the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
- CSI channel state information
- the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
- the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
- the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
- the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
- the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
- the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
- the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
- the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
- the measurement unit 405 performs measurement on the received signal.
- the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
- the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
- the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
- the measurement result may be output to the control unit 401.
- the transmission / reception unit 203 may receive the downlink signal in the first resource allocated to the first downlink signal (for example, eMBB data) to the user terminal 20.
- the first resource includes a second resource assigned to a second downlink signal to the user terminal 20 (for example, a second downlink signal having a communication requirement different from the communication requirement of the first downlink signal, URLLC data).
- the control unit 401 may decode the first downlink signal based on downlink signals (for example, soft bits) received in resources other than the second resource among the first resources.
- the control unit 401 also includes first downlink control information for scheduling the first downlink signal (for example, DCI received before the first downlink signal, DCI having one of DCI formats 1_0, 1_1) and Second downlink control information for scheduling of the second downlink signal (e.g., DCI received before the second downlink signal, DCI having one of DCI formats 1_0, 1_1), and Resources may be determined.
- first downlink control information for scheduling the first downlink signal for example, DCI received before the first downlink signal, DCI having one of DCI formats 1_0, 1_1
- Second downlink control information for scheduling of the second downlink signal e.g., DCI received before the second downlink signal, DCI having one of DCI formats 1_0, 1_1
- Resources may be determined.
- control unit 401 may assume that the first resource does not include the second resource.
- control unit 401 may determine the resource based on instruction information (for example, preemption instruction, DCI having DCI format 2_1) received after the first resource.
- instruction information for example, preemption instruction, DCI having DCI format 2_1
- control unit 401 relates to downlink control information (for example, condition 1) for scheduling the second downlink signal, a second resource indicated in the downlink control information, and a resource indicated in the instruction information (
- condition 1) for scheduling the second downlink signal
- second resource indicated in the downlink control information for scheduling the second downlink signal
- a resource indicated in the instruction information for example, the second downlink signal may be decoded based on at least one of condition 2) and a mapping type of the second downlink signal (for example, condition 3).
- each functional block is realized using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
- a wireless base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
- the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
- the term “apparatus” can be read as a circuit, a device, a unit, or the like.
- the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
- processor 1001 may be implemented by one or more chips.
- Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
- the processor 1001 controls the entire computer by operating an operating system, for example.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
- CPU central processing unit
- the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
- the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
- a program program code
- the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
- the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
- the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
- the storage 1003 may be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by.
- FDD frequency division duplex
- TDD time division duplex
- the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
- the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
- DSP digital signal processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning.
- the signal may be a message.
- the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
- a component carrier CC: Component Carrier
- CC Component Carrier
- the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
- a subframe may be composed of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
- the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the slot may include a plurality of mini slots.
- Each minislot may be configured with one or more symbols in the time domain.
- the minislot may also be called a subslot.
- a mini-slot may be composed of fewer symbols than slots.
- PDSCH and PUSCH transmitted in units of time larger than the minislot may be referred to as PDSCH / PUSCH mapping type A.
- the PDSCH and PUSCH transmitted using the minislot may be referred to as PDSCH / PUSCH mapping type B.
- Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
- one subframe may be called a transmission time interval (TTI)
- TTI transmission time interval
- a plurality of consecutive subframes may be called a TTI
- TTI slot or one minislot
- a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
- TTI means, for example, a minimum time unit for scheduling in wireless communication.
- a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
- a time interval for example, the number of symbols
- a transport block, a code block, a code word, etc. may be shorter than the TTI.
- one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
- a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
- a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
- One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
- the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
- RE Resource Element
- 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
- the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
- information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented.
- the radio resource may be indicated by a predetermined index.
- the names used for parameters and the like in this disclosure are not limited names in any way.
- various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
- information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
- the name is not limited in any way.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
- information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
- Information, signals, and the like may be input / output via a plurality of network nodes.
- the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
- information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
- DCI downlink control information
- UCI uplink control information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
- the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
- the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
- notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
- the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
- the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
- software, instructions, information, etc. may be transmitted / received via a transmission medium.
- the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
- system and “network” as used in this disclosure may be used interchangeably.
- base station BS
- radio base station fixed station
- NodeB NodeB
- eNodeB eNodeB
- gNodeB gNodeB
- BWP Bandwidth Part
- a base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
- the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services.
- a base station subsystem eg, an indoor small base station (RRH: Remote Radio Head)
- RRH Remote Radio Head
- the terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
- MS mobile station
- UE user equipment
- Mobile station subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
- At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like.
- the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
- the moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned).
- at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
- the radio base station in the present disclosure may be replaced with a user terminal.
- the communication between the radio base station and the user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called))
- a plurality of user terminals for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)
- the user terminal 20 may have a function that the wireless base station 10 has.
- words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
- the uplink channel may be read as a side channel.
- the user terminal in the present disclosure may be replaced with a radio base station.
- the wireless base station 10 may have a function that the user terminal 20 has.
- the operation performed by the base station may be performed by the upper node in some cases.
- various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution.
- the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
- the methods described in this disclosure present elements of the various steps in an exemplary order and are not limited to the specific order presented.
- Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.
- the present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like.
- a plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
- the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise.
- the phrase “based on” means both “based only on” and “based at least on.”
- any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
- determining may encompass a wide variety of actions. For example, “determination (decision)” includes determination, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
- determination (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”.
- determination is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
- connection is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
- radio frequency domain microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
This user terminal comprises: a receiving unit which receives a downlink signal in first resources assigned to a first downlink signal to the user terminal, and a control unit which, if the aforementioned first resources include second resources assigned to a second downlink signal to the user terminal, decodes the first downlink signal on the basis of the downlink signal received in resources in the first resources excluding the second resources.
Description
本発明は、次世代移動通信システムにおけるユーザ端末及び無線基地局に関する。
The present invention relates to a user terminal and a radio base station in a next-generation mobile communication system.
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10~13等ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、NR(New RAT:Radio Access Technology)、LTE Rel.14~などともいう)も検討されている。
In the UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates and lower delay (Non-Patent Document 1). Also, LTE-A (also referred to as LTE Advanced, LTE Rel. 10-13, etc.) has been specified for the purpose of further widening and speeding up from LTE (also referred to as LTE Rel. 8 or 9), and LTE Successor systems (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), NR (New RAT: Radio Access Technology), LTE Rel. 14 ~) are also being studied.
既存のLTEシステム(例えば、Rel.13以前)では、リンクアダプテーションとして、変調方式、トランスポートブロックサイズ(TBS:Transport Block Size)、符号化率の少なくとも一つを適応的に変化させる適応変調符号化(AMC:Adaptive Modulation and Coding)が行われる。ここで、TBSとは、情報ビット系列の単位であるトランスポートブロック(TB:Transport Block)のサイズである。1サブフレームには、一つ又は複数のTBが割り当てられる。
In the existing LTE system (for example, before Rel.13), adaptive modulation coding that adaptively changes at least one of a modulation scheme, a transport block size (TBS), and a coding rate as link adaptation. (AMC: Adaptive Modulation and Coding) is performed. Here, TBS is the size of a transport block (TB), which is a unit of an information bit sequence. One subframe is assigned to one subframe.
また、既存のLTEシステムでは、TBSが所定の閾値(例えば、6144ビット)を超える場合、TBを一以上のセグメント(コードブロック(CB:Code Block))に分割し、セグメント単位での符号化が行われる(コードブロック分割:Code Block Segmentation)。符号化された各コードブロックは連結されて、送信される。
Further, in the existing LTE system, when the TBS exceeds a predetermined threshold (for example, 6144 bits), the TB is divided into one or more segments (code block (CB: Code Block)), and encoding in segment units is performed. Performed (Code Block Segmentation). Each encoded code block is concatenated and transmitted.
また、既存のLTEシステムでは、TB単位で、DL信号及び/又はUL信号の再送制御(HARQ:Hybrid Automatic Repeat reQuest)が行われる。具体的には、既存のLTEシステムでは、TBが複数のCBに分割される場合であっても、TB単位で再送制御情報(ACK(Acknowledge)又はNACK(Negative ACK)(以下、A/Nと略する)、HARQ-ACK等ともいう)が送信される。
Further, in the existing LTE system, DL signal and / or UL signal retransmission control (HARQ: Hybrid Automatic Repeat reQuest) is performed in units of TB. Specifically, in the existing LTE system, even when the TB is divided into a plurality of CBs, retransmission control information (ACK (Acknowledge) or NACK (Negative ACK) (hereinafter referred to as A / N) in units of TB. Abbreviated), also referred to as HARQ-ACK or the like).
将来の無線通信システム(例えば、5G、NRなど)では、例えば、高速及び大容量(例えば、eMBB:enhanced Mobile Broad Band)、超多数端末(例えば、mMTC:massive Machine Type Communication、IoT:Internet of Things)、超高信頼及び低遅延(例えば、URLLC:Ultra Reliable and Low Latency Communications)など、通信要件(requirement)が異なる複数のサービス(ユースケース、通信タイプ等ともいう)が混在すること想定される。
In future wireless communication systems (for example, 5G, NR, etc.), for example, high speed and large capacity (for example, eMBB: enhanced Mobile Broad Band), very large number of terminals (for example, mMTC: massive Machine Type Communication, IoT: Internet of Things) ), Multiple services (also referred to as use cases, communication types, etc.) with different communication requirements (such as URLLC: Ultra Reliable and Low Latency Communications) are expected to be mixed.
また、遅延削減及び/又は信頼性に対する通信要件を満たすために、異なるサービスに対応する複数のDL信号の間においてプリエンプション(preemption、割り込み、interruption、中断)が発生することが想定される。プリエンプションが適切に行われなければ、システム性能が低下するおそれがある。
Also, in order to satisfy the communication requirement for delay reduction and / or reliability, it is assumed that preemption (preemption, interruption, interruption, interruption) occurs between a plurality of DL signals corresponding to different services. If preemption is not performed properly, system performance may be degraded.
本発明はかかる点に鑑みてなされたものであり、複数のDL信号の間においてプリエンプションを適切に行うことが可能なユーザ端末及び無線基地局を提供することを目的の一つとする。
The present invention has been made in view of this point, and an object of the present invention is to provide a user terminal and a radio base station capable of appropriately performing preemption between a plurality of DL signals.
本発明の一態様に係るユーザ端末は、前記ユーザ端末への第1下り信号に割り当てられた第1リソースにおいて下り信号を受信する受信部と、前記第1リソースが、前記ユーザ端末への第2下り信号に割り当てられた第2リソースを含む場合、前記第1リソースのうち前記第2リソースを除くリソースにおいて受信された下り信号に基づいて、前記第1下り信号を復号する制御部と、を有することを特徴とする。
A user terminal according to an aspect of the present invention includes: a reception unit that receives a downlink signal in a first resource assigned to a first downlink signal to the user terminal; and the first resource is a second resource to the user terminal. A control unit that decodes the first downlink signal based on a downlink signal received in a resource excluding the second resource among the first resources when the second resource allocated to the downlink signal is included. It is characterized by that.
本発明によれば、複数のDL信号の間においてプリエンプションを適切に行うことができる。
According to the present invention, preemption can be appropriately performed between a plurality of DL signals.
将来の無線通信システム(例えば、5G又はNR)では、例えば、高速及び大容量(例えば、eMBB:enhanced Mobile Broad Band)、超多数端末(例えば、mMTC:massive Machine Type Communication、IoT:Internet of Things)、超高信頼及び低遅延(例えば、URLLC:Ultra Reliable and Low Latency Communications)など、通信要件(要件、requirement)が異なる複数のサービス(ユースケース、通信タイプ、通信等ともいう)が想定される。なお、通信要件は、例えば、遅延、信頼性、容量(キャパシティ)、速度、性能(performance)の少なくとも一つに関するものであればよい。
In future wireless communication systems (for example, 5G or NR), for example, high speed and large capacity (for example, eMBB: enhanced Mobile Broad Band), very large number of terminals (for example, mMTC: massive Machine Type Communication, IoT: Internet of Things) Multiple services (also referred to as use cases, communication types, communications, etc.) with different communication requirements (requirements) such as ultra-high reliability and low latency (for example, URLLC: Ultra Reliable and Low Latency Communications) are assumed. The communication requirement may be related to at least one of delay, reliability, capacity (capacity), speed, and performance, for example.
例えば、URLLCの通信要件とeMBBの通信要件の違いは、URLLCのレイテンシがeMBBのレイテンシよりも小さいことであってもよいし、URLLCの通信要件が信頼性の通信要件を含むことであってもよい。例えば、eMBBのUプレーンレイテンシの要件は、下りリンクのUプレーンレイテンシが4msであり、上りリンクのUプレーンレイテンシが4msであること、を含んでもよい。一方、URLLCのUプレーンレイテンシの要件は、下りリンクのUプレーンレイテンシが0.5msであり、上りリンクのUプレーンレイテンシが0.5msであること、を含んでもよい。また、URLLCの信頼性の要件は、1msのUプレーンレイテンシにおいて、32バイトの誤り率が10-5であることを含んでもよい。
For example, the difference between the URLLC communication requirement and the eMBB communication requirement may be that the URLLC latency may be smaller than the eMBB latency, or the URLLC communication requirement may include a reliability communication requirement. Good. For example, the eMBB U-plane latency requirement may include a downlink U-plane latency of 4 ms and an uplink U-plane latency of 4 ms. On the other hand, URLLC U-plane latency requirements may include a downlink U-plane latency of 0.5 ms and an uplink U-plane latency of 0.5 ms. The URLLC reliability requirement may also include a 32-byte error rate of 10 −5 at 1 ms U-plane latency.
URLLCなどの超高信頼及び低遅延が要求されるサービスには、相対的に短い時間長のTTIであるショートTTI(shortened TTI)が適する。ショートTTIでは、エンド・ツー・エンドでの短い遅延(例えば、フレーム分割(frame fragmentation)遅延及び/又は送信(Tx)遅延など)、及び/又は、短いラウンドトリップ時間による高い信頼性(すなわち、短期間での再送)がサポートされるためである。
For services that require ultra-high reliability and low delay, such as URLLC, a short TTI (shortened TTI) that is a TTI having a relatively short time length is suitable. In short TTI, end-to-end short delay (eg, frame fragmentation delay and / or transmission (Tx) delay, etc.) and / or high reliability due to short round trip time (ie short term) This is because re-transmission between them is supported.
一方、eMBBなどの高速及び大容量が要求されるサービスには、相対的に長い時間長のTTIであるロングTTIが適する。ロングTTIでは、制御信号によるオーバーヘッドが少ないためある。
On the other hand, a long TTI, which is a TTI having a relatively long time length, is suitable for a service that requires high speed and large capacity such as eMBB. This is because long TTI has little overhead due to control signals.
したがって、将来の無線通信システムでは、時間長が異なるロングTTIとショートTTIとを同時に(同一のキャリア(セル、コンポーネントキャリア(CC))内で)サポートすることが検討されている。ロングTTIは、例えば、サブキャリア間隔15kHz、通常サイクリックプリフィクス(NCP:Normal Cyclic Prefix)において14シンボルで構成されてもよい。ロングTTIは、通常TTI(normal TTI)、サブフレーム等と呼ばれてもよい。
Therefore, in future wireless communication systems, it is considered that long TTIs and short TTIs having different time lengths are supported simultaneously (within the same carrier (cell, component carrier (CC))). The long TTI may be composed of, for example, 14 symbols in a subcarrier interval of 15 kHz and a normal cyclic prefix (NCP: Normal Cyclic Prefix). The long TTI may be called a normal TTI (normal TTI), a subframe, or the like.
また、ショートTTIは、ロングTTIと同一のサブキャリア間隔でロングTTIよりも短いシンボル数で構成されてもよい(例えば、サブキャリア間隔15kHz、NCPにおいて、1又は2シンボル)。或いは、ショートTTIは、ロングTTIよりも高い(広い)サブキャリア間隔でロングTTIと同一又は異なるシンボル数で構成されてもよい(例えば、サブキャリア間隔60kHz、NCPにおいて、14シンボル)。あるいは、その両者の組み合わせによりショートTTIを実現してもよい。
Also, the short TTI may be configured with the same number of symbols as the long TTI and a shorter number of symbols than the long TTI (for example, the subcarrier interval is 15 kHz, 1 or 2 symbols in NCP). Alternatively, the short TTI may be configured with the same or different number of symbols as the long TTI with a higher (wider) subcarrier interval than the long TTI (for example, 14 symbols in a subcarrier interval of 60 kHz and NCP). Alternatively, a short TTI may be realized by a combination of both.
TTIは、幾つかのシンボル、幾つかのミニスロット、幾つかのスロットなどであってもよい。
TTI may be some symbols, some minislots, some slots, etc.
将来の無線通信システムでは異なるサービス(例えば、eMBB、URLLC等)の要求を満たすために、ロングTTI及びショートTTIがサポートされることが検討されている。ロングTTI及びショートTTIがサポートされる場合、遅延削減及び/又は信頼性に対する要求を満たすために、ロングTTIにおける送信開始後にショートTTIがスケジューリングされることが想定される。具体的には、ロングTTIのDLデータの一部をプリエンプト(preempt)(くり抜く、パンクチャ等ともいう)して、ショートTTIでのDLデータを挿入することが想定される。
In future wireless communication systems, it is considered that long TTI and short TTI are supported in order to satisfy requirements for different services (for example, eMBB, URLLC, etc.). If long TTI and short TTI are supported, it is assumed that the short TTI is scheduled after the start of transmission in the long TTI in order to meet the requirements for delay reduction and / or reliability. Specifically, it is assumed that a part of the DL data of the long TTI is preempted (also referred to as hollow or puncture) and the DL data of the short TTI is inserted.
ロングTTIの一部がショートTTIによりプリエンプトされる場合、無線基地局は、ロングTTIのデータに対して、ショートTTIがスケジューリングされる部分をパンクチャして送信することが考えられる。そのため、ロングTTIデータを受信するユーザ端末は、当該ロングTTIデータの受信処理(例えば、復調及び/又は復号)を適切にできなくなる問題が生じる(図1A参照)。
When a part of the long TTI is preempted by the short TTI, the radio base station may puncture and transmit the part where the short TTI is scheduled with respect to the data of the long TTI. Therefore, there arises a problem that the user terminal that receives the long TTI data cannot appropriately receive the long TTI data (for example, demodulation and / or decoding) (see FIG. 1A).
この場合、ユーザ端末側では、当該ロングTTIのデータに対して検出ミス(復号失敗)と判断するが、データがショートTTIによりパンクチャされたことを認識できない。このため、ユーザ端末は、ショートTTIでスケジューリングされるデータ(割り込まれたショートTTIデータ)も自端末宛てのデータであると判断して、UEバッファ(ソフトバッファ)への蓄積(store)を行う。UEバッファに自端末宛てでないデータが蓄積されると、再送で受信したロングTTIデータとソフトバッファに蓄積されたデータを合成(combine)して復号を行う際に復号処理のパフォーマンスの低下及び/又は復号の失敗が生じるおそれがある。
In this case, the user terminal determines that the data of the long TTI is a detection error (decoding failure), but cannot recognize that the data has been punctured by the short TTI. For this reason, the user terminal determines that the data scheduled in the short TTI (interrupted short TTI data) is also the data addressed to the user terminal, and stores the data in the UE buffer (soft buffer). When data not addressed to the UE is accumulated in the UE buffer, the performance of the decoding process is degraded when decoding is performed by combining the long TTI data received by retransmission and the data accumulated in the soft buffer, and / or Decryption failure may occur.
そこで、無線基地局が、ショートTTIによるロングTTIのプリエンプションに関する指示情報をロングTTIのユーザ端末に送信することが検討されている(図1B参照)。プリエンプションに関する指示情報は、プリエンプション指示(preemption indication:PI、中断送信指示(interrupted transmission indication))、プリエンプション指示情報、パンクチャ指示情報、パンクチャードリソース情報、又はインパクテッドリソース情報などと呼んでもよい。
Therefore, it is considered that the radio base station transmits the instruction information regarding the preemption of the long TTI by the short TTI to the user terminal of the long TTI (see FIG. 1B). The instruction information related to preemption may be called preemption instruction (preemption indication: PI, interrupted transmission instruction), preemption instruction information, puncture instruction information, punctured resource information, or impacted resource information.
プリエンプション指示は、DCIフォーマット2_1によって送信されてもよい。DCIフォーマット2_1は、プリエンプションのリソース(例えば、少なくとも1つのPRB及び少なくとも1つのOFDMシンボル)の通知に用いられてもよい。UEは、このリソースにおいて当該UEに対する送信が無いと想定し、DL信号の復号を行ってもよい。また、DCIフォーマット2_1は、INT(interruption)-RNTI(Radio Network Temporary Identifier)によってスクランブルされたCRC(Cyclic Redundancy Check)を有してもよい。DCIフォーマット2_1によって、幾つかのプリエンプション指示(フィールド)が送信されてもよい。DCIフォーマット2_1のサイズは、上位レイヤによって設定されてもよい。
The preemption instruction may be transmitted in DCI format 2_1. The DCI format 2_1 may be used for notification of preemption resources (eg, at least one PRB and at least one OFDM symbol). The UE may perform DL signal decoding assuming that there is no transmission to the UE in this resource. The DCI format 2_1 may include a CRC (Cyclic Redundancy Check) scrambled by INT (interruption) -RNTI (Radio Network Temporary Identifier). Several preemption instructions (fields) may be transmitted by the DCI format 2_1. The size of the DCI format 2_1 may be set by an upper layer.
UEは、DL信号に対するプリエンプションを行うことを示す上位レイヤパラメータ(例えば、Preemp-DL及びPreemp-DL=ON、DownlinkPreemption)を提供される場合、上位レイヤパラメータ(例えば、INT-RNTI)によってINT-RNTIを設定されてもよい。
When the UE is provided with higher layer parameters (for example, Preemp-DL and Preemp-DL = ON, DownlinkPreemption) indicating that preemption is performed on the DL signal, the UE performs INT-RNTI according to the higher layer parameter (for example, INT-RNTI). May be set.
UEは、CORESET(control resource set)内において送信されたPDCCHにおいてDCIフォーマット2_1を検出した場合、DCIフォーマット2_1内のフィールドに示されたリソース(幾つかのシンボル)は、当該CORESETよりも前のシンボルを含んでもよい。DCIフォーマット2_1内のフィールドの各ビットは、リソース(幾つかのシンボル及び幾つかのPRBの少なくとも1つ)にマップされ、対応するリソースにおいてUEへの送信があるか否かを示してもよい。
When the UE detects the DCI format 2_1 in the PDCCH transmitted in the CORESET (control resource set), the resource (several symbols) indicated in the field in the DCI format 2_1 is a symbol before the CORESET. May be included. Each bit of the field in DCI format 2_1 may be mapped to a resource (at least one of several symbols and several PRBs) to indicate whether there is a transmission to the UE on the corresponding resource.
ユーザ端末は、当該ユーザ端末へのDL信号に対してプリエンプションが発生することによって、当該DL信号の復号に失敗し、当該DL信号の再送が発生する可能性が高くなる。ユーザ端末は、受信したDL信号をバッファに蓄積し、DL信号の初送(initial transmission)と幾つかの再送(retransmission)とを含む全てのDL信号を合成し、合成結果を復号する。ユーザ端末は、プリエンプションの部分を認識し、この部分の復号への影響を低減することによって、復号の性能を改善できる。
When a preemption occurs for a DL signal to the user terminal, the user terminal is likely to fail to decode the DL signal and cause retransmission of the DL signal. The user terminal accumulates the received DL signal in a buffer, synthesizes all DL signals including initial transmission of DL signals and several retransmissions, and decodes the synthesized result. The user terminal can improve the decoding performance by recognizing the preemption part and reducing the influence of this part on the decoding.
ユーザ端末は、無線基地局から通知されるプリエンプション指示により、ロングTTIのデータの一部がパンクチャされていることを認識できる。パンクチャされている部分をユーザ端末に通知することにより、ユーザ端末は、自端末宛てのデータのみを選択してUEバッファに蓄積することができる。例えば、ユーザ端末は、パンクチャ部分に対応するデータ領域のソフトビットを除去(flush、破棄)して(例えば、対数尤度比(LLR:Log Likelihood Ratio)をゼロ(0)に置き換えて)ソフトバッファへの蓄積を制御する。
The user terminal can recognize that a part of the long TTI data is punctured by the preemption instruction notified from the radio base station. By notifying the user terminal of the punctured portion, the user terminal can select only the data addressed to itself and store it in the UE buffer. For example, the user terminal removes (flushes, discards) the soft bits in the data area corresponding to the puncture part (for example, replaces the log likelihood ratio (LLR) with zero (0)) and the soft buffer. Control the accumulation to.
また、複数のUEが異なるサービス(通信要件)を用いることが考えられる。この場合、複数のUEに対する複数のDL信号の間において、プリエンプションを行うことが考えられる。
Also, it is conceivable that multiple UEs use different services (communication requirements). In this case, it is conceivable to perform preemption between a plurality of DL signals for a plurality of UEs.
例えば、UE1は、eMBB及びURLLCをサポートし、UE2は、URLLCのみをサポートし、UE3は、eMBBのみをサポートするとする。
For example, assume that UE1 supports eMBB and URLLC, UE2 supports only URLLC, and UE3 supports only eMBB.
通信要件は、例えば、eMBB、URLLC、それらの組み合わせを含んでもよい。通信要件は、当該通信要件を満たすための設定情報(例えば、MCS(Modulation and Code Scheme)テーブル、CQI(Channel Quality Indication)テーブル、ニューメロロジー、周波数バンド、周波数範囲、上位レイヤパラメータ、DCIの所定フィールド、DCIフォーマットなど)に関連付けられてもよい。
The communication requirements may include eMBB, URLLC, and combinations thereof, for example. Communication requirements include setting information (for example, MCS (Modulation and Code Scheme) table, CQI (Channel Quality Indication) table, neurology, frequency band, frequency range, higher layer parameters, DCI) to meet the communication requirements. Field, DCI format, etc.).
URLLCデータは、URLLC用の設定情報に基づくPDSCHであってもよい。eMBBデータは、eMBB用の設定情報に基づくPDSCHであってもよい。URLLCとeMBBの間において、設定情報の少なくとも一部が異なってもよい。eMBB用の設定情報とURLCC用の設定情報とが仕様に規定されてもよい。
URLLC data may be PDSCH based on setting information for URLLC. The eMBB data may be a PDSCH based on eMBB setting information. At least a part of the setting information may be different between URLLC and eMBB. The setting information for eMBB and the setting information for URLCC may be defined in the specification.
設定情報は、MCS(Modulation and Code Scheme)テーブル及びCQI(Channel Quality Indication)テーブルの少なくとも1つであってもよい。MCSテーブルの各エントリは、エントリを特定するMCSインデックス(IMCS)、変調次数(modulation order、Qm)、目標符号化率(target code rate、R)、スペクトル効率(spectral efficiency)の少なくとも1つを含んでもよい。
The setting information may be at least one of an MCS (Modulation and Code Scheme) table and a CQI (Channel Quality Indication) table. Each entry in the MCS table includes at least one of an MCS index (IMCS) that identifies the entry, a modulation order (Qm), a target coding rate (target code rate, R), and a spectral efficiency (spectral efficiency). But you can.
また、eMBBをサポートするUE1及びUE3は、PIをモニタすることを設定されるとする。
Suppose that UE1 and UE3 supporting eMBB are set to monitor PI.
図2Aに示すように、無線基地局は、UE3へのeMBBデータ送信中に、UE1へのURLLCデータと、UE2へのURLLCデータと、を送信する場合、それらのデータの送信後にプリエンプション指示(PI)を送信する。このプリエンプション指示は、UE1へのURLLCデータと、UE2へのURLLCデータと、のリソース(時間リソース及び周波数リソースの少なくとも1つ)を示す。
As shown in FIG. 2A, when transmitting the URLLC data to UE1 and the URLLC data to UE2 during the eMBB data transmission to UE3, the radio base station transmits a preemption instruction (PI) after the transmission of these data. ). This preemption instruction indicates resources (at least one of a time resource and a frequency resource) of URLLC data to UE1 and URLLC data to UE2.
UE3は、プリエンプション指示に基づいて、UE1へのURLLCデータと、UE2へのURLLCデータと、に対応するソフトビットを、バッファ(ソフトバッファ)から除去してもよい。UE3は、バッファ内のソフトビットを用いて、UE3へのeMBBデータを復号してもよいし、このソフトビットと後に再送されるUE3へのeMBBデータに対応するソフトビットとを合成し、UE3へのeMBBデータを復号してもよい。
UE3 may remove the soft bits corresponding to the URLLC data to UE1 and the URLLC data to UE2 from the buffer (soft buffer) based on the preemption instruction. UE3 may decode the eMBB data to UE3 using the soft bit in the buffer, or synthesizes this soft bit and the soft bit corresponding to the eMBB data to UE3 to be retransmitted later to UE3. The eMBB data may be decoded.
図2Aに示すように、無線基地局は、UE1へのeMBBデータの送信中に、UE2へのURLLCデータを送信する場合、それらのデータの送信後にプリエンプション指示を送信する。このプリエンプション指示は、UE2へのURLLCデータのリソース(時間リソース及び周波数リソースの少なくとも1つ)を示す。
As shown in FIG. 2A, when transmitting the URLLC data to UE2 during the transmission of eMBB data to UE1, the radio base station transmits a preemption instruction after transmitting the data. This preemption instruction indicates a resource of URLLC data to UE 2 (at least one of a time resource and a frequency resource).
UE1は、プリエンプション指示に基づいて、UE2へのURLLCデータに対応するソフトビットを、バッファから除去してもよい。UE1は、バッファ内のソフトビットを用いて、UE1へのeMBBデータを復号してもよいし、このソフトビットと後に再送されるUE1へのeMBBデータに対応するソフトビットとを合成し、UE1へのeMBBデータを復号してもよい。
UE1 may remove the soft bit corresponding to the URLLC data to UE2 from the buffer based on the preemption instruction. UE1 may decode the eMBB data to UE1 using the soft bit in the buffer, or synthesizes this soft bit and the soft bit corresponding to the eMBB data to UE1 to be retransmitted later to UE1. The eMBB data may be decoded.
また、1つのUEが複数のサービス(通信要件)を用いることが考えられる。この場合、1つのUEに対する複数のDL信号の間において、プリエンプションを行うことが考えられる。しかしながら、1つのUEに対する複数のDL信号の間のプリエンプションをどのように行うかが問題となる。
Also, it is conceivable that one UE uses a plurality of services (communication requirements). In this case, it is conceivable to perform preemption between a plurality of DL signals for one UE. However, there is a problem of how to perform preemption between a plurality of DL signals for one UE.
本発明者らは、1つのUEに対する複数のDL信号の間において適切にプリエンプションを行う方法を着想した。
The present inventors have conceived a method of appropriately performing preemption between a plurality of DL signals for one UE.
以下、本発明の一実施の形態について図面を参照して詳細に説明する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
また、本実施の形態では、DL信号として、DLデータチャネル(例えば、PDSCH:Physical Downlink Shared Channel)を想定するがこれに限られない。例えば、本実施の形態の再送制御は、ランダムアクセス応答(RAR:Random Access Response)等の再送制御にも適用可能である。
In this embodiment, a DL data channel (for example, PDSCH: Physical Downlink Shared Channel) is assumed as the DL signal, but is not limited thereto. For example, the retransmission control according to the present embodiment can be applied to retransmission control such as a random access response (RAR).
<第1の態様>
同一UE宛の複数のDL信号の間のプリエンプション(UE内プリエンプション、intra-UE preemption)が、プリエンプション指示を伴わなくてもよい。 <First aspect>
Preemption between a plurality of DL signals addressed to the same UE (in-UE preemption, intra-UE preemption) may not be accompanied by a preemption instruction.
同一UE宛の複数のDL信号の間のプリエンプション(UE内プリエンプション、intra-UE preemption)が、プリエンプション指示を伴わなくてもよい。 <First aspect>
Preemption between a plurality of DL signals addressed to the same UE (in-UE preemption, intra-UE preemption) may not be accompanied by a preemption instruction.
UEは、プリエンプション指示のモニタリングを設定されずに、当該UEに対する複数のDL信号の間のプリエンプションを処理してもよい。このようなプリエンプションが行われる場合、UEは、複数のDL信号のそれぞれのスケジューリングのためのDCIを受信するため、プリエンプション指示がなくても、複数のDL信号のそれぞれに割り当てられたリソースを認識し、プリエンプトされたDL信号を処理できる。各DL信号のスケジューリングのためのDCIは、対応するDL信号より前に受信されてもよい。各DL信号のスケジューリングのためのDCIは、DCIフォーマット1_0、1_1などを有してもよい。
The UE may process preemption between a plurality of DL signals for the UE without setting monitoring of the preemption instruction. When such preemption is performed, since the UE receives DCI for scheduling of each of the plurality of DL signals, the UE recognizes resources allocated to each of the plurality of DL signals even if there is no preemption instruction. The preempted DL signal can be processed. The DCI for scheduling of each DL signal may be received before the corresponding DL signal. The DCI for scheduling each DL signal may have a DCI format 1_0, 1_1, etc.
UEは、第1通信要件を有する第1DL信号に割り当てられたリソースに重複するリソースにおいて、第2通信要件を有する第2DL信号を検出した場合、第1DL信号の復号を行う際に、第2DL信号が重複するリソースから生成されるソフトビットを無視して復号を行ってもよい。また、UEは、前記第1DL信号の復号が失敗した場合、そのソフトビットをバッファ(ソフトバッファ)に格納するに当たり、第2DL信号が重複するリソースから生成されるソフトビットを除去して(またはゼロで置換して)、バッファに格納するよう制御してもよい。第1DL信号の再送が行われた場合、UEは、バッファ内のソフトビットに基づいて第1DL信号を復号してもよいし、バッファ内のソフトビットと後に再送された第1DL信号のソフトビットとを合成して復号してもよい。
When the UE detects the second DL signal having the second communication requirement in the resource overlapping the resource allocated to the first DL signal having the first communication requirement, the UE performs the second DL signal when decoding the first DL signal. Decoding may be performed by ignoring soft bits generated from overlapping resources. Further, when the UE fails to decode the first DL signal, the UE removes the soft bit generated from the resource in which the second DL signal overlaps (or zero) when storing the soft bit in the buffer (soft buffer). And may be controlled to be stored in the buffer. When the retransmission of the first DL signal is performed, the UE may decode the first DL signal based on the soft bits in the buffer, or the soft bits in the buffer and the soft bits of the first DL signal retransmitted later May be combined and decoded.
あるいは、UEは、第1DL信号に割り当てられたリソースに重複するリソースにおいて、第2DL信号を検出した場合、第2DL信号の復号を行う際に、第2DL信号が重複するリソースから生成されるソフトビットを用いて復号を行ってもよい。また、UEは、前記第1DL信号の復号が失敗した場合、そのソフトビットをバッファに格納するに当たり、第2DL信号が重複するリソースから生成されるソフトビットに基づいて第2DL信号を復号してもよい。その後、UEは、バッファから当該ソフトビットを除去し、バッファ内のソフトビットに基づいて第1DL信号を復号してもよいし、バッファ内のソフトビットと後に再送された第1DL信号のソフトビットとを合成して復号してもよい。
Alternatively, when the UE detects the second DL signal in the resource overlapping with the resource allocated to the first DL signal, the soft bit generated from the resource overlapping the second DL signal when decoding the second DL signal You may perform decoding using. In addition, when the UE fails to decode the first DL signal, the UE may decode the second DL signal based on the soft bit generated from the resource in which the second DL signal overlaps in storing the soft bit in the buffer. Good. Thereafter, the UE may remove the soft bit from the buffer and decode the first DL signal based on the soft bit in the buffer, or the soft bit in the buffer and the soft bit of the first DL signal retransmitted later May be combined and decoded.
例えば、図3Aにおいて、UE1は、eMBB及びURLLCをサポートする。UE1は、受信中のeMBBデータのリソースに重複するリソースにおいて、URLLCデータ(トラフィック)を検出した場合、UE1は、バッファ内のソフトビットのうちURLLCデータに対応するソフトビットを除去してもよい。この場合、バッファ内のソフトビットに基づいてeMBBデータを復号してもよいし、バッファ内のソフトビットと後に再送されたeMBBデータのソフトビットとを合成して復号してもよい。
For example, in FIG. 3A, UE1 supports eMBB and URLLC. When UE1 detects URLLC data (traffic) in a resource overlapping with the resource of the eMBB data being received, UE1 may remove the soft bit corresponding to the URLLC data from the soft bits in the buffer. In this case, the eMBB data may be decoded based on the soft bits in the buffer, or the soft bits in the buffer and the soft bits of the eMBB data retransmitted later may be combined and decoded.
あるいは、UE1は、受信中のeMBBデータのリソースに重複するリソースにおいて、URLLCデータを検出した場合、バッファ内のソフトビットのうちURLLCデータに対応するソフトビットに基づいてURLLCデータを復号してもよい。その後、UE1は、バッファから当該ソフトビットを除去し、バッファ内のソフトビットに基づいてeMBBデータを復号してもよいし、バッファ内のソフトビットと後に再送されたeMBBデータのソフトビットとを合成して復号してもよい。
Alternatively, when the UE1 detects URLLC data in a resource overlapping with the resource of the eMBB data being received, the UE1 may decode the URLLC data based on the soft bits corresponding to the URLLC data among the soft bits in the buffer. . Thereafter, UE1 may remove the soft bit from the buffer and decode the eMBB data based on the soft bit in the buffer, or may combine the soft bit in the buffer and the soft bit of the eMBB data retransmitted later. And may be decrypted.
再送されたDL信号に対してプリエンプションが行われる場合、再送のDL信号の一部が除去されることによって、復号の性能が低下するおそれがある。
When preemption is performed on the retransmitted DL signal, a part of the retransmitted DL signal may be removed, which may degrade the decoding performance.
そこで、同一UE宛の複数のDL信号の間のプリエンプションは、DL信号の初送に対して許可され、DL信号の再送に対して許可されなくてもよい。
Therefore, preemption between a plurality of DL signals addressed to the same UE is permitted for the initial transmission of the DL signal and may not be permitted for the retransmission of the DL signal.
UEは、第1DL信号が再送である場合、第2DL信号によってプリエンプトされた(割り込まれた)第1DL信号を受信することを期待しなくてもよい。第1DL信号及び第2DL信号は、異なるサービス(通信要件)を有していてもよい。当該UEが、eMBBとURLLCの両方をサポートする(eMBBとURLLCの両方を設定される)場合、第1DL信号は例えば、eMBBのデータ(PDSCH)であってもよい。第2DL信号は、URLLCのデータ(PDSCH)であってもよい。
The UE may not expect to receive the first DL signal preempted (interrupted) by the second DL signal when the first DL signal is a retransmission. The first DL signal and the second DL signal may have different services (communication requirements). When the UE supports both eMBB and URLLC (both eMBB and URLLC are set), the first DL signal may be eMBB data (PDSCH), for example. The second DL signal may be URLLC data (PDSCH).
第1DL信号のスケジューリングのためのDCIは、HARQ情報(NDI(New Data Indicator)、RV(Redundancy Version)、HARQプロセスID(HARQ process number:HPN)の少なくとも1つ)を含んでもよい。UEは、HARQ情報に基づいて、第1DL信号が初送(initial transmission)であるか再送(retransmission)であるかを識別してもよい。
The DCI for scheduling of the first DL signal may include HARQ information (at least one of NDI (New Data Indicator), RV (Redundancy Version), HARQ process ID (HARQ process number: HPN)). The UE may identify whether the first DL signal is an initial transmission or a retransmission based on the HARQ information.
例えば、UEは、NDIのトグルによって、初送であるか再送であるかを識別してもよい。NDIは、初送又は再送のいずれかを示す識別子である。例えば、同一のHPNにおいてNDIがトグルされていない(前回と同じ値である)場合、再送であることを示し、NDIがトグルされている(前回と異なる値である)場合、初送であることを示す。RVは、送信データの冗長化の違いを示す。RVの値は、例えば、0、1、2、3であり、0は冗長化の度合いが最も低いため初送に用いられる。同一のHPNの送信毎に異なるRV値を適用することにより、HARQのゲインを効果的に得ることができる。
For example, the UE may identify whether it is initial transmission or retransmission by NDI toggle. NDI is an identifier indicating either initial transmission or retransmission. For example, if NDI is not toggled in the same HPN (the same value as the previous time), it indicates retransmission, and if NDI is toggled (a value different from the previous time), it is the first transmission. Indicates. RV indicates a difference in redundancy of transmission data. The value of RV is, for example, 0, 1, 2, 3, and 0 is used for initial transmission because the degree of redundancy is the lowest. By applying a different RV value for each transmission of the same HPN, a HARQ gain can be effectively obtained.
また、UEは、同一のHPNに対して、初送を示すNDIを受信した場合、バッファにおいて当該HPNに対応するソフトビットを除去してもよい。
Further, when receiving the NDI indicating the initial transmission for the same HPN, the UE may remove the soft bit corresponding to the HPN in the buffer.
無線基地局とUEの間において、初送か再送かの認識が一致していなくてもよい。これは、無線基地局が再送を行う場合に、UEが初送と認識するケースである。無線基地局が、再送に対するプリエンプションを行わないことによって、UEは、このケースにおいて特別な処理を行う必要がない。
The recognition of initial transmission or retransmission may not match between the radio base station and the UE. This is a case where the UE recognizes initial transmission when the radio base station performs retransmission. Since the radio base station does not perform preemption for retransmission, the UE does not need to perform special processing in this case.
一方、異なるUE宛の複数のDL信号の間のプリエンプションは、プリエンプション指示を伴ってもよい。UEは、プリエンプション指示のモニタリングを設定されない場合、当該UE宛のDL信号に対し、他UE宛のDL信号のプリエンプションが行われないと想定してもよい。
Meanwhile, preemption between a plurality of DL signals addressed to different UEs may be accompanied by a preemption instruction. When the monitoring of the preemption instruction is not set, the UE may assume that the DL signal addressed to the UE is not preempted with the DL signal addressed to the other UE.
例えば、図3Bに示すように、UE1宛のeMBBデータに対し、UE2宛のURLLCデータのプリエンプションが行われる場合、UE1にプリエンプション指示のモニタリングが設定される。
For example, as shown in FIG. 3B, when preemption of URLLC data addressed to UE2 is performed on eMBB data addressed to UE1, monitoring of a preemption instruction is set in UE1.
以上の第1の態様によれば、同一UE宛のDL信号の間のプリエンプションに対して、プリエンプション指示が送信されないことによって、制御情報のオーバーヘッドを抑えることができ、リソースの利用効率を高めることができる。また、DL信号の再送に対するプリエンプションが行われないことによって、復号性能の低下を防ぐことができる。
According to the first aspect described above, the overhead of control information can be suppressed and the resource utilization efficiency can be improved by not transmitting a preemption instruction for preemption between DL signals addressed to the same UE. it can. In addition, since preemption for DL signal retransmission is not performed, degradation in decoding performance can be prevented.
<第2の態様>
同一UE宛の複数のDL信号の間のプリエンプションが、プリエンプション指示を伴ってもよい。 <Second aspect>
Preemption between a plurality of DL signals addressed to the same UE may be accompanied by a preemption instruction.
同一UE宛の複数のDL信号の間のプリエンプションが、プリエンプション指示を伴ってもよい。 <Second aspect>
Preemption between a plurality of DL signals addressed to the same UE may be accompanied by a preemption instruction.
無線基地局は、再送に対してもプリエンプションを適用する場合、UEに対してプリエンプション指示のモニタリングを設定してもよい。UEは、プリエンプション指示に基づいて、同一UE宛の複数のDL信号の間のプリエンプションを処理してもよい。
The radio base station may set monitoring of a preemption instruction for the UE when applying preemption for retransmission. The UE may process preemption between a plurality of DL signals addressed to the same UE based on the preemption instruction.
また、プリエンプション指示は、当該プリエンプション指示に示されたデータがURLLCデータであるかeMBBデータであるかを区別しない。よって、UEは、URLLCデータを復号できない場合がある。
Also, the preemption instruction does not distinguish whether the data indicated in the preemption instruction is URLLC data or eMBB data. Therefore, the UE may not be able to decode URLLC data.
例えば、図4に示すように、UE1は、eMBBデータを受信し、eMBBデータの途中において、URLLCデータを受信する。プリエンプション指示がURLLCデータのリソースを示す場合、プリエンプション指示がUE1に対する送信がないことを意味するため、UE1は、eMBBデータをバッファに格納する際に、URLLCデータが重複するリソースから生成されるeMBBデータのソフトビットを除去する。URLLCデータのソフトビット格納は、eMBBデータのソフトビット格納とは独立に行うものとしてもよい。この場合、再送制御及びソフトビット合成もeMBBデータとURLLCデータ独立に行われる。
For example, as shown in FIG. 4, UE1 receives eMBB data, and receives URLLC data in the middle of eMBB data. When the preemption instruction indicates the resource of the URLLC data, it means that the preemption instruction is not transmitted to the UE1. Therefore, when the eMBB data is stored in the buffer, the UE1 generates eMBB data generated from the resource in which the URLLC data is duplicated. Remove soft bits. The soft bit storage of URLLC data may be performed independently of the soft bit storage of eMBB data. In this case, retransmission control and soft bit synthesis are also performed independently of eMBB data and URLLC data.
プリエンプション指示を行うUEグループ共通シグナリング(UEグループ共通PDCCHにおけるUEグループ共通DCI)が設定された場合、UE1は、プリエンプション指示に従って、指定されたリソースから生成されるソフトビットを合成しないよう制御する。例えばユーザ端末は、前記ソフトビットを削除するよう制御する。この場合、プリエンプション指示に基づいてデータを破棄する可能性があるため、受信したデータを正しく復号できなくなる可能性がある。
When UE group common signaling for performing a preemption instruction (UE group common DCI in UE group common PDCCH) is set, UE1 performs control so as not to synthesize soft bits generated from a specified resource in accordance with the preemption instruction. For example, the user terminal controls to delete the soft bit. In this case, data may be discarded based on the preemption instruction, and thus received data may not be correctly decoded.
そこで、所定条件が満たされる場合、UEは、プリエンプションに対応するソフトビットを除去しないよう制御するものとしてもよい。所定条件は、次の条件1~3の少なくとも1つが満たされることであってもよい。
Therefore, when a predetermined condition is satisfied, the UE may perform control so as not to remove the soft bit corresponding to the preemption. The predetermined condition may be that at least one of the following conditions 1 to 3 is satisfied.
(条件1)
特定通信要件を有するDL信号が特定DCIを用いてスケジュールされたこと (Condition 1)
DL signal with specific communication requirements is scheduled with specific DCI
特定通信要件を有するDL信号が特定DCIを用いてスケジュールされたこと (Condition 1)
DL signal with specific communication requirements is scheduled with specific DCI
特定通信要件は、URLLCであってもよい。DL信号は、データ(PDSCH)であってもよい。
The specific communication requirement may be URLLC. The DL signal may be data (PDSCH).
特定DCIは、新たなDCIフォーマットを有していてもよい。当該DCIフォーマットは、DCI内のDCIフォーマット識別子(DCI format identifier)フィールド(例えば、1ビット)によって識別されてもよい。当該DCIフォーマットは、新たなDCIDCIフォーマットサイズによって識別されてもよい。当該DCIフォーマットは、特定RNTI(例えば、URLLC-RNTI)によってスクランブルされたCRCを有してもよい。当該DCIフォーマットは、スロットの途中において検出されてもよい(スロットの先頭において検出されなくてもよい)。
The specific DCI may have a new DCI format. The DCI format may be identified by a DCI format identifier field (for example, 1 bit) in DCI. The DCI format may be identified by a new DCIDCI format size. The DCI format may have a CRC scrambled with a specific RNTI (eg, URLLC-RNTI). The DCI format may be detected in the middle of the slot (it may not be detected at the beginning of the slot).
特定DCIは、特定要件を有するDL信号より前に受信されてもよい。または、特定DCIは、C-RNTIとは異なるRNTIでCRCをスクランブルされたDCIであってもよい。
The specific DCI may be received before the DL signal having specific requirements. Alternatively, the specific DCI may be DCI obtained by scrambling the CRC with an RNTI different from the C-RNTI.
(条件2)
特定通信要件を有するDL信号と、プリエンプション指示によって示されたリソースと、が特定関係を有すること (Condition 2)
The DL signal having specific communication requirements and the resource indicated by the preemption instruction have a specific relationship
特定通信要件を有するDL信号と、プリエンプション指示によって示されたリソースと、が特定関係を有すること (Condition 2)
The DL signal having specific communication requirements and the resource indicated by the preemption instruction have a specific relationship
特定関係は、当該データのリソースのサイズR1が、プリエンプション指示によって示されたリソースのサイズR2以下であること(R1≦R2)であってもよい。
The specific relationship may be that the resource size R1 of the data is equal to or smaller than the resource size R2 indicated by the preemption instruction (R1 ≦ R2).
(条件3)
特定通信要件を有するDL信号が、マッピングタイプBを有するPDSCHであること (Condition 3)
DL signal with specific communication requirements is PDSCH with mapping type B
特定通信要件を有するDL信号が、マッピングタイプBを有するPDSCHであること (Condition 3)
DL signal with specific communication requirements is PDSCH with mapping type B
PDSCH送信において、マッピングタイプAを適用する場合、スロットにおけるPDSCHの開始位置は予め設定された候補シンボルから選択され、PDSCHの割当てシンボル数(PDSCH長)は所定値(X)から14までの範囲から選択される。開始位置の候補となる候補シンボルは、例えば、スロット内の所定シンボルインデックス(例えば、#0、#1、#2、#3)に相当する。Xは、例えば、3であってもよい。
In the case of applying mapping type A in PDSCH transmission, the PDSCH start position in the slot is selected from preset candidate symbols, and the number of PDSCH allocation symbols (PDSCH length) is within a range from a predetermined value (X) to 14. Selected. Candidate symbols that are candidates for the start position correspond to, for example, predetermined symbol indexes (for example, # 0, # 1, # 2, and # 3) in the slot. X may be 3, for example.
PDSCH送信にマッピングタイプBを適用する場合、PDSCHの割当てシンボル数(PDSCH長)は予め設定された候補シンボル数から選択され、スロットにおけるPDSCHの開始位置はスロットのいずれかの場所(シンボル)に設定する。PDSCH長の候補シンボル数は、例えば、所定数(2、4、又は7シンボル)に相当する。つまり、PDSCHの開始位置は柔軟に設定される。
When mapping type B is applied to PDSCH transmission, the number of PDSCH allocation symbols (PDSCH length) is selected from the preset number of candidate symbols, and the start position of PDSCH in the slot is set to any location (symbol) in the slot. To do. The number of PDSCH-length candidate symbols corresponds to, for example, a predetermined number (2, 4, or 7 symbols). That is, the PDSCH start position is set flexibly.
基地局は、PDSCHの開始シンボル(S)とデータ長(L)の指示情報(SLIV:Start and length indicator value)、PDSCHのマッピングタイプの組み合わせ候補、スロットオフセットをUEに設定してもよい。スロットオフセットは、DCIが送信されるスロットと、当該DCIによりスケジューリングされるPDSCHのスロットのオフセットに相当する。
The base station may set PDSCH start symbol (S) and data length (L) indication information (SLIV: Start and length indicator value), PDSCH mapping type combination candidate, and slot offset in the UE. The slot offset corresponds to an offset between a slot in which DCI is transmitted and a PDSCH slot scheduled by the DCI.
第1通信要件を有する第1DL信号に割り当てられたリソースに重複するリソースにおいて、第2通信要件を有する第2DL信号によるプリエンプションが行われ、UEがプリエンプション指示を受信し、所定条件が満たされない場合、UEは、第1DL信号の復号を行う際に、第2DL信号が重複するリソースから生成されるソフトビットを無視して復号を行ってもよい。また、UEは、第1DL信号の復号が失敗した場合、そのソフトビットをバッファ(ソフトバッファ)に格納するに当たり、第2DL信号が重複するリソースから生成されるソフトビットを除去して(またはゼロで置換して)、バッファに格納するよう制御してもよい。第1DL信号の再送が行われた場合、UEは、バッファ内のソフトビットに基づいて第1DL信号を復号してもよいし、バッファ内のソフトビットと後に再送された第1DL信号のソフトビットとを合成して復号してもよい。
In a resource overlapping with the resource allocated to the first DL signal having the first communication requirement, preemption by the second DL signal having the second communication requirement is performed, and when the UE receives the preemption instruction and the predetermined condition is not satisfied, When decoding the first DL signal, the UE may perform the decoding by ignoring the soft bits generated from the resources in which the second DL signal overlaps. Further, when the decoding of the first DL signal fails, the UE removes the soft bit generated from the resource in which the second DL signal overlaps (or zero) when storing the soft bit in the buffer (soft buffer). It may be controlled to store in the buffer. When the retransmission of the first DL signal is performed, the UE may decode the first DL signal based on the soft bits in the buffer, or the soft bits in the buffer and the soft bits of the first DL signal retransmitted later May be combined and decoded.
第1通信要件を有する第1DL信号に割り当てられたリソースに重複するリソースにおいて、第2通信要件を有する第2DL信号によるプリエンプションが行われ、UEがプリエンプション指示を受信し、所定条件が満たされる場合、UEは、第2DL信号の復号を行う際に、第2DL信号が重複するリソースから生成されるソフトビットを用いて復号を行ってもよい。また、UEは、第1DL信号の復号が失敗した場合、そのソフトビットをバッファに格納するに当たり、第2DL信号が重複するリソースから生成されるソフトビットに基づいて第2DL信号を復号してもよい。その後、UEは、バッファから当該ソフトビットを除去し、バッファ内のソフトビットに基づいて第1DL信号を復号してもよいし、バッファ内のソフトビットと後に再送された第1DL信号のソフトビットとを合成して復号してもよい。
In a resource overlapping with resources allocated to the first DL signal having the first communication requirement, preemption by the second DL signal having the second communication requirement is performed, and when the UE receives the preemption instruction and the predetermined condition is satisfied, When decoding the second DL signal, the UE may perform decoding using soft bits generated from resources in which the second DL signal overlaps. In addition, when the decoding of the first DL signal fails, the UE may decode the second DL signal based on the soft bit generated from the resource in which the second DL signal overlaps in storing the soft bit in the buffer. . Thereafter, the UE may remove the soft bit from the buffer and decode the first DL signal based on the soft bit in the buffer, or the soft bit in the buffer and the soft bit of the first DL signal retransmitted later May be combined and decoded.
以上の第2の態様によれば、UEへの第1DL信号の送信が再送であっても、第1DL信号に対して同一UEへの第2DL信号のプリエンプションを行うことができる。また、UEは、プリエンプション指示に示された第2DL信号であっても、所定条件の下で第2DL信号に対応するソフトビットを除去しないことによって、UEは、第2DL信号を適切に復号できる。
According to the above 2nd aspect, even if transmission of the 1st DL signal to UE is resending, the preemption of the 2nd DL signal to the same UE can be performed with respect to a 1st DL signal. Also, even if the UE is the second DL signal indicated in the preemption instruction, the UE can appropriately decode the second DL signal by not removing the soft bits corresponding to the second DL signal under a predetermined condition.
(無線通信システム)
以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of a wireless communication system according to an embodiment of the present invention will be described. In this wireless communication system, communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of a wireless communication system according to an embodiment of the present invention will be described. In this wireless communication system, communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
図5は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention. In the radio communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
The radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange | positioned at the macrocell C1 and each small cell C2. The arrangement, the number, and the like of each cell and user terminal 20 are not limited to the mode shown in the figure.
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, etc.) and a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or The same carrier may be used. The configuration of the frequency band used by each radio base station is not limited to this.
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
Further, the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell. In each cell (carrier), a single neurology may be applied, or a plurality of different neurology may be applied.
無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
The wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12) are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
In the radio communication system 1, as a radio access method, orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
In the wireless communication system 1, downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like. Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
Note that scheduling information may be notified by DCI. For example, DCI for scheduling DL data reception may be referred to as DL assignment, and DCI for scheduling UL data transmission may be referred to as UL grant.
PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH. EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used. User data, higher layer control information, etc. are transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR), etc. are transmitted by PUCCH. A random access preamble for establishing connection with the cell is transmitted by the PRACH.
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
In the wireless communication system 1, as downlink reference signals, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation Reference Signal), Positioning Reference Signal (PRS), etc. are transmitted. In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
(無線基地局)
図6は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。 (Radio base station)
FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention. Theradio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. The transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may be configured to include one or more.
図6は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。 (Radio base station)
FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention. The
下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
In the baseband signal processing unit 104, with respect to user data, PDCP (Packet Data Convergence Protocol) layer processing, user data division / combination, RLC (Radio Link Control) retransmission control and other RLC layer transmission processing, MAC (Medium Access) Control) Retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing are performed and the transmission / reception unit 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
The transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal. The radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention. In addition, the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
On the other hand, for the upstream signal, the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102. The transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
The baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106. The call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. The transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
送受信部103は、一以上のコードブロックグループ(CBG)を含むトランスポートブロック(TB)を送信すると共に、TB及び/又はCBGに対応する送達確認信号を受信する。また、送受信部103は、CBGに基づく通信制御の通知有無と、前記TB及び/又はCBGのプリエンプション指示に基づく通信制御の通知有無に関する情報を送信する。また、送受信部103は、所定CBGの再送スケジューリング情報及び/又はプリエンプション指示情報を含む下り制御情報を送信する。
The transmission / reception unit 103 transmits a transport block (TB) including one or more code block groups (CBG) and receives a delivery confirmation signal corresponding to the TB and / or CBG. In addition, the transmission / reception unit 103 transmits information regarding the presence / absence of communication control notification based on CBG and the presence / absence of communication control notification based on the TB and / or CBG preemption instruction. In addition, the transmission / reception unit 103 transmits downlink control information including retransmission scheduling information and / or preemption instruction information of a predetermined CBG.
図7は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
FIG. 7 is a diagram illustrating an example of a functional configuration of the radio base station according to the embodiment of the present invention. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the radio base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
The control unit (scheduler) 301 controls the entire radio base station 10. The control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like. The control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
The control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control). In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal. Further, the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
In addition, the control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, Scheduling of the uplink reference signal and the like.
制御部301は、CBGに基づく送信及び/又は再送制御と、プリエンプションを適用したスケジューリングを制御する。例えば、制御部301は、所定CBGの再送スケジューリング情報と、プリエンプション指示情報を下り制御情報に含めて送信するように制御する。
The control unit 301 controls transmission and / or retransmission control based on CBG and scheduling using preemption. For example, the control unit 301 performs control so that retransmission scheduling information of the predetermined CBG and preemption instruction information are included in the downlink control information and transmitted.
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
The transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303. The transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
The transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301. The DL assignment and UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
The mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301. The reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
The measurement unit 305 performs measurement on the received signal. The measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal. The measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). Signal strength (for example, RSSI (Received Signal Strength Indicator)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 301.
また、送受信部103は、ユーザ端末20への第1下り信号に割り当てられた第1リソースにおいて下り信号を送信してもよい。前記第1リソースが、前記ユーザ端末への第2下り信号に割り当てられた第2リソースを含む場合、制御部301は、前記第1リソースのうち前記第2リソースを除くリソースにおいて前記第1下り信号の送信を制御し、前記第2リソースにおいて前記第2下り信号の送信を制御してもよい。
Further, the transmission / reception unit 103 may transmit the downlink signal in the first resource allocated to the first downlink signal to the user terminal 20. When the first resource includes a second resource allocated to a second downlink signal to the user terminal, the control unit 301 uses the first downlink signal in a resource excluding the second resource among the first resources. Transmission of the second downlink signal may be controlled in the second resource.
(ユーザ端末)
図8は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。 (User terminal)
FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention. Theuser terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. The transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may be configured to include one or more.
図8は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。 (User terminal)
FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention. The
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204. The transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. The transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
The baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. 203. The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
送受信部203は、一以上のコードブロックグループ(CBG)を含むトランスポートブロック(TB)を受信すると共に、TB及び/又はCBGに対応する送達確認信号を送信する。また、送受信部203は、CBGに基づく通信制御の通知有無と、前記TB及び/又はCBGのプリエンプション指示に基づく通信制御の通知有無に関する情報を受信する。また、送受信部203は、所定CBGの再送スケジューリング情報及び/又はプリエンプション指示情報を含む下り制御情報を受信する。
The transmission / reception unit 203 receives a transport block (TB) including one or more code block groups (CBG) and transmits a delivery confirmation signal corresponding to the TB and / or CBG. In addition, the transmission / reception unit 203 receives information regarding the presence / absence of communication control notification based on CBG and the presence / absence of communication control notification based on the TB and / or CBG preemption instruction. Further, the transmission / reception unit 203 receives downlink control information including retransmission scheduling information and / or preemption instruction information of a predetermined CBG.
図9は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
The baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
The control unit 401 controls the entire user terminal 20. The control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like. The control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404. The control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
The transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
The transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
The mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203. The mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10. The reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. In addition, the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
The measurement unit 405 performs measurement on the received signal. The measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 401.
また、送受信部203は、ユーザ端末20への第1下り信号(例えば、eMBBデータ)に割り当てられた第1リソースにおいて下り信号を受信してもよい。前記第1リソースが、前記ユーザ端末20への第2下り信号(例えば、第1下り信号の通信要件と異なる通信要件を有する第2下り信号、URLLCデータ)に割り当てられた第2リソースを含む場合、制御部401は、前記第1リソースのうち前記第2リソースを除くリソースにおいて受信された下り信号(例えば、ソフトビット)に基づいて、前記第1下り信号を復号してもよい。
Further, the transmission / reception unit 203 may receive the downlink signal in the first resource allocated to the first downlink signal (for example, eMBB data) to the user terminal 20. When the first resource includes a second resource assigned to a second downlink signal to the user terminal 20 (for example, a second downlink signal having a communication requirement different from the communication requirement of the first downlink signal, URLLC data). The control unit 401 may decode the first downlink signal based on downlink signals (for example, soft bits) received in resources other than the second resource among the first resources.
また、制御部401は、前記第1下り信号のスケジューリングのための第1下り制御情報(例えば、第1下り信号より前に受信されるDCI、DCIフォーマット1_0、1_1の1つを有するDCI)と、前記第2下り信号のスケジューリングのための第2下り制御情報(例えば、第2下り信号より前に受信されるDCI、DCIフォーマット1_0、1_1の1つを有するDCI)と、に基づいて、前記リソースを決定してもよい。
The control unit 401 also includes first downlink control information for scheduling the first downlink signal (for example, DCI received before the first downlink signal, DCI having one of DCI formats 1_0, 1_1) and Second downlink control information for scheduling of the second downlink signal (e.g., DCI received before the second downlink signal, DCI having one of DCI formats 1_0, 1_1), and Resources may be determined.
また、前記第1下り信号の送信が再送である場合、前記制御部401は、前記第1リソースが前記第2リソースを含まないと想定してもよい。
In addition, when the transmission of the first downlink signal is retransmission, the control unit 401 may assume that the first resource does not include the second resource.
また、前記制御部401は、前記第1リソースの後に受信される指示情報(例えば、プリエンプション指示、DCIフォーマット2_1を有するDCI)に基づいて、前記リソースを決定してもよい。
In addition, the control unit 401 may determine the resource based on instruction information (for example, preemption instruction, DCI having DCI format 2_1) received after the first resource.
また、前記制御部401は、前記第2下り信号のスケジューリングのための下り制御情報(例えば、条件1)と、前記下り制御情報に示される第2リソース及び前記指示情報に示されるリソースの関係(例えば、条件2)と、前記第2下り信号のマッピングタイプ(例えば、条件3)と、の少なくとも1つに基づいて、前記第2下り信号を復号してもよい。
In addition, the control unit 401 relates to downlink control information (for example, condition 1) for scheduling the second downlink signal, a second resource indicated in the downlink control information, and a resource indicated in the instruction information ( For example, the second downlink signal may be decoded based on at least one of condition 2) and a mapping type of the second downlink signal (for example, condition 3).
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。 (Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。 (Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, a wireless base station, a user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment. The wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed by one or more processors simultaneously, sequentially, or using other methods. Note that the processor 1001 may be implemented by one or more chips.
無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
In addition, the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
The memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by. The storage 1003 may be referred to as an auxiliary storage device.
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
Also, the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
The radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification)
Note that the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). The signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard. Moreover, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, etc.
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification)
Note that the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). The signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard. Moreover, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, etc.
また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
Further, the radio frame may be configured by one or a plurality of periods (frames) in the time domain. Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe. Further, a subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
Furthermore, the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルで構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH及びPUSCHは、PDSCH/PUSCHマッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH及びPUSCHは、PDSCH/PUSCHマッピングタイプBと呼ばれてもよい。
Also, the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot. A mini-slot may be composed of fewer symbols than slots. PDSCH and PUSCH transmitted in units of time larger than the minislot may be referred to as PDSCH / PUSCH mapping type A. The PDSCH and PUSCH transmitted using the minislot may be referred to as PDSCH / PUSCH mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol. For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. May be. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. It may be. Note that a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
Here, TTI means, for example, a minimum time unit for scheduling in wireless communication. For example, in the LTE system, a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI. The definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, a time interval (for example, the number of symbols) in which a transport block, a code block, a code word, etc. are actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
When one slot or one minislot is referred to as a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe. A TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
Note that a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks. One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
Further, the resource block may be configured by one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
Note that the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
Further, information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented. For example, the radio resource may be indicated by a predetermined index.
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
The names used for parameters and the like in this disclosure are not limited names in any way. For example, various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various channels and information elements assigned to them. The name is not limited in any way.
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, and the like may be input / output via a plurality of network nodes.
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
The input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
The notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using other methods. For example, information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
The physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. The MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
The determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. The comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, code, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
Also, software, instructions, information, etc. may be transmitted / received via a transmission medium. For example, the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
The terms “system” and “network” as used in this disclosure may be used interchangeably.
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」、「部分帯域幅(BWP:Bandwidth Part)」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", Terms such as “carrier”, “component carrier”, “Bandwidth Part (BWP)” may be used interchangeably. A base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
The base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services. The terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment (UE)”, and “terminal” may be used interchangeably. .
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
Mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
基地局及び移動局の少なくとも一方は、送信装置、受信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。
At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
また、本開示における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネルは、サイドチャネルで読み替えられてもよい。
Further, the radio base station in the present disclosure may be replaced with a user terminal. For example, the communication between the radio base station and the user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)) For each configuration, each aspect / embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have a function that the wireless base station 10 has. In addition, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, the uplink channel may be read as a side channel.
同様に、本開示におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
Similarly, the user terminal in the present disclosure may be replaced with a radio base station. In this case, the wireless base station 10 may have a function that the user terminal 20 has.
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
In the present disclosure, the operation performed by the base station may be performed by the upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution. In addition, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps in an exemplary order and are not limited to the specific order presented.
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) The present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like. A plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
«As used in this disclosure, the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
Any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
The term “determining” as used in this disclosure may encompass a wide variety of actions. For example, “determination (decision)” includes determination, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
In addition, “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be "determining".
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, and the like.
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
As used in this disclosure, the terms “connected”, “coupled”, or any variation thereof, is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., as well as some non-limiting and non-inclusive examples, radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
In the present disclosure, the term “A and B are different” may mean “A and B are different from each other”. Terms such as “leave” and “coupled” may be interpreted in a similar manner.
本開示又は請求の範囲において、「含む(include)」、「含んでいる(including)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
Where the term “include”, “including”, and variations thereof are used in this disclosure or in the claims, these terms are similar to the term “comprising”. Intended to be comprehensive. Further, the term “or” as used in the present disclosure or the claims is not intended to be an exclusive OR.
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
In the present disclosure, for example, when articles are added by translation such as a, an, and the in English, the present disclosure may include plural nouns that follow these articles.
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
Although the invention according to the present disclosure has been described in detail above, it is obvious for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not give any restrictive meaning to the invention according to the present disclosure.
Claims (6)
- ユーザ端末であって、
前記ユーザ端末への第1下り信号に割り当てられた第1リソースにおいて下り信号を受信する受信部と、
前記第1リソースが、前記ユーザ端末への第2下り信号に割り当てられた第2リソースを含む場合、前記第1リソースのうち前記第2リソースを除くリソースにおいて受信された下り信号に基づいて、前記第1下り信号を復号する制御部と、を有することを特徴とするユーザ端末。 A user terminal,
A receiving unit for receiving a downlink signal in a first resource allocated to the first downlink signal to the user terminal;
When the first resource includes a second resource allocated to a second downlink signal to the user terminal, based on a downlink signal received in a resource excluding the second resource among the first resources, the And a control unit that decodes the first downlink signal. - 前記制御部は、前記第1下り信号のスケジューリングのための第1下り制御情報と、前記第2下り信号のスケジューリングのための第2下り制御情報と、に基づいて、前記リソースを決定することを特徴とする請求項1に記載のユーザ端末。 The control unit determines the resource based on first downlink control information for scheduling the first downlink signal and second downlink control information for scheduling the second downlink signal. The user terminal according to claim 1, wherein:
- 前記第1下り信号の送信が再送である場合、前記制御部は、前記第1リソースが前記第2リソースを含まないと想定することを特徴とする請求項2に記載のユーザ端末。 The user terminal according to claim 2, wherein when the transmission of the first downlink signal is retransmission, the control unit assumes that the first resource does not include the second resource.
- 前記制御部は、前記第1リソースの後に受信される指示情報に基づいて、前記リソースを決定することを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control unit determines the resource based on instruction information received after the first resource.
- 前記制御部は、前記第2下り信号のスケジューリングのための下り制御情報と、前記下り制御情報に示される第2リソース及び前記指示情報に示されるリソースの関係と、前記第2下り信号のマッピングタイプと、の少なくとも1つに基づいて、前記第2下り信号を復号することを特徴とする請求項4に記載のユーザ端末。 The control unit includes downlink control information for scheduling the second downlink signal, a relationship between a second resource indicated in the downlink control information and a resource indicated in the instruction information, and a mapping type of the second downlink signal The user terminal according to claim 4, wherein the second downlink signal is decoded based on at least one of the following.
- ユーザ端末への第1下り信号に割り当てられた第1リソースにおいて下り信号を送信する送信部と、
前記第1リソースが、前記ユーザ端末への第2下り信号に割り当てられた第2リソースを含む場合、前記第1リソースのうち前記第2リソースを除くリソースにおいて前記第1下り信号の送信を制御し、前記第2リソースにおいて前記第2下り信号の送信を制御する制御部と、を有することを特徴とする無線基地局。 A transmission unit that transmits a downlink signal in the first resource allocated to the first downlink signal to the user terminal;
When the first resource includes a second resource allocated to a second downlink signal to the user terminal, control of transmission of the first downlink signal in resources other than the second resource among the first resources. And a control unit that controls transmission of the second downlink signal in the second resource.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/019401 WO2019220643A1 (en) | 2018-05-18 | 2018-05-18 | User terminal and wireless base station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/019401 WO2019220643A1 (en) | 2018-05-18 | 2018-05-18 | User terminal and wireless base station |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019220643A1 true WO2019220643A1 (en) | 2019-11-21 |
Family
ID=68540371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/019401 WO2019220643A1 (en) | 2018-05-18 | 2018-05-18 | User terminal and wireless base station |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019220643A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11432312B2 (en) | 2019-04-26 | 2022-08-30 | Qualcomm Incorporated | Uplink scheduling techniques for enhanced feedback in wireless communications |
-
2018
- 2018-05-18 WO PCT/JP2018/019401 patent/WO2019220643A1/en active Application Filing
Non-Patent Citations (6)
Title |
---|
CMCC: "Discussion on DCI in NR", 3GPP TSG RAN WG1 ADHOC_NR_AH_1701 R1-1700440, 9 January 2017 (2017-01-09), XP051202266 * |
HUAWEI: "Email discussion [86b-23] on multi-steps DL control channel design", 3GPP TSG RAN WG1 #87 RL-1611656, 14 November 2016 (2016-11-14), XP051190942 * |
LENOVO: "On data transmission to support multiplexing of eMBB and URLLC", 3GPP TSG RAN WG1 #87 RL-1612097, 4 November 2016 (2016-11-04), XP051189170 * |
NTT DOCOMO;: "Pre-emption indication for downlink", 3GPP TSG RAN WG1 ADHOC_NR_AH_1706 R1-1711119, 17 June 2017 (2017-06-17), XP051305409 * |
SAMSUNG: "Performance of eMBB with HARQ Retransmission for Multiplexing eMBB and URLLC", 3GPP TSG RAN WG1 ADHOC_NR_AH_1701 R1- 1700970, 10 January 2017 (2017-01-10), XP051203262 * |
SONY: "Dynamic Resource Sharing for eMBB/URLLC in DL", 3GPP TSG RAN WG1 #87 RL-1613047, 10 November 2016 (2016-11-10), XP051190902 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11432312B2 (en) | 2019-04-26 | 2022-08-30 | Qualcomm Incorporated | Uplink scheduling techniques for enhanced feedback in wireless communications |
US12101765B2 (en) | 2019-04-26 | 2024-09-24 | Qualcomm Incorporated | Uplink scheduling techniques for enhanced feedback in wireless communications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10911982B2 (en) | User terminal and radio communication method | |
WO2019215932A1 (en) | User terminal and wireless base station | |
WO2019193700A1 (en) | User terminal and wireless base station | |
JP7366889B2 (en) | Terminals, wireless communication methods, base stations and systems | |
CN110574421B (en) | Terminal, base station, system and wireless communication method | |
US11528737B2 (en) | User terminal and radio communication method | |
WO2018203409A1 (en) | User terminal, and wireless communication method | |
WO2019135285A1 (en) | User terminal and wireless communication method | |
WO2018056338A1 (en) | User terminal and wireless communication method | |
WO2018203400A1 (en) | User terminal, and wireless communication method | |
CN111587604B (en) | Terminal, wireless communication method, base station and system | |
WO2018143396A1 (en) | User terminal, wireless base station and wireless communication method | |
WO2019193731A1 (en) | User terminal and wireless base station | |
JP7100070B2 (en) | Terminals, wireless communication methods, base stations and systems | |
CN110870345B (en) | Terminal, wireless communication method and base station | |
WO2018173237A1 (en) | User terminal and wireless communication method | |
WO2019225689A1 (en) | User terminal and wireless communication method | |
CN111316736B (en) | User terminal and wireless communication method | |
CN110870376B (en) | User terminal and wireless communication method | |
WO2018163431A1 (en) | User terminal and wireless communication method | |
WO2019225654A1 (en) | User terminal and wireless communication method | |
JPWO2018207374A1 (en) | User terminal and wireless communication method | |
CN112385163B (en) | User terminal and wireless communication method | |
CN111869284B (en) | User terminal and wireless communication method | |
CN111742590B (en) | Base station and wireless communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18918542 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18918542 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |