WO2019135285A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2019135285A1
WO2019135285A1 PCT/JP2018/000111 JP2018000111W WO2019135285A1 WO 2019135285 A1 WO2019135285 A1 WO 2019135285A1 JP 2018000111 W JP2018000111 W JP 2018000111W WO 2019135285 A1 WO2019135285 A1 WO 2019135285A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
dci format
user terminal
identifier
transmission
Prior art date
Application number
PCT/JP2018/000111
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 武田
聡 永田
リフェ ワン
シャオツェン グオ
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2019563731A priority Critical patent/JP7111743B2/en
Priority to EP18898038.7A priority patent/EP3737177B1/en
Priority to PT188980387T priority patent/PT3737177T/en
Priority to US16/959,876 priority patent/US20200337038A1/en
Priority to PCT/JP2018/000111 priority patent/WO2019135285A1/en
Priority to CN201880090357.XA priority patent/CN111788855A/en
Publication of WO2019135285A1 publication Critical patent/WO2019135285A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( Also referred to as New RAT), LTE Rel. 14, 15 and so on.
  • the user terminal In the existing LTE system (for example, LTE Rel. 8-13), the user terminal (UE: User Equipment) is based on downlink control information (DCI: also referred to as Downlink Control Information, DL assignment, etc.) from the radio base station. Control reception of a downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel). Also, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
  • DCI Downlink Control Information
  • DCI format (DF) different according to the application, eg, DCI formats 0 and 4 used for PUSCH scheduling, DCI format 1 used for PDSCH scheduling, 1A-1D, 2 and 2A-2D etc.
  • DCI format (DF) different according to the application, eg, DCI formats 0 and 4 used for PUSCH scheduling, DCI format 1 used for PDSCH scheduling, 1A-1D, 2 and 2A-2D etc.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the user terminal has an identical payload and is an identifier (scrambled) used for scrambling (mask) of cyclic redundancy check (CRC) bits.
  • identifier scrambling
  • CRC cyclic redundancy check
  • the user terminal can identify a plurality of DCI formats if either the payload or the scramble identifier is different. Therefore, in a future wireless communication system (for example, NR, 5G, 5G + or Rel. 15 or later) in which a plurality of DCI formats different from the existing LTE system are used, the identifier field is provided in the plurality of DCI formats. At the same time, it is assumed that the plurality of DCI formats can be identified. Alternatively, it is assumed that the identifier field can be used for other purposes besides the identification of DCI format.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a user terminal and a wireless communication method capable of controlling communication processing using a DCI format suitable for a future wireless communication system.
  • One aspect of the user terminal of the present invention is a receiving unit for receiving a plurality of downlink control information (DCI) having the same payload and having the same identifier used for scrambling cyclic redundancy check bits, And a controller configured to control communication processing based on each of the plurality of DCIs based on an identifier field value included in each of the DCIs.
  • DCI downlink control information
  • communication processing can be controlled using a DCI format suitable for a future wireless communication system.
  • FIG. 1A and 1B are diagrams showing an example of an identifier field according to the first aspect.
  • 2A and 2B are diagrams showing an example of an identifier field according to the second aspect.
  • 3A and 3B are diagrams showing other examples of the identifier field according to the second aspect.
  • FIG. 4 is a diagram showing an example of a slot format according to the third aspect.
  • 5A-5C are diagrams showing an example of the DCI format 2_0 according to the third aspect.
  • 6A-6C are diagrams showing an example of the DCI format 2_1 according to the fourth aspect.
  • 7A-7C are diagrams showing an example of the DCI format 2_2 according to the fifth aspect.
  • FIG. 8 is a diagram showing another example of the DCI format 2_2 according to the fifth aspect.
  • FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment.
  • FIG. 11 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment.
  • FIG. 12 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment.
  • FIG. 13 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment.
  • FIG. 14 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 15 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to the present embodiment.
  • LTE Rel. 15 to 5G, NR, etc. communication of user terminals using a plurality of DCI formats different from existing LTE systems (eg, LTE Rel. 8-13) Processing (eg, reception of downlink shared channel (eg, PDSCH), transmission of uplink shared channel (eg, PUSCH), slot format, uplink shared channel and uplink control channel (eg, PUCCH (Physical Uplink Control Channel)) transmission power , And controlling at least one of uplink reference signals (for example, transmission of a Sounding Reference Signal (SRS)).
  • SRS Sounding Reference Signal
  • DCI formats of the following (1) to (3) in which at least one of application, payload (number of bits), type and number of information fields included is different are considered.
  • DCI format used for PUSCH scheduling also referred to as DCI format 0 etc.
  • DCI format 0_0, DCI format 0A, etc. used for scheduling of PUSCH of one cell (one cell).
  • DCI format 0_1, DCI format 0B, etc. which is used for scheduling of PUSCH of one cell and has a larger payload (number of bits) than DCI format 0_0.
  • DCI format used for PDSCH scheduling also referred to as DCI format 1 etc.
  • DCI format 1_0, DCI format 1A, etc. used for scheduling of PDSCH of one cell.
  • DCI format 1_1, DCI format 1B, etc. used for scheduling of PUSCH of one cell and has a larger payload (number of bits) than DCI format 1_0.
  • DCI format used for other purposes (3.1) Also known as DCI format (DCI format 2_0, DCI format 2A, etc.) used for notifying (notify) information on slot format (SFI: Slot Format Indicator) ).
  • DCI format 2_1 used for notification of a specific resource (for example, a resource that may assume that there is no transmission of PDSCH to the user terminal or a resource that stops transmission of the PUSCH from the user terminal) , DCI format 2B etc.).
  • the resource is at least one of a frequency domain resource (eg, one or more physical resource blocks (PRBs)) and a time domain resource (eg, one or more symbols). May be included.
  • PRBs physical resource blocks
  • DCI format also referred to as DCI format 2_2, DCI format 2C, etc.
  • TPC Transmission Power Control
  • DCI format also referred to as DCI format 2_3, DCI format 2D, etc.
  • a reference signal for example, Sounding Reference Signal (SRS)
  • the DCI fort may specify a group (set) of TPC commands for SRS.
  • a search space which is a candidate resource of a downlink control channel for example, PDCCH: Physical Downlink Control Channel
  • DCI Downlink Control Information
  • monitoring means, for example, decoding (blind decoding) a search space based on assumed formats (for example, each DCI format described in (1) to (3) above).
  • each of these DCI formats includes a field for identification of DCI format (also referred to as an identifier, an identifier field, a flag, an identification flag, etc.) as in the existing LTE system. ing.
  • the identifier field is provided in the plurality of DCI formats.
  • the plurality of DCI formats can be identified.
  • the identifier field can be used for other purposes besides the identification of DCI format.
  • the present inventors examined a method of enabling control of the above communication processing using a DCI format suitable for a future wireless communication system (for example, LTE Rel. 15 to 5 G, NR, etc.). It reached. Specifically, the inventors conceived of improving performance by effectively using the identifier field in the DCI format, or reducing overhead by deleting the identification field. did.
  • a DCI format suitable for a future wireless communication system for example, LTE Rel. 15 to 5 G, NR, etc.
  • DCI formats 0_0, 0_1, 1_0, 1_1, 2_0, 2-1, 2-2, 2-3 are exemplified below, the names of the DCI formats according to the present embodiment are not limited thereto, and the same or It is also applicable to DCI formats with other names, for similar applications.
  • the 1-bit identifier field is exemplified below, the number of bits of the identifier field may be 2 or more.
  • the name of the identifier field is not limited to this, and any name may be used as long as it is a field in the DCI format.
  • the identifier field provided at the beginning of the DCI format is illustrated, but the location of the identifier field may be any position within the DCI format.
  • DCI formats also referred to as UL grants, for example, DCI formats 0_0 and 0_1 used for PUSCH scheduling and DCI formats (DL assignment) used for PDSCH scheduling, for example, DCI formats 1_0 and The case where the identifier field in 1_1) is used for identifying (identifying) the DCI format will be described.
  • UL grants and DLs having the same payload having the same payload, the same CRC bit scramble identifier (eg, RNTI), and overlapping resources (or indistinguishable by at least one of them)
  • the identifier field in the assignment may be used to identify the UL grant or the DL assignment.
  • FIG. 1 is a diagram showing an example of an identifier field according to the first aspect.
  • DCI formats 0_0 and 0_1 used for PUSCH scheduling and DCI formats 1_0 and 1_1 used for PDSCH scheduling respectively use the same scrambling identifier (eg, C-RNTI: Cell-RNTI). Be scrambled (masked).
  • C-RNTI Cell-RNTI
  • FIG. 1A an example is shown in which the payloads of DCI formats 0_0 and 1_0 are identical.
  • a value for example, "0” indicating DCI format 0_0 is set (set), and in the identifier field in DCI format 1_0, DCI format 1_0.
  • a value for example, “1” indicating.
  • FIG. 1B an example is shown in which the payloads of DCI formats 0_1 and 1_1 are identical.
  • a value for example, “0” indicating DCI format 0_1 is set (set), and in the identifier field in DCI format 1_1, DCI format 1_1.
  • a value for example, “1” indicating.
  • identifier field values are merely illustrative and are not limiting.
  • the DCI format indicated by the identifier field value may be fixed (predetermined in specification) or may be configured by upper layer signaling.
  • Upper layer signaling includes, for example, RRC (Radio Resource Control) signaling, broadcast information (for example, MIB: Master Information Block), system information (for example, SIB: System Information Block, RMSI: Remaining Minimum System Information, etc.) It is sufficient if it is at least one).
  • RRC Radio Resource Control
  • broadcast information for example, MIB: Master Information Block
  • system information for example, SIB: System Information Block, RMSI: Remaining Minimum System Information, etc. It is sufficient if it is at least one).
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • identifier fields in a plurality of predetermined DCI formats are used to identify the plurality of DCI formats. Therefore, even if the payloads of the plurality of DCI formats are the same and the scramble identifier is the same, the user terminal can appropriately identify the plurality of DCI formats by the identifier field value.
  • one or more partial frequency bands also referred to as bandwidth parts (BWP), partial bands, etc.
  • BWP bandwidth parts
  • One or more BWPs (DL BWPs) for downlink (DL) communication and / or one or more BWPs (UL BWPs) for uplink communication (ULs) may be set in the user terminal.
  • the plurality of BWPs set in the carrier may have the same bandwidth and / or different bandwidths.
  • the DCI format for example, DCI formats 0_0 and 0_1 used for PUSCH scheduling and the DCI format (for example, DCI formats 1_0 and 1_1) used for PDSCH scheduling are fields determined based on the bandwidth of BWP ( This is because, for example, a frequency domain resource assignment field is included.
  • the number of multiple-input and multiple-output (MIMO) layers and the presence or absence of setting for code-block based re-transmission also affect the payload of the DCI format.
  • MIMO multiple-input and multiple-output
  • the payloads may not be identical.
  • any plurality of DCI formats having the same payload and the same scramble identifier are selected, and identifier fields in the plurality of DCI formats are the plurality of the DCI formats. It may be used to identify the DCI format.
  • scramble identifier for example, RNTI
  • the user terminal may assume identifier field values in a plurality of DCI formats having the same payload and the same scrambling identifier according to a predetermined rule.
  • predetermined order for example, DF0_0 ⁇ DF0_1 ⁇ DF1_0 ⁇ DF1_1 ⁇ DF1_0 ⁇ DF1_1
  • the user terminal identifies, based on the identifier field value, any of a plurality of DCI formats having the same payload and the same scrambling identifier.
  • FIG. 2 is a diagram showing an example of an identifier field according to the second aspect.
  • DCI formats 0_0 and 0_1, DCI formats 1_0 and 1_1 respectively scramble (mask) the CRC bits added to each DCI format using the same scrambling identifier (eg C-RNTI) It shall be.
  • 2A and 2B show an example in which the order of DF0_0 ⁇ DF0_1 ⁇ DF1_0 ⁇ DF1_1 is defined for a plurality of DCI formats (DFs) scrambled with the same scramble identifier, but the order is limited to this. I can not.
  • DFs DCI formats
  • the user terminal assumes that, among the plurality of DCI formats, identifier field values of two DCI formats having the same payload are smaller as the order is the earlier DCI format. It shall be, but not limited to.
  • the user terminal may assume the identifier field value according to a predetermined rule.
  • FIG. 2A shows an example in which the payloads of DCI formats 0_0 and 0_1 are identical, and the payloads of DCI format 1_0 and DCI format 1_1 are identical.
  • values based on the above order are respectively set.
  • values based on the above-described order are set in the identifier fields in DCI formats 1_0 and 1_1 in which the payloads are identical.
  • DCI format 0_0 precedes DCI format 0_1 (in FIG. 2A, DCI format 0_0 is left and DCI format 0_1 is right), and in FIG. 2A, the user terminal is DCI
  • the identifier field value of the format 0_0 may be assumed to be “0”
  • the identifier field value of the DCI format 0_1 may be assumed to be “1”.
  • DCI format 1_0 is ahead of DCI format 1_1 (in FIG. 2A, DCI format 1_0 is left and DCI format 1_1 is right), and in FIG. 2A, the user terminal is DCI
  • the identifier field value of the format 0_0 may be assumed to be “0”
  • the identifier field value of the DCI format 0_1 may be assumed to be “1”.
  • FIG. 2B shows an example in which the payloads of DCI formats 0_0 and 1_1 are identical, and the payloads of DCI format 0_1 and DCI format 1_0 are identical.
  • the payloads of DCI formats 0_0 and 1_1 are identical, and the payloads of DCI format 0_1 and DCI format 1_0 are identical.
  • the identifier fields in DCI formats 0_0 and 1_1 having the same payload values based on the above order are respectively set.
  • values based on the above order are respectively set.
  • DCI format 0_0 precedes DCI format 1_1 (in FIG. 2B, DCI format 0_0 is left and DCI format 1_1 is right), and in FIG. 2B, the user terminal is DCI
  • the identifier field value of the format 0_0 may be assumed to be “0”
  • the identifier field value of the DCI format 1_1 may be assumed to be “1”.
  • DCI format 0_1 is earlier than DCI format 1_0 (in FIG. 2B, DCI format 0_1 is left and DCI format 1_0 is right), and in FIG. 2B, the user terminal is DCI
  • the identifier field value of the format 0_1 may be assumed to be “0”, and the identifier field value of the DCI format 1_0 may be assumed to be “1”.
  • FIG. 3 is a diagram showing another example of the identifier field according to the second aspect.
  • FIGS. 3A and 3B will be described focusing on differences from FIGS. 2A and 2B.
  • the user terminal since the payload of each of a plurality of DCI formats to which a CRC scrambled by the same scrambling identifier (for example, C-RNTI) is different is different, the user terminal does not use the identifier field value.
  • the DCI format can be identified.
  • the user terminal can add the multiple DCI. It may be assumed that the identifier field value in the format is a fixed value (e.g. "0" or "1").
  • the identifier field can be used as a virtual CRC bit by setting fixed values (identical values) to identifier field values in the plurality of DCI formats.
  • the virtual CRC bits are known bit values included in the payload of each DCI format, and are also called bits for pruning or the like.
  • FIG. 3B it is shown that there are three or more DCI formats with the same payload added with CRC bits scrambled by the same scrambling identifier (eg, RNTI).
  • the 1-bit identifier field only two DCI formats can be identified. Therefore, by adding (including) a predetermined number of padding bits to the third and subsequent DCI formats in which the payloads are identical, only the payloads of the two DCI formats may be made identical.
  • the identifier field may have two or more bits.
  • the DCI formats 0_1 and 1_0, and the payload of DCI format 1_1 before adding (including) padding bits are identical. Therefore, the payload of the DCI format 1_1 may be made different from the DCI formats 0_1 and 1_1 by adding (including) padding bits to the DCI format 1_1.
  • the DCI format to which padding bits are added (included) is not limited to the DCI format 1_1, and may be determined according to a predetermined rule.
  • identifier fields in any of a plurality of DCI formats in which CRC bits scrambled using the same scrambling identifier are added and the payloads are the same are used to identify the plurality of DCI formats. Be Therefore, even if the payloads of arbitrary plural DCI formats are the same, the user terminal can appropriately identify the plural DCI formats by the identifier field value.
  • a DCI format (for example, DCI format 2_0) used for notifying of information (slot format information) related to a slot format will be described.
  • the slot format information may include, for example, an identifier (eg, slot format identifier (SFI)) indicating the type (type) of each symbol (eg, OFDM symbol) in the slot.
  • SFI slot format identifier
  • the type of each symbol indicated by the SFI may be determined based on the transmission direction of each symbol, for example, Downlink (also described as “D”), Uplink (also described as Uplink, “U”) , And may be flexible (also denoted as "X").
  • FIG. 4 is a diagram showing an example of a slot format according to the third aspect.
  • SFI indicates which type of “D”, “U”, or “X” each symbol in the slot is.
  • a predetermined number of types here, 62 types
  • types here, 62 types
  • the DCI format (for example, DCI format 2_0) used for notification of slot format information may include N (N ⁇ 1) SFIs.
  • the size (also referred to as the payload or the number of bits) of the DCI format may be configured by upper layer signaling.
  • Each SFI in the DCI format may indicate a slot format corresponding to at least one of a component carrier (CC) (also referred to as a carrier, a cell or a serving cell), a BWP, and a user terminal. Also, the number (N) of SFIs in the DCI format may be designated by higher layer signaling.
  • the configuration (SFI configuration) of the SFI may differ depending on what each SFI corresponds (eg, a combination of at least one of CC, BWP, user terminal).
  • the number of bits of each field (each SFI field) for SFI in the DCI format may be designated by higher layer signaling.
  • the number of bits is restricted to be smaller than a predetermined value (for example, 6 bits)
  • the slot formats that can be specified in each SFI field may be restricted to be smaller than the 62 types shown in FIG.
  • a predetermined number of slot formats that can be specified in each SFI field may be preset by upper layer signaling.
  • the user terminal is controlled by a predetermined upper layer parameter (for example, SFI-SS) (for example, a control resource set (CORESET) or a specific search space (SS: associated with the CORESET).
  • SFI-SS for example, a control resource set (CORESET) or a specific search space (SS: associated with the CORESET).
  • Search Space may be monitored to detect a DCI format (eg, DCI format 2_0) used for notification of slot format information.
  • CRC bits of DCI format for example, DCI format 2_0
  • DCI formats for other applications for example, DCI formats 0_0, 0_1, 1_0, 1_1, 2_1, 2_2, 2_3, etc.
  • a different scrambling identifier eg, SFI-RNTI
  • the user terminal can identify the DCI format for notification of slot format information and the DCI format for other uses by different scramble identifiers.
  • the information indicating the SFI-RNTI may be notified (set) from the radio base station to the user terminal by higher layer signaling.
  • FIG. 5 is a diagram showing an example of the DCI format 2_0 according to the third aspect.
  • the CRC bits of DCI format 2_0 are scrambled with a scrambling identifier (eg, SFI-RNTI) different from DCI formats for other uses.
  • a scrambling identifier eg, SFI-RNTI
  • the DCI format 2_0 shown in FIGS. 5A to 5C is merely an example, and some fields may be omitted or may include other fields not shown.
  • FIG. 5A shows an example in which a plurality of configurations (also referred to as SFI configurations etc.) of DCI format 2_0 are set in the user terminal.
  • FIG. 5A shows a first SFI configuration in which each SFI field in DCI format 2_0 is provided for each CC, and a second SFI configuration in which each SFI field is provided for each CC and each BWP.
  • the payloads of the DCI format 2_0 of the first SFI configuration and the DCI format 2_0 of the second SFI configuration are identical, and that both CRC bits are scrambled with the same SFI-RNTI.
  • the identifier field of DCI format 2_0 may be used to identify the SFI configuration.
  • a value for example, “0” indicating the first SFI configuration is set.
  • a value for example, “1” indicating the second SFI configuration is set in the identifier field of the DCI format 2_0 of the second SFI configuration.
  • the user terminal may identify the SFI configuration of the DCI format according to the identifier field value in the DCI format 2_0, and may recognize the slot format indicated by each SFI field value in the DCI format 2_0 based on the identified SFI configuration. .
  • FIG. 5A shows an example in which the first and second SFI configurations include the same number of SFI fields, and each SFI field value has a different meaning between the first and second SFIs
  • a plurality of SFIs are shown.
  • the configuration is not limited to these.
  • a plurality of SFI configurations in which the number of SFI fields in DCI format 2_0 and the number of bits of each SFI field are different and the payload is the same may be identified by the value of the identifier field.
  • the identifier field in DCI format 2_0 may be used as the virtual CRC bit.
  • a fixed value for example, “0” or “1”
  • the effect of error correction at the user terminal can be obtained more. Therefore, as shown in FIG. 5B, performance can be improved by using the identifier field as a virtual CRC bit.
  • the identifier field in DCI format 2_0 may be deleted. That is, assuming that the DCI format 2_0 does not include the identifier field, the payload is recognized and decoded.
  • the deletion of the identifier field can reduce the payload of DCI format 2_0. Therefore, the overhead due to the DCI format 2_0 can be reduced, and as a result, the performance of the wireless communication system can be improved.
  • the identifier field in the DCI format used for notification of slot format information can be effectively used, or the overhead of the DCI format can be reduced by deleting the identifier field.
  • a DCI format (for example, DCI format 2_1) used for at least one notification of a resource assumed to have no PDSCH transmission to a user terminal and a resource for stopping PUSCH transmission from the user terminal explain.
  • the resources assumed to be without PDSCH transmission to the user terminal may include at least one of frequency domain resources (eg, one or more PRBs) and time domain resources (eg, one or more symbols).
  • the resource for stopping PUSCH transmission from the user terminal may include at least one of a frequency domain resource (eg, one or more PRBs) and a time domain resource (eg, one or more symbols).
  • a PDSCH when a PDSCH is scheduled for a predetermined number of PRBs and a predetermined number of symbols for a user terminal, at least a part of the PRBs and symbols scheduled for the PDSCH is pre-emption (interruption by another communication) Is expected to occur.
  • the user terminal assumes that there is no PDSCH transmission in a resource where preemption has occurred (for example, at least one of a predetermined number of PRBs and a predetermined number of symbols), excluding the resources and performing PDSCH reception processing (For example, at least one of demapping, demodulation, and decoding) needs to be performed.
  • the DCI format (for example, DCI format 2_1) may include an identifier (preemption identifier) indicating a resource assumed to have no transmission of the PDSCH (that is, a resource in which preemption has occurred).
  • the user terminal may perform PDSCH reception processing (for example, at least one of demapping, demodulation, and decoding) based on the preemption identifier.
  • a PUSCH when a PUSCH is scheduled for a predetermined number of PRBs and a predetermined number of symbols for a user terminal, at least a part of the PRBs and symbols scheduled for the PUSCH is pre-emption (interruption by another communication) Is expected to occur.
  • the user terminal needs to stop transmission of the PUSCH in resources (for example, at least one of a predetermined number of PRBs and a predetermined number of symbols) on which the other communication is performed.
  • the DCI format (for example, DCI format 2_1) may include an identifier (transmission stop identifier) indicating a resource for stopping transmission of the PUSCH.
  • the user terminal may perform PUSCH transmission processing (for example, at least one of encoding, modulation, and mapping) based on the transmission stop identifier.
  • the DCI format (for example, DCI format 2_1) may include N (N ⁇ 1) preemption identifiers or N transmission stop identifiers.
  • the size (also referred to as the payload or the number of bits) of the DCI format, the RNTI scrambling the CRC, the number of candidates for blind decoding, and the like may be configured by upper layer signaling.
  • Each preemption identifier (or each transmission stop identifier) in the DCI format may be associated with at least one of a specific resource (eg, a predetermined number of PRBs and a predetermined number of symbols).
  • the specific resource may be configured by higher layer signaling.
  • a preemption identifier (or transmission stop identifier) in the DCI format may be defined for each combination of at least one of CC (also referred to as carrier, cell, serving cell, etc.), BWP and user terminal.
  • the user terminal may monitor a control area (for example, at least one of CORESET and search space) set for the user terminal to detect the DCI format (for example, DCI format 2_1). If a specific payload and a DCI format scrambled with a CRC with a specific RNTI are found in a search space set in advance, the user terminal determines that the DCI format addressed to the own terminal has been detected.
  • a control area for example, at least one of CORESET and search space
  • CRC bits of DCI format (for example, DCI format 2_1) used for at least one notification of a resource assumed to have no PDSCH transmission to the user terminal and a resource for stopping transmission of the PUSCH from the user terminal are It may be scrambled (masked) with a scramble identifier (eg INT (interrupting) -RNTI) different from DCI formats (eg DCI formats 0_0, 0_1, 1_0, 1_1, 2_0, 2_2, 2_3 etc.) for other uses. .
  • INT interrupting
  • the user terminal is DCI format used for at least one notification of a resource assumed to have no transmission of PDSCH to the user terminal and a resource for stopping transmission of the PUSCH from the user terminal using different scramble identifiers.
  • DCI formats for other uses.
  • the information indicating the INT-RNTI may be notified (set) from the radio base station to the user terminal by higher layer signaling.
  • FIG. 6 is a diagram showing an example of the DCI format 2_1 according to the fourth aspect.
  • the CRC bits of DCI format 2_1 are scrambled with a scrambling identifier (eg, INT-RNTI) different from DCI formats for other uses.
  • a scrambling identifier eg, INT-RNTI
  • the DCI format 2_1 shown in FIGS. 6A to 6C is merely an example, and some fields may be omitted or may include other fields not shown.
  • a configuration (also referred to as a first configuration or a DL configuration or the like) in which DCI format 2_1 is notified of a resource assumed to have no PDSCH transmission to the user terminal, and stop transmission of PUSCH from the user terminal
  • a configuration also referred to as a second configuration or a configuration for UL, etc.
  • the DCI format 2_1 of the DL configuration includes N preemption identifiers.
  • DCI format 2_1 in the UL configuration includes N transmission stop identifiers.
  • the names of the preemption identifier and the transmission stop identifier are not limited to these, and field values of the same name may be used.
  • the payloads of the DCI format 2_1 for the DL configuration and the DCI format 2_1 for the UL configuration are the same, and both CRC bits are scrambled with the same INT-RNTI.
  • the identifier field of the DCI format 2_1 may be used to identify the DL configuration or the UL configuration.
  • a value (for example, “0”) indicating the DL configuration is set in the identifier field of the DCI format 2_1 of the DL configuration.
  • a value (for example, “1”) indicating the UL configuration is set in the identifier field of the UL configuration DCI format 2_1.
  • the user terminal stops the transmission of the resource or PUSCH assumed to have no transmission of PDSCH, that is, whether the DCI format is the configuration for DL or the configuration for UL according to the identifier field value in DCI format 2_1 It is possible to identify which of the resources is indicated, and to control PDSCH reception or PUSCH transmission based on one or more preemption identifiers or transmission stop identifiers in the DCI format 2_1.
  • the number (N) of the preemption identifier and the number of transmission stop identifiers in the DCI format 2_1 are the same, they may not be the same. For example, even if different numbers of preemption identifiers and transmission stop identifiers in DCI format 2_1 are different, the same payload is maintained by making the number of bits of one or more preemption identifiers (or one or more transmission stop identifiers) different. May be
  • the DCI format 2_1 has only the DL configuration or that different payloads or scramble identifiers are used between the DL and UL configurations.
  • the user terminal can identify the DL configuration and the UL configuration without using the identifier field in the DCI format 2_1.
  • the identifier field in DCI format 2_1 may be used as the virtual CRC bit.
  • a fixed value for example, “0” or “1”
  • the effect of the error correction at the user terminal can be obtained more. Therefore, as shown in FIG. 6B, performance can be improved by using the identifier field as a virtual CRC bit.
  • the identifier field in DCI format 2_1 may be deleted.
  • the payload of DCI format 2_1 can be reduced. Therefore, the overhead due to the DCI format 2_1 can be reduced, and as a result, the performance of the wireless communication system can be improved.
  • DCI format 2_1 of the DL configuration is shown, but the identifier field in the UL configuration DCI format 2_1 may be used as a virtual CRC bit, or the identifier field is It may be deleted.
  • the identifier field in the DCI format used for at least one notification of a resource assumed to have no PDSCH transmission to the user terminal and a resource for stopping transmission of the PUSCH from the user terminal is effectively used.
  • the overhead of the DCI format can be reduced by removing the identifier field.
  • a DCI format (for example, DCI format 2_2) used for transmission of TPC commands for at least one of PUCCH and PUSCH will be described.
  • the user terminal controls transmission power of at least one of PUCCH and PUSCH based on the value indicated by the TPC command in the DCI format.
  • the DCI format may include N (N ⁇ 1) TPC commands (TPC commands) (also referred to as TPC command fields or TPC command field values).
  • TPC commands TPC commands
  • Each TPC command may be a predetermined number of bits.
  • a 2-bit TPC command may indicate four levels (eg, -1, 0, 1 and 3 or -4, -1, 1 and 4) according to each possible field value.
  • a number (TPC command number) may be assigned to each of the N TPC commands.
  • Each TPC command in the DCI format may indicate a value of a TPC command corresponding to at least one combination of a CC (also referred to as a carrier, a cell or a serving cell), a BWP, and a user terminal.
  • a CC also referred to as a carrier, a cell or a serving cell
  • BWP serving cell
  • the user terminal may monitor a control area (for example, at least one of CORESET and search space) set for the user terminal to detect the DCI format (for example, DCI format 2_2).
  • a control area for example, at least one of CORESET and search space
  • CRC bits of DCI format (for example, DCI format 2_2) used for transmission of TPC command for at least one of PUCCH and PUSCH are DCI formats for other applications (for example, DCI format 0_0, 0_1, 1_0, 1_1) , 2_0, 2_1, 2_3, etc.) may be scrambled (masked) with a scramble identifier (eg, TPC-RNTI (which may include TPC-PUSCH-RNTI and TPC-PUCCH-RNTI)).
  • TPC-RNTI which may include TPC-PUSCH-RNTI and TPC-PUCCH-RNTI
  • the user terminal can identify the DCI format used to transmit the TPC command for at least one of PUCCH and PUSCH and the DCI format for other applications by different scramble identifiers.
  • the information indicating TPC-RNTI may be notified (set) from the radio base station to the user terminal by higher layer signaling.
  • FIG. 7 is a diagram showing an example of the DCI format 2_2 according to the fifth aspect.
  • the CRC bits of DCI format 2_2 are scrambled with a scrambling identifier (eg, TPC-RNTI) different from DCI formats for other uses.
  • a scrambling identifier eg, TPC-RNTI
  • the DCI format 2_2 shown in FIGS. 7A to 7C is merely an example, and it is a matter of course that some fields may be omitted or other fields not shown may be included.
  • the payloads of DCI format 2_2 used for transmission of TPC command for PUCCH and DCI format 2_2 used for transmission of TPC command for PUSCH are the same, and the CRC bits of both are the same in TPC-RNTI. It shall be scrambled.
  • the identifier field of the DCI format 2_2 may be used to identify whether the DCI format 2_2 is to be used for transmission of a TPC command for PUCCH or a TPC command for PUSCH.
  • a value for example, "0" indicating transmission of a TPC command for PUCCH, or a value (for example, transmission of a TPC command for PUSCH) Or “1” may be set.
  • the user terminal recognizes from the identifier field value in DCI format 2_2 whether the DCI format is used for transmission of TPC command for PUCCH or PUSCH, and based on one or more TPC commands in DCI format 2_2.
  • the transmission power of PUCCH or PUSCH may be controlled.
  • the user terminal may control the transmission power of the PUCCH or PUSCH based on the value indicated by the TPC command corresponding to the PUCCH or the cell transmitting the PUSCH.
  • different payloads or different scrambling identifiers are used between the DCI format 2_2 used to transmit the TPC command for PUCCH and the DCI format 2_2 used to transmit the TPC command for PUSCH.
  • RNTI and TPC-PUSCH-RNTI are used.
  • the user terminal can identify whether the DCI format 2_2 is used for transmission of a TPC command for PUCCH or a TPC command for PUSCH by different payloads or scramble identifiers.
  • the identifier field in DCI format 2_2 may be used as the virtual CRC bit.
  • a fixed value for example, “0” or “1”
  • the effect of the error correction at the user terminal can be obtained more. Therefore, as shown in FIG. 7B, performance can be improved by using the identifier field as a virtual CRC bit.
  • the identifier field in DCI format 2_2 may be deleted.
  • the identifier field in DCI format 2_2 may be deleted.
  • FIG. 8 is a diagram showing another example of the DCI format 2_2 according to the fifth aspect.
  • the user terminal can identify whether the DCI format 2_2 is to be used for transmission of a TPC command for PUCCH or a TPC command for PUSCH by different payloads or different scrambling identifiers.
  • the 1-bit identifier field of DCI format 2_2 may be expanded to a predetermined field of X (eg, 2 or 3) bits.
  • the predetermined field value may indicate which CC (also referred to as a carrier, cell or serving cell) or which BWP TPC command is to be used by the DCI format 2_2.
  • the transmission of PUSCH uses a type (also referred to as a zero type, a grant type, or a scheduled grant) using resources scheduled by DCI format 1_0 or 1_1, and resources set by upper layer signaling.
  • Types also referred to as first and second types, Grant Free Type 1 and Grant Free Type 2, configured Grant or Grant Free etc
  • Grant free type 2 is a method to activate / deactivate PUSCH resources preset by upper layer with DCI
  • grant free type 1 is activation / deactivation with DCI in addition to grant free type 2 If it is set by RRC signaling without performing, the PUSCH can be transmitted even if there is no L2 / L1 instruction from the base station.
  • P cell primary cell
  • S cell secondary cell
  • the DCI format 2_2 is assumed to be used for at least one of grant type PUSCH, grant free type 1 PUSCH, grant free type 2 PUSCH, and PUCCH.
  • grant type PUSCH grant free type 1 PUSCH
  • grant free type 2 PUSCH grant free type 2 PUSCH
  • PUCCH Physical Uplink Control Channel
  • P cells cells in which PUCCHs are transmitted
  • PS cells primary secondary cells in which PUCCHs are transmitted in different cell groups. It is assumed to be used in).
  • a predetermined field value of X bits in DCI format 2_2 may indicate which cell (also referred to as a carrier, cell or serving cell, etc.) TPC command is used for transmission. Also, the predetermined feed value may indicate which BWP or which cell and which BWP TPC command is to be transmitted.
  • the identifier field in the DCI format used to transmit the TPC command for at least one of PUCCH and PUSCH can be effectively used, or the overhead of the DCI format can be reduced by deleting the identifier field.
  • a DCI format (eg, DCI format 2_3) used for transmission of a reference signal (eg, SRS) by one or more user terminals will be described.
  • the user terminal may control the transmission of SRS based on the value indicated by the block number in the DCI format.
  • the DCI format (for example, DCI format 2_3) may include B (B ⁇ 1) blocks.
  • Each block indicates, for example, a TPC command, and the user terminal may control an SRS or a cell to which the TPC command is to be reflected based on the block.
  • a number (block number) may be assigned to each of the B blocks.
  • the DCI format may include a field (SRS request field) for requesting transmission of SRS from the user terminal.
  • An SRS request field may be included for a given block.
  • the value of the SRS request field may indicate in which cell (also referred to as a CC, a serving cell or a carrier, etc.) the transmission of the SRS is requested.
  • the DCI format may include a TPC command (also referred to as a TPC command field or the like). TPC commands may be included for a given block.
  • the user terminal may control the SRS transmission power based on the TPC command.
  • the user terminal may monitor a control area (for example, at least one of CORESET and search space) set in the user terminal to detect the DCI format (for example, DCI format 2_3).
  • a control area for example, at least one of CORESET and search space
  • the CRC bits of the DCI format (for example, DCI format 2_3) are scramble identifiers (for example, different from DCI formats for other purposes (for example, DCI format 0_0, 0_1, 1_0, 1_1, 2_0, 2_1, 2_2, etc.) , Srs-TPC-RNTI) may be scrambled (masked).
  • the user terminal can identify the DCI format used for the transmission of the SRS from the user terminal and the DCI format for other uses by different scramble identifiers.
  • the information indicating srs-TPC-RNTI may be notified (set) from the radio base station to the user terminal by higher layer signaling.
  • a plurality of UL carriers are set for a single DL carrier (also referred to as a DL cell or the like).
  • the UL carrier in which the corresponding DL carrier exists is also called a normal UL carrier
  • the UL carrier in which the corresponding DL carrier does not exist is the additional UL carrier (SUL: Supplemental Uplink) Also called).
  • the identifier field in the DCI format used for SRS transmission from the user terminal may be used to identify whether the UL carrier used by the user terminal for SRS transmission is a normal UL carrier or SUL. .
  • FIG. 9 is a diagram showing an example of the DCI format 2_3 according to the sixth aspect.
  • the CRC bits of DCI format 2_3 are scrambled with a scramble identifier (eg, srs-TPC-RNTI) different from DCI formats for other uses.
  • a scramble identifier eg, srs-TPC-RNTI
  • DCI format 2_3 shown in FIGS. 9A to 9C is merely an example, and some fields may be omitted, and other fields not shown (for example, SRS request field for each block and TPC command for each block) Of course, at least one may be included.
  • the payloads of DCI format 2_3 used for SRS transmission of normal UL carrier and DCI format 2_3 used for SRS transmission of SUL are identical, and both CRC bits are identical to each other in srs-TPC-RNTI. Shall be scrambled.
  • the identifier field of DCI format 2_3 may be used to identify whether the DCI format 2_3 is used for transmission of SRS of normal UL carrier or SRS of SUL.
  • a value eg, “0” indicating a normal UL carrier or a value (eg, “1”) indicating an SUL is included. It may be set.
  • the user terminal may recognize whether the DCI format is used for SRS of normal UL carrier or SUL of SUL according to an identifier field value in DCI format 2_3. Also, the user terminal may control transmission of SRS in the identified UL carrier based on at least one of the block included in the DCI format 2_3, the SRS request field, and the TPC command.
  • the user terminal can identify whether the DCI format 2_3 targets SRS of a normal UL carrier or SRS of SUL based on different payloads or scramble identifiers.
  • the identifier field in DCI format 2_3 may be used as the virtual CRC bit.
  • a fixed value for example, “0” or “1”
  • the effect of the error correction at the user terminal can be obtained more. Therefore, as shown in FIG. 9B, performance can be improved by using the identifier field as a virtual CRC bit.
  • the identifier field in DCI format 2_3 may be deleted.
  • the payload of DCI format 2_3 can be reduced. Therefore, the overhead due to the DCI format 2_3 can be reduced, and as a result, the performance of the wireless communication system can be improved.
  • the identifier field in the DCI format used for transmission of SRS from the user terminal can be effectively used, or the overhead of the DCI format can be reduced by deleting the identifier field.
  • wireless communication system Wireless communication system
  • the wireless communication method according to each of the above aspects is applied.
  • the wireless communication methods according to the above aspects may be applied singly or in combination of at least two.
  • FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment.
  • the radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
  • the wireless communication system 1 is called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, Future Radio Access (FRA), New Radio Access Technology (NR), etc. Also good.
  • the radio communication system 1 shown in FIG. 10 includes a radio base station 11 forming a macrocell C1, and radio base stations 12a to 12c disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. .
  • the user terminal 20 is arrange
  • the configuration may be such that different numerologies are applied between cells and / or in cells.
  • the term “neurology” refers to communication parameters in the frequency direction and / or time direction (eg, subcarrier spacing (subcarrier spacing), bandwidth, symbol length, CP time length (CP length), subframe length , TTI time length (TTI length), number of symbols per TTI, radio frame configuration, filtering process, windowing process, etc.).
  • subcarrier intervals such as 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz may be supported.
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12.
  • the user terminal 20 is assumed to simultaneously use the macro cell C1 and the small cell C2 using different frequencies by CA or DC.
  • the user terminal 20 can apply CA or DC using a plurality of cells (CCs) (for example, two or more CCs).
  • the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells.
  • the user terminal 20 can perform communication using time division duplex (TDD) or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • the TDD cell and the FDD cell may be referred to as a TDD carrier (frame configuration type 2), an FDD carrier (frame configuration type 1) and the like, respectively.
  • a single numerology may be applied, or a plurality of different numerologies may be applied.
  • Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a carrier having a narrow bandwidth (referred to as an existing carrier, Legacy carrier, etc.).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that for the base station 11 may be used.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • a wired connection for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.
  • a wireless connection Can be configured.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a gNB (gNodeB), a transmission / reception point (TRP), etc. Good.
  • the radio base station 12 is a radio base station having a local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), an eNB , GNB, transmission / reception points, etc.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
  • Each user terminal 20 is an LTE, LTE-A, 5G, 5G +, NR, Rel.
  • Terminals compatible with various communication schemes such as 15 and so on may include not only mobile communication terminals but also fixed communication terminals. Also, the user terminal 20 can perform inter-terminal communication (D2D) with another user terminal 20.
  • D2D inter-terminal communication
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication.
  • SC-FDMA is a single carrier transmission scheme that divides the system bandwidth into bands consisting of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between the terminals. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in UL.
  • a multicarrier waveform for example, an OFDM waveform
  • a single carrier waveform for example, a DFT-s-OFDM waveform
  • DL shared channels DL shared channels (PDSCH: also referred to as Physical Downlink Shared Channel, also referred to as downlink data channels) shared by each user terminal 20, broadcast channels (PBCH: Physical Broadcast Channel), An L1 / L2 control channel or the like is used.
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • the L1 / L2 control channel includes a downlink control channel (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. .
  • Downlink control information (DCI) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the EPDCCH is frequency division multiplexed with the PDSCH, and is used for transmission such as DCI as the PDCCH.
  • HARQ acknowledgment information ACK / NACK
  • an uplink shared channel (PUSCH: also referred to as physical uplink shared channel, uplink data channel etc.) shared by each user terminal 20, an uplink control channel (PUCCH: physical uplink control channel) ), Random access channel (PRACH: Physical Random Access Channel) or the like.
  • PUSCH uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH Random access channel
  • User data and higher layer control information are transmitted by PUSCH.
  • Uplink control information (UCI: Uplink Control Information) including at least one of delivery confirmation information (A / N) of downlink (DL) signals and channel state information (CSI) is transmitted by PUSCH or PUCCH.
  • the PRACH can transmit a random access preamble for establishing a connection with a cell.
  • FIG. 11 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • Each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 in downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data.
  • Control Retransmission control (for example, transmission processing of HARQ (Hybrid Automatic Repeat reQuest)), scheduling, transmission format selection, channel coding, transmission processing such as inverse fast Fourier transform (IFFT) processing, precoding processing, etc. Is transferred to the transmission / reception unit 103.
  • transmission processing such as channel coding and inverse fast Fourier transform is performed and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
  • the transmitter / receiver, the transmitting / receiving circuit or the transmitting / receiving device described based on the common recognition in the technical field according to the present invention can be constituted.
  • the transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
  • the radio frequency signal received by the transmitting and receiving antenna 101 is amplified by the amplifier unit 102.
  • the transmitting and receiving unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on UL data included in the input UL signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as setting and release of communication channels, status management of the wireless base station 10, and management of wireless resources.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the adjacent wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). It is also good.
  • an inter-base station interface for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface.
  • the transmitting / receiving unit 103 transmits a downlink (DL) signal (including at least one of DL data signal, DL control signal, and DL reference signal) to the user terminal 20, and uplink (UL) from the user terminal 20. 2.) receiving a signal (including at least one of a UL data signal, a UL control signal, and a UL reference signal).
  • DL downlink
  • UL uplink
  • the transmission / reception unit 103 transmits DCI to the user terminal 20 using the downlink control channel. Specifically, the transmitting and receiving unit 103 may transmit a plurality of downlink control information (DCI) having the same payload and the same identifier used for scrambling the cyclic redundancy check bits. In addition, the transmitting / receiving unit 103 may transmit control information (upper layer control information) by higher layer signaling.
  • DCI downlink control information
  • control information upper layer control information
  • FIG. 12 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment.
  • FIG. 12 mainly shows the functional blocks of the characterizing portion in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire wireless base station 10.
  • the control unit 301 may, for example, generate a DL signal by the transmission signal generation unit 302, mapping the DL signal by the mapping unit 303, receive processing (for example, demodulation) of the UL signal by the reception signal processing unit 304, Control the measurement.
  • control unit 301 performs scheduling of the user terminal 20. Specifically, the control unit 301 may perform scheduling and / or retransmission control of the downlink shared channel and / or the uplink shared channel.
  • control unit 301 may control the generation of DCI. Specifically, the control unit 301 may control identifier field values of a plurality of DCI. The plurality of DCIs may have the same payload and the same identifier used to scramble the CRC bits.
  • control unit 301 may control generation of the plurality of identifier field values ( First and second modes).
  • control unit 301 may control the generation of the plurality of identifier field values (third aspect).
  • the control The unit 301 may control generation of identifier field values of the first DCI and the second DCI (fourth aspect).
  • the control unit 301 When the plurality of DCIs are a first DCI including a command for transmission power control (TPC) of the downlink shared channel and a second DCI including a command for TPC of the uplink shared channel, the control unit 301 The generation of identifier field values of the first DCI and the second DCI may be controlled (fifth aspect).
  • TPC transmission power control
  • the control unit 301 is configured to: The generation of identifier field values of the first DCI and the second DCI may be controlled (sixth aspect).
  • the control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL signal (including a DL data signal, a DL control signal, and a DL reference signal) based on an instruction from the control unit 301, and outputs the DL signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 on a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on a UL signal (for example, including UL data signal, UL control signal, UL reference signal) transmitted from the user terminal 20. I do. Specifically, the reception signal processing unit 304 may output the reception signal or the signal after reception processing to the measurement unit 305. Further, the reception signal processing unit 304 performs UCI reception processing based on the uplink control channel configuration instructed by the control unit 301.
  • reception processing for example, demapping, demodulation, decoding, etc.
  • the measurement unit 305 performs measurement on the received signal.
  • the measuring unit 305 can be configured from a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 305 measures the channel quality of UL based on, for example, received power (for example, RSRP (Reference Signal Received Power)) and / or received quality (for example, RSRQ (Reference Signal Received Quality)) of the UL reference signal. You may The measurement result may be output to the control unit 301.
  • received power for example, RSRP (Reference Signal Received Power)
  • RSRQ Reference Signal Received Quality
  • FIG. 13 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the radio frequency signals received by the plurality of transmitting and receiving antennas 201 are amplified by the amplifier unit 202, respectively.
  • Each transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs reception processing of FFT processing, error correction decoding, retransmission control, and the like on the input baseband signal.
  • the DL data is transferred to the application unit 205.
  • the application unit 205 performs processing on a layer higher than the physical layer and the MAC layer. Also, broadcast information is also transferred to the application unit 205.
  • uplink (UL) data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing of retransmission control (for example, transmission processing of HARQ), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, etc. Is transferred to each transmission / reception unit 203. Also for UCI, at least one of channel coding, rate matching, puncturing, DFT processing, and IFFT processing is performed and transferred to each transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
  • the transmitting / receiving unit 203 receives a downstream (DL) signal (including a DL data signal, a DL control signal, and a DL reference signal) of the neurology set in the user terminal 20, and the uplink (UL) of the neurology.
  • DL downstream
  • UL uplink
  • Send a signal including UL data signal, UL control signal, UL reference signal).
  • the transmitting / receiving unit 303 receives DCI for the user terminal 20 using the downlink control channel.
  • the transmitting and receiving unit 203 may receive a plurality of downlink control information (DCI) having the same payload and the same identifier used for scrambling the cyclic redundancy check bits.
  • the transmitting / receiving unit 203 may receive control information (upper layer control information) by higher layer signaling.
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • FIG. 14 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Have.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 controls, for example, UL signal generation by the transmission signal generation unit 402, mapping of the UL signal by the mapping unit 403, reception processing of the DL signal by the reception signal processing unit 404, and measurement by the measurement unit 405.
  • control section 401 performs communication processing in user terminal 20 (reception of downlink shared channel (for example, PDSCH), transmission of uplink shared channel (for example, PUSCH), slot format, uplink shared channel, and uplink control). At least one transmission power of a channel (for example, PUCCH), at least one of an uplink reference signal (for example, transmission of SRS, etc.) may be controlled.
  • the control unit 401 may control the communication process in the user terminal 20 based on the identifier field values of a plurality of DCI.
  • the plurality of DCIs may have the same payload and the same identifier used to scramble the CRC bits.
  • the control unit 401 determines the plurality of DCIs based on the plurality of identifier field values.
  • the format may be identified (first and second aspects).
  • the control unit 401 identifies the configuration of the slot format identifier based on the plurality of identifier field values. Good (third aspect).
  • the control The unit 401 may identify the first DCI and the second DCI based on identifier field values of the first DCI and the second DCI (fourth aspect).
  • the control unit 401 When the plurality of DCIs are a first DCI including a command for transmission power control (TPC) of the downlink shared channel and a second DCI including a command for TPC of the uplink shared channel, the control unit 401 The generation of identifier field values of the first DCI and the second DCI may be controlled (fifth aspect).
  • TPC transmission power control
  • the control unit 401 is configured to: The generation of identifier field values of the first DCI and the second DCI may be controlled (sixth aspect).
  • control unit 401 may control decoding (error correction) of the plurality of DCI based on the identification field values of the plurality of DCI (third to sixth aspects).
  • the control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a UL signal (including a UL data signal, a UL control signal, a UL reference signal, and UCI) based on an instruction from the control unit 401 (for example, coding, rate matching, puncturing, modulation) Etc., and output to the mapping unit 403.
  • the transmission signal generation unit 402 can be a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the UL signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the UL signal to the transmission / reception unit 203.
  • the mapping unit 403 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal (DL data signal, scheduling information, DL control signal, DL reference signal).
  • the received signal processing unit 404 outputs the information received from the radio base station 10 to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, upper layer control information by upper layer signaling such as RRC signaling, physical layer control information (L1 / L2 control information), and the like to the control unit 401.
  • the received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
  • Measuring section 405 measures a channel state based on a reference signal (for example, CSI-RS) from radio base station 10, and outputs the measurement result to control section 401.
  • the channel state measurement may be performed for each CC.
  • the measuring unit 405 can be configured of a signal processor, a signal processing circuit or a signal processing device, and a measuring instrument, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • each functional block is realized using one physically and / or logically coupled device, or directly and / or two or more physically and / or logically separated devices. Or it may connect indirectly (for example, using a wire communication and / or radio), and it may be realized using a plurality of these devices.
  • a wireless base station, a user terminal, and the like in an embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention.
  • FIG. 15 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to the present embodiment.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 is performed. This is realized by controlling communication, and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, or may be realized similarly for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
  • a computer readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • Hardware may be included, and part or all of each functional block may be realized using the hardware.
  • processor 1001 may be implemented using at least one of these hardware.
  • the channels and / or symbols may be signaling.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
  • the slot may be configured by one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.).
  • the slot may be a time unit based on the neurology.
  • the slot may include a plurality of minislots. Each minislot may be configured by one or more symbols in the time domain. Minislots may also be referred to as subslots.
  • a radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal.
  • subframes, slots, minislots and symbols other names corresponding to each may be used.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot or one minislot may be referred to as a TTI.
  • TTI transmission time interval
  • the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the radio base station performs scheduling to assign radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in TTI units.
  • radio resources frequency bandwidth usable in each user terminal, transmission power, etc.
  • the TTI may be a transmission time unit of a channel encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that, when a TTI is given, the time interval (eg, the number of symbols) in which the transport block, the code block, and / or the codeword is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, or the like.
  • a long TTI for example, a normal TTI, a subframe, etc.
  • a short TTI eg, a shortened TTI, etc.
  • a resource block is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be respectively configured by one or more resource blocks. Note that one or more RBs may be a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. It may be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • a resource block may be configured by one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be one subcarrier and one symbol radio resource region.
  • the above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB
  • the number of subcarriers, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be variously changed.
  • the information, parameters, etc. described in the present specification may be expressed using absolute values, may be expressed using relative values from predetermined values, or other corresponding information. May be represented.
  • radio resources may be indicated by a predetermined index.
  • the names used for parameters and the like in the present specification are not limited names in any respect.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable names, various assignments are made to these various channels and information elements.
  • the name is not limited in any way.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed using other methods.
  • notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not notifying the predetermined information or other information Notification may be performed).
  • the determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” as used herein may be used interchangeably.
  • base station Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell cell
  • cell group cell group
  • carrier carrier
  • carrier carrier
  • a base station may be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, transmission / reception point, femtocell, small cell, and the like.
  • a base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication service can also be provided by Remote Radio Head).
  • RRH Communication service can also be provided by Remote Radio Head.
  • the terms "cell” or “sector” refer to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • the mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
  • the base station and / or the mobile station may be called a transmitting device, a receiving device, etc.
  • the radio base station in the present specification may be replaced with a user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the above-described radio base station 10 has.
  • the wordings such as "up” and “down” may be read as "side".
  • the upstream channel may be read as a side channel.
  • a user terminal herein may be read at a radio base station.
  • the radio base station 10 may have a function that the above-described user terminal 20 has.
  • the operation supposed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark) And / or systems based on other suitable wireless communication methods and / or extended next generation systems based on these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • any reference to an element using the designation "first”, “second” and the like as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
  • determining may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as “determining”. Also, “determination” may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as “determining” (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, “determination” may be considered as “determining” some action.
  • connection refers to any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements “connected” or “connected” to each other.
  • the coupling or connection between elements may be physical, logical or a combination thereof. For example, “connection” may be read as "access”.
  • the radio frequency domain It can be considered as “connected” or “coupled” with one another using electromagnetic energy or the like having wavelengths in the microwave region and / or the light (both visible and invisible) regions.
  • a and B are different may mean “A and B are different from each other”.
  • the terms “leave”, “combined” and the like may be interpreted similarly.

Abstract

One embodiment of the user terminal of the present invention is equipped with: a receiving unit for receiving a plurality of units of downlink control information (DCI) which have the same payload and the same identifier to be used when scrambling cyclic redundancy check bits; and a control unit for controlling communication processing based on each of the plurality of DCI units, on the basis of the identifier field value included in each of the plurality of DCI units.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、LTE Rel.14、15~、などともいう)も検討されている。 In Universal Mobile Telecommunications System (UMTS) networks, Long Term Evolution (LTE) has been specified for the purpose of further higher data rates, lower delays, etc. (Non-Patent Document 1). Also, for the purpose of achieving wider bandwidth and higher speed from LTE, successor systems of LTE (for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( Also referred to as New RAT), LTE Rel. 14, 15 and so on.
 既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末(UE:User Equipment)は、無線基地局からの下り制御情報(DCI:Downlink Control Information、DLアサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(ULグラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。 In the existing LTE system (for example, LTE Rel. 8-13), the user terminal (UE: User Equipment) is based on downlink control information (DCI: also referred to as Downlink Control Information, DL assignment, etc.) from the radio base station. Control reception of a downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel). Also, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
 また、当該既存のLTEシステムでは、用途に応じて異なる複数のDCIのフォーマット(DCIフォーマット(DF)、例えば、PUSCHのスケジューリングに用いられるDCIフォーマット0及び4、PDSCHのスケジューリングに用いられるDCIフォーマット1、1A~1D、2及び2A~2Dなど)が規定されている。 Further, in the existing LTE system, a plurality of DCI formats (DCI format (DF) different according to the application, eg, DCI formats 0 and 4 used for PUSCH scheduling, DCI format 1 used for PDSCH scheduling, 1A-1D, 2 and 2A-2D etc.) are defined.
 既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末は、ペイロードが同一であり、かつ、巡回冗長検査(CRC:Cyclic Redundancy Check)ビットのスクランブル(マスク)に用いられる識別子(スクランブル識別子、例えば、RNTI:Radio Network Temporary Identifier)が同一である複数のDCIフォーマットを、当該複数のDCIフォーマットそれぞれに含まれる識別子(Identifier)(識別用のフラグ、識別フラグ、識別用のフィールド、識別子フィールド等ともいう)を用いて識別する。 In the existing LTE system (for example, LTE Rel. 8-13), the user terminal has an identical payload and is an identifier (scrambled) used for scrambling (mask) of cyclic redundancy check (CRC) bits. A plurality of DCI formats having the same identifier, for example, RNTI: Radio Network Temporary Identifier, are included in each of the plurality of DCI formats. Identifier (Identification flag, identification flag, identification field, identification field, identifier field And so on).
 一方、ユーザ端末は、ペイロード又はスクランブル識別子のいずれか一方が異なれば、複数のDCIフォーマットを識別可能である。したがって、上記既存のLTEシステムとは異なる複数のDCIフォーマットが用いられる将来の無線通信システム(例えば、NR、5G、5G+又はRel.15以降)では、当該複数のDCIフォーマット内に上記識別子フィールドを設けなくとも、当該複数のDCIフォーマットを識別可能となることが想定される。或いは、上記識別子フィールドをDCIフォーマットの識別以外の他の用途に利用可能となることが想定される。 On the other hand, the user terminal can identify a plurality of DCI formats if either the payload or the scramble identifier is different. Therefore, in a future wireless communication system (for example, NR, 5G, 5G + or Rel. 15 or later) in which a plurality of DCI formats different from the existing LTE system are used, the identifier field is provided in the plurality of DCI formats. At the same time, it is assumed that the plurality of DCI formats can be identified. Alternatively, it is assumed that the identifier field can be used for other purposes besides the identification of DCI format.
 本発明はかかる点に鑑みてなされたものであり、将来の無線通信システムに適するDCIフォーマットを用いて通信処理を制御可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a user terminal and a wireless communication method capable of controlling communication processing using a DCI format suitable for a future wireless communication system.
 本発明のユーザ端末の一態様は、ペイロードが同一であり、かつ、巡回冗長検査ビットのスクランブルに用いられる識別子が同一である複数の下り制御情報(DCI)を受信する受信部と、前記複数のDCIそれぞれに含まれる識別子フィールド値に基づいて、前記複数のDCIそれぞれに基づく通信処理を制御する制御部と、を具備することを特徴とする。 One aspect of the user terminal of the present invention is a receiving unit for receiving a plurality of downlink control information (DCI) having the same payload and having the same identifier used for scrambling cyclic redundancy check bits, And a controller configured to control communication processing based on each of the plurality of DCIs based on an identifier field value included in each of the DCIs.
 本発明によれば、将来の無線通信システムに適するDCIフォーマットを用いて通信処理を制御できる。 According to the present invention, communication processing can be controlled using a DCI format suitable for a future wireless communication system.
図1A及び1Bは、第1の態様に係る識別子フィールドの一例を示す図である。1A and 1B are diagrams showing an example of an identifier field according to the first aspect. 図2A及び2Bは、第2の態様に係る識別子フィールドの一例を示す図である。2A and 2B are diagrams showing an example of an identifier field according to the second aspect. 図3A及び3Bは、第2の態様に係る識別子フィールドの他の例を示す図である。3A and 3B are diagrams showing other examples of the identifier field according to the second aspect. 図4は、第3の態様に係るスロットフォーマットの一例を示す図である。FIG. 4 is a diagram showing an example of a slot format according to the third aspect. 図5A-5Cは、第3の態様に係るDCIフォーマット2_0の一例を示す図である。5A-5C are diagrams showing an example of the DCI format 2_0 according to the third aspect. 図6A-6Cは、第4の態様に係るDCIフォーマット2_1の一例を示す図である。6A-6C are diagrams showing an example of the DCI format 2_1 according to the fourth aspect. 図7A-7Cは、第5の態様に係るDCIフォーマット2_2の一例を示す図である。7A-7C are diagrams showing an example of the DCI format 2_2 according to the fifth aspect. 図8は、第5の態様に係るDCIフォーマット2_2の他の例を示す図である。FIG. 8 is a diagram showing another example of the DCI format 2_2 according to the fifth aspect. 図9A-9Cは、第6の態様に係るDCIフォーマット2_3の一例を示す図である。9A-9C are diagrams showing an example of the DCI format 2_3 according to the sixth aspect. 図10は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment. 図11は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。FIG. 11 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment. 図12は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。FIG. 12 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment. 図13は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 13 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment. 図14は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 14 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. 図15は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 15 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to the present embodiment.
 将来の無線通信システム(例えば、LTE Rel.15~、5G、NRなど)では、既存のLTEシステム(例えば、LTE Rel.8-13)とは異なる複数のDCIフォーマットを用いて、ユーザ端末の通信処理(例えば、下り共有チャネル(例えば、PDSCH)の受信、上り共有チャネル(例えば、PUSCH)の送信、スロットフォーマット、上り共有チャネル及び上り制御チャネル(例えば、PUCCH(Physical Uplink Control Channel))の送信電力、上り参照信号(例えば、サウンディング参照信号(SRS:Sounding Reference Signal))の送信などの少なくとも一つ)を制御することが想定される。 In future wireless communication systems (eg, LTE Rel. 15 to 5G, NR, etc.), communication of user terminals using a plurality of DCI formats different from existing LTE systems (eg, LTE Rel. 8-13) Processing (eg, reception of downlink shared channel (eg, PDSCH), transmission of uplink shared channel (eg, PUSCH), slot format, uplink shared channel and uplink control channel (eg, PUCCH (Physical Uplink Control Channel)) transmission power , And controlling at least one of uplink reference signals (for example, transmission of a Sounding Reference Signal (SRS)).
 例えば、当該将来の無線通信システムでは、用途、ペイロード(ビット数)、含まれる情報フィールドの種類及び数の少なくとも一つが異なる以下の(1)~(3)のDCIフォーマットが検討されている。 For example, in the future wireless communication system, DCI formats of the following (1) to (3) in which at least one of application, payload (number of bits), type and number of information fields included is different are considered.
(1)PUSCHのスケジューリングに用いられるDCIフォーマット(DCIフォーマット0等ともいう)
(1.1)一つのセル(one cell)のPUSCHのスケジューリングに用いられるDCIフォーマット(DCIフォーマット0_0、DCIフォーマット0A等ともいう)。
(1.2)一つのセルのPUSCHのスケジューリングに用いられ、DCIフォーマット0_0よりもペイロード(ビット数)が多いDCIフォーマット(DCIフォーマット0_1、DCIフォーマット0B等ともいう)。
(1) DCI format used for PUSCH scheduling (also referred to as DCI format 0 etc.)
(1.1) DCI format (also referred to as DCI format 0_0, DCI format 0A, etc.) used for scheduling of PUSCH of one cell (one cell).
(1.2) DCI format (also referred to as DCI format 0_1, DCI format 0B, etc.) which is used for scheduling of PUSCH of one cell and has a larger payload (number of bits) than DCI format 0_0.
(2)PDSCHのスケジューリングに用いられるDCIフォーマット(DCIフォーマット1等ともいう)
(2.1)一つのセルのPDSCHのスケジューリングに用いられるDCIフォーマット(DCIフォーマット1_0、DCIフォーマット1A等ともいう)。
(2.2)一つのセルのPUSCHのスケジューリングに用いられ、DCIフォーマット1_0よりもペイロード(ビット数)が多いDCIフォーマット(DCIフォーマット1_1、DCIフォーマット1B等ともいう)。
(2) DCI format used for PDSCH scheduling (also referred to as DCI format 1 etc.)
(2.1) DCI format (also referred to as DCI format 1_0, DCI format 1A, etc.) used for scheduling of PDSCH of one cell.
(2.2) A DCI format (also referred to as DCI format 1_1, DCI format 1B, etc.) which is used for scheduling of PUSCH of one cell and has a larger payload (number of bits) than DCI format 1_0.
(3)他の目的で用いられるDCIフォーマット
(3.1)スロットフォーマットに関する情報(例えば、SFI:Slot Format Indicator)の通知(notify)に用いられるDCIフォーマット(DCIフォーマット2_0、DCIフォーマット2A等ともいう)。
(3) DCI format used for other purposes (3.1) Also known as DCI format (DCI format 2_0, DCI format 2A, etc.) used for notifying (notify) information on slot format (SFI: Slot Format Indicator) ).
(3.2)特定のリソース(例えば、ユーザ端末に対するPDSCHの送信がないと想定してもよいリソース又はユーザ端末からのPUSCHの送信を停止するリソース)の通知に用いられるDCIフォーマット(DCIフォーマット2_1、DCIフォーマット2B等ともいう)。なお、当該リソースは、周波数領域リソース(frequency domain resource、例えば、一以上の物理リソースブロック(PRB:Physical Resource Block))及び時間領域リソース(time domain resource、例えば、一以上のシンボル)の少なくとも一つを含んでもよい。 (3.2) DCI format (DCI format 2_1) used for notification of a specific resource (for example, a resource that may assume that there is no transmission of PDSCH to the user terminal or a resource that stops transmission of the PUSCH from the user terminal) , DCI format 2B etc.). Note that the resource is at least one of a frequency domain resource (eg, one or more physical resource blocks (PRBs)) and a time domain resource (eg, one or more symbols). May be included.
(3.3)PUCCH及びPUSCHの少なくとも一つ用の送信電力制御(TPC:Transmission Power Control)コマンドの送信に用いられるDCIフォーマット(DCIフォーマット2_2、DCIフォーマット2C等ともいう)。 (3.3) DCI format (also referred to as DCI format 2_2, DCI format 2C, etc.) used for transmission of a transmission power control (TPC: Transmission Power Control) command for at least one of PUCCH and PUSCH.
(3.4)一以上のユーザ端末による参照信号(例えば、サウンディング参照信号(SRS:Sounding Reference Signal))の送信に用いられるDCIフォーマット(DCIフォーマット2_3、DCIフォーマット2D等ともいう)。例えば、当該DCIフォーアットは、SRSの用のTPCコマンドのグループ(セット)を指定してもよい。 (3.4) DCI format (also referred to as DCI format 2_3, DCI format 2D, etc.) used for transmission of a reference signal (for example, Sounding Reference Signal (SRS)) by one or more user terminals. For example, the DCI fort may specify a group (set) of TPC commands for SRS.
 上記将来の無線通信システムでは、下り制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)の候補リソースであるサーチスペースを監視(monitor)して、当該ユーザ端末に対する下り制御情報(DCI:Downlink Control Information)を検出する。ここで、監視とは、例えば、想定される各フォーマット(例えば、上記(1)~(3)で説明した各DCIフォーマット)に基づいてサーチスペースを復号(ブラインド復号)することである。 In the future radio communication system, a search space which is a candidate resource of a downlink control channel (for example, PDCCH: Physical Downlink Control Channel) is monitored (monitored), and downlink control information (DCI: Downlink Control Information) for the user terminal. To detect Here, monitoring means, for example, decoding (blind decoding) a search space based on assumed formats (for example, each DCI format described in (1) to (3) above).
 これらのDCIフォーマットのそれぞれは、既存のLTEシステムと同様に、DCIフォーマットの識別用のフィールド(識別子(identifier)、識別子フィールド(identifier field)、フラグ、識別フラグ等ともいう)を含むことも検討されている。 It is also considered that each of these DCI formats includes a field for identification of DCI format (also referred to as an identifier, an identifier field, a flag, an identification flag, etc.) as in the existing LTE system. ing.
 しかしながら、上記既存のLTEシステムとは異なる複数のDCIフォーマットが用いられる将来の無線通信システム(例えば、NR、5G、5G+又はRel.15以降)では、当該複数のDCIフォーマット内に上記識別子フィールドを設けなくとも、当該複数のDCIフォーマットを識別可能となることが想定される。或いは、上記識別子フィールドをDCIフォーマットの識別以外の他の用途に利用可能となることが想定される。 However, in a future wireless communication system (for example, NR, 5G, 5G + or Rel. 15 or later) in which a plurality of DCI formats different from the existing LTE system are used, the identifier field is provided in the plurality of DCI formats. At the same time, it is assumed that the plurality of DCI formats can be identified. Alternatively, it is assumed that the identifier field can be used for other purposes besides the identification of DCI format.
 そこで、本発明者らは、将来の無線通信システム(例えば、LTE Rel.15~、5G、NRなど)に適するDCIフォーマットを用いて上記通信処理を制御可能とする方法を検討し、本発明に至った。具体的には、本発明者らは、DCIフォーマット内の識別子フィールドを有効に利用することで性能(performance)を向上させること、又は、当該識別フィールドを削除することでオーバーヘッドを削減することを着想した。 Therefore, the present inventors examined a method of enabling control of the above communication processing using a DCI format suitable for a future wireless communication system (for example, LTE Rel. 15 to 5 G, NR, etc.). It reached. Specifically, the inventors conceived of improving performance by effectively using the identifier field in the DCI format, or reducing overhead by deleting the identification field. did.
 以下、本実施の形態について詳細に説明する。以下では、上記DCIフォーマット0_0、0_1、1_0、1_1、2_0、2-1、2-2、2-3を例示するが、本実施の形態に係るDCIフォーマットの名称はこれらに限られず、同一又は類似する用途であれば、他の名称のDCIフォーマットにも適用可能である。 Hereinafter, the present embodiment will be described in detail. Although the above DCI formats 0_0, 0_1, 1_0, 1_1, 2_0, 2-1, 2-2, 2-3 are exemplified below, the names of the DCI formats according to the present embodiment are not limited thereto, and the same or It is also applicable to DCI formats with other names, for similar applications.
 また、以下では、1ビットの識別子フィールドを例示するが、識別子フィールドのビット数は、2ビット以上であってもよい。また、識別子フィールドの名称もこれに限られず、DCIフォーマット内のフィールドであれば、どのような名称であってもよい。また、以下の図面では、DCIフォーマットの最初に設けられる識別子フィールドが例示されるが、識別子フィールドの位置は、DCIフォーマット内のどのような位置であってもよい。 Also, although the 1-bit identifier field is exemplified below, the number of bits of the identifier field may be 2 or more. Also, the name of the identifier field is not limited to this, and any name may be used as long as it is a field in the DCI format. Also, in the following drawings, the identifier field provided at the beginning of the DCI format is illustrated, but the location of the identifier field may be any position within the DCI format.
(第1の態様)
 第1の態様では、PUSCHのスケジューリングに用いられるDCIフォーマット(ULグラントともいう、例えば、DCIフォーマット0_0及び0_1)とPDSCHのスケジューリングに用いられるDCIフォーマット(DLアサインメントともいう、例えば、DCIフォーマット1_0及び1_1)内の識別子フィールドが、DCIフォーマットの識別(distinguish、またはidentify)に用いられる場合について説明する。
(First aspect)
In the first aspect, DCI formats (also referred to as UL grants, for example, DCI formats 0_0 and 0_1) used for PUSCH scheduling and DCI formats (DL assignment) used for PDSCH scheduling, for example, DCI formats 1_0 and The case where the identifier field in 1_1) is used for identifying (identifying) the DCI format will be described.
 具体的には、ペイロードが同一で、かつ、CRCビットのスクランブル識別子(例えば、RNTI)が同一で、かつ、リソースが重複している(又は、これらの少なくとも一つによって区別できない)ULグラント及びDLアサインメント内の識別子フィールドは、当該ULグラント又は当該DLアサインメントの識別に用いられてもよい。 Specifically, UL grants and DLs having the same payload, the same CRC bit scramble identifier (eg, RNTI), and overlapping resources (or indistinguishable by at least one of them) The identifier field in the assignment may be used to identify the UL grant or the DL assignment.
 図1は、第1の態様に係る識別子フィールドの一例を示す図である。図1A及び1Bでは、PUSCHのスケジューリングに用いられるDCIフォーマット0_0及び0_1、PDSCHのスケジューリングに用いられるDCIフォーマット1_0及び1_1は、それぞれ、同一のスクランブル識別子(例えば、C-RNTI:Cell-RNTI)を用いてスクランブル(マスク)されているものとする。 FIG. 1 is a diagram showing an example of an identifier field according to the first aspect. In FIGS. 1A and 1B, DCI formats 0_0 and 0_1 used for PUSCH scheduling and DCI formats 1_0 and 1_1 used for PDSCH scheduling respectively use the same scrambling identifier (eg, C-RNTI: Cell-RNTI). Be scrambled (masked).
 図1Aでは、DCIフォーマット0_0及び1_0のペイロードが同一である例が示される。図1Aに示すように、DCIフォーマット0_0内の識別子フィールドには、DCIフォーマット0_0を示す値(例えば、“0”)が設定(set)され、DCIフォーマット1_0内の識別子フィールドには、DCIフォーマット1_0を示す値(例えば、“1”)が設定(set)される。 In FIG. 1A, an example is shown in which the payloads of DCI formats 0_0 and 1_0 are identical. As shown in FIG. 1A, in the identifier field in DCI format 0_0, a value (for example, "0") indicating DCI format 0_0 is set (set), and in the identifier field in DCI format 1_0, DCI format 1_0. A value (for example, “1”) indicating.
 図1Bでは、DCIフォーマット0_1及び1_1のペイロードが同一である例が示される。図1Bに示すように、DCIフォーマット0_1内の識別子フィールドには、DCIフォーマット0_1を示す値(例えば、“0”)が設定(set)され、DCIフォーマット1_1内の識別子フィールドには、DCIフォーマット1_1を示す値(例えば、“1”)が設定(set)される。 In FIG. 1B, an example is shown in which the payloads of DCI formats 0_1 and 1_1 are identical. As shown in FIG. 1B, in the identifier field in DCI format 0_1, a value (for example, “0”) indicating DCI format 0_1 is set (set), and in the identifier field in DCI format 1_1, DCI format 1_1. A value (for example, “1”) indicating.
 図1A及び1Bに示す識別子フィールドの値(識別子フィールド値、単に、識別子ともいう)は、例示にすぎず、これに限られない。識別子フィールド値が示すDCIフォーマットは、固定(予め仕様で定められる)であってもよいし、上位レイヤシグナリングにより設定(configure)されてもよい。 The values of the identifier field shown in FIGS. 1A and 1B (identifier field values, also simply referred to as identifiers) are merely illustrative and are not limiting. The DCI format indicated by the identifier field value may be fixed (predetermined in specification) or may be configured by upper layer signaling.
 なお、上位レイヤシグナリングとは、例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(例えば、MIB:Master Information Block)、システム情報(例えば、SIB:System Information Block、RMSI:Remaining Minimum System Informationなど)の少なくとも一つ)であればよい。 Upper layer signaling includes, for example, RRC (Radio Resource Control) signaling, broadcast information (for example, MIB: Master Information Block), system information (for example, SIB: System Information Block, RMSI: Remaining Minimum System Information, etc.) It is sufficient if it is at least one).
 第1の態様では、予め定められた複数のDCIフォーマット内の識別子フィールドが、当該複数のDCIフォーマットの識別に用いられる。したがって、当該複数のDCIフォーマットのペイロードが同一で、かつ、スクランブル識別子が同一である場合であっても、ユーザ端末は、当該識別子フィールド値により当該複数のDCIフォーマットを適切に識別できる。 In a first aspect, identifier fields in a plurality of predetermined DCI formats are used to identify the plurality of DCI formats. Therefore, even if the payloads of the plurality of DCI formats are the same and the scramble identifier is the same, the user terminal can appropriately identify the plurality of DCI formats by the identifier field value.
(第2の態様)
 キャリア内には、一以上の部分的な周波数帯域(帯域幅部分(BWP:Bandwidth part)、部分帯域等ともいう)が設定(configure)されることが想定される。ユーザ端末には、一以上の下り(DL:Downlink)通信のBWP(DL BWP)及び/又は一以上の上り通信(UL:Uplink)用のBWP(UL BWP)が設定されてもよい。キャリア内に設定される複数のBWPは、同一の帯域幅及び/又は異なる帯域幅を有してもよい。
(Second aspect)
It is assumed that one or more partial frequency bands (also referred to as bandwidth parts (BWP), partial bands, etc.) are configured in the carrier. One or more BWPs (DL BWPs) for downlink (DL) communication and / or one or more BWPs (UL BWPs) for uplink communication (ULs) may be set in the user terminal. The plurality of BWPs set in the carrier may have the same bandwidth and / or different bandwidths.
 キャリア内に一以上のBWPが設定される場合、DCIフォーマットのペイロードはBWPの帯域幅毎に制御されることが想定される。PUSCHのスケジューリングに用いられるDCIフォーマット(例えば、DCIフォーマット0_0及び0_1)とPDSCHのスケジューリングに用いられるDCIフォーマット(例えば、DCIフォーマット1_0及び1_1)には、それぞれ、BWPの帯域幅に基づいて定まるフィールド(例えば、周波数領域リソース割り当て(Frequency domain resource assignment)フィールド)が含まれるためである。同様に、MIMO(Multiple-Input and Multiple-Output)レイヤ数やコードブロックベースの再送(Code-block based re-transmission)の設定有無もDCIフォーマットのペイロードに影響を与える。 If more than one BWP is configured in the carrier, it is assumed that the payload of DCI format is controlled per bandwidth of BWP. The DCI format (for example, DCI formats 0_0 and 0_1) used for PUSCH scheduling and the DCI format (for example, DCI formats 1_0 and 1_1) used for PDSCH scheduling are fields determined based on the bandwidth of BWP ( This is because, for example, a frequency domain resource assignment field is included. Similarly, the number of multiple-input and multiple-output (MIMO) layers and the presence or absence of setting for code-block based re-transmission also affect the payload of the DCI format.
 したがって、第1の態様で説明した予め定められたULグラント及びDLアサインメントの組み合わせ(例えば、DCIフォーマット0_0及び1_0、DCIフォーマット0_1及び1_1)において、ペイロードが同一とならない恐れがある。 Therefore, in the combination of predetermined UL grant and DL assignment (for example, DCI formats 0_0 and 1_0, DCI formats 0_1 and 1_1) described in the first aspect, the payloads may not be identical.
 そこで、第2の態様では、ペイロードが同一で、かつ、スクランブル識別子(例えば、RNTI)が同一である任意の複数のDCIフォーマットが選択され、当該複数のDCIフォーマット内の識別子フィールドが、当該複数のDCIフォーマットの識別に用いられてもよい。以下では、第1の態様との相違点を中心に説明する。 Therefore, in the second aspect, any plurality of DCI formats having the same payload and the same scramble identifier (for example, RNTI) are selected, and identifier fields in the plurality of DCI formats are the plurality of the DCI formats. It may be used to identify the DCI format. Hereinafter, differences from the first aspect will be mainly described.
 第2の態様において、ユーザ端末は、ペイロードが同一で、かつ、スクランブル識別子が同一である複数のDCIフォーマット内の識別子フィールド値を、所定のルールに従って想定してもよい。例えば、複数のDCIフォーマットに所定の順序(例えば、DF0_0→DF0_1→DF1_0→DF1_1)が定められ、ペイロードが同一である複数のDCIフォーマット内の識別子フィールドには、当該順序に基づく値が設定されてもよい。ユーザ端末は、当該識別子フィールド値に基づいて、ペイロードが同一で、かつ、スクランブル識別子が同一である任意の複数のDCIフォーマットを識別する。 In the second aspect, the user terminal may assume identifier field values in a plurality of DCI formats having the same payload and the same scrambling identifier according to a predetermined rule. For example, predetermined order (for example, DF0_0 → DF0_1 → DF1_0 → DF1_1) is defined in a plurality of DCI formats, and values based on the order are set in identifier fields in a plurality of DCI formats having the same payload. It is also good. The user terminal identifies, based on the identifier field value, any of a plurality of DCI formats having the same payload and the same scrambling identifier.
 図2は、第2の態様に係る識別子フィールドの一例を示す図である。図2A及び2Bでは、DCIフォーマット0_0及び0_1、DCIフォーマット1_0及び1_1は、それぞれ、同一のスクランブル識別子(例えば、C-RNTI)を用いて各DCIフォーマットに付加されるCRCビットがスクランブル(マスク)されているものとする。 FIG. 2 is a diagram showing an example of an identifier field according to the second aspect. In FIGS. 2A and 2B, DCI formats 0_0 and 0_1, DCI formats 1_0 and 1_1 respectively scramble (mask) the CRC bits added to each DCI format using the same scrambling identifier (eg C-RNTI) It shall be.
 また、図2A及び2Bでは、同一のスクランブル識別子でスクランブルされる複数のDCIフォーマット(DF)に対して、DF0_0→DF0_1→DF1_0→DF1_1の順序が定められる例を示すが、順序は、これに限られない。 2A and 2B show an example in which the order of DF0_0 → DF0_1 → DF1_0 → DF1_1 is defined for a plurality of DCI formats (DFs) scrambled with the same scramble identifier, but the order is limited to this. I can not.
 また、図2A及び2Bでは、ユーザ端末は、当該複数のDCIフォーマットの中で、ペイロードが同一の2つのDCIフォーマットの識別子フィールド値は、順序が先のDCIフォーマットであるほど小さい値であると想定するものとするが、これに限られない。ユーザ端末は、当該識別子フィールド値を所定ルールに従って想定すればよい。 Also, in FIGS. 2A and 2B, the user terminal assumes that, among the plurality of DCI formats, identifier field values of two DCI formats having the same payload are smaller as the order is the earlier DCI format. It shall be, but not limited to. The user terminal may assume the identifier field value according to a predetermined rule.
 図2Aでは、DCIフォーマット0_0及び0_1のペイロードが同一であり、かつ、DCIフォーマット1_0及びDCIフォーマット1_1のペイロードが同一である例が示される。図2Aに示すように、ペイロードが同一であるDCIフォーマット0_0及び0_1内の識別子フィールドには、それぞれ、上記順序に基づく値が設定される。同様に、ペイロードが同一であるDCIフォーマット1_0及び1_1内の識別子フィールドには、それぞれ、上記順序に基づく値が設定される。 FIG. 2A shows an example in which the payloads of DCI formats 0_0 and 0_1 are identical, and the payloads of DCI format 1_0 and DCI format 1_1 are identical. As shown in FIG. 2A, in the identifier fields in DCI formats 0_0 and 0_1 having the same payload, values based on the above order are respectively set. Similarly, values based on the above-described order are set in the identifier fields in DCI formats 1_0 and 1_1 in which the payloads are identical.
 例えば、上記順序によると、DCIフォーマット0_0はDCIフォーマット0_1よりも先であるので(図2Aでは、DCIフォーマット0_0が左でDCIフォーマット0_1が右であるので)、図2Aでは、ユーザ端末は、DCIフォーマット0_0の識別子フィールド値を“0”と想定し、DCIフォーマット0_1の識別子フィールド値を“1”と想定してもよい。 For example, according to the above order, DCI format 0_0 precedes DCI format 0_1 (in FIG. 2A, DCI format 0_0 is left and DCI format 0_1 is right), and in FIG. 2A, the user terminal is DCI The identifier field value of the format 0_0 may be assumed to be “0”, and the identifier field value of the DCI format 0_1 may be assumed to be “1”.
 また、上記順序によると、DCIフォーマット1_0はDCIフォーマット1_1よりも先であるので(図2Aでは、DCIフォーマット1_0が左でDCIフォーマット1_1が右であるので)、図2Aでは、ユーザ端末は、DCIフォーマット0_0の識別子フィールド値を“0”と想定し、DCIフォーマット0_1の識別子フィールド値を“1”と想定してもよい。 Also, according to the above order, DCI format 1_0 is ahead of DCI format 1_1 (in FIG. 2A, DCI format 1_0 is left and DCI format 1_1 is right), and in FIG. 2A, the user terminal is DCI The identifier field value of the format 0_0 may be assumed to be “0”, and the identifier field value of the DCI format 0_1 may be assumed to be “1”.
 図2Bでは、DCIフォーマット0_0及び1_1のペイロードが同一であり、かつ、DCIフォーマット0_1及びDCIフォーマット1_0のペイロードが同一である例が示される。図2Bに示すように、ペイロードが同一であるDCIフォーマット0_0及び1_1内の識別子フィールドには、それぞれ、上記順序に基づく値が設定される。同様に、ペイロードが同一であるDCIフォーマット0_1及び1_0内の識別子フィールドには、それぞれ、上記順序に基づく値が設定される。 FIG. 2B shows an example in which the payloads of DCI formats 0_0 and 1_1 are identical, and the payloads of DCI format 0_1 and DCI format 1_0 are identical. As shown in FIG. 2B, in the identifier fields in DCI formats 0_0 and 1_1 having the same payload, values based on the above order are respectively set. Similarly, in the identifier fields in DCI formats 0_1 and 1_0 in which the payloads are identical, values based on the above order are respectively set.
 例えば、上記順序によると、DCIフォーマット0_0はDCIフォーマット1_1よりも先であるので(図2Bでは、DCIフォーマット0_0が左でDCIフォーマット1_1が右であるので)、図2Bでは、ユーザ端末は、DCIフォーマット0_0の識別子フィールド値を“0”と想定し、DCIフォーマット1_1の識別子フィールド値を“1”と想定してもよい。 For example, according to the above order, DCI format 0_0 precedes DCI format 1_1 (in FIG. 2B, DCI format 0_0 is left and DCI format 1_1 is right), and in FIG. 2B, the user terminal is DCI The identifier field value of the format 0_0 may be assumed to be “0”, and the identifier field value of the DCI format 1_1 may be assumed to be “1”.
 また、上記順序によると、DCIフォーマット0_1はDCIフォーマット1_0よりも先であるので(図2Bでは、DCIフォーマット0_1が左でDCIフォーマット1_0が右であるので)、図2Bでは、ユーザ端末は、DCIフォーマット0_1の識別子フィールド値を“0”と想定し、DCIフォーマット1_0の識別子フィールド値を“1”と想定してもよい。 Also, according to the above order, DCI format 0_1 is earlier than DCI format 1_0 (in FIG. 2B, DCI format 0_1 is left and DCI format 1_0 is right), and in FIG. 2B, the user terminal is DCI The identifier field value of the format 0_1 may be assumed to be “0”, and the identifier field value of the DCI format 1_0 may be assumed to be “1”.
 図3は、第2の態様に係る識別子フィールドの他の例を示す図である。図3A及び3Bは、図2A及び2Bとの相違点を中心に説明する。図3Aでは、同一のスクランブル識別子(例えば、C-RNTI)によりスクランブルされたCRCが付加される複数のDCIフォーマットそれぞれのペイロードが異なるので、ユーザ端末は、識別子フィールド値を用いずに、当該複数のDCIフォーマットを識別可能である。 FIG. 3 is a diagram showing another example of the identifier field according to the second aspect. FIGS. 3A and 3B will be described focusing on differences from FIGS. 2A and 2B. In FIG. 3A, since the payload of each of a plurality of DCI formats to which a CRC scrambled by the same scrambling identifier (for example, C-RNTI) is different is different, the user terminal does not use the identifier field value. The DCI format can be identified.
 そこで、図3Aに示すように、同一のスクランブル識別子(例えば、RNTI)によってスクランブルされたCRCビットが付加され、ペイロードが同一である複数のDCIフォーマットが存在しない場合、ユーザ端末は、当該複数のDCIフォーマット内の識別子フィールド値が固定値(例えば、“0”又は“1”)であると想定してもよい。 Therefore, as shown in FIG. 3A, if there is no DCI format scrambled by the same scramble identifier (for example, RNTI) and there are multiple DCI formats with the same payload, the user terminal can add the multiple DCI. It may be assumed that the identifier field value in the format is a fixed value (e.g. "0" or "1").
 図3Aに示されるように、当該複数のDCIフォーマット内の識別子フィールド値に固定値(同一値)を設定(set)することにより、当該識別子フィールドを仮想(virtual)CRCビットとして利用できる。仮想CRCビットとは、各DCIフォーマットのペイロード内に含まれる既知のビット値であり、pruning用のビット等とも呼ばれる。 As shown in FIG. 3A, the identifier field can be used as a virtual CRC bit by setting fixed values (identical values) to identifier field values in the plurality of DCI formats. The virtual CRC bits are known bit values included in the payload of each DCI format, and are also called bits for pruning or the like.
 一般に、既知のビット値が増加するほどユーザ端末における誤り訂正の効果を大きく得られる。したがって、図3Aに示すように、当該識別子フィールドを仮想CRCビットとして利用することにより、無線通信システムの性能(performance)を向上させることができる。 In general, as the known bit value increases, the effect of the error correction at the user terminal can be obtained more. Therefore, as shown in FIG. 3A, performance of the wireless communication system can be improved by using the identifier field as a virtual CRC bit.
 図3Bでは、同一のスクランブル識別子(例えば、RNTI)によってスクランブルされたCRCビットが付加され、ペイロードが同一である3以上のDCIフォーマットが存在する場合が示される。1ビットの識別子フィールドでは、2つのDCIフォーマットしか識別できない。このため、ペイロードが同一である3つ目以降のDCIフォーマットに所定数のパディングビットを付加する(含める)ことにより、2つのDCIフォーマットのペイロードだけを同一としてもよい。あるいは、識別子フィールドを2ビット以上にしてもよい。 In FIG. 3B, it is shown that there are three or more DCI formats with the same payload added with CRC bits scrambled by the same scrambling identifier (eg, RNTI). In the 1-bit identifier field, only two DCI formats can be identified. Therefore, by adding (including) a predetermined number of padding bits to the third and subsequent DCI formats in which the payloads are identical, only the payloads of the two DCI formats may be made identical. Alternatively, the identifier field may have two or more bits.
 例えば、図3Bでは、DCIフォーマット0_1及び1_0、パディングビットを付加する(含める)前のDCIフォーマット1_1のペイロードが同一である。このため、DCIフォーマット1_1にパディングビットを付加する(含める)ことにより、DCIフォーマット1_1のペイロードを、DCIフォーマット0_1及び1_1とは異ならせてもよい。なお、パディングビットが付加される(含められる)DCIフォーマットは、DCIフォーマット1_1に限られず、所定ルールに従って決定されればよい。 For example, in FIG. 3B, the DCI formats 0_1 and 1_0, and the payload of DCI format 1_1 before adding (including) padding bits are identical. Therefore, the payload of the DCI format 1_1 may be made different from the DCI formats 0_1 and 1_1 by adding (including) padding bits to the DCI format 1_1. The DCI format to which padding bits are added (included) is not limited to the DCI format 1_1, and may be determined according to a predetermined rule.
 第2の態様では、同一のスクランブル識別子を用いてスクランブルされたCRCビットが付加され、かつ、ペイロードが同一である任意の複数のDCIフォーマット内の識別子フィールドが、当該複数のDCIフォーマットの識別に用いられる。したがって、任意の複数のDCIフォーマットのペイロードが同一となる場合であっても、ユーザ端末は、当該識別子フィールド値により当該複数のDCIフォーマットを適切に識別できる。 In the second aspect, identifier fields in any of a plurality of DCI formats in which CRC bits scrambled using the same scrambling identifier are added and the payloads are the same are used to identify the plurality of DCI formats. Be Therefore, even if the payloads of arbitrary plural DCI formats are the same, the user terminal can appropriately identify the plural DCI formats by the identifier field value.
(第3の態様)
 第3の態様では、スロットフォーマットに関する情報(スロットフォーマット情報)の通知(notify)に用いられるDCIフォーマット(例えば、DCIフォーマット2_0)について説明する。
(Third aspect)
In the third aspect, a DCI format (for example, DCI format 2_0) used for notifying of information (slot format information) related to a slot format will be described.
 スロットフォーマット情報は、例えば、スロット内の各シンボル(例えば、OFDMシンボル)のタイプ(種類)を示す識別子(例えば、スロットフォーマット識別子(SFI))を含んでもよい。SFIが示す各シンボルのタイプは、各シンボルの伝送方向に基づいて定められてもよく、例えば、下り(Downlink、“D”とも表記される)、上り(Uplink、“U”とも表記される)、下り又は上りのいずれでもよいフレキシブル(flexible、“X”とも表記される)を含んでもよい。 The slot format information may include, for example, an identifier (eg, slot format identifier (SFI)) indicating the type (type) of each symbol (eg, OFDM symbol) in the slot. The type of each symbol indicated by the SFI may be determined based on the transmission direction of each symbol, for example, Downlink (also described as “D”), Uplink (also described as Uplink, “U”) , And may be flexible (also denoted as "X").
 図4は、第3の態様に係るスロットフォーマットの一例を示す図である。図4では、1スロットが14シンボルで構成される場合に、スロット内の各シンボルが“D”、“U”、“X”のいずれのタイプであるかがSFIによって示される。例えば、図4に示すように、所定数の種類(ここでは、62種類)のスロットフォーマットが用いられてもよい。 FIG. 4 is a diagram showing an example of a slot format according to the third aspect. In FIG. 4, when one slot consists of 14 symbols, SFI indicates which type of “D”, “U”, or “X” each symbol in the slot is. For example, as shown in FIG. 4, a predetermined number of types (here, 62 types) of slot formats may be used.
 スロットフォーマット情報の通知に用いられるDCIフォーマット(例えば、DCIフォーマット2_0)は、N(N≧1)個のSFIを含んでもよい。当該DCIフォーマットのサイズ(ペイロード又はビット数等ともいう)は、上位レイヤシグナリングによって設定(configure)されてもよい。 The DCI format (for example, DCI format 2_0) used for notification of slot format information may include N (N ≧ 1) SFIs. The size (also referred to as the payload or the number of bits) of the DCI format may be configured by upper layer signaling.
 当該DCIフォーマット内の各SFIは、コンポーネントキャリア(CC:Component Carrier)(キャリア、セル又はサービングセル等ともいう)、BWP及びユーザ端末の少なくとも一つに対応するスロットフォーマットを示してもよい。また、当該DCIフォーマット内のSFIの数(N)は、上位レイヤシグナリングによって指定されてもよい。SFIの構成(configuration)(SFI構成)は、各SFIが何に対応するか(例えば、CC、BWP、ユーザ端末の少なくとも一つの組み合わせ)によって異なってもよい。 Each SFI in the DCI format may indicate a slot format corresponding to at least one of a component carrier (CC) (also referred to as a carrier, a cell or a serving cell), a BWP, and a user terminal. Also, the number (N) of SFIs in the DCI format may be designated by higher layer signaling. The configuration (SFI configuration) of the SFI may differ depending on what each SFI corresponds (eg, a combination of at least one of CC, BWP, user terminal).
 また、当該DCIフォーマット内のSFI用の各フィールド(各SFIフィールド)のビット数は、上位レイヤシグナリングによって指定されてもよい。当該ビット数が所定値(例えば、6ビット)よりも小さく制限される場合、各SFIフィールドで指定可能なスロットフォーマットは、図4に示される62種類よりも小さく制限されてもよい。この場合、各SFIフィールドで指定可能な所定数のスロットフォーマットは、上位レイヤシグナリングにより予め設定されていてもよい。 Also, the number of bits of each field (each SFI field) for SFI in the DCI format may be designated by higher layer signaling. When the number of bits is restricted to be smaller than a predetermined value (for example, 6 bits), the slot formats that can be specified in each SFI field may be restricted to be smaller than the 62 types shown in FIG. In this case, a predetermined number of slot formats that can be specified in each SFI field may be preset by upper layer signaling.
 ユーザ端末は、所定の上位レイヤパラメータ(例えば、SFI-SS)によって設定される制御領域(例えば、制御リソースセット(CORESET:Control Resource Sets)又は当該CORESETに対応付けられた特定のサーチスペース(SS:Search Space))を監視して、スロットフォーマット情報の通知に用いられるDCIフォーマット(例えば、DCIフォーマット2_0)を検出してもよい。 The user terminal is controlled by a predetermined upper layer parameter (for example, SFI-SS) (for example, a control resource set (CORESET) or a specific search space (SS: associated with the CORESET). Search Space) may be monitored to detect a DCI format (eg, DCI format 2_0) used for notification of slot format information.
 また、スロットフォーマット情報の通知用のDCIフォーマット(例えば、DCIフォーマット2_0)のCRCビットは、他の用途のDCIフォーマット(例えば、DCIフォーマット0_0、0_1、1_0、1_1、2_1、2_2及び2_3等)とは異なるスクランブル識別子(例えば、SFI-RNTI)でスクランブル(マスク)されてもよい。 In addition, CRC bits of DCI format (for example, DCI format 2_0) for notifying slot format information are DCI formats for other applications (for example, DCI formats 0_0, 0_1, 1_0, 1_1, 2_1, 2_2, 2_3, etc.) May be scrambled (masked) with a different scrambling identifier (eg, SFI-RNTI).
 この場合、ユーザ端末は、異なる複数のスクランブル識別子により、スロットフォーマット情報の通知用のDCIフォーマットと、他の用途のDCIフォーマットとを識別できる。なお、SFI-RNTIを示す情報は、上位レイヤシグナリングにより無線基地局からユーザ端末に通知(設定)されてもよい。 In this case, the user terminal can identify the DCI format for notification of slot format information and the DCI format for other uses by different scramble identifiers. The information indicating the SFI-RNTI may be notified (set) from the radio base station to the user terminal by higher layer signaling.
 図5は、第3の態様に係るDCIフォーマット2_0の一例を示す図である。図5A-5Cでは、DCIフォーマット2_0のCRCビットは、他の用途のDCIフォーマットとは異なるスクランブル識別子(例えば、SFI-RNTI)でスクランブルされるものとする。また、図5A~5Cに示すDCIフォーマット2_0は例示にすぎず、一部のフィールドが省略されてもよいし、図示しない他のフィールドを含んでもよいことは勿論である。 FIG. 5 is a diagram showing an example of the DCI format 2_0 according to the third aspect. In FIGS. 5A-5C, it is assumed that the CRC bits of DCI format 2_0 are scrambled with a scrambling identifier (eg, SFI-RNTI) different from DCI formats for other uses. Further, the DCI format 2_0 shown in FIGS. 5A to 5C is merely an example, and some fields may be omitted or may include other fields not shown.
 図5Aでは、DCIフォーマット2_0の複数の構成(configuration)(SFI構成等ともいう)がユーザ端末に設定される例が示される。例えば、図5Aでは、DCIフォーマット2_0内の各SFIフィールドがCC毎に設けられる第1のSFI構成と、各SFIフィールドがCC毎及びBWP毎に設けられる第2のSFI構成とが示される。 FIG. 5A shows an example in which a plurality of configurations (also referred to as SFI configurations etc.) of DCI format 2_0 are set in the user terminal. For example, FIG. 5A shows a first SFI configuration in which each SFI field in DCI format 2_0 is provided for each CC, and a second SFI configuration in which each SFI field is provided for each CC and each BWP.
 図5Aでは、第1のSFI構成のDCIフォーマット2_0及び第2のSFI構成のDCIフォーマット2_0のペイロードが同一であり、両者のCRCビットは、同一のSFI-RNTIでスクランブルされるものとする。この場合、DCIフォーマット2_0の識別子フィールドは、SFI構成の識別に用いられてもよい。 In FIG. 5A, it is assumed that the payloads of the DCI format 2_0 of the first SFI configuration and the DCI format 2_0 of the second SFI configuration are identical, and that both CRC bits are scrambled with the same SFI-RNTI. In this case, the identifier field of DCI format 2_0 may be used to identify the SFI configuration.
 例えば、図5Aに示すように、第1のSFI構成のDCIフォーマット2_0の識別子フィールドには、当該第1のSFI構成を示す値(例えば、“0”)が設定される。一方、第2のSFI構成のDCIフォーマット2_0の識別子フィールドには、当該第2のSFI構成を示す値(例えば、“1”)が設定される。 For example, as shown in FIG. 5A, in the identifier field of the DCI format 2_0 of the first SFI configuration, a value (for example, “0”) indicating the first SFI configuration is set. On the other hand, a value (for example, “1”) indicating the second SFI configuration is set in the identifier field of the DCI format 2_0 of the second SFI configuration.
 ユーザ端末は、DCIフォーマット2_0内の識別子フィールド値によって、当該DCIフォーマットのSFI構成を識別し、識別したSFI構成に基づいてDCIフォーマット2_0内の各SFIフィールド値が示すスロットフォーマットを認識してもよい。 The user terminal may identify the SFI configuration of the DCI format according to the identifier field value in the DCI format 2_0, and may recognize the slot format indicated by each SFI field value in the DCI format 2_0 based on the identified SFI configuration. .
 なお、図5Aでは、第1及び第2のSFI構成が同一数のSFIフィールドを含み、各SFIフィールド値が第1及び第2のSFI間で異なる意味を有する例を示したが、複数のSFI構成はこれらに限られない。例えば、DCIフォーマット2_0内のSFIフィールドの数及び各SFIフィールドのビット数が異なり、かつ、ペイロードが同一となる複数のSFI構成が上記識別子フィールドの値によって識別されてもよい。 Although FIG. 5A shows an example in which the first and second SFI configurations include the same number of SFI fields, and each SFI field value has a different meaning between the first and second SFIs, a plurality of SFIs are shown. The configuration is not limited to these. For example, a plurality of SFI configurations in which the number of SFI fields in DCI format 2_0 and the number of bits of each SFI field are different and the payload is the same may be identified by the value of the identifier field.
 図5B及び5Cでは、ユーザ端末に単一のSFI構成が設定(configure)される場合、又は、当該ユーザ端末に複数のSFI構成が設定されても当該複数のSFI構成間で異なるペイロード又はスクランブル識別子が用いられる場合を想定する。後者の場合、図5Aとは異なり、DCIフォーマット2_0内の識別子フィールドを用いずとも、ユーザ端末は、複数のSFI構成を識別できる。 5B and 5C, when a single SFI configuration is configured in a user terminal, or even when a plurality of SFI configurations are set in the user terminal, different payloads or scramble identifiers are used among the plurality of SFI configurations. Suppose that is used. In the latter case, unlike in FIG. 5A, the user terminal can identify multiple SFI configurations without using the identifier field in DCI format 2_0.
 図5Bでは、DCIフォーマット2_0内の識別子フィールドは、上記仮想CRCビットとして用いられてもよい。当該識別子フィールドには、仮想CRCビットとして、固定値(例えば、“0”又は“1”)が設定されてもよい。一般に、既知のビット数が増加するほどユーザ端末における誤り訂正の効果を大きく得られる。したがって、図5Bに示すように、当該識別子フィールドを仮想CRCビットとして利用することにより、性能を向上させることができる。 In FIG. 5B, the identifier field in DCI format 2_0 may be used as the virtual CRC bit. In the identifier field, a fixed value (for example, “0” or “1”) may be set as a virtual CRC bit. In general, as the number of known bits increases, the effect of error correction at the user terminal can be obtained more. Therefore, as shown in FIG. 5B, performance can be improved by using the identifier field as a virtual CRC bit.
 或いは、図5Cに示すように、DCIフォーマット2_0内の識別子フィールドは、削除されてもよい。すなわち、DCIフォーマット2_0には、識別子フィールドが含まれないと想定して、ペイロードの認識及び復号を行う。当該識別子フィールドの削除により、DCIフォーマット2_0のペイロードを削減できる。したがって、DCIフォーマット2_0によるオーバーヘッドを削減でき、この結果、無線通信システムの性能を向上させることができる。 Alternatively, as shown in FIG. 5C, the identifier field in DCI format 2_0 may be deleted. That is, assuming that the DCI format 2_0 does not include the identifier field, the payload is recognized and decoded. The deletion of the identifier field can reduce the payload of DCI format 2_0. Therefore, the overhead due to the DCI format 2_0 can be reduced, and as a result, the performance of the wireless communication system can be improved.
 第3の態様では、スロットフォーマット情報の通知に用いられるDCIフォーマット内の識別子フィールドを有効に利用できる、又は、当該識別子フィールドの削除により当該DCIフォーマットのオーバーヘッドを削減できる。 In the third aspect, the identifier field in the DCI format used for notification of slot format information can be effectively used, or the overhead of the DCI format can be reduced by deleting the identifier field.
(第4の態様)
 第4の態様では、ユーザ端末に対するPDSCHの送信がないと想定されるリソース及び当該ユーザ端末からのPUSCHの送信を停止するリソースの少なくとも一つの通知に用いられるDCIフォーマット(例えば、DCIフォーマット2_1)について説明する。
(Fourth aspect)
In the fourth aspect, a DCI format (for example, DCI format 2_1) used for at least one notification of a resource assumed to have no PDSCH transmission to a user terminal and a resource for stopping PUSCH transmission from the user terminal explain.
 ユーザ端末に対するPDSCHの送信がないと想定されるリソースは、周波数領域リソース(例えば、一以上のPRB)及び時間領域リソース(例えば、一以上のシンボル)の少なくとも一つを含んでもよい。同様に、ユーザ端末からのPUSCHの送信を停止するリソースは、周波数領域リソース(例えば、一以上のPRB)及び時間領域リソース(例えば、一以上のシンボル)の少なくとも一つを含んでもよい。 The resources assumed to be without PDSCH transmission to the user terminal may include at least one of frequency domain resources (eg, one or more PRBs) and time domain resources (eg, one or more symbols). Similarly, the resource for stopping PUSCH transmission from the user terminal may include at least one of a frequency domain resource (eg, one or more PRBs) and a time domain resource (eg, one or more symbols).
 例えば、ユーザ端末に対して所定数のPRB及び所定数のシンボルにPDSCHがスケジューリングされる場合、当該PDSCHにスケジューリングされたPRB及びシンボルの少なくとも一部で他の通信によるプリエンプション(pre-emption)(割り込み)が発生することが想定される。この場合、ユーザ端末は、プリエンプションが発生したリソース(例えば、所定数のPRB及び所定数のシンボルの少なくとも一つ)において、PDSCHの送信がないと想定して、当該リソースを除いてPDSCHの受信処理(例えば、デマッピング、復調、復号の少なくとも一つ)を行う必要がある。 For example, when a PDSCH is scheduled for a predetermined number of PRBs and a predetermined number of symbols for a user terminal, at least a part of the PRBs and symbols scheduled for the PDSCH is pre-emption (interruption by another communication) Is expected to occur. In this case, the user terminal assumes that there is no PDSCH transmission in a resource where preemption has occurred (for example, at least one of a predetermined number of PRBs and a predetermined number of symbols), excluding the resources and performing PDSCH reception processing (For example, at least one of demapping, demodulation, and decoding) needs to be performed.
 そこで、上記DCIフォーマット(例えば、DCIフォーマット2_1)は、当該PDSCHの送信がないと想定されるリソース(すなわち、プリエンプションが発生したリソース)を示す識別子(プリエンプション識別子)を含んでもよい。ユーザ端末は、当該プリエンプション識別子に基づいて、PDSCHの受信処理(例えば、デマッピング、復調、復号の少なくとも一つ)を行ってもよい。 Therefore, the DCI format (for example, DCI format 2_1) may include an identifier (preemption identifier) indicating a resource assumed to have no transmission of the PDSCH (that is, a resource in which preemption has occurred). The user terminal may perform PDSCH reception processing (for example, at least one of demapping, demodulation, and decoding) based on the preemption identifier.
 また、ユーザ端末に対して所定数のPRB及び所定数のシンボルにPUSCHがスケジューリングされる場合、当該PUSCHにスケジューリングされたPRB及びシンボルの少なくとも一部で他の通信によるプリエンプション(pre-emption)(割り込み)が発生することが想定される。ユーザ端末は、当該他の通信が行われるリソース(例えば、所定数のPRB及び所定数のシンボルの少なくとも一つ)において、当該PUSCHの送信を停止する必要がある。 Also, when a PUSCH is scheduled for a predetermined number of PRBs and a predetermined number of symbols for a user terminal, at least a part of the PRBs and symbols scheduled for the PUSCH is pre-emption (interruption by another communication) Is expected to occur. The user terminal needs to stop transmission of the PUSCH in resources (for example, at least one of a predetermined number of PRBs and a predetermined number of symbols) on which the other communication is performed.
 そこで、上記DCIフォーマット(例えば、DCIフォーマット2_1)は、当該PUSCHの送信を停止するリソースを示す識別子(送信ストップ識別子)を含んでもよい。ユーザ端末は、当該送信ストップ識別子に基づいて、PUSCHの送信処理(例えば、符号化、変調、マッピングの少なくとも一つ)を行ってもよい。 Therefore, the DCI format (for example, DCI format 2_1) may include an identifier (transmission stop identifier) indicating a resource for stopping transmission of the PUSCH. The user terminal may perform PUSCH transmission processing (for example, at least one of encoding, modulation, and mapping) based on the transmission stop identifier.
 第4の態様において、上記DCIフォーマット(例えば、DCIフォーマット2_1)は、N(N≧1)個のプリエンプション識別子又はN個の送信ストップ識別子を含んでもよい。当該DCIフォーマットのサイズ(ペイロード又はビット数等ともいう)、CRCをスクランブルしているRNTI、ブラインド復号の候補数などは、上位レイヤシグナリングによって設定(configure)されてもよい。 In the fourth aspect, the DCI format (for example, DCI format 2_1) may include N (N ≧ 1) preemption identifiers or N transmission stop identifiers. The size (also referred to as the payload or the number of bits) of the DCI format, the RNTI scrambling the CRC, the number of candidates for blind decoding, and the like may be configured by upper layer signaling.
 当該DCIフォーマット内の各プリエンプション識別子(又は、各送信ストップ識別子)は、特定のリソース(例えば、所定数のPRB及び所定数のシンボル)の少なくとも一つに関連付けられてもよい。当該特定のリソースは、上位レイヤシグナリングにより設定されてもよい。また、DCIフォーマット内のプリエンプション識別子(又は、送信ストップ識別子)は、CC(キャリア、セル、サービングセル等ともいう)、BWP及びユーザ端末の少なくとも一つの組み合わせ毎に規定されてもよい。 Each preemption identifier (or each transmission stop identifier) in the DCI format may be associated with at least one of a specific resource (eg, a predetermined number of PRBs and a predetermined number of symbols). The specific resource may be configured by higher layer signaling. Also, a preemption identifier (or transmission stop identifier) in the DCI format may be defined for each combination of at least one of CC (also referred to as carrier, cell, serving cell, etc.), BWP and user terminal.
 ユーザ端末は、当該ユーザ端末に設定される制御領域(例えば、CORESET及びサーチスペースの少なくとも一つ)を監視して、上記DCIフォーマット(例えば、DCIフォーマット2_1)を検出してもよい。あらかじめ設定されたサーチスペースにおいて、特定のペイロード、かつ、特定のRNTIでCRCをスクランブルされたDCIフォーマットが見つかると、ユーザ端末は、自端末宛の上記DCIフォーマットを検出したと判断する。 The user terminal may monitor a control area (for example, at least one of CORESET and search space) set for the user terminal to detect the DCI format (for example, DCI format 2_1). If a specific payload and a DCI format scrambled with a CRC with a specific RNTI are found in a search space set in advance, the user terminal determines that the DCI format addressed to the own terminal has been detected.
 また、ユーザ端末に対するPDSCHの送信がないと想定されるリソース及び当該ユーザ端末からのPUSCHの送信を停止するリソースの少なくとも一つの通知に用いられるDCIフォーマット(例えば、DCIフォーマット2_1)のCRCビットは、他の用途のDCIフォーマット(例えば、DCIフォーマット0_0、0_1、1_0、1_1、2_0、2_2、2_3等)とは異なるスクランブル識別子(例えば、INT(interrupting)-RNTI)でスクランブル(マスク)されてもよい。 Further, CRC bits of DCI format (for example, DCI format 2_1) used for at least one notification of a resource assumed to have no PDSCH transmission to the user terminal and a resource for stopping transmission of the PUSCH from the user terminal are It may be scrambled (masked) with a scramble identifier (eg INT (interrupting) -RNTI) different from DCI formats (eg DCI formats 0_0, 0_1, 1_0, 1_1, 2_0, 2_2, 2_3 etc.) for other uses. .
 この場合、ユーザ端末は、異なる複数のスクランブル識別子により、ユーザ端末に対するPDSCHの送信がないと想定されるリソース及び当該ユーザ端末からのPUSCHの送信を停止するリソースの少なくとも一つの通知に用いられるDCIフォーマットと、他の用途のDCIフォーマットとを識別できる。なお、INT-RNTIを示す情報は、上位レイヤシグナリングにより無線基地局からユーザ端末に通知(設定)されてもよい。 In this case, the user terminal is DCI format used for at least one notification of a resource assumed to have no transmission of PDSCH to the user terminal and a resource for stopping transmission of the PUSCH from the user terminal using different scramble identifiers. And DCI formats for other uses. Note that the information indicating the INT-RNTI may be notified (set) from the radio base station to the user terminal by higher layer signaling.
 図6は、第4の態様に係るDCIフォーマット2_1の一例を示す図である。図6A-6Cでは、DCIフォーマット2_1のCRCビットは、他の用途のDCIフォーマットとは異なるスクランブル識別子(例えば、INT-RNTI)でスクランブルされるものとする。また、図6A~6Cに示すDCIフォーマット2_1は例示にすぎず、一部のフィールドが省略されてもよいし、図示しない他のフィールドを含んでもよいことは勿論である。 FIG. 6 is a diagram showing an example of the DCI format 2_1 according to the fourth aspect. In FIGS. 6A-6C, it is assumed that the CRC bits of DCI format 2_1 are scrambled with a scrambling identifier (eg, INT-RNTI) different from DCI formats for other uses. Further, the DCI format 2_1 shown in FIGS. 6A to 6C is merely an example, and some fields may be omitted or may include other fields not shown.
 図6Aでは、DCIフォーマット2_1が、ユーザ端末に対するPDSCHの送信がないと想定されるリソースを通知する構成(第1の構成又はDL用構成等ともいう)と、ユーザ端末からのPUSCHの送信を停止するリソースを通知する構成(第2の構成又はUL用構成等ともいう)と、有する例が示される。 In FIG. 6A, a configuration (also referred to as a first configuration or a DL configuration or the like) in which DCI format 2_1 is notified of a resource assumed to have no PDSCH transmission to the user terminal, and stop transmission of PUSCH from the user terminal An example of having a configuration (also referred to as a second configuration or a configuration for UL, etc.) for notifying a resource to be
 例えば、図6Aでは、DL用構成のDCIフォーマット2_1は、N個のプリエンプション識別子を含む。一方、UL用構成のDCIフォーマット2_1は、N個の送信ストップ識別子を含む。なお、プリエンプション識別子及び送信ストップ識別子の名称はこれらに限られず、同一名称のフィールド値であってもよい。 For example, in FIG. 6A, the DCI format 2_1 of the DL configuration includes N preemption identifiers. On the other hand, DCI format 2_1 in the UL configuration includes N transmission stop identifiers. The names of the preemption identifier and the transmission stop identifier are not limited to these, and field values of the same name may be used.
 図6Aでは、DL用構成のDCIフォーマット2_1及びUL用構成のDCIフォーマット2_1のペイロードが同一であり、両者のCRCビットは、同一のINT-RNTIでスクランブルされるものとする。この場合、DCIフォーマット2_1の識別子フィールドは、DL用構成又はUL用構成の識別に用いられてもよい。 In FIG. 6A, it is assumed that the payloads of the DCI format 2_1 for the DL configuration and the DCI format 2_1 for the UL configuration are the same, and both CRC bits are scrambled with the same INT-RNTI. In this case, the identifier field of the DCI format 2_1 may be used to identify the DL configuration or the UL configuration.
 例えば、図6Aに示すように、DL用構成のDCIフォーマット2_1の識別子フィールドには、当該DL用構成を示す値(例えば、“0”)が設定される。一方、UL構成のDCIフォーマット2_1の識別子フィールドには、当該UL用構成を示す値(例えば、“1”)が設定される。 For example, as shown in FIG. 6A, a value (for example, “0”) indicating the DL configuration is set in the identifier field of the DCI format 2_1 of the DL configuration. On the other hand, a value (for example, “1”) indicating the UL configuration is set in the identifier field of the UL configuration DCI format 2_1.
 ユーザ端末は、DCIフォーマット2_1内の識別子フィールド値によって、当該DCIフォーマットがDL用構成又はUL用構成のいずれであるか(すなわち、PDSCHの送信がないと想定されるリソース又はPUSCHの送信を停止するリソースのいずれを示すか)を識別し、DCIフォーマット2_1内の一以上のプリエンプション識別子又は送信ストップ識別子に基づいて、PDSCHの受信又はPUSCHの送信を制御してもよい。 The user terminal stops the transmission of the resource or PUSCH assumed to have no transmission of PDSCH, that is, whether the DCI format is the configuration for DL or the configuration for UL according to the identifier field value in DCI format 2_1 It is possible to identify which of the resources is indicated, and to control PDSCH reception or PUSCH transmission based on one or more preemption identifiers or transmission stop identifiers in the DCI format 2_1.
 なお、図6Aでは、DCIフォーマット2_1内のプリエンプション識別子及び送信ストップ識別子の数(N)は同一であるものとしたが、同一でなくともよい。例えば、DCIフォーマット2_1内のプリエンプション識別子及び送信ストップ識別子の異なる数が異なっても、一以上のプリエンプション識別子(又は一以上の送信ストップ識別子)のビット数を異ならせることで、同一のペイロードが維持されてもよい。 In FIG. 6A, although the number (N) of the preemption identifier and the number of transmission stop identifiers in the DCI format 2_1 are the same, they may not be the same. For example, even if different numbers of preemption identifiers and transmission stop identifiers in DCI format 2_1 are different, the same payload is maintained by making the number of bits of one or more preemption identifiers (or one or more transmission stop identifiers) different. May be
 図6B及び6Cでは、DCIフォーマット2_1がDL用構成だけを有する場合、又は、DL用構成及びUL用構成の間で異なるペイロード又はスクランブル識別子が用いられる場合を想定する。後者の場合、図6Aとは異なり、DCIフォーマット2_1内の識別子フィールドを用いずとも、ユーザ端末は、DL用構成及びUL用構成を識別できる。 In FIGS. 6B and 6C, it is assumed that the DCI format 2_1 has only the DL configuration or that different payloads or scramble identifiers are used between the DL and UL configurations. In the latter case, unlike in FIG. 6A, the user terminal can identify the DL configuration and the UL configuration without using the identifier field in the DCI format 2_1.
 図6Bでは、DCIフォーマット2_1内の識別子フィールドは、上記仮想CRCビットとして用いられてもよい。当該識別子フィールドには、仮想CRCビットとして、固定値(例えば、“0”又は“1”)が設定されてもよい。一般に、既知のビット値が増加するほどユーザ端末における誤り訂正の効果を大きく得られる。したがって、図6Bに示すように、当該識別子フィールドを仮想CRCビットとして利用することにより、性能を向上させることができる。 In FIG. 6B, the identifier field in DCI format 2_1 may be used as the virtual CRC bit. In the identifier field, a fixed value (for example, “0” or “1”) may be set as a virtual CRC bit. In general, as the known bit value increases, the effect of the error correction at the user terminal can be obtained more. Therefore, as shown in FIG. 6B, performance can be improved by using the identifier field as a virtual CRC bit.
 或いは、図6Cに示すように、DCIフォーマット2_1内の識別子フィールドは、削除されてもよい。当該識別子フィールドの削除により、DCIフォーマット2_1のペイロードを削減できる。したがって、DCIフォーマット2_1によるオーバーヘッドを削減でき、この結果、無線通信システムの性能を向上させることができる。 Alternatively, as shown in FIG. 6C, the identifier field in DCI format 2_1 may be deleted. By deleting the identifier field, the payload of DCI format 2_1 can be reduced. Therefore, the overhead due to the DCI format 2_1 can be reduced, and as a result, the performance of the wireless communication system can be improved.
 なお、図6B及び6Cでは、DL用構成のDCIフォーマット2_1だけが示されるが、UL用構成のDCIフォーマット2_1内の識別子フィールドが仮想CRCビットとして利用されてもよいし、或いは、当該識別子フィールドが削除されてもよい。 6B and 6C, only the DCI format 2_1 of the DL configuration is shown, but the identifier field in the UL configuration DCI format 2_1 may be used as a virtual CRC bit, or the identifier field is It may be deleted.
 第4の態様では、ユーザ端末に対するPDSCHの送信がないと想定されるリソース及び当該ユーザ端末からのPUSCHの送信を停止するリソースの少なくとも一つの通知に用いられるDCIフォーマット内の識別子フィールドを有効に利用できる、又は、当該識別子フィールドの削除により当該DCIフォーマットのオーバーヘッドを削減できる。 In the fourth aspect, the identifier field in the DCI format used for at least one notification of a resource assumed to have no PDSCH transmission to the user terminal and a resource for stopping transmission of the PUSCH from the user terminal is effectively used. The overhead of the DCI format can be reduced by removing the identifier field.
(第5の態様)
 第5の態様では、PUCCH及びPUSCHの少なくとも一つ用のTPCコマンドの送信に用いられるDCIフォーマット(例えば、DCIフォーマット2_2)について説明する。ユーザ端末は、当該DCIフォーマット内のTPCコマンドが示す値に基づいて、PUCCH及びPUSCHの少なくとも一つの送信電力を制御する。
(Fifth aspect)
In a fifth aspect, a DCI format (for example, DCI format 2_2) used for transmission of TPC commands for at least one of PUCCH and PUSCH will be described. The user terminal controls transmission power of at least one of PUCCH and PUSCH based on the value indicated by the TPC command in the DCI format.
 第5の態様において、上記DCIフォーマット(例えば、DCIフォーマット2_2)は、N(N≧1)個のTPCコマンド(TPC command)(TPCコマンドフィールド又はTPCコマンドフィールド値等ともいう)を含んでもよい。各TPCコマンドは、所定のビット数であってもよい。例えば、2ビットのTPCコマンドは、取り得る各フィールド値によって、4段階の値(例えば、-1、0、1及び3、又は、-4、-1、1及び4)を示してもよい。なお、N個のTPCコマンドには、それぞれ、番号(TPCコマンド番号)が付与されてもよい。 In the fifth aspect, the DCI format (for example, DCI format 2_2) may include N (N ≧ 1) TPC commands (TPC commands) (also referred to as TPC command fields or TPC command field values). Each TPC command may be a predetermined number of bits. For example, a 2-bit TPC command may indicate four levels (eg, -1, 0, 1 and 3 or -4, -1, 1 and 4) according to each possible field value. A number (TPC command number) may be assigned to each of the N TPC commands.
 当該DCIフォーマット内の各TPCコマンドは、CC(キャリア、セル又はサービングセル等ともいう)、BWP及びユーザ端末の少なくとも一つの組み合わせに対応するTPCコマンドの値を示してもよい。 Each TPC command in the DCI format may indicate a value of a TPC command corresponding to at least one combination of a CC (also referred to as a carrier, a cell or a serving cell), a BWP, and a user terminal.
 ユーザ端末は、当該ユーザ端末に設定される制御領域(例えば、CORESET及びサーチスペースの少なくとも一つ)を監視して、上記DCIフォーマット(例えば、DCIフォーマット2_2)を検出してもよい。 The user terminal may monitor a control area (for example, at least one of CORESET and search space) set for the user terminal to detect the DCI format (for example, DCI format 2_2).
 また、PUCCH及びPUSCHの少なくとも一つ用のTPCコマンドの送信に用いられるDCIフォーマット(例えば、DCIフォーマット2_2)のCRCビットは、他の用途のDCIフォーマット(例えば、DCIフォーマット0_0、0_1、1_0、1_1、2_0、2_1、2_3等)とは異なるスクランブル識別子(例えば、TPC-RNTI(TPC-PUSCH-RNTI及びTPC-PUCCH-RNTIを含んでもよい))でスクランブル(マスク)されてもよい。 Also, CRC bits of DCI format (for example, DCI format 2_2) used for transmission of TPC command for at least one of PUCCH and PUSCH are DCI formats for other applications (for example, DCI format 0_0, 0_1, 1_0, 1_1) , 2_0, 2_1, 2_3, etc.) may be scrambled (masked) with a scramble identifier (eg, TPC-RNTI (which may include TPC-PUSCH-RNTI and TPC-PUCCH-RNTI)).
 この場合、ユーザ端末は、異なる複数のスクランブル識別子により、PUCCH及びPUSCHの少なくとも一つ用のTPCコマンドの送信に用いられるDCIフォーマットと、他の用途のDCIフォーマットとを識別できる。なお、TPC-RNTIを示す情報は、上位レイヤシグナリングにより無線基地局からユーザ端末に通知(設定)されてもよい。 In this case, the user terminal can identify the DCI format used to transmit the TPC command for at least one of PUCCH and PUSCH and the DCI format for other applications by different scramble identifiers. The information indicating TPC-RNTI may be notified (set) from the radio base station to the user terminal by higher layer signaling.
 図7は、第5の態様に係るDCIフォーマット2_2の一例を示す図である。図7A-7Cでは、DCIフォーマット2_2のCRCビットは、他の用途のDCIフォーマットとは異なるスクランブル識別子(例えば、TPC-RNTI)でスクランブルされるものとする。また、図7A~7Cに示すDCIフォーマット2_2は例示にすぎず、一部のフィールドが省略されてもよいし、図示しない他のフィールドを含んでもよいことは勿論である。 FIG. 7 is a diagram showing an example of the DCI format 2_2 according to the fifth aspect. In FIGS. 7A-7C, it is assumed that the CRC bits of DCI format 2_2 are scrambled with a scrambling identifier (eg, TPC-RNTI) different from DCI formats for other uses. Further, the DCI format 2_2 shown in FIGS. 7A to 7C is merely an example, and it is a matter of course that some fields may be omitted or other fields not shown may be included.
 図7Aでは、PUCCH用のTPCコマンドの送信に用いられるDCIフォーマット2_2及びPUSCH用のTPCコマンドの送信に用いられるDCIフォーマット2_2のペイロードが同一であり、両者のCRCビットは、同一のTPC-RNTIでスクランブルされるものとする。この場合、DCIフォーマット2_2の識別子フィールドは、当該DCIフォーマット2_2が、PUCCH用のTPCコマンド又はPUSCH用のTPCコマンドのいずれの送信に用いられるかの識別に用いられてもよい。 In FIG. 7A, the payloads of DCI format 2_2 used for transmission of TPC command for PUCCH and DCI format 2_2 used for transmission of TPC command for PUSCH are the same, and the CRC bits of both are the same in TPC-RNTI. It shall be scrambled. In this case, the identifier field of the DCI format 2_2 may be used to identify whether the DCI format 2_2 is to be used for transmission of a TPC command for PUCCH or a TPC command for PUSCH.
 例えば、図7Aに示すように、DCIフォーマット2_2の識別子フィールドには、PUCCH用のTPCコマンドの送信を示す値(例えば、“0”)、又は、PUSCH用のTPCコマンドの送信を示す値(例えば、“1”)のいずれかが設定されてもよい。 For example, as shown in FIG. 7A, in the identifier field of DCI format 2_2, a value (for example, "0") indicating transmission of a TPC command for PUCCH, or a value (for example, transmission of a TPC command for PUSCH) Or “1” may be set.
 ユーザ端末は、DCIフォーマット2_2内の識別子フィールド値によって、当該DCIフォーマットがPUCCH用又はPUSCH用のいずれのTPCコマンドの送信に用いられるかを認識し、DCIフォーマット2_2内の一以上のTPCコマンドに基づいて、PUCCH又はPUSCHの送信電力を制御してもよい。例えば、ユーザ端末は、PUCCH又はPUSCHを送信するセルに対応するTPCコマンドが示す値に基づいて、当該PUCCH又はPUSCHの送信電力を制御してもよい。 The user terminal recognizes from the identifier field value in DCI format 2_2 whether the DCI format is used for transmission of TPC command for PUCCH or PUSCH, and based on one or more TPC commands in DCI format 2_2. In addition, the transmission power of PUCCH or PUSCH may be controlled. For example, the user terminal may control the transmission power of the PUCCH or PUSCH based on the value indicated by the TPC command corresponding to the PUCCH or the cell transmitting the PUSCH.
 図7B及び7Cでは、PUCCH用のTPCコマンドの送信に用いられるDCIフォーマット2_2とPUSCH用のTPCコマンドの送信に用いられるDCIフォーマット2_2との間で異なるペイロード又は異なるスクランブル識別子(例えば、TPC-PUCCH-RNTI及びTPC-PUSCH-RNTI)が用いられる場合を想定する。この場合、ユーザ端末は、異なるペイロード又はスクランブル識別子により、DCIフォーマット2_2がPUCCH用のTPCコマンド又はPUSCH用のTPCコマンドのいずれの送信に用いられるかを識別できる。 7B and 7C, different payloads or different scrambling identifiers (eg, TPC-PUCCH-) are used between the DCI format 2_2 used to transmit the TPC command for PUCCH and the DCI format 2_2 used to transmit the TPC command for PUSCH. Suppose that RNTI and TPC-PUSCH-RNTI) are used. In this case, the user terminal can identify whether the DCI format 2_2 is used for transmission of a TPC command for PUCCH or a TPC command for PUSCH by different payloads or scramble identifiers.
 図7Bでは、DCIフォーマット2_2内の識別子フィールドは、上記仮想CRCビットとして用いられてもよい。当該識別子フィールドには、仮想CRCビットとして、固定値(例えば、“0”又は“1”)が設定されてもよい。一般に、既知のビット値が増加するほどユーザ端末における誤り訂正の効果を大きく得られる。したがって、図7Bに示すように、当該識別子フィールドを仮想CRCビットとして利用することにより、性能を向上させることができる。 In FIG. 7B, the identifier field in DCI format 2_2 may be used as the virtual CRC bit. In the identifier field, a fixed value (for example, “0” or “1”) may be set as a virtual CRC bit. In general, as the known bit value increases, the effect of the error correction at the user terminal can be obtained more. Therefore, as shown in FIG. 7B, performance can be improved by using the identifier field as a virtual CRC bit.
 或いは、図7Cに示すように、DCIフォーマット2_2内の識別子フィールドは、削除されてもよい。当該識別子フィールドの削除により、DCIフォーマット2_2のペイロードを削減できる。したがって、DCIフォーマット2_2によるオーバーヘッドを削減でき、この結果、無線通信システムの性能を向上させることができる。 Alternatively, as shown in FIG. 7C, the identifier field in DCI format 2_2 may be deleted. By deleting the identifier field, it is possible to reduce the payload of DCI format 2_2. Therefore, the overhead due to DCI format 2_2 can be reduced, and as a result, the performance of the wireless communication system can be improved.
 図8は、第5の態様に係るDCIフォーマット2_2の他の例を示す図である。なお、図8では、ユーザ端末は、異なるペイロード又は異なるスクランブル識別子により、DCIフォーマット2_2がPUCCH用のTPCコマンド又はPUSCH用のTPCコマンドのいずれの送信に用いられるかを識別できるものとする。 FIG. 8 is a diagram showing another example of the DCI format 2_2 according to the fifth aspect. In FIG. 8, it is assumed that the user terminal can identify whether the DCI format 2_2 is to be used for transmission of a TPC command for PUCCH or a TPC command for PUSCH by different payloads or different scrambling identifiers.
 図8に示すように、DCIフォーマット2_2の1ビットの識別子フィールドは、X(例えば、2又は3)ビットの所定フィールドに拡張されてもよい。当該所定フィールド値は、DCIフォーマット2_2が、どのCC(キャリア、セル又はサービングセル等ともいう)又はどのBWPのTPCコマンドの送信に用いられるかを示してもよい。 As shown in FIG. 8, the 1-bit identifier field of DCI format 2_2 may be expanded to a predetermined field of X (eg, 2 or 3) bits. The predetermined field value may indicate which CC (also referred to as a carrier, cell or serving cell) or which BWP TPC command is to be used by the DCI format 2_2.
 PUSCHの送信は、DCIフォーマット1_0又は1_1によりスケジューリングされたリソースを用いるタイプ(第0のタイプ、グラントタイプ又はスケジュールドグラント(scheduled grant)等ともいう)と、上位レイヤシグナリングにより設定されたリソースを用いるタイプ(第1のタイプ及び第2のタイプ、グラントフリータイプ1とグラントフリータイプ2、設定グラント(configured grant)又はグラントフリー等ともいう)と、が想定される。グラントフリータイプ2は、上位レイヤによってあらかじめ設定されたPUSCHリソースをDCIでアクティベーション/ディアクティベーションする方法であり、グラントフリータイプ1は、グラントフリータイプ2に加え、DCIでアクティベーション/ディアクティベーションを行わず、RRCシグナリングで設定されたらば、基地局からのL2/L1指示がなくてもPUSCHの送信を行う方法である。 The transmission of PUSCH uses a type (also referred to as a zero type, a grant type, or a scheduled grant) using resources scheduled by DCI format 1_0 or 1_1, and resources set by upper layer signaling. Types (also referred to as first and second types, Grant Free Type 1 and Grant Free Type 2, configured Grant or Grant Free etc) are assumed. Grant free type 2 is a method to activate / deactivate PUSCH resources preset by upper layer with DCI, and grant free type 1 is activation / deactivation with DCI in addition to grant free type 2 If it is set by RRC signaling without performing, the PUSCH can be transmitted even if there is no L2 / L1 instruction from the base station.
 グラントフリータイプ1およびタイプ2は、プライマリセル(Pセル:primary cell)(プライマリキャリア)及びセカンダリセル(Sセル:secondary cell)(セカンダリキャリア)の双方で用いることが想定される。 It is assumed that grant free type 1 and type 2 are used in both a primary cell (P cell: primary cell) (primary carrier) and a secondary cell (S cell: secondary cell) (secondary carrier).
 上記DCIフォーマット2_2は、グラントタイプのPUSCH、グラントフリータイプ1のPUSCH、グラントフリータイプ2のPUSCH、PUCCHの少なくとも一つに用いられることが想定される。一方、上記DCIフォーマット2_2は、PUCCHが送信される一以上のセル(Pセル)、又は、異なるセルグループ内でそれぞれPUCCHが送信されるセル(Pセル及びプライマリセカンダリセル(PSセル:Primary Secondary Cell))で用いられることが想定される。 The DCI format 2_2 is assumed to be used for at least one of grant type PUSCH, grant free type 1 PUSCH, grant free type 2 PUSCH, and PUCCH. On the other hand, in the DCI format 2_2, one or more cells (P cells) in which PUCCHs are transmitted, or cells (P cells and primary secondary cells (PS cells: Primary Secondary Cells) in which PUCCHs are transmitted in different cell groups. It is assumed to be used in).
 したがって、DCIフォーマット2_2内のXビットの所定フィールド値は、どのセル(キャリア、セル又はサービングセル等ともいう)TPCコマンドの送信に用いられるかを示してもよい。また、当該所定フィード値は、どのBWP、又は、どのセル及びどのBWPのTPCコマンドの送信に用いられるかを示してもよい。 Therefore, a predetermined field value of X bits in DCI format 2_2 may indicate which cell (also referred to as a carrier, cell or serving cell, etc.) TPC command is used for transmission. Also, the predetermined feed value may indicate which BWP or which cell and which BWP TPC command is to be transmitted.
 第5の態様では、PUCCH及びPUSCHの少なくとも一つ用のTPCコマンドの送信に用いられるDCIフォーマット内の識別子フィールドを有効に利用できる、又は、当該識別子フィールドの削除により当該DCIフォーマットのオーバーヘッドを削減できる、又は、又は当該識別子フィールドが拡張されたXビットの所定フィールドにより当該DCIフォーマットがどのCC(及びどのBWP)のTPCコマンドの送信に用いられるかを適切に識別できる。 In the fifth aspect, the identifier field in the DCI format used to transmit the TPC command for at least one of PUCCH and PUSCH can be effectively used, or the overhead of the DCI format can be reduced by deleting the identifier field. Alternatively, or alternatively, it is possible to appropriately identify which CC (and which BWP) TPC command is to be transmitted by using the DCI format by a predetermined X-bit predetermined field in which the identifier field is expanded.
(第6の態様)
 第6の態様では、一以上のユーザ端末による参照信号(例えば、SRS)の送信に用いられるDCIフォーマット(例えば、DCIフォーマット2_3)について説明する。ユーザ端末は、当該DCIフォーマット内のブロック番号が示す値に基づいて、SRSの送信を制御してもよい。
(Sixth aspect)
In a sixth aspect, a DCI format (eg, DCI format 2_3) used for transmission of a reference signal (eg, SRS) by one or more user terminals will be described. The user terminal may control the transmission of SRS based on the value indicated by the block number in the DCI format.
 第6の態様において、上記DCIフォーマット(例えば、DCIフォーマット2_3)は、B(B≧1)個のブロック(block)を含んでもよい。各ブロックは、例えばTPCコマンドを示し、ユーザ端末は、ブロックに基づいてTPCコマンドを反映させるSRSやセルを制御してもよい。なお、B個のブロックには、それぞれ、番号(ブロック番号)が付与されてもよい。 In the sixth aspect, the DCI format (for example, DCI format 2_3) may include B (B ≧ 1) blocks. Each block indicates, for example, a TPC command, and the user terminal may control an SRS or a cell to which the TPC command is to be reflected based on the block. A number (block number) may be assigned to each of the B blocks.
 また、上記DCIフォーマットには、ユーザ端末からのSRSの送信を要求するフィールド(SRS要求フィールド)が含まれてもよい。SRS要求フィールドは、所定のブロックについて含まれてもよい。当該SRS要求フィールドの値は、どのセル(CC、サービングセル又はキャリア等ともいう)でSRSの送信を要求するかを示してもよい。 Also, the DCI format may include a field (SRS request field) for requesting transmission of SRS from the user terminal. An SRS request field may be included for a given block. The value of the SRS request field may indicate in which cell (also referred to as a CC, a serving cell or a carrier, etc.) the transmission of the SRS is requested.
 また、上記DCIフォーマットには、TPCコマンド(TPCコマンドフィールド等ともいう)が含まれてもよい。TPCコマンドは、所定のブロックについて含まれてもよい。ユーザ端末は、当該TPCコマンドに基づいて、SRSの送信電力を制御してもよい。 Also, the DCI format may include a TPC command (also referred to as a TPC command field or the like). TPC commands may be included for a given block. The user terminal may control the SRS transmission power based on the TPC command.
 ユーザ端末は、当該ユーザ端末に設定される制御領域(例えば、CORESET及びサーチスペースの少なくとも一つ)を監視して、上記DCIフォーマット(例えば、DCIフォーマット2_3)を検出してもよい。 The user terminal may monitor a control area (for example, at least one of CORESET and search space) set in the user terminal to detect the DCI format (for example, DCI format 2_3).
 また、上記DCIフォーマット(例えば、DCIフォーマット2_3)のCRCビットは、他の用途のDCIフォーマット(例えば、DCIフォーマット0_0、0_1、1_0、1_1、2_0、2_1、2_2等)とは異なるスクランブル識別子(例えば、srs-TPC-RNTI)でスクランブル(マスク)されてもよい。 In addition, the CRC bits of the DCI format (for example, DCI format 2_3) are scramble identifiers (for example, different from DCI formats for other purposes (for example, DCI format 0_0, 0_1, 1_0, 1_1, 2_0, 2_1, 2_2, etc.) , Srs-TPC-RNTI) may be scrambled (masked).
 この場合、ユーザ端末は、異なる複数のスクランブル識別子により、ユーザ端末からのSRSの送信に用いられるDCIフォーマットと、他の用途のDCIフォーマットとを識別できる。なお、srs-TPC-RNTIを示す情報は、上位レイヤシグナリングにより無線基地局からユーザ端末に通知(設定)されてもよい。 In this case, the user terminal can identify the DCI format used for the transmission of the SRS from the user terminal and the DCI format for other uses by different scramble identifiers. Note that the information indicating srs-TPC-RNTI may be notified (set) from the radio base station to the user terminal by higher layer signaling.
 ユーザ端末には、単一のDLキャリア(DLセル等ともいう)に対して、複数のULキャリア(ULセル等ともいう)が設定されることが想定される。当該複数のULキャリアのうち、対応するDLキャリアが存在するULキャリアは、通常の(normal)ULキャリアとも呼ばれ、対応するDLキャリアが存在しないULキャリアは、追加のULキャリア(SUL:Supplemental Uplink)とも呼ばれる。 In the user terminal, it is assumed that a plurality of UL carriers (also referred to as UL cells or the like) are set for a single DL carrier (also referred to as a DL cell or the like). Among the plurality of UL carriers, the UL carrier in which the corresponding DL carrier exists is also called a normal UL carrier, and the UL carrier in which the corresponding DL carrier does not exist is the additional UL carrier (SUL: Supplemental Uplink) Also called).
 ユーザ端末からのSRSの送信に用いられるDCIフォーマット内の識別子フィールドは、当該ユーザ端末がSRSの送信に用いるULキャリアが、通常のULキャリア又はSULのいずれであるかの識別に用いられてもよい。 The identifier field in the DCI format used for SRS transmission from the user terminal may be used to identify whether the UL carrier used by the user terminal for SRS transmission is a normal UL carrier or SUL. .
 図9は、第6の態様に係るDCIフォーマット2_3の一例を示す図である。図9A-9Cでは、DCIフォーマット2_3のCRCビットは、他の用途のDCIフォーマットとは異なるスクランブル識別子(例えば、srs-TPC-RNTI)でスクランブルされるものとする。 FIG. 9 is a diagram showing an example of the DCI format 2_3 according to the sixth aspect. In FIGS. 9A-9C, it is assumed that the CRC bits of DCI format 2_3 are scrambled with a scramble identifier (eg, srs-TPC-RNTI) different from DCI formats for other uses.
 また、図9A~9Cに示すDCIフォーマット2_3は例示にすぎず、一部のフィールドが省略されてもよいし、図示しない他のフィールド(例えば、ブロック毎のSRS要求フィールド及びブロック毎のTPCコマンドの少なくとも一つ)を含んでもよいことは勿論である。 Also, DCI format 2_3 shown in FIGS. 9A to 9C is merely an example, and some fields may be omitted, and other fields not shown (for example, SRS request field for each block and TPC command for each block) Of course, at least one may be included.
 図9Aでは、通常のULキャリアのSRSの送信に用いられるDCIフォーマット2_3及びSULのSRSの送信に用いられるDCIフォーマット2_3のペイロードが同一であり、両者のCRCビットは、同一のsrs-TPC-RNTIでスクランブルされるものとする。この場合、DCIフォーマット2_3の識別子フィールドは、当該DCIフォーマット2_3が、通常のULキャリアのSRS又はSULのSRSのいずれの送信に用いられるかの識別に用いられてもよい。 In FIG. 9A, the payloads of DCI format 2_3 used for SRS transmission of normal UL carrier and DCI format 2_3 used for SRS transmission of SUL are identical, and both CRC bits are identical to each other in srs-TPC-RNTI. Shall be scrambled. In this case, the identifier field of DCI format 2_3 may be used to identify whether the DCI format 2_3 is used for transmission of SRS of normal UL carrier or SRS of SUL.
 例えば、図9Aに示すように、DCIフォーマット2_3の識別子フィールドには、通常のULキャリアを示す値(例えば、“0”)、又は、SULを示す値(例えば、“1”)のいずれかが設定されてもよい。 For example, as shown in FIG. 9A, in the identifier field of DCI format 2_3, either a value (eg, “0”) indicating a normal UL carrier or a value (eg, “1”) indicating an SUL is included. It may be set.
 ユーザ端末は、DCIフォーマット2_3内の識別子フィールド値によって、当該DCIフォーマットが通常のULキャリアのSRS用又はSULのSRS用のいずれの送信に用いられるかを認識してもよい。また、ユーザ端末は、当該DCIフォーマット2_3に含まれるブロック,SRS要求フィールド、TPCコマンドの少なくとも一つに基づいて、識別されたULキャリアにおけるSRSの送信を制御してもよい。 The user terminal may recognize whether the DCI format is used for SRS of normal UL carrier or SUL of SUL according to an identifier field value in DCI format 2_3. Also, the user terminal may control transmission of SRS in the identified UL carrier based on at least one of the block included in the DCI format 2_3, the SRS request field, and the TPC command.
 図9B及び9Cでは、通常のULキャリアのSRSの送信に用いられるDCIフォーマット2_3とSULのSRSの送信に用いられるDCIフォーマット2_3との間で異なるペイロード又は異なるスクランブル識別子が用いられる場合を想定する。この場合、ユーザ端末は、異なるペイロード又はスクランブル識別子により、DCIフォーマット2_3が通常のULキャリアのSRS又はSULのSRSのいずれを対象とするかを識別できる。 In FIGS. 9B and 9C, it is assumed that different payloads or different scrambling identifiers are used between DCI format 2_3 used for SRS transmission of normal UL carrier and DCI format 2_3 used for SRS transmission of SUL. In this case, the user terminal can identify whether the DCI format 2_3 targets SRS of a normal UL carrier or SRS of SUL based on different payloads or scramble identifiers.
 図9Bでは、DCIフォーマット2_3内の識別子フィールドは、上記仮想CRCビットとして用いられてもよい。当該識別子フィールドには、仮想CRCビットとして、固定値(例えば、“0”又は“1”)が設定されてもよい。一般に、既知のビット値が増加するほどユーザ端末における誤り訂正の効果を大きく得られる。したがって、図9Bに示すように、当該識別子フィールドを仮想CRCビットとして利用することにより、性能を向上させることができる。 In FIG. 9B, the identifier field in DCI format 2_3 may be used as the virtual CRC bit. In the identifier field, a fixed value (for example, “0” or “1”) may be set as a virtual CRC bit. In general, as the known bit value increases, the effect of the error correction at the user terminal can be obtained more. Therefore, as shown in FIG. 9B, performance can be improved by using the identifier field as a virtual CRC bit.
 或いは、図9Cに示すように、DCIフォーマット2_3内の識別子フィールドは、削除されてもよい。当該識別子フィールドの削除により、DCIフォーマット2_3のペイロードを削減できる。したがって、DCIフォーマット2_3によるオーバーヘッドを削減でき、この結果、無線通信システムの性能を向上させることができる。 Alternatively, as shown in FIG. 9C, the identifier field in DCI format 2_3 may be deleted. By deleting the identifier field, the payload of DCI format 2_3 can be reduced. Therefore, the overhead due to the DCI format 2_3 can be reduced, and as a result, the performance of the wireless communication system can be improved.
 第6の態様では、ユーザ端末からのSRSの送信に用いられるDCIフォーマット内の識別子フィールドを有効に利用できる、又は、当該識別子フィールドの削除により当該DCIフォーマットのオーバーヘッドを削減できる。 In the sixth aspect, the identifier field in the DCI format used for transmission of SRS from the user terminal can be effectively used, or the overhead of the DCI format can be reduced by deleting the identifier field.
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、少なくとも2つを組み合わせて適用されてもよい。
(Wireless communication system)
Hereinafter, the configuration of the radio communication system according to the present embodiment will be described. In the wireless communication system, the wireless communication method according to each of the above aspects is applied. Note that the wireless communication methods according to the above aspects may be applied singly or in combination of at least two.
 図10は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New RAT:New Radio Access Technology)などと呼ばれても良い。 FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment. The radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do. The wireless communication system 1 is called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, Future Radio Access (FRA), New Radio Access Technology (NR), etc. Also good.
 図10に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間及び/又はセル内で異なるニューメロロジーが適用される構成としてもよい。 The radio communication system 1 shown in FIG. 10 includes a radio base station 11 forming a macrocell C1, and radio base stations 12a to 12c disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. . Moreover, the user terminal 20 is arrange | positioned at macro cell C1 and each small cell C2. The configuration may be such that different numerologies are applied between cells and / or in cells.
 ここで、ニューメロロジーとは、周波数方向及び/又は時間方向における通信パラメータ(例えば、サブキャリアの間隔(サブキャリア間隔)、帯域幅、シンボル長、CPの時間長(CP長)、サブフレーム長、TTIの時間長(TTI長)、TTIあたりのシンボル数、無線フレーム構成、フィルタリング処理、ウィンドウイング処理などの少なくとも一つ)である。無線通信システム1では、例えば、15kHz、30kHz、60kHz、120kHz、240kHzなどのサブキャリア間隔がサポートされてもよい。 Here, the term “neurology” refers to communication parameters in the frequency direction and / or time direction (eg, subcarrier spacing (subcarrier spacing), bandwidth, symbol length, CP time length (CP length), subframe length , TTI time length (TTI length), number of symbols per TTI, radio frame configuration, filtering process, windowing process, etc.). In the wireless communication system 1, for example, subcarrier intervals such as 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz may be supported.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. The user terminal 20 is assumed to simultaneously use the macro cell C1 and the small cell C2 using different frequencies by CA or DC. Also, the user terminal 20 can apply CA or DC using a plurality of cells (CCs) (for example, two or more CCs). Also, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。TDDのセル、FDDのセルは、それぞれ、TDDキャリア(フレーム構成タイプ2)、FDDキャリア(フレーム構成タイプ1)等と呼ばれてもよい。 In addition, the user terminal 20 can perform communication using time division duplex (TDD) or frequency division duplex (FDD) in each cell. The TDD cell and the FDD cell may be referred to as a TDD carrier (frame configuration type 2), an FDD carrier (frame configuration type 1) and the like, respectively.
 また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 Also, in each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。 Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a carrier having a narrow bandwidth (referred to as an existing carrier, Legacy carrier, etc.). On the other hand, between the user terminal 20 and the radio base station 12, a carrier having a wide bandwidth in a relatively high frequency band (for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.) may be used. The same carrier as that for the base station 11 may be used. The configuration of the frequency band used by each wireless base station is not limited to this.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。 Between the wireless base station 11 and the wireless base station 12 (or between two wireless base stations 12), a wired connection (for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.) or a wireless connection Can be configured.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、gNB(gNodeB)、送受信ポイント(TRP)、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、eNB、gNB、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a gNB (gNodeB), a transmission / reception point (TRP), etc. Good. Also, the radio base station 12 is a radio base station having a local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), an eNB , GNB, transmission / reception points, etc. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
 各ユーザ端末20は、LTE、LTE-A、5G、5G+、NR、Rel.15~などの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。また、ユーザ端末20は、他のユーザ端末20との間で端末間通信(D2D)を行うことができる。 Each user terminal 20 is an LTE, LTE-A, 5G, 5G +, NR, Rel. Terminals compatible with various communication schemes such as 15 and so on may include not only mobile communication terminals but also fixed communication terminals. Also, the user terminal 20 can perform inter-terminal communication (D2D) with another user terminal 20.
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。 In the radio communication system 1, as the radio access scheme, OFDMA (Orthogonal Frequency Division Multiple Access) can be applied to the downlink (DL), and SC-FDMA (Single Carrier-Frequency Division Multiple Access) is applied to the uplink (UL) it can. OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication. SC-FDMA is a single carrier transmission scheme that divides the system bandwidth into bands consisting of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between the terminals. is there. The uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in UL.
 また、無線通信システム1では、マルチキャリア波形(例えば、OFDM波形)が用いられてもよいし、シングルキャリア波形(例えば、DFT-s-OFDM波形)が用いられてもよい。 Further, in the wireless communication system 1, a multicarrier waveform (for example, an OFDM waveform) may be used, or a single carrier waveform (for example, a DFT-s-OFDM waveform) may be used.
 無線通信システム1では、下り(DL)チャネルとして、各ユーザ端末20で共有されるDL共有チャネル(PDSCH:Physical Downlink Shared Channel、下りデータチャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。 In the radio communication system 1, as downlink (DL) channels, DL shared channels (PDSCH: also referred to as Physical Downlink Shared Channel, also referred to as downlink data channels) shared by each user terminal 20, broadcast channels (PBCH: Physical Broadcast Channel), An L1 / L2 control channel or the like is used. User data, upper layer control information, SIB (System Information Block), etc. are transmitted by the PDSCH. Also, a MIB (Master Information Block) is transmitted by the PBCH.
 L1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。PHICH、PDCCH、EPDCCHの少なくとも一つにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)を伝送できる。 The L1 / L2 control channel includes a downlink control channel (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. . Downlink control information (DCI) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The EPDCCH is frequency division multiplexed with the PDSCH, and is used for transmission such as DCI as the PDCCH. By means of at least one of PHICH, PDCCH, and EPDCCH, it is possible to transmit HARQ acknowledgment information (ACK / NACK) for PUSCH.
 無線通信システム1では、上り(UL)チャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel、上りデータチャネル等ともいう)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。下り(DL)信号の送達確認情報(A/N)やチャネル状態情報(CSI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルを伝送できる。 In the radio communication system 1, as an uplink (UL) channel, an uplink shared channel (PUSCH: also referred to as physical uplink shared channel, uplink data channel etc.) shared by each user terminal 20, an uplink control channel (PUCCH: physical uplink control channel) ), Random access channel (PRACH: Physical Random Access Channel) or the like. User data and higher layer control information are transmitted by PUSCH. Uplink control information (UCI: Uplink Control Information) including at least one of delivery confirmation information (A / N) of downlink (DL) signals and channel state information (CSI) is transmitted by PUSCH or PUCCH. The PRACH can transmit a random access preamble for establishing a connection with a cell.
<無線基地局>
 図11は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されてもよい。
<Wireless base station>
FIG. 11 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment. The radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
 下りリンクで無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 in downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 The baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data. Control) Retransmission control (for example, transmission processing of HARQ (Hybrid Automatic Repeat reQuest)), scheduling, transmission format selection, channel coding, transmission processing such as inverse fast Fourier transform (IFFT) processing, precoding processing, etc. Is transferred to the transmission / reception unit 103. Also, with regard to the downlink control signal, transmission processing such as channel coding and inverse fast Fourier transform is performed and transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。 The transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal. The radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
 本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmitter / receiver, the transmitting / receiving circuit or the transmitting / receiving device described based on the common recognition in the technical field according to the present invention can be constituted. The transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
 一方、上り(UL)信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the uplink (UL) signal, the radio frequency signal received by the transmitting and receiving antenna 101 is amplified by the amplifier unit 102. The transmitting and receiving unit 103 receives the UL signal amplified by the amplifier unit 102. The transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力されたUL信号に含まれるULデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。 The baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on UL data included in the input UL signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing such as setting and release of communication channels, status management of the wireless base station 10, and management of wireless resources.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the adjacent wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). It is also good.
 また、送受信部103は、ユーザ端末20に対して下り(DL)信号(DLデータ信号、DL制御信号、DL参照信号の少なくとも一つを含む)を送信し、当該ユーザ端末20からの上り(UL)信号(ULデータ信号、UL制御信号、UL参照信号の少なくとも一つを含む)を受信する。 Further, the transmitting / receiving unit 103 transmits a downlink (DL) signal (including at least one of DL data signal, DL control signal, and DL reference signal) to the user terminal 20, and uplink (UL) from the user terminal 20. 2.) receiving a signal (including at least one of a UL data signal, a UL control signal, and a UL reference signal).
 また、送受信部103は、下り制御チャネルを用いて、ユーザ端末20に対するDCIを送信する。具体的には、送受信部103は、ペイロードが同一であり、かつ、巡回冗長検査ビットのスクランブルに用いられる識別子が同一である複数の下り制御情報(DCI)を送信してもよい。また、送受信部103は、上位レイヤシグナリングによる制御情報(上位レイヤ制御情報)を送信してもよい。 Also, the transmission / reception unit 103 transmits DCI to the user terminal 20 using the downlink control channel. Specifically, the transmitting and receiving unit 103 may transmit a plurality of downlink control information (DCI) having the same payload and the same identifier used for scrambling the cyclic redundancy check bits. In addition, the transmitting / receiving unit 103 may transmit control information (upper layer control information) by higher layer signaling.
 図12は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図12は、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図12に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305とを備えている。 FIG. 12 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment. FIG. 12 mainly shows the functional blocks of the characterizing portion in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As shown in FIG. 12, the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、例えば、送信信号生成部302によるDL信号の生成や、マッピング部303によるDL信号のマッピング、受信信号処理部304によるUL信号の受信処理(例えば、復調など)、測定部305による測定を制御する。 The control unit 301 controls the entire wireless base station 10. The control unit 301 may, for example, generate a DL signal by the transmission signal generation unit 302, mapping the DL signal by the mapping unit 303, receive processing (for example, demodulation) of the UL signal by the reception signal processing unit 304, Control the measurement.
 具体的には、制御部301は、ユーザ端末20のスケジューリングを行う。具体的には、制御部301は、下り共有チャネル及び/又は上り共有チャネルのスケジューリング及び/又は再送制御を行ってもよい。 Specifically, the control unit 301 performs scheduling of the user terminal 20. Specifically, the control unit 301 may perform scheduling and / or retransmission control of the downlink shared channel and / or the uplink shared channel.
 また、制御部301は、DCIの生成を制御してもよい。具体的には、制御部301は、複数のDCIの識別子フィールド値を制御してもよい。当該複数のDCIは、ペイロードが同一であり、かつ、CRCビットのスクランブルに用いられる識別子が同一であってもよい。 Also, the control unit 301 may control the generation of DCI. Specifically, the control unit 301 may control identifier field values of a plurality of DCI. The plurality of DCIs may have the same payload and the same identifier used to scramble the CRC bits.
 また、上記複数のDCIが、下り共有チャネル及び上り共有チャネルの少なくとも一つのスケジューリングに用いられる複数のDCIである場合、制御部301は、当該複数の識別子フィールド値の生成を制御してもよい(第1、第2の態様)。 In addition, when the plurality of DCI are a plurality of DCI used for scheduling of at least one of downlink shared channel and uplink shared channel, the control unit 301 may control generation of the plurality of identifier field values ( First and second modes).
 また、上記複数のDCIが、スロットフォーマットの識別子の構成が異なる複数のDCIである場合、制御部301は、当該複数の識別子フィールド値の生成を制御してもよい(第3の態様)。 In addition, when the plurality of DCI are a plurality of DCI in which the configuration of the slot format identifier is different, the control unit 301 may control the generation of the plurality of identifier field values (third aspect).
 また、上記複数のDCIが、下り共有チャネルの送信が想定されないリソースを示す識別子を含む第1のDCI及び上り共有チャネルの送信を停止するリソースを示す識別子を含む第2のDCIである場合、制御部301は、前記第1のDCI及び前記第2のDCIの識別子フィールド値の生成を制御してもよい(第4の態様)。 Further, when the plurality of DCIs are a first DCI including an identifier indicating a resource for which transmission of the downlink shared channel is not assumed and a second DCI including an identifier indicating a resource for stopping transmission of the uplink shared channel, the control The unit 301 may control generation of identifier field values of the first DCI and the second DCI (fourth aspect).
 また、上記複数のDCIが、下り共有チャネルの送信電力制御(TPC)用のコマンドを含む第1のDCI及び上り共有チャネルのTPC用のコマンドを含む第2のDCIである場合、制御部301は、前記第1のDCI及び前記第2のDCIの識別子フィールド値の生成を制御してもよい(第5の態様)。 When the plurality of DCIs are a first DCI including a command for transmission power control (TPC) of the downlink shared channel and a second DCI including a command for TPC of the uplink shared channel, the control unit 301 The generation of identifier field values of the first DCI and the second DCI may be controlled (fifth aspect).
 また、上記複数のDCIが、通常のULキャリアのSRSのTPC用のコマンドを含む第1のDCI及びSULのSRSのTPC用のコマンドを含む第2のDCIである場合、制御部301は、前記第1のDCI及び前記第2のDCIの識別子フィールド値の生成を制御してもよい(第6の態様)。 In addition, when the plurality of DCIs are a first DCI including a TPC command of SRS of a normal UL carrier and a second DCI including a TPC command of SRS of SUL, the control unit 301 is configured to: The generation of identifier field values of the first DCI and the second DCI may be controlled (sixth aspect).
 制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DLデータ信号、DL制御信号、DL参照信号を含む)を生成して、マッピング部303に出力する。 The transmission signal generation unit 302 generates a DL signal (including a DL data signal, a DL control signal, and a DL reference signal) based on an instruction from the control unit 301, and outputs the DL signal to the mapping unit 303.
 送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。 The transmission signal generation unit 302 can be a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。 The mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 on a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103. The mapping unit 303 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
 受信信号処理部304は、ユーザ端末20から送信されるUL信号(例えば、ULデータ信号、UL制御信号、UL参照信号を含む)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。具体的には、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力してもよい。また、受信信号処理部304は、制御部301から指示される上り制御チャネル構成に基づいて、UCIの受信処理を行う。 The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on a UL signal (for example, including UL data signal, UL control signal, UL reference signal) transmitted from the user terminal 20. I do. Specifically, the reception signal processing unit 304 may output the reception signal or the signal after reception processing to the measurement unit 305. Further, the reception signal processing unit 304 performs UCI reception processing based on the uplink control channel configuration instructed by the control unit 301.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measuring unit 305 can be configured from a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
 測定部305は、例えば、UL参照信号の受信電力(例えば、RSRP(Reference Signal Received Power))及び/又は受信品質(例えば、RSRQ(Reference Signal Received Quality))に基づいて、ULのチャネル品質を測定してもよい。測定結果は、制御部301に出力されてもよい。 The measurement unit 305 measures the channel quality of UL based on, for example, received power (for example, RSRP (Reference Signal Received Power)) and / or received quality (for example, RSRQ (Reference Signal Received Quality)) of the UL reference signal. You may The measurement result may be output to the control unit 301.
<ユーザ端末>
 図13は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
<User terminal>
FIG. 13 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment. The user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。 The radio frequency signals received by the plurality of transmitting and receiving antennas 201 are amplified by the amplifier unit 202, respectively. Each transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202. The transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、ブロードキャスト情報もアプリケーション部205に転送される。 The baseband signal processing unit 204 performs reception processing of FFT processing, error correction decoding, retransmission control, and the like on the input baseband signal. The DL data is transferred to the application unit 205. The application unit 205 performs processing on a layer higher than the physical layer and the MAC layer. Also, broadcast information is also transferred to the application unit 205.
 一方、上り(UL)データについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、レートマッチング、パンクチャ、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。UCIについても、チャネル符号化、レートマッチング、パンクチャ、DFT処理、IFFT処理の少なくとも一つが行われて各送受信部203に転送される。 On the other hand, uplink (UL) data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission processing of retransmission control (for example, transmission processing of HARQ), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, etc. Is transferred to each transmission / reception unit 203. Also for UCI, at least one of channel coding, rate matching, puncturing, DFT processing, and IFFT processing is performed and transferred to each transmission / reception unit 203.
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。 The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
 また、送受信部203は、ユーザ端末20に設定されたニューメロロジーの下り(DL)信号(DLデータ信号、DL制御信号、DL参照信号を含む)を受信し、当該ニューメロロジーの上り(UL)信号(ULデータ信号、UL制御信号、UL参照信号を含む)を送信する。 In addition, the transmitting / receiving unit 203 receives a downstream (DL) signal (including a DL data signal, a DL control signal, and a DL reference signal) of the neurology set in the user terminal 20, and the uplink (UL) of the neurology. 2.) Send a signal (including UL data signal, UL control signal, UL reference signal).
 また、送受信部303は、下り制御チャネルを用いて、ユーザ端末20に対するDCIを受信する。具体的には、送受信部203は、ペイロードが同一であり、かつ、巡回冗長検査ビットのスクランブルに用いられる識別子が同一である複数の下り制御情報(DCI)を受信してもよい。また、送受信部203は、上位レイヤシグナリングによる制御情報(上位レイヤ制御情報)を受信してもよい。 Also, the transmitting / receiving unit 303 receives DCI for the user terminal 20 using the downlink control channel. Specifically, the transmitting and receiving unit 203 may receive a plurality of downlink control information (DCI) having the same payload and the same identifier used for scrambling the cyclic redundancy check bits. Also, the transmitting / receiving unit 203 may receive control information (upper layer control information) by higher layer signaling.
 送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。また、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention. The transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 図14は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図14においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図14に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。 FIG. 14 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. In FIG. 14, the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication. As shown in FIG. 14, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Have.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、例えば、送信信号生成部402によるUL信号の生成や、マッピング部403によるUL信号のマッピング、受信信号処理部404によるDL信号の受信処理、測定部405による測定を制御する。 The control unit 401 controls the entire user terminal 20. The control unit 401 controls, for example, UL signal generation by the transmission signal generation unit 402, mapping of the UL signal by the mapping unit 403, reception processing of the DL signal by the reception signal processing unit 404, and measurement by the measurement unit 405.
 また、制御部401は、DCIに基づいて、ユーザ端末20における通信処理(下り共有チャネル(例えば、PDSCH)の受信、上り共有チャネル(例えば、PUSCH)の送信、スロットフォーマット、上り共有チャネル及び上り制御チャネル(例えば、PUCCH)の少なくとも一つの送信電力、上り参照信号(例えば、SRS)の送信などの少なくとも一つ)を制御してもよい。具体的には、制御部401は、複数のDCIの識別子フィールド値に基づいて、ユーザ端末20における上記通信処理を制御してもよい。当該複数のDCIは、ペイロードが同一であり、かつ、CRCビットのスクランブルに用いられる識別子が同一であってもよい。 In addition, based on DCI, control section 401 performs communication processing in user terminal 20 (reception of downlink shared channel (for example, PDSCH), transmission of uplink shared channel (for example, PUSCH), slot format, uplink shared channel, and uplink control). At least one transmission power of a channel (for example, PUCCH), at least one of an uplink reference signal (for example, transmission of SRS, etc.) may be controlled. Specifically, the control unit 401 may control the communication process in the user terminal 20 based on the identifier field values of a plurality of DCI. The plurality of DCIs may have the same payload and the same identifier used to scramble the CRC bits.
 また、上記複数のDCIが、下り共有チャネル及び上り共有チャネルの少なくとも一つのスケジューリングに用いられる複数のDCIである場合、制御部401は、当該複数の識別子フィールド値に基づいて、当該複数のDCIのフォーマットを識別してもよい(第1、第2の態様)。 Also, when the plurality of DCIs are a plurality of DCI used for scheduling of at least one of the downlink shared channel and the uplink shared channel, the control unit 401 determines the plurality of DCIs based on the plurality of identifier field values. The format may be identified (first and second aspects).
 また、上記複数のDCIが、スロットフォーマットの識別子の構成が異なる複数のDCIである場合、制御部401は、当該複数の識別子フィールド値に基づいて、前記スロットフォーマットの識別子の構成を識別してもよい(第3の態様)。 Further, when the plurality of DCIs are a plurality of DCIs having different configurations of the slot format identifier, the control unit 401 identifies the configuration of the slot format identifier based on the plurality of identifier field values. Good (third aspect).
 また、上記複数のDCIが、下り共有チャネルの送信が想定されないリソースを示す識別子を含む第1のDCI及び上り共有チャネルの送信を停止するリソースを示す識別子を含む第2のDCIである場合、制御部401は、前記第1のDCI及び前記第2のDCIの識別子フィールド値に基づいて、前記第1のDCI及び前記第2のDCIを識別してもよい(第4の態様)。 Further, when the plurality of DCIs are a first DCI including an identifier indicating a resource for which transmission of the downlink shared channel is not assumed and a second DCI including an identifier indicating a resource for stopping transmission of the uplink shared channel, the control The unit 401 may identify the first DCI and the second DCI based on identifier field values of the first DCI and the second DCI (fourth aspect).
 また、上記複数のDCIが、下り共有チャネルの送信電力制御(TPC)用のコマンドを含む第1のDCI及び上り共有チャネルのTPC用のコマンドを含む第2のDCIである場合、制御部401は、前記第1のDCI及び前記第2のDCIの識別子フィールド値の生成を制御してもよい(第5の態様)。 When the plurality of DCIs are a first DCI including a command for transmission power control (TPC) of the downlink shared channel and a second DCI including a command for TPC of the uplink shared channel, the control unit 401 The generation of identifier field values of the first DCI and the second DCI may be controlled (fifth aspect).
 また、上記複数のDCIが、通常のULキャリアのSRSのTPC用のコマンドを含む第1のDCI及びSULのSRSのTPC用のコマンドを含む第2のDCIである場合、制御部401は、前記第1のDCI及び前記第2のDCIの識別子フィールド値の生成を制御してもよい(第6の態様)。 In addition, when the plurality of DCIs are a first DCI including a command for TCS of SRS of a normal UL carrier and a second DCI including a command for TPC of SRS of SUL, the control unit 401 is configured to: The generation of identifier field values of the first DCI and the second DCI may be controlled (sixth aspect).
 また、制御部401は、複数のDCIの識別フィールド値に基づいて、当該複数のDCIの復号(誤り訂正)を制御してもよい(第3~第6の態様)。 Further, the control unit 401 may control decoding (error correction) of the plurality of DCI based on the identification field values of the plurality of DCI (third to sixth aspects).
 制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号(ULデータ信号、UL制御信号、UL参照信号、UCIを含む)を生成(例えば、符号化、レートマッチング、パンクチャ、変調など)して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。 The transmission signal generation unit 402 generates a UL signal (including a UL data signal, a UL control signal, a UL reference signal, and UCI) based on an instruction from the control unit 401 (for example, coding, rate matching, puncturing, modulation) Etc., and output to the mapping unit 403. The transmission signal generation unit 402 can be a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。 The mapping unit 403 maps the UL signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the UL signal to the transmission / reception unit 203. The mapping unit 403 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
 受信信号処理部404は、DL信号(DLデータ信号、スケジューリング情報、DL制御信号、DL参照信号)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリングなどの上位レイヤシグナリングによる上位レイヤ制御情報、物理レイヤ制御情報(L1/L2制御情報)などを、制御部401に出力する。 The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal (DL data signal, scheduling information, DL control signal, DL reference signal). The received signal processing unit 404 outputs the information received from the radio base station 10 to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, upper layer control information by upper layer signaling such as RRC signaling, physical layer control information (L1 / L2 control information), and the like to the control unit 401.
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。 The received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
 測定部405は、無線基地局10からの参照信号(例えば、CSI-RS)に基づいて、チャネル状態を測定し、測定結果を制御部401に出力する。なお、チャネル状態の測定は、CC毎に行われてもよい。 Measuring section 405 measures a channel state based on a reference signal (for example, CSI-RS) from radio base station 10, and outputs the measurement result to control section 401. The channel state measurement may be performed for each CC.
 測定部405は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。 The measuring unit 405 can be configured of a signal processor, a signal processing circuit or a signal processing device, and a measuring instrument, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
<Hardware configuration>
The block diagram used for the explanation of the above-mentioned embodiment has shown the block of a functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation method of each functional block is not particularly limited. That is, each functional block may be realized using one physically and / or logically coupled device, or directly and / or two or more physically and / or logically separated devices. Or it may connect indirectly (for example, using a wire communication and / or radio), and it may be realized using a plurality of these devices.
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a wireless base station, a user terminal, and the like in an embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention. FIG. 15 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to the present embodiment. The above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "device" can be read as a circuit, a device, a unit, or the like. The hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be a plurality of processors. Also, the processing may be performed by one processor, or the processing may be performed by one or more processors simultaneously, sequentially or using other techniques. The processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。 Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 is performed. This is realized by controlling communication, and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these. As a program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, or may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device) or the like. The memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Also, the radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. Hardware may be included, and part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms described in the present specification and / or the terms necessary for the understanding of the present specification may be replaced with terms having the same or similar meanings. For example, the channels and / or symbols may be signaling. Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard. Also, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency or the like.
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。 Also, the radio frame may be configured by one or more periods (frames) in the time domain. Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe. Furthermore, a subframe may be configured by one or more slots in the time domain. The subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。 Furthermore, the slot may be configured by one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.). Also, the slot may be a time unit based on the neurology. Also, the slot may include a plurality of minislots. Each minislot may be configured by one or more symbols in the time domain. Minislots may also be referred to as subslots.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 A radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal. For radio frames, subframes, slots, minislots and symbols, other names corresponding to each may be used. For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as a TTI, and one slot or one minislot may be referred to as a TTI. May be That is, the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the radio base station performs scheduling to assign radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that, when a TTI is given, the time interval (eg, the number of symbols) in which the transport block, the code block, and / or the codeword is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is referred to as TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, or the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and a short TTI (eg, a shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms. It may replace with TTI which has the above TTI length.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 A resource block (RB: Resource Block) is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be respectively configured by one or more resource blocks. Note that one or more RBs may be a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. It may be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be configured by one or more resource elements (RE: Resource Element). For example, one RE may be one subcarrier and one symbol radio resource region.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The number of subcarriers, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be variously changed.
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Also, the information, parameters, etc. described in the present specification may be expressed using absolute values, may be expressed using relative values from predetermined values, or other corresponding information. May be represented. For example, radio resources may be indicated by a predetermined index.
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in the present specification are not limited names in any respect. For example, since various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable names, various assignments are made to these various channels and information elements. The name is not limited in any way.
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips etc that may be mentioned throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
 情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects / embodiments described herein, and may be performed using other methods. For example, notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 The physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Also, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Also, MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of "being X") is not limited to explicit notification, but implicitly (for example, by not notifying the predetermined information or other information Notification may be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be sent and received via a transmission medium. For example, software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server These or other wired and / or wireless technologies are included within the definition of the transmission medium, as transmitted from a remote source, or other remote source.
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 The terms "system" and "network" as used herein may be used interchangeably.
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、送受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 As used herein, “base station (BS: Base Station)”, “radio base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier” and “component” The term "carrier" may be used interchangeably. A base station may be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, transmission / reception point, femtocell, small cell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。 A base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication service can also be provided by Remote Radio Head). The terms "cell" or "sector" refer to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。 As used herein, the terms "mobile station (MS)," user terminal "," user equipment (UE) "and" terminal "may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 The mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び/又は移動局は、送信装置、受信装置などと呼ばれてもよい。 The base station and / or the mobile station may be called a transmitting device, a receiving device, etc.
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。 Also, the radio base station in the present specification may be replaced with a user terminal. For example, each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device). In this case, the user terminal 20 may have a function that the above-described radio base station 10 has. Moreover, the wordings such as "up" and "down" may be read as "side". For example, the upstream channel may be read as a side channel.
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, a user terminal herein may be read at a radio base station. In this case, the radio base station 10 may have a function that the above-described user terminal 20 has.
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present specification, the operation supposed to be performed by the base station may be performed by its upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
 本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution. Moreover, as long as there is no contradiction, you may replace the order of the processing procedure of each aspect / embodiment, sequence, flowchart, etc. which were demonstrated in this specification. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
 本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark) And / or systems based on other suitable wireless communication methods and / or extended next generation systems based on these.
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on", as used herein, does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using the designation "first", "second" and the like as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 The term "determining" as used herein may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as "determining". Also, "determination" may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as "determining" (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, "determination" may be considered as "determining" some action.
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。 As used herein, the terms "connected", "coupled", or any variation thereof, refers to any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements "connected" or "connected" to each other. The coupling or connection between elements may be physical, logical or a combination thereof. For example, "connection" may be read as "access".
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 As used herein, when two elements are connected, using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-exclusive examples, the radio frequency domain It can be considered as "connected" or "coupled" with one another using electromagnetic energy or the like having wavelengths in the microwave region and / or the light (both visible and invisible) regions.
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。 As used herein, the term "A and B are different" may mean "A and B are different from each other". The terms "leave", "combined" and the like may be interpreted similarly.
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 As used herein and in the appended claims, when "including", "comprising", and variations thereof are used, these terms as well as the term "comprising" are inclusive. Intended to be Further, it is intended that the term "or" as used herein or in the claims is not an exclusive OR.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。 Although the present invention has been described above in detail, it is obvious for those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention defined based on the description of the claims. Therefore, the description in the present specification is for the purpose of illustration and does not provide any limiting meaning to the present invention.

Claims (6)

  1.  ペイロードが同一であり、かつ、巡回冗長検査ビットのスクランブルに用いられる識別子が同一である複数の下り制御情報(DCI)を受信する受信部と、
     前記複数のDCIそれぞれに含まれる識別子フィールド値に基づいて、前記複数のDCIそれぞれに基づく通信処理を制御する制御部と、
    を具備することを特徴とするユーザ端末。
    A receiver for receiving a plurality of downlink control information (DCI) having the same payload and having the same identifier used for scrambling cyclic redundancy check bits;
    A control unit configured to control communication processing based on each of the plurality of DCIs based on an identifier field value included in each of the plurality of DCIs;
    A user terminal characterized by comprising.
  2.  前記複数のDCIは、下り共有チャネル及び上り共有チャネルの少なくとも一つのスケジューリングに用いられる複数のDCIであり、
     前記制御部は、前記識別子フィールド値に基づいて、前記複数のDCIのフォーマットを識別することを特徴とする請求項1に記載のユーザ端末。
    The plurality of DCIs are a plurality of DCIs used for scheduling at least one of a downlink shared channel and an uplink shared channel,
    The user terminal according to claim 1, wherein the control unit identifies the formats of the plurality of DCIs based on the identifier field value.
  3.  前記複数のDCIは、スロットフォーマットの識別子の構成が異なる複数のDCIであり、
     前記制御部は、前記識別子フィールド値に基づいて、前記スロットフォーマットの識別子の構成を識別することを特徴とする請求項1に記載のユーザ端末。
    The plurality of DCI's are a plurality of DCI's having different configurations of slot format identifiers,
    The user terminal according to claim 1, wherein the control unit identifies a configuration of the slot format identifier based on the identifier field value.
  4.  前記複数のDCIは、下り共有チャネルの送信が想定されないリソースを示す識別子を含む第1のDCI及び上り共有チャネルの送信を停止するリソースを示す識別子を含む第2のDCIであり、
     前記制御部は、前記識別子フィールド値に基づいて、前記第1のDCI及び前記第2のDCIを識別することを特徴とする請求項1に記載のユーザ端末。
    The plurality of DCIs are a first DCI including an identifier indicating a resource for which transmission of a downlink shared channel is not assumed and a second DCI including an identifier indicating a resource for stopping transmission of an uplink shared channel,
    The user terminal according to claim 1, wherein the control unit identifies the first DCI and the second DCI based on the identifier field value.
  5.  前記複数のDCIは、下り共有チャネルの送信電力制御(TPC)用のコマンドを含む第1のDCI及び上り共有チャネルのTPC用のコマンドを含む第2のDCIであり、
     前記制御部は、前記識別子フィールド値に基づいて、前記第1のDCI及び前記第2のDCIを識別することを特徴とする請求項1に記載のユーザ端末。
    The plurality of DCIs are a first DCI including a command for transmission power control (TPC) of the downlink shared channel and a second DCI including a command for TPC of the uplink shared channel,
    The user terminal according to claim 1, wherein the control unit identifies the first DCI and the second DCI based on the identifier field value.
  6.  ユーザ端末において、
     ペイロードが同一であり、かつ、巡回冗長検査ビットのスクランブルに用いられる識別子が同一である複数の下り制御情報(DCI)を受信する工程と、
     前記複数のDCIそれぞれに含まれる識別子フィールド値に基づいて、前記複数のDCIそれぞれに基づく通信処理を制御する工程と、
    を有することを特徴とする無線通信方法。
    At the user terminal
    Receiving a plurality of downlink control information (DCI) having the same payload and having the same identifier used for scrambling cyclic redundancy check bits;
    Controlling communication processing based on each of the plurality of DCIs based on an identifier field value included in each of the plurality of DCIs;
    A wireless communication method comprising:
PCT/JP2018/000111 2018-01-05 2018-01-05 User terminal and wireless communication method WO2019135285A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019563731A JP7111743B2 (en) 2018-01-05 2018-01-05 Terminal, wireless communication method, base station and system
EP18898038.7A EP3737177B1 (en) 2018-01-05 2018-01-05 Terminal, base station and wireless communication method
PT188980387T PT3737177T (en) 2018-01-05 2018-01-05 User terminal and wireless communication method
US16/959,876 US20200337038A1 (en) 2018-01-05 2018-01-05 User terminal and radio communication method
PCT/JP2018/000111 WO2019135285A1 (en) 2018-01-05 2018-01-05 User terminal and wireless communication method
CN201880090357.XA CN111788855A (en) 2018-01-05 2018-01-05 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000111 WO2019135285A1 (en) 2018-01-05 2018-01-05 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2019135285A1 true WO2019135285A1 (en) 2019-07-11

Family

ID=67144079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000111 WO2019135285A1 (en) 2018-01-05 2018-01-05 User terminal and wireless communication method

Country Status (6)

Country Link
US (1) US20200337038A1 (en)
EP (1) EP3737177B1 (en)
JP (1) JP7111743B2 (en)
CN (1) CN111788855A (en)
PT (1) PT3737177T (en)
WO (1) WO2019135285A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026708A1 (en) * 2018-07-31 2020-02-06 Sharp Kabushiki Kaisha User equipments, base stations and methods for uplink multiplexing
US20210160909A1 (en) * 2018-04-19 2021-05-27 Ntt Docomo, Inc. Terminal, radio communication method, and base station

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018235248A1 (en) * 2017-06-22 2020-04-23 株式会社Nttドコモ User terminal and wireless communication method
US11102643B2 (en) * 2018-03-30 2021-08-24 Asustek Computer Inc. Method and apparatus for determining size of preemption indication in a wireless communication system
US11284477B2 (en) * 2018-07-24 2022-03-22 Apple Inc. Downlink control channel signaling for improving UE power consumption
GB2576217A (en) * 2018-08-10 2020-02-12 Nec Corp Communication system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10039088B2 (en) * 2012-01-26 2018-07-31 Samsung Electronics Co., Ltd. Method and apparatus for scheduling communication for low capability devices
US9635658B2 (en) * 2012-02-27 2017-04-25 Samsung Electronics Co., Ltd. Adaptation of control signaling transmissions to variations in respective resources
US9596056B2 (en) * 2013-07-15 2017-03-14 Lg Electronics Inc. Method for interference cancellation in wireless communication system and apparatus therefor
WO2015050418A1 (en) * 2013-10-04 2015-04-09 엘지전자 주식회사 Method for cancelling interference in wireless communication system and device therefor
CN107211419B (en) * 2015-01-29 2021-06-01 株式会社Ntt都科摩 User terminal, radio base station, and radio communication method
WO2017073651A1 (en) * 2015-10-27 2017-05-04 株式会社Nttドコモ User terminal, wireless base station, and wireless communication method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300 V8.12.0, April 2010 (2010-04-01)
NTT DOCOMO; INC: "DCI contents and formats", 3GPP TSG-RAN WG1#91 R1-1720814, 1 December 2017 (2017-12-01), pages 1 - 3, XP051370243, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_91/Docs/R1-1720814.zip> *
SAMSUNG: "DCI Contents and Formats", 3GPP TSG-RAN WG1#91 R1-1720322, 1 December 2017 (2017-12-01), pages 1 - 4, XP051369911, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1-91/Docs/Rl-1720322.zip> *
See also references of EP3737177A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210160909A1 (en) * 2018-04-19 2021-05-27 Ntt Docomo, Inc. Terminal, radio communication method, and base station
US11700609B2 (en) * 2018-04-19 2023-07-11 Ntt Docomo, Inc. Terminal, radio communication method, and base station
WO2020026708A1 (en) * 2018-07-31 2020-02-06 Sharp Kabushiki Kaisha User equipments, base stations and methods for uplink multiplexing

Also Published As

Publication number Publication date
EP3737177B1 (en) 2023-12-20
CN111788855A (en) 2020-10-16
EP3737177A1 (en) 2020-11-11
JP7111743B2 (en) 2022-08-02
PT3737177T (en) 2024-01-15
JPWO2019135285A1 (en) 2021-01-07
US20200337038A1 (en) 2020-10-22
EP3737177A4 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2019097633A1 (en) User terminal and wireless communication method
WO2019097643A1 (en) User terminal and wireless communications method
WO2019049283A1 (en) User terminal and radio communication method
WO2019087340A1 (en) User equipment and wireless communication method
WO2019049282A1 (en) User terminal and radio communication method
JPWO2019193700A1 (en) User terminal and wireless base station
WO2019021443A1 (en) User terminal and radio communication method
WO2019030925A1 (en) User terminal and wireless communication method
JP7111743B2 (en) Terminal, wireless communication method, base station and system
WO2019138528A1 (en) User terminal and wireless communication method
WO2018203409A1 (en) User terminal, and wireless communication method
WO2018143388A1 (en) User terminal and wireless communication method
WO2019176032A1 (en) User equipment and wireless communication method
WO2019021486A1 (en) User terminal, wireless base station and wireless communication method
WO2019159292A1 (en) User terminal and wireless communication method
JPWO2018056338A1 (en) User terminal and wireless communication method
US20210051666A1 (en) User terminal and radio communication method
WO2019138516A1 (en) User terminal and wireless communication method
WO2019097654A1 (en) User terminal and wireless communication method
WO2018173237A1 (en) User terminal and wireless communication method
CN110870345B (en) Terminal, wireless communication method and base station
WO2019135287A1 (en) User terminal and wireless communication method
WO2019021473A1 (en) Transmission device, reception device, and wireless communication method
WO2019021487A1 (en) User terminal and radio communication method
WO2019026216A1 (en) User terminal and wireless communications method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018898038

Country of ref document: EP

Effective date: 20200805