WO2019220580A1 - Deodorant for fine particulate fibers - Google Patents

Deodorant for fine particulate fibers Download PDF

Info

Publication number
WO2019220580A1
WO2019220580A1 PCT/JP2018/018999 JP2018018999W WO2019220580A1 WO 2019220580 A1 WO2019220580 A1 WO 2019220580A1 JP 2018018999 W JP2018018999 W JP 2018018999W WO 2019220580 A1 WO2019220580 A1 WO 2019220580A1
Authority
WO
WIPO (PCT)
Prior art keywords
deodorant
phosphate
fiber
zirconium
diameter
Prior art date
Application number
PCT/JP2018/018999
Other languages
French (fr)
Japanese (ja)
Inventor
大野 康晴
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to PCT/JP2018/018999 priority Critical patent/WO2019220580A1/en
Publication of WO2019220580A1 publication Critical patent/WO2019220580A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters

Definitions

  • the present invention relates to a deodorant for fine fiber, and belongs to the technical field of deodorant and the technical field of fiber.
  • Patent Document 1 a deodorant that can deodorize both acid and base components, has a high deodorizing property against bad odors such as sweat odor, hardly deteriorates even if washing is repeated, and provides a fiber having water absorption. Therefore, a deodorizing system using a liquid containing smectite, aluminum silicate, binder resin, modified silicone compound, zinc oxide and water is disclosed.
  • the fibers are elastic yarns made of polyurethane starting from a polymer diol and diisocyanate, and include metal phosphate and quaternary ammonium.
  • a polyurethane elastic yarn containing a salt-based antibacterial agent is disclosed.
  • the deodorization system disclosed in Patent Document 1 is a method by post-processing, and although a product having a deodorizing function can be temporarily obtained, the texture is impaired by the binder for attaching the functional agent.
  • there are problems such as a decrease in productivity and a decrease in washing durability due to a long processing step.
  • the deodorant described in Patent Documents 2 and 3 is difficult to obtain a deodorizing effect when it is kneaded into a fiber, and it is necessary to increase the amount of addition to obtain a sufficient effect.
  • An object of the present invention is to provide a deodorant having good spinnability, high deodorizing performance against basic gases such as trimethylamine and ammonia, and particularly excellent in ammonia deodorizing performance.
  • Fibers containing ⁇ -zirconium phosphate and / or ⁇ -titanium phosphate having a median diameter of 0.2 to 0.7 ⁇ m, a maximum particle diameter of 5.0 ⁇ m or less, and a D10 diameter of 0.1 ⁇ m or more. Deodorant for use.
  • the ⁇ -zirconium phosphate is represented by the following formula (1): Deodorant for textiles described in 1. Zr 1-x Hf x H a (PO 4) b ⁇ nH 2 O (1)
  • N is a positive number of 0 ⁇ n ⁇ 2.0.
  • the ⁇ titanium phosphate is represented by the following formula (2): Deodorant for textiles described in 1. TiH a (PO 4 ) b ⁇ nH 2 O (2)
  • ⁇ -zirconium phosphate and ⁇ -titanium phosphate are synthesized in an aqueous solution.
  • the fiber is at least one selected from the group consisting of polyester, polyurethane, nylon, rayon, acrylic resin, vinylon and polypropylene. Deodorant fiber as described in 1.
  • the present invention it is possible to provide a deodorant having good spinnability, high deodorizing performance against basic gases such as trimethylamine and ammonia, and particularly excellent in ammonia deodorizing performance.
  • the present invention provides ⁇ -zirconium phosphate and / or ⁇ -phosphate having a median diameter of 0.2 to 0.7 ⁇ m, a maximum particle diameter of 5.0 ⁇ m or less, and a D10 diameter of 0.1 ⁇ m or more.
  • the present invention relates to a deodorizing agent for kneading fibers containing titanium.
  • % Means “% by weight” unless otherwise specified, “parts” means “parts by weight”, and “ppm” means “weight ppm”.
  • the description of “lower limit to upper limit” representing the numerical range represents “lower limit to upper limit”, and the description of “upper limit to lower limit” represents “upper limit, lower limit”. That is, it represents a numerical range including an upper limit and a lower limit. Further, in the present embodiment, a combination of two or more of the preferable modes described later is also a preferable mode.
  • the deodorant used in the present embodiment is made of ⁇ zirconium phosphate and / or ⁇ titanium phosphate, and the particle size is 0.2 to 0.7 ⁇ m in median diameter and the maximum particle size is 5.0 ⁇ m or less and D10 diameter is 0.1 ⁇ m or more.
  • the method for adjusting the particle size of the deodorant used in the present embodiment is not limited, but it is preferably synthesized in an aqueous solution in order to obtain the desired particle size distribution.
  • synthesized in an aqueous solution it is easy to make it uniform during synthesis and to obtain a sharp particle size distribution.
  • adjusting the particle size by pulverization is not preferable because fine powders and large particles are mixed therein and the width of the particle size distribution is widened, which tends to cause yarn breakage during spinning.
  • the particle diameter in this embodiment indicates a value obtained by measuring with a laser diffraction particle size distribution analyzer and analyzing the result on a volume basis.
  • the median diameter of the deodorant used in this embodiment is 0.2 to 0.7 ⁇ m.
  • the thickness is preferably 0.2 to 0.6 ⁇ m. Even if the median diameter is around 1 ⁇ m, there are few problems with spinnability, but when the same amount of deodorant is kneaded into the fiber, the finer the particle size, the larger the number of particles, and the better the deodorizing effect. Further, when the median diameter is 0.2 ⁇ m or more, the particles are less likely to aggregate, so that spinning becomes easy and yarn breakage during spinning can be suppressed.
  • the maximum particle size of the deodorant used in this embodiment is 5.0 ⁇ m or less. Preferably it is 4.0 micrometers or less, More preferably, it is 3.0 micrometers or less. A maximum diameter of 5.0 ⁇ m or less is preferable because yarn breakage during spinning can be suppressed. Moreover, it is preferable that a lower limit is 0.7 micrometer or more.
  • the D10 diameter of the deodorant used in this embodiment is 0.1 ⁇ m or more. Preferably it is 0.15 micrometer or more, More preferably, it is 0.2 micrometer or more. When the D10 diameter is 0.1 ⁇ m or more, the particles are less likely to aggregate, so that spinning becomes easy and yarn breakage can be suppressed. Moreover, the preferable upper limit of D10 diameter is 0.4 micrometer or less. When the D10 diameter is 0.4 ⁇ m or less, particles having a median diameter of 0.7 ⁇ m or less are easily obtained.
  • the present embodiment is a fiber deodorant comprising ⁇ -zirconium phosphate and / or ⁇ -titanium phosphate having the specific particle diameter described above.
  • ⁇ zirconium phosphate and ⁇ titanium phosphate will be described.
  • ⁇ -zirconium phosphate As the ⁇ -zirconium phosphate used in the present embodiment, various compounds can be used as long as they have the above-described particle diameter.
  • the ⁇ -zirconium phosphate preferably used in the present embodiment is, for example, a compound represented by the following formula (1), and the theoretical cation exchange capacity per unit weight is 6.7 meq / g. From the viewpoint of deodorizing performance, the cation exchange amount of the compound represented by the following formula (1) is preferably 6.0 meq / g or more, and more preferably 6.4 meq / g or more.
  • hafnium (Hf) is derived from the starting zirconium compound.
  • X in the formula (1) is a positive number of 0 ⁇ x ⁇ 1.
  • X in the formula (1) is a positive number of 0 ⁇ x ⁇ 1.
  • the ion exchange performance improves as the hafnium content increases.
  • hafnium contains a radioactive isotope, it is preferable to suppress the value of x when used for electronic components.
  • N in Formula (1) is preferably 0.2 or less, more preferably 0.1 or less, and even more preferably 0.05 or less. When the value of n is 2.0 or less, water of crystallization is easily detached when the resin is melted during spinning, and foaming and yarn breakage can be prevented.
  • a conventional technique can be applied to the method for producing ⁇ -zirconium phosphate used in the present embodiment, and there are no restrictions on raw materials and facilities.
  • the method etc. which were described in the patent 5545328 and the patent 582258 can be mentioned.
  • a method for producing ⁇ -zirconium phosphate a method of reacting a raw material compound in an aqueous solution is preferable because uniform particles can be easily obtained.
  • phosphoric acid (salt) an aqueous solution of a zirconium compound and an aqueous solution containing phosphoric acid and / or a salt thereof (hereinafter referred to as “phosphoric acid (salt)”) are mixed to form a precipitate, which is aged and crystallized, etc.
  • Examples of the raw material zirconium compound include zirconium nitrate, zirconium acetate, zirconium sulfate, zirconium carbonate, basic zirconium sulfate, zirconium oxysulfate, and zirconium oxychloride.
  • zirconium nitrate, zirconium acetate, zirconium sulfate, zirconium carbonate, Basic zirconium sulfate, zirconium oxysulfate and zirconium oxychloride are preferable, and zirconium oxychloride is more preferable in consideration of reactivity and economy.
  • Examples of the raw material phosphoric acid (salt) include phosphoric acid, sodium phosphate, potassium phosphate, and ammonium phosphate. Phosphoric acid is preferable, and a high concentration of about 75% to 85% by weight is more preferable.
  • the reaction ratio of phosphoric acid (salt) is 2 or more, preferably 2.05 or more, and more preferably 2.1 or more, in terms of the molar ratio charged to the zirconium compound.
  • the reaction ratio of phosphoric acid (salt) may be a large excess with respect to the zirconium compound, but considering the conductivity of the supernatant, the molar ratio is 3 or less, preferably 2.9 or less, and 2.6. The following is more preferable.
  • oxalic acid compound In the production of ⁇ -zirconium phosphate, it is preferable to add an oxalic acid compound because the production of the compound becomes faster and the raw material can be efficiently produced with less waste.
  • the oxalic acid compound in this case include oxalic acid dihydrate, ammonium oxalate and ammonium hydrogen oxalate, and oxalic acid dihydrate is preferred.
  • the reaction ratio of oxalic acid is 2.5 to 3.5, more preferably 2.7 to 3.2, and even more preferably 2.8 to 3.0, as a molar ratio to the zirconium compound. In this embodiment, this ratio is preferable because the production of ⁇ -zirconium phosphate is facilitated.
  • ripening After mixing an aqueous solution of a zirconium compound and an aqueous solution containing phosphoric acid (salt), ripening is performed.
  • the ripening may be performed at room temperature, but in order to accelerate the ripening, a wet normal pressure of 90 ° C. or higher.
  • a wet normal pressure of 90 ° C. or higher.
  • the condition exceeding 100 ° C. in a pressure atmosphere higher than normal pressure is referred to as a hydrothermal condition, but the synthesis may be performed under this condition.
  • the production time of ⁇ -zirconium phosphate may be any time as long as ⁇ -zirconium phosphate can be synthesized.
  • alpha zirconium phosphate can be obtained by mixing phosphoric acid (salt) and a zirconium compound to cause precipitation and then aging.
  • the aging time varies depending on the aging temperature. For example, in aging at 90 ° C., 4 hours or more is preferable.
  • ripens for 24 hours or more the content rate of (alpha) zirconium phosphate will become the tendency of a peak.
  • the synthesized ⁇ -zirconium phosphate can be further filtered off, washed well with water, and dried to obtain ⁇ -zirconium phosphate.
  • [alpha] Titanium Phosphate Various compounds can be used as the [alpha] titanium phosphate used in the present embodiment as long as it has the above-described particle diameter.
  • the ⁇ -titanium phosphate preferably used in the present embodiment is, for example, a compound represented by the following formula (2), and the theoretical cation exchange capacity per unit weight is 7.7 meq / g. From the viewpoint of deodorizing performance, the cation exchange amount of the compound represented by the following formula (2) is preferably 6.2 meq / g or more, and more preferably 6.7 meq / g or more.
  • N in the formula (2) of ⁇ -titanium phosphate is preferably 0.2 or less, more preferably 0.1 or less, and even more preferably 0.05 or less.
  • the production method of ⁇ -titanium phosphate can apply conventional techniques, and there are no restrictions on raw materials and equipment.
  • a method for producing ⁇ -titanium phosphate a method of reacting a raw material compound in an aqueous solution is preferable because uniform particles are easily obtained.
  • it can be produced by adding phosphoric acid to an aqueous solution of a titanium compound to form a precipitate and crystallizing it.
  • a method in which an aqueous solution of a titanium compound and an aqueous solution containing phosphoric acid (salt) are mixed to form a precipitate, and aged and crystallized can be used.
  • Examples of the raw material titanium compound include titanyl sulfate.
  • Examples of the phosphoric acid (salt) as a raw material for production include the same compounds as described above.
  • Water content in deodorant The water content of the deodorant used in the present embodiment is preferably 1.0% by weight or less. More preferably, it is 0.7 weight% or less. By setting the water content to 1.0% by weight or less, it is possible to prevent foaming and hydrolysis of the resin during production of the masterbatch, which is preferable.
  • Deodorant Fiber The present embodiment is a fiber deodorant, and a method for producing a deodorant fiber using the deodorant may be a conventional method. For example, a method of kneading the deodorant of this embodiment into a fiber and spinning, a method of applying a deodorant solution to the spun fiber, and the like can be mentioned.
  • any known chemical fiber can be used.
  • preferable examples include polyester, polyurethane, nylon, rayon, acrylic, vinylon, and polypropylene. These resins may be homopolymers or copolymers. In the case of a copolymer, there is no particular limitation on the polymerization ratio of each copolymer component.
  • the deodorant of this embodiment can be preferably used as a deodorizer for kneading fibers.
  • a specific method for producing the deodorant fiber in this case includes a method of kneading the deodorant of this embodiment into a molten liquid fiber resin or a dissolved fiber resin solution, and spinning it. .
  • the ratio of the deodorant of this embodiment contained in the fiber resin is not particularly limited. In general, if the content is increased, the deodorizing ability can be exerted strongly and can be sustained for a long time, but even if it is added to a certain extent, there is no significant difference in the deodorizing effect or the strength of the resin is reduced. Therefore, the amount is preferably 0.1 to 3.0 parts by weight, more preferably 0.5 to 2.0 parts by weight per 100 parts by weight of the resin.
  • the deodorant fiber using the deodorant of this embodiment can be used in various fields that require deodorization, such as underwear, stockings, socks, futons, duvet covers, cushions, blankets, carpets, It can be used for many textile products such as curtains, sofas, car seats, air filters and nursing clothes.
  • Particle size median size, maximum particle size, D10 size
  • the particle size of the deodorant was measured with a laser diffraction particle size distribution analyzer “LA-950” manufactured by Horiba, Ltd., and the results were volume-based. We analyzed with. The measurement conditions were that a deodorant dispersion liquid in which 1.0% by weight of a deodorant was added to 100% by weight of water was dispersed with an ultrasonic wave, and measurement was performed at a refractive index of 2.4.
  • Moisture content The moisture content was determined by heating the deodorizers obtained in Examples and Comparative Examples at 150 ° C. for 2 hours, [(weight after heating ⁇ weight before heating) / weight before heating. ]. As a result, Examples 1 to 4 were 0.3% by weight, Examples 5 to 12 were 0.4% by weight, Comparative Examples 1 to 10 were 0.3% by weight, and Comparative Examples 11 to 14 were 0.4% by weight. % By weight.
  • Examples 1 and 2 Into a 2 L round bottom flask, 1160 mL of deionized water and 173.4 g of 35% hydrochloric acid were added, 288.4 g of 20% aqueous solution of zirconium oxychloride octahydrate containing 0.18% hafnium was added, and oxalic acid dihydrate 119. 2 g was dissolved. While the solution was well stirred, 134.4 g of 75% phosphoric acid was added. This was heated up to 98 ° C. in 2 hours and stirred and refluxed for 12 hours. After cooling, the resulting precipitate was thoroughly washed with water and dried at 105 ° C. to obtain zirconium phosphate.
  • Examples 3 and 4 Into a 2 L round bottom flask, 1056 mL of deionized water and 185.2 g of 35% hydrochloric acid were added, 322.7 g of 20% aqueous solution of zirconium oxychloride octahydrate containing 0.18% hafnium was added, and then oxalic acid dihydrate 109. 2 g was dissolved. While this solution was well stirred, 160.8 g of 75% phosphoric acid was added. This was heated up to 98 ° C. in 2 hours and stirred and refluxed for 12 hours. After cooling, the resulting precipitate was thoroughly washed with water and dried at 105 ° C. to obtain zirconium phosphate.
  • the composition formula of this ⁇ -zirconium phosphate was measured, the composition formula was Zr 0.99 Hf 0.01 H 2.03 (PO 4 ) 2.01 ⁇ 0.05H 2 O The median diameter was 0.22 ⁇ m, the maximum particle diameter was 2.2 ⁇ m, and the D10 diameter was 0.15 ⁇ m. Details are shown in Table 2.
  • Examples 5 and 6 > 228.75 mL of deionized water was placed in a 500 mL round bottom flask and 202.7 g of 75% phosphoric acid was added. While stirring well, 68.55 g of titanyl sulfate was added and stirring was continued for 10 minutes. Then, it heated up to 100 degreeC in 1 hour, and stirred and refluxed for 44 hours. After cooling, the resulting precipitate was thoroughly washed with water and dried at 105 ° C. to obtain titanium phosphate. As a result of measuring the obtained titanium phosphate, it was confirmed to be ⁇ -titanium phosphate.
  • composition formula of this alpha titanium phosphate was TiH 2.02 (PO 4 ) 2.01 ⁇ 0.05H 2 O
  • the median diameter was 0.56 ⁇ m
  • the maximum particle diameter was 2.6 ⁇ m
  • the D10 diameter was 0.25 ⁇ m. Details are shown in Table 2.
  • Examples 7 and 8> Into a 500 mL round bottom flask, 228.75 mL of deionized water was added, and 202.7 g of 75% phosphoric acid was added. 68.55 g of titanyl sulfate was added while stirring well, and stirring was continued for 10 minutes. Then, it heated up to 85 degreeC in 1 hour, and stirred and refluxed for 20 hours. After cooling, the resulting precipitate was thoroughly washed with water and dried at 105 ° C. to obtain titanium phosphate. As a result of measuring the obtained titanium phosphate, it was confirmed to be ⁇ -titanium phosphate.
  • composition formula of this alpha titanium phosphate was TiH 2.02 (PO 4 ) 2.01 ⁇ 0.05H 2 O
  • the median diameter was 0.21 ⁇ m
  • the maximum particle diameter was 2.2 ⁇ m
  • the D10 diameter was 0.14 ⁇ m. Details are shown in Table 2.
  • Example 9 A mixture of ⁇ -zirconium phosphate synthesized in Example 1 and ⁇ -titanium phosphate synthesized in Example 5 in a ratio of 1: 1 was used as a deodorant.
  • Table 2 shows the median diameter, maximum particle diameter, and D10 diameter of this mixture.
  • Examples 11 and 12 A mixture of ⁇ -zirconium phosphate synthesized in Example 3 and ⁇ -titanium phosphate synthesized in Example 7 at a ratio of 1: 1 was used as a deodorant.
  • Table 2 shows the median diameter, maximum particle diameter, and D10 diameter of this mixture.
  • composition formula of this ⁇ -zirconium phosphate was measured, the composition formula was Zr 0.99 Hf 0.01 H 2.03 (PO 4 ) 2.01 ⁇ 0.05H 2 O
  • the median diameter was 2.1 ⁇ m, the maximum particle diameter was 10.0 ⁇ m, and the D10 diameter was 0.81 ⁇ m. Details are shown in Table 3.
  • composition formula of this alpha titanium phosphate was TiH 2.02 (PO 4 ) 2.01 ⁇ 0.05H 2 O
  • the median diameter was 1.05 ⁇ m
  • the maximum particle size was 5.8 ⁇ m
  • D10 was 0.51 ⁇ m. Details are shown in Table 3.
  • the deodorant used in the examples was excellent in spinnability and there was no worry about yarn breakage.
  • the fiber to which the deodorant of the example was added was excellent in deodorizing performance and maintained the deodorizing performance after washing.
  • the deodorant used in the comparative example was not good in spinning property or deodorizing performance, or both.
  • the weight loss rate due to alkali treatment was 13 to 18% by weight in all samples.
  • the deodorant of the present invention is excellent in spinnability because it is fine and has a narrow particle size distribution.
  • those kneaded into fibers have excellent ammonia deodorizing performance and high washing resistance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

A deodorant for fibers, the deodorant having, as a particle diameter, a median diameter of 0.2-0.7 μm and a maximum particle diameter of 5.0 μm or less, the D10 diameter being 0.1 μm or more, and the deodorant for fibers containing α-zirconium phosphate and/or α-titanium phosphate; and a deodorizing fiber containing the deodorant for fibers.

Description

微粒子状繊維用消臭剤Deodorant for fine fiber
 本発明は、微粒子状繊維用消臭剤に関し、消臭剤の技術分野及び繊維の技術分野に属する。 The present invention relates to a deodorant for fine fiber, and belongs to the technical field of deodorant and the technical field of fiber.
 近年、より快適な住環境が求められる中で、消臭シート、消臭カーテン、消臭フィルター、又、汗臭、加齢臭などに対する消臭機能を具備する、衣類、寝具などの「消臭性製品」も出回るようになってきた。
 特許文献1では、酸・塩基成分共に消臭でき、汗臭等の悪臭に対する消臭性が高く、洗浄が繰り返されても消臭性が低下しにくく、吸水性を有する繊維を与える消臭剤を得るために、スメクタイト、ケイ酸アルミニウム、バインダー樹脂、変性シリコーン化合物、酸化亜鉛及び水を有する液を用いた消臭システムを開示している。
In recent years, there has been a demand for a more comfortable living environment. Deodorizing sheets, deodorizing curtains, deodorizing filters, and clothes, bedding, etc. that have a deodorizing function against sweat odor, aging odor, etc. Sexual products have also been on the market.
In Patent Document 1, a deodorant that can deodorize both acid and base components, has a high deodorizing property against bad odors such as sweat odor, hardly deteriorates even if washing is repeated, and provides a fiber having water absorption. Therefore, a deodorizing system using a liquid containing smectite, aluminum silicate, binder resin, modified silicone compound, zinc oxide and water is disclosed.
 特許文献2及び3では、繊維に直接、抗菌剤や消臭剤を繊維に含有させる方法として、ポリマージオール及びジイソシアネートを出発物質とするポリウレタンからなる弾性糸であり、金属リン酸塩及び4級アンモニウム塩系抗菌剤を含有したポリウレタン弾性糸が開示されている。 In Patent Documents 2 and 3, as a method of directly incorporating fibers with an antibacterial agent or deodorant, the fibers are elastic yarns made of polyurethane starting from a polymer diol and diisocyanate, and include metal phosphate and quaternary ammonium. A polyurethane elastic yarn containing a salt-based antibacterial agent is disclosed.
特開2015-171449号公報Japanese Patent Laying-Open No. 2015-171449 特許第5413360号公報Japanese Patent No. 5413360 特許第5870928号公報Japanese Patent No. 5870928
 しかしながら、特許文献1に開示された消臭システムでは、後加工による方法であり、一時的に消臭性の機能を持つ製品は得られるものの、機能剤を付着させるためのバインダーにより風合いが損なわれたり、加工工程が長くなることによる生産性の低下や洗濯耐久性が低下するといった問題が生じている。
 又、特許文献2及び3に記載された消臭剤は繊維に練り込むと埋もれた部分は消臭効果が得られ難く、十分な効果を得るには添加量を多くする必要があり、添加量を増やすと凝集を生じたり、大粒子が混入し易くなったりするため、紡糸時の糸切れが発生し易くなるという欠点があった。
 本発明は、紡糸性が良好で、トリメチルアミン、アンモニアなどの塩基性ガスに対する消臭性能が高く、特にアンモニア消臭性能に優れる消臭剤を提供することを課題とする。
However, the deodorization system disclosed in Patent Document 1 is a method by post-processing, and although a product having a deodorizing function can be temporarily obtained, the texture is impaired by the binder for attaching the functional agent. In addition, there are problems such as a decrease in productivity and a decrease in washing durability due to a long processing step.
In addition, the deodorant described in Patent Documents 2 and 3 is difficult to obtain a deodorizing effect when it is kneaded into a fiber, and it is necessary to increase the amount of addition to obtain a sufficient effect. When the amount is increased, agglomeration occurs or large particles are likely to be mixed in, so that there is a drawback that yarn breakage is likely to occur during spinning.
An object of the present invention is to provide a deodorant having good spinnability, high deodorizing performance against basic gases such as trimethylamine and ammonia, and particularly excellent in ammonia deodorizing performance.
 前記課題を解決するための具体的手段は以下の通りである。
1.粒子径として、メジアン径が0.2~0.7μm、且つ最大粒子径が5.0μm以下で、D10径が0.1μm以上である、αリン酸ジルコニウム及び/又はαリン酸チタンを含む繊維用消臭剤。
Specific means for solving the above problems are as follows.
1. Fibers containing α-zirconium phosphate and / or α-titanium phosphate having a median diameter of 0.2 to 0.7 μm, a maximum particle diameter of 5.0 μm or less, and a D10 diameter of 0.1 μm or more. Deodorant for use.
2.前記αリン酸ジルコニウムが、下記式(1)で表される、上記1.に記載の繊維用消臭剤。
   Zr1-xHfxa(PO4b・nH2O   (1)
 式(1)において、a及びbは3b-a=4を満たす正数であり、bは2.0<b≦2.1であり、xは0≦x≦0.2の正数であり、nは0≦n≦2.0の正数である。
2. The α-zirconium phosphate is represented by the following formula (1): Deodorant for textiles described in 1.
Zr 1-x Hf x H a (PO 4) b · nH 2 O (1)
In the formula (1), a and b are positive numbers that satisfy 3b−a = 4, b is 2.0 <b ≦ 2.1, and x is a positive number that satisfies 0 ≦ x ≦ 0.2. , N is a positive number of 0 ≦ n ≦ 2.0.
3.前記αリン酸チタンが、下記式(2)で表される、上記1.に記載の繊維用消臭剤。
   TiHa(PO4b・nH2O   (2)
 式(2)において、a及びbは3b-a=4を満たす正数であり、bは2.0<b≦2.1であり、nは0≦n≦2.0の正数である。
3. The α titanium phosphate is represented by the following formula (2): Deodorant for textiles described in 1.
TiH a (PO 4 ) b · nH 2 O (2)
In the formula (2), a and b are positive numbers satisfying 3b−a = 4, b is 2.0 <b ≦ 2.1, and n is a positive number satisfying 0 ≦ n ≦ 2.0. .
4.αリン酸ジルコニウム及びαリン酸チタンの水分含有率が、1.0重量%以下である上記1.~3.のいずれか1つに記載の繊維用消臭剤。 4). 1. The water content of α-zirconium phosphate and α-titanium phosphate is 1.0% by weight or less. ~ 3. Deodorant for textiles as described in any one of these.
5.αリン酸ジルコニウム及びαリン酸チタンが、水溶液中で合成してなる、上記1.~4.のいずれか1つに記載の繊維用消臭剤。 5. α-zirconium phosphate and α-titanium phosphate are synthesized in an aqueous solution. ~ 4. Deodorant for textiles as described in any one of these.
6.繊維練り込み用である上記1.~5.のいずれか1つに記載の繊維用消臭剤。 6). The above 1. for kneading fibers. ~ 5. Deodorant for textiles as described in any one of these.
7.上記1.~6.のいずれか1つに記載の繊維用消臭剤を含む消臭繊維。 7. Above 1. ~ 6. Deodorant fiber containing the fiber deodorizer as described in any one of these.
8.前記繊維が、ポリエステル、ポリウレタン、ナイロン、レーヨン、アクリル樹脂、ビニロン及びポリプロピレンよりなる群から選択される少なくとも1種である、上記7.に記載の消臭繊維。 8). 6. The fiber is at least one selected from the group consisting of polyester, polyurethane, nylon, rayon, acrylic resin, vinylon and polypropylene. Deodorant fiber as described in 1.
 本発明によれば、紡糸性が良好で、トリメチルアミン、アンモニアなどの塩基性ガスに対する消臭性能が高く、特にアンモニア消臭性能に優れる消臭剤を提供することができる。 According to the present invention, it is possible to provide a deodorant having good spinnability, high deodorizing performance against basic gases such as trimethylamine and ammonia, and particularly excellent in ammonia deodorizing performance.
 本発明は、粒子径として、メジアン径が0.2~0.7μm、且つ最大粒子径が5.0μm以下で、D10径が0.1μm以上である、αリン酸ジルコニウム及び/又はαリン酸チタンを含む繊維練り込み用消臭剤に関する。
 以下、本発明の実施様態について詳細に説明する。
 なお、「%」は特に明記しない限り「重量%」を意味し、「部」は「重量部」、「ppm」は「重量ppm」を意味する。又、本実施様態において、数値範囲を表す「下限~上限」の記載は、「下限以上、上限以下」を表し、「上限~下限」の記載は、「上限以下、下限以上」を表す。すなわち、上限及び下限を含む数値範囲を表す。更に、本実施様態においては、後述する好ましい態様の2以上の組み合わせも又、好ましい態様である。
The present invention provides α-zirconium phosphate and / or α-phosphate having a median diameter of 0.2 to 0.7 μm, a maximum particle diameter of 5.0 μm or less, and a D10 diameter of 0.1 μm or more. The present invention relates to a deodorizing agent for kneading fibers containing titanium.
Hereinafter, embodiments of the present invention will be described in detail.
“%” Means “% by weight” unless otherwise specified, “parts” means “parts by weight”, and “ppm” means “weight ppm”. In the present embodiment, the description of “lower limit to upper limit” representing the numerical range represents “lower limit to upper limit”, and the description of “upper limit to lower limit” represents “upper limit, lower limit”. That is, it represents a numerical range including an upper limit and a lower limit. Further, in the present embodiment, a combination of two or more of the preferable modes described later is also a preferable mode.
1.消臭剤の粒子径
 本実施様態に用いる消臭剤は、αリン酸ジルコニウム及び/又はαリン酸チタンからなり、その粒子径はメジアン径が0.2~0.7μm、且つ最大粒子径が5.0μm以下で、D10径が0.1μm以上である。
1. Deodorant Particle Size The deodorant used in the present embodiment is made of α zirconium phosphate and / or α titanium phosphate, and the particle size is 0.2 to 0.7 μm in median diameter and the maximum particle size is 5.0 μm or less and D10 diameter is 0.1 μm or more.
 本実施様態に用いる消臭剤の粒子径の調製方法は限定されないが、目的の粒度分布を得るためには水溶液中で合成することが好ましい。水溶液中で合成されると合成時に均一にしやすく、シャープな粒度分布を得やすい。一方、粉砕で粒子径を調製すると、微粉や大粒子が混入し粒度分布の幅が広くなり、紡糸時の糸切れの原因となりやすくなるため、好ましくない。 The method for adjusting the particle size of the deodorant used in the present embodiment is not limited, but it is preferably synthesized in an aqueous solution in order to obtain the desired particle size distribution. When synthesized in an aqueous solution, it is easy to make it uniform during synthesis and to obtain a sharp particle size distribution. On the other hand, adjusting the particle size by pulverization is not preferable because fine powders and large particles are mixed therein and the width of the particle size distribution is widened, which tends to cause yarn breakage during spinning.
 なお、本実施様態における粒子径とは、レーザー回折粒度分布計で測定し、結果を体積基準で解析した値を示す。 In addition, the particle diameter in this embodiment indicates a value obtained by measuring with a laser diffraction particle size distribution analyzer and analyzing the result on a volume basis.
 本実施様態に用いる消臭剤のメジアン径は0.2~0.7μmである。好ましくは0.2~0.6μmである。メジアン径が1μm付近でも紡糸性には問題は少ないが、同量の消臭剤を繊維に練り込んだ際、粒径が細かい程粒子数が多くなり、消臭効果が出やすい。又、メジアン径が0.2μm以上であると、粒子が凝集しにくくなるので、紡糸が容易となり、紡糸時の糸切れも抑制できる。 The median diameter of the deodorant used in this embodiment is 0.2 to 0.7 μm. The thickness is preferably 0.2 to 0.6 μm. Even if the median diameter is around 1 μm, there are few problems with spinnability, but when the same amount of deodorant is kneaded into the fiber, the finer the particle size, the larger the number of particles, and the better the deodorizing effect. Further, when the median diameter is 0.2 μm or more, the particles are less likely to aggregate, so that spinning becomes easy and yarn breakage during spinning can be suppressed.
 本実施様態で用いる消臭剤の最大粒子径は5.0μm以下である。好ましくは4.0μm以下であり、より好ましくは3.0μm以下である。最大径が5.0μm以下であると、紡糸時の糸切れを抑制できるため、好ましい。又、下限値は、0.7μm以上であることが好ましい。 The maximum particle size of the deodorant used in this embodiment is 5.0 μm or less. Preferably it is 4.0 micrometers or less, More preferably, it is 3.0 micrometers or less. A maximum diameter of 5.0 μm or less is preferable because yarn breakage during spinning can be suppressed. Moreover, it is preferable that a lower limit is 0.7 micrometer or more.
 本実施様態に用いる消臭剤のD10径は、0.1μm以上である。好ましくは0.15μm以上であり、より好ましくは0.2μm以上である。D10径が0.1μm以上であると、粒子が凝集しにくくなるので紡糸が容易となり、糸切れも抑制できる。又、D10径の好ましい上限値は0.4μm以下である。D10径が0.4μm以下であると、メジアン径が0.7μm以下の粒子が得られやすい。 The D10 diameter of the deodorant used in this embodiment is 0.1 μm or more. Preferably it is 0.15 micrometer or more, More preferably, it is 0.2 micrometer or more. When the D10 diameter is 0.1 μm or more, the particles are less likely to aggregate, so that spinning becomes easy and yarn breakage can be suppressed. Moreover, the preferable upper limit of D10 diameter is 0.4 micrometer or less. When the D10 diameter is 0.4 μm or less, particles having a median diameter of 0.7 μm or less are easily obtained.
2.消臭剤の種類
 本実施様態は、前記した特定の粒子径を有するαリン酸ジルコニウム及び/又はαリン酸チタンからなる繊維用消臭剤である。
 以下、αリン酸ジルコニウム及びαリン酸チタンについて説明する。
2. Type of deodorant The present embodiment is a fiber deodorant comprising α-zirconium phosphate and / or α-titanium phosphate having the specific particle diameter described above.
Hereinafter, α zirconium phosphate and α titanium phosphate will be described.
2-1.αリン酸ジルコニウム
 本実施様態で使用するαリン酸ジルコニウムとしては、前記した粒子径を有するものであれば種々の化合物が使用可能である。
 本実施様態で好ましく使用するαリン酸ジルコニウムとしては、例えば、下記式(1)で表される化合物であり、単位重量当たりの理論陽イオン交換容量は6.7meq/gである。消臭性能の観点から、下記式(1)で表される化合物の陽イオン交換量は、6.0meq/g以上であることが好ましく、6.4meq/g以上であることがより好ましい。
   Zr1-xHfxa(PO4b・nH2O   (1)
 式(1)において、a及びbは3b-a=4を満たす正数であり、bは2.0<b≦2.1であり、xは0≦x≦0.2の正数であり、nは0≦n≦2.0の正数である。
2-1. α-zirconium phosphate As the α-zirconium phosphate used in the present embodiment, various compounds can be used as long as they have the above-described particle diameter.
The α-zirconium phosphate preferably used in the present embodiment is, for example, a compound represented by the following formula (1), and the theoretical cation exchange capacity per unit weight is 6.7 meq / g. From the viewpoint of deodorizing performance, the cation exchange amount of the compound represented by the following formula (1) is preferably 6.0 meq / g or more, and more preferably 6.4 meq / g or more.
Zr 1-x Hf x H a (PO 4) b · nH 2 O (1)
In the formula (1), a and b are positive numbers that satisfy 3b−a = 4, b is 2.0 <b ≦ 2.1, and x is a positive number that satisfies 0 ≦ x ≦ 0.2. , N is a positive number of 0 ≦ n ≦ 2.0.
 αリン酸ジルコニウムの前記式(1)において、ハフニウム(Hf)は原料ジルコニウム化合物に由来するものである。式(1)のxは0<x<1の正数である。本実施様態において、好ましくは0<x≦0.2であり、より好ましくは0.005≦x≦0.1であり、更に好ましくは0.005≦x<0.03である。本実施様態において、ハフニウムの含有量が多くなるとイオン交換性能は向上するが、ハフニウムには放射性の同位体が存在するので、電子部品に使用する場合は、xの値を抑えた方が好ましい。
 式(1)におけるnは、好ましくは0.2以下であり、より好ましくは0.1以下であり、更に好ましくは0.05以下である。nの値が2.0以下とすることで、紡糸の際の樹脂溶融時に結晶水が脱離しやすくなり、発泡や糸切れを防止することができる。
In the above formula (1) of α-zirconium phosphate, hafnium (Hf) is derived from the starting zirconium compound. X in the formula (1) is a positive number of 0 <x <1. In the present embodiment, preferably 0 <x ≦ 0.2, more preferably 0.005 ≦ x ≦ 0.1, and still more preferably 0.005 ≦ x <0.03. In this embodiment, the ion exchange performance improves as the hafnium content increases. However, since hafnium contains a radioactive isotope, it is preferable to suppress the value of x when used for electronic components.
N in Formula (1) is preferably 0.2 or less, more preferably 0.1 or less, and even more preferably 0.05 or less. When the value of n is 2.0 or less, water of crystallization is easily detached when the resin is melted during spinning, and foaming and yarn breakage can be prevented.
 本実施様態で使用するαリン酸ジルコニウムの製造方法は、従来の技術を応用することが可能であり、原料や設備などに制約はない。例えば、特許第5545328号公報及び特許第5821258号公報に記載された方法等を挙げることができる。
 αリン酸ジルコニウムの製造方法としては、水溶液中で原料化合物を反応させる方法が、均一な粒子が得られやすいため、好ましい。
 例えば、ジルコニウム化合物の水溶液とリン酸及び/又はその塩〔以下、「リン酸(塩)」という〕を含有する水溶液とを混合して沈殿物を生成させ、熟成して結晶化させる方法等が挙げられる。
A conventional technique can be applied to the method for producing α-zirconium phosphate used in the present embodiment, and there are no restrictions on raw materials and facilities. For example, the method etc. which were described in the patent 5545328 and the patent 582258 can be mentioned.
As a method for producing α-zirconium phosphate, a method of reacting a raw material compound in an aqueous solution is preferable because uniform particles can be easily obtained.
For example, a method in which an aqueous solution of a zirconium compound and an aqueous solution containing phosphoric acid and / or a salt thereof (hereinafter referred to as “phosphoric acid (salt)”) are mixed to form a precipitate, which is aged and crystallized, etc. Can be mentioned.
 製造原料のジルコニウム化合物としては、硝酸ジルコニウム、酢酸ジルコニウム、硫酸ジルコニウム、炭酸ジルコニウム、塩基性硫酸ジルコニウム、オキシ硫酸ジルコニウム、およびオキシ塩化ジルコニウム等が挙げられ、硝酸ジルコニウム、酢酸ジルコニウム、硫酸ジルコニウム、炭酸ジルコニウム、塩基性硫酸ジルコニウム、オキシ硫酸ジルコニウム及びオキシ塩化ジルコニウムが好ましく、反応性や経済性等考慮すると、より好ましくはオキシ塩化ジルコニウムである。 Examples of the raw material zirconium compound include zirconium nitrate, zirconium acetate, zirconium sulfate, zirconium carbonate, basic zirconium sulfate, zirconium oxysulfate, and zirconium oxychloride. Zirconium nitrate, zirconium acetate, zirconium sulfate, zirconium carbonate, Basic zirconium sulfate, zirconium oxysulfate and zirconium oxychloride are preferable, and zirconium oxychloride is more preferable in consideration of reactivity and economy.
 製造原料のリン酸(塩)としては、リン酸、リン酸ナトリウム、リン酸カリウム及びリン酸アンモニウム等が挙げられ、リン酸が好ましく、より好ましくは重量濃度で75%~85%程度の高濃度のリン酸である。
 リン酸(塩)の反応割合は、ジルコニウム化合物に対する仕込みのモル比率で、2以上であり、好ましくは2.05以上であり、より好ましくは2.1以上である。
 リン酸(塩)の反応割合は、ジルコニウム化合物に対して大過剰でも良いが、上清の電導度を考えると、上記モル比率で、3以下であり、2.9以下が好ましく、2.6以下がより好ましい。
Examples of the raw material phosphoric acid (salt) include phosphoric acid, sodium phosphate, potassium phosphate, and ammonium phosphate. Phosphoric acid is preferable, and a high concentration of about 75% to 85% by weight is more preferable. Of phosphoric acid.
The reaction ratio of phosphoric acid (salt) is 2 or more, preferably 2.05 or more, and more preferably 2.1 or more, in terms of the molar ratio charged to the zirconium compound.
The reaction ratio of phosphoric acid (salt) may be a large excess with respect to the zirconium compound, but considering the conductivity of the supernatant, the molar ratio is 3 or less, preferably 2.9 or less, and 2.6. The following is more preferable.
 αリン酸ジルコニウムの製造においては、シュウ酸化合物を添加することが、化合物の製造がより速くなり、原料の無駄が少なく効率的に製造できるため好ましい。
 この場合のシュウ酸化合物としては、シュウ酸2水和物、シュウ酸アンモニウム及びシュウ酸水素アンモニウム等が挙げられ、シュウ酸2水和物が好ましい。
 シュウ酸の反応割合は、ジルコニウム化合物に対するモル比率で、2.5~3.5であり、より好ましく2.7~3.2であり、さらに好ましくは2.8~3.0である。本実施様態において、この比であるとαリン酸ジルコニウムの製造が容易となるので好ましい。
In the production of α-zirconium phosphate, it is preferable to add an oxalic acid compound because the production of the compound becomes faster and the raw material can be efficiently produced with less waste.
Examples of the oxalic acid compound in this case include oxalic acid dihydrate, ammonium oxalate and ammonium hydrogen oxalate, and oxalic acid dihydrate is preferred.
The reaction ratio of oxalic acid is 2.5 to 3.5, more preferably 2.7 to 3.2, and even more preferably 2.8 to 3.0, as a molar ratio to the zirconium compound. In this embodiment, this ratio is preferable because the production of α-zirconium phosphate is facilitated.
 ジルコニウム化合物の水溶液とリン酸(塩)を含有する水溶液とを混合した後、熟成を行うが、当該熟成は、常温で行っても良いが、熟成を早くするために90℃以上の湿式常圧で行うことが好ましく、常圧よりも高い圧力雰囲気で100℃を超える条件を水熱条件と呼ぶが、この条件で合成を行っても良い。水熱条件でαリン酸ジルコニウムを製造する場合は、130℃以下で合成することが製造コストの面から好ましい。 After mixing an aqueous solution of a zirconium compound and an aqueous solution containing phosphoric acid (salt), ripening is performed. The ripening may be performed at room temperature, but in order to accelerate the ripening, a wet normal pressure of 90 ° C. or higher. The condition exceeding 100 ° C. in a pressure atmosphere higher than normal pressure is referred to as a hydrothermal condition, but the synthesis may be performed under this condition. When producing α-zirconium phosphate under hydrothermal conditions, it is preferable to synthesize at 130 ° C. or less from the viewpoint of production cost.
 αリン酸ジルコニウムの製造時間は、αリン酸ジルコニウムが合成できる時間であれば如何様な時間でも良い。例えば、リン酸(塩)とジルコニウム化合物とを混合させて沈殿を生じさせた後、熟成させることにより、αリン酸ジルコニウムを得ることができる。当該熟成の時間は、熟成温度により異なる。
 例えば、90℃での熟成では、4時間以上が好ましい。なお、熟成を24時間以上行ってもαリン酸ジルコニウムの含有率は頭打ちの傾向となる。
 合成後のαリン酸ジルコニウムは、さらに濾別し、よく水洗後、乾燥させることによりαリン酸ジルコニウムを得ることができる。
The production time of α-zirconium phosphate may be any time as long as α-zirconium phosphate can be synthesized. For example, alpha zirconium phosphate can be obtained by mixing phosphoric acid (salt) and a zirconium compound to cause precipitation and then aging. The aging time varies depending on the aging temperature.
For example, in aging at 90 ° C., 4 hours or more is preferable. In addition, even if it age | cure | ripens for 24 hours or more, the content rate of (alpha) zirconium phosphate will become the tendency of a peak.
The synthesized α-zirconium phosphate can be further filtered off, washed well with water, and dried to obtain α-zirconium phosphate.
2-2.αリン酸チタン
 本実施様態で使用するαリン酸チタンとしては、前記した粒子径を有するものであれば種々の化合物が使用可能である。
 本実施様態で好ましく使用するαリン酸チタンとしては、例えば、下記式(2)で表される化合物であり、単位重量当たりの理論陽イオン交換容量は7.7meq/gである。消臭性能の観点から、下記式(2)で表される化合物の陽イオン交換量は、6.2meq/g以上であるものが好ましく、6.7meq/g以上であることがより好ましい。
   TiHa(PO4)b・nH2O   (2)
式(2)において、a及びbは3b-a=4を満たす正数であり、bは2.0<b≦2.1であり、nは0≦n≦2.0の正数である。
2-2. [alpha] Titanium Phosphate Various compounds can be used as the [alpha] titanium phosphate used in the present embodiment as long as it has the above-described particle diameter.
The α-titanium phosphate preferably used in the present embodiment is, for example, a compound represented by the following formula (2), and the theoretical cation exchange capacity per unit weight is 7.7 meq / g. From the viewpoint of deodorizing performance, the cation exchange amount of the compound represented by the following formula (2) is preferably 6.2 meq / g or more, and more preferably 6.7 meq / g or more.
TiH a (PO 4) b · nH 2 O (2)
In the formula (2), a and b are positive numbers satisfying 3b−a = 4, b is 2.0 <b ≦ 2.1, and n is a positive number satisfying 0 ≦ n ≦ 2.0. .
 αリン酸チタンの前記式(2)におけるnは、好ましくは0.2以下であり、より好ましくは0.1以下であり、更に好ましくは0.05以下である。nの値が2.0以下とすることで、紡糸の際の樹脂溶融時に結晶水が脱離し、発泡や糸切れことを防止することができる。 N in the formula (2) of α-titanium phosphate is preferably 0.2 or less, more preferably 0.1 or less, and even more preferably 0.05 or less. By setting the value of n to 2.0 or less, it is possible to prevent crystallization water from detaching when the resin is melted during spinning, and to prevent foaming and yarn breakage.
 αリン酸チタンの製造方法は、従来の技術を応用することが可能であり、原料や設備などに制約はない。
 αリン酸チタンの製造方法としては、水溶液中で原料化合物を反応させる方法が、均一な粒子が得られやすいため、好ましい。
 例えば、チタン化合物の水溶液にリン酸を加えて沈殿物を生成させ、結晶化させることにより製造できる。
 例えば、チタン化合物の水溶液とリン酸(塩)を含有する水溶液とを混合して沈殿物を生成させ、熟成して結晶化させる方法等が挙げられる。
The production method of α-titanium phosphate can apply conventional techniques, and there are no restrictions on raw materials and equipment.
As a method for producing α-titanium phosphate, a method of reacting a raw material compound in an aqueous solution is preferable because uniform particles are easily obtained.
For example, it can be produced by adding phosphoric acid to an aqueous solution of a titanium compound to form a precipitate and crystallizing it.
For example, a method in which an aqueous solution of a titanium compound and an aqueous solution containing phosphoric acid (salt) are mixed to form a precipitate, and aged and crystallized can be used.
 製造原料のチタン化合物としては、硫酸チタニル等が挙げられる。
 製造原料のリン酸(塩)としては、前記と同様の化合物が挙げられる。
Examples of the raw material titanium compound include titanyl sulfate.
Examples of the phosphoric acid (salt) as a raw material for production include the same compounds as described above.
3.消臭剤中の水分含有率
 本実施様態に用いる消臭剤の水分含有率は1.0重量%以下であることが好ましい。より好ましくは0.7重量%以下である。水分含有率を1.0重量%以下とすることで、マスターバッチの作製時に樹脂の発泡や加水分解を防止することができ、好ましい。
3. Water content in deodorant The water content of the deodorant used in the present embodiment is preferably 1.0% by weight or less. More preferably, it is 0.7 weight% or less. By setting the water content to 1.0% by weight or less, it is possible to prevent foaming and hydrolysis of the resin during production of the masterbatch, which is preferable.
4.消臭性繊維
 本実施様態は、繊維用消臭剤であり、当該消臭剤を使用して消臭性繊維を製造する方法としては、常法に従えば良い。
 例えば、本実施様態の消臭剤を繊維に練り込み紡糸する方法や、紡糸した繊維に消臭剤溶液を塗工する方法等が挙げられる。
4). Deodorant Fiber The present embodiment is a fiber deodorant, and a method for producing a deodorant fiber using the deodorant may be a conventional method.
For example, a method of kneading the deodorant of this embodiment into a fiber and spinning, a method of applying a deodorant solution to the spun fiber, and the like can be mentioned.
 使用できる繊維用樹脂としては、公知の化学繊維はいずれも使用することができる。この好ましい具体例としては、例えばポリエステル、ポリウレタン、ナイロン、レーヨン、アクリル、ビニロン及びポリプロピレン等が挙げられる。これらの樹脂は、単独重合体であっても共重合体であってもよい。共重合体の場合、各共重合成分の重合割合に特に制限はない。 As the fiber resin that can be used, any known chemical fiber can be used. Specific examples of preferable examples include polyester, polyurethane, nylon, rayon, acrylic, vinylon, and polypropylene. These resins may be homopolymers or copolymers. In the case of a copolymer, there is no particular limitation on the polymerization ratio of each copolymer component.
 本実施様態の消臭剤は、繊維練り込み用消臭剤として好ましく使用することができる。
 この場合における消臭性繊維の具体的な製造方法としては、溶融した液状繊維用樹脂又は溶解した繊維用樹脂溶液に本実施様態の消臭剤を練り込み、これを紡糸する方法等が挙げられる。
The deodorant of this embodiment can be preferably used as a deodorizer for kneading fibers.
A specific method for producing the deodorant fiber in this case includes a method of kneading the deodorant of this embodiment into a molten liquid fiber resin or a dissolved fiber resin solution, and spinning it. .
 繊維用樹脂に含有させる本実施様態の消臭剤の割合は、特に限定はされない。
 一般に含有量を増やせば消臭性を強力に発揮させ、長期間持続させることができるが、ある程度以上に含有させても消臭効果に大きな差が生じないこと、あるいは樹脂の強度が低下することがあるので、好ましくは樹脂100重量部当たり0.1~3.0重量部であり、より好ましくは0.5~2.0重量部である。
The ratio of the deodorant of this embodiment contained in the fiber resin is not particularly limited.
In general, if the content is increased, the deodorizing ability can be exerted strongly and can be sustained for a long time, but even if it is added to a certain extent, there is no significant difference in the deodorizing effect or the strength of the resin is reduced. Therefore, the amount is preferably 0.1 to 3.0 parts by weight, more preferably 0.5 to 2.0 parts by weight per 100 parts by weight of the resin.
 本実施様態の消臭剤を使用した消臭性繊維は、消臭性を必要とする各種の分野で利用可能であり、例えば肌着、ストッキング、靴下、布団、布団カバー、座布団、毛布、じゅうたん、カーテン、ソファー、カーシート、エアーフィルター及び介護用衣類等、多くの繊維製品に使用できる。 The deodorant fiber using the deodorant of this embodiment can be used in various fields that require deodorization, such as underwear, stockings, socks, futons, duvet covers, cushions, blankets, carpets, It can be used for many textile products such as curtains, sofas, car seats, air filters and nursing clothes.
 次に、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明は、以下の実施例に限定されるものではない。消臭剤の物性及び消臭性能は、次の方法により測定した。 Next, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to the following examples. The physical properties and deodorizing performance of the deodorant were measured by the following methods.
(1)粒子径:メジアン径、最大粒子径、D10径
 消臭剤の粒子径測定は、(株)堀場製作所製レーザー回折式粒度分布測定装置「LA-950」で測定し、結果を体積基準で解析した。
 測定条件は、水100重量%に対して1.0重量%の消臭剤を添加した消臭剤分散液を超音波で分散させ、屈折率2.4で測定した。
(1) Particle size: median size, maximum particle size, D10 size The particle size of the deodorant was measured with a laser diffraction particle size distribution analyzer “LA-950” manufactured by Horiba, Ltd., and the results were volume-based. We analyzed with.
The measurement conditions were that a deodorant dispersion liquid in which 1.0% by weight of a deodorant was added to 100% by weight of water was dispersed with an ultrasonic wave, and measurement was performed at a refractive index of 2.4.
(2)紡糸性試験
 消臭剤を、ポリエステル樹脂(ユニチカ製MA2101M)100重量%に対して10重量%配合したマスターバッチを作製した。そして、このマスターバッチを、消臭剤を含まないポリエステル樹脂ペレットと混合し、各添加量(重量%)となる様に調整した。これを、マルチフィラメント紡糸機を用いて、紡糸温度275℃、紡糸速度500m/分で2時間紡糸し、伸度が280~320%になるように120℃で延伸して、消臭剤含有ポリエステル繊維を得た。
 この際、油剤には通常のポリエステル繊維紡糸用の水溶性油剤(竹本油脂(株)製デリオン6033を水で10倍希釈したもの)を使用した。
 2時間連続紡糸を行い、紡糸性を次の判定方法に従い、評価した。糸キレ率が小さいほど、紡糸性に優れる。
  ○○:糸切れ率が3.0%未満
   ○:糸切れ率が3.0%以上6.0%未満
   △:糸切れ率が6.0%以上10.0%未満
   ×:糸切れ率が10.0%以上
   -:評価不可
(2) Spinnability test A master batch was prepared by blending 10% by weight of a deodorant with 100% by weight of a polyester resin (MA2101M manufactured by Unitika). And this masterbatch was mixed with the polyester resin pellet which does not contain a deodorizer, and it adjusted so that it might become each addition amount (weight%). Using a multifilament spinning machine, this was spun at a spinning temperature of 275 ° C. and a spinning speed of 500 m / min for 2 hours, and stretched at 120 ° C. so that the elongation was 280 to 320%. Fiber was obtained.
At this time, a normal water-soluble oil agent for spinning polyester fibers (Delion 6033 manufactured by Takemoto Yushi Co., Ltd. diluted 10 times with water) was used as the oil agent.
Spinning was performed continuously for 2 hours, and spinnability was evaluated according to the following judgment method. The smaller the yarn cut rate, the better the spinnability.
○: Yarn breakage rate less than 3.0% ○: Yarn breakage rate of 3.0% or more and less than 6.0% Δ: Yarn breakage rate of 6.0% or more and less than 10.0% ×: Yarn breakage rate 10.0% or more-: Evaluation not possible
(3)消臭性試験1
 消臭性試験は、消臭加工繊維製品認証基準(制定者:社団法人繊維評価技術協議会 製品認証部、制定日:平成14年9月1日)に準拠し、以下のように機器試験により臭気成分の消臭性評価を行なった。なお、社団法人繊維評価技術協議会で、該機器分析試験による各臭気成分の減少率について「消臭効果有り」とする合格基準を、表1に示す。
〇検知管法
1.上記(2)で作製した延伸糸を筒編みしてアルカリ減量処理(4重量%水酸化ナトリウム水溶液中で1時間煮沸、浴比=1/40)を行ったものを10cm×10cmに調整し、テドラーバッグに入れた。
2.表1に示す所定量の試験ガスを注入し、2時間後の残存ガス濃度(ppm)を成分対応検知管(ガステック社製)で測定し、残存ガス濃度の減少率を算出し、消臭率として表記した。測定はn=3の平均値で求めた。なお、ガス充填量は3L、希釈ガスは乾燥空気又は窒素ガスを使用した。
(3) Deodorization test 1
The deodorization test is based on the deodorant processed fiber product certification standard (established by: Japan Textile Evaluation Technology Association, Product Certification Department, established date: September 1, 2002), and by equipment test as follows: The deodorant evaluation of the odor component was performed. In addition, Table 1 shows the acceptance criteria for “deodorizing effect” for the rate of reduction of each odor component by the instrumental analysis test at the Japan Fiber Evaluation Technology Council.
〇 Detector tube method The stretched yarn produced in the above (2) was knitted and subjected to alkali weight loss treatment (boiling in a 4% by weight aqueous sodium hydroxide solution for 1 hour, bath ratio = 1/40) to 10 cm × 10 cm, Placed in a tedlar bag.
2. A predetermined amount of the test gas shown in Table 1 was injected, and the residual gas concentration (ppm) after 2 hours was measured with a component-compatible detector tube (manufactured by GASTEC) to calculate the rate of decrease in the residual gas concentration, and deodorizing Expressed as a rate. The measurement was obtained with an average value of n = 3. The gas filling amount was 3 L, and the dilution gas was dry air or nitrogen gas.
(4)消臭性試験2(耐久性試験)
 上記(3)の1でアルカリ減量処理した筒編み繊維を洗濯10回行った後に、上記(3)の2に記載の検知管法で測定した。
(4) Deodorization test 2 (Durability test)
The tube knitted fiber subjected to the alkali weight reduction treatment in 1 of (3) was washed 10 times, and then measured by the detection tube method described in 2 of (3) above.
(5)水分含有率
 水分含有率は、実施例及び比較例で得られた消臭剤を、150℃で2時間加熱し、[(加熱後の重量-加熱前の重量)/加熱前の重量]より算出した。
 その結果、実施例1~4は0.3重量%、実施例5~12は0.4重量%であり、比較例1~10は0.3重量%、比較例11~14は0.4重量%であった。
(5) Moisture content The moisture content was determined by heating the deodorizers obtained in Examples and Comparative Examples at 150 ° C. for 2 hours, [(weight after heating−weight before heating) / weight before heating. ].
As a result, Examples 1 to 4 were 0.3% by weight, Examples 5 to 12 were 0.4% by weight, Comparative Examples 1 to 10 were 0.3% by weight, and Comparative Examples 11 to 14 were 0.4% by weight. % By weight.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例1、2>
 2L丸底フラスコに脱イオン水1160mL及び35%塩酸173.4gを入れ、ハフニウム0.18%含有オキシ塩化ジルコニウム8水和物20%水溶液288.4gを追加後、シュウ酸2水和物119.2gを溶解させた。この溶液をよく撹拌しながら、75%リン酸134.4gを加えた。これを2時間で98℃に昇温し、12時間撹拌還流した。
冷却後、得られた沈殿物をよく水洗浄した後、105℃で乾燥することにより、リン酸ジルコニウムを得た。これをロータースピードミル(フリッチュ社製、P-14(1997年製):16000rpm、篩い目80μm)で解砕した。この得られたリン酸ジルコニウムについて測定した結果、αリン酸ジルコニウムであることを確認した。
 このαリン酸ジルコニウムの組成式などを測定したところ、組成式は、
   Zr0.99Hf0.012.03(PO42.01・0.05H2
であり、メジアン径0.51μm、最大粒子径2.5μm、D10径は0.22μmであった。詳細を表2に示す。
<Examples 1 and 2>
Into a 2 L round bottom flask, 1160 mL of deionized water and 173.4 g of 35% hydrochloric acid were added, 288.4 g of 20% aqueous solution of zirconium oxychloride octahydrate containing 0.18% hafnium was added, and oxalic acid dihydrate 119. 2 g was dissolved. While the solution was well stirred, 134.4 g of 75% phosphoric acid was added. This was heated up to 98 ° C. in 2 hours and stirred and refluxed for 12 hours.
After cooling, the resulting precipitate was thoroughly washed with water and dried at 105 ° C. to obtain zirconium phosphate. This was pulverized with a rotor speed mill (Fritsch, P-14 (1997): 16000 rpm, sieving 80 μm). As a result of measuring the obtained zirconium phosphate, it was confirmed to be α-zirconium phosphate.
When the composition formula of this α-zirconium phosphate was measured, the composition formula was
Zr 0.99 Hf 0.01 H 2.03 (PO 4 ) 2.01・ 0.05H 2 O
The median diameter was 0.51 μm, the maximum particle diameter was 2.5 μm, and the D10 diameter was 0.22 μm. Details are shown in Table 2.
<実施例3、4>
 2L丸底フラスコに脱イオン水1056mL及び35%塩酸185.2gを入れ、ハフニウム0.18%含有オキシ塩化ジルコニウム8水和物20%水溶液322.7gを追加後、シュウ酸2水和物109.2gを溶解させた。この溶液をよく撹拌しながら、75%リン酸160.8gを加えた。これを2時間で98℃に昇温し、12時間撹拌還流した。
冷却後、得られた沈殿物をよく水洗浄した後、105℃で乾燥することにより、リン酸ジルコニウムを得た。この得られたリン酸ジルコニウムについて測定した結果、αリン酸ジルコニウムであることを確認した。
 このαリン酸ジルコニウムの組成式などを測定したところ、組成式は、
   Zr0.99Hf0.012.03(PO42.01・0.05H2
であり、メジアン径0.22μm、最大粒子径2.2μm、D10径は0.15μmであった。詳細を表2に示す。
<Examples 3 and 4>
Into a 2 L round bottom flask, 1056 mL of deionized water and 185.2 g of 35% hydrochloric acid were added, 322.7 g of 20% aqueous solution of zirconium oxychloride octahydrate containing 0.18% hafnium was added, and then oxalic acid dihydrate 109. 2 g was dissolved. While this solution was well stirred, 160.8 g of 75% phosphoric acid was added. This was heated up to 98 ° C. in 2 hours and stirred and refluxed for 12 hours.
After cooling, the resulting precipitate was thoroughly washed with water and dried at 105 ° C. to obtain zirconium phosphate. As a result of measuring the obtained zirconium phosphate, it was confirmed to be α-zirconium phosphate.
When the composition formula of this α-zirconium phosphate was measured, the composition formula was
Zr 0.99 Hf 0.01 H 2.03 (PO 4 ) 2.01・ 0.05H 2 O
The median diameter was 0.22 μm, the maximum particle diameter was 2.2 μm, and the D10 diameter was 0.15 μm. Details are shown in Table 2.
<実施例5、6>
 500mL丸底フラスコに脱イオン水228.75mLを入れ、75%リン酸202.7gを加えた。よく撹拌しながら硫酸チタニル68.55gを投入し、10分間撹拌を継続した。その後、100℃まで1時間で昇温し、44時間撹拌還流した。冷却後、得られた沈殿物をよく水洗浄した後、105℃で乾燥することにより、リン酸チタンを得た。この得られたリン酸チタンについて測定した結果、αリン酸チタンであることを確認した。
 このαリン酸チタンの組成式などを測定したところ、組成式は、
   TiH2.02(PO42.01・0.05H2
であり、メジアン径0.56μm、最大粒子径2.6μm、D10径は0.25μmであった。詳細を表2に示す。
<Examples 5 and 6>
228.75 mL of deionized water was placed in a 500 mL round bottom flask and 202.7 g of 75% phosphoric acid was added. While stirring well, 68.55 g of titanyl sulfate was added and stirring was continued for 10 minutes. Then, it heated up to 100 degreeC in 1 hour, and stirred and refluxed for 44 hours. After cooling, the resulting precipitate was thoroughly washed with water and dried at 105 ° C. to obtain titanium phosphate. As a result of measuring the obtained titanium phosphate, it was confirmed to be α-titanium phosphate.
When the composition formula of this alpha titanium phosphate was measured, the composition formula was
TiH 2.02 (PO 4 ) 2.01・ 0.05H 2 O
The median diameter was 0.56 μm, the maximum particle diameter was 2.6 μm, and the D10 diameter was 0.25 μm. Details are shown in Table 2.
<実施例7、8>
 500mL丸底フラスコに脱イオン水228.75mLを入れ、75%リン酸202.7gを加えた、よく撹拌しながら硫酸チタニル68.55gを投入し、10分間撹拌を継続した。その後、85℃まで1時間で昇温し、20時間撹拌還流した。冷却後、得られた沈殿物をよく水洗浄した後、105℃で乾燥することにより、リン酸チタンを得た。この得られたリン酸チタンについて測定した結果、αリン酸チタンであることを確認した。
 このαリン酸チタンの組成式などを測定したところ、組成式は、
   TiH2.02(PO42.01・0.05H2
であり、メジアン径0.21μm、最大粒子径2.2μm、D10径は0.14μmであった。詳細を表2に示す。
<Examples 7 and 8>
Into a 500 mL round bottom flask, 228.75 mL of deionized water was added, and 202.7 g of 75% phosphoric acid was added. 68.55 g of titanyl sulfate was added while stirring well, and stirring was continued for 10 minutes. Then, it heated up to 85 degreeC in 1 hour, and stirred and refluxed for 20 hours. After cooling, the resulting precipitate was thoroughly washed with water and dried at 105 ° C. to obtain titanium phosphate. As a result of measuring the obtained titanium phosphate, it was confirmed to be α-titanium phosphate.
When the composition formula of this alpha titanium phosphate was measured, the composition formula was
TiH 2.02 (PO 4 ) 2.01・ 0.05H 2 O
The median diameter was 0.21 μm, the maximum particle diameter was 2.2 μm, and the D10 diameter was 0.14 μm. Details are shown in Table 2.
<実施例9、10>
 実施例1で合成したαリン酸ジルコニウムと、実施例5で合成したαリン酸チタンを1:1で混合したものを消臭剤として用いた。
 この混合物のメジアン径、最大粒子径、D10径を表2に示す。
<Examples 9 and 10>
A mixture of α-zirconium phosphate synthesized in Example 1 and α-titanium phosphate synthesized in Example 5 in a ratio of 1: 1 was used as a deodorant.
Table 2 shows the median diameter, maximum particle diameter, and D10 diameter of this mixture.
<実施例11、12>
 実施例3で合成したαリン酸ジルコニウムと、実施例7で合成したαリン酸チタンを1:1で混合したものを消臭剤として用いた。
 この混合物のメジアン径、最大粒子径、D10径を表2に示す。
<Examples 11 and 12>
A mixture of α-zirconium phosphate synthesized in Example 3 and α-titanium phosphate synthesized in Example 7 at a ratio of 1: 1 was used as a deodorant.
Table 2 shows the median diameter, maximum particle diameter, and D10 diameter of this mixture.
<比較例1、2>
 東亞合成株式会社製のリン酸ジルコニウム系消臭剤「ケスモンNS-10」を使用した。この製品の詳細は表3の通りであった。
<Comparative Examples 1 and 2>
Zirconium phosphate deodorant “Kesmon NS-10” manufactured by Toagosei Co., Ltd. was used. Details of this product are shown in Table 3.
<比較例3、4>
 500mL丸底フラスコに脱イオン水95mLを入れ、75%リン酸1800gを加えた。よく撹拌しながらハフニウム0.18%含有オキシ塩化ジルコニウム8水和物20%水溶液360gを追加後1時間で98℃に昇温し、12時間撹拌還流した。
 この得られたリン酸ジルコニウムについて測定した結果、αリン酸ジルコニウムであることを確認した。メジアン径0.11μm、最大粒子径1.4μm、D10径は0.05μmであった。詳細を表3に示す。
<Comparative Examples 3 and 4>
95 mL of deionized water was placed in a 500 mL round bottom flask and 1800 g of 75% phosphoric acid was added. After adding 360 g of 20% aqueous solution of zirconium oxychloride octahydrate containing 0.18% hafnium with sufficient stirring, the temperature was raised to 98 ° C. in 1 hour and refluxed with stirring for 12 hours.
As a result of measuring the obtained zirconium phosphate, it was confirmed to be α-zirconium phosphate. The median diameter was 0.11 μm, the maximum particle diameter was 1.4 μm, and the D10 diameter was 0.05 μm. Details are shown in Table 3.
<比較例5、6>
 2L丸底フラスコに脱イオン水1500mLに、ハフニウム0.18%含有オキシ塩化ジルコニウム8水和物20%水溶液210gを追加後、シュウ酸2水和物240g溶解させた。この溶液をよく撹拌しながら、75%リン酸90gを加えた。これを2時間で98℃に昇温し、24時間撹拌還流した。冷却後、得られた沈殿物をよく水洗浄した後、105℃で乾燥することにより、リン酸ジルコニウムを得た。この得られたリン酸ジルコニウムについて測定した結果、αリン酸ジルコニウムであることを確認した。
 このαリン酸ジルコニウムの組成式などを測定したところ、組成式は、
   Zr0.99Hf0.012.03(PO42.01・0.05H2
であり、メジアン径2.1μm、最大粒子径10.0μm、D10径は0.81μmであった。詳細を表3に示す。
<Comparative Examples 5 and 6>
After adding 210 g of zirconium oxychloride octahydrate 20% containing hafnium 0.18% to 1500 mL of deionized water in a 2 L round bottom flask, 240 g of oxalic acid dihydrate was dissolved. While stirring this solution well, 90 g of 75% phosphoric acid was added. This was heated to 98 ° C. in 2 hours and stirred and refluxed for 24 hours. After cooling, the resulting precipitate was thoroughly washed with water and dried at 105 ° C. to obtain zirconium phosphate. As a result of measuring the obtained zirconium phosphate, it was confirmed to be α-zirconium phosphate.
When the composition formula of this α-zirconium phosphate was measured, the composition formula was
Zr 0.99 Hf 0.01 H 2.03 (PO 4 ) 2.01・ 0.05H 2 O
The median diameter was 2.1 μm, the maximum particle diameter was 10.0 μm, and the D10 diameter was 0.81 μm. Details are shown in Table 3.
<比較例7、8>
 東亞合成株式会社製のリン酸ジルコニウム系消臭剤「ケスモンNS-10」を水に10%分散させ、30μmのジルコニアビーズを50重量%投入し、ディスパー(特殊機化工業株式会社製(現・プライミクス株式会社)、ホモディスパー、モデルL(1994年製))を用い回転数3000rpmで2時間湿式粉砕した。メジアン径は0.52μm、最大粒子径5.1μm、D10径は0.07μmであった。詳細を表3に示す。
<Comparative Examples 7 and 8>
Zirconium phosphate deodorant “Kesmon NS-10” manufactured by Toagosei Co., Ltd. is dispersed in water by 10%, and 30 μm zirconia beads are added by 50% by weight. Primix Co., Ltd.), homodisper, model L (made in 1994)), and wet pulverized for 2 hours at 3000 rpm. The median diameter was 0.52 μm, the maximum particle diameter was 5.1 μm, and the D10 diameter was 0.07 μm. Details are shown in Table 3.
<比較例9、10>
 東亞合成社製のリン酸ジルコニウム系消臭剤「ケスモンNS-10」を水に10%分散させ、10μmのジルコニアビーズを50重量%投入し、ディスパーを用い回転数3000rpmで2時間湿式粉砕した。メジアン径は0.2μm、最大粒子径4.5μm、D10径は0.05μmであった。詳細を表3に示す。
<Comparative Examples 9 and 10>
Zirconium phosphate deodorant “Kesmon NS-10” manufactured by Toagosei Co., Ltd. was dispersed in water at 10%, 10 μm zirconia beads were added at 50% by weight, and wet pulverized for 2 hours at 3000 rpm with a disper. The median diameter was 0.2 μm, the maximum particle diameter was 4.5 μm, and the D10 diameter was 0.05 μm. Details are shown in Table 3.
<比較例11、12>
 500mL丸底フラスコに脱イオン水228.75mLを入れ、75%リン酸202.7gを加えた、よく撹拌しながら硫酸チタニル68.55gを投入し、10分間撹拌を継続した。その後、100℃まで1時間で昇温し、100時間撹拌還流した。冷却後、得られた沈殿物をよく水洗浄した後、105℃で乾燥することにより、リン酸チタンを得た。
 この得られたリン酸チタンについて測定した結果、αリン酸チタンであることを確認した。
 このαリン酸チタンの組成式などを測定したところ、組成式は、
   TiH2.02(PO42.01・0.05H2
であり、メジアン径1.05μm、最大粒子径5.8μm、D10は0.51μmであった。詳細を表3に示す。
<Comparative Examples 11 and 12>
Into a 500 mL round bottom flask, 228.75 mL of deionized water was added, 202.7 g of 75% phosphoric acid was added, and 68.55 g of titanyl sulfate was added while stirring well, and stirring was continued for 10 minutes. Then, it heated up to 100 degreeC in 1 hour, and stirred and refluxed for 100 hours. After cooling, the resulting precipitate was thoroughly washed with water and dried at 105 ° C. to obtain titanium phosphate.
As a result of measuring the obtained titanium phosphate, it was confirmed to be α-titanium phosphate.
When the composition formula of this alpha titanium phosphate was measured, the composition formula was
TiH 2.02 (PO 4 ) 2.01・ 0.05H 2 O
The median diameter was 1.05 μm, the maximum particle size was 5.8 μm, and D10 was 0.51 μm. Details are shown in Table 3.
<比較例13、14>
 比較例6で合成したαリン酸チタンを水に10%分散させ、30μmのジルコニアビーズを50wt%投入し、ディスパーを用い回転数3000rpmで2時間湿式粉砕した。メジアン径は0.49μm、最大粒子径5.2m、D10は0.06μmであった。詳細を表3に示す。
<Comparative Examples 13 and 14>
The α-titanium phosphate synthesized in Comparative Example 6 was dispersed 10% in water, 50 wt% of 30 μm zirconia beads were added, and wet pulverized for 2 hours at 3000 rpm using a disper. The median diameter was 0.49 μm, the maximum particle diameter was 5.2 m, and D10 was 0.06 μm. Details are shown in Table 3.
<比較例15、16>
 テイカ株式会社製のトリポリリン酸二水素アルミニウム系消臭剤「K-FRESH 100P」を使用した。メジアン径は1.1μm、最大粒子径5.9μm、D10は0.55μmであった。詳細を表3に示す。
<Comparative Examples 15 and 16>
An aluminum trihydrogen phosphate-based deodorant “K-FRESH 100P” manufactured by Teika Co., Ltd. was used. The median diameter was 1.1 μm, the maximum particle diameter was 5.9 μm, and D10 was 0.55 μm. Details are shown in Table 3.
<参考例>
 消臭剤を添加せずに紡糸し、筒編みして消臭評価を行った。
<Reference example>
Spinning was performed without adding a deodorant, and knitting was performed to evaluate the deodorization.
 実施例で使用した消臭剤は、紡糸性に優れており糸切れの心配は無かった。実施例の消臭剤を添加した繊維は、消臭性能に優れており、洗濯後も消臭性能を維持した。
 一方、比較例で使用した消臭剤は、紡糸性あるいは消臭性能のどちらか、あるいは両方が良くなかった。アルカリ処理による減量率は全てのサンプルにおいて13~18重量%であった。
The deodorant used in the examples was excellent in spinnability and there was no worry about yarn breakage. The fiber to which the deodorant of the example was added was excellent in deodorizing performance and maintained the deodorizing performance after washing.
On the other hand, the deodorant used in the comparative example was not good in spinning property or deodorizing performance, or both. The weight loss rate due to alkali treatment was 13 to 18% by weight in all samples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の消臭剤は、微粒子で粒度分布の幅が狭いため、紡糸性に優れている。又、特に繊維に練り込んだものはアンモニア消臭性能に優れ、耐洗濯性も高いものとなる。 The deodorant of the present invention is excellent in spinnability because it is fine and has a narrow particle size distribution. In particular, those kneaded into fibers have excellent ammonia deodorizing performance and high washing resistance.

Claims (8)

  1.  粒子径として、メジアン径が0.2~0.7μm、且つ最大粒子径が5.0μm以下で、D10径が0.1μm以上である、αリン酸ジルコニウム及び/又はαリン酸チタンを含む繊維用消臭剤。 Fibers containing α-zirconium phosphate and / or α-titanium phosphate having a median diameter of 0.2 to 0.7 μm, a maximum particle diameter of 5.0 μm or less, and a D10 diameter of 0.1 μm or more. Deodorant for use.
  2.  前記αリン酸ジルコニウムが、下記式(1)で表される、請求項1に記載の繊維用消臭剤。
       Zr1-xHfxa(PO4b・nH2O   (1)
     式(1)において、a及びbは3b-a=4を満たす正数であり、bは2.0<b≦2.1であり、xは0≦x≦0.2の正数であり、nは0≦n≦2.0の正数である。
    The deodorizer for fibers according to claim 1, wherein the α-zirconium phosphate is represented by the following formula (1).
    Zr 1-x Hf x H a (PO 4) b · nH 2 O (1)
    In the formula (1), a and b are positive numbers that satisfy 3b−a = 4, b is 2.0 <b ≦ 2.1, and x is a positive number that satisfies 0 ≦ x ≦ 0.2. , N is a positive number of 0 ≦ n ≦ 2.0.
  3.  前記αリン酸チタンが、下記式(2)で表される、請求項1に記載の繊維用消臭剤。
       TiHa(PO4b・nH2O   (2)
     式(2)において、a及びbは3b-a=4を満たす正数であり、bは2.0<b≦2.1であり、nは0≦n≦2.0の正数である。
    The fiber deodorant according to claim 1, wherein the α-titanium phosphate is represented by the following formula (2).
    TiH a (PO 4 ) b · nH 2 O (2)
    In the formula (2), a and b are positive numbers satisfying 3b−a = 4, b is 2.0 <b ≦ 2.1, and n is a positive number satisfying 0 ≦ n ≦ 2.0. .
  4.  αリン酸ジルコニウム及びαリン酸チタンの水分含有率が、1.0重量%以下である請求項1~3のいずれか1項に記載の繊維用消臭剤。 The fiber deodorant according to any one of claims 1 to 3, wherein the water content of α-zirconium phosphate and α-titanium phosphate is 1.0% by weight or less.
  5.  αリン酸ジルコニウム及びαリン酸チタンが、水溶液中で合成してなる、請求項1~4のいずれか1項に記載の繊維用消臭剤。 The fiber deodorant according to any one of claims 1 to 4, wherein α-zirconium phosphate and α-titanium phosphate are synthesized in an aqueous solution.
  6.  繊維練り込み用である請求項1~5のいずれか1項に記載の繊維用消臭剤。 The fiber deodorant according to any one of claims 1 to 5, which is used for kneading fibers.
  7.  請求項1~6のいずれか1項に記載の繊維用消臭剤を含む消臭繊維。 Deodorant fiber comprising the fiber deodorant according to any one of claims 1 to 6.
  8.  前記繊維が、ポリエステル、ポリウレタン、ナイロン、レーヨン、アクリル樹脂、ビニロン及びポリプロピレンよりなる群から選択される少なくとも1種である、請求項7に記載の消臭繊維。 The deodorant fiber according to claim 7, wherein the fiber is at least one selected from the group consisting of polyester, polyurethane, nylon, rayon, acrylic resin, vinylon, and polypropylene.
PCT/JP2018/018999 2018-05-16 2018-05-16 Deodorant for fine particulate fibers WO2019220580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018999 WO2019220580A1 (en) 2018-05-16 2018-05-16 Deodorant for fine particulate fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018999 WO2019220580A1 (en) 2018-05-16 2018-05-16 Deodorant for fine particulate fibers

Publications (1)

Publication Number Publication Date
WO2019220580A1 true WO2019220580A1 (en) 2019-11-21

Family

ID=68539795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018999 WO2019220580A1 (en) 2018-05-16 2018-05-16 Deodorant for fine particulate fibers

Country Status (1)

Country Link
WO (1) WO2019220580A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111234173A (en) * 2020-03-04 2020-06-05 天津欧迪芬服装销售有限公司 High-flexibility air-sandwiched cotton liner and preparation method and application method thereof
CN115652609A (en) * 2022-11-11 2023-01-31 富尔美技术纺织(苏州)有限公司 Method for manufacturing acrylic fiber composite deodorizing fiber

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204288A (en) * 1997-01-20 1998-08-04 Toagosei Co Ltd Discoloration inhibitor for nylon resin and nylon resin
JPH1147249A (en) * 1997-07-31 1999-02-23 Toagosei Co Ltd Deodorant and deodorizing fiber
WO2004064523A1 (en) * 2003-01-20 2004-08-05 Toagosei Co., Ltd. Antibacterial compositions and antibacterial products
JP2005097820A (en) * 2003-08-27 2005-04-14 Kanebo Ltd Deodorizing fiber
WO2006118159A1 (en) * 2005-04-28 2006-11-09 Toagosei Co., Ltd. Silver-based inorganic antibacterial agent and antibacterial product
JP2012127015A (en) * 2010-12-14 2012-07-05 Toray Opelontex Co Ltd Polyurethane elastic yarn
WO2016194995A1 (en) * 2015-06-04 2016-12-08 東亞合成株式会社 Ion scavenger for lithium ion secondary cell, liquid electrolyte, separator, and lithium ion secondary cell
WO2017179383A1 (en) * 2016-04-13 2017-10-19 富士フイルム株式会社 Antibacterial composition, antibacterial film and wet wiper
JP2017534004A (en) * 2014-11-14 2017-11-16 ヒョソン コーポレーション Method for producing functional yarn having deodorant and quick-drying sweat

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204288A (en) * 1997-01-20 1998-08-04 Toagosei Co Ltd Discoloration inhibitor for nylon resin and nylon resin
JPH1147249A (en) * 1997-07-31 1999-02-23 Toagosei Co Ltd Deodorant and deodorizing fiber
WO2004064523A1 (en) * 2003-01-20 2004-08-05 Toagosei Co., Ltd. Antibacterial compositions and antibacterial products
JP2005097820A (en) * 2003-08-27 2005-04-14 Kanebo Ltd Deodorizing fiber
WO2006118159A1 (en) * 2005-04-28 2006-11-09 Toagosei Co., Ltd. Silver-based inorganic antibacterial agent and antibacterial product
JP2012127015A (en) * 2010-12-14 2012-07-05 Toray Opelontex Co Ltd Polyurethane elastic yarn
JP2017534004A (en) * 2014-11-14 2017-11-16 ヒョソン コーポレーション Method for producing functional yarn having deodorant and quick-drying sweat
WO2016194995A1 (en) * 2015-06-04 2016-12-08 東亞合成株式会社 Ion scavenger for lithium ion secondary cell, liquid electrolyte, separator, and lithium ion secondary cell
WO2017179383A1 (en) * 2016-04-13 2017-10-19 富士フイルム株式会社 Antibacterial composition, antibacterial film and wet wiper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111234173A (en) * 2020-03-04 2020-06-05 天津欧迪芬服装销售有限公司 High-flexibility air-sandwiched cotton liner and preparation method and application method thereof
CN115652609A (en) * 2022-11-11 2023-01-31 富尔美技术纺织(苏州)有限公司 Method for manufacturing acrylic fiber composite deodorizing fiber

Similar Documents

Publication Publication Date Title
EP0783048B1 (en) Method for producing fine metallic particles-containing fibers
JP6965553B2 (en) Deodorant for fine particle fibers
JP3215318B2 (en) Deodorant fiber and method for producing the same
US20060246285A1 (en) Process for the production of cellulosic moulded bodies
CN104047114A (en) Nano-silver antibacterial melt-blown non-woven fabric and production method thereof
WO2006118159A1 (en) Silver-based inorganic antibacterial agent and antibacterial product
WO2019220580A1 (en) Deodorant for fine particulate fibers
JPWO2004064523A1 (en) Antibacterial composition and antibacterial product
JP5182912B2 (en) Antibacterial agent, production method thereof and use thereof
EP3235517B1 (en) Deodorant, deodorant composition, and deodorizing product
DE10324305A1 (en) Process for the production of spherical zinc oxide particles
JP2013204204A (en) Deodorant regenerated cellulosic fiber, method for producing the same, and fiber structure
JP3695604B2 (en) Deodorant
TWI803493B (en) Particulate deodorant for fiber
KR20220154144A (en) Zirconium phosphate particles, basic gas deodorant using the same, and manufacturing method thereof
WO2023127610A1 (en) Method for producing zirconium phosphate particles, zirconium phosphate particles, deodorizer, deodorizer for fibers, deodorizer for blending into fibers, composition for deodorizing processing, deodorized resin composition, and deodorized fibers
JP3280135B2 (en) Manufacturing method of antibacterial fiber products
JP2013204205A (en) Deodorant regenerated cellulosic fiber, method for producing the same, and fiber structure
JPH01303119A (en) Manufacture of dish towel antibacterial and water absorbent and the like
WO2021157230A1 (en) Composite oxide particle, deodorant, laundry composition, detergent composition, fiber article and resin molded article
JP7412732B2 (en) Blended yarns and fiber structures
CN109295542A (en) Anion, antibiosis anti-acarien, removes aldehyde composite polyester fiber and its manufacturing method at far infrared
CN111364112A (en) Deodorizing fiber
JP3682942B2 (en) Regenerated cellulose fiber by cupra method containing tourmaline fine particles
CN106283404B (en) The method for preparing nano silver blending native cellulose melt-blown nonwoven fabric

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP