WO2019220542A1 - 圧延設備の診断装置及び診断方法 - Google Patents

圧延設備の診断装置及び診断方法 Download PDF

Info

Publication number
WO2019220542A1
WO2019220542A1 PCT/JP2018/018777 JP2018018777W WO2019220542A1 WO 2019220542 A1 WO2019220542 A1 WO 2019220542A1 JP 2018018777 W JP2018018777 W JP 2018018777W WO 2019220542 A1 WO2019220542 A1 WO 2019220542A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
motor
unit
rolling equipment
rolling
Prior art date
Application number
PCT/JP2018/018777
Other languages
English (en)
French (fr)
Inventor
陽一 松井
優太 小田原
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to PCT/JP2018/018777 priority Critical patent/WO2019220542A1/ja
Priority to JP2020518857A priority patent/JP7035178B2/ja
Publication of WO2019220542A1 publication Critical patent/WO2019220542A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B33/00Safety devices not otherwise provided for; Breaker blocks; Devices for freeing jammed rolls for handling cobbles; Overload safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F

Definitions

  • the present disclosure relates to a rolling equipment diagnosis apparatus and a diagnosis method.
  • the vibration generated in the rolling equipment may be detected, and the occurrence of abnormality in the rolling equipment may be diagnosed based on the detection result.
  • Patent Document 1 the noise of a rolling mill is detected using a sound collecting microphone, and the noise level of the detected noise data is compared with the noise level of the noise data obtained when the rolling mill is normal. Therefore, it is disclosed that the presence or absence of an abnormality in the rolling mill is determined.
  • Patent Document 2 after calculating the natural vibration frequency of each part that is considered as a cause of chattering occurring in the rolling mill, the frequency analysis of the actual measurement value of the vibration of the rolling mill is performed, and the above-described frequency analysis result is described above. It is disclosed that the cause of chattering is specified by comparing a vibration level at a natural vibration frequency (calculated value) with a threshold value.
  • the abnormality prediction support apparatus described in Patent Literature 1 cannot identify in which part of the rolling equipment an abnormality has occurred. Moreover, even in the same type of rolling equipment, there are usually individual differences in the actual natural vibration frequency due to differences in manufacturing tolerances of parts, differences in assembly methods, and the like. Or when calculating
  • At least one embodiment of the present invention aims to provide a rolling equipment diagnostic device and a diagnostic method capable of specifying the natural vibration frequency of the rolling equipment.
  • a diagnostic device for diagnosing rolling equipment including a motor, a rolling roll driven by the motor, and a power transmission unit for transmitting the power of the motor to the rolling roll, An acoustic sensor for detecting sound generated from the rolling equipment; An excitation unit for exciting the motor; A first frequency spectrum showing a correlation between the frequency and the amplitude of the first sound data by performing frequency analysis of the first sound data detected by the acoustic sensor in a state where the motor is vibrated by the vibration unit.
  • a first frequency analysis unit for obtaining The excitation unit is configured to be able to change an excitation frequency for exciting the motor.
  • a rolling equipment diagnosis apparatus and a diagnostic method capable of specifying the natural vibration frequency of the rolling equipment are provided.
  • FIG. 1 is a schematic configuration diagram illustrating a diagnostic apparatus and a rolling facility to be diagnosed according to an embodiment.
  • the rolling equipment 1 includes a motor 2, a rolling roll 8 driven by the motor 2, and a power transmission unit 3 for transmitting the power of the motor 2 to the rolling roll 8.
  • the rolling roll 8 is configured to roll the metal strip 9, and a pair of work rolls 12A and 12B for sandwiching the metal strip 9 from above and applying a load to the metal strip 9, and a pair of workpieces
  • the metal strip 9 with the rolls 12A and 12B interposed therebetween includes a pair of intermediate rolls 14A and 14B and a pair of backup rolls 16A and 16B provided on opposite sides.
  • the intermediate rolls 14A and 14B are provided between the work rolls 12A and 12B and the backup rolls 16A and 16B, respectively.
  • the power transmission unit 3 includes a gear 4 and a spindle 6 driven by the motor 2. That is, the gear 4 is connected to the motor 2, and the spindle 6 is connected to the motor 2 via the gear 4.
  • the rolling roll 8 is connected to the motor 2 via the gear 4 and the spindle 6. Therefore, the vibration of the motor 2 is transmitted to the gear 4, the spindle 6 and the rolling roll 8.
  • the voltage or current input to the motor 2 is controlled by the motor control unit 10.
  • the motor control unit 10 includes a high-frequency component application unit 26 that functions as the vibration unit 18 of the diagnostic device 30 of the rolling facility 1.
  • FIG. 2 is a schematic configuration diagram of the processing unit 34 of the diagnostic device 30 according to the embodiment
  • FIGS. 3 and 4 are schematic configuration diagrams of the motor control unit 10 according to the embodiment. 3 and 4, the illustration of the spindle 6 (see FIG. 1) is omitted for simplification of description.
  • a diagnostic device 30 includes an acoustic sensor 32 for detecting sound generated from the rolling equipment 1 and a processing unit for processing sound data detected by the acoustic sensor 32. 34, a storage device 36 for storing the processing result in the processing unit, and a display unit 38 for displaying the processing result in the processing unit 34. Moreover, the diagnostic device 30 includes a vibration unit 18 for vibrating the motor 2.
  • the acoustic sensor 32 may include a sound collection microphone.
  • the processing unit 34 of the diagnostic device 30 includes the first frequency analysis unit 40 and the second frequency analysis unit 46 configured to perform frequency analysis of sound data detected by the acoustic sensor 32, and the actual uniqueness of the rolling equipment 1.
  • a specifying unit 42 for specifying the vibration frequency (natural frequency) and a diagnosis unit 50 for diagnosing the state of the rolling equipment 1 are included.
  • the processing unit 34 includes a frequency normalization unit 44 and an amplitude normalization unit 48 for normalizing the first sound data or the second sound data.
  • the first frequency analysis unit 40 performs frequency analysis of the first sound data detected by the acoustic sensor 32 in a state where the motor 2 is vibrated by the vibration unit 18, and the frequency and amplitude of the first sound data are calculated.
  • the first frequency spectrum indicating the correlation is obtained.
  • the second frequency analysis unit 46 detects the second sound data detected by the acoustic sensor 32 when the vibration unit 18 is not operating (that is, when the motor 2 is not excited by the vibration unit 18).
  • the second frequency spectrum indicating the correlation between the frequency and the amplitude of the second sound data is obtained.
  • the high-frequency component application unit 26 of the motor control unit 10 functions as the vibration unit 18.
  • the motor control unit 10 determines the motor 2 based on the difference between the speed command determined according to the target speed of the motor 2 and the actual speed of the motor 2 detected by the speed sensor 28.
  • the current command value I * to be applied to is calculated, and a current corresponding to the current command value I * is output to the motor 2.
  • the motor control unit 10 includes a speed control unit (Automatic Speed Regulator; ASR) 20, a current control unit (Automatic Current Regulator; ACR) 22, an inverter 24, and a high frequency as the above-described excitation unit 18.
  • a component applying unit 26 includes a speed control unit (Automatic Speed Regulator; ASR) 20, a current control unit (Automatic Current Regulator; ACR) 22, an inverter 24, and a high frequency as the above-described excitation unit 18.
  • the speed control unit 20 is configured to control the motor speed to be constant based on the feedback deviation of the motor speed in accordance with the motor speed necessary for rolling.
  • the current control unit 22 is configured to control the current of the motor 2 in accordance with the motor torque necessary for rolling.
  • the inverter 24 is configured to apply a current corresponding to the current command input from the current control unit 22 to the motor 2.
  • the high frequency component applying unit 26 is configured to superimpose an excitation frequency component on the speed command value or torque command value of the motor 2.
  • the excitation frequency described above may be a value larger than the number of rotations of the motor 2.
  • the component of the excitation frequency which is a frequency higher than the rotation speed of the motor 2 is called a high frequency component.
  • an excitation frequency component (high frequency component) is superimposed on the speed command value input to the motor control unit 10.
  • an excitation frequency component (high frequency component) is superimposed on a torque command value input to the motor control unit 10. The torque command value described above is added to the output of the speed control unit 20.
  • the current command value received by the inverter 24 is smooth as the curve I shown in the figure. A sinusoidal shape. In this case, the motor 2 is not vibrated by the high frequency component application unit 26 (vibration unit 18).
  • the current command value received by the inverter 24 is as shown by a curve I * shown in the figure. Furthermore, it has a sinusoidal shape in which a component that vibrates finely is superimposed (a high-frequency component is superimposed). Therefore, the motor 2 is vibrated by applying a current corresponding to the current command value I * on which the high frequency component is superimposed from the inverter 24 to the motor 2.
  • the high frequency component provision unit 26 (excitation unit 18) is configured to be able to change the excitation frequency. Moreover, the high frequency component provision part 26 (excitation part 18) is comprised so that an excitation frequency can be changed continuously.
  • the frequency of the high frequency component superimposed on the current command value I * is increased by continuously increasing the excitation frequency superimposed on the speed command value or torque command value. Since it gradually increases, the vibration frequency of the motor 2 can be gradually increased.
  • FIG. 5 is a flowchart showing an overview of a rolling facility diagnosis method according to an embodiment.
  • a motor 2 that drives a rolling roll 8 is vibrated by a vibration unit 18, and applied to the motor 2 by the vibration unit 18.
  • the vibration unit 18 While continuously changing (for example, increasing) the vibration frequency, the sound generated from the rolling equipment 1 is detected by the acoustic sensor 32, and the first sound data is acquired (step S2).
  • the first sound data is sound data detected by the acoustic sensor 32 in a state where the motor 2 is vibrated by the vibration unit 18.
  • the first frequency analysis unit 40 performs frequency analysis of the first sound data, and obtains a first frequency spectrum indicating the correlation between the frequency and the amplitude of the first sound data (step S4).
  • Step S6 the actual natural vibration frequency of the rolling equipment 1 is specified by the specifying unit 42 based on the first frequency spectrum acquired in Step S4 (Step S6).
  • the diagnosis unit 50 diagnoses the state of the rolling equipment 1 based on the actual natural vibration frequency specified in step S6 (step S8).
  • FIG. 6 is a diagram showing a vibration model of the rolling equipment 1 shown in FIG. 1.
  • FIG. 7 shows the expected natural vibration frequency calculated based on the design of the rolling equipment 1 and the diagnostic device 30 according to the embodiment.
  • FIG. 8 is a diagram showing a table showing correspondence with the identified actual natural vibration frequency, and
  • FIG. 8 is a diagram showing an example of the first frequency spectrum.
  • step S6 by comparing the expected natural vibration frequency of each part of the rolling equipment calculated based on the design of the rolling equipment 1 with the first frequency spectrum obtained in step S4, each part of the rolling equipment is compared.
  • the actual natural vibration frequency is specified.
  • the expected natural vibration frequency of each part of the rolling equipment 1 is calculated in advance by the following procedure.
  • the rolling equipment 1 can be expressed by a vibration model using the mass of each part (gear 4, spindle 6, rolling roll 8, etc.) and the spring constant.
  • the gear 4 has a plurality of gears 4a to 4c
  • G1 to G3 in the figure indicate the masses of the gears 4a to 4c in the above vibration model, respectively.
  • M1 to M6 in the figure respectively indicate the masses of the rolls (work rolls 12A, 12B, intermediate rolls 14A, 14B, and backup rolls 16A, 16B) constituting the rolling roll 8 in the above-described vibration model.
  • the predicted natural vibration frequency of each part of the rolling equipment 1 can be calculated, for example, based on the vibration model described above (that is, using the mass, spring constant, etc. in the vibration model).
  • the gear 4 (gear box) includes a plurality of gears 4a to 4c, and a plurality of vibration modes exist depending on the combination of the plurality of gears 4a to 4c.
  • the rolling roll 8 includes a plurality of rolls (work rolls 12A, 12B, intermediate rolls 14A, 14B, and backup rolls 16A, 16B), and a plurality of vibration modes exist depending on the combination of the plurality of rolls.
  • the predicted natural vibration frequency for each part calculated in this manner may be stored in the storage device 36 in advance.
  • “expected natural frequency” in the table of FIG. 7 an example of the expected natural vibration frequency for each part calculated as described above is shown.
  • the actual natural vibration frequencies (f1 to f8 in FIG. 8) for several parts of the rolling equipment 1 can be grasped. Respective parts of the rolling equipment 1 resonate and increase in vibration when given vibration having the same frequency as the natural vibration frequency. Since the sound generated by the increased vibration is increased, the amplitude of the first frequency spectrum obtained from the detected sound data is also increased. That is, in the first frequency spectrum, it can be grasped that the frequency whose amplitude protrudes is the actual natural vibration frequency (f1 to f8) corresponding to each vibration mode in any part of the rolling equipment 1.
  • There is a natural vibration frequency (42 Hz). From this, it can be specified that the actual natural vibration frequency of the vibration mode 1 of the gear 4 is f1 ( 47 Hz).
  • the frequency of the component whose amplitude is relatively large (or the amplitude is larger than the threshold value) is specified as the actual natural vibration frequency of the above-described part.
  • the actual natural frequencies f2 to f8 measured from the first frequency spectrum are compared with the expected natural vibration frequency calculated based on the design of the rolling facility 1, so that any part of the rolling facility 1 Whether it is a natural vibration frequency can be specified.
  • Information relating the part of the rolling equipment 1 specified in this way and the actual natural frequencies f1 to f8 may be stored in the storage device 36.
  • the storage device 36 may store the table shown in FIG.
  • the part of the rolling equipment 1 to be diagnosed extends not only to the gear 4, the spindle 6 and the rolling roll 8 described above, but also to the rotating body capable of propagating the vibration of the motor 2 and the motor 2 itself.
  • step S8 the diagnosis of the state of the rolling equipment 1 by the diagnosis unit 50 in step S8 will be described more specifically.
  • 9 and 10 are examples of flowcharts of the rolling facility diagnosis method (step S8 in FIG. 5) according to an embodiment, respectively.
  • diagnosis is performed based on sound data (second sound data) acquired without vibration of the motor 2 during operation of the rolling equipment 1.
  • the acoustic sensor 32 generates from the rolling equipment 1 without operating the vibration unit 18. Sound is detected and second sound data is acquired (step S12).
  • the amplitude normalization unit 48 normalizes the second sound data acquired in step S12 with respect to the amplitude with the torque of the motor 2 (step S14).
  • the torque of the motor 2 increases.
  • the amplitude of the detected sound data increases as the torque of the motor 2 increases.
  • the diagnosis of the rolling equipment 1 is performed using raw sound data without considering the change in the torque of the motor 2, there is a possibility that an erroneous diagnosis will occur. Therefore, as described above, the second sound data obtained by the acoustic sensor 32 is normalized with respect to the amplitude of the motor 2 with respect to the amplitude, thereby correcting the influence that the torque of the motor 2 can have on the amplitude, and then rolling equipment. 1 diagnosis can be performed.
  • the amplitude A of the second sound data when the motor torque M can be represented with (M / M ref) of the function f (M / M ref).
  • a ref is an amplitude value at a specified motor torque M ref in the second sound data.
  • A A ref ⁇ f (M / M ref ) Therefore, in step S14, the amplitude normalization unit 48 may normalize the second sound data using, for example, the above formula.
  • the second frequency spectrum indicating the correlation between the frequency and the amplitude of the normalized second sound data by performing frequency analysis on the second sound data normalized with respect to the amplitude in step S14 by the second frequency analysis unit 46. Is acquired (step S16).
  • the diagnosis unit 50 acquires the amplitude at the actual natural vibration frequency of the part to be diagnosed (eg, gear 4) specified in step S6 (see FIG. 5). (Step S18).
  • part specified by step S6 is memorize
  • step S18 the information regarding each site
  • the diagnosis unit 50 compares the amplitude acquired in step S18 with a threshold value (step S20). If the amplitude is larger than the threshold value (Yes in step S20), an abnormality has occurred in the site to be diagnosed. (Step S22).
  • the above-mentioned threshold value may be set based on the amplitude in the actual natural vibration frequency of the applicable part in the second frequency spectrum acquired when the rolling facility 1 is normal.
  • the diagnosis unit 50 When it is determined that an abnormality has occurred in the target part of the diagnosis unit 50 (step S22), the name of the part and information about the part (for example, actual natural vibration frequency) are displayed on the display unit 38. It may be. At this time, the diagnosis unit 50 may read the name of the target part and information related to the part from the storage device 36 and display the result on the display unit 38.
  • the diagnosis unit 50 may read the name of the target part and information related to the part from the storage device 36 and display the result on the display unit 38.
  • a diagnosis is performed based on sound data (first sound data) acquired while vibrating the motor 2 when the rolling equipment 1 is inspected.
  • the motor 2 is vibrated by the vibration unit 18 and given to the motor 2 by the vibration unit 18. While continuously changing the excitation frequency, the sound generated from the rolling equipment 1 is detected by the acoustic sensor 32, and the first sound data is acquired (step S32).
  • the frequency normalization unit 44 normalizes the first sound data acquired in step S32 with respect to the frequency with the actual speed of the motor 2 (step S34).
  • the first sound data obtained by the acoustic sensor 32 is normalized by the actual speed of the motor 2 with respect to the frequency, and the component that does not depend on the motor speed included in the first sound data is corrected ( That is, the diagnosis of the rolling equipment 1 can be performed with the background sound reduced.
  • the first sound data normalized in step S34 is normalized by the torque of the motor 2 with respect to the amplitude by the amplitude normalization unit 48 (step S36).
  • the first sound data obtained by the acoustic sensor 32 is normalized by the torque of the motor 2 with respect to the amplitude, so that the influence of the torque of the motor 2 on the amplitude is corrected and the diagnosis of the rolling equipment 1 is performed. It can be performed.
  • the first sound data can be normalized with respect to the amplitude by the same method as in step S14 described above.
  • a first frequency analysis unit 40 performs frequency analysis on the first sound data normalized with respect to frequency and amplitude in step S36, and shows a first correlation indicating the correlation between the normalized frequency and amplitude of the first sound data.
  • a frequency spectrum is acquired (step S38).
  • the diagnosis unit 50 acquires the amplitude at the actual natural vibration frequency of the part to be diagnosed (eg, gear 4) specified in step S6 (see FIG. 5). (Step S40).
  • part specified by step S6 is memorize
  • step S40 the information regarding each site
  • the diagnosis unit 50 compares the amplitude acquired in step S40 with a threshold value (step S42). If the amplitude is larger than the threshold value (Yes in step S42), an abnormality has occurred in the site to be diagnosed. (Step S44).
  • the above-mentioned threshold value may be set based on the amplitude in the actual natural vibration frequency of the applicable part in the 1st frequency spectrum acquired when the rolling equipment 1 is normal. Or the above-mentioned threshold value may be set based on the amplitude in the actual natural vibration frequency of the applicable part in the 1st frequency spectrum obtained at the time of inspection of rolling equipment 1 in a certain past time.
  • the natural vibration frequency corresponding to a specific part of the rolling equipment is diagnosed by comparing the amplitude obtained at the time of inspection at a certain time with the amplitude obtained at the time of inspection at a different time.
  • the diagnosis unit 50 When it is determined that an abnormality has occurred in the target part of the diagnosis unit 50 (step S44), the name of the part and information about the part (for example, actual natural vibration frequency) are displayed on the display unit 38. It may be. At this time, the diagnosis unit 50 may read the name of the target part and information related to the part from the storage device 36 and display the result on the display unit 38.
  • the diagnosis unit 50 may read the name of the target part and information related to the part from the storage device 36 and display the result on the display unit 38.
  • a rolling equipment diagnosis apparatus comprises: A diagnostic device for diagnosing rolling equipment including a motor, a rolling roll driven by the motor, and a power transmission unit for transmitting the power of the motor to the rolling roll, An acoustic sensor for detecting sound generated from the rolling equipment; An excitation unit for exciting the motor; A first frequency spectrum showing a correlation between the frequency and the amplitude of the first sound data by performing frequency analysis of the first sound data detected by the acoustic sensor in a state where the motor is vibrated by the vibration unit.
  • a first frequency analysis unit for obtaining The excitation unit is configured to be able to change an excitation frequency for exciting the motor.
  • the motor since the motor and the rolling roll are connected via the power transmission unit, the motor is driven by the vibration unit so that the motor is connected to the motor. It can be set as the excitation source of a transmission part and a rolling roll.
  • the vibration frequency applied to the motor can be changed by the vibration unit, the frequency of the motor and the equipment (power transmission unit and rolling roll) connected to the motor is changed by changing the vibration frequency.
  • the actual natural vibration frequency of the rolling equipment can be identified based on the analysis result (first frequency spectrum) of the first sound data acquired by changing the excitation frequency. Therefore, for example, by using the natural vibration frequency specified in this way, it is possible to improve the diagnostic accuracy for specifying a site where an abnormality has occurred in the rolling equipment.
  • the excitation unit is configured to continuously change the excitation frequency.
  • the excitation frequency applied to the motor is continuously changed, the first sound data is acquired while continuously changing the above-described excitation frequency. Based on the analysis result (first frequency spectrum) of the first sound data, the actual natural vibration frequency of the rolling equipment can be easily specified.
  • the diagnostic device comprises: A motor control unit configured to control a voltage or current applied to the motor;
  • the motor control unit includes a high frequency component application unit as the excitation unit,
  • the high frequency component imparting unit is configured to superimpose the excitation frequency component on the speed command value or torque command value of the motor.
  • the excitation frequency component (high frequency component) is superimposed on the motor speed command value or torque command value given to the motor control unit, the current command given to the motor or The above-mentioned high frequency component can be included in the voltage command. Therefore, the motor can be vibrated at a frequency greater than the rotational speed of the motor. Further, the frequency of the motor can be easily changed by changing the frequency of the high frequency component superimposed by the high frequency component applying unit.
  • the first frequency analysis unit is configured to obtain the first frequency spectrum for the first sound data including sound detected by the acoustic sensor under a plurality of conditions with different excitation frequencies
  • the diagnostic device comprises: Based on the amplitude of the component included in the natural vibration frequency band including the expected natural vibration frequency of the specific part of the rolling equipment calculated based on the design of the rolling equipment in the first frequency spectrum, the part of the rolling equipment And a specific unit configured to specify the natural vibration frequency of the.
  • the actual natural vibration frequency of the rolling equipment does not usually deviate greatly from the expected natural vibration frequency (calculated value) that is theoretically predicted from the design of the rolling equipment. Become.
  • the configuration of the above (4) attention is paid to the amplitude of the component included in the frequency band near the expected natural vibration frequency of the specific part calculated based on the design of the rolling equipment in the first frequency spectrum. Therefore, the actual natural vibration frequency of the above-mentioned specific part can be specified.
  • the diagnostic device comprises: The apparatus further includes a storage device for storing information in which the part of the rolling facility is associated with the natural vibration frequency of the part specified by the specifying unit.
  • the diagnosis of the rolling equipment can be performed based on the stored information. This makes it easy to diagnose the rolling equipment.
  • the diagnostic device comprises: A second analysis is performed to analyze the frequency of the second sound data detected by the acoustic sensor in a state where the excitation unit is not operated during operation of the rolling facility, and to show a correlation between the frequency and the amplitude of the second sound data.
  • a second frequency analysis unit for acquiring a frequency spectrum;
  • a diagnosis unit configured to diagnose the state of the rolling equipment based on a comparison between an amplitude at the natural vibration frequency specified by the specifying unit in the second frequency spectrum and a threshold value; Prepare.
  • the first frequency analysis unit obtains the first frequency spectrum for the first sound data including sound detected by the acoustic sensor under a plurality of conditions with different excitation frequencies when the rolling equipment is inspected.
  • Configured as The diagnostic device comprises: The apparatus further includes a diagnosis unit configured to diagnose the state of the rolling facility based on a comparison between an amplitude at the natural vibration frequency specified by the specifying unit in the first frequency spectrum and a threshold value.
  • the state of the rolling equipment is diagnosed based on the frequency analysis result (first frequency spectrum) of the first sound data acquired while vibrating the motor during the inspection of the rolling equipment. It is possible to detect a sign of abnormality in the rolling equipment that cannot be detected during operation of the rolling equipment that does not vibrate the motor.
  • the diagnostic device comprises: A storage device for storing information associated with the part of the rolling equipment and the natural vibration frequency of the part specified by the specifying unit;
  • the diagnosis unit is configured to determine the state of the part based on a comparison between an amplitude at the natural vibration frequency specified by the specifying part with respect to the part in the first frequency spectrum or the second frequency spectrum and a threshold value.
  • the diagnostic device comprises: When the diagnosis unit determines that an abnormality has occurred in the site, the diagnostic unit further includes a display unit for displaying information stored in the storage device regarding the site.
  • the diagnosis unit determines that an abnormality has occurred in the site of the rolling facility, the diagnosis result by the diagnosis unit is displayed on the display unit. The occurrence can be recognized promptly.
  • the diagnosis unit is configured to determine that an abnormality has occurred in the rolling facility when an amplitude at the natural vibration frequency of the first frequency spectrum or the second frequency spectrum is larger than the threshold.
  • the amplitude at the actual natural vibration frequency of the rolling equipment in the analysis result (first frequency spectrum or second frequency spectrum) of the first sound data or the second sound data is compared with a threshold value. Since it did in this way, the presence or absence of generation
  • the diagnostic device comprises: The apparatus further includes an amplitude normalization unit for normalizing the first sound data or the second sound data with the torque of the motor with respect to the amplitude.
  • the first sound data or the second sound data is normalized by the motor torque with respect to the amplitude, so that the influence on the amplitude due to the increase or decrease in the motor torque is reduced to the sound data. Can be converted. Therefore, the diagnosis accuracy can be improved by diagnosing the state of the rolling equipment based on the first frequency spectrum or the second frequency spectrum acquired based on the normalized sound data.
  • the diagnostic device comprises: The apparatus further comprises a frequency normalization unit for normalizing the first sound data with respect to the frequency with the actual speed of the motor.
  • the first sound data can be converted into sound data that does not depend on the actual speed of the motor by normalizing the first sound data with respect to the actual speed of the motor. Therefore, the diagnosis accuracy can be improved by diagnosing the state of the rolling equipment based on the first frequency spectrum obtained based on the normalized sound data.
  • the power transmission unit includes a gear or a spindle driven by the motor.
  • the gear or spindle that is the power transmission unit is connected to the motor. Therefore, as described in (1) above, by exciting the motor, The vibration frequency can be specified.
  • a diagnostic method for a rolling facility includes: A diagnostic method for diagnosing a rolling facility including a motor, a rolling roll driven by the motor, and a power transmission unit for transmitting power of the motor to the rolling roll, Detecting sound generated from the rolling equipment; Exciting the motor; Frequency analysis is performed on the first sound data detected by performing the step of detecting the sound while changing the excitation frequency for exciting the motor, and a correlation between the frequency and the amplitude of the first sound data is obtained. Obtaining a first frequency spectrum to be shown.
  • the power transmission unit connected to the motor and the rolling are vibrated by exciting the motor. It can be used as an excitation source for the roll.
  • the motor is vibrated while changing the vibration frequency, the frequency of the motor and the devices (power transmission unit and rolling roll) connected to the motor are changed. Therefore, the actual natural vibration frequency of the rolling equipment can be identified based on the analysis result (first frequency spectrum) of the first sound data acquired by changing the excitation frequency.
  • an expression representing a relative or absolute arrangement such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial”. Represents not only such an arrangement strictly but also a state of relative displacement with tolerance or an angle or a distance to obtain the same function.
  • an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
  • expressions representing shapes such as quadrangular shapes and cylindrical shapes not only represent shapes such as quadrangular shapes and cylindrical shapes in a strict geometric sense, but also within a range where the same effects can be obtained.
  • a shape including an uneven portion or a chamfered portion is also expressed.
  • the expression “comprising”, “including”, or “having” one constituent element is not an exclusive expression for excluding the existence of the other constituent elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

圧延設備の診断装置は、モータと、前記モータによって駆動される圧延ロールと、前記モータの動力を前記圧延ロールに伝達するための動力伝達部と、を含む圧延設備を診断するための診断装置であって、前記圧延設備から発生する音を検知するための音響センサと、前記モータを加振するための加振部と、前記加振部により前記モータが加振された状態で前記音響センサにより検知された第1音データの周波数解析を行い、前記第1音データの周波数と振幅との相関関係を示す第1周波数スペクトルを取得するための第1周波数解析部と、を備え、前記加振部は、前記モータを加振する加振周波数を変更可能に構成される。

Description

圧延設備の診断装置及び診断方法
 本開示は、圧延設備の診断装置及び診断方法に関する。
 圧延設備で生じる振動を検出し、その検出結果に基づいて圧延設備の異常発生等を診断することがある。
 例えば、特許文献1には、集音マイクロフォンを用いて圧延機の騒音を検出し、検出された騒音データの騒音レベルを、予め取得された圧延機の正常時における騒音データの騒音レベルと比較することにより、圧延機の異常の有無を判定することが開示されている。
 また、特許文献2には、圧延機において生じるチャタリング発生原因として考えられる各部の固有振動周波数を計算により求めたうえで、圧延機の振動の実測値の周波数分析を行い、周波数分析結果における上述の固有振動周波数(計算値)での振動レベルと閾値との比較を行うことにより、チャタリング発生原因を特定することが開示されている。
特開平4-123807号公報 特許第2964887号公報
 しかし、特許文献1の記載の異常予知支援装置では、圧延設備の中のどの部位に異常が生じているか特定することができない。
 また、同じ機種の圧延設備であっても、部品の製造公差や、組立て手法の違い等に起因して、実際の固有振動周波数には個体差が存在するのが通常である。あるいは、計算により固有振動周波数を求める場合、モデル化の精度によって計算結果が異なる場合がある。そのため、特許文献2のように固有振動周波数(固有振動数)を計算により求めると、実際の固有振動周波数からずれるおそれがある。したがって、圧延設備の実際の固有振動周波数を特定することは、診断精度を向上させるうえで重要である。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、圧延設備の固有振動周波数を特定可能な圧延設備の診断装置及び診断方法を提供することを目的とする。
 本発明の少なくとも一実施形態に係る圧延設備の診断装置は、
 モータと、前記モータによって駆動される圧延ロールと、前記モータの動力を前記圧延ロールに伝達するための動力伝達部と、を含む圧延設備を診断するための診断装置であって、
 前記圧延設備から発生する音を検知するための音響センサと、
 前記モータを加振するための加振部と、
 前記加振部により前記モータが加振された状態で前記音響センサにより検知された第1音データの周波数解析を行い、前記第1音データの周波数と振幅との相関関係を示す第1周波数スペクトルを取得するための第1周波数解析部と、を備え、
 前記加振部は、前記モータを加振する加振周波数を変更可能に構成される。
 本発明の少なくとも一実施形態によれば、圧延設備の固有振動周波数を特定可能な圧延設備の診断装置及び診断方法が提供される。
一実施形態に係る診断装置及び診断対象の圧延設備を示す概略構成図である。 一実施形態に係る診断装置の処理部の概略構成図である。 一実施形態に係るモータ制御部の概略構成図である。 一実施形態に係るモータ制御部の概略構成図である。 一実施形態に係る圧延設備の診断方法の概要を示すフローチャートである。 図1に示す圧延設備の振動モデルを示す図である。 圧延設備の設計に基づいて算出される予想固有振動周波数と、一実施形態に係る診断装置により特定される実際の固有振動周波数との対応を示すテーブルを示す図である。 第1周波数スペクトルの一例を示す図である。 一実施形態に係る圧延設備の診断方法のフローチャートの一例である。 一実施形態に係る圧延設備の診断方法のフローチャートの一例である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 まず、図1を参照して、幾つかの実施形態に係る診断装置及び診断方法の診断対象となる圧延設備について説明する。図1は、一実施形態に係る診断装置及び診断対象の圧延設備を示す概略構成図である。
 図1に示すように、圧延設備1は、モータ2と、モータ2によって駆動される圧延ロール8と、モータ2の動力を圧延ロール8に伝達するための動力伝達部3と、を含む。
 圧延ロール8は、金属帯板9を圧延するように構成されており、金属帯板9を上下から挟み込んで金属帯板9に荷重を加えるための一対のワークロール12A,12Bと、一対のワークロール12A,12Bをそれぞれ挟んで金属帯板9とは、それぞれ反対側に設けられる一対の中間ロール14A,14B及び一対のバックアップロール16A,16Bと、を含む。中間ロール14A,14Bは、それぞれ、ワークロール12A,12Bと、バックアップロール16A,16Bとの間に設けられる。
 動力伝達部3は、モータ2によって駆動されるギア4及びスピンドル6を含む。すなわち、ギア4はモータ2に接続されており、スピンドル6は、ギア4を介してモータ2に接続されている。また、圧延ロール8は、ギア4及びスピンドル6を介して、モータ2に接続されている。したがって、モータ2の振動は、ギア4、スピンドル6及び圧延ロール8に伝達するようになっている。
 モータ2に入力される電圧又は電流は、モータ制御部10によって制御されるようになっている。後述するように、モータ制御部10は、圧延設備1の診断装置30の加振部18として機能する高周波成分付与部26を含む。
 次に、図1~図4を参照して、一実施形態に係る診断装置の構成について説明する。
 図2は、一実施形態に係る診断装置30の処理部34の概略構成図であり、図3及び図4は、それぞれ、一実施形態に係るモータ制御部10の概略構成図である。なお、図3及び図4では、説明の簡素化のため、スピンドル6(図1参照)の図示を省略している。
 図1に示すように、一実施形態に係る診断装置30は、圧延設備1から発生する音を検知するための音響センサ32と、音響センサ32により検知された音データを処理するための処理部34と、処理部での処理結果等を記憶するための記憶装置36と、処理部34での処理結果を表示するための表示部38と、を含んでいる。また、診断装置30は、モータ2を加振するための加振部18を含んでいる。
 一実施形態では、音響センサ32は、集音マイクロフォンを含んでいてもよい。
 診断装置30の処理部34は、音響センサ32により検知された音データの周波数解析を行うように構成された第1周波数解析部40及び第2周波数解析部46と、圧延設備1の実際の固有振動周波数(固有振動数)を特定するための特定部42と、圧延設備1の状態を診断するための診断部50と、を含む。また、処理部34は、第1音データ又は第2音データを正規化処理するための周波数正規化部44及び振幅正規化部48を含む。
 第1周波数解析部40は、加振部18によりモータ2が加振された状態で、音響センサ32によって検知された第1音データの周波数解析を行って、第1音データの周波数と振幅との相関関係を示す第1周波数スペクトルを取得するように構成される。
 第2周波数解析部46は、加振部18が作動していない状態で(即ち、加振部18によりモータ2が加振されていない状態で)、音響センサ32によって検知された第2音データの周波数解析を行って、第2音データの周波数と振幅との相関関係を示す第2周波数スペクトルを取得するように構成される。
 幾つかの実施形態では、上述したように、モータ制御部10の高周波成分付与部26が加振部18として機能する。
 図3及び図4に示すように、モータ制御部10は、モータ2の目標速度に応じて決まる速度指令と、速度センサ28により検出されるモータ2の実速度との差分に基づいて、モータ2に付与する電流指令値I*を算出して、電流指令値I*に相当する電流をモータ2に出力するように構成されている。
 より詳細には、モータ制御部10は、速度制御部(Automatic Speed Regulator;ASR)20と、電流制御部(Automatic Current Regulator;ACR)22と、インバータ24と、上述の加振部18としての高周波成分付与部26と、を含む。
 速度制御部20は、圧延に必要なモータ速度に応じて、モータ速度のフィードバック偏差に基づきモータ速度を一定に制御するように構成される。
 電流制御部22は、圧延に必要なモータトルクに応じて、モータ2の電流を制御するように構成される。
 インバータ24は、電流制御部22から入力される電流指令に応じた電流を、モータ2に印加するように構成される。
 高周波成分付与部26は、モータ2の速度指令値又はトルク指令値に対して、加振周波数の成分を重畳するように構成されている。上述の加振周波数は、モータ2の回転数よりも大きな値であってもよい。本明細書において、モータ2の回転数よりも高い周波数である加振周波数の成分を、高周波成分という。
 図3に示す例示的な実施形態では、モータ制御部10に入力される速度指令値に対して、加振周波数の成分(高周波成分)が重畳されるようになっている。
 図4に示す例示的な実施形態では、モータ制御部10に入力されるトルク指令値に対して、加振周波数の成分(高周波成分)が重畳されるようになっている。なお、上述のトルク指令値は、速度制御部20の出力に対して加算されるようになっている。
 図3及び図4に示すモータ制御部10において、速度指令値又はトルク指令値に対して高周波成分を重畳しない場合、インバータ24が受け取る電流指令値は、図中に示す曲線Iのように、滑らかな正弦波の形状を有する。この場合、モータ2は、高周波成分付与部26(加振部18)によって加振されない。
 一方、図3及び図4に示すモータ制御部10において、速度指令値又はトルク指令値に対して高周波成分を重畳する場合、インバータ24が受け取る電流指令値は、図中に示す曲線I*のように、細かく振動する成分が重畳された(高周波成分が重畳された)正弦波の形状を有する。したがって、高周波成分が重畳された電流指令値I*に相当する電流をインバータ24からモータ2に与えることによって、モータ2が加振される。
 高周波成分付与部26(加振部18)は、加振周波数を変更可能に構成されている。
 また、高周波成分付与部26(加振部18)は、加振周波数を連続的に変化できるように構成されている。
 例えば、モータ制御部10において、速度指令値又はトルク指令値に対して重畳させる加振周波数を連続的に徐々に増加させることにより、上述の電流指令値I*に重畳される高周波成分の周波数が徐々に増大するので、モータ2の加振振動数を徐々に増大させることができる。
 次に、図5~図10を参照して、上述した診断装置30により圧延設備1の実際の固有振動周波数を特定する手順、及び、特定した実際の固有振動周波数に基づき圧延設備の診断を行う手順について説明する。
 図5は、一実施形態に係る圧延設備の診断方法の概要を示すフローチャートである。
 図5に示すように、一実施形態に係る圧延設備1の診断方法では、まず、圧延ロール8を駆動するモータ2を加振部18で加振させ、加振部18によりモータ2に与える加振周波数を連続的に変化させながら(例えば増大させながら)、圧延設備1から発生する音を音響センサ32により検知して、第1音データを取得する(ステップS2)。なお、第1音データとは、加振部18によりモータ2が加振された状態で、音響センサ32によって検知された音データのことである。
 次に、第1周波数解析部40によって、第1音データの周波数解析を行い、第1音データの周波数と振幅との相関関係を示す第1周波数スペクトルを取得する(ステップS4)。
 次に、特定部42により、ステップS4で取得した第1周波数スペクトルに基づいて、圧延設備1の実際の固有振動周波数を特定する(ステップS6)。
 そして、診断部50により、ステップS6で特定された実際の固有振動周波数に基づき、圧延設備1の状態の診断を行う(ステップS8)。
 ここで、ステップS6において、第1周波数スペクトルに基づいて圧延設備1の実際の固有振動を特定する手順についてより具体的に説明する。
 図6は、図1に示す圧延設備1の振動モデルを示す図であり、図7は、圧延設備1の設計に基づいて算出された予想固有振動周波数と、一実施形態に係る診断装置30により特定された実際の固有振動周波数との対応を示すテーブルを示す図であり、図8は、第1周波数スペクトルの一例を示す図である。
 ステップS6では、圧延設備1の設計に基づき算出される、圧延設備の各部位の予想固有振動周波数と、ステップS4で取得された第1周波数スペクトルとを比較することにより、圧延設備の各部位の実際の固有振動周波数を特定する。
 圧延設備1の各部位の予想固有振動周波数は、以下の手順で予め算出される。
 圧延設備1は、各部位(ギア4、スピンドル6及び圧延ロール8等)の質量及びばね定数を用いた振動モデルで表現することができる。なお、図6において、ギア4は、複数のギア4a~4cを有しており、図中のG1~G3は、それぞれ、上述の振動モデルにおけるギア4a~4cの質量を示す。また、図中のM1~M6は、それぞれ、上述の振動モデルにおける圧延ロール8を構成するロール(ワークロール12A,12B、中間ロール14A,14B及びバックアップロール16A,16B)の質量をそれぞれ示す。
 圧延設備1の各部位の予想固有振動周波数は、例えば、上述の振動モデルに基づいて(即ち、振動モデルにおける質量及びばね定数等を用いて)算出することができる。
 ここで、圧延設備1の各部位において、複数の振動モードが存在する場合には、当該部位についてそれぞれの振動モードでの予想固有振動周波数を算出するようにしてもよい。図6に示す例では、ギア4(ギアボックス)に複数のギア4a~4cが含まれ、複数のギア4a~4cの組み合わせにより複数の振動モードが存在する。また、圧延ロール8には複数のロール(ワークロール12A,12B、中間ロール14A,14B及びバックアップロール16A,16B)が含まれ、これら複数のロールの組み合わせにより複数の振動モードが存在する。
 このようにして算出された各部位についての予想固有振動周波数は、予め記憶装置36に記憶されていてもよい。
 図7のテーブルの「予想固有振動数」の行には、上述のようにして算出された各部位についての予想固有振動周波数の一例が示されている。
 図8に示す第1周波数スペクトルからは、圧延設備1における幾つかの部位についての実際の固有振動周波数(図8におけるf1~f8)を把握することができる。圧延設備1の各部位は、固有振動周波数と同じ周波数の振動が与えられると共振して振動が大きくなる。振動が大きくなることにより発生する音も大きくなるので、検知される音データから得られる第1周波数スペクトルの振幅も大きくなる。すなわち、第1周波数スペクトルにおいて、振幅が突出している周波数を、圧延設備1の何れかの部位における各振動モードに対応した実際の固有振動周波数(f1~f8)であると把握できる。
 ここで、第1周波数スペクトルから把握される実際の固有振動周波数f1~f8の中で、最も周波数が低い固有振動周波数f1(=47Hz)に着目する。この固有振動周波数f1(=47Hz)と、図7のテーブルの予想固有振動周波数とを比べると、固有振動周波数f1(=47Hz)の近傍の予想固有振動周波数として、ギア4の振動モード1の予想固有振動周波数(42Hz)が存在する。このことから、ギア4の振動モード1の実際の固有振動周波数は、f1(=47Hz)である、と特定できる。
 すなわち、圧延設備1の設計に基づき算出された特定の部位の予想固有振動周波数と、該予想固有振動周波数の近傍に存在する、実際の固有振動周波数(第1周波数スペクトルから測定される固有振動周波数)と、に基づいて、上述の特定の部位の実際の固有振動周波数をより精度良く特定する。
 言い換えると、第1周波数スペクトルにおいて圧延設備1の設計に基づき算出される圧延設備1の特定の部位の予想固有振動周波数を含む固有振動周波数帯(図8においてf1*~f8*で示す)に含まれる成分のうち、振幅が比較的大きい(あるいは、振幅が閾値よりも大きい)成分の周波数を、上述の部位の実際の固有振動周波数として特定する。
 同様にして、第1周波数スペクトルから測定される実際の固有周波数f2~f8について、圧延設備1の設計に基づき算出された予想固有振動周波数との比較により、圧延設備1のうちのいずれの部位の固有振動周波数であるかを特定することができる。
 このようにして特定された圧延設備1の部位と実際の固有周波数f1~f8とが関連付けられた情報は、記憶装置36に記憶されるようになっていてもよい。
 図7のテーブルの「実際の固有振動数」の行には、上述のようにして特定された各部位についての実際の固有振動周波数(f1~f8)の一例が示されている。すなわち、記憶装置36には、図7に示すテーブルが記憶されるようになっていてもよい。
 診断対象となる圧延設備1の部位は、上記で説明したギア4、スピンドル6、圧延ロール8だけでなく、モータ2の振動が伝播可能な回転体やモータ2自身にも及ぶ。
 次に、ステップS8での診断部50による圧延設備1の状態の診断についてより具体的に説明する。図9及び図10は、それぞれ、一実施形態に係る圧延設備の診断方法(図5のステップS8)のフローチャートの一例である。
 図9に示す診断方法では、圧延設備1の操業時にモータ2の加振をせずに取得する音データ(第2音データ)に基づいて診断を行う。
 まず、圧延設備1の操業中に(すなわち、圧延設備1で金属帯板9を圧延している状態で)、加振部18を作動させない状態で、音響センサ32により、圧延設備1から発生する音を検知して、第2音データを取得する(ステップS12)。
 次に、振幅正規化部48によって、ステップS12で取得した第2音データを振幅に関してモータ2のトルクで正規化する(ステップS14)。
 圧延速度を上昇させたり、圧延する金属帯板がより厚いものに変更されたりする場合には、モータ2のトルクが増大する。そして、モータ2のトルクが大きくなるほど、検出される音データの振幅は大きくなる。このため、モータ2のトルクの変化を考慮せずに生の音データを用いて圧延設備1の診断をするのでは、誤診断となってしまう可能性がある。そこで、上述のように、音響センサ32で得られた第2音データを振幅に関してモータ2のトルクで正規化することで、モータ2のトルクが振幅に及ぼし得る影響を補正したうえで、圧延設備1の診断を行うことができる。
 モータトルクMのときの第2音データにおける振幅Aは、下記式に示すように、(M/Mref)の関数f(M/Mref)を用いて表すことができる。ただし、下記式において、Arefは第2音データにおける規定のモータトルクMrefでの振幅値である。
  A=Aref×f(M/Mref
 そこで、ステップS14では、振幅正規化部48は、例えば上記式を用いて第2音データの正規化を行ってもよい。
 次に、ステップS14で振幅に関して正規化した第2音データについて、第2周波数解析部46により周波数解析を行い、正規化した第2音データの周波数と振幅との相関関係を示す第2周波数スペクトルを取得する(ステップS16)。
 次に、診断部50により、ステップS16で取得した第2周波数スペクトルにおいて、ステップS6(図5参照)で特定した診断対象の部位(例えばギヤ4等)の実際の固有振動周波数における振幅を取得する(ステップS18)。
 なお、ステップS6で特定した各部位における実際の固有振動周波数が記憶装置36に記憶されている場合、ステップS18では、記憶装置36から各部位と実際の固有振動周波数に関する情報を取得するようになっていてもよい。
 次に、診断部50により、ステップS18で取得した振幅を閾値と比較し(ステップS20)、該振幅が閾値よりも大きい場合、(ステップS20のYes)、診断対象の部位において、異常が生じていると判定する(ステップS22)。
 なお、上述の閾値は、圧延設備1の正常時に取得した第2周波数スペクトルにおける、該当部位の実際の固有振動周波数における振幅に基づいて設定されていてもよい。
 診断部50対象部位に異常が生じていると判定された場合(ステップS22)、その部位の名称及びその部位に関する情報(例えば、実際の固有振動周波数)を、表示部38に表示するようになっていてもよい。
 この際、診断部50は、対象部位の名称及びその部位に関する情報を記憶装置36から読み出し、その結果を表示部38に表示させるようになっていてもよい。
 図10に示す診断方法では、圧延設備1の点検時に、モータ2を加振しながら取得する音データ(第1音データ)に基づいて診断を行う。
 まず、圧延設備1の点検時に(すなわち、圧延設備1で金属帯板9の圧延を行っていない状態で)、加振部18でモータ2を加振し、加振部18によりモータ2に与える加振周波数を連続的に変化させながら、音響センサ32により、圧延設備1から発生する音を検知して、第1音データを取得する(ステップS32)。
 次に、周波数正規化部44によって、ステップS32で取得した第1音データを周波数に関してモータ2の実速度で正規化する(ステップS34)。
 このように、音響センサ32で得られた第1音データを周波数に関してモータ2の実速度で正規化することで、第1音データに含まれる、モータ速度に依存しない成分を補正した状態で(すなわち、バックグラウンド音を低減した状態で)、圧延設備1の診断を行うことができる。
 次に、振幅正規化部48によって、ステップS34で正規化された第1音データを振幅に関してモータ2のトルクで正規化する(ステップS36)。
 このように、音響センサ32で得られた第1音データを振幅に関してモータ2のトルクで正規化することで、モータ2のトルクが振幅に及ぼし得る影響を補正したうえで、圧延設備1の診断を行うことができる。なお、例えば、上述したステップS14と同様の方法で、第1音データを振幅に関して正規化することができる。
 次に、ステップS36で周波数及び振幅に関して正規化した第1音データについて、第1周波数解析部40により周波数解析を行い、正規化した第1音データの周波数と振幅との相関関係を示す第1周波数スペクトルを取得する(ステップS38)。
 次に、診断部50により、ステップS38で取得した第1周波数スペクトルにおいて、ステップS6(図5参照)で特定した診断対象の部位(例えばギヤ4等)の実際の固有振動周波数における振幅を取得する(ステップS40)。
 なお、ステップS6で特定した各部位における実際の固有振動周波数が記憶装置36に記憶されている場合、ステップS40では、記憶装置36から各部位と実際の固有振動周波数に関する情報を取得するようになっていてもよい。
 次に、診断部50により、ステップS40で取得した振幅を閾値と比較し(ステップS42)、該振幅が閾値よりも大きい場合、(ステップS42のYes)、診断対象の部位において、異常が生じていると判定する(ステップS44)。
 なお、上述の閾値は、圧延設備1の正常時に取得した第1周波数スペクトルにおける、該当部位の実際の固有振動周波数における振幅に基づいて設定されていてもよい。
 あるいは、上述の閾値は、ある過去の時点での圧延設備1の点検時に得られた第1周波数スペクトルにおける、該当部位の実際の固有振動周波数における振幅に基づいて設定されていてもよい。このように、圧延設備の特定の部位に対応する固有振動周波数について、ある時点での点検時に得られた振幅と、それとは異なる時点での点検時に得られた振幅とを比較して診断することで、複数の時点間における、当該部位の状態の変化(異常の進行等)を検知することができる。
 診断部50対象部位に異常が生じていると判定された場合(ステップS44)、その部位の名称及びその部位に関する情報(例えば、実際の固有振動周波数)を、表示部38に表示するようになっていてもよい。
 この際、診断部50は、対象部位の名称及びその部位に関する情報を記憶装置36から読み出し、その結果を表示部38に表示させるようになっていてもよい。
 以下、幾つかの実施形態に係る圧延設備の診断装置及び診断方法について概要を記載する。
(1)本発明の少なくとも一実施形態に係る圧延設備の診断装置は、
 モータと、前記モータによって駆動される圧延ロールと、前記モータの動力を前記圧延ロールに伝達するための動力伝達部と、を含む圧延設備を診断するための診断装置であって、
 前記圧延設備から発生する音を検知するための音響センサと、
 前記モータを加振するための加振部と、
 前記加振部により前記モータが加振された状態で前記音響センサにより検知された第1音データの周波数解析を行い、前記第1音データの周波数と振幅との相関関係を示す第1周波数スペクトルを取得するための第1周波数解析部と、を備え、
 前記加振部は、前記モータを加振する加振周波数を変更可能に構成される。
 上記(1)の構成によれば、モータと圧延ロールとが動力伝達部を介して接続されているので、加振部でモータを加振することで、モータを、該モータに接続される動力伝達部及び圧延ロールの加振源とすることができる。また、加振部によってモータに加える加振周波数を変更可能であるため、加振周波数を変更することでモータ及び該モータに接続された機器(動力伝達部及び圧延ロール)の振動数が変更される。よって、加振周波数を変更して取得した第1音データの解析結果(第1周波数スペクトル)に基づいて、圧延設備の実際の固有振動周波数を特定することができる。よって、例えば、このように特定した固有振動周波数を用いることで、圧延設備において異常が生じた部位を特定する診断精度を向上することができる。
(2)幾つかの実施形態では、上記(1)の構成において、
 前記加振部は、前記加振周波数を連続的に変化させるように構成される。
 上記(2)の構成によれば、モータに加える加振周波数を連続的に変化させるようにしたので、上述の加振周波数を連続的に変化させながら第1音データを取得することで、該第1音データの解析結果(第1周波数スペクトル)に基づいて、圧延設備の実際の固有振動周波数を容易に特定することができる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記診断装置は、
 前記モータに印加する電圧又は電流を制御するように構成されたモータ制御部をさらに備え、
 前記モータ制御部は、前記加振部としての高周波成分付与部を含み、
 前記高周波成分付与部は、前記モータの速度指令値又はトルク指令値に対して、前記加振周波数の成分を重畳するように構成される。
 上記(3)の構成によれば、モータ制御部に与えるモータの速度指令値又はトルク指令値に対して加振周波数の成分(高周波成分)を重畳するようにしたので、モータに与える電流指令又は電圧指令に上述の高周波成分を含ませることができる。よって、モータの回転数よりも大きい振動数で該モータを振動させることができる。また、高周波成分付与部により重畳される高周波成分の周波数を変更することで、モータの振動数を容易に変化させることができる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、
 前記第1周波数解析部は、前記加振周波数が異なる複数の条件においてそれぞれ前記音響センサにより検知された音を含む前記第1音データについて前記第1周波数スペクトルを取得するように構成され、
 前記診断装置は、
 前記第1周波数スペクトルにおいて前記圧延設備の設計に基づき算出される前記圧延設備の特定の部位の予想固有振動周波数を含む固有振動周波数帯に含まれる成分の振幅に基づいて、前記圧延設備の前記部位の固有振動周波数を特定するように構成された特定部をさらに備える。
 圧延設備の実際の固有振動周波数は、通常、圧延設備の設計から理論上予測される予想固有振動周波数(計算値)から大きく外れた値とはならず、該予想固有振動周波数の近傍の値となる。この点、上記(4)の構成によれば、第1周波数スペクトルにおいて、圧延設備の設計に基づき算出される特定部位の予想固有振動周波数の近傍の周波数帯に含まれる成分の振幅に着目するようにしたので、上述の特定部位の実際の固有振動周波数を特定することができる。
(5)幾つかの実施形態では、上記(4)の構成において、
 前記診断装置は、
 前記圧延設備の部位と、前記特定部によって特定された前記部位の固有振動周波数と、が関連づけられた情報を記憶するための記憶装置をさらに備える。
 上記(5)の構成によれば、圧延設備の部位と、該部位の実際の固有振動周波数とが関連付けられた情報を記憶装置に記憶できるので、記憶された情報に基づき圧延設備の診断することが可能となり、圧延設備の診断が容易となる。
(6)幾つかの実施形態では、上記(4)又は(5)の構成において、
 前記診断装置は、
 前記圧延設備の操業中に前記加振部を作動させない状態で前記音響センサにより検知された第2音データの周波数解析を行い、前記第2音データの周波数と振幅との相関関係を示す第2周波数スペクトルを取得するための第2周波数解析部と、
 前記第2周波数スペクトルにおける、前記特定部により特定された前記固有振動周波数での振幅と、閾値との比較に基づいて、前記圧延設備の状態を診断するように構成された診断部と、をさらに備える。
 上記(6)の構成によれば、圧延設備の操業中に取得される第2音データの周波数解析結果(第2周波数スペクトル)に基づいて圧延設備の状態を診断するので、圧延設備の操業を停止せずに圧延設備の診断を行うことができる。
(7)幾つかの実施形態では、上記(4)又は(5)の構成において、
 前記第1周波数解析部は、前記圧延設備の点検時に、前記加振周波数が異なる複数の条件においてそれぞれ前記音響センサにより検知された音を含む前記第1音データについて前記第1周波数スペクトルを取得するように構成され、
 前記診断装置は、
 前記第1周波数スペクトルにおける、前記特定部により特定された前記固有振動周波数での振幅と、閾値との比較に基づいて、前記圧延設備の状態を診断するように構成された診断部をさらに備える。
 上記(7)の構成によれば、圧延設備の点検時に、モータを加振させながら取得される第1音データの周波数解析結果(第1周波数スペクトル)に基づいて圧延設備の状態を診断するので、モータの加振を行わない圧延設備の操業中には検知できない圧延設備の異常の予兆を発見可能である。
(8)幾つかの実施形態では、上記(6)又は(7)の構成において、
 前記診断装置は、
 前記圧延設備の部位と、前記特定部によって特定された前記部位の固有振動周波数と、が関連づけられた情報を記憶するための記憶装置をさらに備え、
 前記診断部は、前記第1周波数スペクトル又は前記第2周波数スペクトルにおける、前記部位に関して前記特定部により特定された前記固有振動周波数での振幅と、閾値との比較に基づいて、前記部位の状態を診断するように構成され、
 前記診断装置は、
 前記診断部により前記部位に異常が発生したと判定されたとき、前記部位に関して前記記憶装置に記憶された情報を表示するための表示部をさらに備える。
 上記(8)の構成によれば、診断部により圧延設備の部位に異常が発生したと判定されたときに、診断部による診断結果を表示部に表示するようにしたので、オペレータ等が異常の発生を速やかに認知することができる。
(9)幾つかの実施形態では、上記(6)乃至(8)の何れかの構成において、
 前記診断部は、前記第1周波数スペクトル又は前記第2周波数スペクトルの前記固有振動周波数での振幅が前記閾値よりも大きいときに前記圧延設備に異常が発生したと判定するように構成される。
 上記(9)の構成によれば、第1音データ又は第2音データの解析結果(第1周波数スペクトル又は第2周波数スペクトル)における圧延設備の実際の固有振動周波数での振幅を閾値と比較するようにしたので、圧延設備における異常の発生の有無を判定することができる。
(10)幾つかの実施形態では、上記(6)乃至(9)の何れかの構成において、
 前記診断装置は、
 前記第1音データ又は前記第2音データを、振幅に関して前記モータのトルクで正規化するための振幅正規化部をさらに備える。
 上記(10)の構成によれば、第1音データ又は第2音データを、振幅に関してモータのトルクで正規化することで、モータのトルクの増減による振幅への影響が低減された音データに変換することができる。よって、このように正規化された音データに基づいて取得される第1周波数スペクトル又は第2周波数スペクトルに基づいて圧延設備の状態を診断することで、診断の精度を向上させることができる。
(11)幾つかの実施形態では、上記(1)乃至(10)の何れかの構成において、
 前記診断装置は、
 前記第1音データを、周波数に関して前記モータの実速度で正規化するための周波数正規化部をさらに備える。
 上記(11)の構成によれば、第1音データを周波数に関してモータの実速度で正規化することで、モータの実速度に依存しない音データに変換することができる。よって、このように正規化された音データに基づいて取得される第1周波数スペクトルに基づいて圧延設備の状態を診断することで、診断の精度を向上させることができる。
(12)幾つかの実施形態では、上記(1)乃至(11)の何れかの構成において、
 前記動力伝達部は、前記モータによって駆動されるギア又はスピンドルを含む。
 上記(12)の構成によれば、動力伝達部であるギア又はスピンドルは、モータに接続されているので、上記(1)ので述べたようにモータを加振することで、ギア又はスピンドルの固有振動周波数を特定することができる。
(13)本発明の少なくとも一実施形態に係る圧延設備の診断方法は、
 モータと、前記モータによって駆動される圧延ロールと、前記モータの動力を前記圧延ロールに伝達するための動力伝達部と、を含む圧延設備を診断するための診断方法であって、
 前記圧延設備から発生する音を検知するステップと、
 前記モータを加振するステップと、
 前記モータを加振する加振周波数を変化させながら前記音を検知するステップを行うことで検知された第1音データについて周波数解析を行い、前記第1音データの周波数と振幅との相関関係を示す第1周波数スペクトルを取得するステップと、を備える。
 上記(13)の方法によれば、モータと圧延ロールとが動力伝達部を介して接続されているので、モータを加振することで、モータを、該モータに接続される動力伝達部及び圧延ロールの加振源とすることができる。また、加振周波数を変更させながらモータを加振するので、モータ及び該モータに接続された機器(動力伝達部及び圧延ロール)の振動数が変更される。よって、加振周波数を変更して取得した第1音データの解析結果(第1周波数スペクトル)に基づいて、圧延設備の実際の固有振動周波数を特定することができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1    圧延設備
2    モータ
3    動力伝達部
4,4a~4c ギア
6    スピンドル
8    圧延ロール
9    金属帯板
10   モータ制御部
12A,12B ワークロール
14A,14B 中間ロール
16A,16B バックアップロール
18   加振部
20   速度制御部
22   電流制御部
24   インバータ
26   高周波成分付与部
28   速度センサ
30   診断装置
32   音響センサ
34   処理部
36   記憶装置
38   表示部
40   第1周波数解析部
42   特定部
44   周波数正規化部
46   第2周波数解析部
48   振幅正規化部
50   診断部

Claims (13)

  1.  モータと、前記モータによって駆動される圧延ロールと、前記モータの動力を前記圧延ロールに伝達するための動力伝達部と、を含む圧延設備を診断するための診断装置であって、
     前記圧延設備から発生する音を検知するための音響センサと、
     前記モータを加振するための加振部と、
     前記加振部により前記モータが加振された状態で前記音響センサにより検知された音を含む第1音データの周波数解析を行い、前記第1音データの周波数と振幅との相関関係を示す第1周波数スペクトルを取得するための第1周波数解析部と、を備え、
     前記加振部は、前記モータを加振する加振周波数を変更可能に構成された
    ことを特徴とする圧延設備の診断装置。
  2.  前記加振部は、前記加振周波数を連続的に変化させるように構成された
    ことを特徴とする請求項1に記載の圧延設備の診断装置。
  3.  前記モータに印加する電圧又は電流を制御するように構成されたモータ制御部をさらに備え、
     前記モータ制御部は、前記加振部としての高周波成分付与部を含み、
     前記高周波成分付与部は、前記モータの速度指令値又はトルク指令値に対して、前記加振周波数の成分を重畳するように構成された
    ことを特徴とする請求項1又は2に記載の圧延設備の診断装置。
  4.  前記第1周波数解析部は、前記加振周波数が異なる複数の条件においてそれぞれ前記音響センサにより検知された音を含む前記第1音データについて前記第1周波数スペクトルを取得するように構成され、
     前記第1周波数スペクトルにおいて前記圧延設備の設計に基づき算出される前記圧延設備の特定の部位の予想固有振動周波数を含む固有振動周波数帯に含まれる成分の振幅に基づいて、前記圧延設備の前記部位の固有振動周波数を特定するように構成された特定部をさらに備える
    ことを特徴とする請求項1乃至3の何れか一項に記載の圧延設備の診断装置。
  5.  前記圧延設備の部位と、前記特定部によって特定された前記部位の固有振動周波数と、が関連づけられた情報を記憶するための記憶装置をさらに備える
    ことを特徴とする請求項4に記載の圧延設備の診断装置。
  6.  前記圧延設備の操業中に前記加振部を作動させない状態で前記音響センサにより検知された音を含む第2音データの周波数解析を行い、前記第2音データの周波数と振幅との相関関係を示す第2周波数スペクトルを取得するための第2周波数解析部と、
     前記第2周波数スペクトルにおける、前記特定部により特定された前記固有振動周波数での振幅と、閾値との比較に基づいて、前記圧延設備の状態を診断するように構成された診断部と、をさらに備える
    ことを特徴とする請求項4又は5に記載の圧延設備の診断装置。
  7.  前記第1周波数解析部は、前記圧延設備の点検時に、前記加振周波数が異なる複数の条件においてそれぞれ前記音響センサにより検知された音を含む前記第1音データについて前記第1周波数スペクトルを取得するように構成され、
     前記第1周波数スペクトルにおける、前記特定部により特定された前記固有振動周波数での振幅と、閾値との比較に基づいて、前記圧延設備の状態を診断するように構成された診断部をさらに備える
    ことを特徴とする請求項4又は5に記載の圧延設備の診断装置。
  8.  前記圧延設備の部位と、前記特定部によって特定された前記部位の固有振動周波数と、が関連づけられた情報を記憶するための記憶装置をさらに備え、
     前記診断部は、前記第1周波数スペクトル又は前記第2周波数スペクトルにおける、前記部位に関して前記特定部により特定された前記固有振動周波数での振幅と、閾値との比較に基づいて、前記部位の状態を診断するように構成され、
     前記診断部により前記部位に異常が発生したと判定されたとき、前記部位に関して前記記憶装置に記憶された情報を表示するための表示部をさらに備える
    ことを特徴とする請求項6又は7に記載の圧延設備の診断装置。
  9.  前記診断部は、前記第1周波数スペクトル又は前記第2周波数スペクトルの前記固有振動周波数での振幅が前記閾値よりも大きいときに前記圧延設備に異常が発生したと判定するように構成された
    ことを特徴とする請求項6乃至8の何れか一項に記載の圧延設備の診断装置。
  10.  前記第1音データ又は前記第2音データを、振幅に関して前記モータのトルクで正規化するための振幅正規化部をさらに備える
    ことを特徴とする請求項6乃至9の何れか一項に記載の圧延設備の診断装置。
  11.  前記第1音データを、周波数に関して前記モータの実速度で正規化するための周波数正規化部をさらに備える
    請求項1乃至10の何れか一項に記載の圧延設備の診断装置。
  12.  前記動力伝達部は、前記モータによって駆動されるギア又はスピンドルを含む
    ことを特徴とする請求項1乃至11の何れか一項に記載の圧延設備の診断装置。
  13.  モータと、前記モータによって駆動される圧延ロールと、前記モータの動力を前記圧延ロールに伝達するための動力伝達部と、を含む圧延設備を診断するための診断方法であって、
     前記圧延設備から発生する音を検知するステップと、
     前記モータを加振するステップと、
     前記モータを加振する加振周波数を変化させながら前記音を検知するステップを行うことで検知された第1音データについて周波数解析を行い、前記第1音データの周波数と振幅との相関関係を示す第1周波数スペクトルを取得するステップと、
    を備えることを特徴とする圧延設備の診断方法。
PCT/JP2018/018777 2018-05-15 2018-05-15 圧延設備の診断装置及び診断方法 WO2019220542A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/018777 WO2019220542A1 (ja) 2018-05-15 2018-05-15 圧延設備の診断装置及び診断方法
JP2020518857A JP7035178B2 (ja) 2018-05-15 2018-05-15 圧延設備の診断装置及び診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018777 WO2019220542A1 (ja) 2018-05-15 2018-05-15 圧延設備の診断装置及び診断方法

Publications (1)

Publication Number Publication Date
WO2019220542A1 true WO2019220542A1 (ja) 2019-11-21

Family

ID=68539676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018777 WO2019220542A1 (ja) 2018-05-15 2018-05-15 圧延設備の診断装置及び診断方法

Country Status (2)

Country Link
JP (1) JP7035178B2 (ja)
WO (1) WO2019220542A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747128A (zh) * 2020-05-27 2021-12-03 明基智能科技(上海)有限公司 噪音判断方法及噪音判断装置
WO2023188439A1 (ja) * 2022-04-01 2023-10-05 三菱電機株式会社 駆動装置および劣化判別方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123807A (ja) * 1990-09-11 1992-04-23 Toshiba Corp 圧延機の異常予知支援装置
WO2000072989A1 (fr) * 1999-05-27 2000-12-07 Kawasaki Steel Corporation Procede et dispositif permettant de deceler le broutage d'un laminoir a froid
JP2004034147A (ja) * 2002-07-08 2004-02-05 Jfe Steel Kk 圧延機のロールの回転状況判定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123807A (ja) * 1990-09-11 1992-04-23 Toshiba Corp 圧延機の異常予知支援装置
WO2000072989A1 (fr) * 1999-05-27 2000-12-07 Kawasaki Steel Corporation Procede et dispositif permettant de deceler le broutage d'un laminoir a froid
JP2004034147A (ja) * 2002-07-08 2004-02-05 Jfe Steel Kk 圧延機のロールの回転状況判定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747128A (zh) * 2020-05-27 2021-12-03 明基智能科技(上海)有限公司 噪音判断方法及噪音判断装置
CN113747128B (zh) * 2020-05-27 2023-11-14 明基智能科技(上海)有限公司 噪音判断方法及噪音判断装置
WO2023188439A1 (ja) * 2022-04-01 2023-10-05 三菱電機株式会社 駆動装置および劣化判別方法
JP7499996B2 (ja) 2022-04-01 2024-06-14 三菱電機株式会社 駆動装置および劣化判別方法

Also Published As

Publication number Publication date
JPWO2019220542A1 (ja) 2021-05-27
JP7035178B2 (ja) 2022-03-14

Similar Documents

Publication Publication Date Title
US6014598A (en) Model-based fault detection system for electric motors
Soylemezoglu et al. Mahalanobis Taguchi system (MTS) as a prognostics tool for rolling element bearing failures
US9267864B2 (en) Method for identifying damage on transmissions
US8768634B2 (en) Diagnosis method of defects in a motor and diagnosis device thereof
Picot et al. Statistic-based spectral indicator for bearing fault detection in permanent-magnet synchronous machines using the stator current
JP2000513097A (ja) 電気モータ用のモデル・ベースの故障検出システム
US20170160125A1 (en) Apparatus and method for diagnosing rotor shaft
JP2008292288A (ja) 減速機の軸受診断装置
JP7146683B2 (ja) 転がり軸受の異常診断方法及び異常診断装置、異常診断プログラム
WO2019220542A1 (ja) 圧延設備の診断装置及び診断方法
JP2017101954A (ja) 機械設備の評価方法
WO2019074002A1 (ja) 異常診断装置、異常診断方法、及び異常診断プログラム
JP2000171291A (ja) 故障診断方法および故障診断器
JP2020024139A (ja) 製品検査装置
CN111855195B (zh) 用于齿轮箱的异常检测方法以及信息处理设备
JP5958932B2 (ja) 動的設備の状態監視システムとその方法とそのプログラム
JP6940820B2 (ja) ロボット制御装置、保守管理方法、及び保守管理プログラム
JP6497919B2 (ja) 回転体およびその軸受を含む設備の診断方法と診断システム
JP2013205048A (ja) 回転機械の健全性診断方法
JP6192414B2 (ja) 転がり軸受の状態監視装置
CN101943632A (zh) 电气传动系统、识别该系统和/或探测损伤的方法及装置
EP3929460B1 (en) Anomaly detection system and anomaly detection method
JP2017161225A (ja) 風力発電システムの異常予兆診断システム
JP7077426B2 (ja) 診断装置及びこれを備えた設備並びに診断方法
US20230213375A1 (en) Vibro-electric condition monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918693

Country of ref document: EP

Kind code of ref document: A1