WO2019220514A1 - Optical semiconductor device and method of manufacturing same - Google Patents

Optical semiconductor device and method of manufacturing same Download PDF

Info

Publication number
WO2019220514A1
WO2019220514A1 PCT/JP2018/018602 JP2018018602W WO2019220514A1 WO 2019220514 A1 WO2019220514 A1 WO 2019220514A1 JP 2018018602 W JP2018018602 W JP 2018018602W WO 2019220514 A1 WO2019220514 A1 WO 2019220514A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
type
optical semiconductor
manufacturing
Prior art date
Application number
PCT/JP2018/018602
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 河原
涼子 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/018602 priority Critical patent/WO2019220514A1/en
Publication of WO2019220514A1 publication Critical patent/WO2019220514A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure

Definitions

  • the present invention relates to an optical semiconductor device and a method for manufacturing the same.
  • a semi-insulating buried layer is used for the purpose of current confinement to the active layer and heat dissipation from the active layer.
  • current injection efficiency into the active layer is reduced due to carrier leakage into the semi-insulating layer.
  • Patent Document 1 a structure that suppresses carrier leakage by using a p-type layer as the first buried layer is used (see, for example, Patent Document 1).
  • the active layer itself becomes p-type by diffusing the dopant of the p-type layer into the active layer. For this reason, there is a problem in that absorption between valence bands increases, optical loss increases, and threshold current increases. Further, when the doping concentration of the p-type layer is increased, the effect of suppressing carrier leakage is increased, but there is a trade-off problem that light loss due to the diffusion of the p-type dopant into the active layer also increases.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain an optical semiconductor device capable of suppressing the diffusion of p-type dopants into an active layer and a method for manufacturing the same.
  • An optical semiconductor device includes a semiconductor substrate, a first conductivity type cladding layer, an active layer, and a second conductivity type cladding layer sequentially stacked on the semiconductor substrate, and is processed into a mesa shape.
  • the first layer of the buried layer does not contain a p-type dopant. Therefore, even if the doping concentration of the p-type layer of the buried layer is increased in order to suppress carrier leakage, the diffusion of the p-type dopant from the p-type layer to the active layer can be suppressed.
  • FIG. 1 is a cross-sectional view showing a semiconductor device according to a first embodiment.
  • 7 is a cross-sectional view showing a manufacturing step of the semiconductor device according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing step of the semiconductor device according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing step of the semiconductor device according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing step of the semiconductor device according to the first embodiment.
  • FIG. 1 is a cross-sectional view showing the semiconductor device according to the first embodiment.
  • This semiconductor device is a semiconductor laser.
  • an n-type InP clad layer 2 On the n-type InP substrate 1, an n-type InP clad layer 2, an InGaAsP active layer 3, and a p-type InP clad layer 4 are laminated in order to form a laminate 5.
  • the laminated body 5 is processed into a mesa shape.
  • Embedded layers 6 are embedded on both sides of the laminate 5.
  • the buried layer 6 includes a first layer 7, a p-type InP layer 8, and an Fe-doped InP layer 9 that are sequentially stacked from the side surface of the stacked body 5.
  • the first layer 7 is an undoped InP layer and is in direct contact with the side wall of the InGaAsP active layer 3.
  • a p-type InP cladding layer 10 and a p-type InGaAs contact layer 11 are sequentially stacked on the stacked body 5 and the buried layer 6.
  • An insulating film 12 made of SiO 2 having an opening is provided on the p-type InGaAs contact layer 11.
  • An upper surface electrode 13 in which Ti, Pt, and Au are sequentially laminated is provided on the insulating film 12, and is connected to the p-type InGaAs contact layer 11 through an opening.
  • a lower surface electrode 14 in which Ti, Pt, and Au are sequentially laminated is provided on the lower surface of the n-type InP substrate 1.
  • FIG. 2 to 4 are cross-sectional views showing the manufacturing steps of the semiconductor device according to the first embodiment.
  • an n-type InP clad layer 2 an InGaAsP active layer 3, and a p-type InP clad layer 4 are sequentially laminated on an n-type InP substrate 1 to form a laminate 5.
  • a striped SiO 2 film 15 is formed on the stacked body 5.
  • the stacked body 5 is processed into a mesa shape by performing RIE etching using the SiO 2 film 15 as a mask.
  • the first layer 7, the p-type InP layer 8, and the Fe-doped InP layer 9 are sequentially stacked on both sides of the mesa-shaped stacked body 5.
  • the SiO 2 film 15 is removed with hydrofluoric acid, and the p-type InP cladding layer 10, the p-type InGaAs contact layer 11, the insulating film 12, the upper surface electrode 13 and the lower surface electrode 14 are formed.
  • the first layer 7 of the buried layer 6 does not contain a p-type dopant. Therefore, even if the doping concentration of the p-type InP layer 8 of the buried layer 6 is increased in order to suppress carrier leakage, the diffusion of the p-type dopant from the p-type InP layer 8 to the InGaAsP active layer 3 can be suppressed.
  • the semi-insulating Fe-doped InP layer 9 blocks current by trapping electrons. Instead of the Fe-doped InP layer 9, a semi-insulating layer with Ru as a dopant may be used. In place of the InGaAsP active layer 3, an active layer containing AlGaInAs may be used.
  • the first layer 7 of the buried layer 6 is an n-type InP layer.
  • the diffusion of the p-type dopant from the p-type InP layer 8 to the InGaAsP active layer 3 can be further suppressed.
  • the resistance of the n-type InP layer is low, a low-resistance current leak path is formed beside the InGaAsP active layer 3. Therefore, the carrier concentration of the n-type InP layer and the p-type InP layer 8 and the film thickness of the n-type InP layer are set so that the n-type InP layer is completely depleted beside the InGaAsP active layer 3.
  • the longitudinal resistance of the first layer 7 on the side of the InGaAsP active layer 3 can be made sufficiently large with respect to the resistance of the InGaAsP active layer 3, thereby suppressing current leakage through the first layer 7.
  • the thickness W of the depletion layer is expressed by the following equation.
  • epsilon s dielectric constant of InP the acceptor density of the N A p-type layer, the donor density of N D n-type layer
  • q is the electron elementary charge
  • V D -V is the voltage across the pn junction .
  • the depletion layer width xn on the n-type layer side is expressed by the following formula.
  • the first layer 7 of the buried layer 6 is an Fe-doped InP layer.
  • the diffusion of the p-type dopant into the InGaAsP active layer 3 can be suppressed.
  • the Fe-doped InP layer has a trapping effect on electrons from the n-type InP substrate 1 or the n-type InP clad layer 2, current leakage can be suppressed as compared with the first embodiment.
  • the first layer 7 of the buried layer 6 is a Ru-doped InP layer. Since the Ru-doped InP layer has a hole trap effect, the diffusion of the p-type dopant from the p-type InP layer 8 to the InGaAsP active layer 3 can be further suppressed.
  • n-type InP substrate semiconductor substrate
  • 2 n-type InP clad layer first conductivity type clad layer
  • 3 InGaAsP active layer active layer
  • 4 p-type InP clad layer second conductivity type clad layer
  • 5 Laminated body 6 buried layer (buried layer), 7 first layer, 8 p-type InP layer (p-type layer), 9 Fe-doped InP layer (semi-insulating layer)

Abstract

A stack (5) is composed of a first conductivity type cladding layer (2), an active layer (3), and a second conductivity type cladding layer (4) stacked in this order on a semiconductor substrate (1). The stack (5) is fabricated into a mesa shape. Filling layers (6) fill in the space on both sides of the stack (5). The filling layers (6) each have a first layer (7), a p-type layer (8), and a semi-insulating layer (9) that are stacked in this order from the side surface of the stack (5). The first layer (7) is in contact with a side wall of the active layer (3) and does not contain a p-type dopant.

Description

光半導体装置及びその製造方法Optical semiconductor device and manufacturing method thereof
 本発明は、光半導体装置及びその製造方法に関する。 The present invention relates to an optical semiconductor device and a method for manufacturing the same.
 半導体レーザを代表とする光半導体装置では、活性層への電流狭窄と活性層からの放熱を目的として半絶縁性の埋め込み層が用いられている。しかし、半絶縁層へのキャリアのリークにより活性層への電流注入効率が低下するという問題があった。これに対して、埋め込み層の第一層をp型層にすることでキャリアのリークを抑制する構造が用いられている(例えば、特許文献1参照)。 In an optical semiconductor device typified by a semiconductor laser, a semi-insulating buried layer is used for the purpose of current confinement to the active layer and heat dissipation from the active layer. However, there is a problem in that current injection efficiency into the active layer is reduced due to carrier leakage into the semi-insulating layer. On the other hand, a structure that suppresses carrier leakage by using a p-type layer as the first buried layer is used (see, for example, Patent Document 1).
日本特開2008-53649号公報Japanese Unexamined Patent Publication No. 2008-53649
 しかし、p型層のドーパントが活性層に拡散することで活性層自体がp型化されてしまう。このため、価電子帯間吸収が増加し、光損失が増加し、閾値電流が増加するという問題があった。また、p型層のドーピング濃度を高くすると、キャリアリーク抑制効果は増えるが、活性層へのp型ドーパントの拡散による光損失も増えてしまうというトレードオフの問題があった。 However, the active layer itself becomes p-type by diffusing the dopant of the p-type layer into the active layer. For this reason, there is a problem in that absorption between valence bands increases, optical loss increases, and threshold current increases. Further, when the doping concentration of the p-type layer is increased, the effect of suppressing carrier leakage is increased, but there is a trade-off problem that light loss due to the diffusion of the p-type dopant into the active layer also increases.
 本発明は、上述のような課題を解決するためになされたもので、その目的は活性層へのp型ドーパントの拡散を抑制できる光半導体装置及びその製造方法を得るものである。 The present invention has been made to solve the above-described problems, and an object thereof is to obtain an optical semiconductor device capable of suppressing the diffusion of p-type dopants into an active layer and a method for manufacturing the same.
 本発明に係る光半導体装置は、半導体基板と、前記半導体基板の上に順に積層された第一導電型クラッド層、活性層、及び第二導電型クラッド層を有し、メサ状に加工された積層体と、前記積層体の両側を埋め込む埋め込み層とを備え、前記埋め込み層は、前記積層体の側面から順に積層された第一層、p型層、及び半絶縁層を有し、前記第一層は、前記活性層の側壁に接し、p型ドーパントを含まないことを特徴とする。 An optical semiconductor device according to the present invention includes a semiconductor substrate, a first conductivity type cladding layer, an active layer, and a second conductivity type cladding layer sequentially stacked on the semiconductor substrate, and is processed into a mesa shape. A laminated body and a buried layer embedded on both sides of the laminated body, the buried layer including a first layer, a p-type layer, and a semi-insulating layer laminated in order from a side surface of the laminated body, One layer is in contact with the side wall of the active layer and does not contain a p-type dopant.
 本発明では、埋め込み層の第一層がp型ドーパントを含まない。これにより、キャリアリークを抑制するために埋め込み層のp型層のドーピング濃度を高くしても、p型層から活性層へのp型ドーパントの拡散を抑制できる。 In the present invention, the first layer of the buried layer does not contain a p-type dopant. Thereby, even if the doping concentration of the p-type layer of the buried layer is increased in order to suppress carrier leakage, the diffusion of the p-type dopant from the p-type layer to the active layer can be suppressed.
実施の形態1に係る半導体装置を示す断面図である。1 is a cross-sectional view showing a semiconductor device according to a first embodiment. 実施の形態1に係る半導体装置の製造工程を示す断面図である。7 is a cross-sectional view showing a manufacturing step of the semiconductor device according to the first embodiment. FIG. 実施の形態1に係る半導体装置の製造工程を示す断面図である。7 is a cross-sectional view showing a manufacturing step of the semiconductor device according to the first embodiment. FIG. 実施の形態1に係る半導体装置の製造工程を示す断面図である。7 is a cross-sectional view showing a manufacturing step of the semiconductor device according to the first embodiment. FIG.
 実施の形態に係る光半導体装置及びその製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 An optical semiconductor device according to an embodiment and a manufacturing method thereof will be described with reference to the drawings. The same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.
実施の形態1.
 図1は、実施の形態1に係る半導体装置を示す断面図である。この半導体装置は半導体レーザである。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing the semiconductor device according to the first embodiment. This semiconductor device is a semiconductor laser.
 n型InP基板1の上に順にn型InPクラッド層2、InGaAsP活性層3、及びp型InPクラッド層4が積層されて積層体5が構成されている。積層体5はメサ状に加工されている。積層体5の両側を埋め込み層6が埋め込んでいる。埋め込み層6は、積層体5の側面から順に積層された第一層7、p型InP層8、及びFeドープInP層9を有する。第一層7はアンドープInP層であり、InGaAsP活性層3の側壁に直接的に接している。 On the n-type InP substrate 1, an n-type InP clad layer 2, an InGaAsP active layer 3, and a p-type InP clad layer 4 are laminated in order to form a laminate 5. The laminated body 5 is processed into a mesa shape. Embedded layers 6 are embedded on both sides of the laminate 5. The buried layer 6 includes a first layer 7, a p-type InP layer 8, and an Fe-doped InP layer 9 that are sequentially stacked from the side surface of the stacked body 5. The first layer 7 is an undoped InP layer and is in direct contact with the side wall of the InGaAsP active layer 3.
 積層体5及び埋め込み層6の上にp型InPクラッド層10及びp型InGaAsコンタクト層11が順に積層されている。p型InGaAsコンタクト層11の上に開口を有するSiOからなる絶縁膜12が設けられている。絶縁膜12の上にTi、Pt、Auを順に積層した上面電極13が設けられ、開口を介してp型InGaAsコンタクト層11に接続されている。n型InP基板1の下面にTi、Pt、Auを順に積層した下面電極14が設けられている。 A p-type InP cladding layer 10 and a p-type InGaAs contact layer 11 are sequentially stacked on the stacked body 5 and the buried layer 6. An insulating film 12 made of SiO 2 having an opening is provided on the p-type InGaAs contact layer 11. An upper surface electrode 13 in which Ti, Pt, and Au are sequentially laminated is provided on the insulating film 12, and is connected to the p-type InGaAs contact layer 11 through an opening. A lower surface electrode 14 in which Ti, Pt, and Au are sequentially laminated is provided on the lower surface of the n-type InP substrate 1.
 続いて、本実施の形態に係る光半導体装置の製造方法を説明する。図2から図4は、実施の形態1に係る半導体装置の製造工程を示す断面図である。まず、図2に示すように、n型InP基板1の上に順にn型InPクラッド層2、InGaAsP活性層3、及びp型InPクラッド層4を積層して積層体5を形成する。 Subsequently, a method for manufacturing the optical semiconductor device according to the present embodiment will be described. 2 to 4 are cross-sectional views showing the manufacturing steps of the semiconductor device according to the first embodiment. First, as shown in FIG. 2, an n-type InP clad layer 2, an InGaAsP active layer 3, and a p-type InP clad layer 4 are sequentially laminated on an n-type InP substrate 1 to form a laminate 5.
 次に、図3に示すように、積層体5の上にストライプ状のSiO膜15を形成する。SiO膜15をマスクとしてRIEエッチングを行うことで積層体5をメサ状に加工する。次に、図4に示すように、メサ状の積層体5の両側に順に第一層7、p型InP層8、及びFeドープInP層9を積層する。その後、フッ酸でSiO膜15を除去し、p型InPクラッド層10、p型InGaAsコンタクト層11、絶縁膜12、上面電極13及び下面電極14を形成する。 Next, as shown in FIG. 3, a striped SiO 2 film 15 is formed on the stacked body 5. The stacked body 5 is processed into a mesa shape by performing RIE etching using the SiO 2 film 15 as a mask. Next, as shown in FIG. 4, the first layer 7, the p-type InP layer 8, and the Fe-doped InP layer 9 are sequentially stacked on both sides of the mesa-shaped stacked body 5. Thereafter, the SiO 2 film 15 is removed with hydrofluoric acid, and the p-type InP cladding layer 10, the p-type InGaAs contact layer 11, the insulating film 12, the upper surface electrode 13 and the lower surface electrode 14 are formed.
 本実施の形態では、埋め込み層6の第一層7がp型ドーパントを含まない。これにより、キャリアリークを抑制するために埋め込み層6のp型InP層8のドーピング濃度を高くしても、p型InP層8からInGaAsP活性層3へのp型ドーパントの拡散を抑制できる。 In the present embodiment, the first layer 7 of the buried layer 6 does not contain a p-type dopant. Thereby, even if the doping concentration of the p-type InP layer 8 of the buried layer 6 is increased in order to suppress carrier leakage, the diffusion of the p-type dopant from the p-type InP layer 8 to the InGaAsP active layer 3 can be suppressed.
 p型InP層8は伝導帯のエネルギーレベルが高いため、電子がInGaAsP活性層3から溢れ出すのを抑制する。半絶縁性のFeドープInP層9は電子をトラップすることにより電流を阻止する。FeドープInP層9の代わりに、ドーパントがRuの半絶縁層を用いてもよい。なお、InGaAsP活性層3の代わりにAlGaInAsを含む活性層を用いてもよい。 Since the p-type InP layer 8 has a high energy level in the conduction band, it prevents the electrons from overflowing from the InGaAsP active layer 3. The semi-insulating Fe-doped InP layer 9 blocks current by trapping electrons. Instead of the Fe-doped InP layer 9, a semi-insulating layer with Ru as a dopant may be used. In place of the InGaAsP active layer 3, an active layer containing AlGaInAs may be used.
実施の形態2.
 本実施の形態では埋め込み層6の第一層7がn型InP層である。これにより、p型InP層8からInGaAsP活性層3へのp型ドーパントの拡散を更に抑制することができる。ただし、n型InP層の抵抗が低いとInGaAsP活性層3の横に低抵抗の電流リーク経路ができてしまう。そこで、InGaAsP活性層3の横においてn型InP層が全て空乏化されるように、n型InP層とp型InP層8のキャリア濃度、n型InP層の膜厚を設定する。これにより、InGaAsP活性層3の横における第一層7の縦方向の抵抗をInGaAsP活性層3の抵抗に対して十分に大きくとることができるため、第一層7を経由する電流リークを抑えることができる。なお、空乏層の厚さWは以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
ここで、εはInPの誘電率、Nはp型層のアクセプター密度、Nはn型層のドナー密度、qは電子素量、V-Vはpn接合部にかかる電圧である。また、n型層側の空乏層幅xは以下の式で表される。
Figure JPOXMLDOC01-appb-M000002
Embodiment 2. FIG.
In the present embodiment, the first layer 7 of the buried layer 6 is an n-type InP layer. Thereby, the diffusion of the p-type dopant from the p-type InP layer 8 to the InGaAsP active layer 3 can be further suppressed. However, if the resistance of the n-type InP layer is low, a low-resistance current leak path is formed beside the InGaAsP active layer 3. Therefore, the carrier concentration of the n-type InP layer and the p-type InP layer 8 and the film thickness of the n-type InP layer are set so that the n-type InP layer is completely depleted beside the InGaAsP active layer 3. As a result, the longitudinal resistance of the first layer 7 on the side of the InGaAsP active layer 3 can be made sufficiently large with respect to the resistance of the InGaAsP active layer 3, thereby suppressing current leakage through the first layer 7. Can do. Note that the thickness W of the depletion layer is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Here, epsilon s dielectric constant of InP, the acceptor density of the N A p-type layer, the donor density of N D n-type layer, q is the electron elementary charge, V D -V is the voltage across the pn junction . The depletion layer width xn on the n-type layer side is expressed by the following formula.
Figure JPOXMLDOC01-appb-M000002
実施の形態3.
 本実施の形態では埋め込み層6の第一層7がFeドープInP層である。これにより、同様にInGaAsP活性層3へのp型ドーパントの拡散を抑制することができる。また、FeドープInP層がn型InP基板1又はn型InPクラッド層2からの電子に対してトラップ効果を持つことから、実施の形態1よりも電流リークを抑制できる。
Embodiment 3 FIG.
In the present embodiment, the first layer 7 of the buried layer 6 is an Fe-doped InP layer. Thereby, similarly, the diffusion of the p-type dopant into the InGaAsP active layer 3 can be suppressed. In addition, since the Fe-doped InP layer has a trapping effect on electrons from the n-type InP substrate 1 or the n-type InP clad layer 2, current leakage can be suppressed as compared with the first embodiment.
実施の形態4.
 本実施の形態では埋め込み層6の第一層7がRuドープInP層である。RuドープInP層がホールトラップ効果を持つことから、p型InP層8からInGaAsP活性層3へのp型ドーパントの拡散を更に抑制することができる。
Embodiment 4 FIG.
In the present embodiment, the first layer 7 of the buried layer 6 is a Ru-doped InP layer. Since the Ru-doped InP layer has a hole trap effect, the diffusion of the p-type dopant from the p-type InP layer 8 to the InGaAsP active layer 3 can be further suppressed.
1 n型InP基板(半導体基板)、2 n型InPクラッド層(第一導電型クラッド層)、3 InGaAsP活性層(活性層)、4 p型InPクラッド層(第二導電型クラッド層)、5 積層体、6 埋め込み層(埋め込み層)、7 第一層、8 p型InP層(p型層)、9 FeドープInP層(半絶縁層) 1 n-type InP substrate (semiconductor substrate), 2 n-type InP clad layer (first conductivity type clad layer), 3 InGaAsP active layer (active layer), 4 p-type InP clad layer (second conductivity type clad layer), 5 Laminated body, 6 buried layer (buried layer), 7 first layer, 8 p-type InP layer (p-type layer), 9 Fe-doped InP layer (semi-insulating layer)

Claims (12)

  1.  半導体基板と、
     前記半導体基板の上に順に積層された第一導電型クラッド層、活性層、及び第二導電型クラッド層を有し、メサ状に加工された積層体と、
     前記積層体の両側を埋め込む埋め込み層とを備え、
     前記埋め込み層は、前記積層体の側面から順に積層された第一層、p型層、及び半絶縁層を有し、
     前記第一層は、前記活性層の側壁に接し、p型ドーパントを含まないことを特徴とする光半導体装置。
    A semiconductor substrate;
    A first conductive type clad layer, an active layer, and a second conductive type clad layer sequentially laminated on the semiconductor substrate, and a laminated body processed into a mesa shape;
    An embedded layer embedded on both sides of the laminate,
    The buried layer includes a first layer, a p-type layer, and a semi-insulating layer that are sequentially stacked from the side surface of the stacked body,
    The first semiconductor layer is in contact with the side wall of the active layer and does not contain a p-type dopant.
  2.  前記第一層はアンドープ層であることを特徴とする請求項1に記載の光半導体装置。 The optical semiconductor device according to claim 1, wherein the first layer is an undoped layer.
  3.  前記第一層はn型層であることを特徴とする請求項1に記載の光半導体装置。 The optical semiconductor device according to claim 1, wherein the first layer is an n-type layer.
  4.  前記活性層の横において前記n型層が全て空乏化されることを特徴とする請求項3に記載の光半導体装置。 4. The optical semiconductor device according to claim 3, wherein the n-type layer is all depleted beside the active layer.
  5.  前記第一層はFeドープ層であることを特徴とする請求項1に記載の光半導体装置。 The optical semiconductor device according to claim 1, wherein the first layer is an Fe-doped layer.
  6.  前記第一層はRuドープ層であることを特徴とする請求項1に記載の光半導体装置。 The optical semiconductor device according to claim 1, wherein the first layer is a Ru-doped layer.
  7.  前記半導体基板、前記第一導電型クラッド層、及び前記第二導電型クラッド層はInPであり、
     前記活性層はInGaAsP又はAlGaInAsを含み、
     前記埋め込み層はInPであり、
     前記半絶縁層のドーパントがFe又はRuであることを特徴とする請求項1~6の何れか1項に記載の光半導体装置。
    The semiconductor substrate, the first conductivity type cladding layer, and the second conductivity type cladding layer are InP;
    The active layer includes InGaAsP or AlGaInAs,
    The buried layer is InP;
    7. The optical semiconductor device according to claim 1, wherein the dopant of the semi-insulating layer is Fe or Ru.
  8.  半導体基板の上に順に第一導電型クラッド層、活性層、及び第二導電型クラッド層を積層して積層体を形成する工程と、
     前記積層体をエッチングによりメサ状に加工する工程と、
     メサ状の前記積層体の両側に順に第一層、p型層、及び半絶縁層を積層する工程とを備え、
     前記第一層は、前記活性層の側壁に接し、p型ドーパントを含まないことを特徴とする光半導体装置の製造方法。
    Laminating a first conductivity type cladding layer, an active layer, and a second conductivity type cladding layer in order on a semiconductor substrate;
    Processing the laminate into a mesa shape by etching;
    Laminating a first layer, a p-type layer, and a semi-insulating layer in order on both sides of the mesa-shaped laminate,
    The method of manufacturing an optical semiconductor device, wherein the first layer is in contact with a side wall of the active layer and does not include a p-type dopant.
  9.  前記第一層はアンドープ層であることを特徴とする請求項8に記載の光半導体装置の製造方法。 The method for manufacturing an optical semiconductor device according to claim 8, wherein the first layer is an undoped layer.
  10.  前記第一層はn型層であることを特徴とする請求項8に記載の光半導体装置の製造方法。 The method for manufacturing an optical semiconductor device according to claim 8, wherein the first layer is an n-type layer.
  11.  前記第一層はFeドープ層であることを特徴とする請求項8に記載の光半導体装置の製造方法。 9. The method of manufacturing an optical semiconductor device according to claim 8, wherein the first layer is an Fe-doped layer.
  12.  前記第一層はRuドープ層であることを特徴とする請求項8に記載の光半導体装置の製造方法。 The method of manufacturing an optical semiconductor device according to claim 8, wherein the first layer is a Ru-doped layer.
PCT/JP2018/018602 2018-05-14 2018-05-14 Optical semiconductor device and method of manufacturing same WO2019220514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018602 WO2019220514A1 (en) 2018-05-14 2018-05-14 Optical semiconductor device and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018602 WO2019220514A1 (en) 2018-05-14 2018-05-14 Optical semiconductor device and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2019220514A1 true WO2019220514A1 (en) 2019-11-21

Family

ID=68539675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018602 WO2019220514A1 (en) 2018-05-14 2018-05-14 Optical semiconductor device and method of manufacturing same

Country Status (1)

Country Link
WO (1) WO2019220514A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080414B1 (en) * 2021-06-17 2022-06-03 三菱電機株式会社 Optical semiconductor device and its manufacturing method
WO2023228234A1 (en) * 2022-05-23 2023-11-30 三菱電機株式会社 Semiconductor laser, semiconductor laser device, and semiconductor laser production method
TWI836984B (en) 2022-05-23 2024-03-21 日商三菱電機股份有限公司 Semiconductor laser, semiconductor laser device, and semiconductor laser manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449691A (en) * 1990-06-18 1992-02-19 Mitsubishi Electric Corp Visible-ray laser diode
JPH05218585A (en) * 1992-02-04 1993-08-27 Fujitsu Ltd Semiconductor light emitting device
JPH0685390A (en) * 1992-09-04 1994-03-25 Fujitsu Ltd Fabrication of semiconductor laser
JPH09148669A (en) * 1995-11-28 1997-06-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser of buried-structure
JP2003078212A (en) * 2001-09-06 2003-03-14 Nippon Telegr & Teleph Corp <Ntt> Buried semiconductor optical device
US20110032964A1 (en) * 2009-03-04 2011-02-10 Alcatel-Lucent Usa, Incorporated Fabricating electronic-photonic devices having an active layer with spherical quantum dots
JP2013182976A (en) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp Buried type optical semiconductor element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449691A (en) * 1990-06-18 1992-02-19 Mitsubishi Electric Corp Visible-ray laser diode
JPH05218585A (en) * 1992-02-04 1993-08-27 Fujitsu Ltd Semiconductor light emitting device
JPH0685390A (en) * 1992-09-04 1994-03-25 Fujitsu Ltd Fabrication of semiconductor laser
JPH09148669A (en) * 1995-11-28 1997-06-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser of buried-structure
JP2003078212A (en) * 2001-09-06 2003-03-14 Nippon Telegr & Teleph Corp <Ntt> Buried semiconductor optical device
US20110032964A1 (en) * 2009-03-04 2011-02-10 Alcatel-Lucent Usa, Incorporated Fabricating electronic-photonic devices having an active layer with spherical quantum dots
JP2013182976A (en) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp Buried type optical semiconductor element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080414B1 (en) * 2021-06-17 2022-06-03 三菱電機株式会社 Optical semiconductor device and its manufacturing method
WO2022264347A1 (en) * 2021-06-17 2022-12-22 三菱電機株式会社 Optical semiconductor element and manufacturing method therefor
WO2023228234A1 (en) * 2022-05-23 2023-11-30 三菱電機株式会社 Semiconductor laser, semiconductor laser device, and semiconductor laser production method
TWI836984B (en) 2022-05-23 2024-03-21 日商三菱電機股份有限公司 Semiconductor laser, semiconductor laser device, and semiconductor laser manufacturing method

Similar Documents

Publication Publication Date Title
US9312377B2 (en) Semiconductor devices and methods of manufacturing the same
JP2009283822A (en) Semiconductor laser and manufacturing method thereof
JP2009059918A (en) Optical semiconductor device
JP5327892B2 (en) Avalanche photodiode
US6584130B2 (en) Multiple semiconductor laser structure with narrow wavelength distribution
JP2016031970A (en) Optical semiconductor device
US8340147B2 (en) Laser diode
WO2019220514A1 (en) Optical semiconductor device and method of manufacturing same
JP4127815B2 (en) Avalanche photodiode
JP2008198942A (en) Semiconductor photo element
JP5920043B2 (en) Semiconductor laser and manufacturing method thereof
CN115023869A (en) Optical semiconductor device and method for manufacturing the same
JP2017017282A (en) Semiconductor optical element and manufacturing method of the same
TWI836984B (en) Semiconductor laser, semiconductor laser device, and semiconductor laser manufacturing method
WO2022264347A1 (en) Optical semiconductor element and manufacturing method therefor
JP6702523B1 (en) Semiconductor device
JP4430961B2 (en) Electroabsorption type light modulation element and method for manufacturing the same
JP2010027923A (en) Semiconductor optical element
WO2023228234A1 (en) Semiconductor laser, semiconductor laser device, and semiconductor laser production method
WO2020090078A1 (en) Optical semiconductor device and method for manufacturing optical semiconductor device
JP2007013100A (en) Semiconductor laser
WO2020084687A1 (en) Semiconductor integrated optical device
JP4508174B2 (en) Vertical resonant surface light emitting device
JP2008270435A (en) Semiconductor optical element
JP4634847B2 (en) Optical semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP