WO2019218965A1 - 数据处理方法和装置、通信系统 - Google Patents

数据处理方法和装置、通信系统 Download PDF

Info

Publication number
WO2019218965A1
WO2019218965A1 PCT/CN2019/086631 CN2019086631W WO2019218965A1 WO 2019218965 A1 WO2019218965 A1 WO 2019218965A1 CN 2019086631 W CN2019086631 W CN 2019086631W WO 2019218965 A1 WO2019218965 A1 WO 2019218965A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
codeword
oam
fec
codeword structure
Prior art date
Application number
PCT/CN2019/086631
Other languages
English (en)
French (fr)
Inventor
吴徐明
叶志成
聂世玮
高波
景磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020207035594A priority Critical patent/KR102457525B1/ko
Priority to EP19802511.6A priority patent/EP3787206A4/en
Publication of WO2019218965A1 publication Critical patent/WO2019218965A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/03929Spatial equalizers codebook-based design with layer mapping, e.g. codeword-to layer design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
    • H04L25/4908Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes using mBnB codes

Definitions

  • the present application relates to the field of communications, and more particularly to a data processing method, apparatus, and communication system.
  • the 10G Passive Optical Network has entered the stage of scale deployment, and the next generation of PON system standards are gradually being developed and improved.
  • the next-generation mobile communication 5G standard has also been basically completed.
  • the requirements for 5G communication to bear the network are also increasing.
  • the base station develops toward a small cell, the coverage density becomes larger and larger, and the demand for optical fiber resources becomes larger and larger, and a low-cost deep coverage bearer network needs to be constructed.
  • the broadband access network based on PON has been deployed on a large scale, and the massive optical fiber has been extended to the user side, which is consistent with the coverage of Small Cell.
  • WDM Wavelength Division Multiplexing
  • the present application provides a data processing method, a data processing device, a communication device, and a communication system.
  • a data processing method is provided, the method being performed at a physical coding sublayer of a source network device, the method comprising: receiving, at a physical coding sublayer, S first data blocks, where S is a positive integer;
  • the physical coding sublayer performs FEC encoding on the S first data blocks and the first information to generate a check portion, where the first information includes codeword synchronization information and OAM information, and a codeword structure is generated in the physical coding sublayer.
  • the codeword structure includes the S first data blocks, the first information, and the check portion.
  • the solution can be applied to a WDM PON system carrying 5G services.
  • the source network device can be, for example, an OLT or an ONU in a WDM PON system.
  • the OAM management channel can be established based on the 25GE standard FEC coding scheme.
  • the first information can also be called a codeword tag (inherited from the name in the 25GE standard), or it can be another name.
  • the first information further includes first indication information, where the first indication information is used to indicate whether the OAM information is included in the codeword structure.
  • the first information further includes second indication information, where the second indication information is used to indicate whether the receiving end performs FEC decoding on the codeword structure. To inform the receiver whether FEC decoding is needed.
  • the structure of the codeword label in the 25GE standard can be used (ie, 4 alignment labels are used).
  • One of the aligned tags can carry codeword synchronization information.
  • all or part of the alignment tags are used to carry OAM information.
  • two of the aligned tags are selected to carry OAM information, and the other one is not changed relative to the existing 25GE standard, or used as a reserved field.
  • selecting a partial byte of one of the aligned tags carries at least one of the first indication information and the second indication information, the partial bytes are reserved fields, the partial bytes carry other information, and the remaining bytes are combined with the other 2
  • the alignment tags collectively carry OAM information. Thereby, the effective rate of the OAM management channel can be further improved.
  • the FEC coding method can be RS coding.
  • it may be an RS (528, 514) coding mode, which means that FEC encoding is performed on 5140 bits of valid data, and a 140-bit check portion is generated, and the length of the finally generated codeword structure is 5280 bits.
  • the valid data may include 19 257-bit first data blocks, and 1 257-bit first information.
  • a data processing method is provided, the method being performed at a physical coding sublayer of a source network device, the method comprising: receiving a codeword structure at a physical coding sublayer, the codeword structure comprising S first data blocks And the first information and the verification part, the first information includes codeword synchronization information; and the first information is updated in the physical coding sublayer, and the updated first information includes OAM information.
  • the updated first information further includes first indication information, where the first indication information is used to indicate whether the OAM information is included in the codeword structure.
  • the updated first information further includes second indication information, where the second indication information is used to indicate whether the receiving end performs FEC decoding on the codeword structure.
  • a data processing method is provided, the method being performed at a physical coding sublayer of a target network device, the method comprising: receiving a codeword structure at a physical coding sublayer, the codeword structure comprising S first data blocks a first information and a check portion, the first information including codeword synchronization information and OAM information; synchronizing the codeword structure according to the codeword synchronization information at the physical coding sublayer; The coding sublayer acquires the OAM information.
  • the first information may include second indication information for indicating whether the target network device performs FEC decoding on the codeword structure.
  • the first information may further include first indication information, configured to indicate whether the OAM information is included in the first information.
  • a data processing apparatus configured to be applied to a WDM PON device.
  • the device includes: a receiving module, configured to receive S first data blocks in a physical coding sublayer, where S is a positive integer; and an FEC encoding and decoding module, configured to pair the S first data in the physical coding sublayer
  • the block and the first information are subjected to FEC encoding to generate a check portion, the first information includes codeword synchronization information and OAM information, and a generating module is configured to generate a codeword structure in the physical coding sublayer, where the codeword structure includes The S first data blocks, the first information and the check portion.
  • the FEC coding mode may be RS coding, and specifically, it may be RS (528, 514).
  • a data processing apparatus configured to be applied to a WDM PON device.
  • the apparatus includes: a receiving module, configured to receive a codeword structure at a physical coding sublayer, where the codeword structure includes S first data blocks, first information and a check portion, and the first information includes codeword synchronization And an update module, configured to update the first information in the physical coding sublayer, where the updated first information includes OAM information.
  • a data processing apparatus configured to be applied to a WDM PON device.
  • the apparatus includes: a receiving module, configured to receive a codeword structure at a physical coding sublayer, where the codeword structure includes S first data blocks, first information and a check portion, and the first information includes codeword synchronization Information and OAM information; a synchronization module, configured to synchronize the codeword structure according to the codeword synchronization information in the physical coding sublayer; and an acquiring module, configured to acquire the OAM information in the physical coding sublayer .
  • An FEC encoding and decoding module may be further included for performing FEC decoding on the codeword structure at the physical coding sublayer.
  • a communication system comprising the data processing device of the fourth or fifth aspect, and the data processing device of the sixth aspect.
  • a communication device may include a processing module, which may be a MAC (Media Access Control) chip, or a processor, or a DSP (digital signal processor).
  • the processing module receives S first data blocks in the physical coding sublayer, where S is a positive integer; performing FEC encoding on the S first data blocks and the first information to generate a check portion at the physical coding sublayer, where The first information includes codeword synchronization information and OAM information; generating a codeword structure in the physical coding sublayer, the codeword structure including the S first data blocks, the first information and the checksum section.
  • the processing module receives a codeword structure at a physical coding sublayer, the codeword structure includes S first data blocks, a first information and a check portion, the first information including codeword synchronization information;
  • the physical coding sublayer updates the first information, and the updated first information includes OAM information.
  • a ninth aspect provides a communication device, where the communication may include a processing module, which may be a MAC (Media Access Control) chip, or a processor, or a DSP (digital signal processor). )Wait.
  • the processing module receives a codeword structure at a physical coding sublayer, the codeword structure includes S first data blocks, a first information and a check portion, and the first information includes codeword synchronization information and OAM information;
  • the physical coding sublayer synchronizes the codeword structure according to the codeword synchronization information; and acquires the OAM information at the physical coding sublayer.
  • protection themes between the above aspects are different, but the specific implementation details may be referred to each other. Some protection topics do not specifically describe the implementation details, and other various topics may be referred to.
  • an optical network unit comprising the apparatus of any of the above fourth to sixth aspects.
  • an optical line terminal comprising the apparatus of any of the above fourth to sixth aspects.
  • a codeword structure is provided, the codeword structure being the codeword structure described in any of the above aspects.
  • MAC chip comprising the apparatus of any of the above fourth to sixth aspects.
  • a PON system comprising the optical line terminal of the above tenth aspect and the optical network unit of the eleventh aspect.
  • a still further aspect of the present application provides a computer readable storage medium storing computer software instructions for use in the apparatus of any of the fourth to sixth aspects described above, when it is run on a computer, A method of causing a computer to perform the various aspects described above.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another architecture of a communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a WDM PON for a 5G service bearer communication system according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of an FEC encoding process according to an embodiment of the present application.
  • FIG. 5 is an exemplary flowchart of a data encoding and decoding method according to an embodiment of the present application.
  • FIG. 6 is an exemplary flowchart of a data processing method according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of hardware of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an exemplary functional module of a data processing apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another exemplary functional module of a data processing apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another exemplary functional module of a data processing apparatus according to an embodiment of the present application.
  • FIG. 1 is a block diagram of an architecture of a communication system 100 suitable for use with various embodiments of the present application, the communication system including two communication devices (11, 12) that communicate with one another.
  • the two communication devices (11, 12) can be connected by a physical medium such as an optical fiber.
  • the data transmitted between the two communication devices (11, 12) may be FEC encoded data.
  • Any of the communication devices in FIG. 1 may perform FEC encoding to generate a codeword structure, and transmit the codeword structure to another communication device, and the other communication device performs FEC decoding on the codeword structure.
  • the communication system 100 includes a first communication device 13, a PON optical line terminal (OLT) device 14, and a PON optical network unit (Optical). Network Unit, ONU) device 15 and second communication device 16.
  • OLT PON optical line terminal
  • ONU PON optical network unit
  • the data transmitted by the second communication device 16 to the PON ONU device 15 may be forward error correction (FEC) encoded data.
  • FEC forward error correction
  • the PON ONU 15 may not perform FEC encoding on the data, and the PON OLT device 14 may not perform FEC decoding on the data, and the FEC decoding is performed by the first communication device 13;
  • the PON ONU 15 may perform FEC decoding first, then perform FEC encoding again, and send the re-encoded data to the PON OLT device.
  • the PON OLT device 14 may perform FEC decoding first (the decoding mode is consistent with the FEC encoding mode of the PON ONU), and the FEC decoded data is sent to the first communication device; or the FEC decoded data may be first decoded.
  • the FEC encoding is performed again, the encoded data is transmitted to the first communication device, and the first communication device 13 performs FEC decoding.
  • the data sent by the second communication device 16 to the PON ONU device 15 may also be data that has not been FEC-encoded, and the PON ONU 15 performs FEC encoding on the received data, and sends the encoded data to the PON OLT device 14.
  • the PON OLT device 14 performs FEC decoding on the received data and transmits it to the first communication device 13.
  • the downlink transmission is similar to the uplink transmission, and may be FEC encoded by the first communication device 13, the second communication device 16 performs FEC decoding, and the PON OLT 14 and the PON ONU 15 do not perform FEC encoding and decoding; or, the PON OLT 14 may perform FEC encoding.
  • the PON ONU 15 performs FEC decoding, and the first communication device 13 and the second communication device 16 do not perform FEC encoding and decoding.
  • the first communication device 13 may perform FEC encoding
  • the second communication device 16 performs FEC decoding
  • the PON OLT 14 first decodes and then performs FEC encoding
  • the PON ONU 15 FEC decodes or decodes and then re-FEC encoding.
  • the application can also be applied to a WDM PON system carried by a 5G service.
  • 3 is a schematic structural diagram of a communication system for a 5G service bearer of a WDM PON applicable to various embodiments of the present application.
  • the communication system 100 includes a PON central office device 101 (such as an OLT), and a PON central office.
  • a baseband unit (BBU) device 102 to which the device 101 is connected, and a PON terminal device 103 (such as an ONU) and a BBU device 104 connected to the PON terminal device 103.
  • An Arrayed Waveguide Grating (AWG) 105 (which may also be an optical splitter) is connected between the PON central office device 101 and the PON terminal device.
  • AMG Arrayed Waveguide Grating
  • the PON central office device 101 may perform FEC encoding, and the PON terminal device 103 may perform FEC decoding.
  • the PON terminal device 103 performs FEC encoding
  • the PON central office device 101 performs FEC decoding.
  • the FEC encoding and decoding code is performed by the BBU device, and the PON central office device 101 and the PON ONU end device 103 may not perform FEC encoding and decoding.
  • the BBU device performs FEC encoding and decoding, and the PON central office device 101 first decodes and then performs FEC encoding, and the PON terminal device 103 FEC decodes or decodes and re-FEC encoding.
  • the BBU device performs FEC encoding and decoding
  • the PON terminal device 103 decodes and performs FEC encoding
  • the PON central office device 101 FEC decodes or decodes and then re-FEC encoding.
  • WDM PON can be used for bearer of eCRPI services due to its low latency and high bandwidth. Operators put forward requirements for WDM PON: 1. Low-latency wireless transmission and transparent transmission of wireless services; 2. The system can have OAM function, which can realize management and diagnosis functions of PON network. 3. Support 25G rate.
  • FIG. 1 to FIG. 3 is only an example and does not limit the scope of protection of the present application.
  • the communication system of the present application may also adopt other architectural forms.
  • the communication rate that the communication system of the embodiment of the present application can support may be 25G or 100G or the like. It can also be other rates, which are not limited here.
  • the technical solution of the embodiment of the present application described below may be any communication device in FIG. 1 or a PON OLT device and a PON ONU device in FIG. 2 and FIG.
  • the device that is the sender is referred to as the source network device
  • the device that is the receiver is referred to as the target network device.
  • the source network device and the target network device may include a processing module, which may be a MAC (Media Access Control) chip, or a processor, or a DSP (digital signal processor).
  • a processing module which may be a MAC (Media Access Control) chip, or a processor, or a DSP (digital signal processor).
  • the operation at the Physical Coding Sublayer (PCS) is performed by the processing module.
  • PCS Physical Coding Sublayer
  • the following is an example of an operation of performing a physical coding sublayer by a MAC chip.
  • FIG. 4 is a schematic flowchart of FEC encoding according to an embodiment of the present invention, when FEC encoding is performed by a source network device and FEC decoding is performed by a target network device.
  • the user data coming from the MAC layer may be transcoded in the physical coding sublayer, then scrambled, and then periodically delete the idle character in the user data, and then periodically insert a first information (also referred to as Codeword label, codeword marker, or code marker).
  • the length of the deleted idle character is the same as the length of the first information to be inserted, so that the line rate can be kept unchanged.
  • the inserted first information is FEC encoded along with the user data to form a complete FEC codeword.
  • first information in this application may also be other names, and does not limit the protection scope of the first information.
  • the following provides a data encoding and decoding method, the method comprising the following steps:
  • the source network device receives S first data blocks in a physical coding sublayer, where S is a positive integer.
  • the first data block may be a data block of 256/257 B, which means that the total length of the data block is 257 bits, which contains 256 bits of data, and 1 bit of indication information.
  • the first data block can be generated by transcoding four blocks of 64B/66B or 64B/65B.
  • the first data block can be generated by transcoding by the source network device.
  • the first data block may also be a data block of other length.
  • the first data block may be a 64B/66B or 64B/65B data block.
  • the data block of 64B/66B means that the total length of the data block is 66 bits, which contains 64 bits of data, and there are 2 bits of indication information.
  • the data block of 64B/65B means that the total length of the data block is 65 bits, which contains 64 bits of data, and there is 1 bit of indication information.
  • the source network device performs FEC encoding on the S first data blocks and the first information to generate a check portion at the physical coding sublayer, where the first information includes codeword synchronization information and operation management and maintenance (operations) , administration and maintenance, OAM) information; the S first data blocks and the first information constitute valid data.
  • the first information includes codeword synchronization information and operation management and maintenance (operations) , administration and maintenance, OAM) information; the S first data blocks and the first information constitute valid data.
  • the source network device generates a codeword structure in the physical coding sublayer, where the codeword structure includes the S first data blocks, the first information, and the verification part.
  • the FEC pattern adopted by the source network device and the target network device is correspondingly provided with the FEC codeword length and the FEC payload length, indicating that the length of the check portion is equal to the length of the FEC codeword minus the codeword structure encoded by the FEC pattern. Go to the FEC payload length.
  • the FEC pattern can be, for example, a Reed-Solomon (RS) pattern.
  • RS Reed-Solomon
  • it may be an RS (528, 514) pattern with a granularity of 10 bits, indicating that the FEC codeword length is 528x10 bits, the FEC payload length is 514x10 bits, and the length of the check portion is (528-514) x 10 bits.
  • the FEC pattern In the RS (528, 514) pattern, after FEC encoding of 5140 bits of valid data, a 140-bit check portion is generated, and the generated FEC code word structure has a length of 5280 bits. It can be understood that the FEC pattern can also be other patterns, which is not limited herein.
  • the FEC pattern can also adopt other expressions, and can indirectly indicate the FEC codeword length and the FEC payload length.
  • the source network device can perform an operation of adding or inserting the first information. To ensure that the line rate is unchanged, you can delete the idle character of the same length as the first information and add the first information. Specifically, the source network device may periodically add the first information. For example, the first information can be added once every 1024 codewords.
  • the codeword synchronization information is used by the target network device for codeword synchronization.
  • OAM information is used for operation management and maintenance of the PON network, thereby implementing management and diagnostic functions of the PON network.
  • the source network device sends a codeword structure to the target network device.
  • the target network device receives the codeword structure.
  • the target network device synchronizes the codeword structure according to the codeword synchronization information at a physical coding sublayer.
  • the target network device performs FEC decoding on the codeword structure.
  • the target network device acquires OAM information. Specifically, the OAM information is obtained from the first information. Furthermore, the OAM information between the source network device and the target network device implements functions such as operation management and maintenance of the PON network, and implements management and diagnostic functions of the PON network.
  • the first information further includes first indication information, where the first indication information is used to indicate whether the OAM information is included in the codeword structure. Due to the codeword structure sent by the source network device to the target network device, some codeword structures may contain the first information, but may not have OAM information. Therefore, the first indication information can be used to inform the receiving end whether the first information in the current codeword structure contains OAM information.
  • the first information further includes second indication information, where the second indication information is used to indicate whether the receiving end (ie, the target network device) performs FEC decoding on the codeword structure.
  • the second indication information indicates that the target network device performs FEC decoding on the codeword structure, and the target network device can learn that the codeword structure can be FEC decoded according to the second indication information.
  • the second indication information indicates that the target network device does not perform FEC decoding on the codeword structure, and the target network device may learn, according to the second indication information, that the FEC translation may not be performed on the codeword structure. code.
  • the length of the first information may be, for example, 257 bits. It can be understood that the first information may also be other lengths, which is not limited herein.
  • the length of the codeword synchronization information, the OAM information, and the first indication information and the second indication information may be allocated according to actual needs.
  • the first information length takes the first information length as 257 bits as an example.
  • the first information includes four second data blocks, and each of the second data blocks has a length of 64b.
  • the definition of the second data block herein is for convenience of the following description, and can also be understood as a preset number of bits.
  • the first information in the existing 25GE standard has a length of 257 bits and includes four alignment markers, each of which has a length of 64 bits. It can be understood that the second data block here can also be referred to as an alignment label.
  • the number of second data blocks occupied by the codeword synchronization information and the OAM information can be flexibly set according to actual needs.
  • one of the second data blocks carries the codeword synchronization information; at least one of the second data blocks carries the OAM information.
  • one second data block may be used to carry codeword synchronization information, and one second data block is used as a reserved field.
  • the other two second data blocks are used to carry OAM information.
  • one second data block may be employed to carry codeword synchronization information.
  • a partial bit of one data block is used as a reserved field, and a partial bit is used as an OAM field, wherein the length of the OAM field may be, for example, 32 bits, and the length of the reserved field may be, for example, 24 bits, and another 8 bits may be used as the BIP field.
  • the OAM field and two other data blocks are used to jointly carry OAM information.
  • the OAM field can be divided into two parts. Part0 and part1 are 16 bits in length. Part0 and block0 can form an OAM message. Part0 and block1 can form another OAM message. Each OAM message has a length of 10 bytes.
  • the reserved field may be used to carry the first indication information and the second indication information.
  • the partial or all bits of the reserved field are used to carry at least one of the first indication information and the second indication information.
  • the FEC synchronization state machine does not need to be modified overall, and the cwm_valid generation decision condition is that 48 bits are decided, and the rest of the data is not processed. Because the synchronization scheme is consistent with the conventional 25GE, it is compatible with standard 25GE interfaces.
  • the scheme implements the OAM management channel without adding complexity and introducing additional power costs.
  • the OAM management channel is protected by FEC, and the performance is consistent with the service channel. Transparent transmission of service channels does not affect business data.
  • business performance statistics can be achieved.
  • the format of the OAM information can be, for example, the following table:
  • Message Type indicates the message type.
  • the same message type can correspond to multiple OPcodes, and OPcode represents a more refined message type under this message type.
  • Message Word indicates the content of the message.
  • FCS represents a frame check sequence.
  • the OAM information may be, for example, a channel configuration message:
  • the OAM information can be, for example, a channel indication message:
  • the OAM information can be, for example, a channel acknowledgement message:
  • the message types of the above three kinds of OAM information are channel type messages, and OPcode is 0x01 (representing channel configuration message), 0x02 (representing channel indication message), and 0x01 (representing channel confirmation message).
  • Channel No. indicates the channel number.
  • the OAM information can be, for example, a status query message:
  • the Module Status Request indicates a module status information request, indicating that the requesting party sends the current module status.
  • the OAM information can be, for example, a status recovery message:
  • the Module Status Report indicates a module status information report indicating that the current module status is reported to the other party.
  • the OAM information can be, for example, a link performance query message:
  • Link BER.Request indicates a link error request, indicating that the requesting party sends the current bit error rate.
  • the OAM information can be, for example, a performance recovery message:
  • Link BER.Report indicates a link error report, indicating that the current bit error rate is reported to the other party.
  • OAM message format is an example and does not limit the scope of protection of the present application.
  • the OAM message format can also be other formats.
  • the specific values of the above Message Type and Opcode may also be other values, which are not limited herein.
  • the above table is an example.
  • the first communication device and the second communication device do not perform FEC coding and decoding, and the WDM PON layer uniformly performs FEC, and inserts codeword synchronization information and OAM information without affecting the link rate.
  • the reserved field in the first information is used to indicate to the ONU or the OLT whether the first communication device or the second communication device uses the FEC. If the 25GE of the first communication device and the second communication device device do not perform FEC, the ONU or OLT side needs to restore the original 66-bit stream and then forward it to the first communication device or the second communication device after terminating the OAM.
  • the OLT is the source network device
  • the first communication device performs FEC encoding
  • the FEC encoded codeword structure is sent to the source network device
  • the OLT does not need to FEC coding
  • the ONU does not require FEC decoding
  • FEC decoding is performed by the second communication device.
  • a data processing method is proposed below, as shown in FIG. 6, the method includes the following steps:
  • the source network device receives a codeword structure in a physical coding sublayer, where the codeword structure includes S first data blocks, a first information, and a checksum, where the first information includes codeword synchronization information.
  • the source network device updates the first information in the physical coding sublayer, and the updated first information includes OAM information.
  • the source network device sends a codeword structure to the target network device.
  • the target network device receives the codeword structure.
  • the target network device synchronizes the codeword structure according to the codeword synchronization information at a physical coding sublayer.
  • the target network device acquires OAM information at a physical coding sublayer. Furthermore, the OAM information between the source network device and the target network device implements functions such as operation management and maintenance of the PON network, and implements management and diagnostic functions of the PON network.
  • the codeword structure may be updated by deleting the reserved characters in the first information and then inserting the OAM information.
  • the number of deleted character bits is the same as the number of inserted bits.
  • the first communication device 13 sends the OLT codeword structure, and the first information in the codeword structure (in 25GE).
  • the code tag label includes four alignment tags, and only one of the alignment tags can be used to carry the codeword synchronization information.
  • the original communication protocol may not be changed, and the original coding mode may not be changed.
  • the OLT can update the OAM information to all or part of the remaining 3 aligned tags. For example, you can update to two of the aligned tags, such as deleting the original characters of the last two aligned tags, and insert OAM information into the two aligned tags.
  • the ONU After receiving the codeword structure, the ONU obtains the OAM information in the codeword structure.
  • the OAM information in the codeword structure can be deleted by the ONU and replaced with the original reserved character (that is, the reserved character deleted when the OLT updates the codeword structure).
  • the OAM information in the codeword structure can also be deleted by the second communication device 16 and replaced with the original reserved characters.
  • the synchronization is still performed according to the codeword synchronization information in one of the alignment tags, and the original communication protocol is not changed, and the original decoding mode is not changed.
  • the second communication device 16 performs FEC decoding on the replaced codeword structure.
  • the updated first information may further include first indication information, where the first indication information is used to indicate whether the OAM information is included in the codeword structure.
  • the updated first information may further include second indication information, where the second indication information is used to indicate whether the receiving end performs FEC decoding on the codeword structure.
  • the FEC switch of the WDM PON device is consistent with the wireless device 25GE.
  • the insertion period of the codeword synchronization information and the OAM information is consistent with the previous scheme, and the FEC indication field is also reserved to inform the ONU whether to enable the FEC.
  • the ONU obtains the codeword synchronization information and the OAM information after receiving it, and replaces it with Idle.
  • the application also provides a communication device 400.
  • the communication device 400 can be any of the communication devices (11, 12) shown in FIG. 1, or the PON OLT device 14 shown in FIG. 2, or the PON ONU device 15, or can also be the PON shown in FIG.
  • the communication device 400 includes a processor 410, a memory 420, a medium access control (MAC) chip 430, and a transceiver 440.
  • MAC medium access control
  • the processor 410 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit ASIC, or at least one integrated circuit for executing related programs to implement the technology provided by the embodiments of the present application. Program.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the memory 420 may be a read only memory (ROM), a static storage device, a dynamic storage device, or a random access memory (RAM).
  • the memory 420 can store an operating system and other applications.
  • the program code for implementing the technical solution provided by the embodiment of the present application is saved in the memory 420 and executed by the processor 410.
  • the processor 410 may internally include a memory 420.
  • processor 410 and memory 420 are two separate structures.
  • processor 410 and MAC chip 430 can be two separate structures.
  • the MAC chip 430 can be included in the processor 410.
  • the MAC chip 430 may include a physical coding sublayer and a MAC control sublayer.
  • Transceiver 440 can include a light emitter and/or a light receiver.
  • the light emitter can be used to transmit an optical signal and the optical receiver can be used to receive an optical signal.
  • the light emitter can be realized by a light emitting device such as a gas laser, a solid laser, a liquid laser, a semiconductor laser, a direct modulation laser, or the like.
  • the light receiver can be implemented by a photodetector such as a photodetector or a photodiode such as an avalanche diode.
  • the transceiver 440 can also include a digital to analog converter and an analog to digital converter.
  • the MAC chip 430 or the processor 410 can perform the steps of physically coding the sublayers.
  • the MAC chip 430 or the processor 410 is configured to perform steps S200, S201, S202, S203, S301, S302, and S303.
  • the MAC chip 430 or the processor 410 is configured to perform steps S204, S205, S206, S207, S304, S305, S306.
  • the present application also provides a data processing apparatus, which may be integrated in the communication device 400 of the above embodiment, for example, may be integrated in the MAC chip of the communication device 400, or integrated in the processor, or integrated in the DSP chip.
  • the apparatus includes: a receiving module 510, an FEC encoding and decoding module 520, and a generating module 530.
  • the receiving module 510 is configured to perform step S200
  • the FEC encoding module 520 is configured to perform step S201
  • the generating module 530 is configured to perform step S202.
  • the apparatus further includes a transmitting module for performing step S203.
  • the device also includes a transcoding module for performing a transcoding operation.
  • the present application also provides a data processing apparatus, which may be integrated in the communication device 400 of the above embodiment, for example, may be integrated in the MAC chip of the communication device 400, or integrated in the processor, or integrated in the DSP chip.
  • the device includes: a receiving module 610, and an updating module 620.
  • the receiving module 610 is configured to perform step S301
  • the updating module 620 is configured to perform step S302.
  • the apparatus further includes a sending module, configured to perform step S303.
  • the present application also provides a data processing apparatus, which may be integrated in the communication device 400 of the above embodiment, for example, may be integrated in the MAC chip of the communication device 400, or integrated in the processor, or integrated in the DSP chip.
  • the device includes: a receiving module 710, a synchronization module 720, and an obtaining module 730.
  • the receiving module 710 is configured to perform steps S204, S304
  • the synchronization module 720 is configured to perform steps S205, S305
  • the obtaining module 730 is configured to perform steps S207, S306.
  • the device further includes an FEC compiled code module 740, configured to perform step S206,
  • the present application also provides an optical line terminal comprising the data processing apparatus of any of the above embodiments.
  • the application further provides an optical network unit comprising the data processing apparatus of any of the above embodiments.
  • the application also provides a PON system comprising the optical line terminal and the optical network unit described above.
  • the application also provides a communication system including the communication device described above.
  • the above-described communication device as a source network device and a communication device as a target network device are included.
  • the application also provides a communication system including the above-described first communication device, OLT, ONU, and second communication device.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Abstract

本申请公开了一种数据处理方法、装置和通信系统,该方法包括,源网络设备在物理编码子层接收S个第一数据块,添加第一信息,对S个第一数据块和第一信息进行FEC编码生成码字结构,第一信息包括码字同步信息和OAM信息。源网络设备向目标网络设备发送码字结构。目标网络设备根据码字同步信息对码字结构进行同步,获取OAM信息。从而源网络设备和目标网络设备之间具备了OAM功能,实现了通信系统的管理功能。

Description

数据处理方法和装置、通信系统 技术领域
本申请涉及通信领域,并且更具体地,涉及一种数据处理方法、装置、通信系统。
背景技术
随着用户数据需求量的不断急剧增大,10G无源光网络(Passive Optical Network,PON)已经进入规模部署阶段,下一代的PON系统标准也在逐步制定和完善。下一代移动通信5G标准也已基本完成,随着对速率和系统时延要求的提升,5G通信对承载网络的要求也不断提升。随着基站向小型基地台(small cell)方向发展,覆盖密度越来越大,对光纤资源的需求也越来越大,需要建设低成本的深度覆盖承载网络。在光网城市建设的大背景下,基于PON的宽带接入网已经规模部署,海量光纤已经向用户侧延伸,与Small Cell覆盖吻合。
目前,中国电信与中国联通正在推动波分复用(Wavelength Division Multiplexing,WDM)PON用于5G承载网络的标准和方案制定。
发明内容
有鉴于此,本申请提供了一种数据处理方法、数据处理装置、通信设备和通信系统。
第一方面,提供了一种数据处理方法,该方法在源网络设备的物理编码子层执行,该方法包括:在物理编码子层接收S个第一数据块,S为正整数;在所述物理编码子层对所述S个第一数据块和第一信息进行FEC编码生成校验部分,所述第一信息包括码字同步信息和OAM信息;在所述物理编码子层生成码字结构,所述码字结构包括所述S个第一数据块,所述第一信息和所述校验部分。该方案可应用于承载5G业务的WDM PON系统中。源网络设备例如可以为WDM PON系统中的OLT或ONU。可以在25GE标准的FEC编码方案基础上,实现OAM管理通道的建立。第一信息还可以称为码字标签(继承了25GE标准中的叫法),也可以为其他名字。
第一信息还包括第一指示信息,所述第一指示信息用于指示所述码字结构中是否包含所述OAM信息。
第一信息还包括第二指示信息,所述第二指示信息用于指示接收端是否对所述码字结构进行FEC译码。以告知接收端是否需要FEC译码。
为了尽可能少的更改现有的25GE标准,可以沿用25GE标准中的码字标签的结构(即沿用4个对齐标签)。可以将其中1个对齐标签承载码字同步信息.
另外3个对齐标签中,选取全部或部分用来承载OAM信息。例如,一个例子中,选取其中2个对齐标签承载OAM信息,另外1个对齐标签相对于现有25GE标准不做更改,或者作为保留字段使用。另一个例子中,选取其中1个对齐标签的部分字节承载第一指示信息和第二指示信息中的至少一个,部分字节作为保留字段,部分字节承载其他信息,其余字节与另外2个对齐标签共同承载OAM信息。从而能够进一步提高OAM管理通道有效速率。
FEC编码方式可以为RS编码。例如,可以为RS(528,514)编码方式,表示对5140比特的有效数据进行FEC编码,生成140比特校验部分,最终生成的码字结构的长度为5280 比特。
在一个例子中,有效数据可以包括19个257比特的第一数据块,和1个257比特的第一信息。
第二方面,提供一种数据处理方法,该方法在源网络设备的物理编码子层执行,该方法包括:在物理编码子层接收码字结构,所述码字结构包括S个第一数据块,第一信息和校验部分,所述第一信息包括码字同步信息;在所述物理编码子层更新所述第一信息,更新后的所述第一信息包括OAM信息。更新后的所述第一信息中还包括第一指示信息,所述第一指示信息用于指示所述码字结构中是否包含所述OAM信息。更新后的所述第一信息还包括第二指示信息,所述第二指示信息用于指示接收端是否对所述码字结构进行FEC译码。更新后的码字结构中的第一信息的细节,以及FEC编码细节可以参照上述第一方面。
第三方面,提供一种数据处理方法,该方法在目标网络设备的物理编码子层执行,该方法包括:在物理编码子层接收码字结构,所述码字结构包括S个第一数据块,第一信息和校验部分,所述第一信息包括码字同步信息和OAM信息;在所述物理编码子层根据所述码字同步信息对所述码字结构进行同步;在所述物理编码子层获取所述OAM信息。
在源网络设备进行了FEC编码时,则目标网络设备对码字结构进行FEC解码。在源网络设备未进行FEC编码时,则目标网络设备不对码字结构进行FEC解码。第一信息中可以包括第二指示信息,用于指示目标网络设备是否对所述码字结构进行FEC译码。第一信息中还可以包括第一指示信息,用于指示所述第一信息中是否包括所述OAM信息。
第四方面,提供一种数据处理装置,该装置可以应用于WDM PON设备中。所述装置包括:接收模块,用于在物理编码子层接收S个第一数据块,S为正整数;FEC编译码模块,用于在所述物理编码子层对所述S个第一数据块和第一信息进行FEC编码生成校验部分,所述第一信息包括码字同步信息和OAM信息;生成模块,用于在所述物理编码子层生成码字结构,所述码字结构包括所述S个第一数据块,所述第一信息和所述校验部分。FEC编码方式可以为RS编码,具体的,可以为RS(528,514)。
第五方面,提供一种数据处理装置,该装置可以应用于WDM PON设备中。所述装置包括:接收模块,用于在物理编码子层接收码字结构,所述码字结构包括S个第一数据块,第一信息和校验部分,所述第一信息包括码字同步信息;更新模块,用于在所述物理编码子层更新所述第一信息,更新后的所述第一信息包括OAM信息。
第六方面,提供一种数据处理装置,该装置可以应用于WDM PON设备中。所述装置包括:接收模块,用于在物理编码子层接收码字结构,所述码字结构包括S个第一数据块,第一信息和校验部分,所述第一信息包括码字同步信息和OAM信息;同步模块,用于在所述物理编码子层根据所述码字同步信息对所述码字结构进行同步;获取模块,用于在所述物理编码子层获取所述OAM信息。还可以包括FEC编译码模块,用于在所述物理编码子层对所述码字结构进行FEC译码。
第七方面,提供一种通信系统,该通信系统包括上述第四或五方面所述的数据处理装置,以及上述第六方面所述的数据处理装置。
第八方面,提供一种通信设备。该通信设备可以包括处理模块,该处理模块可以为MAC(Media Access Control,媒体接入控制)芯片,或者处理器,或者DSP(digital signal  processor,数据信号处理器)等。该处理模块在物理编码子层接收S个第一数据块,S为正整数;在所述物理编码子层对所述S个第一数据块和第一信息进行FEC编码生成校验部分,所述第一信息包括码字同步信息和OAM信息;在所述物理编码子层生成码字结构,所述码字结构包括所述S个第一数据块,所述第一信息和所述校验部分。或者,该处理模块在物理编码子层接收码字结构,所述码字结构包括S个第一数据块,第一信息和校验部分,所述第一信息包括码字同步信息;在所述物理编码子层更新所述第一信息,更新后的所述第一信息包括OAM信息。
第九方面,提供一种通信设备,该通信可以包括处理模块,该处理模块可以为MAC(Media Access Control,媒体接入控制)芯片,或者处理器,或者DSP(digital signal processor,数据信号处理器)等。该处理模块在物理编码子层接收码字结构,所述码字结构包括S个第一数据块,第一信息和校验部分,所述第一信息包括码字同步信息和OAM信息;在所述物理编码子层根据所述码字同步信息对所述码字结构进行同步;在所述物理编码子层获取所述OAM信息。
可以理解的是,上述各个方面之间的保护主题不同,但是具体实施细节可以相互参考,某些保护主题没有具体阐述实施细节,可以参考其他各个主题。
第十方面,提供一种光网络单元,该光网络单元包括上述第四至第六任一方面的装置。
第十一方面,提供一种光线路终端,该光线路终端包括上述第四至第六任一方面的装置。
本申请的又一方面,提供一种码字结构,该码字结构为上述任意方面所述的码字结构。
码字结构的具体细节、FEC码型的具体细节等均可以参照其他各个方面,在此不再赘述。
本申请的又一方面,提供一种MAC芯片,该MAC芯片包括上述第四至第六任一方面的装置。
本申请的又一方面,提供一种PON系统,该系统包括上述第十方面的光线路终端和第十一方面的光网络单元。
本申请的又一方面,提供了一种计算机可读存储介质,计算机可读存储介质中存储有上述第四至第六任一方面的装置所用的计算机软件指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
附图说明
图1为依照本申请一实施例的通信系统的一架构示意图;
图2为依照本申请一实施例的通信系统的另一架构示意图;
图3为依照本申请一实施例的WDM PON用于5G业务承载的通信系统的一架构示意图;
图4为依照本申请一实施例的FEC编码流程示意图;
图5为依照本申请一实施例的数据编译码方法的示范性流程图;
图6为依照本申请一实施例的数据处理方法的示范性流程图;
图7为依照本申请一实施例的通信设备的硬件结构示意图;
图8为依照本申请一实施例的数据处理装置一示范性功能模块示意图;
图9为依照本申请一实施例的数据处理装置另一示范性功能模块示意图;
图10为依照本申请一实施例的数据处理装置另一示范性功能模块示意图。
具体实施方式
为使得本申请的发明目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本申请一部分实施例,而非全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例的技术方案,可以应用于各种通信系统,例如,可以应用于各种点对点以及点对多点的以太网通信系统。
图1为适用于本申请各个实施例的通信系统100的一架构示意图,该通信系统包括两个相互通信的通信设备(11,12)。这两个通信设备(11,12)之间可以通过物理媒介如光纤连接。这两个通信设备(11,12)之间传输的数据可以为经过FEC编码的数据。可以是图1中的任一通信设备进行FEC编码生成码字结构,并将码字结构发送至另一通信设备,由另一通信设备对码字结构进行FEC译码。
图2为适用于本申请各个实施例的通信系统的另一架构示意图,该通信系统100包括第一通信设备13,PON光线路终端(Optical Line Terminal,OLT)设备14,PON光网络单元(Optical Network Unit,ONU)设备15和第二通信设备16。
以上行传输为例,第二通信设备16向PON ONU设备15发送的数据可以为经过前向纠错编码(Forward Error Correction,FEC)编码的数据。
在一个例子中,PON ONU15可以不对数据进行FEC编码,PON OLT设备14也可以不对数据进行FEC译码,由第一通信设备13进行FEC译码;
在另一个例子中,PON ONU15可以先进行FEC译码,然后再重新进行FEC编码,将重新编码后的数据发给PON OLT设备。PON OLT设备14可以先进行FEC译码(译码方式与PON ONU的FEC编码方式一致),将FEC译码后的数据发给第一通信设备;或者,也可以先对FEC译码后的数据重新进行FEC编码,将编码后的数据发送给第一通信设备,由第一通信设备13进行FEC译码。
或者,第二通信设备16向PON ONU设备15发送的数据也可以为未经过FEC编码的数据,则PON ONU15对接收的数据进行FEC编码,并将编码后的数据发送给PON OLT设备14,由PON OLT设备14对接收的数据进行FEC译码后发送给第一通信设备13。
下行传输同上行传输类似,可以由第一通信设备13进行FEC编码,第二通信设备16进行FEC译码,而PON OLT14和PON ONU15不进行FEC编译码;或者,也可以由PON OLT14进行FEC编码,PON ONU15进行FEC译码,而第一通信设备13和第二通信设备16不进行FEC编译码。或者,也可以由第一通信设备13进行FEC编码,第二通信设备16进行FEC译码,并且由PON OLT14先译码再重新进行FEC编码,PON ONU15FEC译码或者先译码后重新FEC编码。
本申请也可以应用于5G业务承载的WDM PON系统中。图3为适用于本申请各个实 施例的WDM PON用于5G业务承载的通信系统的一架构示意图,如图3所示,通信系统100包括PON局端设备101(如OLT),与PON局端设备101连接的基带处理单元(baseband unit,BBU)设备102,以及PON终端设备103(如ONU)和与PON终端设备103连接的BBU设备104。PON局端设备101和PON终端设备之间连接有阵列波导光栅(Arrayed Waveguide Grating,AWG)105(也可以是光分路器)。可以是PON局端设备101进行FEC编码,PON终端设备103进行FEC译码;或者,PON终端设备103进行FEC编码,PON局端设备101进行FEC译码。或者,由BBU设备进行FEC编译码,PON局端设备101和PON ONU端设备103可以不进行FEC编译码。或者,BBU设备进行FEC编译码,PON局端设备101先译码再进行FEC编码,PON终端设备103FEC译码或者先译码后重新FEC编码。或者,BBU设备进行FEC编译码,PON终端设备103先译码再进行FEC编码,PON局端设备101FEC译码或者先译码后重新FEC编码。
WDM PON由于其低时延、高带宽等特性,可用于eCRPI业务的承载。运营商对WDM PON提出需求:1、无线业务低时延、透传无线业务;2、系统能够具备OAM功能,可实现PON网络的管理及诊断功能。3、支持25G速率。
可以理解的是,图1至图3所示的架构只是一个示例,并不限定本申请的保护范围。本申请的通信系统也可以采用其他架构形式。
本申请实施例的通信系统可支持的通信速率可以是25G或100G等。也可以为其他速率,在此不做限定。
下文所描述的本申请实施例的技术方案,执行主体可以为图1中的任一通信设备,也可以为图2和图3中的PON OLT设备和PON ONU设备。为了便于描述,以下将作为发送方的设备称为源网络设备,作为接收方的设备称为目标网络设备。
源网络设备和目标网络设备可以包括处理模块,该处理模块可以为MAC(Media Access Control,媒体接入控制)芯片,或者处理器,或者DSP(digital signal processor,数据信号处理器)等。由处理模块执行在物理编码子层(Physical Coding Sublayer,PCS)的操作。以下以由MAC芯片执行物理编码子层的操作为例。
在由源网络设备进行FEC编码,由目标网络设备进行FEC译码时,参照图4,图4为本发明实施例的FEC编码的一流程示意图。在MAC层来的用户数据,可以先在物理编码子层进行转码,然后进行扰码,再周期性的删除用户数据中的idle字符,然后周期性的插入一个第一信息(也可以称为码字标签,码字marker,或者code marker)。删除的idle字符长度与需要插入的第一信息长度相同,这样可以保证线路速率不变。插入的第一信息与用户数据一起经过FEC编码,形成完整的FEC码字。
可以理解的是,本申请中的第一信息,也可以为其他名字,并不限定第一信息的保护范围。
每1024个FEC码字中,有一个FEC码字携带第一信息。
在由源网络设备FEC编码,由目标网络设备FEC译码时,如图5所示,以下提供一种数据编译码方法,该方法包括以下步骤:
S200,源网络设备在物理编码子层接收S个第一数据块,S为正整数;
在一实施例中,第一数据块可以为256/257B的数据块,是指该数据块总长度为257比 特,其中含有256比特的数据,还有1比特的指示信息。
该第一数据块可以为由4个64B/66B或者64B/65B的数据块转码生成的。可以由源网络设备进行转码生成第一数据块。
在另一实施例中,第一数据块还可以为其他长度的数据块。如第一数据块可以为64B/66B或者64B/65B的数据块。64B/66B的数据块是指该数据块总长度为66比特,其中含有64比特的数据,还有2比特的指示信息。64B/65B的数据块是指该数据块总长度为65比特,其中含有64比特的数据,还有1比特的指示信息。
S201,源网络设备在所述物理编码子层对所述S个第一数据块和第一信息进行FEC编码生成校验部分,所述第一信息包括码字同步信息和操作管理和维护(operations,administration and maintenance,OAM)信息;S个第一数据块和第一信息构成有效数据。
S202,源网络设备在所述物理编码子层生成码字结构,所述码字结构包括所述S个第一数据块,所述第一信息和所述校验部分。
源网络设备和目标网络设备采用的FEC码型对应设有FEC码字长度和FEC净荷长度,表示采用该FEC码型编码后的码字结构中,校验部分的长度等于FEC码字长度减去FEC净荷长度。FEC码型例如可以为里德-所罗门(Reed-Solomon,RS)码型。例如,可以为RS(528,514)码型,粒度为10比特,表示FEC码字长度为528ⅹ10比特,FEC净荷长度为514ⅹ10比特,校验部分的长度为(528-514)ⅹ10比特。RS(528,514)码型中,对5140比特的有效数据进行FEC编码后,生成140比特的校验部分,生成的码字结构的FEC码字长度为5280比特。可以理解的是,FEC码型也可以为其他码型,在此不做限定。
可以理解的是,FEC码型也可以采用其他表达方式,可以间接指示出FEC码字长度和FEC净荷长度即可。
源网络设备可以执行添加或插入第一信息的操作。为了保证线路速率不变,可以删除与第一信息同等长度的idle字符,并添加第一信息。具体的,源网络设备可以周期性的添加第一信息。例如,可以每隔1024个码字添加一次第一信息。
码字同步信息用于目标网络设备进行码字同步。OAM信息用于PON网络的操作管理和维护,进而实现PON网络的管理和诊断功能。
S203,源网络设备向目标网络设备发送码字结构。
S204,目标网络设备接收码字结构。
S205,目标网络设备在物理编码子层根据所述码字同步信息对所述码字结构进行同步;
S206,目标网络设备对所述码字结构进行FEC译码;
S207,目标网络设备获取OAM信息。具体的,从第一信息中获取OAM信息。进而,源网络设备和目标网络设备之间,通过OAM信息,实现PON网络的操作管理和维护等功能,以及实现PON网络的管理和诊断功能等。
在一实施例中,第一信息还包括第一指示信息,所述第一指示信息用于指示所述码字结构中是否包含所述OAM信息。由于源网络设备向目标网络设备发送的码字结构中,可能有些码字结构中即使含有第一信息,但是也可能没有OAM信息。因此通过该第一指示信息,可以告知接收端当前码字结构中的第一信息是否含有OAM信息。
在一实施例中,第一信息还包括第二指示信息,第二指示信息用于指示接收端(即目 标网络设备)是否对所述码字结构进行FEC译码。在源网络设备进行了FEC编码时,则该第二指示信息指示目标网络设备对码字结构进行FEC译码,目标网络设备根据第二指示信息即可获知可以对码字结构进行FEC译码。在源网络设备未进行FEC编码时,则该第二指示信息指示目标网络设备不对码字结构进行FEC译码,则目标网络设备可以根据第二指示信息即可获知可以不对码字结构进行FEC译码。
在一实施例中,第一信息的长度例如可以为257比特。可以理解的是,第一信息也可以为其他长度,在此不做限定。上述码字同步信息、OAM信息以及第一指示信息、第二指示信息的长度可以根据实际需要进行分配。
以下以第一信息长度为257比特为例,第一信息包括4个第二数据块,每个所述第二数据块的长度为64b。可以理解的是,这里第二数据块的定义是为了方便以下的描述,也可以理解为预设个数的比特的集合。现有25GE标准中的第一信息长度为257比特,包括4个对齐标签(alignment marker),每个对齐标签的长度为64比特。可以理解的是,这里的第二数据块也可以称为对齐标签。
码字同步信息和OAM信息所占用的第二数据块的个数可以根据实际需要进行灵活设置。例如,一个所述第二数据块承载所述码字同步信息;至少一个所述第二数据块承载所述OAM信息。
具体的,在一实施例中,可以采用1个第二数据块承载码字同步信息,1个第二数据块作为保留字段。另外2个第二数据块用来承载OAM信息。此时管理通道有效速率为:25Gbps*0.5/(1024*20)=610kbps。
在另一实施例中,可以采用1个第二数据块承载码字同步信息。1个数据块中的部分比特作为保留字段,部分比特作为OAM字段,其中OAM字段的长度例如可以为32比特,保留字段的长度例如可以为24比特,另外8比特可以用作BIP字段。OAM字段和另外2个数据块(其中一个称为block0,另一个称为block1)用来共同承载OAM信息。OAM字段又可以划分为两部分,part0和part1,长度均为16比特,part0和block0可以组成一个OAM消息,part0和block1可以组成另外一个OAM消息,每条OAM消息的长度为10字节。保留字段可以用来承载上述第一指示信息和第二指示信息。保留字段的部分比特或全部比特用于承载第一指示信息和第二指示信息中的至少一个。
采用上述方案,FEC同步状态机总体无需修改,cwm_valid的产生判决条件就是判决了48bits,其余数据不做处理。由于同步方案与常规25GE一致,可以和标准25GE接口兼容。
该方案基于25GE的标准FEC编码方案基础上,实现OAM管理通道的建立,不增加复杂度,也不会引入额外的功率代价。同时OAM管理通道受到FEC保护,性能与业务通道一致。对业务通道透传,不影响业务数据。基于FEC编码实现,可以实现业务性能统计。
OAM信息的格式例如可以为下表所示:
Message Type=0xaa
OPcode=0xbb
Message Word
FCS
其中,Message Type表示消息类型。同一种消息类型下可以对应多种OPcode,OPcode表示这种消息类型下的更细化的消息类型。Message Word表示消息内容。FCS表示帧校验序列(frame check sequence)。
具体的,OAM信息例如可以为通道配置消息:
Message Type=0x01
OPcode=0x01
Channel No.
FCS
OAM信息例如可以为通道指示消息:
Message Type=0x01
OPcode=0x02
Channel No.
FCS
OAM信息例如可以为通道确认消息:
Message Type=0x01
OPcode=0x03
Channel No.
FCS
上述三种OAM信息的消息类型都为通道类型的消息,OPcode分别为0x01(表示通道配置消息),0x02(表示通道指示消息),0x01(表示通道确认消息)。Channel No.表示通道号。
OAM信息例如可以为状态查询消息:
Message Type=0x02
OPcode=0x01
Module Status Request
FCS
Module Status Request表示模块状态信息请求,表示请求对方发送当前模块状态。
OAM信息例如可以为状态恢复消息:
Message Type=0x01
OPcode=0x01
Module Status Report
FCS
Module Status Report表示模块状态信息报告,表示向对方报告当前模块状态。
OAM信息例如可以为链路性能查询消息:
Message Type=0x01
OPcode=0x01
Link BER.Request
FCS
Link BER.Request表示链路误码请求,表示请求对方发送当前的误码率情况。
OAM信息例如可以为性能恢复消息:
Message Type=0x01
OPcode=0x01
Link BER.Report
FCS
Link BER.Report表示链路误码报告,表示向对方报告当前的误码率情况。
可以理解的是,上述OAM消息格式是一种示例,并不限定本申请的保护范围。OAM消息格式也可以为其他格式。上述Message Type以及Opcode的具体取值,也可以为其他值,在此不做限定,上述表格是一个示例。
第一通信设备和第二通信设备不进行FEC编译码,WDM PON层统一做FEC,并插入码字同步信息和OAM信息,不影响链路速率。考虑互通,第一信息中的保留字段来进行指示,用于告知ONU或OLT,第一通信设备或第二通信设备是否使用了FEC。如果第一通信设备和第二通信设备设备的25GE没有做FEC,ONU或OLT侧在终结OAM后需要还原出原始的66比特流然后转发给第一通信设备或第二通信设备。
在源网络设备不需要FEC编码时,如图2所示,例如OLT为源网络设备,第一通信设备进行FEC编码,并将FEC编码后的码字结构发送给源网络设备,则OLT不需要FEC编码,ONU也不需要FEC译码,通过第二通信设备进行FEC译码。以下提出一种数据处理方法,如图6所示,该方法包括以下步骤:
S301,源网络设备在物理编码子层接收码字结构,所述码字结构包括S个第一数据块,第一信息和校验部分,所述第一信息包括码字同步信息;
S302,源网络设备在所述物理编码子层更新所述第一信息,更新后的所述第一信息包括OAM信息。
S303,源网络设备向目标网络设备发送码字结构;
S304,目标网络设备接收码字结构;
S305,目标网络设备在物理编码子层根据所述码字同步信息对所述码字结构进行同步;
S306,目标网络设备在物理编码子层获取OAM信息。进而,源网络设备和目标网络设备之间,通过OAM信息,实现PON网络的操作管理和维护等功能,以及实现PON网络的管理和诊断功能等。
为了保证线路速率不变,更新码字结构的方式可以为:删除第一信息中的保留字符,然后插入OAM信息。删除的字符比特数与插入的比特数相同。
例如,图2所示的系统架构中,以下行传输为例,且以25GE系统为例,第一通信设备13发送给OLT码字结构,该码字结构中的第一信息(在25GE中可以称为码字标签)中包括4个对齐标签,可以只采用其中1个对齐标签承载码字同步信息。这样对于第一通信设备13来说,可以不改变原有的通信协议,以及不改变原有的编码方式。
OLT可以将OAM信息更新至其余3个对齐标签中的全部或部分。例如,可以更新至其中2个对齐标签中,例如将最后2个对齐标签的原有字符删除,并在这两个对齐标签中 插入OAM信息。
ONU接收到码字结构后,获取码字结构中的OAM信息。
可以由ONU将码字结构中的OAM信息删除,并替换为原有的保留字符(即OLT更新码字结构时删除的保留字符)。也可以由第二通信设备16将码字结构中的OAM信息删除,并替换原有的保留字符。
对于第二通信设备16来说,仍然根据其中1个对齐标签中的码字同步信息进行同步,也不会改变原有的通信协议,以及不改变原有的译码方式。第二通信设备16对替换后的码字结构进行FEC译码。
更新后的所述第一信息中还可以包括第一指示信息,所述第一指示信息用于指示所述码字结构中是否包含所述OAM信息。
更新后的所述第一信息还可以包括第二指示信息,所述第二指示信息用于指示接收端是否对所述码字结构进行FEC译码。
本实施例中的第一信息的具体细节以及本实施例中的其他细节均可以参照上述图5所示实施例的细节,在此不再赘述。
在另一实施例中,WDM PON设备的FEC开关和无线设备25GE保持一致。对于没有FEC的场景,可以通过删除idle方式周期性插入码字同步信息和OAM信息,但不做转码和FEC。码字同步信息和OAM信息的插入周期与前面的方案一致,同时也保留了FEC指示字段,用于告知ONU是否开启FEC。ONU在收到后获取码字同步信息和OAM信息,并替换回Idle。
本申请还提供一种通信设备400。该通信设备400可以为图1所示的任一通信设备(11,12),也可以为图2所示的PON OLT设备14,或者PON ONU设备15,或者也可以为图3所示的PON局端设备101,或者PON终端设备103。如图7所示,该通信设备400包括处理器410、存储器420、媒体访问控制(medium access control,MAC)芯片430、收发器440。
处理器410可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路ASIC,或者至少一个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
存储器420可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器420可以存储操作系统和其他应用程序。在通过软件或者固件来实现本申请实施例提供的技术方案时,用于实现本申请实施例提供的技术方案的程序代码保存在存储器420中,并由处理器410来执行。
在一实施例中,处理器410内部可以包括存储器420。在另一实施例中,处理器410和存储器420是两个独立的结构。
在一实施例中,处理器410和MAC芯片430可以是两个独立的结构。在另一实施例中,处理器410中可以包括MAC芯片430。MAC芯片430可以包括物理编码子层和MAC控制子层。
收发器440可以包括光发射器和/或光接收器。光发射器可以用于发送光信号,光接收 器可以用于接收光信号。光发射器可以通过发光器件,例如气体激光器、固体激光器、液体激光器、半导体激光器、直调激光器等实现。光接收器可以通过光检测器,例如光电检波器或者光电二极管(如雪崩二极管)等实现。收发器440还可以包括数模转换器和模数转换器。
MAC芯片430或处理器410可以执行物理编码子层的步骤。
从上述实施例可以看出,在该通信设备400用作源网络设备时,MAC芯片430或处理器410用于执行步骤S200,S201,S202,S203,S301,S302,S303。
在该通信设备400用作目标网络设备时,MAC芯片430或处理器410用于执行步骤S204,S205,S206,S207,S304,S305,S306。
处理器410、MAC芯片430在物理编码子层执行上述步骤时的更多细节可以参照上述方法各个实施例及附图的相关描述,此处不再赘述。
本申请实施例同样具有上述各个方法实施例中所描述的各种有益效果,在此不再赘述。
本申请还提供一种数据处理装置,该装置可以集成在上述实施例的通信设备400中,例如,可以集成在通信设备400的MAC芯片中,或者集成在处理器中,或者集成在DSP芯片中。如图8所示,该装置包括:接收模块510,FEC编译码模块520和生成模块530。
从上述实施例可以看出,接收模块510用于执行步骤S200,FEC编码模块520用于执行步骤S201,生成模块530用于执行步骤S202。
该装置还包括发送模块,用于执行步骤S203。
该装置还包括转码模块,转码模块用于执行转码操作.
该装置各个模块执行上述步骤时的更多细节可以参照上述方法各个实施例及附图的相关描述,此处不再赘述。
本申请实施例同样具有上述各个方法实施例中所描述的各种有益效果,在此不再赘述。
本申请还提供一种数据处理装置,该装置可以集成在上述实施例的通信设备400中,例如,可以集成在通信设备400的MAC芯片中,或者集成在处理器中,或者集成在DSP芯片中。如图9所示,该装置包括:接收模块610,更新模块620。
从上述实施例可以看出,接收模块610用于执行步骤S301,更新模块620用于执行步骤S302。
该装置还包括发送模块,用于执行步骤S303。
该装置各个模块执行上述步骤时的更多细节可以参照上述方法各个实施例及附图的相关描述,此处不再赘述。
本申请实施例同样具有上述各个方法实施例中所描述的各种有益效果,在此不再赘述。
本申请还提供一种数据处理装置,该装置可以集成在上述实施例的通信设备400中,例如,可以集成在通信设备400的MAC芯片中,或者集成在处理器中,或者集成在DSP芯片中。如图10所示,该装置包括:接收模块710,同步模块720,获取模块730。
从上述实施例可以看出,接收模块710用于执行步骤S204,S304,同步模块720用于执行步骤S205,S305;获取模块730用于执行步骤S207,S306。
该装置还包括FEC编译码模块740,用于执行步骤S206,
该装置各个模块执行上述步骤时的更多细节可以参照上述方法各个实施例及附图的相关描述,此处不再赘述。
本申请实施例同样具有上述各个方法实施例中所描述的各种有益效果,在此不再赘述。
本申请还提供一种光线路终端,该光线路终端包括上述任一实施例的数据处理装置。
本申请还提供一种光网络单元,该光网络单元包括上述任一实施例的数据处理装置。
本申请还提供一种PON系统,该系统包括上述的光线路终端和光网络单元。
本申请还提供一种通信系统,该系统包括上述的通信设备。例如,包括上述作为源网络设备的通信设备和作为目标网络设备的通信设备。
本申请还提供一种通信系统,该系统包括上述第一通信设备、OLT、ONU和第二通信设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
综上,以上仅为本申请的实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种数据处理方法,其特征在于,所述方法包括:
    在物理编码子层接收S个第一数据块,S为正整数;
    在所述物理编码子层对所述S个第一数据块和第一信息进行FEC编码生成校验部分,所述第一信息包括码字同步信息和OAM信息;
    在所述物理编码子层生成码字结构,所述码字结构包括所述S个第一数据块,所述第一信息和所述校验部分。
  2. 如权利要求1所述的方法,其特征在于,所述第一信息还包括第一指示信息,所述第一指示信息用于指示所述码字结构中是否包含所述OAM信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一信息还包括第二指示信息,所述第二指示信息用于指示接收端是否对所述码字结构进行FEC译码。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述第一信息包括4个第二数据块,每个所述第二数据块的长度为64b;一个所述第二数据块承载所述码字同步信息;至少一个所述第二数据块承载所述OAM信息。
  5. 如权利要求4所述的方法,其特征在于,两个所述第二数据块承载所述OAM信息。
  6. 如权利要求4所述的方法,其特征在于,一个所述第二数据块包括保留字段和OAM字段,所述OAM字段和另外两个所述第二数据块共同承载所述OAM信息。
  7. 如权利要求1至6任一项所述的方法,其特征在于,所述FEC编码的方式为RS编码。
  8. 一种数据处理方法,其特征在于,所述方法包括:
    在物理编码子层接收码字结构,所述码字结构包括S个第一数据块,第一信息和校验部分,所述第一信息包括码字同步信息;
    在所述物理编码子层更新所述第一信息,更新后的所述第一信息包括OAM信息。
  9. 如权利要求8所述的方法,其特征在于,更新后的所述第一信息中还包括第一指示信息,所述第一指示信息用于指示所述码字结构中是否包含所述OAM信息。
  10. 如权利要求8或9所述的方法,其特征在于,更新后的所述第一信息还包括第二指示信息,所述第二指示信息用于指示接收端是否对所述码字结构进行FEC译码。
  11. 一种PON系统中的数据处理方法,其特征在于,所述方法包括:
    在物理编码子层接收码字结构,所述码字结构包括S个第一数据块,第一信息和校验部分,所述第一信息包括码字同步信息和OAM信息;
    在所述物理编码子层根据所述码字同步信息对所述码字结构进行同步;
    在所述物理编码子层获取所述OAM信息。
  12. 如权利要求11所述的方法,其特征在于,所述第一信息还包括第一指示信息,所述第一指示信息用于指示所述第一信息中是否包括所述OAM信息。
  13. 如权利要求11或12所述的方法,其特征在于,所述第一信息还包括第二指示信息,所述第二指示信息用于指示是否对所述码字结构进行FEC译码。
  14. 如权利要求13所述的方法,其特征在于,在所述第二指示信息指示对所述码字结构进行FEC译码时,所述方法还包括:
    在所述物理编码子层对所述码字结构进行FEC译码。
  15. 一种数据处理装置,其特征在于,所述装置包括:
    接收模块,用于在物理编码子层接收S个第一数据块,S为正整数;
    FEC编译码模块,用于在所述物理编码子层对所述S个第一数据块和第一信息进行FEC编码生成校验部分,所述第一信息包括码字同步信息和OAM信息;
    生成模块,用于在所述物理编码子层生成码字结构,所述码字结构包括所述S个第一数据块,所述第一信息和所述校验部分。
  16. 如权利要求15所述的装置,其特征在于,所述数据处理装置为WDM PON设备。
  17. 如权利要求15或16所述的装置,其特征在于,所述FEC编码的方式为RS编码。
  18. 一种数据处理装置,其特征在于,所述装置包括:
    接收模块,用于在物理编码子层接收码字结构,所述码字结构包括S个第一数据块,第一信息和校验部分,所述第一信息包括码字同步信息;
    更新模块,用于在所述物理编码子层更新所述第一信息,更新后的所述第一信息包括OAM信息。
  19. 一种数据处理装置,其特征在于,所述装置包括:
    接收模块,用于在物理编码子层接收码字结构,所述码字结构包括S个第一数据块,第一信息和校验部分,所述第一信息包括码字同步信息和OAM信息;
    同步模块,用于在所述物理编码子层根据所述码字同步信息对所述码字结构进行同步;
    获取模块,用于在所述物理编码子层获取所述OAM信息。
  20. 如权利要求19所述的装置,其特征在于,所述装置还包括:
    FEC编译码模块,用于在所述物理编码子层对所述码字结构进行FEC译码。
  21. 一种通信系统,其特征在于,所述通信系统包括如权利要求15至18任一项所述的数据处理装置和如权利要求19或20所述的数据处理装置。
PCT/CN2019/086631 2018-05-16 2019-05-13 数据处理方法和装置、通信系统 WO2019218965A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207035594A KR102457525B1 (ko) 2018-05-16 2019-05-13 데이터 처리 방법과 장치, 및 통신 시스템
EP19802511.6A EP3787206A4 (en) 2018-05-16 2019-05-13 DATA PROCESSING PROCESS AND DEVICE AND COMMUNICATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810470333.9 2018-05-16
CN201810470333.9A CN110505035B (zh) 2018-05-16 2018-05-16 数据处理方法和装置、通信系统

Publications (1)

Publication Number Publication Date
WO2019218965A1 true WO2019218965A1 (zh) 2019-11-21

Family

ID=68539470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086631 WO2019218965A1 (zh) 2018-05-16 2019-05-13 数据处理方法和装置、通信系统

Country Status (4)

Country Link
EP (1) EP3787206A4 (zh)
KR (1) KR102457525B1 (zh)
CN (2) CN110505035B (zh)
WO (1) WO2019218965A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113841441B (zh) * 2021-03-23 2022-11-18 华为技术有限公司 一种通信方法与装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227450A (zh) * 2007-01-16 2008-07-23 华为技术有限公司 一种开销信息的传输方法、系统及设备
CN107113288A (zh) * 2014-11-10 2017-08-29 华为技术有限公司 在66位码中添加操作、管理与维护(oam)信息

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047470A (zh) * 2006-05-17 2007-10-03 华为技术有限公司 无源光网络中前向纠错功能的配置方法
US8442398B2 (en) * 2008-10-21 2013-05-14 Broadcom Corporation Performance monitoring in passive optical networks
US8521033B2 (en) * 2009-06-10 2013-08-27 Alcatel Lucent System and method for energy-efficient operation of optical network units based on scheduled payload reception
WO2013130647A1 (en) * 2012-03-02 2013-09-06 Huawei Technologies Co., Ltd. Passive optical network digital subscriber line convergence architecture
CN103580894B (zh) * 2012-07-31 2017-09-29 华为技术有限公司 操作、管理和维护oam配置的方法、设备及系统
CN104052623A (zh) * 2014-06-25 2014-09-17 成都广达电子股份有限公司 以太网无源光网络中的报文处理方法和报文处理系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227450A (zh) * 2007-01-16 2008-07-23 华为技术有限公司 一种开销信息的传输方法、系统及设备
CN107113288A (zh) * 2014-11-10 2017-08-29 华为技术有限公司 在66位码中添加操作、管理与维护(oam)信息

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN QICHANG: "ETN - Ethernet Transport Network for 5G Mobile Transport, Metro, and DCI Network", 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS, 19 December 2018 (2018-12-19) - 21 December 2018 (2018-12-21), pages 332 - 336, XP033536268 *
See also references of EP3787206A4 *

Also Published As

Publication number Publication date
CN110505035B (zh) 2022-04-29
CN114760007A (zh) 2022-07-15
CN110505035A (zh) 2019-11-26
KR102457525B1 (ko) 2022-10-20
EP3787206A4 (en) 2021-06-23
EP3787206A1 (en) 2021-03-03
KR20210008072A (ko) 2021-01-20

Similar Documents

Publication Publication Date Title
US8121479B2 (en) Optical network terminal management and control interface (OMCI) containing a description of the OMCI
US8249104B2 (en) Optical network terminal management and control interface over Ethernet
EP2499770B1 (en) Downstream frame synchronization pattern protected by header error control in ten gigabit passive optical network
CN102891731B (zh) 64b66b编码系统的前向纠错
KR102373841B1 (ko) 데이터 코딩 및 디코딩 방법 및 디바이스, olt, onu 및 pon 시스템
KR20040025354A (ko) 이더넷 수동형광가입자망에서 오에이엠 기능 디스커버리방법
JP2004289827A (ja) イーサネット受動光加入者網システムの論理的mac具現方法
US20100002592A1 (en) Ethernet Media Access Control Organization Specific Extension
AU2012397151B2 (en) Communications method, system, and apparatus for optical network system
WO2016049964A1 (zh) 一种波分复用无源光网络通信的方法、装置及系统
CN107925422A (zh) 无源光网络(pon)中的自适应前向纠错(fec)
WO2019218965A1 (zh) 数据处理方法和装置、通信系统
JP2005184811A (ja) ギガビットイーサネット(登録商標)受動光加入者網及び方法
CN102065344A (zh) 数据传输方法及吉比特无源光网络系统
CN110391871B (zh) 数据编译码方法和装置、olt、onu和pon系统
EP3873029A1 (en) Port configuration detection method, terminal, and computer-readable storage medium
EP3813281A1 (en) Method for receiving code block stream, method for sending code block stream and communication apparatus
EP4322546A1 (en) Data frame fragmentation method, data frame parsing method and related device
CN102045602B (zh) 帧定界的方法、光线路终端及光网络单元
CN104135487A (zh) 数据发送方法、数据接收方法、装置和系统
CN116455517A (zh) 编码方法、解码方法、装置、设备、系统及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019802511

Country of ref document: EP

Effective date: 20201125

ENP Entry into the national phase

Ref document number: 20207035594

Country of ref document: KR

Kind code of ref document: A