WO2019218732A1 - 一种光信号收发装置 - Google Patents

一种光信号收发装置 Download PDF

Info

Publication number
WO2019218732A1
WO2019218732A1 PCT/CN2019/074843 CN2019074843W WO2019218732A1 WO 2019218732 A1 WO2019218732 A1 WO 2019218732A1 CN 2019074843 W CN2019074843 W CN 2019074843W WO 2019218732 A1 WO2019218732 A1 WO 2019218732A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
unit
optical signal
input
Prior art date
Application number
PCT/CN2019/074843
Other languages
English (en)
French (fr)
Inventor
董振华
潘超
冯志勇
周谞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19804169.1A priority Critical patent/EP3783816A4/en
Publication of WO2019218732A1 publication Critical patent/WO2019218732A1/zh
Priority to US17/097,519 priority patent/US11171722B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/65Intradyne, i.e. coherent receivers with a free running local oscillator having a frequency close but not phase-locked to the carrier signal

Definitions

  • the present application relates to the field of communications, and in particular, to an optical signal transceiver.
  • the optical signal transceiver device may be a device in the optical network or a part of the device, and the optical signal transmitting and receiving device may send an Optical Supervising Channel (OSC) signal and an optical time domain reflectometer to the opposite device on the optical fiber (Optical)
  • OSC Optical Supervising Channel
  • OTDR Time Domain Reflectometer
  • Current optical signal transceiving devices include: an OSC signal generator, an OTDR signal generator, a laser, a beam splitter, a first photodetector, a second photodetector, a splitter, an OTDR processing unit, and an OSC processing unit.
  • the OSC signal generator and the OTDR signal generator are respectively connected to the first input end and the second input end of the laser, and the output end of the laser is connected to the first end of the optical splitter; the second end of the optical splitter and the first photodetector The input end is connected, the third end is connected to the first end of the multiplexer/demultiplexer; the second end of the multiplexer/demultiplexer is connected to the input end of the second photodetector, and the third end is connected to the optical fiber; the first photodetector is The output is connected to the OTDR processing unit; the output of the second photodetector is connected to the OSC processing unit.
  • the laser Under the control of the OSC signal generator and the OTDR signal generator, the laser generates a first OSC signal or a first OTDR signal, and the first OSC signal or the first OTDR signal is transmitted to the optical fiber through the optical splitter and the multiplexer and continues through the optical fiber. Transfer to the peer device.
  • the multiplexer and the splitter may receive the second OSC signal sent by the peer device and the second OTDR signal obtained by the optical fiber reflecting and scattering the first OTDR signal, send the second OSC signal to the second photodetector, and pass through the optical splitter.
  • the first photodetector transmits a second OTDR signal.
  • the first photodetector receives the second OTDR signal and forwards it to the OTDR processing unit
  • the second photodetector receives the second OSC signal and forwards it to the OSC processing unit
  • the OTDR processing unit processes the second OTDR signal to reflect the fiber characteristics.
  • the OSC processing unit processes the second OSC signal to obtain a communication code stream of the peer device.
  • the current optical signal transceiver uses a photodetector to receive the OTDR signal.
  • the limited sensitivity of the photodetector affects the dynamic range of the OTDR signal detection.
  • the embodiment of the present application provides an optical signal transceiver device.
  • the technical solution is as follows:
  • an embodiment of the present application provides an optical signal transceiver device, where the device includes: an optical signal generating module, an optical splitting module, a coherent receiving module, and a signal processing module; and the optical signal generating module is configured to generate Transmitting an optical signal and a local oscillator optical signal, the to-be-transmitted optical signal comprising a first optical time domain reflectometer OTDR signal, inputting the local oscillator optical signal to the coherent receiving module, and inputting to the optical fiber through the optical multiplexing module
  • the optical component to be transmitted, the optical multiplex module configured to receive an optical signal to be processed from the optical fiber, where the optical signal to be processed includes a first OSC signal, and the optical fiber reflects the first OTDR signal And a scattered second OTDR signal, the frequency of the first OSC signal being different from the frequency of the second OTDR signal and the frequency difference between the first OSC signal and the second OTDR signal being less than the coherence Receiving a processing bandwidth of the module, and inputting the to
  • the coherent receiving module Since the coherent receiving module performs coherent reception on the local oscillator signal and the optical signal to be processed, the coherent receiving module has a high coherent receiving sensitivity, which is generally higher than the photodetector, so that when the coherent receiving module receives the coherent reception, It is possible to improve the dynamic range of detecting the OTDR signal in the optical signal to be processed.
  • the signal processing module can obtain the first digital signal corresponding to the first OSC signal and the second digital signal corresponding to the second OTDR signal from the to-be-processed electrical signal, so that a coherent receiving module can be used for coherence. Receiving the optical signal to be processed saves the device and reduces the cost.
  • the optical signal generating module can input the local oscillator optical signal to the coherent receiving module, it is not necessary to separately set a laser for generating the local oscillator optical signal for the coherent receiving module, thereby further saving the device, thereby further reducing the cost. .
  • the optical signal generating module includes: a driving signal generating unit, a first optical signal generating unit, a beam splitting unit, and a first modulating unit; and the driving signal generating unit, configured to: Generating a driving signal corresponding to the optical signal to be transmitted, and inputting the driving signal to the first modulating unit; the first optical signal generating unit, configured to generate an optical signal, and input the optical signal to the optical splitting unit
  • the light splitting unit is configured to divide the optical signal into a first optical signal and a second optical signal, input the first optical signal to the coherent receiving module, and input the signal to the first modulation unit.
  • the second optical signal is configured to modulate the second optical signal into the optical signal to be transmitted according to the driving signal.
  • the optical signal generated by the first optical signal generating unit can be divided into a first optical signal and a second optical signal by using the light splitting unit, so that only one first optical signal generating unit is needed to obtain the local optical signal. And the optical signal to be sent saves the device and reduces the cost.
  • the to-be-transmitted optical signal includes a first signal and a second signal, the first signal includes a first OTDR signal, and the second signal includes a second OSC signal, Or the first signal includes a second OSC signal and the second signal includes a first OTDR signal;
  • the optical signal generating module further includes: a second optical signal generating unit and a combining unit; the second optical signal generating unit configured to receive the first driving corresponding to the first signal input by the driving signal generating unit a signal, a first signal is generated according to the first driving signal, and the first signal is input to the light combining unit; the first modulating unit is configured to receive the second optical signal input by the light splitting unit a second driving signal corresponding to the second signal input by the driving signal generating unit, modulating the second optical signal into a second signal according to the second driving signal, and inputting the second optical signal to the illuminating unit a second signal; the light combining unit is configured to couple the first signal and the second signal to the photosynthetic module.
  • the first signal and the second signal may be coupled to the optical multiplex module by the light combining unit, so that the first signal and the second signal may be simultaneously transmitted in the optical fiber, that is, may be simultaneously transmitted on the optical fiber.
  • the second OSC signal and the first OTDR signal may be coupled to the optical multiplex module by the light combining unit, so that the first signal and the second signal may be simultaneously transmitted in the optical fiber, that is, may be simultaneously transmitted on the optical fiber.
  • the to-be-transmitted optical signal includes a first signal and a second signal, the first signal includes a first OTDR signal, and the second signal includes a second OSC signal, Or the first signal includes a second OSC signal and the second signal includes a first OTDR signal;
  • the optical signal generating module further includes: a second optical signal generating unit, a second modulating unit, and a merging unit; the second optical signal generating unit configured to generate an optical signal, and input the optical signal to the second modulating unit
  • the second modulation unit is configured to receive a first driving signal corresponding to the first signal input by the driving signal generating unit, and modulate the optical signal into a first signal according to the first driving signal Transmitting the first signal to the light combining unit;
  • the first modulating unit configured to receive the second optical signal input by the optical splitting unit and the second input by the driving signal generating unit a second driving signal corresponding to the signal, the second optical signal is modulated into a second signal according to the second driving signal, and the second signal is input to the combining unit;
  • the combining unit is configured to: The first signal and the second signal are coupled to the photosynthetic module.
  • the first signal and the second signal may be coupled to the optical multiplex module by the light combining unit, so that the first signal and the second signal may be simultaneously transmitted in the optical fiber, that is, may be simultaneously transmitted on the optical fiber.
  • the second OSC signal and the first OTDR signal may be coupled to the optical multiplex module by the light combining unit, so that the first signal and the second signal may be simultaneously transmitted in the optical fiber, that is, may be simultaneously transmitted on the optical fiber.
  • the optical signal generating module includes: a driving signal generating unit, a first optical signal generating unit, and a second optical signal generating unit; and the driving signal generating unit, configured to generate a driving signal corresponding to the optical signal to be transmitted, the driving signal is input to the first optical signal generating unit; the first optical signal generating unit is configured to generate the optical signal to be transmitted according to the driving signal, Inputting the to-be-transmitted optical signal to the photosynthetic module; the second optical signal generating unit is configured to generate a local oscillator optical signal, and input the local oscillator optical signal to the coherent receiving module.
  • the first optical signal generating unit is used to generate the to-be-transmitted optical signal, and the second optical signal generating unit is used to generate a local oscillator optical signal, which simplifies the structure of the optical signal generating module.
  • the optical signal generating module includes: a driving signal generating unit, a first optical signal generating unit, a second optical signal generating unit, and a modulating unit; and the driving signal generating unit, a driving signal corresponding to the optical signal to be transmitted, the driving signal is input to the modulating unit; the first optical signal generating unit is configured to generate an optical signal, and input the optical signal to the modulating unit The modulating unit is configured to modulate the optical signal into the optical signal to be transmitted according to the driving signal, and input the optical signal to be transmitted to the optical multiplexing module; the second optical signal generating unit, For generating a local oscillator signal, inputting the local oscillator signal to the coherent receiving module.
  • the first optical signal generating unit and the modulating unit are used to generate the to-be-transmitted optical signal, and the second optical signal generating unit is used to generate a local oscillator optical signal, which simplifies the structure of the optical signal generating module, and uses the modulating unit to The optical signal generated by the first optical signal generating unit is modulated into the optical signal to be transmitted, so that the optical signal can be generated using a low-performance first optical signal generating unit that is relatively inexpensive, thereby saving cost.
  • the to-be-transmitted optical signal includes a first signal and a second signal, the first signal includes a first OTDR signal, and the second signal includes a second OSC signal, Or the first signal includes a second OSC signal and the second signal includes a first OTDR signal;
  • the modulating unit includes: a first converting unit and a second converting unit; the first converting unit is configured to receive a first driving signal corresponding to the first signal input by the driving signal generating unit, and the first The optical signal input by an optical signal generating unit converts the optical signal into a first signal according to the first driving signal during a first period of time for generating the first signal, by using the second The converting unit inputs the first signal to the photosynthetic module; the second converting unit is configured to receive a second driving signal corresponding to the second signal input by the driving signal generating unit in a second time period And the optical signal, converting the optical signal into the second signal according to the second driving signal, and inputting the second signal to the photosynthetic module, wherein the first time period and the The second time period is two time periods in which there is no intersection.
  • Modulating the optical signal generated by the first optical signal generating unit into the first signal using a first converting unit, and modulating the optical signal generated by the first optical signal generating unit into the first using the second converting unit The two signals can be used to generate an optical signal using a relatively inexpensive, low-performance first optical signal generating unit to save cost.
  • the to-be-transmitted optical signal includes a third signal and a fourth signal
  • the third signal includes a first OTDR signal
  • the fourth signal includes a second OSC signal
  • the third signal includes a second OSC signal and the fourth signal includes a first OTDR signal
  • the modulating unit includes: a first converting unit and a second converting unit; the first converting unit, configured to receive, in a first time period, a first corresponding to the third signal input by the driving signal generating unit a driving signal and the optical signal input by the first optical signal generating unit, converting the optical signal into a first signal according to the first driving signal, and inputting the first signal to the second converting unit; Receiving, in a second period of time, a second driving signal corresponding to the fourth signal input by the driving signal generating unit and the optical signal input by the first optical signal generating unit, according to the second driving signal Converting the optical signal into a second signal, and inputting the second signal to the second converting unit, where the first time period and the second time period are two time periods in which there is no intersection; a second conversion unit, configured to receive, in the first time period, a first driving signal corresponding to the third signal input by the driving signal generating unit and the first signal, according to the first driving signal Converting the first signal to the third signal
  • the first conversion unit and the second conversion unit can be used to simultaneously convert the optical signal into the third signal, or the first conversion unit and the second conversion unit can be simultaneously used to convert the optical signal into the fourth signal, and the third signal and the third signal are improved.
  • the extinction ratio of the four signals can be used to simultaneously convert the optical signal into the third signal, or the first conversion unit and the second conversion unit can be simultaneously used to convert the optical signal into the fourth signal, and the third signal and the third signal are improved.
  • the signal processing module includes: an analog-to-digital conversion unit and a processing unit; and the analog-to-digital conversion unit is configured to receive an electrical signal to be processed input by the coherent receiving module, Converting the to-be-processed electrical signal into a digital signal, and inputting the digital signal to the processing unit; the processing unit, configured to acquire, according to the signal frequency, the first corresponding to the first OSC signal from the digital signal And a digital signal and a second digital signal corresponding to the second OTDR signal, processing the first digital signal to obtain a communication code stream, and processing the second digital signal to obtain information for reflecting characteristics of the optical fiber.
  • the processing unit can obtain the first digital signal corresponding to the first OSC signal and the second digital signal corresponding to the second OTDR signal from the electrical signal to be processed according to the signal frequency, so that a coherent receiving module can be used for coherent reception. Processing optical signals saves devices and reduces costs.
  • the processing unit is further configured to perform a fiber optic dispersion measurement operation and an optical fiber mode field according to the communication code stream and/or information for reflecting the characteristics of the optical fiber. Diameter measurement operation and one or more of SOP event localization and rotational speed monitoring operations.
  • the signal processing module further includes: a first filtering unit and a second filtering unit, where the analog to digital conversion unit includes a first analog to digital conversion unit and a second analog to digital conversion a first filtering unit, configured to receive the to-be-processed electrical signal input by the coherent receiving module, and filter, by the to-be-processed electrical signal, a first electrical signal corresponding to the first OSC signal, Translating, by the first analog to digital conversion unit, the first electrical signal;
  • the first analog-to-digital conversion unit is configured to convert the first electrical signal into a first digital signal, and input the first digital signal to the processing unit;
  • the second filtering unit is configured to receive the The to-be-processed electrical signal input by the coherent receiving module filters out a second electrical signal corresponding to the second OTDR signal from the to-be-processed electrical signal, and inputs the second electrical signal to the second analog-to-digital conversion unit
  • the second analog to digital conversion unit is configured to convert the second electrical signal into a second digital signal, and input the second digital signal to the processing unit.
  • the first digital signal and the second digital signal can be obtained by the first filtering unit, the second filtering unit, the first analog-to-digital conversion unit and the second analog-to-digital conversion unit, so that a low-cost processing unit with a cheaper price can be used. Further reduce costs.
  • the method further includes: a frequency control module, wherein the signal processing module is further configured to acquire a frequency offset of the first OSC signal relative to the local oscillator optical signal, according to the The frequency offset is controlled by the frequency control module to control a frequency difference between an OTDR frequency generated by the optical signal generating module and a frequency of the first OSC signal to be greater than or equal to a preset difference.
  • the frequency of the optical signal generated by the signal processing module may be adjusted by the frequency control module, so that the frequency of the first OSC signal is different from the frequency of the second OTDR signal.
  • the frequency control module includes: a first digital to analog conversion unit and a first control unit; and the first digital to analog conversion unit, configured to receive the signal processing module input a first adjustment signal, converting the first adjustment signal into a first analog signal, inputting the first analog signal to the first control unit, the first adjustment signal being used to adjust the first optical signal Generating a frequency of the optical signal generated by the unit; the first control unit, configured to control a temperature or an operating current of the first optical signal generating unit according to the analog signal, to adjust the light generated by the first optical signal generating unit Signal frequency.
  • the frequency of the optical signal generated by the first digital-to-analog conversion unit can be adjusted by the first control unit, so that the frequency of the first OSC signal is different from the frequency of the second OTDR signal.
  • the frequency control module further includes: a second digital-to-analog conversion unit and a second control unit; and the second digital-to-analog conversion unit, configured to receive the signal processing module Inputting a second adjustment signal, converting the second adjustment signal into a second analog signal, inputting the second analog signal to the second control unit, the second adjustment signal for adjusting the second light a frequency of the optical signal generated by the signal generating unit; the second control unit configured to control a temperature or an operating current of the second optical signal generating unit according to the second analog signal to adjust the second optical signal generating unit The frequency of the generated optical signal.
  • the frequency of the optical signal generated by the first optical signal generating unit may be adjusted by the first control unit, so that the frequency difference between the frequency of the optical signal generated by the first optical signal generating unit and the first OSC signal is maintained at a preset value.
  • the frequency of the optical signal generated by the second optical signal generating unit may be adjusted by the second control unit, so that the frequency difference between the frequency of the optical signal generated by the second optical signal generating unit and the first OSC signal is maintained by another pre- Set the value.
  • FIG. 1 is a schematic structural diagram of an optical signal transceiver apparatus according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another optical signal transceiver apparatus according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another optical signal transceiver apparatus according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another optical signal transceiver apparatus according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another optical signal transceiver apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another optical signal transceiver apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another optical signal transceiver apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another optical signal transceiver apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another optical signal transceiver apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a frequency relationship diagram between an OSC signal and an OTDR signal provided by an embodiment of the present application
  • FIG. 11 is a diagram showing a relationship between a frequency of an OSC signal, an optical signal frequency generated by a first optical signal generating unit, and a frequency of an optical signal generated by a second optical signal generating unit according to an embodiment of the present application.
  • the optical signal transceiving device provided by the present application can be applied to an optical communication network, and the device can be a communication device in an optical communication network or a card installed in the communication device.
  • the optical communication network as shown in FIG. 1 includes communication devices such as a first device and a second device, and the first device and the second device are connected by an optical fiber.
  • the device may be a card in the first device or the first device, and the first device may receive the optical signal sent by the second device by using the device, or send the optical signal to the second device; and/or the device may be A card in the second device or the second device, the second device may receive the optical signal sent by the first device through the device, or send the optical signal to the first device.
  • the structure of the device reference may be made to the contents of any of the following embodiments.
  • the embodiment of the present application provides an optical signal transceiver device, and the optical signal transceiver device can be a physical device or a card in a physical device.
  • the optical signal transceiver device can be a physical device or a card in a physical device.
  • a first device and a second device connected to an optical fiber in an optical communication network may include the optical signal transceiving device.
  • the structure of the optical signal transmitting and receiving device in the first device is the same as the configuration of the optical signal transmitting and receiving device in the second device. Next, the optical signal transmitting and receiving device in the first device will be described in detail as an example. Referring to FIG. 1, the structure of the optical signal transceiver in the first device may include:
  • the first output end of the optical signal generating module 1 is connected to the first end of the optical multiplex module 2, the second output end is connected to the first input end of the coherent receiving module 3, and the second end of the optical multiplex unit 2 and the coherent receiving module 3
  • the second input terminal is connected, the third end is used for connecting the optical fiber;
  • the output end of the coherent receiving module 3 is connected to the input end of the signal processing module 4;
  • the optical signal generating module 1 is configured to generate an optical signal to be transmitted and a local optical signal, where the optical signal to be transmitted includes a first OTDR signal, the local optical signal is input to the coherent receiving module 3, and the optical multiplexing module 2 is used to the optical fiber. Input the optical signal to be sent;
  • the photosynthetic module 2 is configured to receive an optical signal to be processed from the optical fiber, where the optical signal to be processed includes a first OSC signal and a second OTDR signal obtained by the optical fiber to reflect and scatter the first OTDR signal, and the first OSC signal
  • the frequency is different from the frequency of the second OTDR signal, and the frequency difference between the first OSC signal and the second OTDR signal is smaller than the processing bandwidth of the coherent receiving module 3, and the optical signal to be processed is input to the coherent receiving module 3;
  • the coherent receiving module 3 is configured to perform coherent reception on the local oscillator signal and the optical signal to be processed to obtain an electrical signal to be processed, and send the to-be-processed electrical signal to the signal processing module 4;
  • the signal processing module 4 is configured to obtain a first digital signal corresponding to the first OSC signal and a second digital signal corresponding to the second OTDR signal from the to-be-processed electrical signal according to the signal frequency, and process the first digital signal to obtain a communication code stream. Processing the second digital signal to obtain information for reflecting the characteristics of the optical fiber.
  • the processing bandwidth of the coherent receiving module 3 is the bandwidth of the signal that the coherent receiving module 3 can process.
  • the optical signal to be transmitted generated by the optical signal generating module 1 may further include a second OSC signal.
  • the optical signal generating module 1 can simultaneously generate the first OTDR signal and the second OSC signal, and can also generate the first OTDR signal and the second OSC signal at different times. That is, the optical signal to be transmitted currently generated by the optical signal generating module 1 may include the first OTDR signal, or the currently generated optical signal to be transmitted may include the second OSC signal, or the currently generated optical signal to be transmitted may include the first OTDR. Signal and second OSC signal.
  • the optical multiplex module 2 When the optical signal to be transmitted includes the second OSC signal, the optical multiplex module 2 inputs the second OSC signal into the optical fiber, and the second OSC signal is transmitted to the second device in the optical fiber.
  • the optical signal to be transmitted includes the first OTDR signal
  • the optical multiplex module 2 inputs the first OTDR signal into the optical fiber and transmits it in the optical fiber.
  • the optical fiber reflects or scatters the first OTDR. The signal obtains a second OTDR signal, and the second OTDR signal is transmitted back to the optical multiplex module 2 in the first device in the optical fiber.
  • the optical signal transceiver of the second device also transmits a first OSC signal on the optical fiber, and the first OSC signal is transmitted on the optical fiber to the optical multiplex module 2 of the first device. Therefore, the optical signal to be processed received by the optical multiplex module 2 on the optical fiber includes a first OSC signal and a second OTDR signal.
  • the to-be-processed optical signal includes the first OSC signal and the second OTDR signal
  • the to-be-processed electrical signal input by the coherent receiving module 3 to the signal processing module 4 includes an electrical signal corresponding to the first OSC signal and an electrical signal corresponding to the second OTDR signal.
  • the signal processing module 4 can perform analog to digital conversion on the electrical signal to be processed, so that the converted electrical signal to be processed includes a first digital signal corresponding to the first OSC signal and a second digital signal corresponding to the second OTDR signal.
  • the technical effects of the embodiment of the present application include at least: since the coherent receiving module 3 receives the optical signal to be processed coherently, and the sensitivity of the coherent receiving processing of the coherent receiving module 3 is high, the dynamic range of the OTDR signal detection can be improved.
  • the optical signal generating module 1 directly inputs the local oscillator optical signal to the coherent receiving module 3, so that it is not necessary to separately provide a device for generating the local oscillator optical signal for the coherent receiving module 3, thereby reducing the number of components and saving cost.
  • the optical signal transceiver device can use a coherent receiving module 3 to coherently receive the optical signal to be processed and the local oscillator optical signal to obtain an electrical signal to be processed, and then Obtaining, by the signal processing module 4, the first digital signal corresponding to the first OSC signal and the second digital signal corresponding to the second OTDR signal from the electrical signal to be processed, so that the coherence included in the optical signal transceiver device can be reduced.
  • the number of modules 3 is received, further saving costs.
  • the coherent receiving module 3 may be a device that implements an optical coherent receiving function, and the device may be an integrated coherent receiver (ICR) or a simple coherent receiver including an optical combiner and a photodetector.
  • the photosynthetic module 2 can be an optical coupler or an optical circulator or the like.
  • the foregoing first device and the second device may work in a master-slave mode, where the first device may be the master device and the second device is the slave device, or the first device is the slave device and the second device is the master device. .
  • the optical signal generating module 1 is implemented in multiple manners.
  • the following first to fifth implementation manners are listed. Exhausted.
  • the optical signal generating module 1 may include:
  • the output end of the first optical signal generating unit 12 is connected to the input end of the spectroscopic unit 13, the first output end of the splitting unit 13 is connected to the first input end of the first modulating unit 14, and the second output end is connected to the coherent receiving module 3
  • the first input end is connected;
  • the second input end of the first modulation unit 14 is connected to the output end of the driving signal generating unit 11, and the output end is connected to the first end of the photosynthetic module 2;
  • the driving signal generating unit 11 is configured to generate a driving signal corresponding to the optical signal to be transmitted, and input the driving signal to the first modulating unit 14;
  • the first optical signal generating unit 12 is configured to generate an optical signal, and input the optical signal to the spectroscopic unit 13;
  • the light splitting unit 13 is configured to divide the optical signal into a first optical signal and a second optical signal, input the first optical signal to the coherent receiving module 3, and input a second optical signal to the first modulation unit 14. ;
  • the first modulating unit 14 is configured to modulate the second optical signal into an optical signal to be transmitted according to the driving signal.
  • the optical signal generated by the first optical signal generating unit 12 may be a direct current optical signal, where the direct current optical signal is a continuous optical signal, so the first optical signal and the second optical signal divided by the splitting unit 13 are also It may be a direct current optical signal, and the first optical signal is used as a local oscillator signal and input to the coherent receiving module 3.
  • the driving signal generated by the driving signal generating unit 11 may include a first driving signal or a second driving signal, the first driving signal may include an OTDR driving signal and the second driving signal may include an OSC driving signal, or the first driving The signal may include an OSC drive signal and the second drive signal may include an OTDR drive signal.
  • first driving signal and the second driving signal appearing in other implementation manners of the present application are the same as those of the first driving signal and the second driving signal in the first implementation manner, and appear in other implementation manners.
  • a driving signal and a second driving signal are used, the meanings of the first driving signal and the second driving signal are not described in detail.
  • the first modulating unit 14 modulates the second optical signal into a first signal according to the first driving signal, and transmits the first signal through the optical multiplex module 2 Input into the fiber.
  • the driving signal generating unit 11 inputs the second driving signal to the first modulating unit 14
  • the first modulating unit 14 modulates the second optical signal into a second signal according to the second driving signal, and transmits the first signal through the optical multiplex module 2 Input into the fiber.
  • the first signal may include a first OTDR signal and the second signal may include a second OSC signal, or the first signal may include a second OSC signal and the second signal may include a first OTDR signal.
  • the meanings of the first signal and the second signal appearing in other implementation manners of the present application are the same as those of the first signal and the second signal in the first implementation manner, when the first signal and the first signal appear in other implementation manners. In the case of two signals, the meanings of the first signal and the second signal are not described in detail.
  • the first modulating unit 14 modulates the second optical signal into the first OTDR signal according to the OTDR driving signal.
  • the driving signal generating unit 11 inputs the OSC driving signal to the first adjusting unit 14
  • the first modulating unit 14 adjusts the second optical signal to the second OSC signal according to the OSC driving signal.
  • the first optical signal generating unit 12 may be a distributed feedback (DFB) laser, an external cavity laser (ECL), and a distributed Bragg reflector (DBR) laser
  • the optical splitting unit. 13 may be an optocoupler or the like
  • the first modulation unit 14 may be a Semiconductor Optical Amplifier (SOA), an Electro Absorption Modulator (EAM), or a Mach–Zehnder modulator (Mach–Zehnder modulator). MZM), etc.
  • the photosynthetic module 2 can be an optical coupler or an optical circulator or the like.
  • the technical effect of the first implementation includes at least: since the optical splitting unit 13 splits the optical signal input by the first optical signal generating unit 12 into the first optical signal and the second optical signal, the first optical signal is used as the local oscillator.
  • the optical signal is input to the coherent receiving module 3, and the second optical signal is converted by the first modulating unit 14 into a first signal or a second signal to be transmitted, so that only one optical signal generating unit is needed, thereby reducing the device. The number of savings.
  • the optical signal generating module 1 of the second implementation is implemented on the basis of the first implementation manner.
  • the optical signal generating module 1 of the second implementation includes the first
  • the method may further include:
  • the second optical signal generating unit 15 and the light combining unit 16 the input end of the second optical signal generating unit 15 is connected to the output end of the driving signal generating unit 11, and the output end is connected to the first input end of the light combining unit 16;
  • the second input end of the 16 is connected to the output end of the first modulating unit 14, and the output end is connected to the first end of the photo multiplex module 2;
  • the second optical signal generating unit 15 is configured to receive a first driving signal corresponding to the first signal input by the driving signal generating unit 11, generate a first signal according to the first driving signal, and input a first signal to the combining unit 16;
  • the first modulating unit 14 is configured to receive the second optical signal input by the optical splitting unit 13 and the second driving signal corresponding to the second signal input by the driving signal generating unit 11, and modulate the second optical signal into a second driving signal according to the second driving signal. a second signal, inputting a second signal to the light combining unit 16;
  • the light combining unit 16 is configured to couple the first signal and the second signal to the photosynthetic module 2.
  • the driving signal generating unit 11 may include a first driving signal generating unit 111 and a second driving signal generating unit 112, and the input end of the second optical signal generating unit 15 and the first driving signal generating unit 111 The output is connected, and the second input of the first modulation unit 14 is connected to the output of the second drive signal generating unit 112.
  • the first driving signal generating unit 111 is configured to generate a first driving signal, and may input a first driving signal to the second optical signal generating unit 15 through an output end thereof, and the second driving signal generating unit 112 is configured to generate a second driving signal, And the second drive signal can be input to the first modulation unit 14 through its output.
  • the second optical signal generating unit 15 may be a DFB laser, an ECL, a DBR laser, or the like, and the light combining unit 16 may be an optical coupler.
  • the first driving signal generating unit 111 may be an OSC driver and the second driving signal generating unit 112 may be an OTDR driver; or the first driving signal generating unit 111 may be an OTDR driver and the second driving signal generating unit 112 may be For OSC drivers
  • the optical signal generating module 1 of the third implementation is implemented on the basis of the first implementation manner.
  • the optical signal generating module 1 of the third implementation includes the first
  • the method may further include:
  • the input end is connected to the output end of the driving signal generating unit 11, the output end is connected to the first input end of the light combining unit 16, and the second input end of the light combining unit 16 is connected to the output end of the first modulating unit 14, and the output end is connected with The first end of the photosynthetic module 2 is connected;
  • a second optical signal generating unit 15 for generating an optical signal, and inputting the optical signal to the second modulating unit 17;
  • the second modulating unit 17 is configured to receive a first driving signal corresponding to the first signal input by the driving signal generating unit 11, modulate the optical signal into a first signal according to the first driving signal, and input the first signal to the illuminating unit 16 ;
  • the first modulating unit 14 is configured to receive the second optical signal input by the optical splitting unit 13 and the second driving signal corresponding to the second signal input by the driving signal generating unit 11, and modulate the second optical signal into a second driving signal according to the second driving signal. a second signal, inputting a second signal to the light combining unit 16;
  • the light combining unit 16 is configured to couple the first signal and the second signal to the photosynthetic module 2.
  • the driving signal generating unit 11 may include a first driving signal generating unit 111 and a second driving signal generating unit 112, and the second input end of the second modulating unit 17 and the first driving signal generating unit 111 The output terminal is connected, and the second input terminal of the second modulation unit 17 is connected to the output terminal of the second drive signal generating unit 112.
  • the first driving signal generating unit 111 is configured to generate a first driving signal, and may input a first driving signal to the second modulating unit 17 through an output thereof;
  • the second driving signal generating unit 112 is configured to generate a second driving signal, and the second driving signal may be input to the first modulating unit 14 through the output end thereof.
  • the second modulating unit 17 may be SOA, EAM or MZM or the like.
  • the technical effect of the second implementation manner or the third implementation manner at least includes: receiving, by the light combining unit 16, the input first signal and the second signal, and coupling the first signal and the second signal to the photosynthetic module 2 Then, the first signal and the second signal are input to the optical fiber, so that the first OTDR signal and the second OSC signal are simultaneously transmitted on the optical fiber.
  • the optical signal generating module 1 includes:
  • the input end of the first optical signal generating unit 12 is connected to the output end of the driving signal generating unit 11, and the output end is connected to the first end of the optical multiplexing module 2; the output end of the second optical signal generating unit 15 and the output of the coherent receiving module 3 The first input is connected;
  • the driving signal generating unit 11 is configured to generate a driving signal corresponding to the optical signal to be transmitted, and input a driving signal to the first optical signal generating unit;
  • the first optical signal generating unit 12 is configured to generate an optical signal to be transmitted according to the driving signal, and input an optical signal to be sent to the optical multiplexing module 2;
  • the second optical signal generating unit 15 is configured to generate a local oscillator optical signal, and input the local oscillator optical signal to the coherent receiving module 3.
  • the driving signal generated by the driving signal generating unit 11 may include a first driving signal or a second driving signal.
  • the driving signal generating unit 11 When the driving signal generating unit 11 inputs the first driving signal to the first optical signal generating unit 12, the first optical signal generating unit 12 generates a first signal according to the first driving signal, and inputs the first signal to the optical fiber through the optical combining module 2. in.
  • the driving signal generating unit 11 inputs the second driving signal to the first optical signal generating unit 12
  • the first optical signal generating unit 12 generates a second signal according to the second driving signal, and inputs the second signal to the optical fiber through the optical combining module 2. in.
  • the optical signal generating module 1 includes:
  • the output end of the first optical signal generating unit 12 is connected to the first input end of the modulating unit 18, the second input end of the modulating unit 18 is connected to the output end of the driving signal generating unit 11, and the output end is first with the optical multiplex module 2 End connection; the output end of the second optical signal generating unit 15 is connected to the first input end of the coherent receiving module 3;
  • the driving signal generating unit 11 is configured to generate a driving signal corresponding to the optical signal to be transmitted, and input the driving signal to the modulating unit 18;
  • the first optical signal generating unit 12 is configured to generate an optical signal, and input the optical signal to the modulating unit 18;
  • the modulating unit 18 is configured to modulate the optical signal into an optical signal to be transmitted according to the driving signal, and input the optical signal to be sent to the optical multiplex module 2;
  • the second optical signal generating unit 15 is configured to generate a local oscillator optical signal, and input the local oscillator optical signal to the coherent receiving module 3.
  • the driving signal generated by the driving signal generating unit 11 may include a first driving signal or a second driving signal.
  • the modulating unit 18 converts the optical signal into a first signal according to the first driving signal, and inputs the first signal into the optical fiber through the optical multiplex module 2.
  • the driving signal generating unit 11 inputs the second driving signal to the modulating unit 18, the modulating unit 18 converts the optical signal into a second signal according to the second driving signal, and inputs the first signal into the optical fiber through the optical multiplex module 2.
  • the modulating unit 18 includes:
  • first conversion unit 181 a first conversion unit 181 and a second conversion unit 182.
  • the first input end of the first conversion unit 181 is connected to the output end of the first optical signal generating unit 12, and the second input end is connected to the output end of the driving signal generating unit 11.
  • the output end is connected to the first input end of the second conversion unit 182;
  • the second input end of the second conversion unit 182 is connected to the output end of the driving signal generating unit 11, and the output end is connected to the first end of the optical multiplex unit 2;
  • the first converting unit 181 is configured to receive the first driving signal corresponding to the first signal input by the driving signal generating unit 11 and the optical signal input by the first optical signal generating unit 12, in the first time period for generating the first signal Converting the optical signal into a first signal according to the first driving signal, inputting the first signal to the photosynthetic module 2 through the second converting unit 182, and transmitting the second signal to the second converting unit 182 in the second period of time for generating the second signal.
  • the first time period and the second time period are two time periods in which there is no intersection;
  • the second converting unit 182 is configured to receive the second driving signal corresponding to the second signal input by the driving signal generating unit 11 and the optical signal in the second time period, and convert the optical signal into the second signal according to the second driving signal.
  • the second signal is input to the photosynthetic module 2.
  • the driving signal generating unit 11 may include a first driving signal generating unit 111 and a second driving signal generating unit 112 , and the second input end of the first converting unit 181 and the first driving signal generating unit 111 The output terminal is connected, and the second input terminal of the second conversion unit 182 is connected to the output terminal of the second drive signal generating unit 112.
  • the first driving signal generating unit 11 is configured to generate a first driving signal, and may input a first driving signal to the first converting unit 181 through an output end thereof;
  • the second driving signal generating unit 112 is configured to generate a second driving signal, and the second driving signal can be input to the second converting unit 182 through the output end thereof.
  • the first converting unit 181 may be SOA, EAM, or MZM, and the like
  • the second converting unit 182 may be SOA, EAM, MZM, or the like.
  • the extinction ratio of the first signal converted by the first converting unit 181 may not reach the required extinction ratio threshold, and the extinction ratio of the second signal converted by the second converting unit 182 may not reach the required extinction ratio.
  • the threshold For example, assuming that the required extinction ratio threshold is a, the extinction ratio of the first signal converted by the first converting unit 181 is b, and the extinction ratio of the second signal converted by the second converting unit 182 is also b, b is less than a, Thus, the extinction ratios of the first signal and the second signal do not reach the extinction ratio threshold.
  • the second input end of the first converting unit 181 and the output end of the first driving signal generating unit 111 The output terminal of the second driving signal generating unit 112 is connected to the output terminal of the second driving signal generating unit 111 and the output terminal of the second driving signal generating unit 112.
  • the first driving signal generating unit 11 can simultaneously input the first driving signal to the first converting unit 181 and the second converting unit 182 in the first period of time
  • the second driving signal generating unit 112 can simultaneously simultaneously in the second period of time.
  • the first conversion unit 181 and the second conversion unit 182 input a second drive signal.
  • the first converting unit 181 is configured to receive the first driving signal input by the driving signal generating unit 11 and the optical signal input by the first optical signal generating unit 12 in the first time period, and the light is according to the first driving signal. Converting the signal into a first signal, inputting the first signal to the second converting unit 15; receiving the second driving signal input by the driving signal generating unit 11 and the optical signal input by the first optical signal generating unit 12 in the second period of time, Converting the optical signal into a second signal according to the second driving signal, and inputting the second signal to the second converting unit 182; wherein, the extinction ratio of the first signal converted by the first converting unit 181 and the second The extinction ratio of the signal may be low and neither reach the required extinction ratio threshold.
  • the second converting unit 182 is configured to receive the first driving signal and the first signal input by the driving signal generating unit 11 in the first time period, and convert the first signal into the third signal according to the first driving signal to the optical combining module. 2 inputting a third signal; receiving the second driving signal and the second intermediate signal input by the driving signal generating unit 11 in the second time period, converting the second signal into the fourth signal according to the second driving signal, to the optical combining module 2 Enter the fourth signal.
  • the extinction ratio of the third signal converted by the second conversion unit 182 is greater than the extinction ratio of the first signal, and the extinction ratio of the third signal reaches the required extinction ratio threshold, and the second conversion unit 182 converts.
  • the extinction ratio of the obtained fourth signal is greater than the extinction ratio of the second signal, and the extinction ratio of the fourth signal reaches the required extinction ratio threshold.
  • the optical signal to be transmitted includes a third signal and a fourth signal
  • the third signal includes a first OTDR signal and the fourth signal includes a second OSC signal
  • the third signal includes a second OSC signal and a fourth
  • the signal includes a first OTDR signal
  • the extinction ratio of the first signal converted by the first converting unit 181 is b, b is smaller than the extinction ratio threshold a, so that the first signal is further converted by the second converting unit 182 to obtain an extinction ratio greater than or equal to a.
  • the third signal it is assumed that the extinction ratio of the second signal converted by the first converting unit 181 is b, so that the second signal is further converted by the second converting unit 182 to obtain a fourth signal whose extinction ratio is greater than or equal to a.
  • the signal processing module 4 may include:
  • An input end of the analog-to-digital conversion unit 41 is connected to an output end of the coherent receiving module 3, and an output end is connected to an input end of the processing unit 42;
  • the analog-to-digital conversion unit 41 is configured to receive the electrical signal to be processed input by the coherent receiving module 3, convert the electrical signal to be processed into a digital signal, and input the digital signal to the processing unit 42; wherein the digital signal includes the first OSC signal corresponding to a first digital signal and a second digital signal corresponding to the second OTDR signal,
  • the processing unit 42 is configured to acquire, according to the signal frequency, the first digital signal corresponding to the first OSC signal and the second digital signal corresponding to the second OTDR signal, and process the first digital signal to obtain a communication code stream, where The second digital signal is processed to obtain information reflecting the characteristics of the fiber.
  • the processing unit 42 has a filtering function, and the first digital signal corresponding to the first OSC signal and the second digital signal corresponding to the second OTDR signal are filtered from the digital signal according to the signal frequency.
  • the processing unit 42 may be an application-specific integrated circuit (ASIC) dedicated chip, a Field-Programmable Gate Array (FPGA), or a single-chip microcomputer.
  • ASIC application-specific integrated circuit
  • FPGA Field-Programmable Gate Array
  • the processing unit 42 may also have no filtering function.
  • the signal processing module 4 may further include:
  • the first filtering unit 43 and the second filtering unit 44, the analog to digital conversion unit 41 includes a first analog to digital conversion unit 411 and a second analog to digital conversion unit 412;
  • the input end of the first filtering unit 43 is connected to the output end of the coherent receiving module 3, the output end is connected to the input end of the first analog-to-digital converting unit 411, the output end of the first analog-to-digital converting unit 411 and the input end of the processing unit 42. connection;
  • the input end of the second filtering unit 44 is connected to the output end of the coherent receiving module 3, the output end is connected to the input end of the second analog to digital converting unit 412, and the output end of the second analog to digital converting unit 412 is connected to the input end of the processing unit 42. connection;
  • the first filtering unit 43 is configured to receive the to-be-processed electrical signal input by the coherent receiving module 3, filter the first electrical signal corresponding to the first OSC signal from the electrical signal to be processed, and input the first OCS to the first analog-to-digital conversion unit 411. a first electrical signal corresponding to the signal;
  • a first analog-to-digital conversion unit 411 configured to convert a first electrical signal corresponding to the first OCS signal into a first digital signal, and input a first digital signal to the processing unit 42;
  • the second filtering unit 44 is configured to receive the electrical signal to be processed input by the coherent receiving module 3, filter the second electrical signal corresponding to the second OTDR signal from the electrical signal to be processed, and input the second OTDR to the second analog to digital converting unit 412. a second electrical signal corresponding to the signal;
  • the second analog-to-digital conversion unit 412 is configured to convert the second electrical signal corresponding to the second OTDR signal into a second digital signal, and input the second digital signal to the processing unit 42.
  • the processing unit 42 can receive the first digital signal, process the first digital signal to obtain a communication code stream, receive the second digital signal, and process the second digital signal to obtain information for reflecting the characteristics of the optical fiber.
  • the frequency of the optical signal generated by the optical signal generating module 1 in the first device is set to be different from the frequency of the optical signal generated by the optical signal generating module in the second device.
  • the frequency of the optical signal generated by the optical signal generating module 1 in the first device may remain unchanged, and the frequency of the optical signal generated by the optical signal generating module 1 in the second device may remain unchanged.
  • the frequency of the optical signal generated by the optical signal generating module 1 and the frequency of the optical signal generated by the optical signal generating module in the second device may differ by a preset difference or greater than a preset difference.
  • the apparatus may be configured to include a frequency control module 5, by which the frequency of the optical signal generated by the optical signal generating module 1 in the first device is adjusted to make the first OSC signal The frequency is different from the frequency of the second OTDR signal.
  • the apparatus may further include: a frequency control module 5,
  • An output end of the signal processing module 4 is connected to an input end of the frequency control module 5, and the frequency control module 5 is further connected to the optical signal generating module 1;
  • the signal processing module 4 is further configured to acquire a frequency offset of the first OSC signal relative to the local oscillator optical signal, and control, according to the frequency offset, the frequency of the OTDR signal generated by the optical signal generating module 1 and the first OSC by the frequency control module 5
  • the frequency difference between the frequencies of the signals remains at a preset difference or greater than a preset difference.
  • the signal processing module 4 can also control, by the frequency control module 5, the frequency difference between the frequency of the OSC signal generated by the optical signal generating module 1 and the frequency of the first OSC signal to be a preset difference or greater than a preset difference. .
  • the coherent receiving module 3 performs coherent reception on the local oscillator light input by the optical signal generating module 1 and the optical signal to be processed input by the optical multiplex module 2, the local oscillator light and the optical signal to be processed are mixed, and then mixed.
  • the subsequent optical signal is converted into an electrical signal to be processed. Therefore, the to-be-processed electrical signal includes the third electrical signal corresponding to the local oscillator optical signal and the first electrical signal corresponding to the first OSC signal, and the signal processing module 4 can directly obtain the corresponding corresponding to the local oscillator optical signal from the to-be-processed electrical signal.
  • the third digital signal and the first digital signal corresponding to the first OSC signal further calculate a frequency offset of the first OSC signal relative to the local oscillator optical signal according to the third digital signal and the first digital signal.
  • the frequency control module 5 includes:
  • the first digital-to-analog conversion unit 51 and the first control unit 52 the input end of the first digital-to-analog conversion unit 51 is connected to the output end of the signal processing module 4, and the output end is connected to the input end of the first control unit 52;
  • the unit 52 is also connected to the first optical signal generating unit 12 in the optical signal generating module 1;
  • the first digital-to-analog conversion unit 51 is configured to convert the first adjustment signal into the first analog signal by using the first adjustment signal input by the signal processing module 4, and input the first analog signal to the first control unit 52, where the first adjustment signal is used. Adjusting the frequency of the optical signal generated by the first optical signal generating unit 12;
  • the first control unit 52 is configured to control the temperature or the operating current of the first optical signal generating unit 12 according to the analog signal to adjust the frequency of the optical signal generated by the first optical signal generating unit 12.
  • the signal processing module 4 may calculate a difference between the frequency offset and the preset value according to a frequency offset and a preset value of the first OSC signal relative to the local oscillator optical signal, and generate a first corresponding to the difference.
  • the signal is adjusted, and the first adjustment signal is input to the first digital-to-analog conversion unit 51.
  • the first control unit 52 receives the first analog signal obtained by converting the first adjustment signal by the first digital-to-analog conversion unit 51, and increases or decreases the operating current supplied to the first optical signal generating unit 12 according to the first analog signal, so that The first optical signal generating unit 12 increases or decreases the frequency of the generated optical signal, and reaches a preset difference between the frequency of the optical signal generated by the first optical signal generating unit 12 and the frequency of the first OSC signal; or The first optical signal generating unit 12 is heated or cooled according to the first analog signal, so that the first optical signal generating unit 12 increases or decreases the frequency of the generated optical signal to reach the frequency of the optical signal generated by the first optical signal generating unit 12. The difference between the frequencies of the first OSC signal is maintained at a preset difference.
  • the first optical signal generating unit 12 may generate the first OTDR signal and the second OSC signal.
  • the first OTDR signal generated by the first optical signal generating unit 12 The frequency is the same as the frequency of the second OSC signal.
  • the first control unit 52 can control the difference between the frequency of the first OTDR signal generated by the first optical signal generating unit 12 and the frequency of the first OSC signal to be a preset value S, and control the first optical signal generating unit 12
  • the difference between the frequency of the generated second OSC signal and the frequency of the first OSC signal is a preset value S.
  • the optical signal generating module 1 further includes an embodiment of the second optical signal generating unit 15
  • the optical signal frequency that can be generated by the second optical signal generating unit 15 can be Make adjustments.
  • the preset difference value may include a first preset value S1 and a second preset value S2, and may control a difference between a frequency of the second signal generated by the first optical signal generating unit 12 and a frequency of the first OSC signal.
  • the first preset value S1 is maintained, and the difference between the frequency of the first signal generated by the second optical signal generating unit 15 and the frequency of the first OSC signal can be controlled to be the second preset value S2.
  • the frequency control module 5 further includes:
  • the second digital-to-analog conversion unit 53 is configured to receive a second adjustment signal input by the signal processing module 4, convert the second adjustment signal into a second analog signal, and input a second analog signal to the second control unit 54, the second adjustment signal For adjusting the frequency of the optical signal generated by the second optical signal generating unit 15;
  • the second control unit 54 is configured to control the temperature or the operating current of the second optical signal generating unit 15 according to the second analog signal to adjust the frequency of the optical signal generated by the second optical signal generating unit 15.
  • the signal processing module 4 may obtain a first frequency offset of a frequency of the first OSC signal relative to a frequency of the optical signal generated by the first optical signal generating unit 12, according to the first frequency offset and the first preset value S1, The first difference between the first frequency offset and the first preset value S1 may be calculated, the first adjustment signal corresponding to the first difference is generated, and the first adjustment signal is input to the first digital-to-analog conversion unit 51.
  • the first control unit 52 receives the first analog signal obtained by converting the first adjustment signal by the first digital-to-analog conversion unit 51, and increases or decreases the operation of supplying the first optical signal generating unit 12 according to the first analog signal.
  • a current so that the first optical signal generating unit 12 increases or decreases the frequency of the generated optical signal, and the difference between the frequency of the optical signal generated by the first optical signal generating unit 12 and the frequency of the first OSC signal is maintained at the first pre-difference
  • the value S1 is set; or the first optical signal generating unit 12 is heated or cooled according to the first analog signal, so that the first optical signal generating unit 12 increases or decreases the frequency of the generated optical signal to reach the first optical signal generating unit 12.
  • the difference between the frequency of the generated optical signal and the frequency of the first OSC signal is maintained at a first predetermined value S1.
  • the signal processing module 4 can obtain a second frequency offset of the frequency of the first OSC signal relative to the frequency of the optical signal generated by the second optical signal generating unit 15, and according to the second frequency offset and the second preset value S2, the first The second difference between the second frequency offset and the second preset value S2 generates a second adjustment signal corresponding to the second difference value, and inputs a second adjustment signal to the second digital-to-analog conversion unit 53.
  • the second control unit 54 receives the second analog signal obtained by converting the second adjustment signal by the second digital-to-analog conversion unit 53, and increases or decreases the operating current supplied to the second optical signal generating unit 15 according to the second analog signal, so that The second optical signal generating unit 15 increases or decreases the frequency of the generated optical signal, and reaches a second preset value S2 between the frequency of the optical signal generated by the second optical signal generating unit 15 and the frequency of the first OSC signal; Alternatively, the second optical signal generating unit 15 is heated or cooled according to the second analog signal, so that the second optical signal generating unit 15 increases or decreases the frequency of the generated optical signal to reach the optical signal generated by the second optical signal generating unit 15. The difference between the frequency and the frequency of the first OSC signal is maintained at a second predetermined value S2.
  • the optical signal transceiver device of the second device adjusts the frequency of the optical signal generated by the first device when receiving the second OSC signal sent by the first device, and the adjustment process will not be described in detail herein.
  • the processing unit 42 is further configured to perform a fiber dispersion measurement operation, a fiber mode field diameter measurement operation, and an SOP event location and a rotation speed monitoring operation according to the communication code stream and/or information for reflecting fiber characteristics. One or more of them.
  • the processing unit 42 controls the optical signal generation module 1 to generate the first OTDR signal at least twice by the frequency control module 5, and the frequency of the first OTDR signal generated each time is different.
  • the photosynthetic module 2 receives the second OTDR signal corresponding to the first OTDR signal generated by the fiber reflection and scattering, and the processing unit 42 can obtain the reflection delay corresponding to each second OTDR, and the reflection delay is used to reflect
  • the information of the fiber characteristics is subjected to the operation of the measurement operation of the fiber dispersion according to the reflection delay corresponding to each of the second OTDRs.
  • the coherent receiving module since the coherent receiving module performs coherent reception on the local oscillator signal and the optical signal to be processed, the coherent receiving module has a high coherent receiving sensitivity, which is generally higher than that of the photodetector, so that when the coherent receiving module receives the coherently, It is possible to improve the dynamic range of detecting the OTDR signal in the optical signal to be processed.
  • the signal processing module can obtain the first digital signal corresponding to the first OSC signal and the second digital signal corresponding to the second OTDR signal from the electrical signal to be processed according to the signal frequency, so that a coherent receiving module can be used for coherent reception. Processing optical signals saves devices and reduces costs.
  • the optical signal generating module can input the local oscillator optical signal to the coherent receiving module, the laser for generating the local oscillator optical signal is not separately provided for the coherent receiving module, thereby further saving the device, thereby further reducing the cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种光信号收发装置,属于通信领域。所述装置包括:光信号产生模块、光合分模块、相干接收模块和信号处理模块;光信号产生模块,用于产生待发送光信号和本振光信号,所述待发送光信号包括第一光时域反射仪OTDR信号;光合分模块,用于从所述光纤上接收待处理光信号,向所述相干接收模块输入所述待处理光信号;相干接收模块,用于对所述本振光信号和所述待处理光信号进行相干接收,得到待处理电信号;信号处理模块,用于根据信号频率从所述待处理电信号中获取第一数字信号和第二数字信号,对所述第一数字信号进行处理得到通信码流,对所述第二数字信号进行处理得到用于反映所述光纤特性的信息。本申请提高OTDR信号检测的动态范围。

Description

一种光信号收发装置
本申请要求于2018年5月14日提交的申请号为201810458447.1、发明名称为“一种光信号收发装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种光信号收发装置。
背景技术
光信号收发装置可以为光网络中的设备或该设备中的部分,通过光信号收发装置可以在光纤上向对端设备发送光监控信道(Optical Supervising Channel,OSC)信号和光时域反射仪(Optical Time Domain Reflectometer,OTDR)信号,以及接收对端设备发送的OSC信号和光纤反射和散射的该OTDR信号,并对该OSC信号以及接收的光纤反射和散射的该OTDR信号进行处理。
目前的光信号收发装置包括:OSC信号产生器、OTDR信号产生器、激光器、分光器、第一光电探测器、第二光电探测器、合分波器、OTDR处理单元和OSC处理单元。OSC信号产生器和OTDR信号产生器分别与激光器的第一输入端和第二输入端连接,激光器的输出端与分光器的第一端连接;分光器的第二端与第一光电探测器的输入端连接,第三端与合分波器的第一端连接;合分波器的第二端与第二光电探测器的输入端连接,第三端与光纤连接;第一光电探测器的输出端与OTDR处理单元连接;第二光电探测器的输出端与OSC处理单元连接。
在OSC信号产生器和OTDR信号产生器的控制下,激光器产生第一OSC信号或第一OTDR信号,第一OSC信号或第一OTDR信号经过分光器和合分波器传输到光纤上并通过光纤继续向对端设备传输。合分波器可以接收对端设备发送的第二OSC信号和光纤对第一OTDR信号进行反射和散射得到的第二OTDR信号,向第二光电探测器发送第二OSC信号,以及通过分光器向第一光电探测器发送第二OTDR信号。第一光电探测器接收第二OTDR信号并转发给OTDR处理单元,第二光电探测器接收第二OSC信号并转发给OSC处理单元;OTDR处理单元对第二OTDR信号进行处理得到用于反映光纤特性的信息,OSC处理单元对第二OSC信号进行处理得到对端设备的通信码流。
在实现本申请的过程中,发明人发现现有技术至少存在以下问题:
目前的光信号收发装置采用光电探测器接收OTDR信号,由于光电探测器的接收灵敏度有限,影响了OTDR信号检测的动态范围。
发明内容
为了提高OTDR信号检测的动态范围,本申请实施例提供了一种光信号收发装置。所述技术方案如下:
第一方面,本申请实施例提供了一种光信号收发装置,所述装置包括:光信号产生模 块、光合分模块、相干接收模块和信号处理模块;所述光信号产生模块,用于产生待发送光信号和本振光信号,所述待发送光信号包括第一光时域反射仪OTDR信号,向所述相干接收模块输入所述本振光信号,以及通过所述光合分模块向光纤输入所述待发送光信号;所述光合分模块,用于从所述光纤上接收待处理光信号,所述待处理光信号包括第一OSC信号和所述光纤对所述第一OTDR信号进行反射和散射的第二OTDR信号,所述第一OSC信号的频率与所述第二OTDR信号的频率不同且所述第一OSC信号和所述第二OTDR信号之间的频率差值小于所述相干接收模块的处理带宽,向所述相干接收模块输入所述待处理光信号;所述相干接收模块,用于对所述本振光信号和所述待处理光信号进行相干接收,得到待处理电信号,向所述信号处理模块发送所述待处理电信号;所述信号处理模块,用于根据信号频率从所述待处理电信号中获取所述第一OSC信号对应的第一数字信号和所述第二OTDR信号对应的第二数字信号,对所述第一数字信号进行处理得到通信码流,对所述第二数字信号进行处理得到用于反映所述光纤特性的信息。
由于使用所述相干接收模块对本振光信号和待处理光信号进行相干接收,所述相干接收模块的相干接收灵敏度较高,通常高于光电探测器,从而在所述相干接收模块相干接收时,可以提高检测待处理光信号中的OTDR信号的动态范围。又由于所述信号处理模块可以根据信号频率,从待处理电信号中获取第一OSC信号对应的第一数字信号和第二OTDR信号对应的第二数字信号,这样可以使用一个相干接收模块来相干接收待处理光信号,节省了器件,降低成本。又由于所述光信号产生模块可以向所述相干接收模块输入本振光信号,这样不需要为所述相干接收模块单独设置用于产生本振光信号的激光器,进一步节省器件,从而进一步降低成本。
在第一方面的一种可能的实现方式中,所述光信号产生模块包括:驱动信号产生单元、第一光信号产生单元、分光单元和第一调制单元;所述驱动信号产生单元,用于产生所述待发送光信号对应的驱动信号,向所述第一调制单元输入所述驱动信号;所述第一光信号产生单元,用于产生光信号,向所述分光单元输入所述光信号;所述分光单元,用于将所述光信号分为第一路光信号和第二路光信号,向所述相干接收模块输入所述第一路光信号,向所述第一调制单元输入所述第二路光信号;所述第一调制单元,用于根据所述驱动信号将所述第二路光信号调制成所述待发送光信号。通过所述分光单元可以将所述第一光信号产生单元产生的光信号分为第一路光信号和第二路光信号,这样只需要一个第一光信号产生单元就可以得到本振光信号和待发送光信号,节省器件,降低成本。
在第一方面的一种可能的实现方式中,所述待发送光信号包括第一信号和第二信号,所述第一信号包括第一OTDR信号且所述第二信号包括第二OSC信号,或者所述第一信号包括第二OSC信号且所述第二信号包括第一OTDR信号;
所述光信号产生模块,还包括:第二光信号产生单元和合光单元;所述第二光信号产生单元,用于接收所述驱动信号产生单元输入的所述第一信号对应的第一驱动信号,根据所述第一驱动信号产生第一信号,向所述合光单元输入所述第一信号;所述第一调制单元,用于接收所述分光单元输入的所述第二路光信号和所述驱动信号产生单元输入的所述第二信号对应的第二驱动信号,根据所述第二驱动信号将所述第二路光信号调制成第二信号, 向所述合光单元输入所述第二信号;所述合光单元,用于将所述第一信号和所述第二信号耦合到所述光合分模块上。通过所述合光单元可以将所述第一信号和所述第二信号耦合到所述光合分模块上,这样可以在光纤中同时发送第一信号和第二信号,即可以在光纤上同时发送第二OSC信号和第一OTDR信号。
在第一方面的一种可能的实现方式中,所述待发送光信号包括第一信号和第二信号,所述第一信号包括第一OTDR信号且所述第二信号包括第二OSC信号,或者所述第一信号包括第二OSC信号且所述第二信号包括第一OTDR信号;
所述光信号产生模块,还包括:第二光信号产生单元、第二调制单元和合光单元;所述第二光信号产生单元,用于产生光信号,向所述第二调制单元输入所述光信号;所述第二调制单元,用于接收所述驱动信号产生单元输入的所述第一信号对应的第一驱动信号,根据所述第一驱动信号将所述光信号调制成第一信号,向所述合光单元输入所述第一信号;所述第一调制单元,用于接收所述分光单元输入的所述第二路光信号和所述驱动信号产生单元输入的所述第二信号对应的第二驱动信号,根据所述第二驱动信号将所述第二路光信号调制成第二信号,向所述合光单元输入所述第二信号;所述合光单元,用于将所述第一信号和所述第二信号耦合到所述光合分模块上。通过所述合光单元可以将所述第一信号和所述第二信号耦合到所述光合分模块上,这样可以在光纤中同时发送第一信号和第二信号,即可以在光纤上同时发送第二OSC信号和第一OTDR信号。
在第一方面的一种可能的实现方式中,所述光信号产生模块包括:驱动信号产生单元、第一光信号产生单元和第二光信号产生单元;所述驱动信号产生单元,用于产生所述待发送光信号对应的驱动信号,向所述第一光信号产生单元输入所述驱动信号;所述第一光信号产生单元,用于根据所述驱动信号产生所述待发送光信号,向所述光合分模块输入所述待发送光信号;所述第二光信号产生单元,用于产生本振光信号,向所述相干接收模块输入所述本振光信号。这样使用所述第一光信号产生单元产生所述待发送光信号,使用所述第二光信号产生单元产生本振光信号,简化所述光信号产生模块的结构。
在第一方面的一种可能的实现方式中,所述光信号产生模块包括:驱动信号产生单元、第一光信号产生单元、第二光信号产生单元和调制单元;所述驱动信号产生单元,用于产生所述待发送光信号对应的驱动信号,向所述调制单元输入所述驱动信号;所述第一光信号产生单元,用于产生光信号,向所述调制单元输入所述光信号;所述调制单元,用于根据所述驱动信号将所述光信号调制成所述待发送光信号,向所述光合分模块输入所述待发送光信号;所述第二光信号产生单元,用于产生本振光信号,向所述相干接收模块输入所述本振光信号。这样使用所述第一光信号产生单元和调制单元产生所述待发送光信号,使用所述第二光信号产生单元产生本振光信号,简化所述光信号产生模块的结构,使用调制单元将所述第一光信号产生单元产生的光信号调制成所述待发送光信号,这样可以使用价格较便宜的低性能第一光信号产生单元来产生光信号,以节省成本。
在第一方面的一种可能的实现方式中,所述待发送光信号包括第一信号和第二信号, 所述第一信号包括第一OTDR信号且所述第二信号包括第二OSC信号,或者所述第一信号包括第二OSC信号且所述第二信号包括第一OTDR信号;
所述调制单元,包括:第一转换单元和第二转换单元;所述第一转换单元,用于接收所述驱动信号产生单元输入的所述第一信号对应的第一驱动信号和所述第一光信号产生单元输入的所述光信号,在用于产生所述第一信号的第一时间段内根据所述第一驱动信号将所述光信号转换成第一信号,通过所述第二转换单元向所述光合分模块输入所述第一信号;所述第二转换单元,用于在第二时间段内接收所述驱动信号产生单元输入的所述第二信号对应的第二驱动信号和所述光信号,根据所述第二驱动信号将所述光信号转换为所述第二信号,向所述光合分模块输入所述第二信号,其中,所述第一时间段和所述第二时间段是两个不存在交集的时间段。使用第一转换单元将所述第一光信号产生单元产生的光信号调制成所述第一信号,以及使用第二转换单元将所述第一光信号产生单元产生的光信号调制成所述第二信号,这样可以使用价格较便宜的低性能第一光信号产生单元来产生光信号,以节省成本。
在第一方面的一种可能的实现方式中,所述待发送光信号包括第三信号和第四信号,所述第三信号包括第一OTDR信号且所述第四信号包括第二OSC信号,或者所述第三信号包括第二OSC信号且所述第四信号包括第一OTDR信号;
所述调制单元,包括:第一转换单元和第二转换单元;所述第一转换单元,用于在第一时间段内接收所述驱动信号产生单元输入的所述第三信号对应的第一驱动信号和所述第一光信号产生单元输入的所述光信号,根据所述第一驱动信号将所述光信号转换成第一信号,向所述第二转换单元输入所述第一信号;在第二时间段内接收所述驱动信号产生单元输入的所述第四信号对应的第二驱动信号和所述第一光信号产生单元输入的所述光信号,根据所述第二驱动信号将所述光信号转换成第二信号,向所述第二转换单元输入所述第二信号,所述第一时间段和所述第二时间段是两个不存在交集的时间段;所述第二转换单元,用于在所述第一时间段内接收所述驱动信号产生单元输入的所述第三信号对应的第一驱动信号和所述第一信号,根据所述第一驱动信号将所述第一信号转换为所述第三信号,向所述光合分模块输入所述第三信号;在所述第二时间段内接收所述驱动信号产生单元输入的所述第四信号对应的第二驱动信号和所述第二信号,根据所述第二驱动信号将所述第二信号转换为所述第四信号,向所述光合分模块输入所述第四信号。这样可以同时使用第一转换单元和第二转换单元将光信号转换成第三信号,或者可以同时使用第一转换单元和第二转换单元将光信号转换成第四信号,提高第三信号和第四信号的消光比。
在第一方面的一种可能的实现方式中,所述信号处理模块包括:模数转换单元和处理单元;所述模数转换单元,用于接收所述相干接收模块输入的待处理电信号,将所述待处理电信号转换成数字信号,向所述处理单元输入所述数字信号;所述处理单元,用于根据信号频率,从所述数字信号获取所述第一OSC信号对应的第一数字信号和所述第二OTDR信号对应的第二数字信号,对所述第一数字信号进行处理得到通信码流,对所述第二数字信号进行处理得到用于反映所述光纤特性的信息。由于所述处理单元可以根据信号频率,从待处理电信号中获取第一OSC信号对应的第一数字信号和第二OTDR信号对应的第二数 字信号,从而可以使用一个相干接收模块来相干接收待处理光信号,节省了器件,降低成本。
在第一方面的一种可能的实现方式中,所述处理单元,还用于根据所述通信码流和/或用于反映所述光纤特性的信息,执行光纤色散的测量操作、光纤模场直径的测量操作和SOP事件定位与旋转速度监测操作中的一个或多个。
在第一方面的一种可能的实现方式中,所述信号处理模块还包括:第一滤波单元和第二滤波单元,所述模数转换单元包括第一模数转换单元和第二模数转换单元;所述第一滤波单元,用于接收所述相干接收模块输入的所述待处理电信号,从所述待处理电信号过滤出所述第一OSC信号对应的第一电信号,向所述第一模数转换单元输入所述第一电信号;
所述第一模数转换单元,用于将所述第一电信号转换成第一数字信号,向所述处理单元输入所述第一数字信号;所述第二滤波单元,用于接收所述相干接收模块输入的所述待处理电信号,从所述待处理电信号过滤出所述第二OTDR信号对应的第二电信号,向所述第二模数转换单元输入所述第二电信号;所述第二模数转换单元,用于将所述第二电信号转换成第二数字信号,向所述处理单元输入所述第二数字信号。这样可以通过第一滤波单元、第二滤波单元、第一模数转换单元和第二模数转换单元获取到第一数字信号和第二数字信号,从而可以使用价格较便宜的低性能处理单元,进一步降低成本。
在第一方面的一种可能的实现方式中,还包括:频率控制模块,所述信号处理模块,还用于获取所述第一OSC信号相对所述本振光信号的频率偏移,根据所述频率偏移,通过所述频率控制模块控制所述光信号产生模块产生的OTDR频率与所述第一OSC信号的频率之间的频率差大于或等于预设差值。通过所述频率控制模块可以调整所述信号处理模块产生的光信号频率,实现所述第一OSC信号的频率与所述第二OTDR信号的频率不同。
在第一方面的一种可能的实现方式中,所述频率控制模块包括:第一数模转换单元和第一控制单元;所述第一数模转换单元,用于接收所述信号处理模块输入的第一调整信号,将所述第一调整信号转换成第一模拟信号,向所述第一控制单元输入所述第一模拟信号,所述第一调整信号用于调整所述第一光信号产生单元产生的光信号频率;所述第一控制单元,用于根据所述模拟信号控制所述第一光信号产生单元的温度或工作电流,以调整所述第一光信号产生单元产生的光信号频率。通过所述第一控制单元可以调整所述第一数模转换单元产生的光信号频率,实现所述第一OSC信号的频率与所述第二OTDR信号的频率不同。
在第一方面的一种可能的实现方式中,所述频率控制模块还包括:第二数模转换单元和第二控制单元;所述第二数模转换单元,用于接收所述信号处理模块输入的第二调整信号,将所述第二调整信号转换成第二模拟信号,向所述第二控制单元输入所述第二模拟信号,所述第二调整信号用于调整所述第二光信号产生单元产生的光信号频率;所述第二控制单元,用于根据所述第二模拟信号控制所述第二光信号产生单元的温度或工作电流,以 调整所述第二光信号产生单元产生的光信号频率。通过所述第一控制单元可以调整所述第一光信号产生单元产生的光信号频率,使第一光信号产生单元产生的光信号频率与所述第一OSC信号的频率差保持一预设值,通过所述第二控制单元可以调整所述第二光信号产生单元产生的光信号频率,使第二光信号产生单元产生的光信号频率与所述第一OSC信号的频率差保持另一预设值。
附图说明
图1是本申请实施例提供的一种光信号收发装置的结构示意图;
图2是本申请实施例提供的另一种光信号收发装置的结构示意图;
图3是本申请实施例提供的另一种光信号收发装置的结构示意图;
图4是本申请实施例提供的另一种光信号收发装置的结构示意图;
图5是本申请实施例提供的另一种光信号收发装置的结构示意图;
图6是本申请实施例提供的另一种光信号收发装置的结构示意图;
图7是本申请实施例提供的另一种光信号收发装置的结构示意图;
图8是本申请实施例提供的另一种光信号收发装置的结构示意图;
图9是本申请实施例提供的另一种光信号收发装置的结构示意图;
图10是本申请实施例提供的OSC信号与OTDR信号之间的频率关系图;
图11是本申请实施例提供的OSC信号的频率、第一光信号产生单元产生的光信号频率和第二光信号产生单元产生的光信号频率之间的关系图。
具体实施方式
下面将结合附图对本申请实施方式作进一步地详细描述。
本申请提供的光信号收发装置可以应用于光通信网络,该装置可以为光通信网络中的通信设备或安装在通信设备中的板卡上。例如,如图1所示的光通信网络包括第一设备和第二设备等通信设备,第一设备和第二设备通过光纤相连。该装置可以为第一设备或第一设备中的板卡,第一设备可以通过该装置接收第二设备发送的光信号,或向第二设备发送光信号;和/或,该装置可以为第二设备或第二设备中的板卡,第二设备可以通过该装置接收第一设备发送的光信号,或向第一设备发送光信号。对于该装置的结构,可以参见如下任一实施例的内容。
本申请实施例提供了一种光信号收发装置,光信号收发装置可以为物理设备或物理设备中的板卡。例如,参见图1,在光通信网络中连接到光纤的第一设备和第二设备可以包括该光信号收发装置。
第一设备中的光信号收发装置的结构和第二设备中的光信号收发装置的结构相同,接下来以第一设备中的光信号收发装置为例进行详细说明。参见图1,第一设备中的光信号收发装置的结构,可以包括:
光信号产生模块1、光合分模块2、相干接收模块3和信号处理模块4;
光信号产生模块1的第一输出端与光合分模块2的第一端连接,第二输出端与相干接 收模块3的第一输入端连接;光合分模块2的第二端与相干接收模块3的第二输入端连接,第三端用于连接光纤;相干接收模块3的输出端与信号处理模块4的输入端连接;
光信号产生模块1,用于产生待发送光信号和本振光信号,待发送光信号包括第一OTDR信号,向相干接收模块3输入该本振光信号,以及通过光合分模块2向该光纤输入待发送光信号;
光合分模块2,用于从该光纤上接收待处理光信号,待处理光信号包括第一OSC信号和该光纤对第一OTDR信号进行反射和散射,得到的第二OTDR信号,第一OSC信号的频率与第二OTDR信号的频率不同且第一OSC信号和第二OTDR信号之间的频率差值小于相干接收模块3的处理带宽,向相干接收模块3输入待处理光信号;
相干接收模块3,用于对该本振光信号和待处理光信号进行相干接收,得到待处理电信号,向信号处理模块4发送待处理电信号;
信号处理模块4,用于根据信号频率从待处理电信号中获取第一OSC信号对应的第一数字信号和第二OTDR信号对应的第二数字信号,对第一数字信号进行处理得到通信码流,对第二数字信号进行处理得到用于反映该光纤特性的信息。
可选的,相干接收模块3的处理带宽是相干接收模块3能够处理的信号的带宽。
可选的,光信号产生模块1产生的待发送光信号还可以包括第二OSC信号。其中,光信号产生模块1可以同时产生第一OTDR信号和第二OSC信号,也可以在不同时间产生第一OTDR信号和第二OSC信号。也就是说光信号产生模块1当前产生的待发送光信号可以包括第一OTDR信号,或者当前产生的待发送光信号可以包括第二OSC信号,或者当前产生的待发送光信号可以包括第一OTDR信号和第二OSC信号。
当待发送光信号包括第二OSC信号时,光合分模块2将第二OSC信号输入到光纤中,第二OSC信号在光纤中传输至第二设备。当待发送光信号包括第一OTDR信号时,光合分模块2将第一OTDR信号输入到光纤中并在光纤中传输,第一OTDR信号在光纤中传输的过程中,光纤反射或散射第一OTDR信号得到第二OTDR信号,第二OTDR信号在光纤中传回至第一设备中的光合分模块2。
第二设备的光信号收发装置也会在光纤上发送第一OSC信号,第一OSC信号在光纤传输至第一设备的光合分模块2。所以光合分模块2在光纤上接收的待处理光信号包括第一OSC信号和第二OTDR信号。
由于待处理光信号包括第一OSC信号和第二OTDR信号,所以相干接收模块3向信号处理模块4输入的待处理电信号包括第一OSC信号对应的电信号和第二OTDR信号对应的电信号,信号处理模块4可以对待处理电信号进行模拟到数字的转换,使得转换后的待处理电信号中包括第一OSC信号对应的第一数字信号和第二OTDR信号对应的第二数字信号。
本申请实施例的技术效果至少包括:由于采用相干接收模块3相干接收待处理光信号,而相干接收模块3的相干接收处理的灵敏度较高,从而可以提高OTDR信号检测的动态范围。另外,光信号产生模块1直接向相干接收模块3输入本振光信号,因此不需要为相干接收模块3单独设置一个用于产生本振光信号的器件,从而减小了器件数目,节省成本。又由于第一OSC信号的频率与第二OTDR信号的频率不同,所以该光信号收发装置可以采用一个相干接收模块3来相干接收待处理光信号和本振光信号,得到待处理电信号,然后 由信号处理模块4根据信号频率,从待处理电信号中获取第一OSC信号对应的第一数字信号和第二OTDR信号对应的第二数字信号,从而可以减小该光信号收发装置包括的相干接收模块3的数目,进一步节省成本。
可选的,上述相干接收模块3可以为实现光相干接收功能的器件,该器件可以为集成相干接收机(Integrated Coherent Receivers,ICR)或由包括光合路器和光电探测器的简易相干接收机等。光合分模块2可以为光耦合器或光环形器等。
可选的,上述第一设备和第二设备可以工作在主从模式中,第一设备可以为主设备且第二设备为从设备,或者,第一设备为从设备且第二设备为主设备。
可选的,光信号产生模块1的实现方式有多种,在本申请实施例中,列举了如下第一种至第五种实现方式,对于其他实现方式,在本申请实施例中不再一一穷举出来。
对于第一种实现方式,参见图2,光信号产生模块1,可以包括:
驱动信号产生单元11、第一光信号产生单元12、分光单元13和第一调制单元14;
第一光信号产生单元12的输出端与分光单元13的输入端连接,分光单元13的第一输出端与第一调制单元14的第一输入端连接,第二输出端与相干接收模块3的第一输入端连接;第一调制单元14的第二输入端与驱动信号产生单元11的输出端连接,输出端与光合分模块2的第一端连接;
驱动信号产生单元11,用于产生待发送光信号对应的驱动信号,向第一调制单元14输入该驱动信号;
第一光信号产生单元12,用于产生光信号,向分光单元13输入该光信号;
分光单元13,用于将该光信号分为第一路光信号和第二路光信号,向相干接收模块3输入所述第一路光信号,向第一调制单元14输入第二路光信号;
第一调制单元14,用于根据该驱动信号将第二路光信号调制成待发送光信号。
可选的,第一光信号产生单元12产生的光信号可以为直流光信号,该直流光信号为连续的光信号,所以分光单元13分成的第一路光信号和第二路光信号也均可以为直流光信号,将第一路光信号作为本振光信号并输入到相干接收模块3中。
可选的,驱动信号产生单元11产生的驱动信号可以包括第一驱动信号或第二驱动信号,第一驱动信号可以包括OTDR驱动信号且第二驱动信号可以包括OSC驱动信号,或者,第一驱动信号可以包括OSC驱动信号且第二驱动信号可以包括OTDR驱动信号。
其中,在本申请其他实现方式中出现的第一驱动信号和第二驱动信号的含义与第一种实现方式中的第一驱动信号和第二驱动信号的含义相同,当在其他实现方式出现第一驱动信号和第二驱动信号时,不再对第一驱动信号和第二驱动信号的含义进行详细说明。
当驱动信号产生单元11向第一调制单元14输入第一驱动信号时,第一调制单元14根据第一驱动信号将第二路光信号调制成第一信号,通过光合分模块2将第一信号输入到光纤中。当驱动信号产生单元11向第一调制单元14输入第二驱动信号时,第一调制单元14根据第二驱动信号将第二路光信号调制成第二信号,通过光合分模块2将第一信号输入到光纤中。
第一信号可以包括第一OTDR信号且第二信号可以包括第二OSC信号,或者,第一信号可以包括第二OSC信号且第二信号可以包括第一OTDR信号。
其中,在本申请其他实现方式中出现的第一信号和第二信号的含义与第一种实现方式 中的第一信号和第二信号的含义相同,当在其他实现方式出现第一信号和第二信号时,不再对第一信号和第二信号的含义进行详细说明。
可选的,当驱动信号产生单元11向第一调整单元14输入OTDR驱动信号时,第一调制单元14根据OTDR驱动信号将第二路光信号调制成第一OTDR信号。当驱动信号产生单元11向第一调整单元14输入OSC驱动信号时,第一调制单元14根据OSC驱动信号将第二路光信号调整成第二OSC信号。
可选的,第一光信号产生单元12可以为分布反馈(Distributed Feedback,DFB)激光器、外腔激光器(External Cavity Laser,ECL)和分布式布拉格反射(Distributed Bragg Reflector,DBR)激光器等,分光单元13可以为光耦合器等,第一调制单元14可以为半导体光放大器(Semiconductor Optical Amplifier,SOA)、电吸收调制器(Electro Absorption Modulator,EAM)或马赫-曾德调制器(Mach–Zehnder modulator,MZM)等,光合分模块2可以为光耦合器或光环形器等。
对于第一种实现方式的技术效果至少包括:由于分光单元13将第一光信号产生单元12输入的光信号分成第一路光信号和第二路光信号,将第一路光信号作为本振光信号输入到相干接收模块3中,由第一调制单元14将第二路光信号转换成待发送的第一信号或第二信号,这样只需要一个光信号产生单元即可,减小了器件的数目,节省成本。
对于第二种实现方式,第二种实现方式的光信号产生模块1是在第一种实现方式的基础上实现的,参见图3,第二种实现方式的光信号产生模块1除了包括第一种实现方式中的各器件外,还可以包括:
第二光信号产生单元15和合光单元16,第二光信号产生单元15的输入端与驱动信号产生单元11的输出端连接,输出端与合光单元16的第一输入端连接;合光单元16的第二输入端与第一调制单元14的输出端连接,输出端与光合分模块2的第一端连接;
第二光信号产生单元15,用于接收驱动信号产生单元11输入的第一信号对应的第一驱动信号,根据第一驱动信号产生第一信号,向合光单元16输入第一信号;
第一调制单元14,用于接收分光单元13输入的第二路光信号和驱动信号产生单元11输入的第二信号对应的第二驱动信号,根据第二驱动信号将第二路光信号调制成第二信号,向合光单元16输入第二信号;
合光单元16,用于将第一信号和第二信号耦合到光合分模块2上。
可选的,参见图3,驱动信号产生单元11可以包括第一驱动信号产生单元111和第二驱动信号产生单元112,第二光信号产生单元15的输入端与第一驱动信号产生单元111的输出端连接,第一调制单元14的第二输入端与第二驱动信号产生单元112的输出端连接。
第一驱动信号产生单元111用于产生第一驱动信号,且可以通过其输出端向第二光信号产生单元15输入第一驱动信号,第二驱动信号产生单元112用于产生第二驱动信号,且可以通过其输出端向第一调制单元14输入第二驱动信号。
可选的,第二光信号产生单元15可以为DFB激光器、ECL和DBR激光器等,合光单元16可以为光耦合器。
可选的,第一驱动信号产生单元111可以为OSC驱动器且第二驱动信号产生单元112可以为OTDR驱动器;或者,第一驱动信号产生单元111可以为OTDR驱动器且第二驱动信号产生单元112可以为OSC驱动器
对于第三种实现方式,第三种实现方式的光信号产生模块1是在第一种实现方式的基础上实现的,参见图4,第三种实现方式的光信号产生模块1除了包括第一种实现方式中的各器件外,还可以包括:
第二光信号产生单元15、合光单元16和第二调制单元17,第二光信号产生单元15的输出端与第二调制单元17的第一输入端连接;第二调制单元17的第二输入端与驱动信号产生单元11的输出端连接,输出端与合光单元16的第一输入端连接;合光单元16的第二输入端与第一调制单元14的输出端连接,输出端与光合分模块2的第一端连接;
第二光信号产生单元15,用于产生光信号,向第二调制单元17输入所述光信号;
第二调制单元17,用于接收驱动信号产生单元11输入的第一信号对应的第一驱动信号,根据第一驱动信号将该光信号调制成第一信号,向合光单元16输入第一信号;
第一调制单元14,用于接收分光单元13输入的第二路光信号和驱动信号产生单元11输入的第二信号对应的第二驱动信号,根据第二驱动信号将第二路光信号调制成第二信号,向合光单元16输入第二信号;
合光单元16,用于将第一信号和第二信号耦合到光合分模块2上。
可选的,参见图4,驱动信号产生单元11可以包括第一驱动信号产生单元111和第二驱动信号产生单元112,第二调制单元17的第二输入端与第一驱动信号产生单元111的输出端连接,第二调制单元17的第二输入端与第二驱动信号产生单元112的输出端连接。
第一驱动信号产生单元111,用于产生第一驱动信号,可以通过其输出端向第二调制单元17输入第一驱动信号;
第二驱动信号产生单元112,用于产生第二驱动信号,可以通过其输出端向第一调制单元14输入第二驱动信号。
可选的,第二调制单元17可以为SOA、EAM或MZM等。
对于第二种实现方式或第三种实现方式的技术效果至少包括:通过合光单元16可以接收输入的第一信号和第二信号,将第一信号和第二信号耦合到光合分模块2上,然后向光纤输入第一信号和第二信号,这样可以实现同时在光纤上发送第一OTDR信号和第二OSC信号。
对于第四种实现方式,参见图5,光信号产生模块1,包括:
驱动信号产生单元11、第一光信号产生单元12和第二光信号产生单元15;
第一光信号产生单元12的输入端与驱动信号产生单元11的输出端连接,输出端与光合分模块2的第一端连接;第二光信号产生单元15的输出端与相干接收模块3的第一输入端连接;
驱动信号产生单元11,用于产生待发送光信号对应的驱动信号,向第一光信号产生单元输入驱动信号;
第一光信号产生单元12,用于根据该驱动信号产生待发送光信号,向光合分模块2输入待发送光信号;
第二光信号产生单元15,用于产生本振光信号,向相干接收模块3输入该本振光信号。
可选的,驱动信号产生单元11产生的驱动信号可以包括第一驱动信号或第二驱动信号。
当驱动信号产生单元11向第一光信号产生单元12输入第一驱动信号时,第一光信号产生单元12根据第一驱动信号产生第一信号,通过光合分模块2将第一信号输入到光纤中。 当驱动信号产生单元11向第一光信号产生单元12输入第二驱动信号时,第一光信号产生单元12根据第二驱动信号产生第二信号,通过光合分模块2将第二信号输入到光纤中。
对于第五种实现方式,参见图6,光信号产生模块1,包括:
驱动信号产生单元11、第一光信号产生单元12、第二光信号产生单元15和调制单元18;
第一光信号产生单元12的输出端与调制单元18的第一输入端连接,调制单元18的第二输入端与驱动信号产生单元11的输出端连接,输出端与光合分模块2的第一端连接;第二光信号产生单元15的输出端和相干接收模块3的第一输入端连接;
驱动信号产生单元11,用于产生待发送光信号对应的驱动信号,向调制单元18输入该驱动信号;
第一光信号产生单元12,用于产生光信号,向调制单元18输入该光信号;
调制单元18,用于根据该驱动信号将该光信号调制成待发送光信号,向光合分模块2输入待发送光信号;
第二光信号产生单元15,用于产生本振光信号,向相干接收模块3输入该本振光信号。
可选的,在第五种实现方式中,驱动信号产生单元11产生的驱动信号可以包括第一驱动信号或第二驱动信号。
当驱动信号产生单元11向调制单元18输入第一驱动信号时,调制单元18根据第一驱动信号将该光信号转换成第一信号,通过光合分模块2将第一信号输入到光纤中。当驱动信号产生单元11向调制单元18输入第二驱动信号时,调制单元18根据第二驱动信号将该光信号转换成第二信号,通过光合分模块2将第一信号输入到光纤中。
可选的,在第五种实现方式中,参见图7,调制单元18,包括:
第一转换单元181和第二转换单元182,第一转换单元181的第一输入端与第一光信号产生单元12的输出端连接,第二输入端与驱动信号产生单元11的输出端连接,输出端与第二转换单元182的第一输入端连接;第二转换单元182的第二输入端与驱动信号产生单元11的输出端连接,输出端与光合分模块2的第一端连接;
第一转换单元181,用于接收驱动信号产生单元11输入的第一信号对应的第一驱动信号和第一光信号产生单元12输入的光信号,在用于产生第一信号的第一时间段内根据第一驱动信号将该光信号转换成第一信号,通过第二转换单元182向光合分模块2输入第一信号,在用于产生第二信号的第二时间段内向第二转换单元182输入该光信号,第一时间段和第二时间段是两个不存在交集的时间段;
第二转换单元182,用于在第二时间段内接收驱动信号产生单元11输入的第二信号对应的第二驱动信号和该光信号,根据第二驱动信号将该光信号转换为第二信号,向光合分模块2输入第二信号。
可选的,参见图7,驱动信号产生单元11可以包括第一驱动信号产生单元111和第二驱动信号产生单元112,第一转换单元181的第二输入端与第一驱动信号产生单元111的输出端连接,第二转换单元182的第二输入端与第二驱动信号产生单元112的输出端连接。
第一驱动信号产生单元11,用于产生第一驱动信号,可以通过其输出端向第一转换单元181输入第一驱动信号;
第二驱动信号产生单元112,用于产生第二驱动信号,可以通过其输出端向第二转换单 元182输入第二驱动信号。
可选的,第一转换单元181可以为SOA、EAM或MZM等,第二转换单元182可以为SOA、EAM或MZM等。
可选的,第一转换单元181转换得到的第一信号的消光比可能达不到需求的消光比阈值,第二转换单元182转换得到的第二信号的消光比可能也达不到需求的消光比阈值。例如,假设需求的消光比阈值为a,第一转换单元181转换得到的第一信号的消光比为b,第二转换单元182转换得到的第二信号的消光比也为b,b小于a,这样第一信号和第二信号的消光比均未达到消光比阈值。
为了使待发送光信号的消光比均达到消光比阈值,在第五种实现方式中,仍参见图7,第一转换单元181的第二输入端可以与第一驱动信号产生单元111的输出端和第二驱动信号产生单元112的输出端均连接,第二转换单元182的第二输入端可以与第一驱动信号产生单元111的输出端和第二驱动信号产生单元112的输出端均连接。这样在第一时间段内第一驱动信号产生单元11可以同时向第一转换单元181和第二转换单元182输入第一驱动信号,在第二时间段内第二驱动信号产生单元112可以同时向第一转换单元181和第二转换单元182输入第二驱动信号。
如此,第一转换单元181,用于在第一时间段内接收驱动信号产生单元11输入的第一驱动信号和第一光信号产生单元12输入的该光信号,根据第一驱动信号将该光信号转换成第一信号,向第二转换单元15输入第一信号;在第二时间段内接收驱动信号产生单元11输入的第二驱动信号和第一光信号产生单元12输入的该光信号,根据第二驱动信号将该光信号转换成第二信号,向第二转换单元182输入第二信号;其中,需要说明的是:第一转换单元181转换得到的第一信号的消光比和第二信号的消光比可能均较低,且均达不到需求的消光比阈值。
第二转换单元182,用于在第一时间段内接收驱动信号产生单元11输入的第一驱动信号和第一信号,根据第一驱动信号将第一信号转换为第三信号,向光合分模块2输入第三信号;在第二时间段内接收驱动信号产生单元11输入的第二驱动信号和第二中间信号,根据第二驱动信号将第二信号转换为第四信号,向光合分模块2输入第四信号。其中,需要说明的是:第二转换单元182转换得到的第三信号的消光比大于第一信号的消光比,且第三信号的消光比达到需求的消光比阈值,以及第二转换单元182转换得到的第四信号的消光比大于第二信号的消光比,且第四信号的消光比达到需求的消光比阈值。
在此种实现方式下,待发送光信号包括第三信号和第四信号,第三信号包括第一OTDR信号且第四信号包括第二OSC信号,或者第三信号包括第二OSC信号且第四信号包括第一OTDR信号。
例如,假设第一转换单元181转换得到的第一信号的消光比为b,b小于消光比阈值a,这样第一信号再经过第二转换单元182继续转换后就可以得到消光比大于或等于a的第三信号。同样,假设第一转换单元181转换得到的第二信号的消光比为b,这样第二信号再经过第二转换单元182继续转换后就可以得到消光比大于或等于a的第四信号。
可选的,参见图8,信号处理模块4可以包括:
模数转换单元41和处理单元42;
模数转换单元41的输入端与相干接收模块3的输出端连接,输出端与处理单元42的 输入端连接;
模数转换单元41,用于接收相干接收模块3输入的待处理电信号,将待处理电信号转换成数字信号,向处理单元42输入该数字信号;其中,该数字信号包括第一OSC信号对应的第一数字信号和第二OTDR信号对应的第二数字信号,
处理单元42,用于根据信号频率,从该数字信号获取第一OSC信号对应的第一数字信号和第二OTDR信号对应的第二数字信号,对第一数字信号进行处理得到通信码流,对第二数字信号进行处理得到用于反映该光纤特性的信息。
处理单元42具有滤波的功能,可以根据信号频率,从该数字信号中滤波出第一OSC信号对应的第一数字信号和第二OTDR信号对应的第二数字信号。
可选的,处理单元42可以为专用集成电路(Application-specific integrated circuit,ASIC)专用芯片、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或单片机等。
可选的,处理单元42也可以不具有滤波的功能,参见图9,这样信号处理模块4还可以包括:
第一滤波单元43和第二滤波单元44,模数转换单元41包括第一模数转换单元411和第二模数转换单元412;
第一滤波单元43的输入端与相干接收模块3的输出端连接,输出端与第一模数转换单元411的输入端连接,第一模数转换单元411的输出端与处理单元42的输入端连接;
第二滤波单元44的输入端与相干接收模块3的输出端连接,输出端与第二模数转换单元412的输入端连接,第二模数转换单元412的输出端与处理单元42的输入端连接;
第一滤波单元43,用于接收相干接收模块3输入的待处理电信号,从待处理电信号过滤出第一OSC信号对应的第一电信号,向第一模数转换单元411输入第一OCS信号对应的第一电信号;
第一模数转换单元411,用于将第一OCS信号对应的第一电信号转换成第一数字信号,向处理单元42输入第一数字信号;
第二滤波单元44,用于接收相干接收模块3输入的待处理电信号,从待处理电信号过滤出第二OTDR信号对应的第二电信号,向第二模数转换单元412输入第二OTDR信号对应的第二电信号;
第二模数转换单元412,用于将第二OTDR信号对应的第二电信号转换成第二数字信号,向处理单元42输入第二数字信号。
处理单元42可以接收第一数字信号,对第一数字信号进行处理得到通信码流,接收第二数字信号,对第二数字信号进行处理得到用于反映光纤特性的信息。
可选的,在上述任一种实施例中,
可选的,为了使第一OSC信号的频率与第二OTDR信号的频率不同,可以在本申请实施例中列举了如下两种实现方式,分别为:
第一种,设置第一设备中的光信号产生模块1产生的光信号频率与第二设备中的光信号产生模块产生的光信号频率不同。
在第一种方式中,第一设备中的光信号产生模块1产生的光信号频率可以保持不变,第二设备中的光信号产生模块1产生的光信号频率可以保持不变,第一设备中的光信号产生模块1产生的光信号频率与第二设备中的光信号产生模块产生的光信号频率可以相差预 设差值或大于预设差值。
第二种,参见图1和图8,可以设置该装置包括频率控制模块5,通过该频率控制模块5调整第一设备中的光信号产生模块1产生的光信号频率,使第一OSC信号的频率与第二OTDR信号的频率不同。
参见图1和图8,该装置还可以包括:频率控制模块5,
信号处理模块4的输出端与频率控制模块5的输入端连接,频率控制模块5还与光信号产生模块1连接;
信号处理模块4,还用于获取第一OSC信号相对该本振光信号的频率偏移,根据该频率偏移,通过频率控制模块5控制光信号产生模块1产生的OTDR信号频率与第一OSC信号的频率之间的频率差保持为预设差值或大于预设差值。
可选的,信号处理模块4也可以通过频率控制模块5控制光信号产生模块1产生的OSC信号频率与第一OSC信号的频率之间的频率差保持为预设差值或大于预设差值。
其中,相干接收模块3对光信号产生模块1输入的本振光和光合分模块2输入的待处理光信号进行相干接收时,会将该本振光和待处理光信号进行混合,然后将混合后的光信号转换成待处理电信号。所以待处理电信号中包括本振光信号对应的第三电信号和第一OSC信号对应的第一电信号,信号处理模块4可以直接从待处理电信号中获取到本振光信号对应的第三数字信号和第一OSC信号对应的第一数字信号,进而根据第三数字信号和第一数字信号计算出第一OSC信号相对该本振光信号的频率偏移。
可选的,参见图2,频率控制模块5包括:
第一数模转换单元51和第一控制单元52,第一数模转换单元51的输入端与信号处理模块4的输出端连接,输出端与第一控制单元52的输入端连接;第一控制单元52还与光信号产生模块1中的第一光信号产生单元12连接;
第一数模转换单元51,用于信号处理模块4输入的第一调整信号,将第一调整信号转换成第一模拟信号,向第一控制单元52输入第一模拟信号,第一调整信号用于调整第一光信号产生单元12产生的光信号频率;
第一控制单元52,用于根据该模拟信号控制第一光信号产生单元12的温度或工作电流,以调整第一光信号产生单元12产生的光信号频率。
信号处理模块4可以根据第一OSC信号相对该本振光信号的频率偏移和预设值,可以计算出该频率偏移和预设值之间的差值,产生该差值对应的第一调整信号,向第一数模转换单元51输入第一调整信号。
第一控制单元52接收第一数模转换单元51对第一调整信号进行转换得到的第一模拟信号,根据第一模拟信号增加或减小供给第一光信号产生单元12的工作电流,以使第一光信号产生单元12增加或减小产生的光信号频率,达到第一光信号产生单元12产生的光信号频率与第一OSC信号的频率之间在差值保持预设差值;或者,根据第一模拟信号给第一光信号产生单元12加热或制冷,以使第一光信号产生单元12增加或减小产生的光信号频率,达到第一光信号产生单元12产生的光信号频率与第一OSC信号的频率之间在差值保持预设差值。
可选的,在图2所示的实施例中,第一光信号产生单元12可以产生第一OTDR信号和第二OSC信号,参见图10,第一光信号产生单元12产生的第一OTDR信号的频率和第二 OSC信号的频率相同。通过第一控制单元52可以控制第一光信号产生单元12产生的第一OTDR信号的频率与第一OSC信号的频率之间的差值为预设值S,以及控制第一光信号产生单元12产生的第二OSC信号的频率与第一OSC信号的频率之间的差值为预设值S。
可选的,在图3所示的实施例中,在光信号产生模块1还包括第二光信号产生单元15的实施方式的情况下,可以对第二光信号产生单元15产生的光信号频率进行调整。
其中,预设差值可以包括第一预设值S1和第二预设值S2,可以控制第一光信号产生单元12产生的第二信号的频率与第一OSC信号的频率之间的差值保持为第一预设值S1,以及可以控制第二光信号产生单元15产生的第一信号的频率与第一OSC信号的频率之间的差值保持为第二预设值S2。
为此,参见图3,频率控制模块5还包括:
第二数模转换单元53和第二控制单元54,第二数模转换单元53的输入端与信号处理模块4的输出端连接,输出端与第二控制单元54的输入端连接,第二控制单元54还与光信号产生模块1中的第二光信号产生单元15连接;
第二数模转换单元53,用于接收信号处理模块4输入的第二调整信号,将第二调整信号转换成第二模拟信号,向第二控制单元54输入第二模拟信号,第二调整信号用于调整第二光信号产生单元15产生的光信号频率;
第二控制单元54,用于根据第二模拟信号控制第二光信号产生单元15的温度或工作电流,以调整第二光信号产生单元15产生的光信号频率。
可选的,信号处理模块4可以获取第一OSC信号的频率相对第一光信号产生单元12产生的光信号频率的第一频率偏移,根据第一频率偏移和第一预设值S1,可以计算出第一频率偏移和第一预设值S1之间的第一差值,产生第一差值对应的第一调整信号,向第一数模转换单元51输入第一调整信号。
参见图11,第一控制单元52接收第一数模转换单元51对第一调整信号进行转换得到的第一模拟信号,根据第一模拟信号增加或减小供给第一光信号产生单元12的工作电流,以使第一光信号产生单元12增加或减小产生的光信号频率,达到第一光信号产生单元12产生的光信号频率与第一OSC信号的频率之间在差值保持第一预设值S1;或者,根据第一模拟信号给第一光信号产生单元12加热或制冷,以使第一光信号产生单元12增加或减小产生的光信号频率,达到第一光信号产生单元12产生的光信号频率与第一OSC信号的频率之间在差值保持第一预设值S1。
信号处理模块4可以获取第一OSC信号的频率相对第二光信号产生单元15产生的光信号频率的第二频率偏移,根据第二频率偏移和第二预设值S2,可以计算出第二频率偏移和第二预设值S2之间的第二差值,产生第二差值对应的第二调整信号,向第二数模转换单元53输入第二调整信号。
第二控制单元54接收第二数模转换单元53对第二调整信号进行转换得到的第二模拟信号,根据第二模拟信号增加或减小供给第二光信号产生单元15的工作电流,以使第二光信号产生单元15增加或减小产生的光信号频率,达到第二光信号产生单元15产生的光信号频率与第一OSC信号的频率之间在差值保持第二预设值S2;或者,根据第二模拟信号给第二光信号产生单元15加热或制冷,以使第二光信号产生单元15增加或减小产生的光信号频率,达到第二光信号产生单元15产生的光信号频率与第一OSC信号的频率之间在差值 保持第二预设值S2。
其中,第二设备的光信号收发装置在接收到第一设备发送的第二OSC信号时,也会按上述方式调整其产生的光信号频率,在此对该调整过程不再详细说明。
可选的,处理单元42,还用于根据该通信码流和/或用于反映光纤特性的信息,执行光纤色散的测量操作、光纤模场直径的测量操作和SOP事件定位与旋转速度监测操作中的一个或多个。
对于光纤色散的测量操作的操作,在实现时,处理单元42通过频率控制模块5控制光信号产生模块1至少两次产生第一OTDR信号,且每次产生的第一OTDR信号的频率不同。光合分模块2接收光纤反射和散射每次产生的第一OTDR信号对应的第二OTDR信号,处理单元42可以获取每个第二OTDR对应的反射时延,该反射时延为一种用于反映光纤特性的信息,根据每个第二OTDR对应的反射时延,执行光纤色散的测量操作的操作。
在本申请实施中,由于使用相干接收模块对本振光信号和待处理光信号进行相干接收,相干接收模块的相干接收灵敏度较高,通常高于光电探测器,从而在相干接收模块相干接收时,可以提高检测待处理光信号中的OTDR信号的动态范围。又由于信号处理模块可以根据信号频率,从待处理电信号中获取第一OSC信号对应的第一数字信号和第二OTDR信号对应的第二数字信号,这样可以使用一个相干接收模块来相干接收待处理光信号,节省了器件,降低成本。又由于光信号产生模块可以向相干接收模块输入本振光信号,这样不需要为相干接收模块单独设置用于产生本振光信号的激光器,进一步节省器件,从而进一步降低成本。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种光信号收发装置,其特征在于,所述装置包括:
    光信号产生模块、光合分模块、相干接收模块和信号处理模块;
    所述光信号产生模块,用于产生待发送光信号和本振光信号,所述待发送光信号包括第一光时域反射仪OTDR信号,向所述相干接收模块输入所述本振光信号,以及通过所述光合分模块向光纤输入所述待发送光信号;
    所述光合分模块,用于从所述光纤上接收待处理光信号,向所述相干接收模块输入所述待处理光信号,其中,所述待处理光信号包括第一OSC信号和所述光纤对所述第一OTDR信号进行反射和散射的第二OTDR信号,所述第一OSC信号的频率与所述第二OTDR信号的频率不同且所述第一OSC信号和所述第二OTDR信号之间的频率差值小于所述相干接收模块的处理带宽;
    所述相干接收模块,用于对所述本振光信号和所述待处理光信号进行相干接收,得到待处理电信号,向所述信号处理模块发送所述待处理电信号;
    所述信号处理模块,用于根据信号频率从所述待处理电信号中获取所述第一OSC信号对应的第一数字信号和所述第二OTDR信号对应的第二数字信号,对所述第一数字信号进行处理得到通信码流,对所述第二数字信号进行处理得到用于反映所述光纤特性的信息。
  2. 如权利要求1所述的装置,其特征在于,所述光信号产生模块,包括:
    驱动信号产生单元、第一光信号产生单元、分光单元和第一调制单元;
    所述驱动信号产生单元,用于产生所述待发送光信号对应的驱动信号,向所述第一调制单元输入所述驱动信号;
    所述第一光信号产生单元,用于产生光信号,向所述分光单元输入所述光信号;
    所述分光单元,用于将所述光信号分为第一路光信号和第二路光信号,向所述相干接收模块输入所述第一路光信号,向所述第一调制单元输入所述第二路光信号;
    所述第一调制单元,用于根据所述驱动信号将所述第二路光信号调制成所述待发送光信号。
  3. 如权利要求2所述的装置,其特征在于,所述待发送光信号包括第一信号和第二信号,所述第一信号包括第一OTDR信号且所述第二信号包括第二OSC信号,或者所述第一信号包括第二OSC信号且所述第二信号包括第一OTDR信号;
    所述光信号产生模块,还包括:
    第二光信号产生单元和合光单元;
    所述第二光信号产生单元,用于接收所述驱动信号产生单元输入的所述第一信号对应的第一驱动信号,根据所述第一驱动信号产生第一信号,向所述合光单元输入所述第一信号;
    所述第一调制单元,用于接收所述分光单元输入的所述第二路光信号和所述驱动信号产生单元输入的所述第二信号对应的第二驱动信号,根据所述第二驱动信号将所述第二路光信号调制成第二信号,向所述合光单元输入所述第二信号;
    所述合光单元,用于将所述第一信号和所述第二信号耦合到所述光合分模块上。
  4. 如权利要求2所述的装置,其特征在于,所述待发送光信号包括第一信号和第二信号,所述第一信号包括第一OTDR信号且所述第二信号包括第二OSC信号,或者所述第一信号包括第二OSC信号且所述第二信号包括第一OTDR信号;
    所述光信号产生模块,还包括:
    第二光信号产生单元、第二调制单元和合光单元;
    所述第二光信号产生单元,用于产生光信号,向所述第二调制单元输入所述光信号;
    所述第二调制单元,用于接收所述驱动信号产生单元输入的所述第一信号对应的第一驱动信号,根据所述第一驱动信号将所述光信号调制成第一信号,向所述合光单元输入所述第一信号;
    所述第一调制单元,用于接收所述分光单元输入的所述第二路光信号和所述驱动信号产生单元输入的所述第二信号对应的第二驱动信号,根据所述第二驱动信号将所述第二路光信号调制成第二信号,向所述合光单元输入所述第二信号;
    所述合光单元,用于将所述第一信号和所述第二信号耦合到所述光合分模块上。
  5. 如权利要求1所述的装置,其特征在于,所述光信号产生模块,包括:
    驱动信号产生单元、第一光信号产生单元和第二光信号产生单元;
    所述驱动信号产生单元,用于产生所述待发送光信号对应的驱动信号,向所述第一光信号产生单元输入所述驱动信号;
    所述第一光信号产生单元,用于根据所述驱动信号产生所述待发送光信号,向所述光合分模块输入所述待发送光信号;
    所述第二光信号产生单元,用于产生本振光信号,向所述相干接收模块输入所述本振光信号。
  6. 如权利要求1所述的装置,其特征在于,所述光信号产生模块,包括:
    驱动信号产生单元、第一光信号产生单元、第二光信号产生单元和调制单元;
    所述驱动信号产生单元,用于产生所述待发送光信号对应的驱动信号,向所述调制单元输入所述驱动信号;
    所述第一光信号产生单元,用于产生光信号,向所述调制单元输入所述光信号;
    所述调制单元,用于根据所述驱动信号将所述光信号调制成所述待发送光信号,向所述光合分模块输入所述待发送光信号;
    所述第二光信号产生单元,用于产生本振光信号,向所述相干接收模块输入所述本振光信号。
  7. 如权利要求6所述的装置,其特征在于,所述待发送光信号包括第一信号和第二信号,所述第一信号包括第一OTDR信号且所述第二信号包括第二OSC信号,或者所述第一信号包括第二OSC信号且所述第二信号包括第一OTDR信号;
    所述调制单元,包括:
    第一转换单元和第二转换单元;
    所述第一转换单元,用于接收所述驱动信号产生单元输入的所述第一信号对应的第一驱动信号和所述第一光信号产生单元输入的所述光信号,在用于产生所述第一信号的第一时间段内根据所述第一驱动信号将所述光信号转换成第一信号,通过所述第二转换单元向所述光合分模块输入所述第一信号;
    所述第二转换单元,用于在第二时间段内接收所述驱动信号产生单元输入的所述第二信号对应的第二驱动信号和所述光信号,根据所述第二驱动信号将所述光信号转换为所述第二信号,向所述光合分模块输入所述第二信号,其中,所述第一时间段和所述第二时间段是两个不存在交集的时间段。
  8. 如权利要求6所述的装置,其特征在于,所述待发送光信号包括第三信号和第四信号,所述第三信号包括第一OTDR信号且所述第四信号包括第二OSC信号,或者所述第三信号包括第二OSC信号且所述第四信号包括第一OTDR信号;
    所述调制单元,包括:
    第一转换单元和第二转换单元;
    所述第一转换单元,用于在第一时间段内接收所述驱动信号产生单元输入的所述第三信号对应的第一驱动信号和所述第一光信号产生单元输入的所述光信号,根据所述第一驱动信号将所述光信号转换成第一信号,向所述第二转换单元输入所述第一信号;在第二时间段内接收所述驱动信号产生单元输入的所述第四信号对应的第二驱动信号和所述第一光信号产生单元输入的所述光信号,根据所述第二驱动信号将所述光信号转换成第二信号,向所述第二转换单元输入所述第二信号,所述第一时间段和所述第二时间段是两个不存在交集的时间段;
    所述第二转换单元,用于在所述第一时间段内接收所述驱动信号产生单元输入的所述第三信号对应的第一驱动信号和所述第一信号,根据所述第一驱动信号将所述第一信号转换为所述第三信号,向所述光合分模块输入所述第三信号;在所述第二时间段内接收所述驱动信号产生单元输入的所述第四信号对应的第二驱动信号和所述第二信号,根据所述第二驱动信号将所述第二信号转换为所述第四信号,向所述光合分模块输入所述第四信号。
  9. 如权利要求1至8任一项所述的装置,其特征在于,所述信号处理模块包括:
    模数转换单元和处理单元;
    所述模数转换单元,用于接收所述相干接收模块输入的待处理电信号,将所述待处理电信号转换成数字信号,向所述处理单元输入所述数字信号;
    所述处理单元,用于根据信号频率,从所述数字信号获取所述第一OSC信号对应的第一数字信号和所述第二OTDR信号对应的第二数字信号,对所述第一数字信号进行处理得到通信码流,对所述第二数字信号进行处理得到用于反映所述光纤特性的信息。
  10. 如权利要求9所述的装置,其特征在于,所述处理单元,还用于根据所述通信码流和/或用于反映所述光纤特性的信息,执行光纤色散的测量操作、光纤模场直径的测量操作和SOP事件定位与旋转速度监测操作中的一个或多个。
  11. 如权利要求9或10所述的装置,其特征在于,所述信号处理模块还包括:
    第一滤波单元和第二滤波单元,所述模数转换单元包括第一模数转换单元和第二模数转换单元;
    所述第一滤波单元,用于接收所述相干接收模块输入的所述待处理电信号,从所述待处理电信号过滤出所述第一OSC信号对应的第一电信号,向所述第一模数转换单元输入所述第一电信号;
    所述第一模数转换单元,用于将所述第一电信号转换成第一数字信号,向所述处理单元输入所述第一数字信号;
    所述第二滤波单元,用于接收所述相干接收模块输入的所述待处理电信号,从所述待处理电信号过滤出所述第二OTDR信号对应的第二电信号,向所述第二模数转换单元输入所述第二电信号;
    所述第二模数转换单元,用于将所述第二电信号转换成第二数字信号,向所述处理单元输入所述第二数字信号。
  12. 如权利要求3至8任一项所述的装置,其特征在于,还包括:频率控制模块,
    所述信号处理模块,还用于获取所述第一OSC信号相对所述本振光信号的频率偏移,根据所述频率偏移,通过所述频率控制模块控制所述光信号产生模块产生的OTDR信号频率与所述第一OSC信号的频率之间的频率差大于或等于预设差值。
  13. 如权利要求12所述的装置,其特征在于,所述频率控制模块包括:
    第一数模转换单元和第一控制单元;
    所述第一数模转换单元,用于接收所述信号处理模块输入的第一调整信号,将所述第一调整信号转换成第一模拟信号,向所述第一控制单元输入所述第一模拟信号,所述第一调整信号用于调整所述第一光信号产生单元产生的光信号频率;
    所述第一控制单元,用于根据所述模拟信号控制所述第一光信号产生单元的温度或工作电流,以调整所述第一光信号产生单元产生的光信号频率。
  14. 如权利要求13所述的装置,其特征在于,所述频率控制模块还包括:
    第二数模转换单元和第二控制单元;
    所述第二数模转换单元,用于接收所述信号处理模块输入的第二调整信号,将所述第二调整信号转换成第二模拟信号,向所述第二控制单元输入所述第二模拟信号,所述第二调整信号用于调整所述第二光信号产生单元产生的光信号频率;
    所述第二控制单元,用于根据所述第二模拟信号控制所述第二光信号产生单元的温度或工作电流,以调整所述第二光信号产生单元产生的光信号频率。
PCT/CN2019/074843 2018-05-14 2019-02-12 一种光信号收发装置 WO2019218732A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19804169.1A EP3783816A4 (en) 2018-05-14 2019-02-12 TRANSMIT-RECEIVER DEVICE FOR OPTICAL SIGNALS
US17/097,519 US11171722B2 (en) 2018-05-14 2020-11-13 Optical signal transceiver apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810458447.1 2018-05-14
CN201810458447.1A CN110492941B (zh) 2018-05-14 2018-05-14 一种光信号收发装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/097,519 Continuation US11171722B2 (en) 2018-05-14 2020-11-13 Optical signal transceiver apparatus

Publications (1)

Publication Number Publication Date
WO2019218732A1 true WO2019218732A1 (zh) 2019-11-21

Family

ID=68539408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074843 WO2019218732A1 (zh) 2018-05-14 2019-02-12 一种光信号收发装置

Country Status (4)

Country Link
US (1) US11171722B2 (zh)
EP (1) EP3783816A4 (zh)
CN (1) CN110492941B (zh)
WO (1) WO2019218732A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110868258B (zh) * 2018-08-27 2022-08-16 中兴通讯股份有限公司 一种相干检测的实现装置、系统及方法
CN114696938B (zh) * 2022-04-11 2023-11-07 中国电信股份有限公司 信号处理设备、系统和方法、信号传输子系统和系统
CN115225152A (zh) * 2022-07-19 2022-10-21 中兴通讯股份有限公司 光网络检测方法、光收发组件、光网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142892A (zh) * 2010-06-30 2011-08-03 华为技术有限公司 一种探测脉冲的产生方法和相干光时域反射仪
CN102761364A (zh) * 2011-04-29 2012-10-31 华为海洋网络有限公司 一种光时域探测信号的检测方法及装置
WO2017177412A1 (zh) * 2016-04-14 2017-10-19 华为技术有限公司 一种光纤状态检测方法、光监控单元及站点
CN107408982A (zh) * 2015-03-16 2017-11-28 华为技术有限公司 用于otdr发送器噪声补偿的装置和方法
CN107483106A (zh) * 2017-09-25 2017-12-15 武汉光迅科技股份有限公司 一种在线的光时域反射仪结构、检测系统和检测方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7088436B2 (en) * 2000-12-04 2006-08-08 Ross Alexander Saunders Integrated optical time domain reflectometer and optical supervisory network
CN101753252B (zh) * 2008-12-01 2013-01-23 华为技术有限公司 一种光收发方法、装置及系统
US20110134940A1 (en) * 2009-12-08 2011-06-09 Schlumberger Technology Corporation Narrow linewidth brillouin laser
CN102170307B (zh) * 2010-12-14 2014-01-08 华为技术有限公司 动态频偏矫正的方法及相干光时域反射仪系统
JP5029794B1 (ja) * 2011-02-01 2012-09-19 日本電気株式会社 コヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法
US8867912B2 (en) * 2012-09-07 2014-10-21 Ciena Corporation Optical service channel systems and methods over high loss links
US9831943B2 (en) * 2013-12-17 2017-11-28 Neptune Subsea Ip Limited Repeater OTDR using repeater based raman pumps
CN103743551B (zh) * 2013-12-30 2017-02-22 哈尔滨工程大学 一种多功能铌酸锂集成器件的光学性能测量方法
US9596033B2 (en) * 2014-08-21 2017-03-14 Elenion Technologies, Llc Optical paired channel transceiver and system
CN104697557B (zh) * 2015-03-30 2017-01-18 南京大学 一种基于循环移频的botdr相干探测装置和方法
US9960845B2 (en) * 2016-06-30 2018-05-01 Alcatel-Lucent Usa Inc. In-band optical-link monitoring for a WDM network
US10211920B1 (en) * 2017-09-07 2019-02-19 Amazon Technologies, Inc. Latency based chromatic dispersion estimation methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142892A (zh) * 2010-06-30 2011-08-03 华为技术有限公司 一种探测脉冲的产生方法和相干光时域反射仪
CN102761364A (zh) * 2011-04-29 2012-10-31 华为海洋网络有限公司 一种光时域探测信号的检测方法及装置
CN107408982A (zh) * 2015-03-16 2017-11-28 华为技术有限公司 用于otdr发送器噪声补偿的装置和方法
WO2017177412A1 (zh) * 2016-04-14 2017-10-19 华为技术有限公司 一种光纤状态检测方法、光监控单元及站点
CN107483106A (zh) * 2017-09-25 2017-12-15 武汉光迅科技股份有限公司 一种在线的光时域反射仪结构、检测系统和检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3783816A4 *

Also Published As

Publication number Publication date
CN110492941A (zh) 2019-11-22
EP3783816A1 (en) 2021-02-24
EP3783816A4 (en) 2021-06-23
US11171722B2 (en) 2021-11-09
CN110492941B (zh) 2021-01-29
US20210067244A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US11171722B2 (en) Optical signal transceiver apparatus
US9083469B2 (en) Device and method for controlling lasing wavelength of tunable laser, and a wavelength division multiplexed-passive optical network having the same
US20100021182A1 (en) Optical transmitter
US8320779B2 (en) Light receiver, optical communication system and method
WO2020043096A1 (zh) 一种相干检测的实现装置、系统及方法
US7634200B2 (en) Method and apparatus for transporting ethernet and radio frequency signals in fiber-optic system
CN109387833B (zh) 基于微波光子正交差频复用的mimo雷达探测方法及装置
CN111049585B (zh) 一种光收发器和光相干接收系统
TW201526560A (zh) 動態波長分配光路由及應用此光路由的終端裝置
JPH04150628A (ja) 光通信システムの波長安定化方法および回路
JP2010515086A (ja) 光変調のシステム及び方法
US5602665A (en) Optical transmitting/receiving apparatus for bidirectional communication systems
US20230319449A1 (en) Optical communication apparatus and optical communication method
JPH04117036A (ja) 光送信装置
JPH10148801A (ja) 外部変調方式による光変調装置
JP3099352B2 (ja) 光送信装置
CN114690436B (zh) 一种光偏振控制装置和偏振分集自相干系统
WO2022000338A1 (zh) 一种处理电路、光模块以及啁啾检测方法
KR20090013521A (ko) 단측파대 광송신장치
JPH06268591A (ja) 光コヒーレント通信装置
CN116337199A (zh) 一种探测设备和光纤探测方法
CN112737687A (zh) 一种高精度双多基地雷达光传输同步装置及方法
JPH03171941A (ja) 光通信装置
KR101012853B1 (ko) 광전송 시스템 및 그 방법
JPH07235904A (ja) アナログ光ファイバ伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019804169

Country of ref document: EP

Effective date: 20201118