WO2019218612A1 - 显示屏边缘显示控制方法、控制装置和显示装置 - Google Patents

显示屏边缘显示控制方法、控制装置和显示装置 Download PDF

Info

Publication number
WO2019218612A1
WO2019218612A1 PCT/CN2018/113503 CN2018113503W WO2019218612A1 WO 2019218612 A1 WO2019218612 A1 WO 2019218612A1 CN 2018113503 W CN2018113503 W CN 2018113503W WO 2019218612 A1 WO2019218612 A1 WO 2019218612A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
pixel
vertex
edge sub
edge
Prior art date
Application number
PCT/CN2018/113503
Other languages
English (en)
French (fr)
Inventor
孙佳瑶
袁至衡
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810456230.7A external-priority patent/CN108665842A/zh
Priority claimed from CN201810458113.4A external-priority patent/CN108648677B/zh
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Priority to US16/342,525 priority Critical patent/US11468824B2/en
Publication of WO2019218612A1 publication Critical patent/WO2019218612A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0232Special driving of display border areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present application relates to the field of display technologies, and in particular, to a display edge display control method, a control device, and a display device.
  • a full-screen device refers to a device with a screen ratio of nearly 100%.
  • the cut edge has a circular chamfer or a hypotenuse.
  • the four corners of the display are chamfered, and the four top corners of the display are rounded and chamfered; the mobile phone designed by Liu Haiping is slotted at the top of the display, and the two sides are dug or slashed.
  • the display cut by the profile is a shaped display, and the edge line of the cut is a profiled cut line of the shaped display. Since the structure of the pixel unit in the display area of the display screen is mostly arranged in an array according to a rectangle, for the non-shaped display screen having a rectangular shape as a whole, the sub-pixels in the pixel structure are distributed regularly, the edges are flush, and for the special-shaped display screen The arc design or slope design of the shaped cutting area causes the sub-pixels to be stepped at the profiled cutting line, resulting in significant sawtoothing near the shaped cutting line.
  • a display screen edge display control method comprising:
  • a profiled cut line at a profiled edge of the display screen for defining a theoretical profiled edge of the display display area; the profiled cut line cutting at least a portion of the edge sub-pixels of the display screen, and each a light-emitting area of the edge sub-pixel that is passed through the profiled cutting line is divided into a first area and a second area, the first area being located on a side of the shaped cutting line facing the display screen display area, the first The two regions are located on a side of the shaped cutting line away from the display area of the display screen;
  • the edge sub-pixels are displayed with the optimized brightness value.
  • the light emitting area of the edge sub-pixel is an area corresponding to the light emitting structure of the edge sub-pixel; the area of the light emitting area of the edge sub-pixel is the light emitting structure of the edge sub-pixel on the display screen The area of the projection on the array substrate.
  • the light-emitting area of the edge sub-pixel is an area corresponding to the overall structure of the edge sub-pixel, and the area of the light-emitting area of the edge sub-pixel is an overall structure of the edge sub-pixel on the display screen.
  • the area of the projection on the array substrate is an area corresponding to the overall structure of the edge sub-pixel, and the area of the light-emitting area of the edge sub-pixel is an overall structure of the edge sub-pixel on the display screen.
  • the coordinates of each vertex of the edge sub-pixel are acquired in a two-dimensional coordinate system of a plane of the sub-pixel of the display screen, and the edge sub-pixel and the special-shaped cutting line are acquired.
  • Intersection coordinates of intersections including:
  • the calculating the intersection coordinates of the edge sub-pixel and the alien shaped cutting line according to the vertex coordinates and the curve analytical formula comprises:
  • the light-emitting area of the edge sub-pixel is a rectangular area determined by four vertices together, and among the four vertices, the first vertex, the second vertex, the third vertex, and the fourth vertex are sequentially connected;
  • the two-dimensional coordinate system of the plane in which the sub-pixels of the display screen are located is a direction in which the extending direction of the side where the first vertex is connected to the second vertex is a horizontal axis direction, and the first vertex and the fourth vertex are connected The direction in which the sides extend is the direction of the longitudinal axis;
  • intersection coordinates include coordinates of a first intersection and coordinates of a second intersection; the area of the first region is in a rectangular region of the edge sub-pixel, and is located at the first intersection and the second intersection The area of the side facing the display area side of the display screen.
  • the first intersection is located on an edge of the first vertex and the fourth vertex
  • the second intersection is located on an edge of the second vertex and the third vertex
  • the first area is a trapezoidal area composed of the first intersection point, the second intersection point, the third vertex and the fourth vertex; and according to each of the vertex coordinates and the intersection coordinates, Calculating an area scale factor of the edge sub-pixel, including:
  • x1 is the abscissa of the first vertex
  • x2 is the abscissa of the second vertex
  • x3 is the abscissa of the third vertex
  • x4 is the abscissa of the fourth vertex
  • y2 is the The ordinate of the second vertex
  • y3 is the ordinate of the third vertex
  • y4 is the ordinate of the fourth vertex
  • ya is the ordinate of the first intersection
  • yb is the ordinate of the second intersection
  • S is the area of the first region
  • S is the area of the light-emitting region
  • is the area scale factor.
  • the first intersection is located on an edge of the third vertex and the fourth vertex
  • the second intersection is located on an edge of the second vertex and the third vertex
  • the first area is a triangular area formed by the first intersection point, the second intersection point, and the third vertex; the calculating the edge sub-pixel according to each of the vertex coordinates and the intersection point coordinates Area scale factor, including:
  • x1 is the abscissa of the first vertex
  • x2 is the abscissa of the second vertex
  • x3 is the abscissa of the third vertex
  • y2 is the ordinate of the second vertex
  • y3 is the The ordinate of the third vertex
  • xa is the abscissa of the first intersection
  • yb is the ordinate of the second intersection
  • S' is the area of the first region
  • S is the area of the illuminating region
  • the first intersection is located on an edge where the first vertex and the fourth vertex are connected
  • the second intersection is located on an edge where the first vertex and the second vertex are connected
  • the first area is a triangular area formed by the first intersection point, the second intersection point, and the first vertex; and the edge sub-pixel is calculated according to each of the vertex coordinates and the intersection point coordinates Area scale factor, including:
  • x1 is the abscissa of the first vertex
  • x2 is the abscissa of the second vertex
  • y1 is the ordinate of the first vertex
  • y2 is the ordinate of the second vertex
  • y3 is the The ordinate of the third vertex
  • ya is the ordinate of the first intersection
  • xb is the abscissa of the second intersection
  • S ⁇ is the area of the first area
  • S is the area of the illuminating area
  • the calculating the area ratio coefficient of the edge sub-pixel according to each of the vertex coordinates and the intersection coordinates includes:
  • the obtaining an optimized brightness value that is less than the preset brightness value according to the area ratio coefficient and the preset brightness value of the edge sub-pixel includes:
  • is the area ratio coefficient
  • Lold is the preset brightness value
  • Lnew is the optimized brightness value
  • the profiled cutting line is a circular arc cutting line
  • the method comprises:
  • the light emitting area of the edge sub-pixel is an area corresponding to the light emitting structure of the edge sub-pixel; the area of the light emitting area of the edge sub-pixel is the light emitting structure of the edge sub-pixel on the display screen The area of the projection on the array substrate; or the light-emitting area of the edge sub-pixel is an area corresponding to the overall structure of the edge sub-pixel, and the area of the light-emitting area of the edge sub-pixel is the whole of the edge sub-pixel The area of the projection of the structure on the array substrate of the display screen.
  • the illuminating region of the edge sub-pixel is a rectangular region determined by four vertices together; among the four vertices, the vertice farthest from the center of the circle where the arc cutting line is located is the first vertex a vertex closest to the center of the circle is a second vertex, and two vertices other than the first vertex and the second vertex are respectively a third vertex and a fourth vertex; the first vertex is connected to the center of the circle a line is a first radius, a line connecting the second vertex to the center of the circle is a second radius, a line connecting the third vertex and the center of the circle is a third radius, and a line connecting the fourth vertex and the center of the circle is a fourth radius, the angle between the third radius and the fourth radius is a central angle;
  • the fan shape corresponding to the central angle is a second sector;
  • the center of the arc cutting line is the center of the circle, and the circle having the radius of the second radius is an inner circle, and the inner circle and the center
  • the fan shape corresponding to the angle is a third sector shape;
  • the first area is located at a side of the circular arc cutting line toward the center of the circle; an area of the first area is equal to an area of an overlapping portion of the edge sub-pixel and the second sector; the edge sub-pixel The area of the light-emitting area is equal to the area of the overlapping portion of the edge sub-pixel and the first sector.
  • the area ratio coefficient of the edge sub-pixel is calculated according to each of the vertex coordinates, a center coordinate of a circle where the arc cutting line is located, and a radius of a circle where the arc cutting line is located.
  • first removal area is the a region of the second sector that overlaps the edge sub-pixel and the second sector, and an area of the remaining region after the third sector is removed
  • second removal area is the first sector, and the edge is removed a region in which the sub-pixel is located outside the second sector, and an area in which the remaining region is removed after the second sector is removed;
  • calculating the area of the first area according to the radius of the circle where the arc cutting line is located, the closest distance, the central angle, and the first removal area including:
  • Calculating an area of the light-emitting area of the edge sub-pixel according to the farthest distance, the closest distance, the central angle, the first removal area, and the second removal area including:
  • R is the radius of the circle in which the arc cutting line is located
  • R1 is the closest distance
  • R2 is the farthest distance
  • is the central angle
  • S1 is the first removal area
  • S2 is the The second removal area
  • A is the area of the first area
  • B is the area of the light-emitting area of the edge sub-pixel.
  • the obtaining the first removal area and the second removal area according to the farthest distance, the closest distance, a radius of a circle where the arc cutting line is located, and a preset theoretical pixel area include:
  • the value range of S1 is between 2/8*S0 and 4/8*S0, and the value range of S2 is between 4/8*S0 and 6/8*S0;
  • S1+S2 S0
  • R2 is the farthest distance
  • R1 is the closest distance
  • R is a radius of a circle where the arc cutting line is located
  • S1 is the first removal area
  • S2 is the first Second, the area is removed
  • S0 is the theoretical pixel area.
  • the obtaining the first removal area and the second removal area according to the farthest distance, the closest distance, a radius of a circle where the arc cutting line is located, and a preset theoretical pixel area include:
  • the area ratio coefficient of the edge sub-pixel is calculated according to each of the vertex coordinates, a center coordinate of a circle where the arc cutting line is located, and a radius of a circle where the arc cutting line is located.
  • the obtaining an optimized brightness value that is smaller than the preset brightness value according to the area ratio coefficient and the preset brightness value of the edge sub-pixel includes:
  • is the area ratio coefficient
  • Lold is the preset brightness value
  • Lnew is the optimized brightness value
  • a control apparatus comprising a memory and a processor, the memory storing a computer program, the processor performing the steps of the method of the above aspect when the computer program is executed.
  • a display device comprising a display screen and a control device of the above aspect, the control device being connected to the display screen.
  • the display screen edge display control method, the control device and the display device obtain the area ratio coefficient by calculating the ratio of the area of the first area in the edge sub-pixel to the area of the light-emitting area of the edge sub-pixel, according to the area ratio coefficient and the preset brightness value
  • the optimized brightness value is obtained; since the optimized brightness value is smaller than the preset brightness value, the edge sub-pixel is displayed with the optimized brightness value, which can reduce the display brightness of the edge sub-pixel; thus, the edge display can be blurred, thereby weakening the edge sub-pixel
  • the edge of the pixel is jagged, optimizing the display of the display.
  • FIG. 1 is a flow chart showing a display edge display control method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a display area and a two-dimensional coordinate system of the display screen
  • FIG. 3 is a schematic diagram showing a positional relationship between an edge sub-pixel and a profiled cutting line according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing a positional relationship between an edge sub-pixel and a profiled cutting line according to another embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing a positional relationship between an edge sub-pixel and a profiled cutting line according to still another embodiment of the present disclosure
  • Figure 6 is a schematic view of a profiled cutting line in a display screen
  • FIG. 7 is a comparison diagram of edge display effects of a display screen edge display control method in which an application screen edge display control method is not applied and an embodiment of the present disclosure is applied;
  • FIG. 8 is a flow chart showing a display edge display control method according to another embodiment of the present disclosure.
  • FIG. 9 is a flow chart for calculating an area scale factor of an edge sub-pixel according to the coordinates of each vertex, the center coordinates of the circle where the arc cutting line is located, and the radius of the circle where the arc cutting line is located, according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram showing a positional relationship between an edge sub-pixel and a circular arc cutting line and a center according to an embodiment of the present disclosure
  • Figure 11 is a partial enlarged view of Figure 10;
  • Figure 12 is a schematic view of a portion of a circular arc cutting line in the display screen
  • Figure 13 is a diagram showing the internal structure of a control device according to an embodiment of the present invention.
  • a display edge display control method is provided, which can be applied to a control device; the method includes the following steps:
  • S110 Determine a profile cutting line that cuts at least a portion of the edge sub-pixels of the display screen, and each of the light-emitting regions of the edge sub-pixels that are passed through the profiled cutting line is divided into a first region and a second region.
  • the profiled cutting line is the outline of the display screen, located at the shaped edge of the display screen, and is used to define the theoretical shaped edge of the display area of the display screen; the shape of the shaped cutting line can be pre-designed before chamfering or slotting the display screen For example, if the chamfer is chamfered or the groove is arc-shaped, the arc-shaped shaped cutting line can be preset.
  • the first area is located on a side of the shaped cutting line facing the display area of the display screen, and the second area is located on a side of the shaped cutting line away from the display area of the display screen.
  • S130 Obtain coordinate of each vertex of the edge sub-pixel in a two-dimensional coordinate system of the plane of the sub-pixel of the display screen, and obtain intersection coordinates of the edge sub-pixel and the alien shaped cutting line.
  • the light-emitting area of the sub-pixel is generally a polygonal structure having vertices such as a rectangle.
  • the vertex coordinates are the coordinates of the common endpoint (vertex) of the adjacent side of the light-emitting area of the edge sub-pixel. If there are multiple vertices of the edge sub-pixel, there are multiple corresponding vertex coordinates.
  • step S130 may be based on the established two-dimensional coordinate system, determining the coordinates of each vertex of the edge sub-pixel, or directly receiving the data input by the user to obtain the vertex coordinates, and determining the intersection coordinates according to the vertex coordinates and the profile cutting line.
  • S150 Calculate an area scale coefficient of the edge sub-pixel according to each vertex coordinate and intersection coordinate.
  • the area scale factor is a ratio of an area of the first area of the edge sub-pixel to an area of the light-emitting area of the edge sub-pixel. If there are a plurality of edge sub-pixels cut by the arc cutting line, the area ratio coefficients of the corresponding edge sub-pixels are calculated according to the vertex coordinates and the intersection coordinates of the respective edge sub-pixels.
  • S170 Acquire an optimized brightness value that is less than a preset brightness value according to the area scale factor and the preset brightness value of the edge sub-pixel.
  • the preset brightness value of the edge sub-pixel is a parameter value corresponding to the brightness displayed by the edge sub-pixel in the ideal case of not being cut, and may be preset according to actual conditions.
  • the corresponding preset brightness values are the same.
  • each of the edge sub-pixels respectively corresponds to an optimized brightness value; if the area ratio coefficients are different, the optimized brightness values are different.
  • S190 The edge sub-pixel is displayed with an optimized brightness value.
  • step S190 may be a driving component that outputs an optimization control signal to the edge sub-pixel, wherein the optimization control signal is used to control the magnitude of the driving current output by the driving component.
  • the optimized control signal controls the magnitude of the driving current output by the driving component, so that the display brightness of the edge sub-pixels is different. Specifically, the higher the optimized luminance value, the larger the display luminance of the corresponding edge sub-pixel.
  • the above display screen edge display control method can be applied to edge display control of a display screen using a profiled cutting line, wherein the profiled cutting line is not limited to an arc shape, for example, may be an arc, a diagonal line or other shapes;
  • the ratio of the area of the first area of the pixel to the area of the light-emitting area of the edge sub-pixel obtains an area ratio coefficient, and the optimized brightness value is obtained according to the area ratio coefficient and the preset brightness value; since the optimized brightness value is less than the preset brightness value,
  • the edge sub-pixels are displayed with optimized brightness values, which can reduce the display brightness of the edge sub-pixels; thus, the edge display can be blurred, thereby weakening the edge aliasing of the edge sub-pixels and optimizing the display effect of the display screen.
  • the sub-pixels of the display screen include a TFT (Thin Film Transistor), a wiring area, and a light-emitting structure.
  • TFT Thin Film Transistor
  • the TFT and the wiring area are covered by the opaque structure layer, and are not exposed to the screen.
  • the TFT and trace areas are also light transmissive.
  • the light emitting area of the edge sub-pixel is the area corresponding to the light emitting structure of the edge sub-pixel; the area of the light emitting area of the edge sub-pixel is the projected area of the light-emitting structure of the edge sub-pixel on the array substrate of the display screen.
  • the light-emitting area of the edge sub-pixel is the area corresponding to the light-emitting structure of the edge sub-pixel, and the area of the light-emitting area of the edge sub-pixel is the light of the edge sub-pixel.
  • the area of the projection on the array substrate of the display screen; or the light-emitting area of the edge sub-pixel is the area corresponding to the overall structure of the edge sub-pixel, and the area of the light-emitting area of the edge sub-pixel is the overall structure of the edge sub-pixel on the display The area of the projection on the array substrate.
  • step S130 includes: obtaining, in a two-dimensional coordinate system of a plane of the sub-pixel of the display screen, coordinates of each vertex of the edge sub-pixel, and a curve analytical formula of the shaped cutting line in the same two-dimensional coordinate system; According to the vertex coordinates and the curve analytic formula, the intersection coordinates of the edge sub-pixel and the alien shaped cutting line are calculated.
  • the display area of the display screen is equivalent to a two-dimensional coordinate system, and the upper left corner is the coordinate origin P (0, 0), then the entire display area is composed of an infinite number of points, showing any point in the area
  • the coordinates can be determined, for example, a point p(x, y); taking a sub-pixel whose light-emitting area is a rectangle as an example, the light-emitting area of each sub-pixel can be represented by a closed curve composed of four vertices.
  • the curve analytical formula is used to describe the function expression of the corresponding relationship between the abscissa and the ordinate on the curve;
  • the curve analytical formula of the profiled cutting line is the curve analytical formula corresponding to the curve fitting the profiled cutting line.
  • it may be a curve analytical formula in which a two-dimensional coordinate system based on the plane of the sub-pixel of the display screen is stored in advance, that is, the curve analytical expression and the vertex coordinates of the edge sub-pixel correspond to the same two-dimensional coordinate system.
  • the two-dimensional coordinate system corresponding to the vertex coordinates may be different in the curve analysis formula stored in advance, and correspondingly, the curve analytical expression stored in advance may be converted into a curve analytical expression in a two-dimensional coordinate system corresponding to the vertex coordinates.
  • the chamfering and slotting arcs may be fitted to N Bezier curves according to the chamfering and slotting size requirements, and in combination with the actual size of the display panel display area; correspondingly, the curve resolution is Analyze the Bezier curve of the shaped cut line.
  • the step of calculating the intersection coordinates of the edge sub-pixel and the alien shaped cutting line according to the vertex coordinates and the curve analytic formula comprises: obtaining an analytical formula of the edge intersecting the alien shaped cutting line in the edge sub-pixel according to the vertex coordinates; The analytic equations of the curve analytic and the edge intersecting the profiled cutting line are established and solved, and the intersection coordinates of the edge subpixel intersecting the profiled cutting line are obtained.
  • the end point of the edge of the edge sub-pixel that intersects the alien shaped cutting line is the vertices of the sub-pixel; therefore, the vertex coordinates of the edge sub-pixel are known, that is, the coordinates of the end point of the edge intersecting the alien shaped cutting line are known;
  • the coordinates can be mathematically determined to determine the analytic expression of the edge.
  • the light-emitting area of the edge sub-pixel is a rectangular area determined by four vertices in common, and among the four vertices, the first vertex, the second vertex, the third vertex, and the fourth vertex are sequentially connected.
  • the two-dimensional coordinate system of the plane of the sub-pixel of the display screen is such that the extending direction of the side connecting the first vertex and the second vertex is the horizontal axis direction, and the extending direction of the side connecting the first vertex and the fourth vertex is the vertical axis direction; At this time, the abscissas of the first vertex and the fourth vertex are equal, the abscissas of the second vertex and the third vertex are equal, the ordinates of the first vertex and the second vertex are equal, and the ordinates of the third vertex and the fourth vertex are equal.
  • intersection coordinates include coordinates of the first intersection point and coordinates of the second intersection point; the area of the first area is in a rectangular area of the edge sub-pixel, and the side connected to the first intersection point and the second intersection point faces the display area side of the display screen The area of the area.
  • the first area may be a triangular area, a trapezoidal area, or a pentagonal area, according to the size of the area of the first area.
  • the first intersection is located on the side where the first vertex and the fourth vertex are connected
  • the second intersection is located on the side where the second vertex and the third vertex are connected
  • the first area is the first intersection
  • a trapezoidal region composed of a second intersection, a third vertex, and a fourth vertex.
  • step S150 includes:
  • x1 is the abscissa of the first vertex
  • x2 is the abscissa of the second vertex
  • x3 is the abscissa of the third vertex
  • x4 is the abscissa of the fourth vertex
  • y2 is the ordinate of the second vertex
  • y3 is the The ordinate of the three vertices
  • y4 is the ordinate of the fourth vertex
  • ya is the ordinate of the first intersection
  • yb is the ordinate of the second intersection
  • S ⁇ is the area of the first area
  • S is the area of the illuminating area
  • the portion of the shaped cut line located in the edge sub-pixel is approximately a straight line
  • the area of the first area is the area of the trapezoid formed by the straight cut edge sub-pixel; thus, based on the intersection of the straight line and the edge sub-pixel
  • the coordinates of the intersection point and the vertex coordinates of the edge sub-pixels can be calculated to obtain the area of the trapezoid, thereby obtaining the area of the first region; calculating the rectangular area of the edge sub-pixel, the pixel area of the light-emitting region of the edge sub-pixel can be obtained, and the calculation is simple.
  • the calculation error is small, and a relatively accurate area scale factor can be obtained, thereby improving the accuracy of optimizing the brightness value, and further optimizing the weakening effect on the edge sawtooth phenomenon.
  • the coordinates of the four vertices of the edge sub-pixel are (x1, y1), (x2, y2), (x3, y3), (x4, y4); the coordinates of the first intersection are (xa, ya). ), the coordinates of the second intersection point are (xb, yb); the first intersection point is located on the line connecting the first vertex (x1, y1) and the fourth vertex (x4, y4), and the second intersection point is located at the second vertex (x2, y2) ) on the line with the third vertex (x3, y3).
  • the profiled cutting line divides the edge sub-pixel into two parts; the first area surrounded by four vertices (xa, ya), (x4, y4), (x3, y3), (xb, yb), the area of the first area
  • the four vertices of S ⁇ ;(xa,ya), (xb,yb), (x2,y2), (x1,y1) are enclosed into a second region, and the area of the second region is S ⁇ ; the first region and The second area constitutes a light-emitting area, and the area of the light-emitting area is S.
  • the profiled cutting line intersects the edge connecting the third vertex and the fourth vertex in the edge sub-pixel, the coordinates of the corresponding intersection are (xa, ya), and the shaped cutting line and The second vertex of the edge sub-pixel intersects the edge connected by the third vertex, and the coordinates corresponding to the intersection are (xb, yb).
  • the profiled cutting line intersects the edge connecting the first vertex and the fourth vertex in the edge sub-pixel, the coordinates of the corresponding intersection are (xa, ya), and the shaped cutting line and the edge sub- The edges connecting the first vertex of the pixel and the second vertex intersect, and the coordinates corresponding to the intersection are (xb, yb).
  • step S150 includes: calculating an area of the second area and an area of the light emitting area of the edge sub-pixel according to each vertex coordinate and intersection coordinate; calculating an area of the second area and a light emitting area of the edge sub-pixel The ratio of the area; the area ratio coefficient of the edge sub-pixel is calculated according to the ratio of the area of the second area to the area of the light-emitting area of the edge sub-pixel. Specifically, the ratio of the area of the second area to the area of the light-emitting area of the edge sub-pixel may be calculated to obtain an area ratio coefficient of the edge sub-pixel.
  • the display panel is chamfered and slotted.
  • the slotted portion of the display screen is the top of the display screen, and the end opposite to the top of the display screen is the bottom, which is upward toward the top, away from the bottom, and downward toward the bottom and away from the top;
  • the first area is below the edge sub-pixel, and the area of the first area can be obtained by calculating the area of the area under which the edge sub-pixel is divided, and the area of the first area and the area of the light-emitting area are calculated.
  • the ratio is obtained by the area scale factor.
  • the first area is above the edge sub-pixel and the second area is below the edge sub-pixel.
  • the area of the second area can be obtained by calculating the area of the area below which the edge sub-pixel is divided;
  • the ratio of the area of the second region to the area of the light-emitting region of the edge sub-pixel is subtracted to obtain an area scale factor.
  • step S170 includes:
  • Lold is the preset brightness value
  • Lnew is the optimized brightness value
  • the preset brightness value By multiplying the preset brightness value by an area ratio coefficient of less than 1, the preset brightness value is adjusted, and the obtained optimized brightness value is smaller than the preset brightness value, so that the edge sub-pixel is displayed with the optimized brightness value, and the brightness is lowered. It can blur the edge display, reduce the edge aliasing of the edge sub-pixels, and optimize the display effect of the display.
  • the display screen edge display control method further includes: the sub-pixels not cut by the profile cutting line are displayed with a preset brightness value.
  • the Bezier curve trajectory in the two-dimensional coordinate system will have two cases:
  • the curve track does not pass through the closed area of any one of the sub-pixels
  • the curve track passes through the closed area of the edge sub-pixel
  • the display may be performed according to the brightness corresponding to the preset brightness value. If the closed region of the edge sub-pixel is passed by the Bezier curve, the display is performed according to the brightness corresponding to the optimized brightness value.
  • it may be a driving component that outputs a control signal to a sub-pixel that is not cut by the profile cutting line, and the control signal is used to control the magnitude of the driving current output by the driving component.
  • the effect diagram of an application embodiment is described as follows: as shown in FIG. 7, the left side is a rounded edge which is not displayed by the above display edge display control method, and a visible zigzag feeling is visible;
  • the display effect of the edge display control method basically does not see obvious sawtooth. It can be seen that the above display edge display control method can effectively reduce the edge aliasing phenomenon of the edge sub-pixels and optimize the display effect of the display screen.
  • FIG. 8 illustrates a flow chart of a display screen edge display control method according to another embodiment of the present disclosure. As shown in FIG. 8, the method includes the following steps:
  • S210 Determine an arc cutting line that cuts at least part of the edge sub-pixels of the display screen, and each of the light-emitting areas of the edge sub-pixels that are crossed by the arc cutting line is divided into the first area and the second area.
  • the arc cutting line is the outline of the display screen, located at the arc edge of the display screen, and is used to define the theoretical arc edge of the display area of the display screen; the cutting line can be pre-designed before chamfering or slotting the display screen. If the chamfer is chamfered or the groove is arc-shaped, the arc cutting line can be preset.
  • the first area is located on a side of the arc cutting line facing the display area of the display screen, and the second area is located on a side of the arc cutting line away from the display area of the display screen.
  • S230 Obtain coordinates of each vertex of the edge sub-pixel, a radius of a circle where the arc cutting line is located, and a center coordinate of a circle where the arc cutting line is located in a two-dimensional coordinate system of the plane of the sub-pixel of the display screen.
  • the light emitting structure of the sub-pixel is generally a polygonal structure having vertices such as a rectangle.
  • the vertex coordinates are the coordinates of the common endpoint of the adjacent side of the light-emitting area of the edge sub-pixel. If there are multiple vertices of a sub-pixel, there are multiple corresponding vertex coordinates. Since the arc is the part between the two points on the circle, one arc corresponds to one circle, that is, the radius and the center of the circle can be determined according to the arc. Therefore, based on the arc cutting line, the radius of the circle where the arc cutting line is located can be determined. And the center of the circle. The center coordinate is the coordinate of the center of the circle where the arc cutting line is located.
  • step S230 may be based on the established two-dimensional coordinate system, determining the vertex coordinates of the edge sub-pixel and the radius and center coordinates of the circle where the arc cutting line is located, or directly receiving the data input by the user to obtain the vertex coordinates, The radius and center coordinates of the circle where the arc cutting line is located.
  • S250 Calculate the area proportional coefficient of the edge sub-pixel according to the coordinates of each vertex, the center coordinates of the circle where the arc cutting line is located, and the radius of the circle where the arc cutting line is located.
  • the area scale factor is a ratio of an area of the first area of the edge sub-pixel to an area of the light-emitting area of the edge sub-pixel. If there are a plurality of edge sub-pixels cut by the arc cutting line, the area ratio coefficients of the corresponding edge sub-pixels are obtained according to the radius of the circle where the arc cutting line is located and the vertex coordinates of each edge sub-pixel.
  • S270 Obtain an optimized brightness value smaller than the preset brightness value according to the area ratio coefficient and the preset brightness value of the edge sub-pixel.
  • the preset brightness value of the edge sub-pixel is a parameter value corresponding to the brightness displayed by the edge sub-pixel in the ideal case of not being cut, and may be preset according to actual conditions.
  • the corresponding preset brightness values are the same.
  • each of the edge sub-pixels respectively corresponds to an optimized brightness value; if the area ratio coefficients are different, the optimized brightness values are different.
  • S290 The edge sub-pixel is displayed with an optimized brightness value.
  • step S290 may be a driving component that outputs an optimization control signal to the edge sub-pixel, wherein the optimization control signal is used to control the magnitude of the driving current output by the driving component.
  • the optimized control signal controls the magnitude of the driving current output by the driving component, so that the display brightness of the edge sub-pixels is different. Specifically, the higher the optimized luminance value, the larger the display luminance of the corresponding edge sub-pixel.
  • the above display screen edge display control method can be used for edge display control of a display screen using an arc cutting line; and an area ratio coefficient is obtained by calculating a ratio of an area of the first area in the edge sub-pixel to an area of the light-emitting area of the edge sub-pixel According to the area ratio coefficient and the preset brightness value, the optimized brightness value is obtained; since the optimized brightness value is smaller than the preset brightness value, the edge sub-pixel is displayed with the optimized brightness value, so that the display brightness of the edge sub-pixel is reduced;
  • the edge display can be blurred to reduce the edge aliasing of the edge sub-pixels and optimize the display of the display.
  • the sub-pixel of the display screen comprises a TFT, a wiring area and a light-emitting structure.
  • the TFT and the wiring area are covered by the opaque structure layer, and the light is not transmitted to the outside of the screen, but for the full transparent
  • the TFT and the wiring area are also transparent.
  • the light emitting area of the edge sub-pixel is the area corresponding to the light emitting structure of the edge sub-pixel; the area of the light emitting area of the edge sub-pixel is the projected area of the light-emitting structure of the edge sub-pixel on the array substrate of the display screen.
  • the light-emitting area of the edge sub-pixel is the area corresponding to the light-emitting structure of the edge sub-pixel, and the area of the light-emitting area of the edge sub-pixel is the light of the edge sub-pixel.
  • the area of the projection on the array substrate of the display screen; or the light-emitting area of the edge sub-pixel is the area corresponding to the overall structure of the edge sub-pixel, and the area of the light-emitting area of the edge sub-pixel is the overall structure of the edge sub-pixel on the display The area of the projection on the array substrate.
  • the light-emitting area of the edge sub-pixel is a rectangular area determined by four vertices together; among the four vertices, the farthest vertex from the center of the circle where the arc cutting line is located is the first vertex, and the distance arc cut The nearest vertex of the center of the circle where the line is located is the second vertex, and the two vertices except the first vertex and the second vertex are the third vertex and the fourth vertex, respectively.
  • the line connecting the first vertex and the center of the circle is the first radius
  • the line connecting the second vertex and the center of the circle is the second radius
  • the line connecting the third vertex and the center of the circle is the third radius
  • the line connecting the fourth vertex and the center of the circle is the fourth radius.
  • the angle between the radius, the third radius and the fourth radius is the central angle.
  • the center of the arc cutting line is the center of the circle, and the circle with the radius of the first radius is the outer circle.
  • the fan shape corresponding to the angle of the center circle in the outer circle is the first sector shape; in the circle where the arc cutting line is located, the fan shape corresponding to the central angle of the circle is
  • the second sector shape is a circle centered on the center of the arc cutting line, and a circle having a radius of the second radius is an inner circle, and a fan shape corresponding to the center angle of the inner circle is a third sector shape. That is, the area of the first sector is larger than the area of the second sector, and the area of the second sector is larger than the area of the third sector.
  • the first region of the edge sub-pixel is located on a side of the arc cutting line facing the center of the circle.
  • the area of the first area is equal to the area of the overlapping portion of the edge sub-pixel and the second sector; the area of the light-emitting area of the edge sub-pixel is equal to the area of the overlapping portion of the edge sub-pixel and the first sector.
  • step S250 includes steps S2511 through S2519.
  • S2511 Calculate the distance between the coordinates of the first vertex and the coordinates of the center of the circle, obtain the farthest distance, calculate the distance between the coordinates of the second vertex and the coordinates of the center of the circle, and obtain the closest distance.
  • the farthest distance can be directly calculated according to the coordinates of the first vertex and the coordinates of the center of the circle, directly according to the coordinates of the second vertex.
  • the center coordinate calculates the nearest distance; if the coordinates of the center and the coordinates of the first vertex and the second vertex are not determined based on the same two-dimensional coordinate system, the coordinates of the first vertex, the coordinates of the second vertex, and the coordinates of the center of the circle are first converted into the same The coordinates in the two-dimensional coordinate system, and then calculate the farthest distance and the closest distance.
  • the first removal area is an area of the second sector in which the edge sub-pixel overlaps the second sector, and an area of the remaining area after the third sector is removed; the second removal area is the first sector, and the edge is removed. The area outside the sector and the area of the remaining area after the second sector is removed.
  • the theoretical pixel area is the area of the light-emitting area when the corresponding edge sub-pixel is not cut. For example, if the edge sub-pixel is square, the theoretical pixel area is the square of the side length of the edge sub-pixel; if the edge sub-pixel is rectangular, the theoretical pixel area is the product of the length and width of the edge sub-pixel.
  • the edge sub-pixel is a rectangle, the first vertex is a, the second vertex is b, the third vertex is c, and the fourth vertex is d, as shown in FIG.
  • the solid line with two intersections of the edge sub-pixels in the three curves is an arc cutting line.
  • the center of the circle where the arc cutting line is located is the coordinate origin O to establish a two-dimensional coordinate system; R is the radius of the circle corresponding to the arc cutting line.
  • R1 is the closest distance
  • R2 is the farthest distance
  • R3 is the distance from c to the center of the circle
  • R4 is the distance from d to the center of the circle
  • is the angle of the center of the circle.
  • the approximate straight line of the circular arc cutting line is taken as an example.
  • the sum of the areas of the two polygonal types corresponding to the two arrows pointing to S1 is the first removed area.
  • the sum of the two polygonal areas corresponding to the two arrows pointing to S2 is the second removed area.
  • S2515 Calculate the area of the first area according to the radius, the nearest distance, the central angle, and the first removal area of the circle where the arc cutting line is located.
  • S2517 Calculate an area of the light-emitting area of the edge sub-pixel according to the farthest distance, the closest distance, the central angle, the first removal area, and the second removal area.
  • S2519 Calculate a ratio of an area of the first area to an area of the light-emitting area of the edge sub-pixel, and obtain an area ratio coefficient of the edge sub-pixel.
  • the area scale factor can be obtained by the ratio of the area of the first area located on one side of the arc cut line toward the center of the circle to the area of the light-emitting area of the edge sub-pixel, and the area scale factor can represent the portion of the edge sub-pixel located in the display area
  • the size of the occupied area; the size of the area is different, the optimized brightness value is different, so that the brightness of the edge sub-pixel display is adjusted according to the size of the portion of the edge sub-pixel located in the display area, and the blur effect of the edge display is good.
  • step S2513 includes:
  • R2 is the farthest distance
  • R1 is the closest distance
  • R is the radius of the circle where the arc cutting line is located
  • S1 is the first removal area
  • S2 is the second removal area
  • S0 is the theoretical pixel area.
  • x and y are the abscissa value of the first vertex with respect to the center of the circle and the ordinate value with respect to the center of the circle, respectively
  • x 0 and y 0 are the abscissa value of the second vertex with respect to the center of the circle and the ordinate with respect to the center of the circle, respectively value.
  • the edge sub-pixel is cut by the arc cutting line, and the values of the first removal area and the second removal area are different.
  • determining the value of the first removal area and the value of the second removal area according to the result of the comparison provides a certain determination a method of removing the value of the area and the value of the second removal area, and by analyzing different conditions, the values of the first removal area and the second removal area are different in different cases, and the value is high, thereby increasing the area ratio.
  • the coefficient and the accuracy of the optimized brightness value optimize the weakening effect on edge aliasing. For example, referring to FIG.
  • step S2513 specifically includes:
  • the first removal area is 3/8*S0, and the second removal area is 5/8*.
  • S0 the calculated area ratio coefficient error is small; if the sum of the farth distance and the closest distance is equal to twice the radius of the circle where the arc cutting line is located, the first removal area and the second removal area are 1/2* S0, the calculated area proportional coefficient error is small; if the sum of the farthest distance and the closest distance is less than twice the radius of the circle where the arc cutting line is located, the first removal area takes a value of 5/8*S0, and the second removal The area value is 3/8*S0, and the calculated area scale factor error is small.
  • the light-emitting areas of the respective sub-pixels are calculated in an approximately rectangular manner, and the first region and the second region of each sub-pixel are also calculated in an approximate polygon manner, and the approximate relationship is It will inevitably lead to a small error of the result, which is within the range allowed by the visual perception of the human eye, that is to say, the equivalence relation in this embodiment is approximately equivalence in the mathematical sense.
  • step S2515 specifically calculates the area of the second sector and the area of the third sector based on the radius, the nearest distance, and the central angle of the circle where the arc cutting line is located, and calculates the area of the second sector minus the third sector.
  • the area and the value of the first removed area give the area of the first area.
  • Step S2517 specifically calculates the area of the first sector and the area of the third sector according to the farthest distance, the closest distance, and the central angle, calculates the area of the first sector minus the area of the third sector, and then subtracts the first removal area and the Second, the value of the area is removed, and the area of the light-emitting area of the edge sub-pixel is obtained.
  • step S2515 includes:
  • Step S2517 includes:
  • R is the radius of the circle where the arc cutting line is located
  • R1 is the closest distance
  • R2 is the farthest distance
  • is the central angle
  • S1 is the first removal area
  • S2 is the second removal area
  • A is the area of the first area.
  • B is the area of the light-emitting area of the edge sub-pixel.
  • the area of the first area is obtained by subtracting the excess area (the first removal area) on the basis of the calculated sector area, and the excess area (the first removal area and the second removal area) is removed on the basis of the calculated sector area to obtain the light-emitting area.
  • the area is small, the calculation error is small, and a more accurate area scale factor can be obtained, thereby improving the accuracy of optimizing the brightness value, and further optimizing the weakening effect on the edge sawtooth phenomenon.
  • the area of the first area and the area of the light-emitting area of the edge sub-pixel may be obtained, and the coordinates of the intersection of the arc cutting line and the edge sub-pixel can be obtained, and the area of the first area is calculated according to the coordinates of the intersection point and the vertex coordinates by a geometric algorithm; for example, the theoretical pixel area of the edge sub-pixel can be directly used as the light-emitting area. Area.
  • step S250 includes: calculating the area of the second area and the area of the light-emitting area of the edge sub-pixel according to the coordinates of each vertex, the center coordinates of the circle where the arc cutting line is located, and the radius of the circle where the arc cutting line is located. Calculating a ratio of an area of the second area to an area of the light-emitting area of the edge sub-pixel; and calculating an area ratio coefficient of the edge sub-pixel according to a ratio of an area of the second area to an area of the light-emitting area of the edge sub-pixel. Specifically, the ratio of the area of the second area to the area of the light-emitting area of the edge sub-pixel may be calculated to obtain an area ratio coefficient of the edge sub-pixel.
  • the display screen is chamfered and slotted.
  • the area of the first area is located on the side of the arc cutting line facing the center of the circle, and the area of the third sector and the value of the first removed area can be subtracted from the area of the second sector to obtain the first The area of a region; the ratio of the area of the first region to the area of the light-emitting region of the edge sub-pixel is calculated to obtain an area scale factor.
  • the area of the first area is located on the side of the arc cutting line facing away from the center of the circle, and the area of the second area is located on the side of the arc cutting line facing the center of the circle;
  • the area of the second sector can be calculated by subtracting The area of the third sector and the value of the second removal area are obtained to obtain the area of the second area; and the ratio of the area of the second area minus the area of the light-emitting area of the edge sub-pixel is calculated to obtain an area ratio coefficient.
  • step S270 includes:
  • Lold is the preset brightness value
  • Lnew is the optimized brightness value
  • the preset brightness value By multiplying the preset brightness value by an area ratio coefficient of less than 1, the preset brightness value is adjusted, and the obtained optimized brightness value is smaller than the preset brightness value, so that the edge sub-pixel is displayed with the optimized brightness value, and the brightness is lowered. It can blur the edge display, reduce the edge aliasing of the edge sub-pixels, and optimize the display effect of the display.
  • the above display edge display control method can also effectively reduce the edge aliasing phenomenon of the edge sub-pixels and optimize the display effect of the display screen.
  • FIGS. 1 and 8-9 are sequentially displayed as indicated by the arrows, these steps are not necessarily performed in the order indicated by the arrows. Except as explicitly stated herein, the execution of these steps is not strictly limited, and the steps may be performed in other orders. Moreover, at least some of the steps in FIGS. 1 and 8-9 may include a plurality of sub-steps or stages, which are not necessarily performed at the same time, but may be executed at different times. The order of execution of the steps or stages is not necessarily performed sequentially, but may be performed alternately or alternately with at least a portion of the sub-steps or stages of the other steps or other steps.
  • the present disclosure also provides a control device, the internal structure diagram of which can be as shown in FIG.
  • the control device includes a processor, a memory, and a network interface connected by a system bus.
  • the processor of the control device is used to provide computing and control capabilities.
  • the memory of the control device includes a non-volatile storage medium, an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for operation of an operating system and computer programs in a non-volatile storage medium.
  • the network interface of the control device is used to communicate with an external terminal via a network connection.
  • the computer program is executed by the processor to implement a display edge display control method.
  • FIG. 13 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation of the control device to which the solution of the present application is applied.
  • the specific control device may It includes more or fewer components than those shown in the figures, or some components are combined, or have different component arrangements.
  • a control apparatus comprising a memory and a processor having a computer program stored therein, the processor implementing the computer program to:
  • the profiled cutting line is located at the shaped edge of the display screen to define a theoretical profiled edge of the display area of the display screen; the first area is located on the side of the profiled cutting line facing the display display area, and the second area is located on the profiled cutting line away from the display screen Show area side.
  • the vertex coordinates are the coordinates of the common endpoint of the adjacent side of the light-emitting area of the edge sub-pixel.
  • the area scale factor is a ratio of an area of the first area of the edge sub-pixel to an area of the light-emitting area of the edge sub-pixel.
  • the above control device can be applied to edge display control of a display screen using a profiled cutting line, wherein the profiled cutting line is not limited to an arc shape, and may be, for example, a circular arc, a diagonal line or other shape;
  • the ratio of the area of the area to the area of the light-emitting area of the edge sub-pixel obtains an area ratio coefficient, and the optimized brightness value is obtained according to the area ratio coefficient and the preset brightness value; since the optimized brightness value is smaller than the preset brightness value, the edge sub-pixel is Optimizing the brightness value for display can reduce the display brightness of the edge sub-pixels; thus, the edge display can be blurred, thereby reducing the edge aliasing of the edge sub-pixels and optimizing the display effect of the display screen.
  • the light emitting area of the edge sub-pixel is the area corresponding to the light emitting structure of the edge sub-pixel; the area of the light emitting area of the edge sub-pixel is the projected area of the light-emitting structure of the edge sub-pixel on the array substrate of the display screen.
  • the light-emitting area of the edge sub-pixel is the area corresponding to the light-emitting structure of the edge sub-pixel, and the area of the light-emitting area of the edge sub-pixel is the light of the edge sub-pixel.
  • the area of the projection on the array substrate of the display screen; or the light-emitting area of the edge sub-pixel is the area corresponding to the overall structure of the edge sub-pixel, and the area of the light-emitting area of the edge sub-pixel is the overall structure of the edge sub-pixel on the display The area of the projection on the array substrate.
  • the following steps are further performed: acquiring the coordinates of the vertices of the edge sub-pixels in the two-dimensional coordinate system of the plane of the sub-pixel of the display screen, and the different shapes in the same two-dimensional coordinate system.
  • the curve analytical formula of the cutting line according to the vertex coordinates and the curve analytical formula, the coordinates of the intersection of the edge sub-pixel and the alien shaped cutting line are calculated.
  • the processor performs the steps of executing the computer program: calculating the intersection coordinates of the edge sub-pixel and the alien shaped cutting line according to the vertex coordinates and the curve analytic, including: obtaining the edge sub-pixel and the shaped cutting according to the vertex coordinates The analytical formula of the intersection of the lines; the analytical equations of the edges of the curve and the intersection of the contour cut lines are established and solved, and the coordinates of the intersection of the edge sub-pixels and the contour cut lines are obtained.
  • the light-emitting area of the edge sub-pixel is a rectangular area determined by four vertices in common, and among the four vertices, the first vertex, the second vertex, the third vertex, and the fourth vertex are sequentially connected.
  • the two-dimensional coordinate system of the plane of the sub-pixel of the display screen is such that the extending direction of the side connecting the first vertex and the second vertex is the horizontal axis direction, and the extending direction of the side connecting the first vertex and the fourth vertex is the vertical axis direction; At this time, the abscissas of the first vertex and the fourth vertex are equal, the abscissas of the second vertex and the third vertex are equal, the ordinates of the first vertex and the second vertex are equal, and the ordinates of the third vertex and the fourth vertex are equal.
  • intersection coordinates include coordinates of the first intersection point and coordinates of the second intersection point; the area of the first area is in a rectangular area of the edge sub-pixel, and the side connected to the first intersection point and the second intersection point faces the display area side of the display screen The area of the area.
  • the first area may be a triangular area, a trapezoidal area, or a pentagonal area, according to the size of the area of the first area.
  • the first intersection is located on the side where the first vertex and the fourth vertex are connected
  • the second intersection is located on the side where the second vertex and the third vertex are connected
  • the first area is the first intersection
  • x1 is the abscissa of the first vertex
  • x2 is the abscissa of the second vertex
  • x3 is the abscissa of the third vertex
  • x4 is the abscissa of the fourth vertex
  • y2 is the ordinate of the second vertex
  • y3 is the The ordinate of the three vertices
  • y4 is the ordinate of the fourth vertex
  • ya is the ordinate of the first intersection
  • yb is the ordinate of the second intersection
  • S ⁇ is the area of the first area
  • S is the area of the illuminating area
  • the area of the first region is the area of the trapezoid formed by the straight cut edge sub-pixel; thus, the intersection coordinates of the two intersecting positions based on the straight line and the edge sub-pixel
  • the vertex coordinates of the edge sub-pixels can be calculated to obtain the area of the trapezoid, thereby obtaining the area of the first region; calculating the rectangular area of the edge sub-pixel, the pixel area of the light-emitting region of the edge sub-pixel can be obtained, the calculation is simple, and the calculation error is small. It can obtain a more accurate area scale factor, which can improve the accuracy of optimizing the brightness value, and further optimize the weakening effect on the edge sawtooth phenomenon.
  • the processor implements the computer program to: calculate an area scale factor of the edge sub-pixel according to each vertex coordinate and intersection coordinate, including: calculating an area of the second area according to each vertex coordinate and intersection coordinate The area of the light-emitting area of the edge sub-pixel; calculating the ratio of the area of the second area to the area of the light-emitting area of the edge sub-pixel; calculating the edge sub-pixel according to the ratio of the area of the second area to the area of the light-emitting area of the edge sub-pixel Area scale factor.
  • the ratio of the area of the second area to the area of the light-emitting area of the edge sub-pixel may be calculated to obtain an area ratio coefficient of the edge sub-pixel.
  • the processor executes the computer program to: obtain an optimized brightness value that is less than the preset brightness value according to the area scale factor and the preset brightness value of the edge sub-pixel, including:
  • Lold is the preset brightness value
  • Lnew is the optimized brightness value
  • the preset brightness value By multiplying the preset brightness value by an area ratio coefficient of less than 1, the preset brightness value is adjusted, and the obtained optimized brightness value is smaller than the preset brightness value, so that the edge sub-pixel is displayed with the optimized brightness value, and the brightness is lowered. It can blur the edge display, reduce the edge aliasing of the edge sub-pixels, and optimize the display effect of the display.
  • the processor also implements the following steps when executing the computer program: the sub-pixels that are not cut by the profiled cut line are displayed with a preset brightness value.
  • the processor may be a driving component that outputs a control signal to a sub-pixel that is not cut by the profile cutting line, and the control signal is used to control the magnitude of the driving current output by the driving component.
  • the present disclosure also provides another control device, including a memory and a processor, wherein the memory stores a computer program, and when the processor executes the computer program, the following steps are performed: determining an arc cutting line, and cutting the arc cutting line at least a portion of the edge sub-pixels, and each of the light-emitting regions of the edge sub-pixels that are crossed by the arc-cut line is divided into a first region and a second region; and the edge is obtained in a two-dimensional coordinate system of the plane of the sub-pixel of the display screen The coordinates of each vertex of the sub-pixel, the radius of the circle where the arc cutting line is located, and the center coordinates of the circle where the arc cutting line is located; according to the coordinates of each vertex, the center coordinates of the circle where the arc cutting line is located, and the radius of the circle where the arc cutting line is located, Calculating an area ratio coefficient of the edge sub-pixel; obtaining an optimized brightness value smaller than the preset brightness value according to the area scale factor
  • the arc cutting line is located at the arc edge of the display screen, and is used to define the theoretical arc edge of the display area of the display screen; the first area is located on the side of the arc cutting line facing the display area of the display screen, and the second area is located in the arc of the display area
  • the cutting line is away from the side of the display area of the display.
  • the vertex coordinates are the coordinates of the common endpoint of the adjacent side of the light-emitting area of the edge sub-pixel.
  • the area scale factor is a ratio of an area of the first area of the edge sub-pixel to an area of the light-emitting area of the edge sub-pixel.
  • the control device may be configured to perform edge display control on a display screen using an arc cutting line; and calculate an area ratio coefficient by calculating a ratio of an area of the first region of the edge sub-pixel to an area of the light-emitting region of the edge sub-pixel, according to the area ratio
  • the coefficient and the preset brightness value are used to obtain an optimized brightness value; since the optimized brightness value is smaller than the preset brightness value, the edge sub-pixel is displayed with the optimized brightness value, so that the display brightness of the edge sub-pixel is reduced; thus, the edge can be blurred Display, thereby reducing the edge aliasing of the edge sub-pixels and optimizing the display of the display.
  • the light emitting area of the edge sub-pixel is the area corresponding to the light emitting structure of the edge sub-pixel; the area of the light emitting area of the edge sub-pixel is the projected area of the light-emitting structure of the edge sub-pixel on the array substrate of the display screen.
  • the light-emitting area of the edge sub-pixel is the area corresponding to the light-emitting structure of the edge sub-pixel, and the area of the light-emitting area of the edge sub-pixel is the light of the edge sub-pixel.
  • the area of the projection on the array substrate of the display screen; or the light-emitting area of the edge sub-pixel is the area corresponding to the overall structure of the edge sub-pixel, and the area of the light-emitting area of the edge sub-pixel is the overall structure of the edge sub-pixel on the display The area of the projection on the array substrate.
  • the light-emitting area of the edge sub-pixel is a rectangular area determined by four vertices together; among the four vertices, the farthest vertex from the center of the circle where the arc cutting line is located is the first vertex, and the distance arc cut The nearest vertex of the center of the circle where the line is located is the second vertex, and the two vertices except the first vertex and the second vertex are the third vertex and the fourth vertex, respectively.
  • the line connecting the first vertex and the center of the circle is the first radius
  • the line connecting the second vertex and the center of the circle is the second radius
  • the line connecting the third vertex and the center of the circle is the third radius
  • the line connecting the fourth vertex and the center of the circle is the fourth radius.
  • the angle between the radius, the third radius and the fourth radius is the central angle.
  • the center of the arc cutting line is the center of the circle, and the circle with the radius of the first radius is the outer circle.
  • the fan shape corresponding to the angle of the center circle in the outer circle is the first sector shape; in the circle where the arc cutting line is located, the fan shape corresponding to the central angle of the circle is
  • the second sector shape is a circle centered on the center of the arc cutting line, and a circle having a radius of the second radius is an inner circle, and a fan shape corresponding to the center angle of the inner circle is a third sector shape. That is, the area of the first sector is larger than the area of the second sector, and the area of the second sector is larger than the area of the third sector.
  • the first region of the edge sub-pixel is located on a side of the arc cutting line facing the center of the circle.
  • the area of the first area is equal to the area of the overlapping portion of the edge sub-pixel and the second sector; the area of the light-emitting area of the edge sub-pixel is equal to the area of the overlapping portion of the edge sub-pixel and the first sector.
  • the following steps are further performed: calculating a distance between the coordinates of the first vertex and the coordinates of the center of the circle, obtaining the farthest distance, and calculating the distance between the coordinates of the second vertex and the coordinates of the center of the circle, Obtaining the closest distance; obtaining the first removal area and the second removal area according to the farthest distance, the closest distance, the radius of the circle where the arc cutting line is located, and the preset theoretical pixel area; according to the radius of the circle where the arc cutting line is located, the nearest Calculating an area of the first area by using a distance, a central angle, and a first removal area; calculating an area of the light-emitting area of the edge sub-pixel according to the farthest distance, the closest distance, the central angle, the first removal area, and the second removal area; The ratio of the area of an area to the area of the light-emitting area of the edge sub-pixels yields an area scale factor of the edge
  • the first removal area is an area of the second sector in which the edge sub-pixel overlaps the second sector, and an area of the remaining area after the third sector is removed; the second removal area is the first sector, and the edge is removed. The area outside the sector and the area of the remaining area after the second sector is removed.
  • the theoretical pixel area is the area of the light-emitting area when the corresponding edge sub-pixel is not cut.
  • the area scale factor can be obtained by the ratio of the area of the first area located on one side of the arc cut line toward the center of the circle to the area of the light-emitting area of the edge sub-pixel, and the area scale factor can represent the portion of the edge sub-pixel located in the display area
  • the size of the occupied area; the size of the area is different, the optimized brightness value is different, so that the brightness of the edge sub-pixel display is adjusted according to the size of the portion of the edge sub-pixel located in the display area, and the blur effect of the edge display is good.
  • the processor further implements the following steps when executing the computer program:
  • R2 is the farthest distance
  • R1 is the closest distance
  • R is the radius of the circle where the arc cutting line is located
  • S1 is the first removal area
  • S2 is the second removal area
  • S0 is the theoretical pixel area.
  • determining the value of the first removal area and the value of the second removal area according to the result of the comparison provides a certain determination a method of removing the value of the area and the value of the second removal area, and by analyzing different conditions, the values of the first removal area and the second removal area are different in different cases, and the value is high, thereby increasing the area ratio.
  • the coefficient and the accuracy of the optimized brightness value optimize the weakening effect on edge aliasing.
  • the processor implements the following steps when executing the computer program:
  • the corresponding values in the embodiment are used for the first removal area and the second removal area, the error is small, and the accuracy of the area ratio coefficient is higher.
  • the processor executes the computer program to: calculate the area of the second sector and the area of the third sector based on the radius, the nearest distance, and the central angle of the circle where the arc cutting line is located, and calculate the second sector
  • the area is subtracted from the area of the third sector and the value of the first removed area to obtain the area of the first area; the area of the first sector and the area of the third sector are calculated according to the farthest distance, the nearest distance and the central angle, and the first sector is calculated
  • the area of the third sector is subtracted from the area of the first removal area and the second removal area to obtain the area of the light-emitting area of the edge sub-pixel.
  • the processor performs the following calculations when executing a computer program:
  • R is the radius of the circle where the arc cutting line is located
  • R1 is the closest distance
  • R2 is the farthest distance
  • is the central angle
  • S1 is the first removal area
  • S2 is the second removal area
  • A is the area of the first area.
  • B is the area of the light-emitting area of the edge sub-pixel.
  • the area of the first area is obtained by subtracting the excess area (the first removal area) on the basis of the calculated sector area, and the excess area (the first removal area and the second removal area) is removed on the basis of the calculated sector area to obtain the light-emitting area.
  • the area is small, the calculation error is small, and a more accurate area scale factor can be obtained, thereby improving the accuracy of optimizing the brightness value, and further optimizing the weakening effect on the edge sawtooth phenomenon.
  • the processor executes the computer program, the following steps are performed: calculating the area and the edge of the second region according to the coordinates of each vertex, the center coordinates of the circle where the arc cutting line is located, and the radius of the circle where the arc cutting line is located.
  • the area of the light-emitting area of the pixel calculating the ratio of the area of the second area to the area of the light-emitting area of the edge sub-pixel; and calculating the area of the edge sub-pixel according to the ratio of the area of the second area to the area of the light-emitting area of the edge sub-pixel Scale factor.
  • the ratio of the area of the second area to the area of the light-emitting area of the edge sub-pixel may be calculated to obtain an area ratio coefficient of the edge sub-pixel.
  • the processor also implements the following calculations when executing the computer program:
  • Lold is the preset brightness value
  • Lnew is the optimized brightness value
  • the preset brightness value By multiplying the preset brightness value by an area ratio coefficient of less than 1, the preset brightness value is adjusted, and the obtained optimized brightness value is smaller than the preset brightness value, so that the edge sub-pixel is displayed with the optimized brightness value, and the brightness is lowered. It can blur the edge display, reduce the edge aliasing of the edge sub-pixels, and optimize the display effect of the display.
  • the present disclosure also provides a display device comprising a display screen and any one of the above control devices, the control device being connected to the display screen.
  • the control device controls the display brightness of the corresponding edge sub-pixel according to the optimized brightness value of the edge sub-pixel.
  • the edge display can be blurred, thereby reducing edge aliasing of the edge sub-pixels and optimizing the display effect of the display screen.
  • Non-volatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in a variety of formats, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronization chain.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • Synchlink DRAM SLDRAM
  • Memory Bus Radbus
  • RDRAM Direct RAM
  • DRAM Direct Memory Bus Dynamic RAM
  • RDRAM Memory Bus Dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示屏边缘显示控制方法、控制装置和显示装置。显示屏边缘显示控制方法包括:确定异形切割线,异形切割线切割显示屏的至少部分边缘子像素,且每个被异形切割线穿过的边缘子像素的发光区域被划分为第一区域和第二区域(S110);在显示屏的子像素所在平面的二维坐标系下,获取边缘子像素的各个顶点坐标,以及获取边缘子像素与异形切割线相交的交点坐标(S130);根据各个顶点坐标和交点坐标,计算边缘子像素的面积比例系数(S150);根据面积比例系数和边缘子像素的预设亮度值,获取小于预设亮度值的优化亮度值(S170);边缘子像素以优化亮度值进行显示(S190)。可以优化显示屏的显示效果。

Description

显示屏边缘显示控制方法、控制装置和显示装置 技术领域
本申请涉及显示技术领域,特别是涉及一种显示屏边缘显示控制方法、控制装置和显示装置。
背景技术
随着显示技术的发展,“全面屏”设备逐渐兴起。全面屏设备是指屏占比接近100%的设备,为实现全面屏显示,不可避免地需要在屏幕的显示区域进行异形切割,切割后的边缘呈圆弧形倒角或斜边。比如,对显示屏四个顶角进行倒角,显示屏的四个顶角呈圆弧形倒角;“刘海屏”设计的手机在显示屏顶部开槽,挖出两边为圆弧或斜线、两圆弧或斜线之间直线连接的凹槽。
被异形切割的显示屏为异形显示屏,切割的边缘线为异形显示屏的异形切割线。由于显示屏显示区域中像素单元的结构大多采用按照矩形呈阵列排布的结构,对于整体呈矩形的非异形显示屏,像素结构中的子像素分布有规则、边缘平齐,而对于异形显示屏,异形切割区域的弧度设计或斜坡度设计会导致子像素在异形切割线处呈阶梯式分布,导致异形切割线附近会有明显的锯齿现象。
发明内容
基于此,有必要针对上述技术问题,提供一种能够弱化锯齿现象的显示屏边缘显示控制方法、控制装置和显示装置。
根据本公开的一个方面,提供了一种显示屏边缘显示控制方法,所述方法包括:
确定异形切割线,所述异形切割线位于显示屏的异形边缘处,用于定义显示屏显示区域的理论异形边缘;所述异形切割线切割所述显示屏的至少部分边缘子像素,且每个被所述异形切割线穿过的边缘子像素的发光区域被划分为第一区域和第二区域,所述第一区域位于所述异形切割线朝向所述显示屏显示区域一侧,所述第二区域位于所述异形切割线远离所述显示屏显示区域一侧;
在所述显示屏的子像素所在平面的二维坐标系下,获取所述边缘子像素的各个顶点坐标,以及获取所述边缘子像素与所述异形切割线相交的交点坐标,所述顶点坐标为所述边缘子像素的发光区域相邻边的公共端点的坐标;
根据各个所述顶点坐标和所述交点坐标,计算各所述边缘子像素的面积比例系数,所述面积比例系数为所述边缘子像素的所述第一区域的面积与所述边缘子像素的发光区域的面积的比值;
根据所述面积比例系数和所述边缘子像素的预设亮度值,获取小于所述预设亮度值的优化亮度值;
所述边缘子像素以所述优化亮度值进行显示。
在其中一个实施例中,所述边缘子像素的发光区域为所述边缘子像素的发光结构对应的区域;所述边缘子像素的发光区域的面积为所述边缘子像素的发光结构在显示屏的阵列基板上的投影的面积。
在其中一个实施例中,所述边缘子像素的发光区域为所述边缘子像素的整体结构对应的区域,所述边缘子像素的发光区域的面积为所述边缘子像素的整体结构在显示屏的阵列基板上的投影的面积。
在其中一个实施例中,所述在所述显示屏的子像素所在平面的二维坐标系下,获取所述边缘子像素的各个顶点坐标,以及获取所述边缘子像素与所述异形切割线相交的交点坐标,包括:
在所述显示屏的子像素所在平面的二维坐标系下,获取所述边缘子像素的各个顶点坐标,以及同一个二维坐标系下所述异形切割线的曲线解析式;
根据所述顶点坐标和所述曲线解析式,计算所述边缘子像素与所述异形切割线相交的交点坐标。
在其中一个实施例中,所述根据所述顶点坐标和所述曲线解析式,计算所述边缘子像素与所述异形切割线相交的交点坐标,包括:
根据所述顶点坐标获取所述边缘子像素中与所述异形切割线相交的边的解析式;
建立所述曲线解析式和与所述异形切割线相交的边的解析式的方程组并求解,得到所述边缘子像素与所述异形切割线相交的交点坐标。
在其中一个实施例中,所述边缘子像素的发光区域为由四个顶点共同确定的矩形区域,四个顶点中,第一顶点、第二顶点、第三顶点和第四顶点依次相连;所述显示屏的子像素所在平面的二维坐标系以所述第一顶点与所述第二顶点相连的边的延伸方向为横轴方向,以所述第一顶点和所述第四顶点连接的边的延伸方向为纵轴方向;
所述交点坐标包括第一交点的坐标和第二交点的坐标;所述第一区域的面积为在所述边缘子像素的矩形区域中、位于所述第一交点和所述第二交点相连的边朝向所述显示屏的显示区域一侧的区域的面积。
在其中一个实施例中,所述第一交点位于所述第一顶点和所述第四顶点相连的边上,所述第二交点位于所述第二顶点和所述第三顶点相连的边上,所述第一区域为由所述第一交点、所述第二交点、所述第三顶点和所述第四顶点构成的梯形区域;所述根据各个所述顶点坐标和所述交点坐标,计算所述边缘子像素的面积比例系数,包括:
S`=(|y4-ya|+|y3-yb|)*|x3-x4|/2;
S=|x2-x1|*|y3-y2|;
α=S`/S;
其中,x1为所述第一顶点的横坐标,x2为所述第二顶点的横坐标,x3为所述第三顶点的横坐标,x4为所述第四顶点的横坐标,y2为所述第二顶点的纵坐标,y3为所述第三顶点的纵坐标,y4为所述第四顶点的纵坐标,ya为所述第一交点的纵坐标,yb为所述第二交点的纵坐标,S`为所述第一区域的面积,S为所述发光区域的面积,α为所述面积比例系数。
在其中一个实施例中,所述第一交点位于所述第三顶点和所述第四顶点相连的边上,所述第二交点位于所述第二顶点和所述第三顶点相连的边上,所述第一区域为所述第一交点、所述第二交点和所述第三顶点构成的三角形区域;所述根据各个所述顶点坐标和所述交点坐标,计算所述边缘子像素的面积比例系数,包括:
S`=|y3-yb|*|x3-xa|/2;
S=|x2-x1|*|y3-y2|;
α=S`/S;
其中,x1为所述第一顶点的横坐标,x2为所述第二顶点的横坐标,x3为所述第三顶点的横坐标,y2为所述第二顶点的纵坐标,y3为所述第三顶点的纵坐标,xa为所述第一交点的横坐标,yb为所述第二交点的纵坐标,S`为所述第一区域的面积,S为所述发光区域的面积,α为所述面积比例系数。
在其中一个实施例中,所述第一交点位于所述第一顶点和所述第四顶点相连的边上,所述第二交点位于所述第一顶点和所述第二顶点相连的边上,所述第一区域为所述第一交点、所述第二交点和所述第一顶点构成的三角形区域;所述根据各个所述顶点坐标和所述交点坐标,计算所述边缘子像素的面积比例系数,包括:
S`=|ya-y1|*|xb-x1|/2;
S=|x2-x1|*|y3-y2|;
α=S`/S;
其中,x1为所述第一顶点的横坐标,x2为所述第二顶点的横坐标,y1为所述第一顶点的纵坐标,y2为所述第二顶点的纵坐标,y3为所述第三顶点的纵坐标,ya为所述第一交点的纵坐标,xb为所述第二交点的横坐标,S`为所述第一区域的面积,S为所述发光区域的面积,α为所述面积比例系数。
在其中一个实施例中,所述根据各个所述顶点坐标和所述交点坐标,计算所述边缘子像素的面积比例系数,包括:
根据各个所述顶点坐标和所述交点坐标,计算所述第二区域的面积和所述边缘子像素的发光区域的面积;
计算所述第二区域的面积与所述边缘子像素的发光区域的面积的比值;
根据所述第二区域的面积与所述边缘子像素的发光区域的面积的比值,计算得到所述边缘子像素的面积比例系数。
在其中一个实施例中,所述根据所述面积比例系数和所述边缘子像素的预设亮度值,获取小于所述预设亮度值的优化亮度值,包括:
Lnew=α*Lold;
其中,α为所述面积比例系数,Lold为所述预设亮度值,Lnew为所述优化亮度值。
在其中一个实施例中,所述异形切割线为圆弧切割线,所述方法包括:
在所述显示屏的子像素所在平面的二维坐标系下,获取所述圆弧切割线所在圆的半径和所述圆弧切割线所在圆的圆心坐标;
根据各个所述顶点坐标、所述圆弧切割线所在圆的圆心坐标以及所述圆弧切割线所在圆的半径,计算 所述边缘子像素的面积比例系数。
在其中一个实施例中,所述边缘子像素的发光区域为所述边缘子像素的发光结构对应的区域;所述边缘子像素的发光区域的面积为所述边缘子像素的发光结构在显示屏的阵列基板上的投影的面积;或者,所述边缘子像素的发光区域为所述边缘子像素的整体结构对应的区域,所述边缘子像素的发光区域的面积为所述边缘子像素的整体结构在显示屏的阵列基板上的投影的面积。
在其中一个实施例中,所述边缘子像素的发光区域为由四个顶点共同确定的矩形区域;四个顶点中,距离所述圆弧切割线所在圆的圆心最远的顶点为第一顶点,距离所述圆心最近的顶点为第二顶点,除所述第一顶点和第二顶点之外的两个顶点分别为第三顶点和第四顶点;所述第一顶点与所述圆心的连线为第一半径,所述第二顶点与所述圆心的连线为第二半径,第三顶点与所述圆心的连线为第三半径,第四顶点与所述圆心的连线为第四半径,所述第三半径和所述第四半径的夹角为圆心角;
以所述圆弧切割线的圆心为圆心、所述第一半径为半径的圆为外圆,所述外圆中与所述圆心角对应的扇形为第一扇形;所述圆弧切割线所在圆中,与所述圆心角对应的扇形为第二扇形;以所述圆弧切割线的圆心为圆心、所述第二半径为半径的圆为内圆,所述内圆中与所述圆心角对应的扇形为第三扇形;
所述第一区域位于所述圆弧切割线朝向所述圆心的一侧;所述第一区域的面积等于所述边缘子像素与所述第二扇形的重叠部分的面积;所述边缘子像素的发光区域的面积等于所述边缘子像素与所述第一扇形的重叠部分的面积。
在其中一个实施例中,所述根据各个所述顶点坐标、所述圆弧切割线所在圆的圆心坐标以及所述圆弧切割线所在圆的半径,计算所述边缘子像素的面积比例系数,包括:
计算所述第一顶点的坐标与所述圆心坐标之间的距离,得到最远距离,计算所述第二顶点的坐标与所述圆心坐标之间的距离,得到最近距离;
根据所述最远距离、所述最近距离、所述圆弧切割线所在圆的半径和预设的理论像素面积,获取第一去除面积和第二去除面积;所述第一去除面积为所述第二扇形中除去所述边缘子像素与所述第二扇形重叠的区域、以及除去所述第三扇形之后剩余区域的面积;所述第二去除面积为所述第一扇形中除去所述边缘子像素位于所述第二扇形之外的区域、以及除去所述第二扇形之后剩余区域的面积;
根据所述圆弧切割线所在圆的半径、所述最近距离、所述圆心角和所述第一去除面积,计算所述第一区域的面积;
根据所述最远距离、所述最近距离、所述圆心角、所述第一去除面积和所述第二去除面积,计算所述边缘子像素的发光区域的面积;
计算所述第一区域的面积与所述边缘子像素的发光区域的面积的比值,得到所述边缘子像素的面积比例系数。
在其中一个实施例中,所述根据所述圆弧切割线所在圆的半径、所述最近距离、所述圆心角和所述第一去除面积,计算所述第一区域的面积,包括:
A=π(R 2-R1 2)*θ/2π-S1;
所述根据所述最远距离、所述最近距离、所述圆心角、所述第一去除面积和所述第二去除面积,计算所述边缘子像素的发光区域的面积,包括:
B=π(R2 2-R1 2)*θ/2π-S1-S2;
其中,R为所述圆弧切割线所在圆的半径,R1为所述最近距离,R2为所述最远距离,θ为所述圆心角,S1为所述第一去除面积,S2为所述第二去除面积,A为所述第一区域的面积,B为所述边缘子像素的发光区域的面积。
在其中一个实施例中,所述根据所述最远距离、所述最近距离、所述圆弧切割线所在圆的半径和预设的理论像素面积,获取第一去除面积和第二去除面积,包括:
若R1+R2>2R,则S1的取值范围为2/8*S0至4/8*S0之间,S2的取值范围为4/8*S0至6/8*S0之间;
若R1+R2=2R,则S1的取值范围为3/8*S0至5/8*S0之间,S2的取值范围为3/8*S0至5/8*S0之间;
若R1+R2<2R,则S1的取值范围为4/8*S0至6/8*S0之间,S2的取值范围为2/8*S0至4/8*S0之间;
其中,S1+S2=S0,R2为所述最远距离,R1为所述最近距离,R为所述圆弧切割线所在圆的半径,S1为所述第一去除面积,S2为所述第二去除面积,S0为所述理论像素面积。
在其中一个实施例中,所述根据所述最远距离、所述最近距离、所述圆弧切割线所在圆的半径和预设的理论像素面积,获取第一去除面积和第二去除面积,包括:
若R1+R2>2R,则S1=3/8*S0,S2=5/8*S0;
若R1+R2=2R,则S1=S2=1/2*S0;
若R1+R2<2R,则S1=5/8*S0,S2=3/8*S0。
在其中一个实施例中,所述根据各个所述顶点坐标、所述圆弧切割线所在圆的圆心坐标以及所述圆弧切割线所在圆的半径,计算所述边缘子像素的面积比例系数,包括:
根据各个所述顶点坐标、所述圆弧切割线所在圆的圆心坐标以及所述圆弧切割线所在圆的半径,计算所述第二区域的面积和所述边缘子像素的发光区域的面积;
计算所述第二区域的面积与所述边缘子像素的发光区域的面积的比值;
根据所述第二区域的面积与所述边缘子像素的发光区域的面积的比值,计算得到所述边缘子像素的面积比例系数。
在其中一个实施例中,所述根据所述面积比例系数以及所述边缘子像素的预设亮度值,得到小于所述预设亮度值的优化亮度值,包括:
Lnew=α*Lold;
其中,α为所述面积比例系数,Lold为所述预设亮度值,Lnew为所述优化亮度值。
根据本公开的另一方面,提供了一种控制装置,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述方面的方法的步骤。
根据本公开的又一方面,提供了一种显示装置,包括显示屏和上述方面的控制装置,所述控制装置连接所述显示屏。
上述显示屏边缘显示控制方法、控制装置和显示装置,通过计算边缘子像素中第一区域的面积与边缘子像素的发光区域的面积的比值得到面积比例系数,根据面积比例系数和预设亮度值,得到优化亮度值;由于优化亮度值小于预设亮度值,因此,边缘子像素以优化亮度值进行显示,可使得边缘子像素的显示亮度降低;如此,可虚化边缘显示,从而减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
附图说明
图1为根据本公开的一个实施例的显示屏边缘显示控制方法的流程示意图;
图2为显示屏的显示区域与二维坐标系的示意图;
图3为根据本公开的一个实施例的一个边缘子像素与异形切割线之间的位置关系示意图;
图4为根据本公开的另一个实施例的一个边缘子像素与异形切割线之间的位置关系示意图;
图5为根据本公开的又一个实施例的一个边缘子像素与异形切割线之间的位置关系示意图;
图6为显示屏中异形切割线的示意图;
图7为未应用显示屏边缘显示控制方法与应用本公开的一个实施例的显示屏边缘显示控制方法的边缘显示效果比较图;
图8为根据本公开的另一个实施例的显示屏边缘显示控制方法的流程示意图;
图9为根据本公开的一个实施例的根据各个顶点坐标、圆弧切割线所在圆的圆心坐标以及圆弧切割线所在圆的半径,计算边缘子像素的面积比例系数的流程示意图;
图10为根据本公开的一个实施例的一个边缘子像素与圆弧切割线以及圆心之间的位置关系示意图;
图11为图10的局部放大示意图;
图12为显示屏中部分的圆弧切割线的示意图;
图13为根据本发明的一个实施例的控制装置的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种显示屏边缘显示控制方法,可以应用于控制装置;该方法包括以下步骤:
S110:确定异形切割线,异形切割线切割显示屏的至少部分边缘子像素,且每个被异形切割线穿过的边缘子像素的发光区域被划分为第一区域和第二区域。
其中,异形切割线为显示屏的轮廓线,位于显示屏的异形边缘处,用于定义显示屏显示区域的理论异 形边缘;对显示屏倒角或开槽之前,可预先设计异形切割线的形状,比如,若需倒角为圆弧形倒角或开槽为圆弧状,则可预设好使用的圆弧形状的异形切割线。其中,第一区域位于异形切割线朝向显示屏显示区域一侧,第二区域位于异形切割线远离显示屏显示区域一侧。
S130:在显示屏的子像素所在平面的二维坐标系下,获取边缘子像素的各个顶点坐标,以及获取边缘子像素与异形切割线相交的交点坐标。
子像素的发光区域一般为多边形结构,具有顶点,例如矩形。其中,顶点坐标为边缘子像素的发光区域相邻边的公共端点(顶点)的坐标。边缘子像素的顶点有多个,则对应的顶点坐标有多个。
具体地,步骤S130可以是基于建立的二维坐标系,确定边缘子像素的各个顶点坐标,也可以是直接接收用户输入的数据得到顶点坐标,并根据顶点坐标和异形切割线确定交点坐标。
S150:根据各个顶点坐标和交点坐标,计算边缘子像素的面积比例系数。
其中,面积比例系数为边缘子像素的第一区域的面积与边缘子像素的发光区域的面积的比值。若圆弧切割线切割的边缘子像素的数量有多个,则分别根据各个边缘子像素的顶点坐标和交点坐标,计算对应边缘子像素的面积比例系数。
S170:根据面积比例系数和边缘子像素的预设亮度值,获取小于预设亮度值的优化亮度值。
边缘子像素的预设亮度值,是边缘子像素在未被切割的理想情况下所显示的亮度对应的参数值,可以根据实际情况预先设置。对于发光区域的面积相同的子像素,所对应的预设亮度值相同。具体地,各边缘子像素分别各自对应一个优化亮度值;面积比例系数不同,则优化亮度值不同。
S190:边缘子像素以优化亮度值进行显示。
子像素的显示亮度由驱动电流的大小进行调节控制,驱动电流为子像素的驱动组件输出至子像素的电流。具体地,步骤S190可以是输出优化控制信号至边缘子像素的驱动组件,其中,优化控制信号用于控制驱动组件输出的驱动电流的大小。对应于不同的优化亮度值,优化控制信号控制驱动组件输出的驱动电流的大小不同,从而边缘子像素的显示亮度不同。具体地,优化亮度值越高,则对应的边缘子像素的显示亮度越大。
上述显示屏边缘显示控制方法,可以应用于对使用异形切割线的显示屏进行边缘显示控制,其中异形切割线不限于圆弧状,例如可以是圆弧、斜线或其他形状;通过计算边缘子像素中第一区域的面积与边缘子像素的发光区域的面积的比值得到面积比例系数,根据面积比例系数和预设亮度值,得到优化亮度值;由于优化亮度值小于预设亮度值,因此,边缘子像素以优化亮度值进行显示,可使得边缘子像素的显示亮度降低;如此,可虚化边缘显示,从而减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
显示屏的子像素包括TFT(Thin Film Transistor薄膜晶体管)、走线区域以及发光结构,其中常规显示屏结构中,TFT和走线区域是被不透光结构层覆盖住,是不向屏外透光的,但对于全透光结构的显示屏来说,TFT和走线区域也是透光的。在一个实施例中,边缘子像素的发光区域为边缘子像素的发光结构对应的区域;边缘子像素的发光区域的面积为边缘子像素的发光结构在显示屏的阵列基板上的投影的面积。
在另一个实施例中,显示屏的子像素为全透光结构时,边缘子像素的发光区域为边缘子像素的发光结构对应的区域,边缘子像素的发光区域的面积为边缘子像素的发光结构在显示屏的阵列基板上的投影的面积;或者,边缘子像素的发光区域为边缘子像素的整体结构对应的区域,边缘子像素的发光区域的面积为边缘子像素的整体结构在显示屏的阵列基板上的投影的面积。
在一个实施例中,步骤S130包括:在显示屏的子像素所在平面的二维坐标系下,获取边缘子像素的各个顶点坐标,以及同一个二维坐标系下异形切割线的曲线解析式;根据顶点坐标和曲线解析式,计算边缘子像素与异形切割线相交的交点坐标。
如图2所示,将显示屏的显示区域等效为一个二维坐标系,左上角为坐标原点P(0,0),那么整个显示区域是由无数个点构成,显示区域内任一点的坐标可确定,如点p(x,y);以发光区域为矩形的子像素为例,每一个子像素的发光区域可用四个顶点构成的闭合曲线来表示。
曲线解析式用于描述曲线上横坐标和纵坐标的对应关系的函数表达式;异形切割线的曲线解析式为拟合异形切割线的曲线对应的曲线解析式。具体地,可以是预先存储一个基于显示屏的子像素所在平面的二维坐标系的曲线解析式,即,曲线解析式和边缘子像素的顶点坐标对应同一个二维坐标系。当然,预先存储的曲线解析式与顶点坐标对应的二维坐标系也可以不同,对应地,将预先存储的曲线解析式转换为顶点坐标对应的二维坐标系下的曲线解析式。通过根据曲线解析式和边缘子像素的顶点坐标,计算得到对应边缘子像素与异形切割线相交位置的交点坐标,计算简便。
具体地,可以按照倒角和开槽的尺寸要求,再结合显示屏显示区域的实际尺寸,将倒角和开槽的弧线拟合成N条贝塞尔曲线;对应地,曲线解析式为拟合异形切割线的贝塞尔曲线的解析式。
在一个实施例中,根据顶点坐标和曲线解析式,计算边缘子像素与异形切割线相交的交点坐标的步骤,包括:根据顶点坐标获取边缘子像素中与异形切割线相交的边的解析式;建立曲线解析式和与异形切割线相交的边的解析式的方程组并求解,得到边缘子像素与异形切割线相交的交点坐标。
边缘子像素中与异形切割线相交的边的端点为子像素的顶点;因此,边缘子像素的顶点坐标已知,即与异形切割线相交的边的端点的坐标已知;基于边的端点的坐标,可采用数学方式确定边的解析式。例如,边为直线,则解析式的方程为:y=kx+b;将两端点的坐标代入y=kx+b即可求得边缘子像素中与异形切割线相交的边的解析式;又例如,若边为平行x轴方向的直线,则两端点的横坐标相等,解析式为x=两端点的横坐标,限定条件为y大于或等于两端点中较小的纵坐标,小于或等于两端点中较大的纵坐标。
得到曲线解析式及与异形切割线相交的边的解析式后建立方程组并求解,可以得到曲线与对应的边的交点的坐标,从而得到异形切割线与边缘子像素的交点坐标。
在一个实施例中,边缘子像素的发光区域为由四个顶点共同确定的矩形区域,四个顶点中,第一顶点、第二顶点、第三顶点和第四顶点依次相连。显示屏的子像素所在平面的二维坐标系以第一顶点与第二顶点相连的边的延伸方向为横轴方向,以第一顶点和第四顶点连接的边的延伸方向为纵轴方向;此时,第一顶点和第四顶点的横坐标相等,第二顶点和第三顶点的横坐标相等,第一顶点和第二顶点的纵坐标相等,第三顶点和第四顶点的纵坐标相等。
交点坐标包括第一交点的坐标和第二交点的坐标;第一区域的面积为在边缘子像素的矩形区域中、位于第一交点和第二交点相连的边朝向显示屏的显示区域一侧的区域的面积。
具体地,在不同的切割情况下,按第一区域的面积大小划分,第一区域可以是三角形区域、梯形区域或五边形区域。
具体地,在一个实施例中,第一交点位于第一顶点和第四顶点相连的边上,第二交点位于第二顶点和第三顶点相连的边上,第一区域为由第一交点、第二交点、第三顶点和第四顶点构成的梯形区域。
本实施例中,步骤S150包括:
S`=(|y4-ya|+|y3-yb|)*|x3-x4|/2;
S=|x2-x1|*|y3-y2|;
α=S`/S;
其中,x1为第一顶点的横坐标,x2为第二顶点的横坐标,x3为第三顶点的横坐标,x4为第四顶点的横坐标,y2为第二顶点的纵坐标,y3为第三顶点的纵坐标,y4为第四顶点的纵坐标,ya为第一交点的纵坐标,yb为第二交点的纵坐标,S`为第一区域的面积,S为发光区域的面积,α为面积比例系数。
本实施例中,将异形切割线位于边缘子像素内的部分近似为直线,则第一区域的面积为直线切割边缘子像素形成的梯形的面积;如此,基于直线与边缘子像素的两相交位置的交点坐标和边缘子像素的顶点坐标,可计算得到梯形的面积,从而得到第一区域的面积;计算边缘子像素的矩形面积,即可得到边缘子像素的发光区域的像素面积,计算简便,且计算误差小,能得到较精准的面积比例系数,从而可提高优化亮度值的准确性,进而进一步优化对边缘锯齿现象的弱化效果。
例如,参考图3,边缘子像素的四个顶点的坐标分别为(x1,y1),(x2,y2),(x3,y3),(x4,y4);第一交点坐标为(xa,ya),第二交点坐标为(xb,yb);第一交点位于第一顶点(x1,y1)与第四顶点(x4,y4)的连线上,第二交点位于第二顶点(x2,y2)与第三顶点(x3,y3)的连线上。异形切割线将边缘子像素划分为两部分;(xa,ya)、(x4,y4)、(x3,y3)、(xb,yb)四个顶点围成的第一区域,第一区域的面积为S`;(xa,ya)、(xb,yb)、(x2,y2)、(x1,y1)四个顶点围成第二区域,第二区域的面积为S``;第一区域和第二区域构成发光区域,发光区域的面积为S。
可以理解,在其他实施例中,还可以采用其他方法得到第一区域的面积和发光区域的面积。例如,在另一个实施例中,参考图4,异形切割线与边缘子像素中第三顶点和第四顶点连接的边相交,对应相交处的坐标为(xa,ya),以及异形切割线与边缘子像素的第二顶点和第三顶点连接的边相交,对应相交处的坐标为(xb,yb)。本实施例中,第一区域的面积S`为两个交点与第三顶点围成的三角形的面积,即S`=1/2*|y3-yb|*|x3-xa|。
在又一个实施例中,参考图5,异形切割线与边缘子像素中第一顶点和第四顶点连接的边相交,对应相交处的坐标为(xa,ya),以及异形切割线与边缘子像素的第一顶点和第二顶点连接的边相交,对应相交 处的坐标为(xb,yb)。本实施例中,第一区域的面积S`为两个交点与第一顶点围成的三角形的面积,即S`=1/2*|ya-y1|*|xb-x1|。
面积比例系数的计算还可以采用其他方式。例如,在一个实施例中,步骤S150包括:根据各个顶点坐标和交点坐标,计算第二区域的面积和边缘子像素的发光区域的面积;计算第二区域的面积与边缘子像素的发光区域的面积的比值;根据第二区域的面积与边缘子像素的发光区域的面积的比值,计算得到边缘子像素的面积比例系数。具体地,可以是计算一减去第二区域的面积与边缘子像素的发光区域的面积的比值,得到边缘子像素的面积比例系数。
例如,参考图6,对显示面板就进行倒角和开槽。显示屏中开槽部分为显示屏的顶部、显示屏与顶部相对的一端为底部,以朝向顶部、远离底部的方向为上方、以朝向底部、远离顶部的方向为下方;对于Q1处、Q2处、Q3处和Q4处,第一区域处于边缘子像素的下方,可通过计算边缘子像素被划分后靠下方的区域的面积得到第一区域的面积,计算第一区域的面积与发光区域的面积的比值得到面积比例系数。对于Q5处和Q6处,第一区域处于边缘子像素的上方,第二区域位于边缘子像素的下方,可通过计算边缘子像素被划分后靠下方的区域的面积得到第二区域的面积;计算一减去第二区域的面积与边缘子像素的发光区域的面积的比值,得到面积比例系数。
在一个实施例中,步骤S170包括:
Lnew=α*Lold;
其中,α为面积比例系数,Lold为预设亮度值,Lnew为优化亮度值。
通过在预设亮度值的基础上乘以小于1的面积比例系数,如此对预设亮度值进行调节,得到的优化亮度值小于预设亮度值,从而边缘子像素以优化亮度值进行显示,亮度降低,可虚化边缘显示,减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
在一个实施例中,上述显示屏边缘显示控制方法还包括:未被异形切割线切割的子像素以预设亮度值进行显示。
以贝塞尔曲线拟合异形切割线为例进行说明,将贝塞尔曲线映射到二维坐标系中,那么贝塞尔曲线的轨迹表现在二维坐标系中就会有两种情况:
a、曲线轨迹不经过任何一个子像素的闭合区域;
b、曲线轨迹经过边缘子像素的闭合区域;
若子像素的闭合区域无贝塞尔曲线通过,则可按照预设亮度值对应的亮度进行显示。若边缘子像素的闭合区域被贝塞尔曲线经过,则按照优化亮度值对应的亮度进行显示。
具体地,可以是输出控制信号至未被异形切割线切割的子像素的驱动组件,控制信号用于控制驱动组件输出的驱动电流的大小。
以一应用实施例的效果图进行说明:如图7所示,左侧是未采用上述显示屏边缘显示控制方法所显示的圆角边缘,可见到明显的锯齿感;右侧是采用上述显示屏边缘显示控制方法的显示效果,基本看不到明显的锯齿。由此可见,上述显示屏边缘显示控制方法能有效减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
图8展示了根据本公开的另一个实施例的显示屏边缘显示控制方法的流程示意图。如图8所示,该方法包括以下步骤:
S210:确定圆弧切割线,圆弧切割线切割显示屏的至少部分边缘子像素,且每个被圆弧切割线穿过的边缘子像素的发光区域被划分为第一区域和第二区域。
其中,圆弧切割线为显示屏的轮廓线,位于显示屏的圆弧边缘处,用于定义显示屏显示区域的理论圆弧边缘;对显示屏倒角或开槽之前,可预先设计切割线的形状,若需倒角为圆弧形倒角或开槽为圆弧状,则可预设好使用的圆弧切割线。其中,第一区域位于圆弧切割线朝向显示屏显示区域一侧,第二区域位于圆弧切割线远离显示屏显示区域一侧。
S230:在显示屏的子像素所在平面的二维坐标系下,获取边缘子像素的各个顶点坐标、圆弧切割线所在圆的半径和圆弧切割线所在圆的圆心坐标。
子像素的发光结构一般为多边形结构,具有顶点,例如矩形。其中,顶点坐标为边缘子像素的发光区域相邻边的公共端点的坐标。子像素的顶点有多个,则对应的顶点坐标有多个。由于圆弧为圆上两点之间的部分,一条圆弧对应一个圆,即根据圆弧可确定圆的半径和圆心,因此,基于圆弧切割线,可确定圆弧切割线所在圆的半径和圆心。其中,圆心坐标即为圆弧切割线所在圆的圆心的坐标。
具体地,步骤S230可以是基于建立的同一个二维坐标系,确定边缘子像素的顶点坐标以及圆弧切割线所在圆的半径和圆心坐标,也可以是直接接收用户输入的数据得到顶点坐标、圆弧切割线所在圆的半径和圆心坐标。
S250:根据各个顶点坐标、圆弧切割线所在圆的圆心坐标以及圆弧切割线所在圆的半径,计算边缘子像素的面积比例系数。
其中,面积比例系数为边缘子像素的第一区域的面积与边缘子像素的发光区域的面积的比值。若圆弧切割线切割的边缘子像素的数量有多个,则分别根据圆弧切割线所在圆的半径和各个边缘子像素的顶点坐标,得到对应边缘子像素的面积比例系数。
S270:根据面积比例系数以及边缘子像素的预设亮度值,得到小于预设亮度值的优化亮度值。
边缘子像素的预设亮度值,是边缘子像素在未被切割的理想情况下所显示的亮度对应的参数值,可以根据实际情况预先设置。对于发光区域的面积相同的子像素,所对应的预设亮度值相同。具体地,各边缘子像素分别各自对应一个优化亮度值;面积比例系数不同,则优化亮度值不同。
S290:边缘子像素以优化亮度值进行显示。
子像素的显示亮度由驱动电流的大小进行调节控制,驱动电流为子像素的驱动组件输出至子像素的电流。具体地,步骤S290可以是输出优化控制信号至边缘子像素的驱动组件,其中,优化控制信号用于控制驱动组件输出的驱动电流的大小。对应于不同的优化亮度值,优化控制信号控制驱动组件输出的驱动电流的大小不同,从而边缘子像素的显示亮度不同。具体地,优化亮度值越高,则对应的边缘子像素的显示亮度越大。
上述显示屏边缘显示控制方法,可用于对使用圆弧切割线的显示屏进行边缘显示控制;通过计算边缘子像素中第一区域的面积与边缘子像素的发光区域的面积的比值得到面积比例系数,根据面积比例系数和预设亮度值,得到优化亮度值;由于优化亮度值小于预设亮度值,因此,边缘子像素以优化亮度值进行显示,可使得边缘子像素的显示亮度降低;如此,可虚化边缘显示,从而减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
显示屏的子像素包括TFT、走线区域以及发光结构,其中常规显示屏结构中,TFT和走线区域是被不透光结构层覆盖住,是不向屏外透光的,但对于全透光结构的显示屏来说,TFT和走线区域也是透光的。在一个实施例中,边缘子像素的发光区域为边缘子像素的发光结构对应的区域;边缘子像素的发光区域的面积为边缘子像素的发光结构在显示屏的阵列基板上的投影的面积。
在另一个实施例中,显示屏的子像素为全透光结构时,边缘子像素的发光区域为边缘子像素的发光结构对应的区域,边缘子像素的发光区域的面积为边缘子像素的发光结构在显示屏的阵列基板上的投影的面积;或者,边缘子像素的发光区域为边缘子像素的整体结构对应的区域,边缘子像素的发光区域的面积为边缘子像素的整体结构在显示屏的阵列基板上的投影的面积。
在一个实施例中,边缘子像素的发光区域为由四个顶点共同确定的矩形区域;四个顶点中,距离圆弧切割线所在圆的圆心最远的顶点为第一顶点,距离圆弧切割线所在圆的圆心最近的顶点为第二顶点,除第一顶点和第二顶点之外的两个顶点分别为第三顶点和第四顶点。第一顶点与圆心的连线为第一半径,第二顶点与圆心的连线为第二半径,第三顶点与圆心的连线为第三半径,第四顶点与圆心的连线为第四半径,第三半径和第四半径的夹角为圆心角。以圆弧切割线的圆心为圆心、第一半径为半径的圆为外圆,外圆中与圆心角对应的扇形为第一扇形;圆弧切割线所在圆中,与圆心角对应的扇形为第二扇形;以圆弧切割线的圆心为圆心、第二半径为半径的圆为内圆,内圆中与圆心角对应的扇形为第三扇形。即,第一扇形的面积大于第二扇形的面积,第二扇形的面积大于第三扇形的面积。
本实施例中,边缘子像素的第一区域位于圆弧切割线朝向圆心的一侧。第一区域的面积等于边缘子像素与第二扇形的重叠部分的面积;边缘子像素的发光区域的面积等于边缘子像素与第一扇形的重叠部分的面积。
在一个实施例中,参考图9,步骤S250包括步骤S2511至步骤S2519。
S2511:计算第一顶点的坐标与圆心坐标之间的距离,得到最远距离,计算第二顶点的坐标与圆心坐标之间的距离,得到最近距离。
具体地,若圆心坐标与第一顶点和第二顶点的坐标基于同一个二维坐标系确定,则可直接根据第一顶点的坐标与圆心坐标计算最远距离,直接根据第二顶点的坐标和圆心坐标计算最近距离;若圆心坐标与第一顶点和第二顶点的坐标不是基于同一个二维坐标系确定,则先将第一顶点的坐标、第二顶点的坐标与圆 心坐标换算为同一个二维坐标系中的坐标,再计算最远距离和最近距离。
S2513:根据最远距离、最近距离、圆弧切割线所在圆的半径和预设的理论像素面积,获取第一去除面积和第二去除面积。
其中,第一去除面积为第二扇形中除去边缘子像素与第二扇形重叠的区域、以及除去第三扇形之后剩余区域的面积;第二去除面积为第一扇形中除去边缘子像素位于第二扇形之外的区域、以及除去第二扇形之后剩余区域的面积。其中,理论像素面积为对应的边缘子像素未被切割的时发光区域的面积。例如,若边缘子像素为正方形,则理论像素面积为边缘子像素的边长的平方;若边缘子像素为长方形,则理论像素面积为边缘子像素的长与宽的乘积。
例如,以一个实施例为例,参考图10和图11,边缘子像素为矩形,第一顶点为a,第二顶点为b,第三顶点为c,第四顶点为d,图10所示三条曲线中与边缘子像素有两交点的实线为圆弧切割线。以圆弧切割线所在圆的圆心为坐标原点O建立二维坐标系;R为圆弧切割线所对应的圆的半径。R1为最近距离,R2为最远距离;R3为c至圆心的距离,R4为d到圆心的距离;θ为圆心角。如图11所示,以圆弧切割线的近似直线为l3为例进行说明,指向S1的两箭头对应的两个多边型的面积之和为第一去除面积。以圆弧切割线的近似直线为l1为例进行说明,指向S2的两箭头对应的两个多边形面积之和为第二去除面积。
S2515:根据圆弧切割线所在圆的半径、最近距离、圆心角和第一去除面积,计算第一区域的面积。
S2517:根据最远距离、最近距离、圆心角、第一去除面积和第二去除面积,计算边缘子像素的发光区域的面积。
S2519:计算第一区域的面积与边缘子像素的发光区域的面积的比值,得到边缘子像素的面积比例系数。
通过根据位于圆弧切割线朝向圆心的一侧的第一区域的面积,和边缘子像素的发光区域的面积的比值得到面积比例系数,面积比例系数可以体现边缘子像素中位于显示区域内的部分占用的面积大小;面积比例系数大小不同,则优化亮度值不同,从而边缘子像素显示的亮度随边缘子像素中位于显示区域内的部分的面积大小而调节,边缘显示的虚化效果好,可明显减弱边缘锯齿现象。
在一个实施例中,步骤S2513包括:
若R1+R2>2R,则S1的取值范围为2/8*S0至4/8*S0之间,S2的取值范围为4/8*S0至6/8*S0之间,均包括端点值;
若R1+R2=2R,则S1的取值范围为3/8*S0至5/8*S0之间,S2的取值范围为3/8*S0至5/8*S0之间,均包括端点值;
若R1+R2<2R,则S1的取值范围为4/8*S0至6/8*S0之间,S2的取值范围为2/8*S0至4/8*S0之间,均包括端点值;
其中,S1+S2=S0,R2为最远距离,R1为最近距离,R为圆弧切割线所在圆的半径,S1为第一去除面积,S2为第二去除面积,S0为理论像素面积。具体地,
Figure PCTCN2018113503-appb-000001
其中,x、y分别为第一顶点相对于圆心的横坐标值和相对于圆心的纵坐标值,x 0、y 0分别为第二顶点相对于圆心的横坐标值和相对于圆心的纵坐标值。
边缘子像素被圆弧切割线切割的情况不同,第一去除面积和第二去除面积的取值不同。通过对多种不同切割情况进行研究分析,并针对多种不同情况进行多次分析验证,发现如下规律:若最远距离和最近距离之和大于圆弧切割线所在圆的半径的两倍,第一去除面积的大小在3/8*S0的上下波动,误差范围为1/8*S0,即,第一去除面积可以是2/8*S0至4/8*S0之间的任意值,包括2/8*S0和4/8*S0两个值;对应地,第二去除面积的大小在5/8*S0的上下波动,误差范围为1/8*S0,即,第二去除面积可以是4/8*S0至6/8*S0之间的任意值,包括4/8*S0和6/8*S0两个值,满足S1+S2=S0即可。
若最远距离和最近距离之和等于圆弧切割线所在圆的半径的两倍,第一去除面积和第二去除面积的大小在1/2*S0的上下波动,误差范围为1/8*S0,即,第一去除面积和第二去除面积可以是3/8*S0至5/8*S0之间的任意值,包括3/8*S0和5/8*S0两个值,满足S1+S2=S0即可。
若最远距离和最近距离之和小于圆弧切割线所在圆的半径的两倍,第一去除面积的大小在5/8*S0的上下波动,误差范围为1/8*S0,即,第一去除面积可以是4/8*S0至6/8*S0之间的任意值,包括4/8*S0和6/8*S0两个值;对应地,第二去除面积的大小在3/8*S0的上下波动,误差范围为1/8*S0,即,第二去除面积可以是2/8*S0至4/8*S0之间的任意值,包括2/8*S0和4/8*S0两个值,满足S1+S2=S0即可。
通过将最远距离和最近距离之和与圆弧切割线所在圆的半径的两倍进行比较,根据比较的结果确定第 一去除面积的值和第二去除面积的值,提供了一种确定第一去除面积的值和第二去除面积的值的方法,且通过不同情况的分析,不同情况下第一去除面积和第二去除面积的取值不同,取值准确性高,从而可提高面积比例系数和优化亮度值的准确性,进而优化对边缘锯齿现象的弱化效果。例如,参考图11,三种情况下圆弧切割线的近似直线分别为l1、l2和l3;l3对应为R1+R2>2R的情况,l2对应为R1+R2=2R的情况,l1对应为R1+R2<2R的情况。
在一个实施例中,步骤S2513具体包括:
若R1+R2>2R,则S1=3/8*S0,S2=5/8*S0;
若R1+R2=2R,则S1=S2=1/2*S0;
若R1+R2<2R,则S1=5/8*S0,S2=3/8*S0。
经过研究分析,若最远距离和最近距离之和大于圆弧切割线所在圆的半径的两倍,第一去除面积取值为3/8*S0,第二去除面积取值为5/8*S0,计算得到的面积比例系数误差较小;若最远距离和最近距离之和等于圆弧切割线所在圆的半径的两倍,第一去除面积和第二去除面积取值为1/2*S0,计算得到的面积比例系数误差较小;若最远距离和最近距离之和小于圆弧切割线所在圆的半径的两倍,第一去除面积取值为5/8*S0,第二去除面积取值为3/8*S0,计算得到的面积比例系数误差较小。
需要说明的是,在计算过程中,各个子像素的发光区域是以近似为矩形的方式计算的,各个子像素第一区域和第二区域也是以近似多边形的方式进行计算的,这种近似关系中必然会导致结果的微量误差,这些误差均在人眼视觉感受允许的范围内,也就是说,本实施例中的等值关系在数学意义上均为近似等值的关系。
在一个实施例中,步骤S2515具体是根据圆弧切割线所在圆的半径、最近距离和圆心角计算第二扇形的面积和第三扇形的面积,并计算第二扇形的面积减去第三扇形的面积和第一去除面积的值,得到第一区域的面积。步骤S2517具体是根据最远距离、最近距离和圆心角计算第一扇形的面积和第三扇形的面积,计算第一扇形的面积减去第三扇形的面积、再减去第一去除面积和第二去除面积的值,得到边缘子像素的发光区域的面积。
具体地,步骤S2515包括:
A=π(R 2-R1 2)*θ/2π-S1;
步骤S2517包括:
B=π(R2 2-R1 2)*θ/2π-S1-S2;
其中,R为圆弧切割线所在圆的半径,R1为最近距离,R2为最远距离,θ为圆心角,S1为第一去除面积,S2为第二去除面积,A为第一区域的面积,B为边缘子像素的发光区域的面积。
通过在计算扇形面积的基础上减去多余的面积(第一去除面积)得到第一区域的面积,在计算扇形面积的基础上去掉多余面积(第一去除面积和第二去除面积)得到发光区域的面积,计算误差小,能得到较精准的面积比例系数,从而可提高优化亮度值的准确性,进而进一步优化对边缘锯齿现象的弱化效果。
可以理解,在其他实施例中,还可以采用其他方法得到第一区域的面积和边缘子像素的发光区域的面积。例如,可以获取圆弧切割线与边缘子像素相交的交点的坐标,通过几何算法根据交点的坐标和顶点坐标计算第一区域的面积;例如,可以直接采用边缘子像素的理论像素面积作为发光区域的面积。
在另一个实施例中,步骤S250包括:根据各个顶点坐标、圆弧切割线所在圆的圆心坐标以及圆弧切割线所在圆的半径,计算第二区域的面积和边缘子像素的发光区域的面积;计算第二区域的面积与边缘子像素的发光区域的面积的比值;根据第二区域的面积与边缘子像素的发光区域的面积的比值,计算得到边缘子像素的面积比例系数。具体地,可以是计算一减去第二区域的面积与边缘子像素的发光区域的面积的比值,得到边缘子像素的面积比例系数。
例如,参考图12,对显示屏进行倒角和开槽。其中,对于Q1处和Q2处,第一区域的面积位于圆弧切割线朝向圆心的一侧,可通过计算第二扇形的面积减去第三扇形的面积和第一去除面积的值,得到第一区域的面积;计算第一区域的面积和边缘子像素的发光区域的面积的比值得到面积比例系数。对于Q3处 和Q4处,第一区域的面积位于圆弧切割线背向圆心的一侧、第二区域的面积位于圆弧切割线朝向圆心的一侧;可通过计算第二扇形的面积减去第三扇形的面积和第二去除面积的值,得到第二区域的面积;计算一减去第二区域的面积与边缘子像素的发光区域的面积的比值,得到面积比例系数。
在一个实施例中,步骤S270包括:
Lnew=α*Lold;
其中,α为面积比例系数,Lold为预设亮度值,Lnew为优化亮度值。
通过在预设亮度值的基础上乘以小于1的面积比例系数,如此对预设亮度值进行调节,得到的优化亮度值小于预设亮度值,从而边缘子像素以优化亮度值进行显示,亮度降低,可虚化边缘显示,减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
采用上述显示屏边缘显示控制方法可以达到类似于图7的右侧所示的显示效果,基本看不到明显的锯齿。因此,上述显示屏边缘显示控制方法同样能有效减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
应该理解的是,虽然图1和图8-9的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1和图8-9中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
并且,本领域技术人员可以理解,在计算机的实际计算过程中,以上对边缘子像素的亮度调节过程是针对所有边缘子像素同时多线程并行进行的,以上实施例中仅是以单个边缘子像素的角度,对计算过程进行说明。
本公开还提供了一种控制装置,其内部结构图可以如图13所示。该控制装置包括通过系统总线连接的处理器、存储器、网络接口。其中,该控制装置的处理器用于提供计算和控制能力。该控制装置的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该控制装置的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种显示屏边缘显示控制方法。
本领域技术人员可以理解,图13中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的控制装置的限定,具体的控制装置可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种控制装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
确定异形切割线,异形切割线切割显示屏的至少部分边缘子像素,且每个被异形切割线穿过的边缘子像素的发光区域被划分为第一区域和第二区域;在显示屏的子像素所在平面的二维坐标系下,获取边缘子像素的各个顶点坐标,以及获取边缘子像素与异形切割线相交的交点坐标;根据各个顶点坐标和交点坐标,计算边缘子像素的面积比例系数;根据面积比例系数和边缘子像素的预设亮度值,获取小于预设亮度值的优化亮度值;边缘子像素以优化亮度值进行显示。
其中,异形切割线位于显示屏的异形边缘处,用于定义显示屏显示区域的理论异形边缘;第一区域位于异形切割线朝向显示屏显示区域一侧,第二区域位于异形切割线远离显示屏显示区域一侧。其中,顶点坐标为边缘子像素的发光区域相邻边的公共端点的坐标。其中,面积比例系数为边缘子像素的第一区域的面积与边缘子像素的发光区域的面积的比值。
上述控制装置,可以应用于对使用异形切割线的显示屏进行边缘显示控制,其中异形切割线不限于圆弧状,例如可以是圆弧、斜线或其他形状;通过计算边缘子像素中第一区域的面积与边缘子像素的发光区域的面积的比值得到面积比例系数,根据面积比例系数和预设亮度值,得到优化亮度值;由于优化亮度值 小于预设亮度值,因此,边缘子像素以优化亮度值进行显示,可使得边缘子像素的显示亮度降低;如此,可虚化边缘显示,从而减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
在一个实施例中,边缘子像素的发光区域为边缘子像素的发光结构对应的区域;边缘子像素的发光区域的面积为边缘子像素的发光结构在显示屏的阵列基板上的投影的面积。
在另一个实施例中,显示屏的子像素为全透光结构时,边缘子像素的发光区域为边缘子像素的发光结构对应的区域,边缘子像素的发光区域的面积为边缘子像素的发光结构在显示屏的阵列基板上的投影的面积;或者,边缘子像素的发光区域为边缘子像素的整体结构对应的区域,边缘子像素的发光区域的面积为边缘子像素的整体结构在显示屏的阵列基板上的投影的面积。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:在显示屏的子像素所在平面的二维坐标系下,获取边缘子像素的各个顶点坐标,以及同一个二维坐标系下异形切割线的曲线解析式;根据顶点坐标和曲线解析式,计算边缘子像素与异形切割线相交的交点坐标。
通过根据曲线解析式和边缘子像素的顶点坐标,计算得到对应边缘子像素与异形切割线相交位置的交点坐标,计算简便。
在一个实施例中,处理器执行计算机程序时实现的步骤:根据顶点坐标和曲线解析式,计算边缘子像素与异形切割线相交的交点坐标,包括:根据顶点坐标获取边缘子像素中与异形切割线相交的边的解析式;建立曲线解析式和与异形切割线相交的边的解析式的方程组并求解,得到边缘子像素与异形切割线相交的交点坐标。
在一个实施例中,边缘子像素的发光区域为由四个顶点共同确定的矩形区域,四个顶点中,第一顶点、第二顶点、第三顶点和第四顶点依次相连。显示屏的子像素所在平面的二维坐标系以第一顶点与第二顶点相连的边的延伸方向为横轴方向,以第一顶点和第四顶点连接的边的延伸方向为纵轴方向;此时,第一顶点和第四顶点的横坐标相等,第二顶点和第三顶点的横坐标相等,第一顶点和第二顶点的纵坐标相等,第三顶点和第四顶点的纵坐标相等。
交点坐标包括第一交点的坐标和第二交点的坐标;第一区域的面积为在边缘子像素的矩形区域中、位于第一交点和第二交点相连的边朝向显示屏的显示区域一侧的区域的面积。
具体地,在不同的切割情况下,按第一区域的面积大小划分,第一区域可以是三角形区域、梯形区域或五边形区域。
具体地,在一个实施例中,第一交点位于第一顶点和第四顶点相连的边上,第二交点位于第二顶点和第三顶点相连的边上,第一区域为由第一交点、第二交点、第三顶点和第四顶点构成的梯形区域。本实施例中,处理器执行计算机程序时实现的步骤:根据各个顶点坐标和交点坐标,计算边缘子像素的面积比例系数,包括:
S`=(|y4-ya|+|y3-yb|)*|x3-x4|/2;
S=|x2-x1|*|y3-y2|;
α=S`/S;
其中,x1为第一顶点的横坐标,x2为第二顶点的横坐标,x3为第三顶点的横坐标,x4为第四顶点的横坐标,y2为第二顶点的纵坐标,y3为第三顶点的纵坐标,y4为第四顶点的纵坐标,ya为第一交点的纵坐标,yb为第二交点的纵坐标,S`为第一区域的面积,S为发光区域的面积,α为面积比例系数。
通过将异形切割线位于边缘子像素内的部分近似为直线,则第一区域的面积为直线切割边缘子像素形成的梯形的面积;如此,基于直线与边缘子像素的两相交位置的交点坐标和边缘子像素的顶点坐标,可计算得到梯形的面积,从而得到第一区域的面积;计算边缘子像素的矩形面积,即可得到边缘子像素的发光区域的像素面积,计算简便,且计算误差小,能得到较精准的面积比例系数,从而可提高优化亮度值的准确性,进而进一步优化对边缘锯齿现象的弱化效果。
可以理解,在其他实施例中,还可以采用其他方法得到第一区域的面积和发光区域的面积。例如,在另一个实施例中,参考图4,处理器执行计算机程序时实现计算:S`=1/2*|y3-yb|*|x3-xa|,得到第一区域的 面积。在又一实施例中,参考图5,处理器执行计算机程序时实现计算:S`=1/2*|ya-y1|*|xb-x1|,得到第一区域的面积。
在一个实施例中,处理器执行计算机程序时实现的步骤:根据各个顶点坐标和交点坐标,计算边缘子像素的面积比例系数,包括:根据各个顶点坐标和交点坐标,计算第二区域的面积和边缘子像素的发光区域的面积;计算第二区域的面积与边缘子像素的发光区域的面积的比值;根据第二区域的面积与边缘子像素的发光区域的面积的比值,计算得到边缘子像素的面积比例系数。具体地,可以是计算一减去第二区域的面积与边缘子像素的发光区域的面积的比值,得到边缘子像素的面积比例系数。
在一个实施例中,处理器执行计算机程序时实现的步骤:根据面积比例系数和边缘子像素的预设亮度值,获取小于预设亮度值的优化亮度值,包括:
Lnew=α*Lold;
其中,α为面积比例系数,Lold为预设亮度值,Lnew为优化亮度值。
通过在预设亮度值的基础上乘以小于1的面积比例系数,如此对预设亮度值进行调节,得到的优化亮度值小于预设亮度值,从而边缘子像素以优化亮度值进行显示,亮度降低,可虚化边缘显示,减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:未被异形切割线切割的子像素以预设亮度值进行显示。具体地,可以是输出控制信号至未被异形切割线切割的子像素的驱动组件,控制信号用于控制驱动组件输出的驱动电流的大小。
本公开还提供了另一种控制装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:确定圆弧切割线,圆弧切割线切割显示屏的至少部分边缘子像素,且每个被圆弧切割线穿过的边缘子像素的发光区域被划分为第一区域和第二区域;在显示屏的子像素所在平面的二维坐标系下,获取边缘子像素的各个顶点坐标、圆弧切割线所在圆的半径和圆弧切割线所在圆的圆心坐标;根据各个顶点坐标、圆弧切割线所在圆的圆心坐标以及圆弧切割线所在圆的半径,计算边缘子像素的面积比例系数;根据面积比例系数以及边缘子像素的预设亮度值,得到小于预设亮度值的优化亮度值;边缘子像素以优化亮度值进行显示。
其中,圆弧切割线位于显示屏的圆弧边缘处,用于定义显示屏显示区域的理论圆弧边缘;第一区域位于圆弧切割线朝向显示屏显示区域一侧,第二区域位于圆弧切割线远离显示屏显示区域一侧。其中,顶点坐标为边缘子像素的发光区域相邻边的公共端点的坐标。其中,面积比例系数为边缘子像素的第一区域的面积与边缘子像素的发光区域的面积的比值。
上述控制装置,可用于对使用圆弧切割线的显示屏进行边缘显示控制;通过计算边缘子像素中第一区域的面积与边缘子像素的发光区域的面积的比值得到面积比例系数,根据面积比例系数和预设亮度值,得到优化亮度值;由于优化亮度值小于预设亮度值,因此,边缘子像素以优化亮度值进行显示,可使得边缘子像素的显示亮度降低;如此,可虚化边缘显示,从而减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
在一个实施例中,边缘子像素的发光区域为边缘子像素的发光结构对应的区域;边缘子像素的发光区域的面积为边缘子像素的发光结构在显示屏的阵列基板上的投影的面积。
在另一个实施例中,显示屏的子像素为全透光结构时,边缘子像素的发光区域为边缘子像素的发光结构对应的区域,边缘子像素的发光区域的面积为边缘子像素的发光结构在显示屏的阵列基板上的投影的面积;或者,边缘子像素的发光区域为边缘子像素的整体结构对应的区域,边缘子像素的发光区域的面积为边缘子像素的整体结构在显示屏的阵列基板上的投影的面积。
在一个实施例中,边缘子像素的发光区域为由四个顶点共同确定的矩形区域;四个顶点中,距离圆弧切割线所在圆的圆心最远的顶点为第一顶点,距离圆弧切割线所在圆的圆心最近的顶点为第二顶点,除第一顶点和第二顶点之外的两个顶点分别为第三顶点和第四顶点。第一顶点与圆心的连线为第一半径,第二顶点与圆心的连线为第二半径,第三顶点与圆心的连线为第三半径,第四顶点与圆心的连线为第四半径, 第三半径和第四半径的夹角为圆心角。以圆弧切割线的圆心为圆心、第一半径为半径的圆为外圆,外圆中与圆心角对应的扇形为第一扇形;圆弧切割线所在圆中,与圆心角对应的扇形为第二扇形;以圆弧切割线的圆心为圆心、第二半径为半径的圆为内圆,内圆中与圆心角对应的扇形为第三扇形。即,第一扇形的面积大于第二扇形的面积,第二扇形的面积大于第三扇形的面积。
本实施例中,边缘子像素的第一区域位于圆弧切割线朝向圆心的一侧。第一区域的面积等于边缘子像素与第二扇形的重叠部分的面积;边缘子像素的发光区域的面积等于边缘子像素与第一扇形的重叠部分的面积。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:计算第一顶点的坐标与圆心坐标之间的距离,得到最远距离,计算第二顶点的坐标与圆心坐标之间的距离,得到最近距离;根据最远距离、最近距离、圆弧切割线所在圆的半径和预设的理论像素面积,获取第一去除面积和第二去除面积;根据圆弧切割线所在圆的半径、最近距离、圆心角和第一去除面积,计算第一区域的面积;根据最远距离、最近距离、圆心角、第一去除面积和第二去除面积,计算边缘子像素的发光区域的面积;计算第一区域的面积与边缘子像素的发光区域的面积的比值,得到边缘子像素的面积比例系数。
其中,第一去除面积为第二扇形中除去边缘子像素与第二扇形重叠的区域、以及除去第三扇形之后剩余区域的面积;第二去除面积为第一扇形中除去边缘子像素位于第二扇形之外的区域、以及除去第二扇形之后剩余区域的面积。其中,理论像素面积为对应的边缘子像素未被切割的时发光区域的面积。
通过根据位于圆弧切割线朝向圆心的一侧的第一区域的面积,和边缘子像素的发光区域的面积的比值得到面积比例系数,面积比例系数可以体现边缘子像素中位于显示区域内的部分占用的面积大小;面积比例系数大小不同,则优化亮度值不同,从而边缘子像素显示的亮度随边缘子像素中位于显示区域内的部分的面积大小而调节,边缘显示的虚化效果好,可明显减弱边缘锯齿现象。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
若R1+R2>2R,则S1的取值范围为2/8*S0至4/8*S0之间,S2的取值范围为4/8*S0至6/8*S0之间,均包括端点值;
若R1+R2=2R,则S1的取值范围为3/8*S0至5/8*S0之间,S2的取值范围为3/8*S0至5/8*S0之间,均包括端点值;
若R1+R2<2R,则S1的取值范围为4/8*S0至6/8*S0之间,S2的取值范围为2/8*S0至4/8*S0之间,均包括端点值;
其中,S1+S2=S0,R2为最远距离,R1为最近距离,R为圆弧切割线所在圆的半径,S1为第一去除面积,S2为第二去除面积,S0为理论像素面积。
通过将最远距离和最近距离之和与圆弧切割线所在圆的半径的两倍进行比较,根据比较的结果确定第一去除面积的值和第二去除面积的值,提供了一种确定第一去除面积的值和第二去除面积的值的方法,且通过不同情况的分析,不同情况下第一去除面积和第二去除面积的取值不同,取值准确性高,从而可提高面积比例系数和优化亮度值的准确性,进而优化对边缘锯齿现象的弱化效果。
在一个实施例中,处理器执行计算机程序时实现以下步骤:
若R1+R2>2R,则S1=3/8*S0,S2=5/8*S0;
若R1+R2=2R,则S1=S2=1/2*S0;
若R1+R2<2R,则S1=5/8*S0,S2=3/8*S0。
通过在三种情况下,对第一去除面积和第二去除面积采用本实施例中对应的取值,误差较小,面积比例系数的准确性更高。
在一个实施例中,处理器执行计算机程序时实现以下步骤:根据圆弧切割线所在圆的半径、最近距离和圆心角计算第二扇形的面积和第三扇形的面积,并计算第二扇形的面积减去第三扇形的面积和第一去除面积的值,得到第一区域的面积;根据最远距离、最近距离和圆心角计算第一扇形的面积和第三扇形的面积,计算第一扇形的面积减去第三扇形的面积、再减去第一去除面积和第二去除面积的值,得到边缘子像 素的发光区域的面积。具体地,处理器执行计算机程序时实现以下计算:
A=π(R 2-R1 2)*θ/2π-S1;
B=π(R2 2-R1 2)*θ/2π-S1-S2;
其中,R为圆弧切割线所在圆的半径,R1为最近距离,R2为最远距离,θ为圆心角,S1为第一去除面积,S2为第二去除面积,A为第一区域的面积,B为边缘子像素的发光区域的面积。
通过在计算扇形面积的基础上减去多余的面积(第一去除面积)得到第一区域的面积,在计算扇形面积的基础上去掉多余面积(第一去除面积和第二去除面积)得到发光区域的面积,计算误差小,能得到较精准的面积比例系数,从而可提高优化亮度值的准确性,进而进一步优化对边缘锯齿现象的弱化效果。
可以理解,在其他实施例中,还可以采用其他方法得到第一区域的面积和边缘子像素的发光区域的面积。
在另一个实施例中,处理器执行计算机程序时实现以下步骤:根据各个顶点坐标、圆弧切割线所在圆的圆心坐标以及圆弧切割线所在圆的半径,计算第二区域的面积和边缘子像素的发光区域的面积;计算第二区域的面积与边缘子像素的发光区域的面积的比值;根据第二区域的面积与边缘子像素的发光区域的面积的比值,计算得到边缘子像素的面积比例系数。具体地,可以是计算一减去第二区域的面积与边缘子像素的发光区域的面积的比值,得到边缘子像素的面积比例系数。
在一个实施例中,处理器执行计算机程序时还实现以下计算:
Lnew=α*Lold;
其中,α为面积比例系数,Lold为预设亮度值,Lnew为优化亮度值。
通过在预设亮度值的基础上乘以小于1的面积比例系数,如此对预设亮度值进行调节,得到的优化亮度值小于预设亮度值,从而边缘子像素以优化亮度值进行显示,亮度降低,可虚化边缘显示,减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
本公开还提供了一种显示装置,包括显示屏和上述任意一种控制装置,控制装置连接显示屏。控制装置根据边缘子像素的优化亮度值,控制对应边缘子像素的显示亮度。
上述显示装置,由于包含了上述任意一种控制装置,同理可虚化边缘显示,从而减弱边缘子像素的边缘锯齿现象,优化显示屏的显示效果。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种显示屏边缘显示控制方法,包括:
    确定异形切割线,所述异形切割线位于显示屏的异形边缘处,用于定义显示屏显示区域的理论异形边缘;所述异形切割线切割所述显示屏的至少部分边缘子像素,且每个被所述异形切割线穿过的边缘子像素的发光区域被划分为第一区域和第二区域,所述第一区域位于所述异形切割线朝向所述显示屏显示区域一侧,所述第二区域位于所述异形切割线远离所述显示屏显示区域一侧;
    在所述显示屏的子像素所在平面的二维坐标系下,获取所述边缘子像素的各个顶点坐标,以及获取所述边缘子像素与所述异形切割线相交的交点坐标,所述顶点坐标为所述边缘子像素的发光区域相邻边的公共端点的坐标;
    根据各个所述顶点坐标和所述交点坐标,计算各所述边缘子像素的面积比例系数,所述面积比例系数为所述边缘子像素的所述第一区域的面积与所述边缘子像素的发光区域的面积的比值;
    根据所述面积比例系数和所述边缘子像素的预设亮度值,获取小于所述预设亮度值的优化亮度值;
    所述边缘子像素以所述优化亮度值进行显示。
  2. 根据权利要求1所述的方法,其中,所述边缘子像素的发光区域为所述边缘子像素的发光结构对应的区域;所述边缘子像素的发光区域的面积为所述边缘子像素的发光结构在显示屏的阵列基板上的投影的面积。
  3. 根据权利要求1所述的方法,其中,所述边缘子像素的发光区域为所述边缘子像素的整体结构对应的区域,所述边缘子像素的发光区域的面积为所述边缘子像素的整体结构在显示屏的阵列基板上的投影的面积。
  4. 根据权利要求1所述的方法,其中,所述在所述显示屏的子像素所在平面的二维坐标系下,获取所述边缘子像素的各个顶点坐标,以及获取所述边缘子像素与所述异形切割线相交的交点坐标,包括:
    在所述显示屏的子像素所在平面的二维坐标系下,获取所述边缘子像素的各个顶点坐标,以及同一个二维坐标系下所述异形切割线的曲线解析式;
    根据所述顶点坐标和所述曲线解析式,计算所述边缘子像素与所述异形切割线相交的交点坐标。
  5. 根据权利要求4所述的方法,其中,所述根据所述顶点坐标和所述曲线解析式,计算所述边缘子像素与所述异形切割线相交的交点坐标,包括:
    根据所述顶点坐标获取所述边缘子像素中与所述异形切割线相交的边的解析式;
    建立所述曲线解析式和与所述异形切割线相交的边的解析式的方程组并求解,得到所述边缘子像素与所述异形切割线相交的交点坐标。
  6. 根据权利要求1所述的方法,其中,所述边缘子像素的发光区域为由四个顶点共同确定的矩形区域,四个顶点中,第一顶点、第二顶点、第三顶点和第四顶点依次相连;所述显示屏的子像素所在平面的二维坐标系以所述第一顶点与所述第二顶点相连的边的延伸方向为横轴方向,以所述第一顶点和所述第四顶点连接的边的延伸方向为纵轴方向;
    所述交点坐标包括第一交点的坐标和第二交点的坐标;所述第一区域的面积为在所述边缘子像素的矩形区域中、位于所述第一交点和所述第二交点相连的边朝向所述显示屏的显示区域一侧的区域的面积。
  7. 根据权利要求6所述的方法,其中,所述第一交点位于所述第一顶点和所述第四顶点相连的边上,所述第二交点位于所述第二顶点和所述第三顶点相连的边上,所述第一区域为由所述第一交点、所述第二交点、所述第三顶点和所述第四顶点构成的梯形区域;所述根据各个所述顶点坐标和所述交点坐标,计算所述边缘子像素的面积比例系数,包括:
    S`=(|y4-ya|+|y3-yb|)*|x3-x4|/2;
    S=|x2-x1|*|y3-y2|;
    α=S`/S;
    其中,x1为所述第一顶点的横坐标,x2为所述第二顶点的横坐标,x3为所述第三顶点的横坐标,x4为所述第四顶点的横坐标,y2为所述第二顶点的纵坐标,y3为所述第三顶点的纵坐标,y4为所述第四顶点的纵坐标,ya为所述第一交点的纵坐标,yb为所述第二交点的纵坐标,S`为所述第一区域的面积,S为所述发光区域的面积,α为所述面积比例系数;
    或者,所述第一交点位于所述第三顶点和所述第四顶点相连的边上,所述第二交点位于所述第二顶点和所述第三顶点相连的边上,所述第一区域为所述第一交点、所述第二交点和所述第三顶点构成的三角形区域;所述根据各个所述顶点坐标和所述交点坐标,计算所述边缘子像素的面积比例系数,包括:
    S`=|y3-yb|*|x3-xa|/2;
    S=|x2-x1|*|y3-y2|;
    α=S`/S;
    其中,x1为所述第一顶点的横坐标,x2为所述第二顶点的横坐标,x3为所述第三顶点的横坐标,y2为所述第二顶点的纵坐标,y3为所述第三顶点的纵坐标,xa为所述第一交点的横坐标,yb为所述第二交点的纵坐标,S`为所述第一区域的面积,S为所述发光区域的面积,α为所述面积比例系数;
    或者,所述第一交点位于所述第一顶点和所述第四顶点相连的边上,所述第二交点位于所述第一顶点和所述第二顶点相连的边上,所述第一区域为所述第一交点、所述第二交点和所述第一顶点构成的三角形区域;所述根据各个所述顶点坐标和所述交点坐标,计算所述边缘子像素的面积比例系数,包括:
    S`=|ya-y1|*|xb-x1|/2;
    S=|x2-x1|*|y3-y2|;
    α=S`/S;
    其中,x1为所述第一顶点的横坐标,x2为所述第二顶点的横坐标,y1为所述第一顶点的纵坐标,y2为所述第二顶点的纵坐标,y3为所述第三顶点的纵坐标,ya为所述第一交点的纵坐标,xb为所述第二交点的横坐标,S`为所述第一区域的面积,S为所述发光区域的面积,α为所述面积比例系数。
  8. 根据权利要求1所述的方法,其中,所述根据各个所述顶点坐标和所述交点坐标,计算所述边缘子像素的面积比例系数,包括:
    根据各个所述顶点坐标和所述交点坐标,计算所述第二区域的面积和所述边缘子像素的发光区域的面积;
    计算所述第二区域的面积与所述边缘子像素的发光区域的面积的比值;
    根据所述第二区域的面积与所述边缘子像素的发光区域的面积的比值,计算得到所述边缘子像素的面积比例系数。
  9. 根据权利要求1所述的方法,其中,所述根据所述面积比例系数和所述边缘子像素的预设亮度值,获取小于所述预设亮度值的优化亮度值,包括:
    Lnew=α*Lold;
    其中,α为所述面积比例系数,Lold为所述预设亮度值,Lnew为所述优化亮度值。
  10. 根据权利要求1所述的方法,其中,所述异形切割线为圆弧切割线,所述方法包括:
    在所述显示屏的子像素所在平面的二维坐标系下,获取所述圆弧切割线所在圆的半径和所述圆弧切割线所在圆的圆心坐标;
    根据各个所述顶点坐标、所述圆弧切割线所在圆的圆心坐标以及所述圆弧切割线所在圆的半径,计算所述边缘子像素的面积比例系数。
  11. 根据权利要求1所述的方法,其中,所述边缘子像素的发光区域为所述边缘子像素的发光结构对应的区域;所述边缘子像素的发光区域的面积为所述边缘子像素的发光结构在显示屏的阵列基板上的投影的面积;
    或者,所述边缘子像素的发光区域为所述边缘子像素的整体结构对应的区域,所述边缘子像素的发光区域的面积为所述边缘子像素的整体结构在显示屏的阵列基板上的投影的面积。
  12. 根据权利要求10所述的方法,其中,所述边缘子像素的发光区域为由四个顶点共同确定的矩形区域;四个顶点中,距离所述圆弧切割线所在圆的圆心最远的顶点为第一顶点,距离所述圆心最近的顶点为第二顶点,除所述第一顶点和第二顶点之外的两个顶点分别为第三顶点和第四顶点;所述第一顶点与所述圆心的连线为第一半径,所述第二顶点与所述圆心的连线为第二半径,第三顶点与所述圆心的连线为第三半径,第四顶点与所述圆心的连线为第四半径,所述第三半径和所述第四半径的夹角为圆心角;
    以所述圆弧切割线的圆心为圆心、所述第一半径为半径的圆为外圆,所述外圆中与所述圆心角对应的扇形为第一扇形;所述圆弧切割线所在圆中,与所述圆心角对应的扇形为第二扇形;以所述圆弧切割线的圆心为圆心、所述第二半径为半径的圆为内圆,所述内圆中与所述圆心角对应的扇形为第三扇形;
    所述第一区域位于所述圆弧切割线朝向所述圆心的一侧;所述第一区域的面积等于所述边缘子像素与所述第二扇形的重叠部分的面积;所述边缘子像素的发光区域的面积等于所述边缘子像素与所述第一扇形的重叠部分的面积。
  13. 根据权利要求12所述的方法,其中,所述根据各个所述顶点坐标、所述圆弧切割线所在圆的圆心坐标以及所述圆弧切割线所在圆的半径,计算所述边缘子像素的面积比例系数,包括:
    计算所述第一顶点的坐标与所述圆心坐标之间的距离,得到最远距离,计算所述第二顶点的坐标与所述圆心坐标之间的距离,得到最近距离;
    根据所述最远距离、所述最近距离、所述圆弧切割线所在圆的半径和预设的理论像素面积,获取第一去除面积和第二去除面积;所述第一去除面积为所述第二扇形中除去所述边缘子像素与所述第二扇形重叠的区域、以及除去所述第三扇形之后剩余区域的面积;所述第二去除面积为所述第一扇形中除去所述边缘子像素位于所述第二扇形之外的区域、以及除去所述第二扇形之后剩余区域的面积;
    根据所述圆弧切割线所在圆的半径、所述最近距离、所述圆心角和所述第一去除面积,计算所述第一区域的面积;
    根据所述最远距离、所述最近距离、所述圆心角、所述第一去除面积和所述第二去除面积,计算所述边缘子像素的发光区域的面积;
    计算所述第一区域的面积与所述边缘子像素的发光区域的面积的比值,得到所述边缘子像素的面积比例系数。
  14. 根据权利要求13所述的方法,其中,所述根据所述圆弧切割线所在圆的半径、所述最近距离、所述圆心角和所述第一去除面积,计算所述第一区域的面积,包括:
    A=π(R 2-R1 2)*θ/2π-S1;
    所述根据所述最远距离、所述最近距离、所述圆心角、所述第一去除面积和所述第二去除面积,计算所述边缘子像素的发光区域的面积,包括:
    B=π(R2 2-R1 2)*θ/2π-S1-S2;
    其中,R为所述圆弧切割线所在圆的半径,R1为所述最近距离,R2为所述最远距离,θ为所述圆心角,S1为所述第一去除面积,S2为所述第二去除面积,A为所述第一区域的面积,B为所述边缘子像素的发光区域的面积。
  15. 根据权利要求14所述的方法,其中,所述根据所述最远距离、所述最近距离、所述圆弧切割线 所在圆的半径和预设的理论像素面积,获取第一去除面积和第二去除面积,包括:
    若R1+R2>2R,则S1的取值范围为2/8*S0至4/8*S0之间,S2的取值范围为4/8*S0至6/8*S0之间;
    若R1+R2=2R,则S1的取值范围为3/8*S0至5/8*S0之间,S2的取值范围为3/8*S0至5/8*S0之间;
    若R1+R2<2R,则S1的取值范围为4/8*S0至6/8*S0之间,S2的取值范围为2/8*S0至4/8*S0之间;
    其中,S1+S2=S0,R2为所述最远距离,R1为所述最近距离,R为所述圆弧切割线所在圆的半径,S1为所述第一去除面积,S2为所述第二去除面积,S0为所述理论像素面积。
  16. 根据权利要求15所述的方法,其中,所述根据所述最远距离、所述最近距离、所述圆弧切割线所在圆的半径和预设的理论像素面积,获取第一去除面积和第二去除面积,包括:
    若R1+R2>2R,则S1=3/8*S0,S2=5/8*S0;
    若R1+R2=2R,则S1=S2=1/2*S0;
    若R1+R2<2R,则S1=5/8*S0,S2=3/8*S0。
  17. 根据权利要求10所述的方法,其中,所述根据各个所述顶点坐标、所述圆弧切割线所在圆的圆心坐标以及所述圆弧切割线所在圆的半径,计算所述边缘子像素的面积比例系数,包括:
    根据各个所述顶点坐标、所述圆弧切割线所在圆的圆心坐标以及所述圆弧切割线所在圆的半径,计算所述第二区域的面积和所述边缘子像素的发光区域的面积;
    计算所述第二区域的面积与所述边缘子像素的发光区域的面积的比值;
    根据所述第二区域的面积与所述边缘子像素的发光区域的面积的比值,计算得到所述边缘子像素的面积比例系数。
  18. 根据权利要求10所述的方法,其中,所述根据所述面积比例系数以及所述边缘子像素的预设亮度值,得到小于所述预设亮度值的优化亮度值,包括:
    Lnew=α*Lold;
    其中,α为所述面积比例系数,Lold为所述预设亮度值,Lnew为所述优化亮度值。
  19. 一种控制装置,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1所述方法的步骤。
  20. 一种显示装置,其中,包括显示屏和如权利要求19所述的控制装置,所述控制装置连接所述显示屏。
PCT/CN2018/113503 2018-05-14 2018-11-01 显示屏边缘显示控制方法、控制装置和显示装置 WO2019218612A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/342,525 US11468824B2 (en) 2018-05-14 2018-11-01 Methods, control devices, and display apparatus for controlling edge display of display screens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810458113.4 2018-05-14
CN201810456230.7 2018-05-14
CN201810456230.7A CN108665842A (zh) 2018-05-14 2018-05-14 显示屏边缘显示控制方法、控制装置和显示装置
CN201810458113.4A CN108648677B (zh) 2018-05-14 2018-05-14 显示屏边缘显示控制方法、控制装置和显示装置

Publications (1)

Publication Number Publication Date
WO2019218612A1 true WO2019218612A1 (zh) 2019-11-21

Family

ID=68539381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113503 WO2019218612A1 (zh) 2018-05-14 2018-11-01 显示屏边缘显示控制方法、控制装置和显示装置

Country Status (2)

Country Link
US (1) US11468824B2 (zh)
WO (1) WO2019218612A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089942A (zh) * 2021-11-29 2022-02-25 合肥芯颖科技有限公司 一种显示处理方法、装置及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111047973B (zh) * 2019-12-09 2021-03-16 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法、显示装置
KR20220001033A (ko) * 2020-06-26 2022-01-05 삼성디스플레이 주식회사 화소 휘도 결정 방법 및 이를 채용한 표시 장치
KR20220085067A (ko) * 2020-12-14 2022-06-22 삼성디스플레이 주식회사 화소 휘도 결정 방법 및 이를 채용한 표시 장치
CN115311952B (zh) * 2022-02-24 2023-11-28 友达光电股份有限公司 具非矩形主动区的显示装置与其像素结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140061064A (ko) * 2012-11-13 2014-05-21 에스엘 주식회사 차량용 디스플레이 패널의 이미지 처리 장치
CN107526201A (zh) * 2017-09-19 2017-12-29 厦门天马微电子有限公司 一种显示面板、显示装置和显示面板的驱动方法
CN107577078A (zh) * 2017-09-19 2018-01-12 厦门天马微电子有限公司 一种显示面板及显示装置
CN107644410A (zh) * 2017-09-29 2018-01-30 上海天马有机发光显示技术有限公司 图像处理方法、图像处理装置、图像处理系统及显示装置
CN108648677A (zh) * 2018-05-14 2018-10-12 昆山国显光电有限公司 显示屏边缘显示控制方法、控制装置和显示装置
CN108665842A (zh) * 2018-05-14 2018-10-16 昆山国显光电有限公司 显示屏边缘显示控制方法、控制装置和显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140282283A1 (en) 2013-03-15 2014-09-18 Caesar Ian Glebocki Semantic Gesture Processing Device and Method Providing Novel User Interface Experience
GB2541730B (en) 2015-08-28 2020-05-13 Samsung Electronics Co Ltd Displaying graphical user interface elements on a touch screen
US10021226B2 (en) 2016-02-26 2018-07-10 Essential Products, Inc. Display cover mounting
CN107680048B (zh) 2017-09-05 2020-11-10 信利(惠州)智能显示有限公司 一种边缘显示效果处理方法
CN107589600B (zh) * 2017-09-22 2021-03-02 京东方科技集团股份有限公司 一种像素结构、显示面板及显示装置
CN107958919B (zh) 2017-11-21 2020-05-12 武汉天马微电子有限公司 一种显示面板及显示装置
CN108520715A (zh) * 2018-04-19 2018-09-11 京东方科技集团股份有限公司 显示面板的显示方法、驱动电路和显示装置
CN108665642A (zh) 2018-05-09 2018-10-16 苏州创必成电子科技有限公司 一种加固共享折叠椅

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140061064A (ko) * 2012-11-13 2014-05-21 에스엘 주식회사 차량용 디스플레이 패널의 이미지 처리 장치
CN107526201A (zh) * 2017-09-19 2017-12-29 厦门天马微电子有限公司 一种显示面板、显示装置和显示面板的驱动方法
CN107577078A (zh) * 2017-09-19 2018-01-12 厦门天马微电子有限公司 一种显示面板及显示装置
CN107644410A (zh) * 2017-09-29 2018-01-30 上海天马有机发光显示技术有限公司 图像处理方法、图像处理装置、图像处理系统及显示装置
CN108648677A (zh) * 2018-05-14 2018-10-12 昆山国显光电有限公司 显示屏边缘显示控制方法、控制装置和显示装置
CN108665842A (zh) * 2018-05-14 2018-10-16 昆山国显光电有限公司 显示屏边缘显示控制方法、控制装置和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089942A (zh) * 2021-11-29 2022-02-25 合肥芯颖科技有限公司 一种显示处理方法、装置及存储介质

Also Published As

Publication number Publication date
US11468824B2 (en) 2022-10-11
US20210375191A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2019218612A1 (zh) 显示屏边缘显示控制方法、控制装置和显示装置
CN108648677B (zh) 显示屏边缘显示控制方法、控制装置和显示装置
US10276112B2 (en) Mura phenomenon compensation method of display panel and display panel
US11170739B2 (en) Display optimization method and apparatus, display driving method and apparatus, display apparatus, and storage medium
US10127847B2 (en) Three-dimensional display method, three dimensional display device and display substrate
EP3822766A1 (en) Image processing method and device for tiled screen and tiled screen
US6239808B1 (en) Method and apparatus for determining texture values of graphical images
EP3273287A1 (en) Display device and display method therefor
CN108665842A (zh) 显示屏边缘显示控制方法、控制装置和显示装置
US7362325B2 (en) 2D/3D line rendering using 3D rasterization algorithms
US20160187745A1 (en) Planar display panel and display device
US7764292B2 (en) Three dimensional graphics processing apparatus, image display apparatus, three dimensional graphics processing method, control program and computer-readable recording medium
US9147270B1 (en) Bounding plane-based techniques for improved sample test efficiency in image rendering
US20210407369A1 (en) A full-panel display for display apparatus
CN108962169B (zh) 一种灰阶设定方法及装置
CN108492773B (zh) 一种图像显示方法、异形显示设备及具有存储功能的装置
US8040357B1 (en) Quotient remainder coverage system and method
CN111276088B (zh) 一种像素补偿方法
JP2007505421A (ja) ラインおよび文字のアンチエイリアシングを行うためのテクスチャベースの方法およびシステム
CN109636751B (zh) 一种异形显示面板的边缘处理方法、显示面板及显示装置
US20200160492A1 (en) Image Adjustment Method and Device, Image Display Method and Device, Non-Transitory Storage Medium
JP7232829B2 (ja) ディスプレイドライバ、方法、及び、システム
EP2034445A1 (en) Method for drawing geometric shapes
CN115619915A (zh) 三维模型贴图方法、装置、存储介质及电子设备
US9489880B2 (en) Display system and driving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919207

Country of ref document: EP

Kind code of ref document: A1