WO2019218129A1 - Method and device of detecting status of lamp, lamp driver - Google Patents

Method and device of detecting status of lamp, lamp driver Download PDF

Info

Publication number
WO2019218129A1
WO2019218129A1 PCT/CN2018/086798 CN2018086798W WO2019218129A1 WO 2019218129 A1 WO2019218129 A1 WO 2019218129A1 CN 2018086798 W CN2018086798 W CN 2018086798W WO 2019218129 A1 WO2019218129 A1 WO 2019218129A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
driver
status
output voltages
output
Prior art date
Application number
PCT/CN2018/086798
Other languages
French (fr)
Inventor
Ronnie LI
Yaofeng LIN
Jojo WANG
Original Assignee
Tridonic Gmbh & Co Kg
Yaofeng LIN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic Gmbh & Co Kg, Yaofeng LIN filed Critical Tridonic Gmbh & Co Kg
Priority to EP18918921.0A priority Critical patent/EP3777487A4/en
Priority to PCT/CN2018/086798 priority patent/WO2019218129A1/en
Priority to CN201880093422.4A priority patent/CN112189380B/en
Publication of WO2019218129A1 publication Critical patent/WO2019218129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits

Definitions

  • Embodiments of the present disclosure generally relate to the field of electrical apparatus, and more particularly, to a method and device of detecting a status of a lamp, and a lamp driver.
  • lamp drivers are widely used.
  • a status of the lamp should be detected in some cases.
  • DALI Digital Addressable Lighting Interface
  • film capacitors or electrolytic capacitors may be used at an output side of the lamp driver.
  • the charge time of the film capacitors is short, and the charge time of the electrolytic capacitors is long.
  • low ripple current may be achieved when the electrolytic capacitors are used.
  • the electrolytic capacitors when used at the output side of the lamp driver, the charge time of the electrolytic capacitors is long. Then the status of the lamp may be uncertain. For example, the answer to the query actual level command may be incorrect.
  • embodiments of the present disclosure provide a method and device of detecting a status of a lamp, and a lamp driver.
  • the status of the lamp can be determined according to degrees of variations of output voltages of a driver of the lamp. Therefore, the status of the lamp can be detected accurately no matter what types of capacitors are used at the output side of the driver. Furthermore, no additional hardware or electronic element is needed, thus the cost and space may be saved.
  • a method of detecting a status of a lamp including: determining the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
  • determining the status of the lamp according to comparative results between the degrees of output voltages of the driver and thresholds corresponding to output currents of the driver.
  • determining the status of the lamp as outputting light when the degree of the output voltages is less than a first threshold and the output current of the driver is greater than or equal to a predetermined current and/or determining the status of the lamp as outputting light when the degree of the output voltages is less than a second threshold and the output current of the driver is less than the predetermined current.
  • the first threshold is greater than the second threshold.
  • the method further includes: determining the status of the lamp as starting up in a first period after the driver is started up.
  • the method further includes: calculating slopes of a curve of the output voltages as the degrees of variations of the output voltage.
  • the output voltages are averaged in each second period.
  • a device of detecting a status of a lamp including: a first determining unit configured to determine the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
  • the first determining unit determines the status of the lamp according to comparative results between the degrees of output voltages of the driver and thresholds corresponding to output currents of the driver.
  • the first determining unit determines the status of the lamp as outputting light when the degree of the output voltages is less than the threshold corresponding to the output current of the driver.
  • the first determining unit determines the status of the lamp as outputting light when the degree of the output voltages is less than a first threshold and the output current of the driver is greater than or equal to a predetermined current, and/or determines the status of the lamp as outputting light when the degree of the output voltages is less than a second threshold and the output current of the driver is less than the predetermined current.
  • the first threshold is greater than the second threshold.
  • the device further includes: a second determining unit configured to determine the status of the lamp as starting up in a first period after the driver is started up.
  • the device further includes: a calculating unit configured to calculate slopes of a curve of the output voltages as the degrees of variations of the output voltages.
  • the output voltages are averaged in each second period.
  • a lamp driver including: the device according to the second aspect.
  • the status of the lamp can be determined according to degrees of variations of output voltages of a driver of the lamp. Therefore, the status of the lamp can be detected accurately no matter what types of capacitors are used at the output side of the driver. Furthermore, no additional hardware or electronic element is needed, thus the cost and space may be saved.
  • Fig. 1 is a flowchart of a method of detecting a status of a lamp with an embodiment of the present disclosure
  • Fig. 2 is another flowchart of a method of detecting a status of a lamp with an embodiment of the present disclosure
  • Fig. 3 is a diagram of a device of detecting a status of a lamp with an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of a lamp driver with an embodiment of the present disclosure
  • FIG. 5 is a block diagram of a systematic structure of a lamp driver with an embodiment of the present disclosure.
  • the terms “first” and “second” refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • Other definitions, explicit and implicit, may be included below.
  • a method of detecting a status of a lamp is provided in a first embodiment.
  • Fig. 1 is a flowchart of a method of detecting a status of a lamp with an embodiment of the present disclosure. As shown in Fig. 1, the method includes:
  • Step 101 determining the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
  • the lamp may be any type of lamps. Such as a LED lamp.
  • the driver may be any type of lamp drivers.
  • the driver may include a converter configured to provide constant current.
  • the converter may be a switched converter clocked at high frequency, such as a resonant half-bridge converter.
  • the converter may be an isolated converter, such as a flyback converter.
  • the converter may be a non-isolated converter, such as a boost converter, buck converter or buck-boost converter.
  • the status of the lamp is determined according to degrees of variations of output voltages of a driver of the lamp.
  • the status of the lamp may include various states, such as, “starting up” , “outputting light” . Furthermore, when the status of the lamp is “outputting light” , the brightness level may be reported directly.
  • an answer to the query actual level command may be a value between 0 ⁇ 255, which represents an actual level of brightness.
  • the degrees of variations of output voltages may be measured by various parameters.
  • the degrees of variations of output voltages may be measured by slopes of a curve of the output voltages.
  • the status of the lamp may be determined according to comparative results between the degrees of output voltages of the driver and thresholds corresponding to output currents of the driver.
  • the status of the lamp may be determined as outputting light when the degree of the output voltages is less than the threshold corresponding to the output current of the driver.
  • the thresholds may be set corresponding to output currents of the driver. In other words, when the output currents are different, the thresholds used to be compared with output voltages may be different.
  • the threshold used in this period may be a relative large threshold.
  • the threshold used in this period may be a relative small threshold.
  • the status of the lamp may be determined as outputting light when the degree of the output voltages is less than a first threshold and the output current of the driver is greater than or equal to a predetermined current, and/or the status of the lamp may be determined as outputting light when the degree of the output voltages is less than a second threshold and the output current of the driver is less than the predetermined current.
  • the first threshold is greater than the second threshold.
  • the predetermined current, the first threshold and the second threshold may be set according to actual requirements. Such as types of drivers or lamps.
  • the predetermined current may be 20%of a maximal output current
  • the first threshold may be 4%or 5%
  • the second threshold may be 0.8%.
  • the method may further include:
  • Step 102 determining the status of the lamp as starting up in a first period after the driver is started up.
  • the first period may be set according to actual requirements. Such as types of drivers or lamps.
  • the output voltages may be almost unchanged for dozens of milliseconds after the driver is started up.
  • the first period may be 64ms.
  • the detection result of the status of the lamp can be correct in this first period after the driver is started up. Otherwise, the status of the lamp may be determined as outputting light incorrectly due to the almost unchanged output voltages.
  • the method may further include:
  • Step 103 calculating slopes of a curve of the output voltages as the degrees of variations of the output voltages.
  • the output voltages may be averaged in each second period. That is to say the averaged output voltages are used to be compared with the thresholds and calculate the slopes.
  • the second period may be set according to actual requirements.
  • the second period may be 8ms.
  • the output voltages may be averaged in each second period, and a third averaged output voltage V3 may be compared with a first averaged output voltage V1 and a second averaged output voltage V2 respectively.
  • the first averaged output voltage V1 is the averaged output voltage in period 64 ⁇ 72ms after the driver is started up
  • the second averaged output voltage V2 is the averaged output voltage in period 73 ⁇ 80ms after the driver is started up
  • the third averaged output voltage V3 is the averaged output voltage in period 81 ⁇ 88ms after the driver is started up.
  • V3 ⁇ V1* (1+Slope) and V3 ⁇ V2* (1+Slope) the determination of the status of the lamp may be carried out. Therefore, influences of shocks of output voltages may be suppressed.
  • the output voltages and output currents of the driver may be detected with existing circuits and methods.
  • Fig. 2 is another flowchart of a method of detecting a status of a lamp with an embodiment of the present disclosure. As shown in Fig. 2, the method includes:
  • Step 201 determining the status of the lamp as starting up in a first period after the driver is started up;
  • Step 202 calculating slopes of a curve of the output voltages of the driver
  • Step 203 determining whether the slope is less than the threshold corresponding to the output current of the driver. Get back to step 202 when the determining result is “no” , and execute step 204 when the determining result is “yes” ;
  • Step 204 determining the status of the lamp as outputting light.
  • the status of the lamp can be determined according to degrees of variations of output voltages of a driver of the lamp. Therefore, the status of the lamp can be detected accurately no matter what types of capacitors are used at the output side of the driver. Furthermore, no additional hardware or electronic element is needed, thus the cost and space may be saved.
  • a device of device of detecting a status of a lamp is provided in a second embodiment.
  • the device is corresponding to the method described in the first embodiment.
  • Fig. 3 is a diagram of a device of detecting a status of a lamp with an embodiment of the present disclosure.
  • a device 300 of detecting a status of a lamp includes:
  • a first determining unit 301 configured to determine the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
  • the device 300 may further include:
  • a second determining unit 302 configured to determine the status of the lamp as starting up in a first period after the driver is started up.
  • the device 300 may further include:
  • a calculating unit 303 configured to calculate slopes of a curve of the output voltages as the degrees of variations of the output voltages.
  • functions of the first determining unit 301, second determining unit 302 and calculating unit 303 may be corresponding to the steps of the method in the first embodiment, and shall not be described herein any further.
  • the status of the lamp can be determined according to degrees of variations of output voltages of a driver of the lamp. Therefore, the status of the lamp can be detected accurately no matter what types of capacitors are used at the output side of the driver. Furthermore, no additional hardware or electronic element is needed, thus the cost and space may be saved.
  • a lamp driver is provided in a third embodiment.
  • the lamp driver may be any type of lamp drivers. Such as a LED driver, or other drivers.
  • Fig. 4 is a schematic diagram of a lamp driver with an embodiment of the present disclosure. As shown in Fig. 4, a lamp driver 400 includes:
  • a device 401 of detecting a status of a lamp a device 401 of detecting a status of a lamp
  • a converter 402 configured to provide constant current.
  • the device 401 is identical to the device 300 described in the second embodiment, which shall not be described herein any further.
  • the converter 402 may be a switched converter clocked at high frequency, such as a resonant half-bridge converter.
  • the converter may be an isolated converter, such as a flyback converter.
  • the converter may be a non-isolated converter, such as a boost converter, buck converter or buck-boost converter.
  • the central processing unit 501 may be located on the primary side of the isolated converter.
  • the first determining unit 301 may comprise sensing means to sense the output voltage of a driver of the lamp.
  • the first determining unit 301 may comprise sensing means located on the secondary side of the isolated converter to directly determine the output voltage or sensing means located on the primary side of the isolated converter to indirectly determine the output voltage of a driver of the lamp. Such indirect determination of the output voltage of a driver of the lamp may be performed for instance by an additional winding connected to the power transferring transformer which forms a part of the isolated converter.
  • FIG. 5 is a block diagram of a systematic structure of a lamp driver with an embodiment of the present disclosure.
  • a lamp driver 500 may include a central processing unit 501 and a memory 502, the memory 502 being coupled to the central processing unit 501.
  • the functions of the device of of detecting a status of a lamp may be integrated into the central processing unit 501.
  • the central processing unit 501 may be configured to: determine the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
  • the lamp driver 500 may further include a converter 503.
  • the lamp driver 500 does not necessarily include all the parts shown in FIG. 5. Also, this figure is illustrative only, and other types of structures may also be used, so as to supplement or replace this structure and achieve a telecommunications function or other functions.
  • the central processing unit 501 is sometimes referred to as a controller or control, and may include a microprocessor or other processor devices and/or logic devices.
  • the central processing unit 501 receives input and controls operations of every components of the electronic apparatus 500.
  • the memory 502 may be, for example, one or more of a buffer memory, a flash memory, a hard drive, a mobile medium, a volatile memory, a nonvolatile memory, or other suitable devices.
  • the central processing unit 501 may execute the program stored in the memory 502, to realize information storage or processing, etc. Functions of other parts are similar to those of the prior art, which shall not be described herein any further.
  • the parts of the electronic apparatus 500 may be realized by specific hardware, firmware, software, or any combination thereof, without departing from the scope of the present disclosure.
  • the status of the lamp can be determined according to degrees of variations of output voltages of a driver of the lamp. Therefore, the status of the lamp can be detected accurately no matter what types of capacitors are used at the output side of the driver. Furthermore, no additional hardware or electronic element is needed, thus the cost and space may be saved.

Abstract

A method and device of detecting the status of a lamp, and a lamp driver are provided. The status of the lamp can be determined according to degrees of variations of output voltages of a driver of the lamp (101). Therefore, the status of the lamp can be detected accurately no matter what types of capacitors are used at the output side of the driver. Furthermore, no additional hardware or electronic element is needed, thus the cost and space may be saved.

Description

METHOD AND DEVICE OF DETECTING STATUS OF LAMP, LAMP DRIVER TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of electrical apparatus, and more particularly, to a method and device of detecting a status of a lamp, and a lamp driver.
BACKGROUND
This section introduces aspects that may facilitate better understanding of the present disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
Nowadays, lamp drivers are widely used. When a lamp driver drives a lamp, a status of the lamp should be detected in some cases. For example, according to DALI (Digital Addressable Lighting Interface) standard, an answer to the query actual level command is needed.
Normally, film capacitors or electrolytic capacitors may be used at an output side of the lamp driver. The charge time of the film capacitors is short, and the charge time of the electrolytic capacitors is long. However, low ripple current may be achieved when the electrolytic capacitors are used.
SUMMARY
Inventors of this disclosure found that when the electrolytic capacitors are used at the output side of the lamp driver, the charge time of the electrolytic capacitors is long. Then the status of the lamp may be uncertain. For example, the answer to the query actual level command may be incorrect.
In general, embodiments of the present disclosure provide a method and device of detecting a status of a lamp, and a lamp driver. In the embodiments, the status of the lamp  can be determined according to degrees of variations of output voltages of a driver of the lamp. Therefore, the status of the lamp can be detected accurately no matter what types of capacitors are used at the output side of the driver. Furthermore, no additional hardware or electronic element is needed, thus the cost and space may be saved.
In a first aspect, there is provided a method of detecting a status of a lamp, including: determining the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
In an embodiment, determining the status of the lamp according to comparative results between the degrees of output voltages of the driver and thresholds corresponding to output currents of the driver.
In an embodiment, determining the status of the lamp as outputting light when the degree of the output voltages is less than the threshold corresponding to the output current of the driver.
In an embodiment, determining the status of the lamp as outputting light when the degree of the output voltages is less than a first threshold and the output current of the driver is greater than or equal to a predetermined current, and/or determining the status of the lamp as outputting light when the degree of the output voltages is less than a second threshold and the output current of the driver is less than the predetermined current.
In an embodiment, the first threshold is greater than the second threshold.
In an embodiment, the method further includes: determining the status of the lamp as starting up in a first period after the driver is started up.
In an embodiment, the method further includes: calculating slopes of a curve of the output voltages as the degrees of variations of the output voltage.
In an embodiment, the output voltages are averaged in each second period.
In a second aspect, there is provided a device of detecting a status of a lamp, including: a first determining unit configured to determine the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
In an embodiment, the first determining unit determines the status of the lamp according to comparative results between the degrees of output voltages of the driver and thresholds corresponding to output currents of the driver.
In an embodiment, the first determining unit determines the status of the lamp as outputting light when the degree of the output voltages is less than the threshold corresponding to the output current of the driver.
In an embodiment, the first determining unit determines the status of the lamp as outputting light when the degree of the output voltages is less than a first threshold and the output current of the driver is greater than or equal to a predetermined current, and/or determines the status of the lamp as outputting light when the degree of the output voltages is less than a second threshold and the output current of the driver is less than the predetermined current.
In an embodiment, the first threshold is greater than the second threshold.
In an embodiment, the device further includes: a second determining unit configured to determine the status of the lamp as starting up in a first period after the driver is started up.
In an embodiment, the device further includes: a calculating unit configured to calculate slopes of a curve of the output voltages as the degrees of variations of the output voltages.
In an embodiment, the output voltages are averaged in each second period.
In a third aspect, there is provided a lamp driver, including: the device according to the second aspect.
According to various embodiments of the present disclosure, the status of the lamp can be determined according to degrees of variations of output voltages of a driver of the lamp. Therefore, the status of the lamp can be detected accurately no matter what types of capacitors are used at the output side of the driver. Furthermore, no additional hardware or electronic element is needed, thus the cost and space may be saved.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other aspects, features, and benefits of various embodiments of the disclosure will become more fully apparent, by way of example, from the following detailed description with reference to the accompanying drawings, in which like reference numerals or letters are used to designate like or equivalent elements. The drawings are illustrated for facilitating better understanding of the embodiments of the disclosure and not necessarily drawn to scale, in which:
Fig. 1 is a flowchart of a method of detecting a status of a lamp with an embodiment of the present disclosure;
Fig. 2 is another flowchart of a method of detecting a status of a lamp with an embodiment of the present disclosure;
Fig. 3 is a diagram of a device of detecting a status of a lamp with an embodiment of the present disclosure;
Fig. 4 is a schematic diagram of a lamp driver with an embodiment of the present disclosure;
FIG. 5 is a block diagram of a systematic structure of a lamp driver with an embodiment of the present disclosure.
DETAILED DESCRIPTION
The present disclosure will now be discussed with reference to several example embodiments. It should be understood that these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the present disclosure.
As used herein, the terms “first” and “second” refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the  context clearly indicates otherwise. The terms “comprises, ” “comprising, ” “has, ” “having, ” “includes” and/or “including” as used herein, specify the presence of stated features, elements, and/or components and the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” Other definitions, explicit and implicit, may be included below.
First embodiment
A method of detecting a status of a lamp is provided in a first embodiment.
Fig. 1 is a flowchart of a method of detecting a status of a lamp with an embodiment of the present disclosure. As shown in Fig. 1, the method includes:
Step 101: determining the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
In an embodiment, the lamp may be any type of lamps. Such as a LED lamp.
In an embodiment, the driver may be any type of lamp drivers. And the driver may include a converter configured to provide constant current.
For example, the converter may be a switched converter clocked at high frequency, such as a resonant half-bridge converter. Alternatively, the converter may be an isolated converter, such as a flyback converter. Furthermore, the converter may be a non-isolated converter, such as a boost converter, buck converter or buck-boost converter.
In the step 101, the status of the lamp is determined according to degrees of variations of output voltages of a driver of the lamp.
In an embodiment, the status of the lamp may include various states, such as, “starting up” , “outputting light” . Furthermore, when the status of the lamp is “outputting light” , the brightness level may be reported directly.
For example, when a query actual level command is received, an answer to the query actual level command may be a value between 0~255, which represents an actual level of brightness.
In an embodiment, the degrees of variations of output voltages may be measured by various parameters.
For example, the degrees of variations of output voltages may be measured by slopes of a curve of the output voltages.
In an embodiment, the status of the lamp may be determined according to comparative results between the degrees of output voltages of the driver and thresholds corresponding to output currents of the driver.
For example, the status of the lamp may be determined as outputting light when the degree of the output voltages is less than the threshold corresponding to the output current of the driver.
In an embodiment, the thresholds may be set corresponding to output currents of the driver. In other words, when the output currents are different, the thresholds used to be compared with output voltages may be different.
For example, when the driver is started up and electrolytic capacitors are used at output side of the driver, the output currents may be large and the output voltages may rise quickly due to charging of the electrolytic capacitors. Thus the threshold used in this period may be a relative large threshold. When the charging is finished and the lamp is on, the output currents may be small and the output voltages may rise according to the output currents slowly. Thus the threshold used in this period may be a relative small threshold.
For example, the status of the lamp may be determined as outputting light when the degree of the output voltages is less than a first threshold and the output current of the driver is greater than or equal to a predetermined current, and/or the status of the lamp may be determined as outputting light when the degree of the output voltages is less than a second threshold and the output current of the driver is less than the predetermined current. Wherein, the first threshold is greater than the second threshold.
In an embodiment, the predetermined current, the first threshold and the second threshold may be set according to actual requirements. Such as types of drivers or lamps.
For example, the predetermined current may be 20%of a maximal output current, the first threshold may be 4%or 5%, and the second threshold may be 0.8%.
In an embodiment, before the step 101, the method may further include:
Step 102: determining the status of the lamp as starting up in a first period after the driver is started up.
In an embodiment, the first period may be set according to actual requirements. Such as types of drivers or lamps.
In an embodiment, the output voltages may be almost unchanged for dozens of milliseconds after the driver is started up. For example, the first period may be 64ms.
Therefore, the detection result of the status of the lamp can be correct in this first period after the driver is started up. Otherwise, the status of the lamp may be determined as outputting light incorrectly due to the almost unchanged output voltages.
In an embodiment, before the  steps  101 and 102, the method may further include:
Step 103: calculating slopes of a curve of the output voltages as the degrees of variations of the output voltages.
In an embodiment, the output voltages may be averaged in each second period. That is to say the averaged output voltages are used to be compared with the thresholds and calculate the slopes.
In an embodiment, the second period may be set according to actual requirements. For example, the second period may be 8ms.
In an embodiment, the output voltages may be averaged in each second period, and a third averaged output voltage V3 may be compared with a first averaged output voltage V1 and a second averaged output voltage V2 respectively.
For example, the first averaged output voltage V1 is the averaged output voltage  in period 64~72ms after the driver is started up, the second averaged output voltage V2 is the averaged output voltage in period 73~80ms after the driver is started up, and the third averaged output voltage V3 is the averaged output voltage in period 81~88ms after the driver is started up.
When V3<V1* (1+Slope) and V3<V2* (1+Slope) , the determination of the status of the lamp may be carried out. Therefore, influences of shocks of output voltages may be suppressed.
In an embodiment, the output voltages and output currents of the driver may be detected with existing circuits and methods.
Fig. 2 is another flowchart of a method of detecting a status of a lamp with an embodiment of the present disclosure. As shown in Fig. 2, the method includes:
Step 201: determining the status of the lamp as starting up in a first period after the driver is started up;
Step 202: calculating slopes of a curve of the output voltages of the driver;
Step 203: determining whether the slope is less than the threshold corresponding to the output current of the driver. Get back to step 202 when the determining result is “no” , and execute step 204 when the determining result is “yes” ;
Step 204: determining the status of the lamp as outputting light.
As can be seen from the above embodiments, the status of the lamp can be determined according to degrees of variations of output voltages of a driver of the lamp. Therefore, the status of the lamp can be detected accurately no matter what types of capacitors are used at the output side of the driver. Furthermore, no additional hardware or electronic element is needed, thus the cost and space may be saved.
Second embodiment
A device of device of detecting a status of a lamp is provided in a second embodiment. The device is corresponding to the method described in the first embodiment.
Fig. 3 is a diagram of a device of detecting a status of a lamp with an embodiment of the present disclosure.
As shown in Fig. 3, a device 300 of detecting a status of a lamp includes:
a first determining unit 301 configured to determine the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
In an embodiment, the device 300 may further include:
a second determining unit 302 configured to determine the status of the lamp as starting up in a first period after the driver is started up.
In an embodiment, the device 300 may further include:
a calculating unit 303 configured to calculate slopes of a curve of the output voltages as the degrees of variations of the output voltages.
In an embodiment, functions of the first determining unit 301, second determining unit 302 and calculating unit 303 may be corresponding to the steps of the method in the first embodiment, and shall not be described herein any further.
As can be seen from the above embodiments, the status of the lamp can be determined according to degrees of variations of output voltages of a driver of the lamp. Therefore, the status of the lamp can be detected accurately no matter what types of capacitors are used at the output side of the driver. Furthermore, no additional hardware or electronic element is needed, thus the cost and space may be saved.
Third embodiment
A lamp driver is provided in a third embodiment.
In an embodiment, the lamp driver may be any type of lamp drivers. Such as a LED driver, or other drivers.
Fig. 4 is a schematic diagram of a lamp driver with an embodiment of the present disclosure. As shown in Fig. 4, a lamp driver 400 includes:
device 401 of detecting a status of a lamp; and
converter 402 configured to provide constant current.
In an embodiment, the device 401 is identical to the device 300 described in the second embodiment, which shall not be described herein any further.
For example, the converter 402 may be a switched converter clocked at high frequency, such as a resonant half-bridge converter. Alternatively, the converter may be an isolated converter, such as a flyback converter. Furthermore, the converter may be a non-isolated converter, such as a boost converter, buck converter or buck-boost converter.
In case that the converter 402 is formed by an isolated converter, such as a flyback converter or an isolated resonant converter like a LLC converter, the central processing unit 501 may be located on the primary side of the isolated converter. The first determining unit 301 may comprise sensing means to sense the output voltage of a driver of the lamp. The first determining unit 301 may comprise sensing means located on the secondary side of the isolated converter to directly determine the output voltage or sensing means located on the primary side of the isolated converter to indirectly determine the output voltage of a driver of the lamp. Such indirect determination of the output voltage of a driver of the lamp may be performed for instance by an additional winding connected to the power transferring transformer which forms a part of the isolated converter.
FIG. 5 is a block diagram of a systematic structure of a lamp driver with an embodiment of the present disclosure. As shown in Fig. 5, a lamp driver 500 may include a central processing unit 501 and a memory 502, the memory 502 being coupled to the central processing unit 501.
In one implementation, the functions of the device of of detecting a status of a lamp may be integrated into the central processing unit 501. The central processing unit 501 may be configured to: determine the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
As shown in Fig. 5, the lamp driver 500 may further include a converter 503.
In this embodiment, the lamp driver 500 does not necessarily include all the parts  shown in FIG. 5. Also, this figure is illustrative only, and other types of structures may also be used, so as to supplement or replace this structure and achieve a telecommunications function or other functions.
In an embodiment, the central processing unit 501 is sometimes referred to as a controller or control, and may include a microprocessor or other processor devices and/or logic devices. The central processing unit 501 receives input and controls operations of every components of the electronic apparatus 500.
The memory 502 may be, for example, one or more of a buffer memory, a flash memory, a hard drive, a mobile medium, a volatile memory, a nonvolatile memory, or other suitable devices. And the central processing unit 501 may execute the program stored in the memory 502, to realize information storage or processing, etc. Functions of other parts are similar to those of the prior art, which shall not be described herein any further. The parts of the electronic apparatus 500 may be realized by specific hardware, firmware, software, or any combination thereof, without departing from the scope of the present disclosure.
As can be seen from the above embodiments, the status of the lamp can be determined according to degrees of variations of output voltages of a driver of the lamp. Therefore, the status of the lamp can be detected accurately no matter what types of capacitors are used at the output side of the driver. Furthermore, no additional hardware or electronic element is needed, thus the cost and space may be saved.
Generally, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented  in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (17)

  1. A method of detecting a status of a lamp, comprising:
    determining the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
  2. The method according to claim 1, wherein,
    determining the status of the lamp according to comparative results between the degrees of output voltages of the driver and thresholds corresponding to output currents of the driver.
  3. The method according to claim 2, wherein,
    determining the status of the lamp as outputting light when the degree of the output voltages is less than the threshold corresponding to the output current of the driver.
  4. The method according to claim 3, wherein,
    determining the status of the lamp as outputting light when the degree of the output voltages is less than a first threshold and the output current of the driver is greater than or equal to a predetermined current, and/or
    determining the status of the lamp as outputting light when the degree of the output voltages is less than a second threshold and the output current of the driver is less than the predetermined current.
  5. The method according to claim 4, wherein,
    the first threshold is greater than the second threshold.
  6. The method according to any one of claims 1-5, wherein, the method further comprises:
    determining the status of the lamp as starting up in a first period after the driver is started up.
  7. The method according to any one of claims 1-6, wherein, the method further comprises:
    calculating slopes of a curve of the output voltages as the degrees of variations of the output voltages.
  8. The method according to any one of claims 1-7, wherein,
    the output voltages are averaged in each second period.
  9. A device of detecting a status of a lamp, comprising:
    a first determining unit configured to determine the status of the lamp according to degrees of variations of output voltages of a driver of the lamp.
  10. The device according to claim 9, wherein,
    the first determining unit determines the status of the lamp according to comparative results between the degrees of output voltages of the driver and thresholds corresponding to output currents of the driver.
  11. The device according to claim 10, wherein,
    the first determining unit determines the status of the lamp as outputting light when the degree of the output voltages is less than the threshold corresponding to the output current of the driver.
  12. The device according to claim 11, wherein,
    the first determining unit determines the status of the lamp as outputting light when the degree of the output voltages is less than a first threshold and the output current of the driver is greater than or equal to a predetermined current, and/or determines the status of the lamp as outputting light when the degree of the output voltages is less than a second threshold and the output current of the driver is less than the predetermined current.
  13. The device according to claim 12, wherein,
    the first threshold is greater than the second threshold.
  14. The device according to any one of claims 9-13, wherein, the device further comprises:
    a second determining unit configured to determine the status of the lamp as starting up in a first period after the driver is started up.
  15. The device according to any one of claims 9-14, wherein, the device further comprises:
    a calculating unit configured to calculate slopes of a curve of the output voltages as the degrees of variations of the output voltages.
  16. The device according to any one of claims 9-15, wherein,
    the output voltages are averaged in each second period.
  17. A lamp driver, comprising:
    the device according to any one of claims 9-16.
PCT/CN2018/086798 2018-05-15 2018-05-15 Method and device of detecting status of lamp, lamp driver WO2019218129A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18918921.0A EP3777487A4 (en) 2018-05-15 2018-05-15 Method and device of detecting status of lamp, lamp driver
PCT/CN2018/086798 WO2019218129A1 (en) 2018-05-15 2018-05-15 Method and device of detecting status of lamp, lamp driver
CN201880093422.4A CN112189380B (en) 2018-05-15 2018-05-15 Lamp driver and method and device for detecting state of lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086798 WO2019218129A1 (en) 2018-05-15 2018-05-15 Method and device of detecting status of lamp, lamp driver

Publications (1)

Publication Number Publication Date
WO2019218129A1 true WO2019218129A1 (en) 2019-11-21

Family

ID=68539234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086798 WO2019218129A1 (en) 2018-05-15 2018-05-15 Method and device of detecting status of lamp, lamp driver

Country Status (3)

Country Link
EP (1) EP3777487A4 (en)
CN (1) CN112189380B (en)
WO (1) WO2019218129A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011804A1 (en) * 1997-05-26 2002-01-31 Takeshi Fujimura Control circuit and method for protecting a piezoelectric transformer from an open state and a short-circuited state
WO2006081797A1 (en) * 2005-02-02 2006-08-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Method for operating a high-pressure discharge lamp, operating appliance for a high-pressure discharge lamp, and illumination device
CN201323692Y (en) * 2008-12-22 2009-10-07 巢湖凯达照明技术有限公司 Large-power electronic ballast with wave current protection device
US20090273738A1 (en) 2005-11-22 2009-11-05 Rohm Co., Ltd. Inverter, its control circuit, and light emitting device and liquid crystal television using the same
US20140368204A1 (en) 2012-01-20 2014-12-18 Osram Sylvania Inc. Techniques for assessing condition of leds and power supply
WO2015155156A2 (en) * 2014-04-07 2015-10-15 Koninklijke Philips N.V. Ignitor-arrangement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1993006A (en) * 2005-10-24 2007-07-04 国际整流器公司 Dimming ballast control circuit
JP5991614B2 (en) * 2012-07-12 2016-09-14 パナソニックIpマネジメント株式会社 Light emitting element lighting device and lighting apparatus using the same
WO2014013452A2 (en) * 2012-07-19 2014-01-23 Koninklijke Philips N.V. Lighting device comprising a monitoring circuit
CN103987147B (en) * 2013-02-08 2016-09-28 东林科技股份有限公司 Determine the light emitting diode illuminating apparatus of power and determine the control method of power output

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011804A1 (en) * 1997-05-26 2002-01-31 Takeshi Fujimura Control circuit and method for protecting a piezoelectric transformer from an open state and a short-circuited state
WO2006081797A1 (en) * 2005-02-02 2006-08-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Method for operating a high-pressure discharge lamp, operating appliance for a high-pressure discharge lamp, and illumination device
US20090273738A1 (en) 2005-11-22 2009-11-05 Rohm Co., Ltd. Inverter, its control circuit, and light emitting device and liquid crystal television using the same
CN201323692Y (en) * 2008-12-22 2009-10-07 巢湖凯达照明技术有限公司 Large-power electronic ballast with wave current protection device
US20140368204A1 (en) 2012-01-20 2014-12-18 Osram Sylvania Inc. Techniques for assessing condition of leds and power supply
WO2015155156A2 (en) * 2014-04-07 2015-10-15 Koninklijke Philips N.V. Ignitor-arrangement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3777487A4

Also Published As

Publication number Publication date
CN112189380A (en) 2021-01-05
CN112189380B (en) 2021-09-17
EP3777487A1 (en) 2021-02-17
EP3777487A4 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
US10461649B2 (en) Switched-mode power supply circuit
US8669748B2 (en) Device for synchronous DC-DC conversion and synchronous DC-DC converter
US20120274235A1 (en) Power Converting Circuit and Converting Controller
US8502472B2 (en) Light emitting diode driving apparatus and method for holding driving voltage thereof
US20150003118A1 (en) Start-up circuit, switch control circuit having the start-up circuit and power supply device having the switch control circuit
US9420654B2 (en) Feedback control circuit and LED driving circuit
JP4379396B2 (en) Buck-boost chopper type DC-DC converter
US9504119B2 (en) LED driver having short circuit protection
US20200321854A1 (en) Power conversion apparatus and ac-dc conversion apparatus
US8803431B2 (en) Light emitting diode luminance system having clamping device
US8098018B2 (en) Pulse dimming circuit and the method thereof
US20200144914A1 (en) Detection method, detection circuit, controller and switching power supply
US8619439B2 (en) Flyback boost circuit with current supplied to secondary side of transformer circuit prior to boost operation and strobe device using the same
US9716427B2 (en) Power factor correction circuit having bottom skip controller
US8373404B2 (en) Negative lock loop and control method for a flyback voltage converter
WO2019218129A1 (en) Method and device of detecting status of lamp, lamp driver
CN112117920B (en) Power supply device, control method thereof and power supply system
US10069398B2 (en) Non-isolated power supply device
US11839002B2 (en) Control circuit for constant-current drive circuit and constant-current drive circuit
US8164270B2 (en) Discharge lamp lighting circuit
US20170150567A1 (en) Dimming driver circuit and control method thereof
WO2020010621A1 (en) Method and device of controlling dimmable driver, dimmable driver
US9936545B2 (en) LED voltage driver circuit
US9743471B2 (en) Lighting device and lighting fixture for current control with a solid-state lighting element
JP2015012772A (en) Charging circuit and flash discharge lamp-lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018918921

Country of ref document: EP

Effective date: 20201103

NENP Non-entry into the national phase

Ref country code: DE