WO2019218127A1 - 衬底导波的光波导结构、ar设备光学成像系统及ar设备 - Google Patents

衬底导波的光波导结构、ar设备光学成像系统及ar设备 Download PDF

Info

Publication number
WO2019218127A1
WO2019218127A1 PCT/CN2018/086772 CN2018086772W WO2019218127A1 WO 2019218127 A1 WO2019218127 A1 WO 2019218127A1 CN 2018086772 W CN2018086772 W CN 2018086772W WO 2019218127 A1 WO2019218127 A1 WO 2019218127A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting surface
waveguide structure
optical waveguide
guided wave
reflectance
Prior art date
Application number
PCT/CN2018/086772
Other languages
English (en)
French (fr)
Inventor
李科
Original Assignee
深圳市美誉镜界光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市美誉镜界光电科技有限公司 filed Critical 深圳市美誉镜界光电科技有限公司
Priority to CN201880092390.6A priority Critical patent/CN112219149A/zh
Priority to PCT/CN2018/086772 priority patent/WO2019218127A1/zh
Publication of WO2019218127A1 publication Critical patent/WO2019218127A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to the technical field of optical imaging of AR devices, and in particular, to an optical waveguide structure for substrate guided waves, an optical imaging system for AR devices, and an AR device.
  • AR Augment Reality
  • AR is an augmented reality technology, which superimposes virtual information on real-world information and then transmits it to itself through human acceptability.
  • Senses such as sight, hearing, taste, and touch help the human senses to receive information that would otherwise not be easily accessible from the real world, while real-time interaction.
  • AR optical display technology it has experienced off-axis optics, prisms, curved prisms and waveguide optics. Among them, optical waveguide technology solves the problem of lateral transmission of light, and has the advantages of large field of view and thin thickness. A more adopted AR optical imaging solution.
  • a prior art optical waveguide structure is disclosed in US Pat. No. 8,818,263 B1.
  • the optical waveguide of the patent uses a plurality of tooth structure alignment characteristics to conduct an image to the other side of the waveguide plate, and destroys all of the plurality of tooth structures through the mirror image.
  • the reflection condition introduces the image into the eyeball.
  • the design also increases the thickness of the waveguide plate when the angle of view is enlarged, and the real image of the surrounding environment passes through the plurality of tooth structures in front of the eyeball to deflect the image, causing the eyeball to see Real images come to misjudgments from other perspectives.
  • optical waveguide structure is disclosed in U.S. Patent No. 0, 036, 037, 799 A1.
  • the optical waveguide structure of the patent is obtained by inserting a plurality of different reflectivity films into a plurality of flat materials and then bonding, and then cutting, grinding and polishing the structure.
  • thermal stress is generated during cutting, grinding and polishing, causing local refractive index variation and reflective film material damage. If the thermal stress image is to be lowered, the polishing and polishing rate will be lowered and the coolant contamination will be suspected.
  • the optical waveguide of the existing AR device usually has a complicated optical structure or a high manufacturing difficulty, and the imaging field of view angle is small, which cannot meet the requirements of the high experience of the AR device and is difficult to be put into practical use.
  • the object of the present invention is to provide a substrate guided wave optical waveguide structure, an AR device optical imaging system and an AR device, which can realize a large angle of view, ultra-thin thickness and high-resolution imaging effect, and enhance the user experience.
  • an optical waveguide structure for substrate guided waves including:
  • a light guide plate having opposite first and second main surfaces
  • An optical component disposed at one end of the second major surface
  • At least one array of lenses is disposed in the interior of the light guide plate; each array lens has a reflective surface, and the reflective surface has the same angle as the first major surface.
  • the first main surface and the second main surface are planes parallel to each other.
  • an angle between the reflecting surface and the first main surface is 20 to 80 degrees.
  • the at least one array lens includes five array lenses, and the five array lenses are sequentially provided with a first reflective surface, a second reflective surface, a third reflective surface, and a fourth reflective surface.
  • a fifth reflecting surface, the fifth reflecting surface is adjacent to the light incident element; an angle between the first reflecting surface, the second reflecting surface, the third reflecting surface, the fourth reflecting surface, and the fifth reflecting surface and the first main surface 30 degrees, the reflectivity of the first reflecting surface is R;
  • the value of R ranges from 10% to 90%
  • the reflectance of the second reflecting surface is 0.45R to 0.55R
  • the reflectance of the third reflecting surface is 0.283R to 0.383R
  • the fourth The reflectance of the reflecting surface is 0.2R to 0.3R
  • the reflectance of the fifth reflecting surface is 0.15R to 0.25R.
  • the material of the at least one array lens is glass or resin.
  • the first main surface and the second main surface are curved surfaces, and the first main surface and the second main surface are parallel to each other.
  • an angle between the reflecting surface and a tangent to the first main surface is 20 to 80 degrees.
  • the at least one array lens includes five array lenses, and the five array lenses are sequentially provided with a first reflective surface, a second reflective surface, a third reflective surface, and a fourth reflective surface. a fifth reflecting surface, wherein the fifth reflecting surface is adjacent to the light incident element; and the first reflecting surface, the second reflecting surface, the third reflecting surface, the fourth reflecting surface, and the fifth reflecting surface are tangential to the first main surface
  • the angle is 30 degrees, the reflectivity of the first reflecting surface is R;
  • the value of R ranges from 10% to 90%
  • the reflectance of the second reflecting surface is 0.45R to 0.55R
  • the reflectance of the third reflecting surface is 0.283R to 0.383R
  • the fourth The reflectance of the reflecting surface is 0.2R to 0.3R
  • the reflectance of the fifth reflecting surface is 0.15R to 0.25R.
  • the present invention also provides an AR device optical imaging system, the optical imaging system comprising a micro display module and the optical waveguide structure described above.
  • the present invention also provides an AR device including the above-described AR device optical imaging system.
  • the substrate guided wave optical waveguide structure, the AR device optical imaging system and the AR device realize large imaging angle, ultra-thin thickness and high-resolution imaging effect, thereby greatly improving the user experience and being easy to manufacture. Assembly can meet the practical needs of mass production.
  • FIG. 1 is a perspective view of a first embodiment of a substrate guided wave optical waveguide structure according to the present invention
  • FIG. 2 is a plan view showing a first embodiment of a substrate guided wave optical waveguide structure according to the present invention
  • Figure 3a is a schematic view showing another structure of the light-incident element of Figure 1;
  • Figure 3b is another schematic structural view of the light-inducing element of Figure 1;
  • FIG. 4 is a light path diagram of a first embodiment of a substrate guided wave optical waveguide structure according to the present invention.
  • FIG. 5 is a schematic structural diagram of a first embodiment of an optical imaging system for an AR device according to the present invention.
  • Figure 6 is an optical effect diagram of the optical imaging system of Figure 5;
  • Figure 7 is a plan view showing a second embodiment of a substrate guided wave optical waveguide structure according to the present invention.
  • FIG. 8 is a schematic structural view of a second embodiment of an optical imaging system for an AR device according to the present invention.
  • FIG. 9 is an optical effect diagram of the optical imaging system of FIG. 8.
  • FIG. 1 is a perspective view showing the structure of a first embodiment of a substrate guided wave optical waveguide structure according to the present invention.
  • the optical waveguide structure 100 includes a light guide plate 10, a light incident component 20, and at least one array lens 30.
  • the light guide panel 10 has a first main surface 101 and a second major surface disposed opposite to each other.
  • the light-injecting element 20 is disposed at one end of the second main surface 102.
  • the at least one array of lenses 30 is disposed in the interior of the light guide plate 10, and each of the array lenses 30 has a reflective surface 301.
  • the angle between the 301 and the first major surface 101 is 20 degrees to 80 degrees.
  • the light guide plate 10 is a substrate-guided carrier.
  • the light guide plate 10 is substantially rectangular, that is, the first main surface 101 and the second main surface 102 are planes parallel to each other.
  • the light guide plate 10 further includes a wedge surface 103 connected between the first main surface 101 and the second main surface 102, and the wedge surface 103 is used for totally reflecting incident light into the light guide plate 10.
  • the light-introducing element 20 is configured to reflect the image-forming light emitted by the micro-display module into the light-guide plate 10.
  • the light-injecting element 20 has a light-in reflecting surface 201, and the light-in reflecting surface 201 is opposite.
  • the second major surface 102 is disposed obliquely.
  • the light-incident element 20 is a prism and is an isosceles right angle, that is, an angle between the light-introducing surface 201 and the second main surface 102 is 45 degrees. It can be understood that the light-incident element 20 can also be a reverse prism (see Fig.
  • the light-incident element 20 may also be a plane mirror (refer to FIG. 3b), and the angle between the light-introducing surface 201" of the plane mirror and the second main surface 102 is 45 degrees.
  • each array of lenses 30 is a prismatic cylinder, and each array of lenses 30 includes an upper surface 302 and a lower surface 303 disposed in parallel with each other.
  • the reflective surface 301 is connected between the upper surface 302 and the lower surface 303.
  • the upper surface 302 and the lower surface 303 are total reflection surfaces, and the reflection surface 301 is a partially transmissive partial reflection surface, preferably a transflective surface. .
  • the at least one array lens 30 includes five array lenses, and the five array lenses are sequentially integrated, that is, the five array lenses are sequentially disposed in parallel with a first reflective surface 3011, a second reflective surface 3012, and a third a reflective surface 3013, a fourth reflective surface 3014, and a fifth reflective surface 3015.
  • the fifth reflective surface 3015 is adjacent to the light incident element 20; the first reflective surface 3011, the second reflective surface 3012, and the third reflective surface 3013.
  • the angle between the four reflective surfaces 3014 and the fifth reflective surface 3015 and the first major surface 101 is 30 degrees, and the reflectivity of the first reflective surface 3011 is R, wherein R ranges from 10% to 90%.
  • the optimal range of R is 40% to 60%; the reflectance of the second reflecting surface is 0.45R to 0.55R, and the reflectance of the third reflecting surface is 0.283R to 0.383R, and the fourth reflection The reflectance of the surface is 0.2R to 0.3R, and the reflectance of the fifth reflecting surface is 0.15R to 0.25R.
  • the reflectance of the second reflective surface 3012 is R/2
  • the reflectivity of the third reflective surface 3013 is R/3
  • the reflectivity of the fourth reflective surface 3014 is R/4
  • the reflectance of the fifth reflecting surface 3015 is R/5. It can be understood that the number of the at least one array of lenses 30 can be adjusted according to actual usage scenarios.
  • the optical path principle of the first embodiment of the substrate guided wave optical waveguide structure of the present invention is as follows:
  • the imaging light ray a emitted by the micro display module is incident on the light incident element 20 at an angle, and enters the light guide plate 10 via the light incident reflective surface 201 of the light incident component 20; then, the imaging light ray a is on the wedge surface 103 is totally reflected between the first main surface 101 and the second main surface 102, and is totally reflected by the first main surface 101 and the second main surface 102 to the fifth reflecting surface 3015 of the array lens 30, the imaging light a Partial reflection and partial transmission through the fifth reflecting surface 3015, that is, the transmitted light b and the reflected light c are formed, wherein the transmitted light b is totally reflected to the fourth reflecting surface 3014 via the lower surface 303 of the array lens 30, and the reflected light c is The special angle (no total reflection occurs) passes through the second major surface 102 into the human eye; the transmitted light b is partially and partially transmitted through the fourth reflective surface 3014, and the reflected light also enters through the second major surface 102.
  • the material of at least one array lens 30 of the present invention is a visible light material having a wavelength of 380 nm to 780 nm, preferably a glass or a resin material.
  • the present invention further provides an AR device optical imaging system, the optical imaging system including a micro display module 40 (including a micro display screen, a polarizing plate and a lens group disposed in sequence) and the substrate guided wave
  • the optical waveguide structure 100, the imaging light emitted by the micro display module 40 enters the human eye through the optical waveguide structure 100.
  • the pupil imaging diameter (Pupil Diameter) of the optical imaging system is 13.9 mm
  • the eye movement range (Eye Relief) of the optical imaging system is 13 mm
  • the optical imaging system has an angle of view of 42 degrees.
  • the first embodiment of the present invention achieves a large angle of view, an ultra-thin thickness, and a high-resolution imaging effect.
  • the present invention also provides an AR device including the above-described AR device optical imaging system.
  • FIG. 7 is a schematic structural view of a second embodiment of a substrate guided wave optical waveguide structure according to the present invention.
  • the difference between the embodiment is that the light guide plate 10 ′ of the optical waveguide structure 100 ′ has a first main surface 101 ′ and a second main surface 102 ′ that are oppositely disposed.
  • the main surface 101 ′ and the second main surface 102 ′ are both curved surfaces, and the first main surface 101 ′ and the second main surface 102 ′ are parallel to each other, and the at least one array lens 30 ′ is sequentially disposed on the light guide plate 10 ′.
  • each array lens 30' has a reflecting surface 301' which is the same angle as the tangential line of the first main surface 101' (the angle ranges from 20 degrees to 80 degrees).
  • optical path principle of the optical waveguide structure of this embodiment is the same as that of the first embodiment, and will not be described herein.
  • the present invention further provides an AR device optical imaging system, the optical imaging system including a micro display module 40 (including a micro display screen, a polarizing plate and a lens group disposed in sequence) and the substrate guided wave
  • the optical imaging system including a micro display module 40 (including a micro display screen, a polarizing plate and a lens group disposed in sequence) and the substrate guided wave
  • the optical waveguide structure 100', the imaging light emitted by the micro display module 40 enters the human eye through the optical waveguide structure 100'.
  • the at least one array lens of this embodiment includes five array lenses, and the angle between the tangential line of the first main surface 101 and the reflectance are the same as those of the first embodiment, and will not be described herein.
  • the pupil imaging diameter (Pupil Diameter) of the optical imaging system is 15.9 mm
  • the eye movement range (Eye Relief) of the optical imaging system is 13 mm
  • the optical imaging system has an angle of view of 50 degrees.
  • the first embodiment of the present invention achieves an imaging effect of a large angle of view, an ultra-thin thickness, and a high resolution.
  • the field of view of the optical imaging system of the AR device can be further improved.
  • the present invention also provides an AR device including the above-described AR device optical imaging system.
  • the AR device in the present invention is an AR glasses, an AR helmet, or the like.
  • the substrate guided wave optical waveguide structure, the AR device optical imaging system and the AR device have the following beneficial effects:
  • the optical waveguide structure with multiple array lenses is used to transmit the display image, and by optimizing the structural parameters of the optical waveguide structure, the imaging effect of large angle of view, ultra-thin thickness and high resolution is realized, which greatly improves the user experience.
  • the waveguide structure is easy to manufacture and assemble, and the reflective surface coating film of the array lens in the assembly process is not easily damaged and contaminated, and can meet the practical needs of mass production.
  • the substrate guided wave optical waveguide structure, the AR device optical imaging system and the AR device realize a large angle of view, ultra-thin thickness and high-resolution imaging effect, which greatly improves the user experience. And easy to manufacture and assembly, can meet the practical needs of mass production.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种衬底导波的光波导结构(100)、AR设备光学成像系统及AR设备,光波导结构(100)包括:一导光板(10),具有相对设置的第一主表面(101)及第二主表面(102);一入光元件(20),设于第二主表面(102)的一端;至少一阵列镜片(30),依次设置于导光板(10)的内部;每一阵列镜片(30)具有一反射面(301),反射面(301)与第一主表面(101)的夹角相同。实现了大视场角、超薄厚度及高分辨率的成像效果,大大提升了用户的体验感,且容易制造组装,可满足量产实用化需求。

Description

衬底导波的光波导结构、AR设备光学成像系统及AR设备 技术领域
本发明涉及AR设备光学成像的技术领域,特别涉及一种衬底导波的光波导结构、AR设备光学成像系统及AR设备。
背景技术
目前,AR(Augment Reality)技术已经成为引起越来越多的关注和研究,AR即增强现实技术,就是在真实世界的信息上叠加虚拟的信息,然后通过人类能接受的方式传递给自身,包括视觉、听觉、味觉、触觉等感官,辅助人类的感官去接收本来无法轻易地从现实世界中获取的信息,同时做到实时交互。
对于AR光学显示技术,其经历了离轴光学、棱镜、曲面棱镜及波导光学阶段,其中,光波导技术解决了光线横向传送的问题,并具有视场角大和厚度薄的优点,成为越来越多被采用的AR光学成像方案。
现有的一种光波导结构如美国专利US8189263B1所揭露技术,该专利的光波导采用多个齿状结构排列特性将影像传导至波导板另一侧,通过镜像排列之多个齿状结构破坏全反射条件,将影像导入眼球内,然而,该设计在扩大视角时也会使会波导板厚度同步增加,而且周围环境真实影像经过眼球前多个齿状结构会使影像偏折,造成眼球看到真实影像来至其他视角的误判。
另一种光波导结构如美国专利U20170363799A1所揭露技术,该专利的光波导结构是将多个不同反射率膜片穿插入多个平板材料后进行黏合,再将此结构进行切割、研磨及抛光,然而进行切割、研磨及抛光时产生热应力,使材料产生局部折射率变异及反射率膜片材质受损,若要降低热应力影像会使研磨及抛光速率降低及冷却液污染疑虑。
综上,现有的AR设备的光波导通常光学结构较复杂或者制造难度高,成像视场角较小,无法满足AR设备高体验的要求及难以量产实用化需求。
发明内容
本发明的目的是提出一种衬底导波的光波导结构、AR设备光学成像系统及AR设备,能实现大视场角、超薄厚度及高分辨率的成像效果,提升用户的体验感。
为达到上述目的,本发明提出了一种衬底导波的光波导结构,包括:
一导光板,具有相对设置的第一主表面及第二主表面;
一入光元件,设于第二主表面的一端;
至少一阵列镜片,依次设置于导光板的内部;每一阵列镜片具有一反射面,所述反射面与第一主表面的夹角相同。
进一步,在上述光波导结构中,所述第一主表面与第二主表面为相互平行的平面。
进一步,在上述光波导结构中,所述反射面与第一主表面的夹角为20度~80度。
进一步,在上述光波导结构中,所述至少一阵列镜片包括五个阵列镜片,所述五个阵列镜片依次设置有第一反射面、第二反射面、第三反射面、第四反射面及第五反射面,所述第五反射面靠近入光元件;所述第一反射面、第二反射面、第三反射面、第四反射面及第五反射面与第一主表面的夹角为30度,所述第一反射面的反射率为R;
其中,R的取值范围为10%~90%,所述第二反射面的反射率为0.45R~0.55R,所述第三反射面的反射率为0.283R~0.383R,所述第四反射面的反射率为0.2R~0.3R,所述第五反射面的反射率为0.15R~0.25R。
进一步,在上述光波导结构中,所述至少一阵列镜片的材质为玻璃或树脂。
进一步,在上述光波导结构中,所述第一主表面及第二主表面均为曲面,且所述第一主表面与第二主表面相互平行。
进一步,在上述光波导结构中,所述反射面与第一主表面切线的夹角为20度~80度。
进一步,在上述光波导结构中,所述至少一阵列镜片包括五个阵列镜片,所述五个阵列镜片依次设置有第一反射面、第二反射面、第三反射面、第四反射面及第五反射面,所述第五反射面靠近入光元件;所述第一反射面、第二反射面、 第三反射面、第四反射面及第五反射面与第一主表面切线的夹角为30度,所述第一反射面的反射率为R;
其中,R的取值范围为10%~90%,所述第二反射面的反射率为0.45R~0.55R,所述第三反射面的反射率为0.283R~0.383R,所述第四反射面的反射率为0.2R~0.3R,所述第五反射面的反射率为0.15R~0.25R。
另,本发明还提供一种AR设备光学成像系统,所述光学成像系统包括微显示模组及上述的光波导结构。
另,本发明还提供一种AR设备,所述AR设备包括上述的AR设备光学成像系统。
本发明一种衬底导波的光波导结构、AR设备光学成像系统及AR设备实现了大视场角、超薄厚度及高分辨率的成像效果,大大提升了用户的体验感,且容易制造组装,可满足量产实用化需求。
附图说明
图1为本发明一种衬底导波的光波导结构的第一实施例的立体图;
图2为本发明一种衬底导波的光波导结构的第一实施例的平面图;
图3a为图1中入光元件的另一结构示意图;
图3b为图1中入光元件的另一结构示意图;
图4为本发明一种衬底导波的光波导结构的第一实施例的光路图;
图5为本发明一种AR设备光学成像系统的第一实施例的结构示意图;
图6为图5的光学成像系统的光学效果图;
图7为本发明一种衬底导波的光波导结构的第二实施例的平面图;
图8为本发明一种AR设备光学成像系统的第二实施例的结构示意图;
图9为图8的光学成像系统的光学效果图。
具体实施方式
下面结合附图详细说明本发明的优选实施例。
请参阅图1至图4,图1为本发明一种衬底导波的光波导结构的第一实施例的结构示意图的立体示意图。本实施例中,所述光波导结构100包括一导光板10、一入光元件20及至少一阵列镜片30,其中,所述导光板10具有相对设置的第一主表面101及第二主表面102,所述入光元件20设于第二主表面102的一端,所述至少一阵列镜片30依次设置于导光板10的内部,且每一阵列镜片30具有一反射面301,所述反射面301与第一主表面101的夹角为20度~80度。
其中,所述导光板10为衬底导波的载体,本实施例中,所述导光板10大致为矩形,即所述第一主表面101与第二主表面102为相互平行的平面,所述导光板10还包括连接于第一主表面101与第二主表面102之间的楔形面103,所述楔形面103用于将入射光全反射导入导光板10中。
所述入光元件20用于将微显示模组发出的成像光线反射导入到导光板10中,具体地,所述入光元件20具有一入光反射面201,所述入光反射面201相对第二主表面102倾斜设置。请参阅图2,本实施例中,所述入光元件20为棱镜且为等腰直角形,即所述入光反射面201与第二主表面102的夹角为45度。可以理解,所述入光元件20还可以为反向棱镜(请参阅图3a),即所述入光反射面201’与第二主表面102的夹角为90度。另,所述入光元件20还可以为平面镜(请参阅图3b),所述平面镜的入光反射面201”与第二主表面102的夹角为45度。
所述至少一阵列镜片30依次平行设置于导光板10内部,本实施例中,每一阵列镜片30为棱形柱体,每一阵列镜片30包括相互平行设置的上表面302及下表面303,所述反射面301连接于上表面302及下表面303之间,所述上表面302及下表面303均为全反射面,所述反射面301为部分透射部分反射面,优选为半透半反面。
所述至少一阵列镜片30包括五个阵列镜片,所述五个阵列镜片依次贴合于一体,即所述五个阵列镜片依次平行设置有第一反射面3011、第二反射面3012、第三反射面3013、第四反射面3014及第五反射面3015,所述第五反射面3015靠近入光元件20;所述第一反射面3011、第二反射面3012、第三反射面3013、第四反射面3014及第五反射面3015与第一主表面101的夹角为30度,所述第 一反射面3011的反射率为R,其中,R的取值范围为10%~90%,且R的最佳范围为40%~60%;所述第二反射面的反射率为0.45R~0.55R,所述第三反射面的反射率为0.283R~0.383R,所述第四反射面的反射率为0.2R~0.3R,所述第五反射面的反射率为0.15R~0.25R。
本实施例中,所述第二反射面3012的反射率为R/2,所述第三反射面3013的反射率为R/3,所述第四反射面3014的反射率为R/4,所述第五反射面3015的反射率为R/5。可以理解,所述至少一阵列镜片30的数量可根据实际使用场景进行调整。
请参阅图4,本发明一种衬底导波的光波导结构的第一实施例的光路原理如下:
首先,微显示模组发出的成像光线a以一定角度入射到入光元件20中,经由入光元件20的入光反射面201进入到导光板10中;接着,所述成像光线a在楔形面103全反射进入第一主表面101与第二主表面102之间,并由第一主表面101与第二主表面102全反射传导至阵列镜片30中第五反射面3015,所述成像光线a经由第五反射面3015发生部分反射及部分透射,即形成透射光线b及反射光线c,其中,透射光线b经由阵列镜片30下表面303全反射至第四反射面3014,所述反射光线c则以特殊角(未发生全反射)穿过第二主表面102进入人眼中;所述透射光线b经由第四反射面3014发生部分反射及部分透射,其反射光线也穿过第二主表面102进入人眼中,以此类推,所有在第一反射面3011、第二反射面3012、第三反射面3013产生的反射光均从导光板10导出进入人眼,从而实现了微显示模组显示的图像通过光波导导入人眼成像。
需要说明的是,本发明至少一阵列镜片30的材质为波长380nm~780nm可见光材料,优选为玻璃或树脂材质。
请参阅图5,本发明还提供一种AR设备光学成像系统,所述光学成像系统包括微显示模组40(包括依次设置的微显示屏、偏振片及透镜组)及上述的衬底导波的光波导结构100,所述微显示模组40发出的成像光线经由光波导结构100进入人眼成像。本实施例中,所述光学成像系统的瞳孔直径(Pupil Diameter)为13.9mm,所述光学成像系统的眼动范围(Eye Relief)为13mm,所述光学成 像系统的视场角为42度。
请参阅图6,通过光学效果图可以看出,本发明第一实施例取得了大视场角、超薄厚度及高分辨率的成像效果。
另,本发明还提供一种AR设备,所述AR设备包括上述AR设备光学成像系统。
请参阅图7,图7为本发明一种衬底导波的光波导结构的第二实施例的结构示意图。相比于第一实施例,本实施例的区别仅在于:所述光波导结构100’的导光板10’具有相对设置的第一主表面101’及第二主表面102’,所述第一主表面101’及第二主表面102’均为曲面,且所述第一主表面101’与第二主表面102’相互平行,所述至少一阵列镜片30’依次设置于导光板10’的内部,且每一阵列镜片30’具有一反射面301’,所述反射面301’与第一主表面101’切线的夹角相同(夹角范围为20度~80度)。
本实施例的光波导结构的光路原理与第一实施例相同,在此就不再赘述。
请参阅图8,本发明还提供一种AR设备光学成像系统,所述光学成像系统包括微显示模组40(包括依次设置的微显示屏、偏振片及透镜组)及上述的衬底导波的光波导结构100’,所述微显示模组40发出的成像光线经由光波导结构100’进入人眼成像。
本实施例的至少一阵列镜片包括五个阵列镜片,其与第一主表面101切线的夹角以及反射率的设置均与第一实施例相同,在此就不再赘述。
本实施例中,所述光学成像系统的瞳孔直径(Pupil Diameter)为15.9mm,所述光学成像系统的眼动范围(Eye Relief)为13mm,所述光学成像系统的视场角为50度。
请参阅图9,通过光学效果图可以看出,本发明第一实施例取得了大视场角、超薄厚度及高分辨率的成像效果。
需要说明的是,通过优化本发明的光波导结构和参数,可进一步提高AR设备光学成像系统的视场角。
另,本发明还提供一种AR设备,所述AR设备包括上述AR设备光学成像系统。
需要说明的是,本发明中的AR设备为AR眼镜、AR头盔等。
相比于现有技术,本发明一种衬底导波的光波导结构、AR设备光学成像系统及AR设备具有如下有益效果:
采用具有多个阵列镜片的光波导结构传输显示图像,并通过优化光波导结构的结构参数,实现了大视场角、超薄厚度及高分辨率的成像效果,大大提升了用户的体验感,且波导结构容易制造组装,组装过程阵列镜片的反射面镀膜不易受损及污染,可满足量产实用化需求。
综上,本发明一种衬底导波的光波导结构、AR设备光学成像系统及AR设备实现了大视场角、超薄厚度及高分辨率的成像效果,大大提升了用户的体验感,且容易制造组装,可满足量产实用化需求。
这里本发明的描述和应用是说明性的,并非想将本发明的范围限制在上述实施例中。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本发明的精神或本质特征的情况下,本发明可以以其它形式、结构、布置、比例,以及用其它组件、材料和部件来实现。在不脱离本发明范围和精神的情况下,可以对这里所披露的实施例进行其它变形和改变。

Claims (10)

  1. 一种衬底导波的光波导结构,其特征在于,包括:
    一导光板,具有相对设置的第一主表面及第二主表面;
    一入光元件,设于第二主表面的一端;
    至少一阵列镜片,依次设置于导光板的内部;每一阵列镜片具有一反射面,所述反射面与第一主表面的夹角相同。
  2. 根据权利要求1所述的衬底导波的光波导结构,其特征在于,所述第一主表面与第二主表面为相互平行的平面。
  3. 根据权利要求1所述的衬底导波的光波导结构,其特征在于,所述反射面与第一主表面的夹角为20度~80度。
  4. 根据权利要求3所述的衬底导波的光波导结构,其特征在于,所述至少一阵列镜片包括五个阵列镜片,所述五个阵列镜片依次设置有第一反射面、第二反射面、第三反射面、第四反射面及第五反射面,所述第五反射面靠近入光元件;所述第一反射面、第二反射面、第三反射面、第四反射面及第五反射面与第一主表面的夹角为30度,所述第一反射面的反射率为R;
    其中,R的取值范围为10%~90%,所述第二反射面的反射率为0.45R~0.55R,所述第三反射面的反射率为0.283R~0.383R,所述第四反射面的反射率为0.2R~0.3R,所述第五反射面的反射率为0.15R~0.25R。
  5. 根据权利要求4所述的衬底导波的光波导结构,其特征在于,所述至少一阵列镜片的材质为玻璃或树脂。
  6. 根据权利要求1所述的衬底导波的光波导结构,其特征在于,所述第一主表面及第二主表面均为曲面,且所述第一主表面与第二主表面相互平行。
  7. 根据权利要求6所述的衬底导波的光波导结构,其特征在于,所述反射面与第一主表面切线的夹角为20度~80度。
  8. 根据权利要求7所述的衬底导波的光波导结构,其特征在于,所述至少一阵列镜片包括五个阵列镜片,所述五个阵列镜片依次设置有第一反射面、第二反射面、第三反射面、第四反射面及第五反射面,所述第五反射面靠近入光元件;所述第一反射面、第二反射面、第三反射面、第四反射面及第五反射面与第一主表面切线的夹角为30度,所述第一反射面的反射率为R;
    其中,R的取值范围为10%~90%,所述第二反射面的反射率为0.45R~0.55R,所述第三反射面的反射率为0.283R~0.383R,所述第四反射面的反射率为0.2R~0.3R,所述第五反射面的反射率为0.15R~0.25R。
  9. 一种AR设备光学成像系统,其特征在于,所述光学成像系统包括微显示模组及如权利要求1-8任一项所述的光波导结构。
  10. 一种AR设备,其特征在于,所述AR设备包括如权利要求9所述的AR设备光学成像系统。
PCT/CN2018/086772 2018-05-14 2018-05-14 衬底导波的光波导结构、ar设备光学成像系统及ar设备 WO2019218127A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880092390.6A CN112219149A (zh) 2018-05-14 2018-05-14 衬底导波的光波导结构、ar设备光学成像系统及ar设备
PCT/CN2018/086772 WO2019218127A1 (zh) 2018-05-14 2018-05-14 衬底导波的光波导结构、ar设备光学成像系统及ar设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086772 WO2019218127A1 (zh) 2018-05-14 2018-05-14 衬底导波的光波导结构、ar设备光学成像系统及ar设备

Publications (1)

Publication Number Publication Date
WO2019218127A1 true WO2019218127A1 (zh) 2019-11-21

Family

ID=68539209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086772 WO2019218127A1 (zh) 2018-05-14 2018-05-14 衬底导波的光波导结构、ar设备光学成像系统及ar设备

Country Status (2)

Country Link
CN (1) CN112219149A (zh)
WO (1) WO2019218127A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440513A (zh) * 2000-06-05 2003-09-03 鲁姆斯有限公司 基片导引的光束扩展器
US8665178B1 (en) * 2012-03-01 2014-03-04 Google, Inc. Partially-reflective waveguide stack and heads-up display using same
US20160170213A1 (en) * 2005-02-10 2016-06-16 Lumus Ltd. Substrate-guide optical device
CN107003529A (zh) * 2014-12-04 2017-08-01 大日本印刷株式会社 半透过型反射片、导光板和显示装置
CN107111135A (zh) * 2014-12-25 2017-08-29 鲁姆斯有限公司 用于制造基板引导的光学器件的方法
CN206649211U (zh) * 2017-02-24 2017-11-17 北京耐德佳显示技术有限公司 一种使用波导型光学元件的近眼显示装置
CN107462993A (zh) * 2017-09-04 2017-12-12 北京灵犀微光科技有限公司 图像显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941398B (zh) * 2014-04-09 2016-10-19 北京理工大学 透过式眼镜显示器
CN104656258B (zh) * 2015-02-05 2017-06-16 上海理湃光晶技术有限公司 屈光度可调的曲面波导近眼光学显示器件
CN205080317U (zh) * 2015-09-30 2016-03-09 上海理鑫光学科技有限公司 基于光反射的大视场角增强现实眼镜
CN206020813U (zh) * 2016-06-20 2017-03-15 东莞市长资实业有限公司 波导式的头戴显示器的光学装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440513A (zh) * 2000-06-05 2003-09-03 鲁姆斯有限公司 基片导引的光束扩展器
US20160170213A1 (en) * 2005-02-10 2016-06-16 Lumus Ltd. Substrate-guide optical device
US8665178B1 (en) * 2012-03-01 2014-03-04 Google, Inc. Partially-reflective waveguide stack and heads-up display using same
CN107003529A (zh) * 2014-12-04 2017-08-01 大日本印刷株式会社 半透过型反射片、导光板和显示装置
CN107111135A (zh) * 2014-12-25 2017-08-29 鲁姆斯有限公司 用于制造基板引导的光学器件的方法
CN206649211U (zh) * 2017-02-24 2017-11-17 北京耐德佳显示技术有限公司 一种使用波导型光学元件的近眼显示装置
CN107462993A (zh) * 2017-09-04 2017-12-12 北京灵犀微光科技有限公司 图像显示装置

Also Published As

Publication number Publication date
CN112219149A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
JP6690030B2 (ja) 小型ヘッドマウント式表示システム
WO2019154430A1 (zh) 穿戴式ar系统、ar显示设备及其投射源模组
RU2717897C2 (ru) Система отображения информации, создающая равномерное изображение
JP6994940B2 (ja) 光結合を用いたヘッドマウント型画像装置
CN104503087B (zh) 偏振导光的平面波导光学显示器件
US10656421B2 (en) Lightguide structure, optical device and imaging system
CN104536138B (zh) 带有锯齿夹层结构的平面波导双目光学显示器件
US20050013005A1 (en) Optical combiner designs and head mounted displays
US20070177275A1 (en) Personal Display Using an Off-Axis Illuminator
CN104678555B (zh) 屈光度矫正的齿形镶嵌平面波导光学器件
US8867131B1 (en) Hybrid polarizing beam splitter
WO2019085796A1 (zh) 一种宽带宽级联分光膜阵列波导及包括该波导的显示系统
CN108732767A (zh) 一种紧凑型自由曲面波导近眼显示光学装置
CN104597565A (zh) 增强现实的齿形镶嵌平面波导光学器件
CN115144952B (zh) 光波导器件及近眼显示装置
CN111025661A (zh) 一种光纤耦合波导近眼显示光学装置
TW202131053A (zh) 採用散光光學器件和像差補償的顯示器
Yan et al. Surface micro-reflector array for augmented reality display
JP3524569B2 (ja) 視覚表示装置
CN114326123B (zh) 一种近眼显示装置
TWI824355B (zh) 一種光學系統及混合實境設備
WO2019218127A1 (zh) 衬底导波的光波导结构、ar设备光学成像系统及ar设备
US20230003931A1 (en) Light guide and virtual-image display device
CN111474719A (zh) 波导装置和增强现实设备
CN219349182U (zh) 一种光波导和近眼显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919336

Country of ref document: EP

Kind code of ref document: A1