WO2019216450A1 - Method for culturing stem cells secreting anti-inflammatory components, and anti-inflammatory composition containing said stem cell culture medium - Google Patents

Method for culturing stem cells secreting anti-inflammatory components, and anti-inflammatory composition containing said stem cell culture medium Download PDF

Info

Publication number
WO2019216450A1
WO2019216450A1 PCT/KR2018/005317 KR2018005317W WO2019216450A1 WO 2019216450 A1 WO2019216450 A1 WO 2019216450A1 KR 2018005317 W KR2018005317 W KR 2018005317W WO 2019216450 A1 WO2019216450 A1 WO 2019216450A1
Authority
WO
WIPO (PCT)
Prior art keywords
inflammatory
cord blood
umbilical cord
multipotent stem
stem cell
Prior art date
Application number
PCT/KR2018/005317
Other languages
French (fr)
Korean (ko)
Inventor
김준홍
윤성지
쵄쇼웬
최정혜
Original Assignee
주식회사 휴코드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 휴코드 filed Critical 주식회사 휴코드
Priority to JP2020562658A priority Critical patent/JP7072292B2/en
Publication of WO2019216450A1 publication Critical patent/WO2019216450A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/51Umbilical cord; Umbilical cord blood; Umbilical stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/148Transforming growth factor alpha [TGF-a]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2303Interleukin-3 (IL-3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2306Interleukin-6 (IL-6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • C12N2506/025Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells from extra-embryonic cells, e.g. trophoblast, placenta
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2523/00Culture process characterised by temperature

Definitions

  • the present invention relates to a method for culturing umbilical cord blood-derived multipotent stem cells secreting an anti-inflammatory component, and an anti-inflammatory composition comprising the stem cell culture. More specifically, a method of culturing umbilical cord blood-derived multipotent stem cells and a stem cell secreting a component having an effect of inhibiting the production of NO (Nitric Oxide) and PGE 2 (Prostaglandin E 2 ) by inhibiting iNOS and COX 2 It relates to an anti-inflammatory composition comprising a culture solution.
  • NO Nitric Oxide
  • PGE 2 Prostaglandin E 2
  • Stem cells are pluripotent cells capable of differentiating into all the cells constituting our body and have self-renewal ability, and cells capable of regeneration when there is damage to cells and tissues. These stem cells are largely divided into embryonic stem cells and adult stem cells. Embryonic stem cells may be derived from pre-implantation embryos, and adult stem cells are pluripotent cells capable of differentiating into specific cell types.
  • Stem cells are also classified into autologous and allogenic stem cells because one of the biggest side effects of transplanting stem cells into the patient's body is the rejection of the transplant. . Therefore, it is often divided into autologous or other stem cells. In the case of adult stem cells, many clinical trials are currently being conducted. In particular, adult stem cell transplantation may determine whether the stem cells are autologous or other stem cells.
  • cord blood is easier to acquire than bone marrow, and when a lot of cord blood is obtained, cord blood stem cells that match or are closest to the patient's histocompatibility gene can be used to solve the immune rejection reaction.
  • umbilical cord blood is commercially advantageous over embryonic stem cells that cannot be used realistically as a source of stem cells, and commercially available because it does not require the harvesting of bone marrow, fat, etc. in the adult body like adult stem cells. It is easier to say.
  • allergic contact dermatitis, psoriasis, and atopic dermatitis which are typical skin diseases, are inflammatory diseases mediated by T cells, which are immune cells, and steroidal anti-inflammatory drugs are used to treat these inflammatory diseases. It is shown. Therefore, it is necessary to develop a new material having low toxicity and no side effects, and the present inventors have developed a material having an anti-inflammatory effect using cord blood-derived multipotent stem cells.
  • the present invention has been made in an effort to provide an anti-inflammatory composition comprising a cord blood-derived multipotent stem cell culture method and a stem cell culture medium that secrete a substance that replaces a conventional anti-inflammatory agent having many side effects.
  • cord blood-derived multipotent stem cell culture method for secreting an anti-inflammatory component according to an aspect of the present invention
  • the stem cell anti-inflammatory media in an embodiment of the present invention, the stem cell anti-inflammatory media
  • the stem cell anti-inflammatory media in an embodiment of the present invention, the stem cell anti-inflammatory media
  • ⁇ MEM or IMDM is 10 to 30 parts by weight
  • At least one component selected from the group consisting of TGF- ⁇ , TNF- ⁇ , IL-3, IL-6, and MEM vitamins may include 1 ⁇ 10 ⁇ 8 to 17 ⁇ 10 ⁇ 6 parts by weight;
  • the stem cell anti-inflammatory media in an embodiment of the present invention, the stem cell anti-inflammatory media
  • IMDM is 10 to 30 parts by weight
  • TGF- ⁇ is 1 x10 -8 to 1x10 -7 parts by weight
  • TNF- ⁇ is 1 x10 -8 to 5x10 -8 parts by weight
  • IL-3 is 1x10 -8 to 5x10 -8 parts by weight
  • IL-6 is 1x10 - 8 to 5x10 -8 parts by weight
  • the stimulating step may be characterized in that made for 20 to 28 hours.
  • the stimulating step may be characterized in that at 35 to 38 °C.
  • the cord blood-derived multipotent stem cell culture medium in an embodiment of the present invention, the cord blood-derived multipotent stem cell culture medium
  • one culture selected from the group consisting of ⁇ MEM, IMDM, DMEM / F12, and Medium199;
  • It may be characterized by including; at least one component selected from the group consisting of insulin, transferrin, sodium selenite, MEM vitamin and human albumin.
  • the cord blood-derived multipotent stem cell culture medium in an embodiment of the present invention, the cord blood-derived multipotent stem cell culture medium
  • One culture medium selected from the group consisting of ⁇ MEM, IMDM, DMEM / F12 and Medium199 is 10 to 30 parts by weight;
  • At least one component selected from the group consisting of insulin, transferrin, sodium selenite, MEM vitamins, and human albumin may be 1 x 10 -6 to 5 x 10 -2 parts by weight.
  • the cord blood-derived multipotent stem cell culture medium in an embodiment of the present invention, the cord blood-derived multipotent stem cell culture medium
  • Medium199 is 10 to 30 parts by weight
  • Insulin 1 x10 -3 to 5x10 -2 part by weight of transferrin is 1 x10 -3 to 5x10 -2 part by weight of sodium selenite is 1 x10 -6 to 5x10 -5 parts by weight
  • MEM vitamins 8 x10 -6 to 17 ⁇ 10 ⁇ 6 parts by weight and human albumin are 5 ⁇ 10 ⁇ 3 to 15 ⁇ 10 ⁇ 3 parts by weight;
  • the anti-inflammatory component may be characterized by inhibiting NO (Nitric oxide) production.
  • the NO production may be suppressed by suppressing the expression level of i-NOS (inducible Nitric Oxide Synthase).
  • i-NOS inducible Nitric Oxide Synthase
  • the anti-inflammatory component may be characterized by inhibiting the production of PGE 2 (Prostaglandin E 2 ).
  • the PGE 2 production may be suppressed by suppressing the expression level of COX2 (Cyclooxygenase 2).
  • Anti-inflammatory composition may include a culture medium secreted by umbilical cord blood-derived multipotent stem cells cultured by the method according to the present invention.
  • the anti-inflammatory composition may be characterized in that it comprises at least one selected from the group consisting of IL-8, IL-10, IL-18, GM-CSF and MIP-1 ⁇ .
  • the anti-inflammatory composition is 40 to 50 parts by weight of IL-8, 0.05 to 0.07 parts by weight of IL-10, 1 to 2 parts by weight of IL-18, 0.4 to 0.6 of GM-CSF
  • the parts by weight and MIP-1 ⁇ may be characterized by including 20 to 30 parts by weight.
  • Anti-inflammatory composition comprising a culture medium secreted by umbilical cord blood-derived multipotent stem cells according to an embodiment of the present invention can be used in medicine or functional cosmetics for the improvement or treatment of inflammatory diseases.
  • HSCM anti-inflammatory components
  • Figure 2 is a result of measuring the amount of nitric oxide (NO; Nitric Oxide) production according to the concentration of anti-inflammatory component (HSCM).
  • NO nitric oxide
  • HSCM anti-inflammatory component
  • Figure 3 is a result of measuring the production amount of prostaglandin E 2 (PGE 2 ; Prostaglandin E 2 ) according to the concentration of anti-inflammatory component (HSCM).
  • Figure 4 is a result of measuring the gene expression of inflammatory factors iNOS, COX2, IL-1 ⁇ , IL-6 and TNF- ⁇ according to the concentration of anti-inflammatory component (HSCM).
  • HSCM anti-inflammatory component
  • HSCM anti-inflammatory component
  • HSCM anti-inflammatory component
  • Umbilical cord blood was transferred within 24 hours from the mother who received the consent, or only the nucleated cell layer was recovered, and cryopreserved cord blood stored in a cryogenic freezer at minus 196 °C was selected.
  • umbilical cord blood was diluted in double doses with ⁇ MEM (alpha-minimum essential medium, Jeil Biotech Services, Korea) or DMEM (Dulbecco's modified Eagle's medium) and centrifuged at 300 xg for 10 minutes at room temperature. .
  • the separated buffy coat layer was harvested and diluted again with twice the capacity of ⁇ MEM, then superimposed on Ficoll-Hypaque, and centrifuged at 300xg for 30 minutes at room temperature.
  • Ficoll-Hypaque a polymer of Ficoll (a polymer of sucrose) and Hypaque (sodium ditrizoate), is mainly used to separate monocytes from blood.
  • Ficoll-Hypaque has a specific gravity of 1.077g / ml, and monocytes are lighter than this, but red blood cells are heavier than that, so the specific gravity can be separated. In other words, when the blood is centrifuged on Ficoll-Hypaque, monocytes are collected on Ficoll-Hypaque.
  • Monocytes obtained by such a density gradient centrifugation method were washed twice with ⁇ MEM for washing with no additives.
  • the resulting monocytes contained antibiotics (1000 U / ml penicillin G, 1000 ug / ml streptomycin sulfate, Gibco-BRL), antifungal agents (0.25 ug / ml amphotericin B), and 2 mM glutamine (Sigma).
  • Stem Cell Factor 50 ng / ml
  • GM-CSF granulocyte-macrophage colony-stimulating factor; 10 ng / ml
  • FBS fetal bovine serum
  • G-CSF granulocyte colonystimulating factor
  • 10 ng / ml fetal bovine serum
  • IL-3 interleukin-3; 10 ng / ml
  • IL-6 interleukin-6
  • Umbilical cord blood-derived multipotent stem cells were obtained and washed three times with PBS and then stem cell anti-inflammatory media (IMDM 500ml, TGF- ⁇ (Prosepc, Israel) 10-100pg / ml, TNF- ⁇ (Prospec, Istrael) 10-50pg / ml, IL-3 (Prospec, Istrael) 10-50pg / ml, IL-6 (Prospec, Istrael) 10-50pg / ml and MEM Vitamin (Gibco, USA) 1-2% (8,000-17,000pg / ml) Stimulated by incubating in a 37 °C incubator for 24 hours.
  • the cells were washed three times with PBS and cultured medium (500 ml of medium 199, 1-50 ug / ml of insulin (Sigma, USA), 1-50 ug / ml of transferrin (Sigma, USA), sodium selenite (Sigma, USA) ) 0.001 ⁇ 0.05ug / ml, MEM vitamin (Gibco, USA) 1 ⁇ 2% (0.008 ⁇ 0.017ug / ml), human albumin (Sigma, USA) 0.5 ⁇ 1.5% (5 ⁇ 15ug / ml)
  • the cells were incubated in an incubator. The cultures were collected by replacing the medium once every two days, and the collected cultures were used after each filter (Top Filter system, Corning) and then refrigerated and frozen.
  • MTT assay was performed to confirm the cytotoxicity of HSCM, an anti-inflammatory substance secreted by cord blood-derived multipotent stem cells according to the present invention.
  • Raw 264.7 cells were incubated for 24 hours in 37 °C, 5% CO 2 incubator with 100ul each of 3X10 3 cells / well in a 96 well plate with DMEM containing 10% FBS. After incubation, the medium was removed, and experimental groups (HSCM 0, 10, 20, 30, 40, 50%) were prepared, treated with triplicate for each group, and then incubated in 37 ° C. and 5% CO 2 incubator for 24 hours.
  • FIG. 1 shows that even if the concentration of anti-inflammatory component (HSCM) is increased, it does not significantly affect cell survival.
  • HSCM anti-inflammatory component
  • Nitric oxide (NO) production experiments were performed using the Griess method using raw 264.7 macrophage cells.
  • DMEM containing 10% FBS and 250ul of 1 ⁇ 10 5 cells / well in a 48 well plate was incubated for 24 hours in 37 °C, 5% CO 2 incubator. After incubation, the medium was removed, and the experimental group (HSCM 0, 10, 30, 50%) was placed in a DMEM medium containing 10% FBS, and 1ug / ml LPS (lipopolysaccharide), which is a source of inflammation, was added thereto at 37 ° C and 5% CO 2. Incubated for 24 hours in an incubator.
  • PGE 2 Prostaglandin E 2
  • 250 ⁇ l of 1X10 5 cells / well was added to 48 well plates with DMEM containing 10% FBS and incubated in 37 ° C. and 5% CO 2 incubator for 24 hours.
  • the medium was removed, and the experimental group (HSCM 0, 10, 30, 50%) was placed in a DMEM medium containing 10% FBS, and 1 ug / ml of lipopoliysaccharide (LPS), a source of inflammation, was added thereto at 37 ° C and 5% CO 2.
  • the incubator was incubated for 24 hours.
  • the culture solution was collected, transferred to a 1.5ml tube, and centrifuged at 14,000 rpm for 20 minutes to obtain a supernatant.
  • the obtained supernatant was measured using a PGE 2 EIA kit (cayman, USA).
  • Test Example 4 Analysis of anti-inflammatory gene expression in cells cultured in medium containing anti-inflammatory component (HSCM) (RT-PCR method)
  • RT-PCR was performed to investigate the effect of HSCM on gene expression of inflammatory factors iNOS, COX2, IL-1 ⁇ IL-6 and TNF- ⁇ .
  • RNAzol B reagent for gene expression analysis. After 1 ml of RNAzol B reagent was added to dissolve the cells, the tissues were denatured, transferred to 1.5 ml tubes, and 200 ul of chloroform was added and vortexed for 20 seconds to ensure complete mixing. After reaction at room temperature for 15 minutes, the supernatant was obtained by centrifugation at 14,000 rpm for 20 minutes, and inverted with the same amount of isopropyl alcohol, and left to stand at room temperature for 10 minutes. The sample was centrifuged at 14,000 rpm for 15 minutes to obtain RNA pellet.
  • RNA concentration and purity were measured at OD 260/280 nm.
  • Single-strand cDNA synthesis was performed by mixing 1 ug of oligo-d (T) primer (100 pmol) with 1 ug of total RNA extracted and reacting at 65 ° C. for 10 minutes, followed by rapid cooling.
  • T oligo-d
  • To this template add 2m each of 10mM dNTP (TaKaRa Bio Inc., Japan), 0.1M DTT and 5x RT buffer (10mM Tris-Cl, 50mM KCl, 2.5mM MgCl2) and add 100 units of M-MLV RTase (BioNeer, Korea) After the addition, the total amount was corrected to 20 ul using distilled water treated with DEPC. Samples were terminated by inactivating reverse transcriptase through a reaction at 25 ° C. for 5 minutes and at 42 ° C. for 1 hour, followed by reaction at 72 ° C. for 15 minutes.
  • RT-PCR reaction was performed using the synthesized cDNA and primers of each gene. Reaction conditions were template 1ul and primer 0.5ul (10pmol), 2.5mM dNTP 0.5ul, 10X PCR buffer [10mM Tris-Cl (pH8.3), 50mM KCl, 2.5mM MgCl2] 2.5ul, Taq polymerase 2 unit / ul After the addition was carried out using a sterile distilled water to correct the total amount to 25ul to perform a PCR reaction. The amplification products obtained from the PCR reactions were subjected to electrophoresis using 1.5% agarose gel, and the detection intensity of each PCR product was analyzed using an image analysis system (Kodak EDAS290). Relative quantification of band detection intensity was corrected based on the housekeeping genes GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and actin.
  • Test Example 5 Analysis of anti-inflammatory gene expression in cells cultured in a medium containing anti-inflammatory components (HSCM) (Western blot method)
  • lysis buffer 150mM NaCl, 50mM Tris-HCl pH7.5, 1% NP40, 0.1% SDS, 1mM PMSF
  • 500ul lysis buffer 150mM NaCl, 50mM Tris-HCl pH7.5, 1% NP40, 0.1% SDS, 1mM PMSF
  • 500ul lysis buffer 150mM NaCl, 50mM Tris-HCl pH7.5, 1% NP40, 0.1% SDS, 1mM PMSF
  • Separation and cell membrane components were removed. Protein samples obtained from the cultured cells were quantified using the BCA method, 20ug of lysate was electrophoretically separated by 12% SDS-PAGE, and the protein was transferred to the PVDF membrane at 90V for 50 minutes using a transfer solution.
  • the blocking of the membrane was carried out for 1 hour at room temperature in TBST (50mM Tris-HCl pH7.6, 150mM NaCl, 0.2% Tween 20) solution containing 5% skim milk.
  • IL-8 which is a major component related to anti-inflammatory, among the components secreted by umbilical cord blood-derived multipotent stem cells cultured in soy hydrolyzate-containing medium disclosed in Korean Patent Publication No. 10-2009-0090850 or Korean Patent Publication No. 10-2013-0104924
  • the contents of IL-10, IL-18, GM-CSF and MIP-1 ⁇ were compared with the contents of the components secreted from umbilical cord blood-derived multipotent stem cells stimulated and cultured according to the present invention and the results are shown in Table 1.
  • umbilical cord blood-derived multipotent stem cells stimulated and cultured according to the present invention are the major anti-inflammatory components IL-8, IL-10, IL-18, GM-CSF and MIP-1 ⁇ .
  • IL-8 is 8.8 times
  • IL-10 is 50 times
  • GM-CSF is 24 times
  • MIP-1 ⁇ is 2927 times higher than cord blood-derived multipotent stem cells cultured by the culture techniques described in the published patents. You can see more secretion.
  • IL-18 was not secreted from the cord blood multipotent stem cells according to the patents, but was secreted from the cord blood multipotent stem cells according to the present invention as shown in Table 1 above.
  • Umbilical cord blood-derived multipotent stem cell culture method for secreting an anti-inflammatory component comprises the steps of: 1) separating monocytes from umbilical cord blood; 2) culturing the monocytes to obtain umbilical cord blood-derived multipotent stem cells; 3) stimulating the obtained cord blood-derived multipotent stem cells in a stem cell anti-inflammatory customized medium; 4) washing the stimulated cord blood-derived multipotent stem cells; And 5) culturing the washed umbilical cord blood-derived multipotent stem cells in a culture medium.
  • the umbilical cord blood refers to umbilical cord blood coming out of the umbilical cord at birth, and may contain hematopoietic stem cells (stematopoietic stem cells) that make leukocytes, red blood cells, and platelets, and mesenchymal stem cells that make cartilage, bone, muscle, and nerves. (Mesenchymal stem cells) may also be included.
  • the multipotent stem cell refers to a stem cell having a differentiation capacity capable of differentiating only into cells specific to a certain tissue and organs.
  • a cell having a multipotency an adult stem such as HSC, MSC, and NSC Cells may be included.
  • Adult pluripotent stem cells having such multipotency may be involved in the growth and development of prenatal, neonatal, and adult tissues and organs, as well as in maintaining homeostasis of adult tissues and inducing regeneration upon tissue damage.
  • the multipotent stem cells can secrete several components and these components can act on damaged cells or tissues in vivo to improve damaged sites.
  • the multipotent stem cells may directly repair damaged cells or tissues, but protect the damaged cells from apoptosis, create new blood vessels, and break down hardened proteins to improve the function of tissues. Not only can it be revived, but it can also release various physiological factors (called the paracrine effect).
  • the multipotent stem cells may secrete substances or anti-cancer substances that promote cell growth factors that help the growth and regeneration of the skin and antioxidants that protect the skin from harmful free radicals and reduce inflammation, and the like. Can be.
  • the step of stimulating the obtained cord blood-derived multipotent stem cells in a stem cell anti-inflammatory tailored medium can activate the anti-inflammatory signaling mechanism of stem cells, as a result IL-8 Can induce secretion of anti-inflammatory components such as IL-10, IL-18, GM-CSF, MCP-1 ⁇ . That is, among the various signaling mechanisms of the cord blood-derived multipotent stem cells, the anti-inflammatory signaling mechanism may be specifically activated more than the general state, and as a result, the state of the stem cells to be suitable for secreting anti-inflammatory components. Can change.
  • the stem cell anti-inflammatory media is ⁇ MEM or IMDM; And at least one component selected from the group consisting of TGF- ⁇ , TNF- ⁇ , IL-3, IL-6, and MEM vitamins.
  • the stem cell anti-inflammatory customized medium is ⁇ MEM or IMDM 10 to 30 parts by weight; And at least one component selected from the group consisting of TGF- ⁇ , TNF- ⁇ , IL-3, IL-6, and MEM vitamins, may include 1 ⁇ 10 ⁇ 8 to 17 ⁇ 10 ⁇ 7 .
  • the MEM vitamin may be composed of Choline chloride, D-Calcium pantothenate, Folic Acid, Nicotinamide, Pyridoxal hydrochloride, Riboflavin, Thiamine hydrochloride and i-Inositol.
  • the MEM vitamin is 80 to 120 ug Choline chloride, 80 to 120 ug D-Calcium pantothenate, 80 to 120 ug Folic Acid, 80 to 120 ug Nicotinamide, 80 to 120 ug Pyridoxal hydrochloride, 8 to 12 ug Riboflavin, 80-120 ug Thiamine hydrochloride and 180-220 ug i-Inositol.
  • the stem cell anti-inflammatory medium, ⁇ MEM or IMDM is 10 to 30 parts by weight;
  • TGF- ⁇ is 1x10 -8 to 17x10 -7 parts by weight, TNF- ⁇ was 1 x10 -8 to 17x10 -7 parts by weight,
  • IL-3 is 1x10 -8 to 17x10 -7 parts by weight,
  • IL-6 is 1x10 - 8 to 17 ⁇ 10 ⁇ 7 parts by weight and the MEM vitamin may be 1 ⁇ 10 ⁇ 8 to 17 ⁇ 10 ⁇ 7 parts by weight.
  • the stem cell anti-inflammatory media 15 to 25 parts by weight of IMDM;
  • TGF- ⁇ is 1x10 -8 to 1x10 -7 parts by weight
  • TNF- ⁇ is 1x10 -8 to 5x10 -8 parts by weight
  • IL-3 is 1x10 -8 to 5x10 -8 parts by weight
  • IL-6 is 1x10 -8 to 5x10 -8 parts by weight
  • MEM vitamins may be an 8x10 -6 to 17x10 -6 wt.
  • ⁇ MEM or IMDM is 400 to 600ml; And at least one component selected from the group consisting of TGF- ⁇ , TNF- ⁇ , IL-3, IL-6, and MEM vitamins may include 1 to 100 pg / ml.
  • the IMDM is 450 to 550 ml; And 1 to 100 pg / ml for TGF- ⁇ , 1 to 100 pg / ml for TNF- ⁇ , 1 to 100 pg / ml for IL-3, 1 to 100 pg / ml for IL-6, and 1 to 100 pg / ml for MEM vitamins; It may include.
  • the TGF- ⁇ is 10 to 100 pg / ml
  • the TNF- ⁇ is 10 to 50 pg / ml
  • the IL-3 is 10 to 50 pg / ml
  • the IL-6 is 10 to 50 pg / ml
  • the The MEM vitamin can be between 8000 and 17000 pg / ml.
  • the stimulating step may be performed for 20 to 28 hours. Preferably from 23 to 25 hours.
  • the stem cells according to an embodiment of the present invention is not sufficiently stimulated to secrete anti-inflammatory components, and if stimulated for more than 28 hours, the stem cells excessively stimulated In addition to the anti-inflammatory ingredients in addition to the other components come out can lower the anti-inflammatory purity.
  • the stimulating step may be performed at 35 to 38 ° C. Preferably it may be made at 36 to 37.5 °C. Stimulation of stem cells at temperatures below 35 ° C may reduce the overall activity of the cells and may not result in sufficient stimulation. Stimulation of stem cells at temperatures above 38 ° C may inhibit the activity of intracellular enzymes and the like. As a result, the cells may die and secretion of the anti-inflammatory substances according to the embodiment of the present invention may not occur properly.
  • Washing the stimulated umbilical cord blood-derived multipotent stem cells may include stimulating the stem cell anti-inflammatory media after the stimulation in the stem cell anti-inflammatory media and before culturing in the culture medium. During this step, the components secreted from the cord blood-derived multipotent stem cells are also removed. In the stimulating step, the components secreted from the umbilical cord blood-derived multipotent stem cells are not components corresponding to the anti-inflammatory action, which is the object of the present invention, and thus should be removed through a washing process.
  • the culturing the washed umbilical cord blood-derived multipotent stem cells in a culture medium is a step of culturing to produce and secrete anti-inflammatory components from the umbilical cord blood-derived stem cells that have undergone washing after the stimulation is completed. That is, the components secreted from the cord blood-derived multipotent stem cells cultured in the culturing may include components capable of anti-inflammatory action.
  • the anti-inflammatory component may inhibit NO (Nitric oxide) production.
  • NO Nitric oxide
  • the NO is known to play a role in blood pressure regulation, neurotransmission, platelet aggregation inhibitory, immune function, and can be synthesized by nitric oxide synthase (NOS) from L-arginine in various tissues and cells.
  • NOS nitric oxide synthase
  • the NOS can be broadly divided into nNOS (neuronal NOS), eNOS (endothelial NOS), and i-NOS (inducible NOS).
  • i-NOS is independent of intracellular calcium concentration and stimulated by LPS, IFN- ⁇ , IL-1 and TNF- ⁇ in various cells such as macrophages, vascular smooth muscle cells, endothelial cells, hepatocytes and cardiomyocytes. It can be activated and produce a large amount of NO for a long time. However, when NO is generated more than necessary, it may cause harmful effects on the living body by causing vasodilation due to shock, tissue damage caused by inflammatory response, and damage to nerve tissue.
  • the anti-inflammatory component (HSCM) secreted from stem cells can inhibit the NO production through the umbilical cord blood-derived multipotent stem cell culture method according to an embodiment of the present invention.
  • the anti-inflammatory component may inhibit NO production by inhibiting the expression level of i-NOS (inducible Nitric oxide synthase). 4 and 5 show that the anti-inflammatory component can inhibit not only gene expression of i-NOS but also protein expression.
  • the anti-inflammatory component may inhibit the production of PGE 2 (Prostaglandin E2).
  • PGE 2 is one of inflammatory mediators such as NO, and may mediate vasodilation, edema, fever, and pain.
  • MMPs matrix metalloproteinases
  • COX cyclooxygenase
  • the anti-inflammatory component (HSCM) secreted from stem cells through the umbilical cord blood-derived multipotent stem cell culture method according to an embodiment of the present invention can inhibit the amount of PGE 2 produced.
  • the anti-inflammatory component may inhibit the PGE 2 by inhibiting the expression level of COX2 (Cyclooxygenase 2).
  • COX2 Cyclooxygenase 2
  • 4 and 5 show that the anti-inflammatory component can inhibit not only the gene expression of COX2 but also protein expression.
  • the culture medium one medium selected from the group consisting of ⁇ MEM, IMDM, DMEM / F12 and Medium199; And at least one component selected from the group consisting of insulin, transferrin, sodium selenite, MEM vitamin, and human albumin.
  • the culture medium is one selected from the group consisting of ⁇ MEM, IMDM, DMEM / F12 and Medium199 10 to 30 parts by weight; And at least one component selected from the group consisting of insulin, transferrin, sodium selenite, MEM vitamin, and human albumin, may include 1 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 2 parts by weight.
  • the culture medium, Medium199 is 10 to 30 parts by weight;
  • Insulin 1x10 -6 to 5x10 -2 part by weight of transferrin is 1x10 -6 to 5x10 -2 part by weight of sodium selenite is 1x10 -6 to 5x10 -2 part by weight,
  • MEM vitamins 1x10 -6 to 5x10 -2 Parts by weight and human albumin may include 1 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 2 parts by weight.
  • the culture medium, Medium199 is 15 to 25 parts by weight;
  • Insulin 1x10 -3 to 5x10 -2 part by weight of transferrin is 1x10 -3 to 5x10 -2 part by weight of sodium selenite is 1x10 -6 to 5x10 -5 parts by weight,
  • MEM vitamins 8x10 -6 to 17x10 -6 Parts by weight and human albumin may include 5 ⁇ 10 ⁇ 3 to 15 ⁇ 10 ⁇ 3 parts by weight.
  • the culture medium one medium selected from the group consisting of ⁇ MEM, IMDM, DMEM / F12 and Medium199 is 400 to 600 ml; And at least one component selected from the group consisting of insulin, transferrin, sodium selenite, MEM vitamins, and human albumin may comprise 0.001 to 50 ug / ml.
  • Medium199 is 450 to 550 ml; And 1 to 50 ug / ml of insulin, 1 to 50 ug / ml of transferrin, 0.001 to 0.05 ug / ml of sodium selenite, 0.008 to 0.017 ug / ml of MEM vitamin and 5 to 15 ug / ml of human albumin; can do.
  • the anti-inflammatory composition according to another aspect of the present invention may include a culture medium secreted by the stem cells cultured by the cord blood-derived multipotent stem cell culture method.
  • the anti-inflammatory composition may comprise at least one selected from the group consisting of IL-8, IL-10, IL-18, GM-CSF and MIP-1 ⁇ .
  • IL-8 is 40 to 50 parts by weight
  • IL-10 is 0.05 to 0.07 parts by weight
  • IL-18 is 1 to 2 parts by weight
  • GM-CSF is 0.4 to 0.6 parts by weight
  • MIP-1 ⁇ may comprise 20 to 30 parts by weight.
  • the anti-inflammatory composition is 40 to 50ng / ml IL-8, 0.05 to 0.07ng / ml IL-10, 1 to 2ng / ml IL-18, 0.4 GM-CSF To 0.6 ng / ml and MIP-1 ⁇ may comprise 20 to 30 ng / ml.

Abstract

An embodiment of the present invention provides: a method for culturing umbilical cord blood-derived pluripotent stem cells that secrete anti-inflammatory components for alleviating and treating inflammatory diseases; and an anti-inflammatory composition containing the stem cell culture medium. Specifically, the anti-inflammatory components can inhibit the amount of inflammatory substances such as nitric oxide (NO) and prostaglandin E2 (PGE2) produced, and more specifically, can inhibit the production of inflammatory substances by inhibiting the expression of iNOS and COX2 genes and proteins associated with inflammatory substances.

Description

항염증 성분을 분비하는 줄기세포 배양방법 및 그 줄기세포 배양액을 포함하는 항염증 조성물Stem cell culture method for secreting anti-inflammatory components and anti-inflammatory composition comprising the stem cell culture solution
본 발명은 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포를 배양하는 방법 및 그 줄기세포 배양액을 포함하는 항염증 조성물에 관한 것이다. 더욱 상세하게는 iNOS및 COX2를 억제함으로써 NO(Nitric Oxide) 및 PGE2 (Prostaglandin E2)를 생성량을 억제하는 효과를 지닌 성분을 분비하는, 제대혈 유래 다분화능 줄기세포를 배양하는 방법 및 그 줄기세포 배양액을 포함하는 항염증 조성물에 관한 것이다.The present invention relates to a method for culturing umbilical cord blood-derived multipotent stem cells secreting an anti-inflammatory component, and an anti-inflammatory composition comprising the stem cell culture. More specifically, a method of culturing umbilical cord blood-derived multipotent stem cells and a stem cell secreting a component having an effect of inhibiting the production of NO (Nitric Oxide) and PGE 2 (Prostaglandin E 2 ) by inhibiting iNOS and COX 2 It relates to an anti-inflammatory composition comprising a culture solution.
줄기세포란 우리 몸을 구성하는 모든 세포로 분화될 수 있는 만능세포와 자가재생능이 있으며, 세포 및 조직의 손상이 있을 때 재생작용을 할 수 있는 세포를 말한다. 이러한 줄기세포는 배아줄기세포와 성체줄기세포로 크게 구분하며, 배아줄기세포는 착상 전 단계의 수정란에서 유래 가능하며 성체줄기세포는 특정 세포형태들로 분화가 가능한 다능성을 가진 세포로써, 제대혈, 양막, 태반, 골수, 신경, 근육, 지방조직, 피부 조직 (피부, 간 또는 위 점막세포, 음경포피), 모낭, 췌장, 방광, 고환, 각막, 치아 (젖니, 사랑니), 월경혈 등 매우 다양한 조직에서 유래될 수 있다. 줄기세포는 또 다른 분류방법으로, 자가 (autologous)와 타가 (allogenic)줄기세포로도 구분되며, 그 이유는 줄기세포를 환자의 몸에 이식할 경우 가장 큰 부작용 중 하나가 이식거부반응이기 때문이다. 따라서, 자가 또는 타가줄기세포로 구분하는 경우가 많다. 성체줄기세포의 경우 현재 많은 임상시험연구가 진행되고 있기 때문에 특히 성체줄기세포 이식의 경우 자가 줄기세포인가 또는 타가 줄기세포인가에 따라 연구단계와 방향이 결정된다.Stem cells are pluripotent cells capable of differentiating into all the cells constituting our body and have self-renewal ability, and cells capable of regeneration when there is damage to cells and tissues. These stem cells are largely divided into embryonic stem cells and adult stem cells. Embryonic stem cells may be derived from pre-implantation embryos, and adult stem cells are pluripotent cells capable of differentiating into specific cell types. A wide variety of tissues including amniotic membrane, placenta, bone marrow, nerves, muscles, adipose tissue, skin tissue (skin, liver or gastric mucosa, penis foreskin), hair follicle, pancreas, bladder, testes, cornea, teeth (teeth, wisdom teeth), menstrual blood Can be derived from. Stem cells are also classified into autologous and allogenic stem cells because one of the biggest side effects of transplanting stem cells into the patient's body is the rejection of the transplant. . Therefore, it is often divided into autologous or other stem cells. In the case of adult stem cells, many clinical trials are currently being conducted. In particular, adult stem cell transplantation may determine whether the stem cells are autologous or other stem cells.
현재, 줄기세포를 골수에서 분리 및 배양하는 것은 쉬운 일이지만, 골수의 획득이 용이하지 않고, 타인의 줄기세포를 이식할 경우 면역 거부 반응 문제를 해결하는 것이 현실적으로 어려운 것으로 알려져 있다. 이에 비해, 제대(탯줄)혈은 골수에 비해 획득이 용이할 뿐 아니라, 많은 제대혈을 확보할 경우에는 환자의 조직적합성 유전자와 일치하거나 가장 유사한 제대혈 줄기세포를 사용할 수 있으므로 면역거부 반응을 해결할 수 있다는 장점이 있다. 즉, 제대혈은 줄기세포의 공급원으로서 현실적으로 사용이 불가능한 배아 줄기세포보다 상업적으로 유리하며, 성체 줄기세포처럼 인위적으로 성인의 몸 안에 있는 골수, 지방 등을 채취하는 작업 등이 필요 없다는 점에서도 상업적 이용이 보다 수월하다고 할 수 있다.Currently, it is easy to separate and culture stem cells from bone marrow, but it is not easy to obtain bone marrow, and it is known that it is practically difficult to solve the immune rejection reaction when transplanting stem cells of another person. In contrast, cord blood is easier to acquire than bone marrow, and when a lot of cord blood is obtained, cord blood stem cells that match or are closest to the patient's histocompatibility gene can be used to solve the immune rejection reaction. There is an advantage. In other words, umbilical cord blood is commercially advantageous over embryonic stem cells that cannot be used realistically as a source of stem cells, and commercially available because it does not require the harvesting of bone marrow, fat, etc. in the adult body like adult stem cells. It is easier to say.
염증성 질환과 관련하여, 대표적인 피부질환인 알레르기 접촉피부염, 건선, 아토피피부염 등은 면역세포인 T세포가 매개하는 염증성 질환으로, 이러한 염증성 질환을 치료하기 위해 스테로이드성 항염증제제가 사용되고 있으나 여러 가지 많은 부작용을 나타내고 있다. 따라서, 독성이 낮고 부작용이 없는 새로운 물질 개발이 필요한 실정이며, 본 발명자들은 제대혈 유래 다분화능 줄기세포를 이용해 항염증 효과가 있는 물질을 개발하였다.Regarding inflammatory diseases, allergic contact dermatitis, psoriasis, and atopic dermatitis, which are typical skin diseases, are inflammatory diseases mediated by T cells, which are immune cells, and steroidal anti-inflammatory drugs are used to treat these inflammatory diseases. It is shown. Therefore, it is necessary to develop a new material having low toxicity and no side effects, and the present inventors have developed a material having an anti-inflammatory effect using cord blood-derived multipotent stem cells.
본 발명이 이루고자 하는 기술적 과제는 많은 부작용을 가지고 있는 종래의 항염증 제제를 대체하는 물질을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법 및 그 줄기세포 배양액을 포함하는 항염증 조성물을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide an anti-inflammatory composition comprising a cord blood-derived multipotent stem cell culture method and a stem cell culture medium that secrete a substance that replaces a conventional anti-inflammatory agent having many side effects.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned above may be clearly understood by those skilled in the art from the following description. There will be.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일측면에 따른 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법은,In order to achieve the above technical problem, the cord blood-derived multipotent stem cell culture method for secreting an anti-inflammatory component according to an aspect of the present invention,
제대혈로부터 단핵구를 분리하는 단계;Separating monocytes from umbilical cord blood;
상기 단핵구를 배양하여 제대혈 유래 다분화능 줄기세포를 수득하는 단계;Culturing the monocytes to obtain umbilical cord blood-derived multipotent stem cells;
상기 제대혈 유래 다분화능 줄기세포를 줄기세포 항염증맞춤형 배지에서 자극하는 단계;Stimulating said cord blood-derived multipotent stem cells in a stem cell anti-inflammatory media;
상기 자극된 제대혈 유래 다분화능 줄기세포를 세척하는 단계; 및Washing the stimulated cord blood-derived multipotent stem cells; And
상기 세척된 제대혈 유래 다분화능 줄기세포를 배양배지에서 배양하는 단계;Culturing the washed umbilical cord blood-derived multipotent stem cells in a culture medium;
를 포함할 수 있다.It may include.
본 발명의 실시예에 있어서, 상기 줄기세포 항염증맞춤형 배지는,In an embodiment of the present invention, the stem cell anti-inflammatory media,
αMEM 또는 IMDM; 및αMEM or IMDM; And
TGF-β,TNF-α, IL-3, IL-6 및 MEM 비타민으로 이루어진 군에서 선택되는 적어도 하나의 성분;을 포함할 수 있다.And at least one component selected from the group consisting of TGF-β, TNF-α, IL-3, IL-6, and MEM vitamins.
본 발명의 실시예에 있어서, 상기 줄기세포 항염증맞춤형 배지는,In an embodiment of the present invention, the stem cell anti-inflammatory media,
αMEM 또는 IMDM은 10 내지 30 중량부; 및αMEM or IMDM is 10 to 30 parts by weight; And
TGF-β,TNF-α, IL-3, IL-6 및 MEM 비타민으로 이루어진 군에서 선택되는 적어도 하나의 성분은 1x10-8 내지 17x10-6 중량부;At least one component selected from the group consisting of TGF-β, TNF-α, IL-3, IL-6, and MEM vitamins may include 1 × 10 −8 to 17 × 10 −6 parts by weight;
를 포함할 수 있다.It may include.
본 발명의 실시예에 있어서, 상기 줄기세포 항염증맞춤형 배지는,In an embodiment of the present invention, the stem cell anti-inflammatory media,
IMDM은 10 내지 30 중량부; 및IMDM is 10 to 30 parts by weight; And
TGF-β는 1 x10-8 내지 1x10-7 중량부, TNF-α는 1 x10-8 내지 5x10-8 중량부, IL-3은 1x10-8 내지 5x10-8 중량부, IL-6은 1x10-8 내지 5x10-8 중량부 및 MEM 비타민은 8 x10-6 내지 17x10-6 중량부; TGF-β is 1 x10 -8 to 1x10 -7 parts by weight, TNF-α is 1 x10 -8 to 5x10 -8 parts by weight, IL-3 is 1x10 -8 to 5x10 -8 parts by weight, IL-6 is 1x10 - 8 to 5x10 -8 parts by weight, and MEM vitamin 8 x10 -6 to 17x10 -6 parts by weight;
를 포함할 수 있다.It may include.
본 발명의 실시예에 있어서, 상기 자극하는 단계는 20 내지 28시간동안 이루어지는 것을 특징으로 할 수 있다.In an embodiment of the invention, the stimulating step may be characterized in that made for 20 to 28 hours.
본 발명의 실시예에 있어서, 상기 자극하는 단계는 35 내지 38 ℃에서 이루어지는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the stimulating step may be characterized in that at 35 to 38 ℃.
본 발명의 실시예에 있어서, 상기 제대혈 유래 다분화능 줄기세포 배양배지는,In an embodiment of the present invention, the cord blood-derived multipotent stem cell culture medium,
αMEM, IMDM, DMEM/F12 및 Medium199으로 이루어진 군에서 선택되는 하나의 배양액; 및one culture selected from the group consisting of αMEM, IMDM, DMEM / F12, and Medium199; And
인슐린, 트랜스페린, 아셀렌산나트륨, MEM 비타민 및 인간 알부민으로 이루어진 군에서 선택되는 적어도 하나의 성분;을 포함하는 것을 특징으로 할 수 있다.It may be characterized by including; at least one component selected from the group consisting of insulin, transferrin, sodium selenite, MEM vitamin and human albumin.
본 발명의 실시예에 있어서, 상기 제대혈 유래 다분화능 줄기세포 배양배지는,In an embodiment of the present invention, the cord blood-derived multipotent stem cell culture medium,
αMEM, IMDM, DMEM/F12 및 Medium199으로 이루어진 군에서 선택되는 하나의 배양액은 10 내지 30 중량부; 및One culture medium selected from the group consisting of αMEM, IMDM, DMEM / F12 and Medium199 is 10 to 30 parts by weight; And
인슐린, 트랜스페린, 아셀렌산나트륨, MEM 비타민 및 인간 알부민으로 이루어진 군에서 선택되는 적어도 하나의 성분은 1 x10-6 내지 5x10-2 중량부;를 포함하는 것을 특징으로 할 수 있다.At least one component selected from the group consisting of insulin, transferrin, sodium selenite, MEM vitamins, and human albumin may be 1 x 10 -6 to 5 x 10 -2 parts by weight.
본 발명의 실시예에 있어서, 상기 제대혈 유래 다분화능 줄기세포 배양배지는,In an embodiment of the present invention, the cord blood-derived multipotent stem cell culture medium,
Medium199은 10 내지 30 중량부; 및Medium199 is 10 to 30 parts by weight; And
인슐린은 1 x10-3 내지 5x10-2 중량부, 트랜스페린은 1 x10-3 내지 5x10-2 중량부, 아셀렌산나트륨은 1 x10-6 내지 5x10-5 중량부, MEM 비타민은 8 x10-6 내지 17x10-6 중량부 및 인간 알부민은 5 x10-3 내지 15x10-3 중량부; Insulin 1 x10 -3 to 5x10 -2 part by weight of transferrin is 1 x10 -3 to 5x10 -2 part by weight of sodium selenite is 1 x10 -6 to 5x10 -5 parts by weight, MEM vitamins 8 x10 -6 to 17 × 10 −6 parts by weight and human albumin are 5 × 10 −3 to 15 × 10 −3 parts by weight;
를 포함할 수 있다.It may include.
본 발명의 실시예에 있어서, 상기 항염증 성분은 NO(Nitric oxide) 생성을 억제시키는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the anti-inflammatory component may be characterized by inhibiting NO (Nitric oxide) production.
본 발명의 실시예에 있어서, 상기 NO 생성이 억제되는 것은 i-NOS(inducible Nitric oxide synthase)의 발현수준이 억제됨으로써 이루어지는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the NO production may be suppressed by suppressing the expression level of i-NOS (inducible Nitric Oxide Synthase).
본 발명의 실시예에 있어서, 상기 항염증 성분은 PGE2 (Prostaglandin E2) 생성을 억제시키는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the anti-inflammatory component may be characterized by inhibiting the production of PGE 2 (Prostaglandin E 2 ).
본 발명의 실시예에 있어서, 상기 PGE2 생성이 억제되는 것은 COX2(Cyclooxygenase 2)의 발현수준이 억제됨으로써 이루어지는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the PGE 2 production may be suppressed by suppressing the expression level of COX2 (Cyclooxygenase 2).
본 발명의 다른 일측면에 따른 항염증 조성물은, 본 발명에 따른 방법으로 배양된 제대혈 유래 다분화능 줄기세포가 분비하는 배양액을 포함할 수 있다.Anti-inflammatory composition according to another aspect of the present invention, may include a culture medium secreted by umbilical cord blood-derived multipotent stem cells cultured by the method according to the present invention.
본 발명의 실시예에 있어서, 상기 항염증 조성물은 IL-8, IL-10, IL-18, GM-CSF 및 MIP-1α로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the anti-inflammatory composition may be characterized in that it comprises at least one selected from the group consisting of IL-8, IL-10, IL-18, GM-CSF and MIP-1α.
본 발명의 실시예에 있어서, 상기 항염증 조성물은 IL-8은 40 내지 50 중량부, IL-10 은 0.05 내지 0.07 중량부, IL-18 은 1 내지 2 중량부, GM-CSF 은 0.4 내지 0.6 중량부 및 MIP-1α는 20 내지 30 중량부를 포함하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the anti-inflammatory composition is 40 to 50 parts by weight of IL-8, 0.05 to 0.07 parts by weight of IL-10, 1 to 2 parts by weight of IL-18, 0.4 to 0.6 of GM-CSF The parts by weight and MIP-1α may be characterized by including 20 to 30 parts by weight.
본 발명의 실시예에 따른 제대혈 유래 다분화능 줄기세포가 분비하는 배양액을 포함하는 항염증 조성물은 염증질환의 개선 또는 치료를 위한 의약품 또는 기능성 화장품에 이용될 수 있다. Anti-inflammatory composition comprising a culture medium secreted by umbilical cord blood-derived multipotent stem cells according to an embodiment of the present invention can be used in medicine or functional cosmetics for the improvement or treatment of inflammatory diseases.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above-described effects, but should be understood to include all the effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도1은 본 발명에 따른 제대혈 유래 다분화능 줄기세포가 분비하는 항염증 성분(HSCM)의 세포독성(MTT Assay)에 대한 결과값이다.1 is a result of cytotoxicity (MTT Assay) of anti-inflammatory components (HSCM) secreted by cord blood-derived multipotent stem cells according to the present invention.
도2는 항염증 성분(HSCM)의 농도에 따른 니트릭옥사이드(NO; Nitric Oxide) 생성량을 측정한 결과값이다.Figure 2 is a result of measuring the amount of nitric oxide (NO; Nitric Oxide) production according to the concentration of anti-inflammatory component (HSCM).
도3은 항염증 성분(HSCM)의 농도에 따른 프로스타글란딘 E2(PGE2; Prostaglandin E2) 생성량을 측정한 결과값이다.Figure 3 is a result of measuring the production amount of prostaglandin E 2 (PGE 2 ; Prostaglandin E 2 ) according to the concentration of anti-inflammatory component (HSCM).
도4는 항염증 성분(HSCM)의 농도에 따른 염증인자 iNOS, COX2, IL-1β, IL-6 그리고 TNF-α 의 유전자 발현을 측정한 결과값이다.Figure 4 is a result of measuring the gene expression of inflammatory factors iNOS, COX2, IL-1β, IL-6 and TNF-α according to the concentration of anti-inflammatory component (HSCM).
도5는 항염증 성분(HSCM)의 농도에 따른 염증인자 iNOS 및 COX2의 단백질 발현을 측정한 결과값이다.5 is a result of measuring the protein expression of inflammatory factors iNOS and COX2 according to the concentration of anti-inflammatory component (HSCM).
이하, 실시예를 통하여 본 발명에 따른, 항염증 성분(HSCM)을 분비하는 제대혈 유래 다분화능 줄기세포의 제조방법 및 이의 효과에 대하여 구체적으로 설명한다. 단, 이들 실시예는 본 발명의 예시일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the preparation method of the umbilical cord blood-derived multipotent stem cells secreting an anti-inflammatory component (HSCM) and the effects thereof according to the present invention will be described in detail. However, these Examples are only illustrative of the present invention, and the scope of the present invention is not limited to these.
실시예 1 : 제대혈의 선별Example 1 Screening of Umbilical Cord Blood
동의서를 받은 산모로부터 24시간 이내에 이송된 제대혈을 사용하거나, 이미 유핵세포층만 회수하여 영하 196 ℃ 초저온 냉동고에 보관 중인 냉동보관 제대혈을 선별하였다.Umbilical cord blood was transferred within 24 hours from the mother who received the consent, or only the nucleated cell layer was recovered, and cryopreserved cord blood stored in a cryogenic freezer at minus 196 ℃ was selected.
실시예 2 : 제대혈로부터 다분화능 줄기세포의 분리 및 배양Example 2 Isolation and Culture of Multipotent Stem Cells from Umbilical Cord Blood
영하 196 ℃에서 냉동 보관 중이던 제대혈은 37 ℃의 수욕(water bath)에 넣어서 바로 해동하여 사용하고, 산모로부터 24시간 이내에 이송된 제대혈은 그대로 사용하였다. 제대혈로부터 단핵구를 분리하기 위해, αMEM(alpha-minimum essential medium, Jeil Biotech Services, Korea)이나 DMEM(Dulbecco's modified Eagle's medium)으로 제대혈을 2배 용량으로 희석한 후 실온에서 10 분간 300 x g로 원심분리 하였다. 분리된 buffy coat 층을 수확하여 다시 2 배 용량의 αMEM으로 희석한 후 Ficoll-Hypaque에 중첩하고 실온에서 30 분간 300xg로 원심분리를 시행하였다.Umbilical cord blood that was stored frozen at minus 196 ° C. was thawed immediately in a 37 ° C. water bath, and cord blood transferred within 24 hours from the mother was used as it was. To separate monocytes from umbilical cord blood, umbilical cord blood was diluted in double doses with αMEM (alpha-minimum essential medium, Jeil Biotech Services, Korea) or DMEM (Dulbecco's modified Eagle's medium) and centrifuged at 300 xg for 10 minutes at room temperature. . The separated buffy coat layer was harvested and diluted again with twice the capacity of αMEM, then superimposed on Ficoll-Hypaque, and centrifuged at 300xg for 30 minutes at room temperature.
혈액으로부터 단핵구를 분리하는 데는 Ficoll(슈크로스의 중합체)과 Hypaque (디트리조에이트 나트륨; sodium ditrizoate)의 중합체인 Ficoll-Hypaque가 주로 이용된다. Ficoll-Hypaque의 비중은 1.077g/ml로, 단핵구는 이보다 가벼우나 적혈구는 이보다 무겁기 때문에 비중 차에 의한 분리가 가능하다. 즉, 혈액을 Ficoll-Hypaque 위에 올려서 원심분리하면 단핵구는 Ficoll-Hypaque 위에 모이게 된다.Ficoll-Hypaque, a polymer of Ficoll (a polymer of sucrose) and Hypaque (sodium ditrizoate), is mainly used to separate monocytes from blood. Ficoll-Hypaque has a specific gravity of 1.077g / ml, and monocytes are lighter than this, but red blood cells are heavier than that, so the specific gravity can be separated. In other words, when the blood is centrifuged on Ficoll-Hypaque, monocytes are collected on Ficoll-Hypaque.
이와 같은 밀도구배 원심분리 방법으로 얻어진 단핵구를 다시 첨가물이 섞이지 않은 세척용 αMEM으로 2회 세척 하였다. 얻어진 단핵구를 항생제(1000 U/ml 페니실린 G, 1000 ug/ml 황산 스트렙토마이신, Gibco-BRL)와 항진균 제(0.25 ug/ml 암포테리신 B), 그리고 2 mM의 글루타민(Glutamine, Sigma)이 포함된 αMEM 배지에 10∼우태혈청(FBS; fetal bovine serum, Jeil Biotech Services)과 함께 세포성장인자로서 Stem Cell Factor(50 ng/ml), GM-CSF(granulocyte-macrophage colony-stimulating factor; 10 ng/ml), G-CSF(granulocyte colonystimulating factor; 10 ng/ml), IL-3(interleukin-3; 10 ng/ml) 및 IL-6(interleukin-6; 10 ng/ml)을 첨가하고, 세포수 1××106/㎠의 농도로 부유시켰다. 선택된 세포들을 5일간 배양시킨 후 다분화능 줄기세포를 수득하였다.Monocytes obtained by such a density gradient centrifugation method were washed twice with αMEM for washing with no additives. The resulting monocytes contained antibiotics (1000 U / ml penicillin G, 1000 ug / ml streptomycin sulfate, Gibco-BRL), antifungal agents (0.25 ug / ml amphotericin B), and 2 mM glutamine (Sigma). Stem Cell Factor (50 ng / ml), GM-CSF (granulocyte-macrophage colony-stimulating factor; 10 ng / ml) with 10 to fetal bovine serum (FBS; fetal bovine serum, Jeil Biotech Services) ml), G-CSF (granulocyte colonystimulating factor; 10 ng / ml), IL-3 (interleukin-3; 10 ng / ml) and IL-6 (interleukin-6; 10 ng / ml) It was suspended at a concentration of 1 × 10 6 / cm 2. After multiplying the selected cells for 5 days, multipotent stem cells were obtained.
제대혈 유래 다분화능 줄기세포를 얻고 PBS로 3회 세척 후 줄기세포 항염증맞춤형 배지(IMDM 500ml, TGF-β(Prosepc, Israel) 10~100pg/ml, TNF-α(Prospec, Istrael) 10~50pg/ml, IL-3(Prospec, Istrael) 10~50pg/ml, IL-6(Prospec, Istrael) 10~50pg/ml 및 MEM 비타민(Gibco, USA) 1~2%(8,000~17,000pg/ml)) 에 24시간 동안 37℃ 배양기(incubator)에 배양하여 자극시켰다. 줄기세포 자극이 끝난 뒤 PBS로 3회 세척 하고 배양배지(Medium199 500ml, 인슐린(Sigma, USA) 1~50ug/ml, 트랜스페린(Sigma, USA) 1~50ug/ml, 아셀렌산나트륨(Sigma, USA) 0.001~0.05ug/ml, MEM 비타민(Gibco, USA) 1~2%(0.008~0.017ug/ml), 인간 알부민(Sigma, USA) 0.5~1.5%(5~15ug/ml)) 를 넣고 37℃ 배양기(incubator)에 배양하였다. 2일에 한번씩 배지를 교체하여 배양액을 수거하며, 수거한 배양액은 각각 필터(Top Filter system, Corning) 한 후 냉장 및 냉동 보관하여 사용하였다.Umbilical cord blood-derived multipotent stem cells were obtained and washed three times with PBS and then stem cell anti-inflammatory media (IMDM 500ml, TGF-β (Prosepc, Israel) 10-100pg / ml, TNF-α (Prospec, Istrael) 10-50pg / ml, IL-3 (Prospec, Istrael) 10-50pg / ml, IL-6 (Prospec, Istrael) 10-50pg / ml and MEM Vitamin (Gibco, USA) 1-2% (8,000-17,000pg / ml) Stimulated by incubating in a 37 ℃ incubator for 24 hours. After the stem cell stimulation, the cells were washed three times with PBS and cultured medium (500 ml of medium 199, 1-50 ug / ml of insulin (Sigma, USA), 1-50 ug / ml of transferrin (Sigma, USA), sodium selenite (Sigma, USA) ) 0.001 ~ 0.05ug / ml, MEM vitamin (Gibco, USA) 1 ~ 2% (0.008 ~ 0.017ug / ml), human albumin (Sigma, USA) 0.5 ~ 1.5% (5 ~ 15ug / ml) The cells were incubated in an incubator. The cultures were collected by replacing the medium once every two days, and the collected cultures were used after each filter (Top Filter system, Corning) and then refrigerated and frozen.
시험예 1 : 세포독성 실험(MTT Assay)Test Example 1 Cytotoxicity Test (MTT Assay)
본 발명에 따른 제대혈 유래 다분화능 줄기세포가 분비하는 항염증 물질인 HSCM의 세포독성 유무를 확인하기 위해 MTT assay를 시행하였다. Raw 264.7 cells를 10% FBS가 함유된 DMEM으로 96 well plate에 3Ⅹ103cells/well로 100ul씩 넣고 37℃, 5% CO2 incubator에서 24시간 동안 배양하였다. 배양 후 배지를 제거하고 실험군 (HSCM 0, 10, 20, 30, 40, 50%)을 준비하여 각 그룹 당 triplicate로 처리한 뒤 37℃, 5% CO2 incubator에서 24시간 배양하였다. 배양 후 시험액이 포함된 배지에 5mg/ml의 MTT 시약을 well 당 10ul씩 분주한 다음 96 well plate의 빛을 차단하여 37℃, 5% CO2 incubator에서 4시간 동안 배양하였다. 배양이 완료되면 MTT 시약이 포함된 배지를 제거하고, DMSO (dimethyl sulfoxide) 100ul를 가하여 MTT-formazan crystal을 용해시키고 570nm 흡광도를 측정하여 세포 생존율을 확인하였다.MTT assay was performed to confirm the cytotoxicity of HSCM, an anti-inflammatory substance secreted by cord blood-derived multipotent stem cells according to the present invention. Raw 264.7 cells were incubated for 24 hours in 37 ℃, 5% CO 2 incubator with 100ul each of 3Ⅹ10 3 cells / well in a 96 well plate with DMEM containing 10% FBS. After incubation, the medium was removed, and experimental groups ( HSCM 0, 10, 20, 30, 40, 50%) were prepared, treated with triplicate for each group, and then incubated in 37 ° C. and 5% CO 2 incubator for 24 hours. After incubation, 10 μl of 5 mg / ml MTT reagent was dispensed into the medium containing the test solution, and then incubated in 37 ° C., 5% CO 2 incubator for 4 hours by blocking the light of a 96 well plate. When the culture was completed, the medium containing the MTT reagent was removed, and 100ul of DMSO (dimethyl sulfoxide) was added to dissolve the MTT-formazan crystal, and the cell viability was confirmed by measuring the absorbance at 570 nm.
결과값은 도1에 나타내었으며, 이를 살펴보면 항염증 성분(HSCM)의 농도가 올라가도 세포 생존에는 유의미하게 영향을 미치지 않음을 알 수 있다.The results are shown in FIG. 1, which shows that even if the concentration of anti-inflammatory component (HSCM) is increased, it does not significantly affect cell survival.
시험예 2 : 항염증 성분(HSCM) 함유 배지에서 배양된 세포에서 Nitric Oxide 생성량 측정Test Example 2 Determination of Nitric Oxide Production in Cells Cultured in Medium Containing Anti-Inflammatory Component (HSCM)
Raw 264.7 macrophage cells를 이용한 Griess 법으로 nitric oxide (NO) 생성량 실험을 수행하였다. 10% FBS가 함유된 DMEM으로 48 well plate에 1Ⅹ105cells/well로 250ul씩 넣고 37℃, 5% CO2 incubator에서 24시간 동안 배양하였다. 배양 후 배지를 제거하고 실험군 (HSCM 0, 10, 30, 50%)을 10% FBS 함유 DMEM 배양액에 넣고 여기에 염증 유발원인 1ug/ml의 LPS(lipopolysaccharide)를 첨가하였으며 37℃, 5% CO2 incubator에서 24시간 동안 배양하였다. 그런 다음 배양액을 모두 취하여 1.5ml tube에 옮기고, 14,000rpm에서 20분간 원심 분리하여 상층액을 획득하였다. 획득한 상층액을 100ul씩 96 well plate에 옮기고, Griess reagent(cayman, USA)를 100ul 씩 첨가하여 상온에서 20분간 반응시켜 ELISA reader로 540nm에서 흡광도를 측정하였다. NaNO2 표준물질을 이용하여 standard curve를 작성하고, 이와 비교하여 NO 생성량을 정량하였다.Nitric oxide (NO) production experiments were performed using the Griess method using raw 264.7 macrophage cells. DMEM containing 10% FBS and 250ul of 1 로 10 5 cells / well in a 48 well plate was incubated for 24 hours in 37 ℃, 5% CO 2 incubator. After incubation, the medium was removed, and the experimental group ( HSCM 0, 10, 30, 50%) was placed in a DMEM medium containing 10% FBS, and 1ug / ml LPS (lipopolysaccharide), which is a source of inflammation, was added thereto at 37 ° C and 5% CO 2. Incubated for 24 hours in an incubator. Then, all of the culture solution was taken, transferred to a 1.5ml tube, and centrifuged at 14,000 rpm for 20 minutes to obtain a supernatant. 100 μl of the obtained supernatant was transferred to a 96 well plate, 100 μl of Griess reagent (cayman, USA) was added and reacted at room temperature for 20 minutes, and the absorbance was measured at 540 nm with an ELISA reader. A standard curve was prepared using NaNO 2 standard, and NO production was quantified by comparison.
결과값은 도2에 나타내었으며, 이를 살펴보면, HSCM의 농도가 증가할수록 Nitric Oxide의 농도가 줄어들고 있음을 알 수 있다. The results are shown in Figure 2, and looking at this, it can be seen that the concentration of Nitric Oxide decreases as the concentration of HSCM increases.
시험예 3 : 항염증 성분(HSCM) 함유 배지에서 배양된 세포에서 Prostaglandin E2 생성량 측정Test Example 3 Determination of Prostaglandin E2 Production in Cells Cultured in Medium containing Anti-Inflammatory Component (HSCM)
PGE2 (Prostaglandin E2)를 측정하기 위하여 10% FBS가 함유된 DMEM으로 48 well plate에 1Ⅹ105cells/well로 250ul씩 넣고 37℃, 5% CO2 incubator에서 24시간 동안 배양하였다. 배양 후 배지를 제거하고 실험군 (HSCM 0, 10, 30, 50%)을 10% FBS 함유 DMEM 배양액에 넣고 여기에 염증 유발원인 1ug/ml의 LPS(lipopoliysaccharide)를 첨가하였으며 37℃, 5% CO2 incubator에서 24시간 동안 배양하였다. 그런 다음 배양액을 모두 수거하여 1.5ml tube에 옮기고, 14,000rpm에서 20분간 원심 분리하여 상층액을 획득하였다. 획득한 상층액은 PGE2 EIA kit(cayman, USA)를 사용하여 측정하였다. Goat anti-mouse로 coating된 96 well plate에 각각 standard과 시료(EIA buffer를 이용하여 5배 dilution)를 50ul씩 첨가하고 Tracer solution과 monoclonal antibody solution을 각각 50ul씩 well에 넣은 후 4℃에서 18시간 동안 반응하였다. 반응 후 Washing buffer로 5회 세척하고 200ul의 Ellman reagent 60~90분간 반응시켜 ELISA reader로 405~420nm에서 흡광도를 측정하였다. standard curve를 작성하고 이와 비교하여 PGE2 생성량을 정량하였다.In order to measure PGE 2 (Prostaglandin E 2 ), 250 μl of 1Ⅹ10 5 cells / well was added to 48 well plates with DMEM containing 10% FBS and incubated in 37 ° C. and 5% CO 2 incubator for 24 hours. After incubation, the medium was removed, and the experimental group ( HSCM 0, 10, 30, 50%) was placed in a DMEM medium containing 10% FBS, and 1 ug / ml of lipopoliysaccharide (LPS), a source of inflammation, was added thereto at 37 ° C and 5% CO 2. The incubator was incubated for 24 hours. Then, the culture solution was collected, transferred to a 1.5ml tube, and centrifuged at 14,000 rpm for 20 minutes to obtain a supernatant. The obtained supernatant was measured using a PGE 2 EIA kit (cayman, USA). Add 50ul of standard and sample (5 times dilution using EIA buffer) to 96 well plates coated with Goat anti-mouse, and add 50ul of Tracer solution and monoclonal antibody solution to the wells for 18 hours at 4 ℃. Reacted. After the reaction was washed 5 times with Washing Buffer and reacted with 200ul Ellman reagent 60 ~ 90 minutes was measured by absorbance at 405 ~ 420nm with ELISA reader. Standard curves were prepared and compared to quantify PGE 2 production.
결과값은 도3에 나타내었으며, 이를 살펴보면 항염증 성분(HSCM)의 농도가 증가할수록 PGE2의 농도가 줄어들고 있음을 알 수 있다. The results are shown in FIG. 3, and it can be seen that as the concentration of anti-inflammatory component (HSCM) increases, the concentration of PGE 2 decreases.
시험예 4 : 항염증 성분(HSCM) 함유 배지에서 배양된 세포에서 항염증 관련 유전자 발현 분석 (RT-PCR법)Test Example 4: Analysis of anti-inflammatory gene expression in cells cultured in medium containing anti-inflammatory component (HSCM) (RT-PCR method)
HSCM이 염증반응 유발시 생성이 증가되는 염증인자 iNOS, COX2, IL-1βIL-6 그리고 TNF-α 의 유전자 발현에 대한 영향을 알아보기 위해 RT-PCR을 수행하였다. Raw 264.7 macrophage cells를 10% FBS가 함유된 DMEM으로 24 well plate에 1Ⅹ105cells/well의 농도로 분주하고 37℃, 5% CO2 incubator에서 배양한다. 배양 후 배지를 제거하고 실험군 (HSCM 0, 10, 30, 50%)을 10% FBS 함유 DMEM 배양액에 넣고 여기에 염증 유발원인 1ug/ml의 LPS를 첨가하였으며 37℃, 5% CO2조건으로 24시간 동안 배양하였다. 그런 다음 배지를 제거하고 PBS로 1회 세척한 다음 배양된 세포로부터 유전자 발현 분석을 위하여 RNAzol B reagent를 이용 세포 내 total RNA를 추출하였다. RNAzol B reagent을 1ml 첨가해 cell을 녹여 조직을 변성시킨 후, 1.5ml tube에 각각 옮기고 chloroform 200ul를 첨가한 후 20초간 vortexing 하여 완전히 혼합되도록 하였다. 실온에서 15분간 반응 후 14,000rpm에서 20분간 원심 분리하여 상층액을 획득하였고 동량의 isopropyl alcohol을 첨가하여 inverting 한 후 10분간 실온에 정치하였다. 시료를 14,000rpm에서 15분간 원심 분리하여 RNA pellet을 얻고, 70% RNA용 ethanol로 14,000rpm에서 10분간 원심 분리하여 세척한 후 아스피레이터를 이용해 5분간 건조하였다. 건조된 RNA 시료는 0.1% DEPC (diethyl pyrocarbonate)로 처리된 증류수 25ul을 첨가하고 55℃에서 10분간 반응시켜 pellet을 녹인 후 cDNA 합성을 위한 시료로 사용하였으며, 그 중 5㎕를 20배 희석하여 spectrophotometer를 이용 O.D. 260/280nm에서 RNA의 농도 및 순도를 측정하였다.RT-PCR was performed to investigate the effect of HSCM on gene expression of inflammatory factors iNOS, COX2, IL-1βIL-6 and TNF-α. Dispense the raw 264.7 macrophage cells into DMEM containing 10% FBS at a concentration of 1Ⅹ10 5 cells / well in a 24 well plate and incubate in 37 ° C and 5% CO 2 incubator. Then remove the culture medium and test group ( HSCM 0, 10, 30, 50%) with 10% FBS was placed in a containing DMEM culture solution was added to inflammation caused LPS of 1ug / ml here 37 ℃, 5% CO in the second condition 24 Incubated for hours. Then, the medium was removed, washed once with PBS, and total RNA was extracted from the cultured cells using RNAzol B reagent for gene expression analysis. After 1 ml of RNAzol B reagent was added to dissolve the cells, the tissues were denatured, transferred to 1.5 ml tubes, and 200 ul of chloroform was added and vortexed for 20 seconds to ensure complete mixing. After reaction at room temperature for 15 minutes, the supernatant was obtained by centrifugation at 14,000 rpm for 20 minutes, and inverted with the same amount of isopropyl alcohol, and left to stand at room temperature for 10 minutes. The sample was centrifuged at 14,000 rpm for 15 minutes to obtain RNA pellet. The sample was centrifuged at 14,000 rpm for 10 minutes with 70% ethanol for RNA, and dried for 5 minutes using an aspirator. The dried RNA sample was added with 25ul of distilled water treated with 0.1% DEPC (diethyl pyrocarbonate) and reacted at 55 ° C for 10 minutes to dissolve the pellet and used as a sample for cDNA synthesis. RNA concentration and purity were measured at OD 260/280 nm.
(1) cDNA 합성(1) cDNA synthesis
단일가닥 cDNA 합성은 추출한 총 RNA 1ug에 oligo-d(T) primer (100pmol) 1ul를 혼합하여 65℃에서 10분간 반응 시킨 후 급속 냉각시켰다. 이 template에 10mM dNTP (TaKaRa Bio Inc., Japan), 0.1M DTT와 5x RT buffer (10mM Tris-Cl, 50mM KCl, 2.5mM MgCl₂) 각 2ul를 첨가하고 M-MLV RTase (BioNeer, Korea) 100unit을 첨가한 후 DEPC로 처리된 증류수를 이용하여 전체 양이 20ul가 되도록 보정하였다. 시료는 25℃에서 5분, 42℃에서 1시간동안 합성 반응 후 72℃에서 15분간 반응을 통하여 reverse transcriptase를 불활성화 시켜 종결하였다.Single-strand cDNA synthesis was performed by mixing 1 ug of oligo-d (T) primer (100 pmol) with 1 ug of total RNA extracted and reacting at 65 ° C. for 10 minutes, followed by rapid cooling. To this template, add 2m each of 10mM dNTP (TaKaRa Bio Inc., Japan), 0.1M DTT and 5x RT buffer (10mM Tris-Cl, 50mM KCl, 2.5mM MgCl₂) and add 100 units of M-MLV RTase (BioNeer, Korea) After the addition, the total amount was corrected to 20 ul using distilled water treated with DEPC. Samples were terminated by inactivating reverse transcriptase through a reaction at 25 ° C. for 5 minutes and at 42 ° C. for 1 hour, followed by reaction at 72 ° C. for 15 minutes.
(2) RT-PCR (2) RT-PCR
합성한 cDNA와 각 유전자의 primer를 이용하여 RT-PCR반응을 수행하였다. 반응조건은 template 1ul와 primer 각 0.5ul (10pmol), 2.5mM dNTP 0.5ul, 10X PCR buffer [10mM Tris-Cl (pH8.3), 50mM KCl, 2.5mM MgCl2] 2.5ul, Taq polymerase 2 unit/ul 을 첨가한 후 멸균증류수를 이용하여 전체 양을 25ul로 보정하여 PCR 반응을 수행하였다. PCR 반응으로부터 획득한 증폭산물은 1.5% agarose gel을 이용하여 전기영동을 수행하였고, 각 PCR 산물의 검출강도는 image analysis system (Kodak EDAS290)를 이용하여 분석하였다. 밴드 검출강도의 상대적 정량치는 house keeping 유전자인 GAPDH (glyceraldehyde-3-phosphate dehydrogenase)와 actin의 검출강도를 기준으로 보정하였다.RT-PCR reaction was performed using the synthesized cDNA and primers of each gene. Reaction conditions were template 1ul and primer 0.5ul (10pmol), 2.5mM dNTP 0.5ul, 10X PCR buffer [10mM Tris-Cl (pH8.3), 50mM KCl, 2.5mM MgCl2] 2.5ul, Taq polymerase 2 unit / ul After the addition was carried out using a sterile distilled water to correct the total amount to 25ul to perform a PCR reaction. The amplification products obtained from the PCR reactions were subjected to electrophoresis using 1.5% agarose gel, and the detection intensity of each PCR product was analyzed using an image analysis system (Kodak EDAS290). Relative quantification of band detection intensity was corrected based on the housekeeping genes GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and actin.
결과값은 도4에 나타내었으며, 각 밴드를 비교해보면 HSCM의 농도가 증가할수록 염증을 일으키는 물질과 관련된 iNOS, COX2, IL-1βIL-6 그리고 TNF-α의 유전자 발현이 점차 억제되는 것을 알 수 있다.The results are shown in Figure 4, and comparing the bands, it can be seen that as the concentration of HSCM increases, the gene expression of iNOS, COX2, IL-1βIL-6 and TNF-α related to the inflammatory agent is gradually suppressed. .
시험예 5 : 항염증 성분(HSCM) 함유 배지에서 배양된 세포에서 항염증 관련 유전자 단백질 발현 분석 (Western blot법)Test Example 5: Analysis of anti-inflammatory gene expression in cells cultured in a medium containing anti-inflammatory components (HSCM) (Western blot method)
염증반응시 생성되는 NO 및 PGE2에 직접적으로 관여하는 iNOS와 COX2의 단백질 발현정도를 확인하여 HSCM의 항염증 효과를 알아보고자 실시하였다. Raw 264.7 macrophage cells에 실험군 (HSCM 0, 10, 30, 50%)을 1ug/ml의 LPS와 함께 24시간 동안 처리한 후, 배양된 배지를 제거하고 1ml의 PBS를 첨가하여 스크래퍼(scraper)로 수거하여 14,000rpm에서 20분 동안 원심분리 하여 세척하였다. 원심분리 후 상층액을 제거하고 500ul lysis buffer (150mM NaCl, 50mM Tris-HCl pH7.5, 1% NP40, 0.1% SDS, 1mM PMSF)를 첨가하여 초음파 분쇄기로 lysis 시켰으며, 14,000rpm에서 10분간 원심분리 하여 세포막 성분 등을 제거하였다. 배양세포로부터 얻어진 단백질시료는 BCA 방법을 이용하여 정량하였고 20ug의 lysate를 12% SDS-PAGE로 전기영동으로 분리하였으며, 전이용액을 사용하여 단백질을 PVDF membrane에 90V로 50분 동안 전이시켰다. 그리고 membrane의 blocking은 5% skim milk가 함유된 TBST (50mM Tris-HCl pH7.6, 150mM NaCl, 0.2% Tween 20)용액에 상온에서 1시간 동안 실시하였다. iNOS의 항체로는 rabbit polyclonal anti iNOS (Millipore), COX2의 항체로는 rabbit polyclonal anti COX2 (Millipore), Actin의 항체로는 goat polyclonal anti actin (Santa-Curz)을 5% skim milk가 함유된 TBST용액에 희석하여 상온에서 1시간 30분 동안 반응시켰다. TBST 용액으로 3회 세척한 후, 2차 항체로는 HRP (Horse Radish peroxidase)가 결합된 anti-goat, anti-rabbit IgG를 5% skim milk가 함유된 TBST용액에 희석하여 상온에서 1시간 동안 반응시켰다. 그 후, membrane을 TBST로 3회 세척 후 immobilon western kit. (Millipore Cat. No. WBKLS0100)을 사용하여 1분간 반응시켜 LAS-3000 분석장비로 발색된 밴드의 강도를 확인하였다.This study was conducted to investigate the anti-inflammatory effects of HSCM by checking the protein expression levels of iNOS and COX2 that are directly involved in NO and PGE 2 produced during inflammatory reactions. The experimental group ( HSCM 0, 10, 30, 50%) was treated with 1 μg / ml LPS for 24 hours in Raw 264.7 macrophage cells, and then cultured medium was removed and collected by scraper by adding 1 ml of PBS. Washed by centrifugation at 14,000 rpm for 20 minutes. After centrifugation, the supernatant was removed and 500ul lysis buffer (150mM NaCl, 50mM Tris-HCl pH7.5, 1% NP40, 0.1% SDS, 1mM PMSF) was added and lysed by an ultrasonic grinder, and centrifuged at 14,000 rpm for 10 minutes. Separation and cell membrane components were removed. Protein samples obtained from the cultured cells were quantified using the BCA method, 20ug of lysate was electrophoretically separated by 12% SDS-PAGE, and the protein was transferred to the PVDF membrane at 90V for 50 minutes using a transfer solution. The blocking of the membrane was carried out for 1 hour at room temperature in TBST (50mM Tris-HCl pH7.6, 150mM NaCl, 0.2% Tween 20) solution containing 5% skim milk. TBST solution containing 5% skim milk with rabbit polyclonal anti iNOS (Millipore) as an antibody of iNOS, rabbit polyclonal anti COX2 (Millipore) as an antibody of COX2, goat polyclonal anti actin (Santa-Curz) as an antibody of Actin It was diluted to and reacted at room temperature for 1 hour 30 minutes. After washing three times with TBST solution, as a secondary antibody, anti-goat and anti-rabbit IgG conjugated with HRP (Horse Radish peroxidase) was diluted in TBST solution containing 5% skim milk and reacted at room temperature for 1 hour. I was. Then, after washing the membrane three times with TBST immobilon western kit. (Millipore Cat. No. WBKLS0100) was used for 1 minute to confirm the intensity of the band developed by the LAS-3000 analyzer.
결과값은 도5에 나타내었으며, 이를 살펴보면, HSCM의 농도가 증가할수록 염증을 일으키는 NO 및 PGE2와 관련된 iNOS 단백질 및 COX2단백질의 발현이 점차 억제되고 있음을 알 수 있다. The results are shown in FIG. 5, and it can be seen that as the concentration of HSCM increases, expression of iNOS protein and COX2 protein related to NO and PGE 2 which cause inflammation is gradually suppressed.
비교예 1 : 항염증 성분(HSCM) 함유 배지에서 배양된 제대혈 유래 다분화능 줄기세포에서 분비된 항염증 성분 및 콩단백질 가수분해물 함유 배지에서 배양된 제대혈 유래 다분화능 줄기세포에서 분비된 항염증 성분 비교Comparative Example 1 Comparison of anti-inflammatory components secreted from umbilical cord blood-derived multipotent stem cells cultured in a medium containing anti-inflammatory components (HSCM) and anti-inflammatory components secreted from umbilical cord blood-derived multipotent stem cells cultured in a medium containing soy protein hydrolysates
국내공개특허 10-2009-0090850 또는 국내공개특허10-2013-0104924에서 공개된 콩가수분해물 함유 배지에서 배양된 제대혈 유래 다분화능 줄기세포가 분비하는 성분 중에서 항염증과 관련된 주요성분인 IL-8, IL-10, IL-18, GM-CSF 및 MIP-1α의 함량을 본 발명에 따라 자극 및 배양된 제대혈 유래 다분화능 줄기세포에서 분비하는 상기 성분 함량과 비교하였고 그 결과는 표1로 나타내었다.IL-8, which is a major component related to anti-inflammatory, among the components secreted by umbilical cord blood-derived multipotent stem cells cultured in soy hydrolyzate-containing medium disclosed in Korean Patent Publication No. 10-2009-0090850 or Korean Patent Publication No. 10-2013-0104924 The contents of IL-10, IL-18, GM-CSF and MIP-1α were compared with the contents of the components secreted from umbilical cord blood-derived multipotent stem cells stimulated and cultured according to the present invention and the results are shown in Table 1.
(단위: pg)(Unit: pg)
항염증성분Anti-inflammatory 국내공개특허(10-2009-0090850 또는 10-2013-0104924)의 콩가수분해물 함유 배지에서 배양된 제대혈 유래 다분화능 줄기세포Umbilical Cord Blood-derived Multipotent Stem Cells Cultivated in Soy Hydrolysate Containing Medium of Domestic Publication (10-2009-0090850 or 10-2013-0104924) 본 발명에 따라 자극 및 배양된 제대혈 유래 다분화능 줄기세포Umbilical cord blood-derived multipotent stem cells stimulated and cultured according to the present invention
IL-8IL-8 4790.71±1267.384790.71 ± 1267.38 42458.46±4279.8642458.46 ± 4279.86
IL-10IL-10 1.18±0.021.18 ± 0.02 60.12±1.0660.12 ± 1.06
IL-18IL-18 00 1135.79±22.011135.79 ± 22.01
GM-CSFGM-CSF 20.15±8.5820.15 ± 8.58 484.37±11.14484.37 ± 11.14
MIP-1aMIP-1a 8.78±0.668.78 ± 0.66 25704.68±742.2225704.68 ± 742.22
[표1]에 나타난 결과값을 살펴보면, 본 발명에 따라 자극 및 배양된 제대혈 유래 다분화능 줄기세포는 주요 항염증 성분인 IL-8, IL-10, IL-18, GM-CSF 및 MIP-1α의 함량이 상기 공개된 특허들에 나와있는 배양기술로 배양된 제대혈 유래 다분화능 줄기세포보다 IL-8은 8.8배, IL-10은 50배, GM-CSF는 24배 및 MIP-1α은 2927배가 더 많이 분비되는 것을 알 수 있다. 또한, IL-18은 상기 특허들에 따른 제대혈 다분화능 줄기세포에서는 분비되지 않았으나 본 발명에 따른 제대혈 다분화능 줄기세포에서는 상기 표1에서 같이 분비되었다.Referring to the results shown in [Table 1], umbilical cord blood-derived multipotent stem cells stimulated and cultured according to the present invention are the major anti-inflammatory components IL-8, IL-10, IL-18, GM-CSF and MIP-1α. IL-8 is 8.8 times, IL-10 is 50 times, GM-CSF is 24 times and MIP-1α is 2927 times higher than cord blood-derived multipotent stem cells cultured by the culture techniques described in the published patents. You can see more secretion. In addition, IL-18 was not secreted from the cord blood multipotent stem cells according to the patents, but was secreted from the cord blood multipotent stem cells according to the present invention as shown in Table 1 above.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, coupled)" with another part, it is not only "directly connected" but also "indirectly connected" with another member in between. "Includes the case. In addition, when a part is said to "include" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 일측면에 따른 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법은 1) 제대혈로부터 단핵구를 분리하는 단계; 2) 상기 단핵구를 배양하여 제대혈 유래 다분화능 줄기세포를 수득하는 단계; 3) 상기 수득한 제대혈 유래 다분화능 줄기세포를 줄기세포 항염증맞춤형 배지에서 자극하는 단계; 4) 상기 자극된 제대혈 유래 다분화능 줄기세포를 세척하는 단계; 및 5) 상기 세척된 제대혈 유래 다분화능 줄기세포를 배양배지에서 배양하는 단계를 포함할 수 있다.Umbilical cord blood-derived multipotent stem cell culture method for secreting an anti-inflammatory component according to an aspect of the present invention comprises the steps of: 1) separating monocytes from umbilical cord blood; 2) culturing the monocytes to obtain umbilical cord blood-derived multipotent stem cells; 3) stimulating the obtained cord blood-derived multipotent stem cells in a stem cell anti-inflammatory customized medium; 4) washing the stimulated cord blood-derived multipotent stem cells; And 5) culturing the washed umbilical cord blood-derived multipotent stem cells in a culture medium.
상기 제대혈이란, 출산 때 탯줄에서 나오는 탯줄혈액을 의미하는 것으로서, 백혈구와 적혈구·혈소판 등을 만드는 hematopoietic stem cell(조혈모세포)를 함유할 수 있고, 연골과 뼈·근육·신경 등을 만드는 mesenchymal stem cell(간엽줄기세포)도 포함할 수 있다.The umbilical cord blood refers to umbilical cord blood coming out of the umbilical cord at birth, and may contain hematopoietic stem cells (stematopoietic stem cells) that make leukocytes, red blood cells, and platelets, and mesenchymal stem cells that make cartilage, bone, muscle, and nerves. (Mesenchymal stem cells) may also be included.
상기 다분화능 줄기세포는 어떤 조직 및 기관에 특이적인 세포로만 분화할 수 있는 분화능력을 가지고 있는 줄기세포를 의미하며, 예를 들어, 다분화능을 갖는 세포로는 HSC, MSC, NSC와 같은 성체줄기세포를 포함할 수 있다. 이러한 다분화능을 갖는 성체줄기세포는 태아기, 신생아기 및 성체기의 각 조직 및 장기의 성장과 발달은 물론 성체조직의 항상성 유지와 조직 손상시 재생을 유도하는 기능에 관여할 수 있다.The multipotent stem cell refers to a stem cell having a differentiation capacity capable of differentiating only into cells specific to a certain tissue and organs. For example, as a cell having a multipotency, an adult stem such as HSC, MSC, and NSC Cells may be included. Adult pluripotent stem cells having such multipotency may be involved in the growth and development of prenatal, neonatal, and adult tissues and organs, as well as in maintaining homeostasis of adult tissues and inducing regeneration upon tissue damage.
상기 다분화능 줄기세포는 여러 성분들을 분비할 수 있고 이러한 성분들이 생체내의 손상된 세포나 조직에 작용하여 손상된 부위를 호전시킬 수 있다. 본 발명의 실시예에 따르며, 상기 다분화능 줄기세포는 손상된 세포나 조직을 직접 복구할 수도 있지만, 손상된 세포가 자멸하지 않도록 지켜주고, 혈관을 새로 만들며, 딱딱하게 굳은 단백질을 분해해 조직의 기능을 되살릴 수 있을 뿐만 아니라 이에 필요한 다양한 생리인자를 분비할 수도 있다(이를 파라크린 효과라고 부름). 구체적으로 보면, 상기 다분화능 줄기세포는 피부의 성장·재생에 도움되는 세포성장인자와 피부를 유해활성산소 등으로부터 보호하는 항산화물질 분비를 촉진하고 염증을 줄여주는 물질 또는 항암성 물질 등을 분비할 수 있다. The multipotent stem cells can secrete several components and these components can act on damaged cells or tissues in vivo to improve damaged sites. According to an embodiment of the present invention, the multipotent stem cells may directly repair damaged cells or tissues, but protect the damaged cells from apoptosis, create new blood vessels, and break down hardened proteins to improve the function of tissues. Not only can it be revived, but it can also release various physiological factors (called the paracrine effect). Specifically, the multipotent stem cells may secrete substances or anti-cancer substances that promote cell growth factors that help the growth and regeneration of the skin and antioxidants that protect the skin from harmful free radicals and reduce inflammation, and the like. Can be.
본 발명의 실시예에 따르면, 상기 수득한 제대혈 유래 다분화능 줄기세포를 줄기세포 항염증맞춤형 배지에서 자극하는 단계는, 줄기세포의 항염증 관련 신호전달 기전을 활성화시킬 수 있고, 그 결과 IL-8, IL-10, IL-18, GM-CSF, MCP-1α와 같은 항염증 성분의 분비를 유도하게 할 수 있다. 즉, 상기 제대혈 유래 다분화능 줄기세포의 여러 가지 신호전달 기전 중에서 특이적으로 항염증 관련 신호전달 기전을 일반적인 상태보다 더 활성화시킬 수 있으며 그 결과 항염증 성분을 분비하기에 적합하도록 상기 줄기세포의 상태를 변화시킬 수 있다.According to an embodiment of the present invention, the step of stimulating the obtained cord blood-derived multipotent stem cells in a stem cell anti-inflammatory tailored medium, can activate the anti-inflammatory signaling mechanism of stem cells, as a result IL-8 Can induce secretion of anti-inflammatory components such as IL-10, IL-18, GM-CSF, MCP-1α. That is, among the various signaling mechanisms of the cord blood-derived multipotent stem cells, the anti-inflammatory signaling mechanism may be specifically activated more than the general state, and as a result, the state of the stem cells to be suitable for secreting anti-inflammatory components. Can change.
본 발명의 실시예에 따르면, 상기 줄기세포 항염증맞춤형 배지는 αMEM 또는 IMDM; 및 TGF-β, TNF-α, IL-3, IL-6 및 MEM 비타민으로 이루어진 군에서 선택되는 적어도 하나의 성분을 포함할 수 있다. According to an embodiment of the invention, the stem cell anti-inflammatory media is αMEM or IMDM; And at least one component selected from the group consisting of TGF-β, TNF-α, IL-3, IL-6, and MEM vitamins.
본 발명의 실시예에 따르면, 상기 줄기세포 항염증맞춤형 배지는 αMEM 또는 IMDM은 10 내지 30 중량부; 및 TGF-β, TNF-α, IL-3, IL-6 및 MEM 비타민으로 이루어진 군에서 선택되는 적어도 하나의 성분은 1x10-8 내지 17x10-7;를 포함할 수 있다.According to an embodiment of the present invention, the stem cell anti-inflammatory customized medium is αMEM or IMDM 10 to 30 parts by weight; And at least one component selected from the group consisting of TGF-β, TNF-α, IL-3, IL-6, and MEM vitamins, may include 1 × 10 −8 to 17 × 10 −7 .
본 발명의 실시예에 따르면, 상기 MEM비타민은 Choline chloride, D-Calcium pantothenate, Folic Acid, Nicotinamide, Pyridoxal hydrochloride, Riboflavin, Thiamine hydrochloride 및 i-Inositol로 구성될 수 있다. 바람직하게, 상기 MEM비타민은 전체 1ml당 80 내지 120ug의 Choline chloride, 80 내지 120ug의 D-Calcium pantothenate, 80 내지 120ug의 Folic Acid, 80 내지 120ug의 Nicotinamide, 80 내지 120ug의 Pyridoxal hydrochloride, 8 내지 12ug의 Riboflavin, 80 내지 120ug의 Thiamine hydrochloride 및 180 내지 220ug의 i-Inositol로 구성될 수 있다.According to an embodiment of the present invention, the MEM vitamin may be composed of Choline chloride, D-Calcium pantothenate, Folic Acid, Nicotinamide, Pyridoxal hydrochloride, Riboflavin, Thiamine hydrochloride and i-Inositol. Preferably, the MEM vitamin is 80 to 120 ug Choline chloride, 80 to 120 ug D-Calcium pantothenate, 80 to 120 ug Folic Acid, 80 to 120 ug Nicotinamide, 80 to 120 ug Pyridoxal hydrochloride, 8 to 12 ug Riboflavin, 80-120 ug Thiamine hydrochloride and 180-220 ug i-Inositol.
본 발명의 실시예에 따르면, 상기 줄기세포 항염증맞춤형 배지는, αMEM 또는 IMDM은 10 내지 30 중량부; 및 TGF-β는 1x10-8 내지 17x10-7 중량부, TNF-α은 1 x10-8 내지 17x10-7 중량부, IL-3은 1x10-8 내지 17x10-7 중량부, IL-6은 1x10-8 내지 17x10-7 중량부 및 MEM 비타민은 1x10-8 내지 17x10-7 중량부;일 수 있다.According to an embodiment of the present invention, the stem cell anti-inflammatory medium, αMEM or IMDM is 10 to 30 parts by weight; And TGF-β is 1x10 -8 to 17x10 -7 parts by weight, TNF-α was 1 x10 -8 to 17x10 -7 parts by weight, IL-3 is 1x10 -8 to 17x10 -7 parts by weight, IL-6 is 1x10 - 8 to 17 × 10 −7 parts by weight and the MEM vitamin may be 1 × 10 −8 to 17 × 10 −7 parts by weight.
본 발명의 바람직한 실시예에 따르면, 상기 줄기세포 항염증맞춤형 배지는, IMDM 15 내지 25 중량부; 및 TGF-β는 1x10-8 내지 1x10-7 중량부, TNF-α는 1x10-8 내지 5x10-8 중량부, IL-3은 1x10-8 내지 5x10-8 중량부, IL-6은 1x10-8 내지 5x10-8 중량부 및 MEM 비타민은 8x10-6 내지 17x10-6 중량부일 수 있다.According to a preferred embodiment of the present invention, the stem cell anti-inflammatory media, 15 to 25 parts by weight of IMDM; And TGF-β is 1x10 -8 to 1x10 -7 parts by weight, TNF-α is 1x10 -8 to 5x10 -8 parts by weight, IL-3 is 1x10 -8 to 5x10 -8 parts by weight, and IL-6 is 1x10 -8 to 5x10 -8 parts by weight, and MEM vitamins may be an 8x10 -6 to 17x10 -6 wt.
본 발명의 다른 실시예에 따르면, αMEM 또는 IMDM은 400 내지 600ml; 및 TGF-β, TNF-α, IL-3, IL-6 및 MEM 비타민으로 이루어진 군에서 선택되는 적어도 하나의 성분은 1 내지 100pg/ml가 포함될 수 있다.According to another embodiment of the invention, αMEM or IMDM is 400 to 600ml; And at least one component selected from the group consisting of TGF-β, TNF-α, IL-3, IL-6, and MEM vitamins may include 1 to 100 pg / ml.
본 발명의 또다른 실시예에 따르면, IMDM은 450 내지 550ml; 및 TGF-β는 1 내지 100pg/ml, TNF-α는 1 내지 100pg/ml, IL-3은 1 내지 100pg/ml, IL-6은 1 내지 100pg/ml 및 MEM 비타민은 1 내지 100pg/ml;를 포함할 수 있다. 더 바람직하게는, 상기 TGF-β는 10 내지 100pg/ml, 상기 TNF-α는 10 내지 50pg/ml, 상기 IL-3는 10 내지 50pg/ml, 상기 IL-6는 10 내지 50pg/ml 및 상기 MEM 비타민은 8000 내지 17000pg/ml 일 수 있다.According to another embodiment of the present invention, the IMDM is 450 to 550 ml; And 1 to 100 pg / ml for TGF-β, 1 to 100 pg / ml for TNF-α, 1 to 100 pg / ml for IL-3, 1 to 100 pg / ml for IL-6, and 1 to 100 pg / ml for MEM vitamins; It may include. More preferably, the TGF-β is 10 to 100 pg / ml, the TNF-α is 10 to 50 pg / ml, the IL-3 is 10 to 50 pg / ml, the IL-6 is 10 to 50 pg / ml and the The MEM vitamin can be between 8000 and 17000 pg / ml.
본 발명의 실시예에 따르면, 상기 자극하는 단계는 20 내지 28시간동안 이루어질 수 있다. 바람직하게는 23 내지 25시간일 수 있다. 20시간보다 적은 시간동안 자극을 하게 되면 본 발명의 실시예에 따른 줄기세포가 항염증 성분을 분비하기 위해 충분히 자극이 되지 않고, 또한, 28시간 초과로 자극하게되면 상기 줄기세포가 과도하게 자극을 받게 되어 항염증 성분이외에 다른 성분이 더 나오게 되어 항염증 순도를 낮출 수 있다.According to an embodiment of the present invention, the stimulating step may be performed for 20 to 28 hours. Preferably from 23 to 25 hours. When stimulated for less than 20 hours, the stem cells according to an embodiment of the present invention is not sufficiently stimulated to secrete anti-inflammatory components, and if stimulated for more than 28 hours, the stem cells excessively stimulated In addition to the anti-inflammatory ingredients in addition to the other components come out can lower the anti-inflammatory purity.
본 발명의 실시예에 따르면, 상기 자극하는 단계는 35 내지 38 ℃에서 이루어질 수 있다. 바람직하게는 36 내지 37.5℃에서 이루어질 수 있다. 35 ℃보다 낮은 온도에서 줄기세포를 자극하게 되면 세포의 전반적인 활동이 감소하게 되어 충분한 자극이 일어나지 못할 수 있고, 38 ℃보다 높은 온도에서 줄기세포를 자극하게 되면 세포내 효소 등의 활성이 저해를 받게 되어 결과적으로 세포가 사멸할 수 있기 때문에 본 발명의 실시예에 따른 항염증 물질의 분비가 제대로 일어나지 못할 수 있다. According to an embodiment of the present invention, the stimulating step may be performed at 35 to 38 ° C. Preferably it may be made at 36 to 37.5 ℃. Stimulation of stem cells at temperatures below 35 ° C may reduce the overall activity of the cells and may not result in sufficient stimulation. Stimulation of stem cells at temperatures above 38 ° C may inhibit the activity of intracellular enzymes and the like. As a result, the cells may die and secretion of the anti-inflammatory substances according to the embodiment of the present invention may not occur properly.
상기 자극된 제대혈 유래 다분화능 줄기세포를 세척하는 단계는 상기 줄기세포 항염증맞춤형 배지에서 자극하는 단계이후 및 배양배지에서 배양하는 단계 이전에 줄기세포 항염증맞춤형 배지를 제거함과 동시에, 상기 자극하는 단계동안에 상기 제대혈 유래 다분화능 줄기세포에서 분비되는 성분도 함께 제거하는 단계이다. 상기 자극하는 단계에서 제대혈 유래 다분화능 줄기세포에서 분비되는 성분은 본 발명의 목적인 항염증 작용에 부합하는 성분이 아니므로 세척 과정을 통해 제거되어야만 한다.Washing the stimulated umbilical cord blood-derived multipotent stem cells may include stimulating the stem cell anti-inflammatory media after the stimulation in the stem cell anti-inflammatory media and before culturing in the culture medium. During this step, the components secreted from the cord blood-derived multipotent stem cells are also removed. In the stimulating step, the components secreted from the umbilical cord blood-derived multipotent stem cells are not components corresponding to the anti-inflammatory action, which is the object of the present invention, and thus should be removed through a washing process.
상기 세척된 제대혈 유래 다분화능 줄기세포를 배양배지에서 배양하는 단계는, 상기 자극이 완료된 후 세척 단계를 거친 제대혈 유래 줄기세포에서 항염증 성분을 생산하여 분비하게 하기 위해 배양하는 단계이다. 즉, 상기 배양하는 단계에서 배양된 제대혈 유래 다분화능 줄기세포가 분비하는 성분은 항염증 작용을 할 수 있는 성분을 포함할 수 있다. The culturing the washed umbilical cord blood-derived multipotent stem cells in a culture medium is a step of culturing to produce and secrete anti-inflammatory components from the umbilical cord blood-derived stem cells that have undergone washing after the stimulation is completed. That is, the components secreted from the cord blood-derived multipotent stem cells cultured in the culturing may include components capable of anti-inflammatory action.
본 발명의 실시예에 따르면, 상기 항염증 성분은 NO(Nitric oxide)생성을 억제시킬 수 있다. 상기 NO는 혈압조절, 신경전달, 혈소판 응집억제, 면역기능 등의 역할을 하는 것으로 알려져 있으며, 여러 조직과 세포에서 L-arginine으로부터 nitric oxide synthase(NOS)에 의해 합성될 수 있다. 상기 NOS는 크게 nNOS(neuronal NOS), eNOS(endothelial NOS)와 i-NOS(inducible NOS)로 나눌 수 있다. 특히 상기 i-NOS는 세포내 칼슘 농도에 비의존성이며 대식세포, 혈관평활근세포, 내피세포, 간세포와 심근세포 등 여러 세포에서 LPS, IFN-γ, IL-1과 TNF-α 등의 자극에 의해 활성화되어 장시간동안 다량의 NO를 생성할 수 있다. 그러나 NO가 필요이상으로 생성되면 shock에 의한 혈관확장, 염증반응으로 유발되는 조직손상, 신경조직의 손상등을 일으켜 생체에 유해한 작용을 나타낼 수 있다. According to an embodiment of the present invention, the anti-inflammatory component may inhibit NO (Nitric oxide) production. The NO is known to play a role in blood pressure regulation, neurotransmission, platelet aggregation inhibitory, immune function, and can be synthesized by nitric oxide synthase (NOS) from L-arginine in various tissues and cells. The NOS can be broadly divided into nNOS (neuronal NOS), eNOS (endothelial NOS), and i-NOS (inducible NOS). In particular, i-NOS is independent of intracellular calcium concentration and stimulated by LPS, IFN-γ, IL-1 and TNF-α in various cells such as macrophages, vascular smooth muscle cells, endothelial cells, hepatocytes and cardiomyocytes. It can be activated and produce a large amount of NO for a long time. However, when NO is generated more than necessary, it may cause harmful effects on the living body by causing vasodilation due to shock, tissue damage caused by inflammatory response, and damage to nerve tissue.
도2를 참조해서 보면, 본 발명의 실시예에 따른 제대혈 유래 다분화능 줄기세포 배양방법을 통해 줄기세포로부터 분비된 항염증 성분(HSCM)이 NO생성량을 억제시킬 수 있다는 것을 알 수 있다.Referring to Figure 2, it can be seen that the anti-inflammatory component (HSCM) secreted from stem cells can inhibit the NO production through the umbilical cord blood-derived multipotent stem cell culture method according to an embodiment of the present invention.
본 발명의 실시예에 따르면, 상기 항염증 성분은 i-NOS(inducible Nitric oxide synthase)의 발현수준을 억제함으로써 NO 생성을 억제시킬 수 있다. 이는 도4 및 5를 참조해서 보면, 상기 항염증 성분이 i-NOS의 유전자 발현을 억제할 뿐만 아니라 그로 인한 단백질 발현까지 억제할 수 있다는 것을 보여준다. According to an embodiment of the present invention, the anti-inflammatory component may inhibit NO production by inhibiting the expression level of i-NOS (inducible Nitric oxide synthase). 4 and 5 show that the anti-inflammatory component can inhibit not only gene expression of i-NOS but also protein expression.
본 발명의 다른 실시예에 따르면, 상기 항염증 성분은 PGE2(Prostaglandin E2) 생성을 억제시킬 수 있다. 상기 PGE2는 상기NO와 같이 염증 매개물질 중의 하나로서, 혈관 확장, 부종, 발열, 동통 등을 매개할 수 있다. 또한, 염증질환에서 matrix metalloproteinases(MMPs)의 생성을 유도하여 조직 손상에 관여할 수 있으며, 류마티스 관절염환자에서 얻은 대식세포에서 다량의 PGE2가 생성되고, 생성된 PGE2는 류마티스 관절염에서의 염증반응과 조직 파괴 기전에 중요한 역할을 할 수 있다. 상기 PGE2의 합성은 phospholipase A2의 효소작용에 의해 막 인지질(membrane phospholipid)로부터 arachidonic acid가 만들어지는 것으로 시작된다. Arachidonic acid는 효소작용에 의해 prostaglandin G2가 되고 다시 불안정한 대사산물인 prostaglandin H2가 되는데 이 두 과정은 cyclooxygenase (COX)에 의해 촉진된다. COX는 두 종류 이상의 isoenzyme이 존재하는데 이들 중 COX1은 지속적으로 발현하여 혈소판 응집, 위 점막 보호, 신기능 조절 등의 생리적 기능을 담당하고 COX2는 염증 등의 자극에 의해 발현되며 따라서 COX2에 의해 생성된 prostaglandin이 염증반응과 세포증식에 관여할 수 있다.According to another embodiment of the present invention, the anti-inflammatory component may inhibit the production of PGE 2 (Prostaglandin E2). The PGE 2 is one of inflammatory mediators such as NO, and may mediate vasodilation, edema, fever, and pain. In addition, it is possible to induce the production of matrix metalloproteinases (MMPs) in inflammatory diseases involved in tissue damage, a large amount of PGE 2 is produced in macrophages obtained from rheumatoid arthritis patients, the resulting PGE 2 inflammatory response in rheumatoid arthritis And may play an important role in the mechanism of tissue destruction. The synthesis of PGE 2 begins with the production of arachidonic acid from membrane phospholipids by enzymatic action of phospholipase A2. Arachidonic acid is enzymatically converted to prostaglandin G2 and then to the unstable metabolite prostaglandin H2, both of which are promoted by cyclooxygenase (COX). COX exists in two or more types of isoenzymes. Among them, COX1 is continuously expressed, which is responsible for physiological functions such as platelet aggregation, gastric mucosa protection, and renal function regulation. COX2 is expressed by stimulation such as inflammation, and thus prostaglandin produced by COX2. It may be involved in inflammatory reactions and cell proliferation.
도2를 참조해서 보면, 본 발명의 실시예에 따른 제대혈 유래 다분화능 줄기세포 배양방법을 통해 줄기세포로부터 분비된 항염증 성분(HSCM)이 PGE2생성량을 억제시킬 수 있다는 것을 알 수 있다.Referring to Figure 2, it can be seen that the anti-inflammatory component (HSCM) secreted from stem cells through the umbilical cord blood-derived multipotent stem cell culture method according to an embodiment of the present invention can inhibit the amount of PGE 2 produced.
본 발명의 실시예에 따르면, 상기 항염증 성분은 COX2(Cyclooxygenase 2)의 발현수준을 억제함으로써 상기 PGE2를 억제시킬 수 있다. 이는 도4 및 5를 참조해서 보면, 상기 항염증 성분이 COX2의 유전자 발현을 억제할 뿐만 아니라 그로 인한 단백질 발현까지 억제할 수 있다는 것을 보여준다. According to an embodiment of the present invention, the anti-inflammatory component may inhibit the PGE 2 by inhibiting the expression level of COX2 (Cyclooxygenase 2). 4 and 5 show that the anti-inflammatory component can inhibit not only the gene expression of COX2 but also protein expression.
본 발명의 실시예에 따르면, 상기 배양배지는, αMEM, IMDM, DMEM/F12 및 Medium199으로 이루어진 군에서 선택되는 하나의 배양액; 및 인슐린, 트랜스페린, 아셀렌산나트륨, MEM 비타민 및 인간 알부민으로 이루어진 군에서 선택되는 적어도 하나의 성분;을 포함할 수 있다. According to an embodiment of the present invention, the culture medium, one medium selected from the group consisting of αMEM, IMDM, DMEM / F12 and Medium199; And at least one component selected from the group consisting of insulin, transferrin, sodium selenite, MEM vitamin, and human albumin.
본 발명의 실시예에 따르면, 상기 배양배지는, αMEM, IMDM, DMEM/F12 및 Medium199으로 이루어진 군에서 선택되는 하나는 10 내지 30 중량부; 및 인슐린, 트랜스페린, 아셀렌산나트륨, MEM 비타민 및 인간 알부민으로 이루어진 군에서 선택되는 적어도 하나의 성분은 1 x10-6 내지 5x10-2 중량부;를 포함할 수 있다. According to an embodiment of the present invention, the culture medium is one selected from the group consisting of αMEM, IMDM, DMEM / F12 and Medium199 10 to 30 parts by weight; And at least one component selected from the group consisting of insulin, transferrin, sodium selenite, MEM vitamin, and human albumin, may include 1 × 10 −6 to 5 × 10 −2 parts by weight.
본 발명의 다른 실시예에 따르면, 상기 배양배지는, Medium199은 10 내지 30 중량부; 및 인슐린은 1x10-6 내지 5x10-2 중량부, 트랜스페린은 1x10-6 내지 5x10-2 중량부, 아셀렌산나트륨은 1x10-6 내지 5x10-2 중량부, MEM 비타민은 1x10-6 내지 5x10-2 중량부 및 인간 알부민은 1x10-6 내지 5x10-2 중량부;를 포함할 수 있다. According to another embodiment of the present invention, the culture medium, Medium199 is 10 to 30 parts by weight; And Insulin 1x10 -6 to 5x10 -2 part by weight of transferrin is 1x10 -6 to 5x10 -2 part by weight of sodium selenite is 1x10 -6 to 5x10 -2 part by weight, MEM vitamins 1x10 -6 to 5x10 -2 Parts by weight and human albumin may include 1 × 10 −6 to 5 × 10 −2 parts by weight.
본 발명의 바람직한 실시예에 따르면, 상기 배양배지는, Medium199은 15 내지 25 중량부; 및 인슐린은 1x10-3 내지 5x10-2 중량부, 트랜스페린은 1x10-3 내지 5x10-2 중량부, 아셀렌산나트륨은 1x10-6 내지 5x10-5 중량부, MEM 비타민은 8x10-6 내지 17x10-6 중량부 및 인간 알부민은 5x10-3 내지 15x10-3 중량부;를 포함할 수 있다.According to a preferred embodiment of the present invention, the culture medium, Medium199 is 15 to 25 parts by weight; And Insulin 1x10 -3 to 5x10 -2 part by weight of transferrin is 1x10 -3 to 5x10 -2 part by weight of sodium selenite is 1x10 -6 to 5x10 -5 parts by weight, MEM vitamins 8x10 -6 to 17x10 -6 Parts by weight and human albumin may include 5 × 10 −3 to 15 × 10 −3 parts by weight.
본 발명의 다른 실시예에 따르면, 상기 배양배지는, αMEM, IMDM, DMEM/F12 및 Medium199으로 이루어진 군에서 선택되는 하나의 배양액은 400 내지 600 ml; 및 인슐린, 트랜스페린, 아셀렌산나트륨, MEM 비타민 및 인간 알부민으로 이루어진 군에서 선택되는 적어도 하나의 성분은 0.001 내지 50 ug/ml;을 포함할 수 있다. According to another embodiment of the present invention, the culture medium, one medium selected from the group consisting of αMEM, IMDM, DMEM / F12 and Medium199 is 400 to 600 ml; And at least one component selected from the group consisting of insulin, transferrin, sodium selenite, MEM vitamins, and human albumin may comprise 0.001 to 50 ug / ml.
본 발명의 바람직한 실시예에 따르면, Medium199은 450 내지 550ml; 및 인슐린은 1 내지 50ug/ml, 트랜스페린은 1 내지 50ug/ml, 아셀렌산나트륨은 0.001 내지 0.05ug/ml, MEM 비타민은 0.008 내지 0.017ug/ml 및 인간 알부민은 5 내지 15ug/ml;을 포함할 수 있다.According to a preferred embodiment of the present invention, Medium199 is 450 to 550 ml; And 1 to 50 ug / ml of insulin, 1 to 50 ug / ml of transferrin, 0.001 to 0.05 ug / ml of sodium selenite, 0.008 to 0.017 ug / ml of MEM vitamin and 5 to 15 ug / ml of human albumin; can do.
본 발명의 다른 일측면에 따른 항염증 조성물은 상기 제대혈 유래 다분화능 줄기세포 배양방법으로 배양된 줄기세포가 분비하는 배양액을 포함할 수 있다. The anti-inflammatory composition according to another aspect of the present invention may include a culture medium secreted by the stem cells cultured by the cord blood-derived multipotent stem cell culture method.
본 발명의 실시예에 따르면, 상기 항염증 조성물은 IL-8, IL-10, IL-18, GM-CSF 및 MIP-1α으로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다. 바람직하게는, 상기 항염증 조성물은, IL-8은 40 내지 50 중량부, IL-10 은 0.05 내지 0.07 중량부, IL-18 은 1 내지 2 중량부, GM-CSF 은 0.4 내지 0.6 중량부 및 MIP-1α는 20 내지 30 중량부를 포함할 수 있다. According to an embodiment of the present invention, the anti-inflammatory composition may comprise at least one selected from the group consisting of IL-8, IL-10, IL-18, GM-CSF and MIP-1α. Preferably, the anti-inflammatory composition, IL-8 is 40 to 50 parts by weight, IL-10 is 0.05 to 0.07 parts by weight, IL-18 is 1 to 2 parts by weight, GM-CSF is 0.4 to 0.6 parts by weight and MIP-1α may comprise 20 to 30 parts by weight.
본 발명의 다른 실시예에 따르면, 상기 항염증 조성물은 IL-8은 40 내지 50ng/ml, IL-10 은 0.05 내지 0.07ng/ml, IL-18 은 1 내지 2ng/ml, GM-CSF 은 0.4 내지 0.6 ng/ml 및 MIP-1α는 20 내지 30 ng/ml를 포함할 수 있다.According to another embodiment of the present invention, the anti-inflammatory composition is 40 to 50ng / ml IL-8, 0.05 to 0.07ng / ml IL-10, 1 to 2ng / ml IL-18, 0.4 GM-CSF To 0.6 ng / ml and MIP-1α may comprise 20 to 30 ng / ml.

Claims (11)

  1. 제대혈로부터 단핵구를 분리하는 단계;Separating monocytes from umbilical cord blood;
    상기 단핵구를 배양하여 제대혈 유래 다분화능 줄기세포를 수득하는 단계;Culturing the monocytes to obtain umbilical cord blood-derived multipotent stem cells;
    상기 수득한 제대혈 유래 다분화능 줄기세포를 줄기세포 항염증맞춤형 배지에서 자극하는 단계;Stimulating the obtained cord blood-derived multipotent stem cells in a stem cell anti-inflammatory medium;
    상기 자극된 제대혈 유래 다분화능 줄기세포를 세척하는 단계; 및Washing the stimulated cord blood-derived multipotent stem cells; And
    상기 세척된 제대혈 유래 다분화능 줄기세포를 배양배지에서 배양하는 단계; Culturing the washed umbilical cord blood-derived multipotent stem cells in a culture medium;
    를 포함하는, 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법.Including, umbilical cord blood-derived multipotent stem cell culture method for secreting anti-inflammatory components.
  2. 제1항에 있어서,The method of claim 1,
    상기 줄기세포 항염증맞춤형 배지는,The stem cell anti-inflammatory customized medium,
    αMEM 또는 IMDM; 및αMEM or IMDM; And
    TGF-β, TNF-α, IL-3, IL-6 및 MEM 비타민으로 이루어진 군에서 선택되는 적어도 하나의 성분;At least one component selected from the group consisting of TGF-β, TNF-α, IL-3, IL-6 and MEM vitamins;
    을 포함하는 것을 특징으로 하는, 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법.Umbilical cord blood-derived multipotent stem cell culture method for secreting an anti-inflammatory component, comprising a.
  3. 제1항에 있어서,The method of claim 1,
    상기 자극하는 단계는 20 내지 28시간동안 이루어지는 것을 특징으로 하는, 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법.The stimulating step is characterized in that made for 20 to 28 hours, umbilical cord blood-derived multipotent stem cell culture method for secreting anti-inflammatory components.
  4. 제1항에 있어서,The method of claim 1,
    상기 자극하는 단계는 35 내지 38 ℃에서 이루어지는 것을 특징으로 하는, 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법.The stimulating step is characterized in that made at 35 to 38 ℃, umbilical cord blood-derived multipotent stem cell culture method for secreting anti-inflammatory components.
  5. 제1항에 있어서,The method of claim 1,
    상기 배양배지는,The culture medium,
    αMEM, IMDM, DMEM/F12 및 Medium199으로 이루어진 군에서 선택되는 하나의 배양액; 및one culture selected from the group consisting of αMEM, IMDM, DMEM / F12, and Medium199; And
    인슐린, 트랜스페린, 아셀렌산나트륨, MEM 비타민 및 인간 알부민으로 이루어진 군에서 선택되는 적어도 하나의 성분;At least one component selected from the group consisting of insulin, transferrin, sodium selenite, MEM vitamins and human albumin;
    을 포함하는 것을 특징으로 하는, 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법.Umbilical cord blood-derived multipotent stem cell culture method for secreting an anti-inflammatory component, comprising a.
  6. 제1항에 있어서,The method of claim 1,
    상기 항염증 성분은 NO(Nitric oxide) 생성을 억제시키는 것을 특징으로 하는, 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법.The anti-inflammatory component is characterized in that to inhibit the production of NO (Nitric oxide), umbilical cord blood-derived multipotent stem cell culture method that secretes anti-inflammatory components.
  7. 제6항에 있어서,The method of claim 6,
    상기 NO 생성이 억제되는 것은 i-NOS(inducible Nitric oxide synthase)의 발현수준이 억제됨으로써 이루어지는 것을 특징으로 하는, 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법.Inhibiting the production of NO is characterized in that the expression level of i-NOS (inducible Nitric oxide synthase) is suppressed, umbilical cord blood-derived multipotent stem cell culture method that secretes anti-inflammatory components.
  8. 제1항에 있어서,The method of claim 1,
    상기 항염증 성분은 PGE2(Prostaglandin E2) 생성을 억제시키는 것을 특징으로 하는, 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법.The anti-inflammatory component is characterized in that to inhibit the production of PGE 2 (Prostaglandin E2), umbilical cord blood-derived multipotent stem cell culture method for secreting an anti-inflammatory component.
  9. 제8항에 있어서,The method of claim 8,
    상기 PGE2 생성이 억제되는 것은 COX2(Cyclooxygenase 2)의 발현수준이 억제됨으로써 이루어지는 것을 특징으로 하는, 항염증 성분을 분비하는 제대혈 유래 다분화능 줄기세포 배양방법.Inhibiting the production of PGE 2 is characterized in that the expression level of COX2 (Cyclooxygenase 2) is suppressed, umbilical cord blood-derived multipotent stem cell culture method that secretes anti-inflammatory components.
  10. 제1항에 따른 방법으로 배양된 제대혈 유래 다분화능 줄기세포가 분비하는 배양액을 포함하는 항염증 조성물.Anti-inflammatory composition comprising a culture medium secreted by umbilical cord blood-derived multipotent stem cells cultured by the method according to claim 1.
  11. 제10항에 있어서,The method of claim 10,
    상기 항염증 조성물은 IL-8, IL-10, IL-18, GM-CSF 및 MIP-1α로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 것을 특징으로 하는, 항염증 조성물.The anti-inflammatory composition is characterized in that it comprises at least one selected from the group consisting of IL-8, IL-10, IL-18, GM-CSF and MIP-1α, anti-inflammatory composition.
PCT/KR2018/005317 2018-05-08 2018-05-09 Method for culturing stem cells secreting anti-inflammatory components, and anti-inflammatory composition containing said stem cell culture medium WO2019216450A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562658A JP7072292B2 (en) 2018-05-08 2018-05-09 An anti-inflammatory composition containing a method for culturing stem cells secreting an anti-inflammatory component and a stem cell culture medium thereof.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0052331 2018-05-08
KR1020180052331A KR102082745B1 (en) 2018-05-08 2018-05-08 A method for preparing a stem cell secreting anti-inflammatory substances and anti-inflammatory compositions comprising culture medium of the stem cell

Publications (1)

Publication Number Publication Date
WO2019216450A1 true WO2019216450A1 (en) 2019-11-14

Family

ID=68468093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005317 WO2019216450A1 (en) 2018-05-08 2018-05-09 Method for culturing stem cells secreting anti-inflammatory components, and anti-inflammatory composition containing said stem cell culture medium

Country Status (3)

Country Link
JP (1) JP7072292B2 (en)
KR (1) KR102082745B1 (en)
WO (1) WO2019216450A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102419735B1 (en) 2020-03-18 2022-07-12 주식회사 티스템 A Abti-Inflammation Material H2O2-Induced from Membrane-Free Stem Cell
KR102492888B1 (en) * 2020-12-23 2023-01-30 에스씨엠생명과학 주식회사 Composition for stem cell priming and primed stem cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508393A (en) * 2001-11-09 2005-03-31 アーテセル・サイエンシズ・インコーポレーテツド Methods and compositions for the use of stromal cells to support embryonic and adult stem cells
KR20090019078A (en) * 2007-08-20 2009-02-25 한훈 Composition including cord blood multipotent stem cell-derived protein and process for preparing the same
KR20130096661A (en) * 2012-02-22 2013-08-30 주식회사 강스템홀딩스 A composition comprising stem cell for preventing or treating of immune or inflammatory disease
KR101516763B1 (en) * 2014-01-07 2015-05-04 주식회사 강스템바이오텍 Pharmaceutical composition comprising stem cells treated with DNA methyltransferase or culture thereof for prevention and treatment of immune diseases and inflammatory diseases
KR20160037113A (en) * 2014-09-25 2016-04-05 주식회사 강스템바이오텍 Pharmaceutical composition comprising stem cells treated with Interferon-gamma or Interleukin-1beta, or culture thereof for prevention and treatment of immune diseases and inflammatory diseases

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090090850A (en) 2008-02-22 2009-08-26 (주)히스토스템 Culture medium composition for in vitro proliferation of mesenchymal stem cell derived from umbilical cord blood comprising soy hydrolisate
KR20120095580A (en) * 2011-02-21 2012-08-29 (주)히스토스템 Renal protective composition including cord blood multipotent stem cell-derived protein and process for preparing the same
KR20130104924A (en) 2012-03-16 2013-09-25 (주)히스토스템 Antiviral composition including cord blood multipotent stem cell-derived protein and process for preparing the same
DK3313982T3 (en) * 2015-06-23 2023-12-11 Univ Texas Methods and apparatus for conditioning cell populations for cell therapies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508393A (en) * 2001-11-09 2005-03-31 アーテセル・サイエンシズ・インコーポレーテツド Methods and compositions for the use of stromal cells to support embryonic and adult stem cells
KR20090019078A (en) * 2007-08-20 2009-02-25 한훈 Composition including cord blood multipotent stem cell-derived protein and process for preparing the same
KR20130096661A (en) * 2012-02-22 2013-08-30 주식회사 강스템홀딩스 A composition comprising stem cell for preventing or treating of immune or inflammatory disease
KR101516763B1 (en) * 2014-01-07 2015-05-04 주식회사 강스템바이오텍 Pharmaceutical composition comprising stem cells treated with DNA methyltransferase or culture thereof for prevention and treatment of immune diseases and inflammatory diseases
KR20160037113A (en) * 2014-09-25 2016-04-05 주식회사 강스템바이오텍 Pharmaceutical composition comprising stem cells treated with Interferon-gamma or Interleukin-1beta, or culture thereof for prevention and treatment of immune diseases and inflammatory diseases

Also Published As

Publication number Publication date
JP2021526360A (en) 2021-10-07
JP7072292B2 (en) 2022-05-20
KR102082745B1 (en) 2020-02-28
KR20190128315A (en) 2019-11-18

Similar Documents

Publication Publication Date Title
AU2006304274B2 (en) Production of oligodendrocytes from placenta-derived stem cells
WO2013081436A1 (en) Culture-medium composition for rejuvenating stem cells
WO2014181954A1 (en) Culture medium composition for improving regenerative capacity of stem cells, and stem cell culturing method using same
AU2011343739A1 (en) Treatment of spinal cord injury and traumatic brain injury using placental stem cells
KR102280509B1 (en) Composition for preventing or treating autoimmune and inflammatory skin diseases based on pluripotent stem cells, and method for manufacturing the same
WO2019216450A1 (en) Method for culturing stem cells secreting anti-inflammatory components, and anti-inflammatory composition containing said stem cell culture medium
WO2013085303A1 (en) Canine amniotic membrane-derived multipotent stem cells
WO2012008733A2 (en) Stem cells derived from primary placenta tissue and cellular therapeutic agent containing same
WO2017146468A1 (en) Composition and method for improving efficacy of stem cells
WO2011159050A2 (en) Method for differentiating human neural progenitor cells into dopaminergic neurons, and medium for differentiation thereof
WO2019035668A9 (en) Composition for treatment of thyroid associated ophthalmopathy, comprising mesenchymal stem cell
Broderick et al. Disease-associated mutations in topoisomerase IIβ result in defective NK cells
WO2013077639A1 (en) Equine amniotic membrane-derived mesenchymal stem cells
WO2019103436A9 (en) Composition for culturing nk cells and method for culturing nk cells using same
Cabezas et al. In vitro preconditioning of equine adipose mesenchymal stem cells with prostaglandin E2, substance P and their combination changes the cellular protein secretomics and improves their immunomodulatory competence without compromising stemness
WO2011065661A2 (en) Chondrogenesis of mesenchymal stem cells using dkk-1 or sfrp-1
WO2022108165A1 (en) Method for producing exosomes isolated from induced pluripotent stem cell-derived mesenchymal stem cells, and use thereof
KR102023805B1 (en) Methods for improving proliferation of stem cell using chenodeoxycholic acid
WO2012133992A1 (en) Method for differentiating adipose-derived mesenchymal stem cells into chondrocytes
WO2019190175A2 (en) Method for differentiating motor neurons from tonsil-derived mesenchymal stem cells
WO2020036418A1 (en) Method for function enhancement and large-quantity production of hair follicle cells in placenta-derived cell conditioned medium
WO2015080376A1 (en) Method for differentiating nerve cells and hair cells from placental chorion or warthon's jelly-derived mesenchymal stem cells
WO2013125899A1 (en) Composition for preventing or treating immune diseases or inflammatory diseases, containing stem cells as active ingredient
WO2017176054A1 (en) Medium composition for culturing stem cell and method for culturing stem cell using same
WO2017039251A1 (en) Enhanced postnatal adherent cell, and use for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917779

Country of ref document: EP

Kind code of ref document: A1