WO2011065661A2 - Chondrogenesis of mesenchymal stem cells using dkk-1 or sfrp-1 - Google Patents

Chondrogenesis of mesenchymal stem cells using dkk-1 or sfrp-1 Download PDF

Info

Publication number
WO2011065661A2
WO2011065661A2 PCT/KR2010/006837 KR2010006837W WO2011065661A2 WO 2011065661 A2 WO2011065661 A2 WO 2011065661A2 KR 2010006837 W KR2010006837 W KR 2010006837W WO 2011065661 A2 WO2011065661 A2 WO 2011065661A2
Authority
WO
WIPO (PCT)
Prior art keywords
dkk
sfrp
mesenchymal stem
stem cells
chondrocytes
Prior art date
Application number
PCT/KR2010/006837
Other languages
French (fr)
Korean (ko)
Other versions
WO2011065661A3 (en
Inventor
임군일
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2011065661A2 publication Critical patent/WO2011065661A2/en
Publication of WO2011065661A3 publication Critical patent/WO2011065661A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled

Definitions

  • the present invention relates to a method for producing cartilage as a tissue engineering or cell therapy, and to a method for differentiating mesenchymal stem cells into chondrocytes.
  • Articular cartilage is the most heavily loaded tissue of human tissue and is easily exposed to damage caused by wear. Articular cartilage is a free cartilage (hyaline cartilage) consisting of chondrocytes and abundant extracellular matrix. Cartilage cells occupy less than 10% of total cartilage volume and play an important role in maintaining joint cartilage because it synthesizes and secretes extracellular matrix. Reduction of chondrocyte number and chondrocyte metabolism by aging is considered to be one of the pathogenesis of osteoarthritis, a high prevalence of senile diseases (Bobacz K et al, Ann Rheum Dis, Dec, 63 (12), pp.1618-1622 , 2004). In addition, articular cartilage is a tissue that is unable to regenerate itself after injury because there is no blood vessel, nerve and lymphatic tissue. Current medical methods have a very limited method of regenerating articular cartilage normally.
  • Histologically engineered articular cartilage of differentiated chondrocytes from stem cells is essential for chondrocytes and biodegradable scaffolds, and chondrocytes are isolated from bone marrow and cultured into chondrocytes. Induce differentiation Ideal chondrocytes should have good proliferative capacity and maintain collagen type II, a specific phenotype of chondrocytes.
  • mesenchymal stem cells are known as repair cells of various types of connective tissue, and these cells can differentiate into various types of cells of the mesenchymal system.
  • mesenchymal stem cells In order to use mesenchymal stem cells to treat articular cartilage damage, it is essential to develop an efficient and well-organized method of differentiating stem cells directly into cartilage cell lines both in vivo and in the laboratory.
  • These undifferentiated mesenchymal stem cells are limited in their use because they lack information on the long-term stability of repaired tissues and are at risk of forming heterologous tissues in vivo by their tendency to differentiate into other types of cells. (De Bari, C et al., Arthritis Rheum, 50: 142, 2004).
  • the Wnt signaling inhibitor DKK-1 or sFRP-1 is treated in the early stages of differentiating mesenchymal stem cells into chondrocytes, thereby efficiently differentiating mesenchymal stem cells into chondrocytes.
  • One embodiment of the present invention provides a method for differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture.
  • one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture
  • compositions for treating cartilage damage diseases are provided.
  • one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture It provides a method for producing an artificial joint comprising continuing to culture in a scaffold of a certain type.
  • one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture It provides a manufactured artificial joint comprising continuing to culture in a scaffold of a certain type.
  • chondrocytes by treating DKK-1 or sFRP-1 at the beginning of differentiation of mesenchymal stem cells capable of differentiating into various types of cells, differentiation into chondrocytes can be efficiently induced. Differentiated chondrocytes prepared in this way can be usefully used to treat osteoarthritis in a biological way through the transplantation of cells or tissues.
  • 1 is a graph showing the amount of gene expression of ⁇ -catenin following treatment with DKK-1 or sFRP-1. (a) is by DKK-1, (b) is by sFRP-1.
  • FIG. 2 is a graph showing the amount of protein expression of ⁇ -catenin following treatment with DKK-1 or sFRP-1.
  • (a) is the result of western blot
  • (b) is a graph of this.
  • Figure 3 is a photograph of the results of immunohistochemical staining to determine the amount of ⁇ -catenin following treatment with DKK-1 or sFRP-1.
  • FIG. 4 is a graph showing the amount of GAG according to the treatment of DKK-1 or sFRP-1. (a) is by DKK-1, (b) is by sFRP-1.
  • FIG. 5 is a photograph of the results of safranin-O staining. (a) is by DKK-1, (b) is by sFRP-1.
  • FIG. 6 is a graph showing changes in protein gene expression essential for cartilage differentiation following treatment with DKK-1. (a) relates to COL2A1, (b) relates to SOX-9.
  • Figure 7 (a) is a result of Western blot for COL2A1 and SOX-9
  • Figure 7 (b) is a photograph of the immunohistochemical staining results.
  • One embodiment of the present invention provides a method for differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture.
  • Mesenchymal stem cells include synoviium, umbilical cord blood or adipose tissue-derived stem cells, and the like, but are not limited thereto. It is appropriate to use bone marrow-derived mesenchymal stem cells.
  • the isolated myelogenous mesenchymal mesenchymal stem cells are preferably used in two to five passages, preferably three to four times, and most preferably three times, in that they separate only stem cells that can differentiate.
  • pellet culture, alginate beads, and alginate layer culture are mainly used as a three-dimensional culture method for differentiating mesenchymal stem cells into chondrocytes.
  • pellet culture is effective in maintaining the phenotype of chondrocytes, and can easily aggregate cells through centrifugation to induce a conjugation effect between cells, thereby providing an extracellular environment similar to the production of early cartilage tissue.
  • the cells when differentiating mesenchymal stem cells into chondrocytes, the cells are cultured in the presence of DKK-1 or sFRP-1, which is preferably treated from 2 to 8 days and 3 to 7 days from the start of the culture. .
  • DKK-1 is an inhibitor of the Wnt / ⁇ -catenin signaling pathway, which is involved in the differentiation of cartilage in mesenchymal stem cells, and binds to the auxiliary receptors, LRP5 / 6 and Kremen, to inhibit Wnt signaling pathway.
  • Secreted frizzled-related protein is an inhibitor of the Wnt / ⁇ -catenin signaling pathway involved in cartilage differentiation in mesenchymal stem cells and has a cystine-rich domain for interaction with Wnt proteins. It prevents binding to the frizzled receptor on the cell membrane or LRP5 / 6, an auxiliary receptor on the cell surface.
  • Wnt is a group of several glycoproteins bound to lipids. Wnt is involved in various phenomena such as cell fate determination, polarity, and differentiation migration and plays an important role in the development of trunk and limb axis formation. It is involved in the development and formation of the skeleton in fetal development and in the remodeling of the skeleton in adults, but it has a complex mechanism of interaction with other signaling systems, depending on time and place.
  • the general Wnt signaling system is relatively simple. When Wnt binds to a receptor called frizzled on the cell membrane, it releases the cofactor, axin, from the protein complex that breaks down ⁇ -catenin, thereby inducing cytoplasmic ⁇ -catenin levels. Is increased, ⁇ -catenin enters the cell nucleus and activates the transcription factor Lef1 / Tcf-1 to induce the transcription of several genes.
  • This general Wnt / ⁇ -catenin signaling pathway constitutes an autonomic mechanism that promotes differentiation of undifferentiated mesenchymal stem cells into osteoblasts and inhibits differentiation into chondrocytes. Overexpression of Wnt leads to increased bone formation and inhibition of chondrocyte formation. On the contrary, when ⁇ -catenin is inhibited, chondrocyte differentiation occurs instead of osteoblast differentiation. Is thought to determine whether to become osteoblasts or chondrocytes.
  • the mechanism by which bone formation is promoted in the Wnt / ⁇ -catenin signaling system is a mechanism by which ⁇ -catenin-activated Lef1 / Tcf-1 transcription factors directly induce the production of Runx2, the most important transcription factor in bone differentiation.
  • Inhibition of cartilage formation is a mechanism by which ⁇ -catenin directly binds to and inactivates SOX-9, a transcription factor that induces cartilage formation.
  • Determination of cell differentiation of mesenchymal stem cells by the Wnt / ⁇ -catenin signaling system is determined by strong expression in the early stages of development and within a short time. Two days from the start of incubation of DKK-1 or sFRP-1 It is good to process for 8 to 8 days, 3 to 7 days. For example, when three-week cultures of bone marrow-derived mesenchymal stem cells that have been passaged three times after separation to differentiate into chondrocytes are treated with DKK-1 or sFRP-1 for the first week only. If the treatment period is shorter than 2 days, inhibition of the Wnt / ⁇ -catenin signaling system does not occur efficiently. If the treatment period is longer than 8 days, cell death may occur.
  • the amount of DKK-1 or sFRP-1 is suitably 50 to 350 ng / ml, 80 to 320 ng / ml, 100 to 300 ng / ml, 150 to 300 ng / ml.
  • the inhibitory effect is insignificant. If it is more than 350ng / ml, it is unnecessary to use.
  • the culture medium may include any one or more substances selected from the group consisting of insulin, dexamethasone, ascorbate 2-phosphate, L-proline and sodium pyruvate, each amount of insulin 0.5 to 3 g / l, dexamethasone ( dexametasone) 10 -6 to 10 -8 M, ascorbate 2-phosphate 10-100 mM, L-proline 10-100 mM and sodium pyruvate 0.5-3 mM.
  • one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture
  • compositions for treating cartilage damage diseases are provided.
  • Chondrocytes differentiated from bone marrow origin mesenchymal stem cells produced by the method according to an embodiment of the present invention can be used as an active ingredient of a cell composition for cell replacement therapy for treating cartilage damage and the like.
  • Cartilage damage diseases that can be treated using chondrocytes produced by one embodiment of the present invention include, but are not limited to, degenerative arthritis, rheumatoid arthritis, and joint damage due to trauma.
  • the therapeutic composition comprising chondrocytes produced by one embodiment of the present invention as an active ingredient may be directly injected into the joint of a patient according to a known method, or may be transplanted together with a scaffold after three-dimensional culture. It is desirable to control the number of cells to be administered in consideration of various factors such as the disease, the severity of the disease, the route of administration, the weight, age and sex of the patient.
  • one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture
  • one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture It provides a manufactured artificial joint comprising culturing in any form of scaffold.
  • Artificial cartilage of a certain type can be obtained using a conventional method of culturing chondrocytes differentiated by one embodiment of the present invention in a scaffold of any form, and by using the artificial joint or ear or nose Artificial cartilage used for molding can be produced.
  • Bone marrow samples used to isolate mesenchymal stem cells were obtained from three patients (mean age: 50 and 37-64 years) who underwent total hip replacement due to arthritis. Mesenchymal stem cells were isolated from the bone marrow and then expanded. After two passages, cell proliferation was stopped in cryopreservation medium containing 90% fetal bovine serum (Gibco BRL, Green Island, NY) and 10% dimethylsulfoxide. In subsequent experiments, the cells were thawed and one million cells were washed at a density of 1.2 * 10 4 cells / cm 2 with 10% fetal calf serum and 1% antibiotics (100 U / ml penicillin, 0.1 mg / ml streptomycin, 0.25 mg / ml).
  • DMEM Dulbecco's modified Eagle's medium
  • F-12 medium Gibco BRL, Green Island, NY
  • amphotericin B Gibco BRL, Green Island, NY
  • the medium of the experimental group contained 100 (Example 1), 200 (Example 2) and 300 (Example 3) ng / ml of DKK-1, 100 (Example 4), 200 (Example 5) and 300 (Example 6) ng / ml of sFRP-1 were added.
  • pellets were recovered for analysis.
  • 1 ml cell suspension was placed in a 15 ml polypropylene centrifuge tube and centrifuged at 500 g for 5 minutes in a centrifuge. The tubes were then stored in an incubator at 37 ° C. with 5% carbon dioxide.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 6 DMEM / F-12 medium, ITS, dexamethasone, ascorbate 2-phosphate, L-proline, sodium pyruvate ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Amount of DKK-1 (ng / ml) 0 100 200 300 0 0 0 amount of sFRP-1 (ng / ml) 0 0 0 0 100 200 300
  • an Alamar Blue assay was performed. This assay measures cell viability using a blue non-fluorescent dye resazurin that turns into a pink fluorescent dye resorufin in response to chemical reduction of the growth medium produced by cell growth.
  • Control was DMEM containing 10% fetal calf serum and 1% antibiotics (100 U / ml penicillin, 0.1 mg / ml streptomycin, 0.25 mg / ml amphotericin B; Gibco BRL, Green Island, NY). (Dulbecco's modified Eagle's medium) / F-12 medium (Gibco BRL, Green Island, NY) was incubated in the presence of 37 °C, 5% carbon dioxide.
  • Examples 7 to 12 contained 100 (Example 7), 200 (Example 8) and 300 (Example 9) ng / ml of recombinant DKK-1 (R & D Systems) in the medium of the control group (Comparative Example 2). , Minneapolis, MN), 100 (Example 10), 200 (Example 11) and 300 (Example 12) treated with respective media to which ng / ml of recombinant sFRP-1 (R & D Systems, Minneapolis, MN) was added It became. Three times in each experimental group was incubated, the medium was changed every three days. After 3 and 6 days of incubation, 10 ⁇ l Alamar Blue TM solution (Biotium, Hayward, CA) was added and then incubated for 4 hours in an incubator at 37 ° C.
  • Alamar Blue TM solution Biotium, Hayward, CA
  • the amount of DNA was reduced by 13% compared to the control group when treated with 300ng / ml of DKK-1 and 19% compared to the control when treated with 300ng / ml of sFRP-1. However, 100 ng / ml treatment did not change or increased even more.
  • the degree of inhibition of expression of ⁇ -catenin was examined using reverse transcriptase-polymerase chain reaction for Comparative Example 1, Examples 1 to 6 after 3 days and 6 days of culture.
  • Tri-Reagent® Sigma chemical, St. Louis, Mo.
  • Quant-iT TM RNA analysis kit Qubit fluorescence intensity measurement system
  • RT-PCR 1 ⁇ g total RNA was reverse transcribed with 0.5 ⁇ g oligo (dT) primers using a RevertAid TM H Minus first-strand synthesis system (Fermentas, Hanoveer, MD). All PCRs were performed with the LightCycler 480 system® (Roche).
  • Standard 10 ⁇ l reaction was performed with 4.5 ⁇ l (10 ng) cDNA, 0.5 ⁇ l 100 mM main strand, 0.5 ⁇ l 100 mM auxiliary strand primer and 4.5 ⁇ l LightCycler 480 SYBR Green IMaster Mix (Roche Diagnostics, Mannheim, Germany).
  • the temperature was 52 ° C., and the primer sequences were 5′-CAAGTGGGTGGTATAGAGG-3 ′ and 5′-GCGGGACAAAGGGCAAGA-3 ′.
  • Example 2 In order to determine the protein expression amount of ⁇ -catenin for Comparative Example 1, Example 2 and Example 5 cultured for 6 days, it was analyzed by Western blot.
  • the isolated protein was electrophoresed on a Bio Trace TM NT nitrocellulose transfer membrane.
  • Membranes (Pall Life Science, East Hills, NY) were washed with Tris buffer solution (TBS) containing 0.1% TBS-T (tween-20) and then 2.5% nonfat dry milk (BioRad, Hercules, CA). TBS-T containing was treated for one hour. After washing the membrane three times with TBS-T, the primary antibody in TBS-T was added and incubated for 2 hours. Thereafter, the membrane was washed three times with TBS-T, horseradish peroxidase (HRP) -bound secondary antibody in TBS-T was treated for 1 hour, and the membrane was washed repeatedly. After washing three times, protein bands were observed with a chemiluminescent western blot analysis system (Amersham, Seoul, Korea).
  • TBS Tris buffer solution
  • HRP horseradish peroxidase
  • protein bands were digitized with Multi Gauge software (Fujifilm, Tokyo, Japan) and normalized to ⁇ -actin as an internal control.
  • the primary antibody was mouse ⁇ -catenin monoclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA) diluted 1: 1000 in TBS-T / 2.5% nonfat dry milk and mouse anti ⁇ -actin antibody (Sigma). , St. Louis, Mo.).
  • HRP horseradish peroxidase
  • the amount of ⁇ -catenin protein expression was reduced by about 10% and about 17%, respectively, by treatment with 200 ng / ml of DKK-1 or sFRP-1.
  • Dakocytomation LSAB2 system HRP kit (DAKO, Hambrug, Germany) was used for immunohistochemical staining.
  • the antibody was treated for 15 minutes using a microwave oven with 10 mM citric acid buffer (pH 6.0). The slides were then washed with lx wash buffer (DAKO). It was then incubated for 5 minutes with a solution without peroxidase. Monoclonal antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) against rat human ⁇ -catenin in goat serum were diluted 1:50 and reacted with the subject portions overnight at 4 ° C. After washing three times with 1 ⁇ washing buffer (DAKO), horseradish peroxidase (HRP) bound secondary antibody (DAKO) was treated for 30 minutes. After washing sufficiently, the target part was reacted with the substrate buffer and the diaminobenzidine chromogen (DAKO, 50: 1) for 1 to 30 minutes and fixed.
  • DAKO horseradish peroxidase
  • the amount of GAG was inferred through a standard curve drawn with a standard solution containing chondroitin 4-sulfate extracted from bovine organs.
  • Absorbance was measured at 656 nm using Spectra max plus 348 (Molecular Devics, Sunnyvale, Calif.). The amount was divided by the amount of DNA to measure the amount of glucosaminoglycan per cell.
  • the amount of GAG expression in the cells 6 days after the culturing was higher than that after 3 days, and the effect was the greatest when treated with 300ng / ml of DKK-1 or sFRP-1. It can be seen.
  • sFRP-1 also significantly increased COL2A1 gene expression, and the effect was greater as sFRP-1 increased.
  • Example 2 In Comparative Example 1, Example 2, and Example 5, 6 days after the culture, Western blot and immunohistochemical staining for COL2A1 and SOX-9 were performed.
  • Dakocytomation LSAB2 System HRP Kit (DAKO, Hambrug, Germany) was used for immunohistochemistry.
  • DAKO Dakocytomation LSAB2 System HRP Kit
  • DBS Pepsin Soluble®
  • SOX-9 the antibody was then treated for 15 minutes using a microwave oven with 10 mM citric acid buffer (pH 6.0).
  • the slides were then washed with lx wash buffer (DAKO). It was then incubated for 5 minutes with a solution without peroxidase.
  • DAKO horseradish peroxidase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for inducing differentiation of cartilage cells from mesenchymal stem cells, and more particularly, to a method for inducing differentiation of cartilage cells, wherein mesenchymal stem cells are cultured in the presence of DKK-1 or sFRP-1 which serves as a wnt signal transduction inhibitor, and to a treatment composition containing cartilage cells differentiated by said method. The method for differentiating mesenchymal stem cells into cartilage cells according to the present invention uses DKK-1 or sFRP-1 treatment during the early stage of cell culture, so as to prevent differentiation into other cells during the initial cell differentiation of mesenchymal stem cells, thus obtaining cartilage cells in an easier manner.

Description

중간엽 줄기세포를 DKK-1 또는 SFRP-1을 이용하여 연골세포로 분화시키는 방법How to differentiate mesenchymal stem cells into chondrocytes using DKK-1 or SFRP-1
본 발명은 조직공학 또는 세포치료제로서 연골을 제작하는 방법에 관한 것으로, 중간엽 줄기세포를 연골세포로 분화시키는 방법에 관한 것이다.The present invention relates to a method for producing cartilage as a tissue engineering or cell therapy, and to a method for differentiating mesenchymal stem cells into chondrocytes.
관절 연골은 인체 조직 중 체중의 부하가 가장 큰 조직으로 마모로 인한 손상에 쉽게 노출된다. 관절 연골은 유리 연골(hyaline cartilage)로서 연골세포와 풍부한 세포외기질로 이루어져 있다. 연골세포는 연골 총부피의 10% 미만을 차지하고 있으며, 세포외기질을 합성, 분비하므로 관절 연골의 유지에 중요한 역할을 한다. 노화에 따른 연골세포 수 및 연골세포 대사작용의 감소는 유병률이 높은 노인성 질환인 골관절염의 병인 중의 하나로 생각되고 있다(Bobacz K et al, Ann Rheum Dis, Dec, 63(12), pp.1618-1622, 2004). 또한, 특이하게 관절 연골은 혈관, 신경 및 임파 조직이 없으므로 손상 후 스스로 재생이 불가능한 조직이다. 현재의 의학적 방법으로는 관절 연골을 정상적으로 재생할 수 있는 방법이 매우 제한적이다. Articular cartilage is the most heavily loaded tissue of human tissue and is easily exposed to damage caused by wear. Articular cartilage is a free cartilage (hyaline cartilage) consisting of chondrocytes and abundant extracellular matrix. Cartilage cells occupy less than 10% of total cartilage volume and play an important role in maintaining joint cartilage because it synthesizes and secretes extracellular matrix. Reduction of chondrocyte number and chondrocyte metabolism by aging is considered to be one of the pathogenesis of osteoarthritis, a high prevalence of senile diseases (Bobacz K et al, Ann Rheum Dis, Dec, 63 (12), pp.1618-1622 , 2004). In addition, articular cartilage is a tissue that is unable to regenerate itself after injury because there is no blood vessel, nerve and lymphatic tissue. Current medical methods have a very limited method of regenerating articular cartilage normally.
자가 연골세포 이식법에 의한 연골조직의 재생이 최근 시도되어 임상적으로 매우 효과적인 수술법으로 알려지고 있으나 연골의 광범위한 손상 부위에는 사용할 수 없다는 것, 관절 연골의 손상 위치, 환자의 나이 등에 따라 제한점을 가지고 있다. 이와 같은 문제점을 해결하고 보다 예측 가능하고, 보다 안전한 수술 방법을 개발하고자 하는 노력이 바로 연골의 조직공학적 재생이다(kang et al. Tissue Engineering, 11(3-4), pp.438-447, 2005).The regeneration of cartilage tissue by autologous chondrocyte transplantation has been recently tried and is known to be a clinically effective surgical method, but it has limitations due to the fact that it cannot be used for a wide range of cartilage damage, the location of articular cartilage damage, and the age of the patient. . The effort to solve these problems and to develop more predictable and safer surgical methods is histological regeneration of cartilage (kang et al. Tissue Engineering, 11 (3-4), pp.438-447, 2005 ).
인공연골의 제작에 관한 연구가 이미 외국에서 활발하게 수행 중이며, 유럽에서는 이미 연골세포운반체와 함께 연골세포를 이식하는 치료법이 사용되고 있는 실정이다 (Meyer U et al, Eur Cell Mater, Apr 26(9), pp.39-49, 2005).Research on the manufacture of artificial cartilage has already been actively conducted in foreign countries, and in Europe, therapies for transplanting chondrocytes with chondrocyte carriers have already been used (Meyer U et al, Eur Cell Mater, Apr 26 (9)). , pp. 39-49, 2005).
줄기세포에서 분화된 연골세포의 조직공학적 관절연골 제작은 중심 요인들인 연골세포화된 줄기세포, 생분해성 지지체가 필수적이고 연골 세포화된 줄기세포는 골수로부터 단일핵 세포를 분리 후 배양하면서 연골세포로 분화를 유도한다. 이상적인 연골세포는 증식능력이 좋아야 하며, 연골세포의 특이 표현형인 콜라젠 타입(collagentype) II를 유지하는 세포이다. Histologically engineered articular cartilage of differentiated chondrocytes from stem cells is essential for chondrocytes and biodegradable scaffolds, and chondrocytes are isolated from bone marrow and cultured into chondrocytes. Induce differentiation Ideal chondrocytes should have good proliferative capacity and maintain collagen type II, a specific phenotype of chondrocytes.
한편, 중간엽 줄기세포(mesenchymal stem cell:MSC)는 여러종류의 결합조직의 수선세포(repair cell)로 알려져 있으며, 이들 세포는 중간엽계의 여러 종류의 세포로 분화할 수 있다. 중간엽 줄기세포를 관절연골의 손상을 치유하는 데 사용하기 위해서는 생체 내 및 실험실 내에서 줄기세포를 직접적으로 연골세포주로 분화시키는 효율적이면서도 잘 정리된 방법을 개발하는 것이 필수적이다. 이러한 미분화된 중간엽 줄기세포는 복구된 조직의 장기간 동안의 안정성에 대한 정보가 부족하고, 다른 형태의 세포로 분화하는 경향에 의해서 생체 내에서 이형조직이 형성될 위험이 있기 때문에 그 이용이 제한적이다(De Bari, C et al., Arthritis Rheum, 50:142, 2004).Meanwhile, mesenchymal stem cells (MSCs) are known as repair cells of various types of connective tissue, and these cells can differentiate into various types of cells of the mesenchymal system. In order to use mesenchymal stem cells to treat articular cartilage damage, it is essential to develop an efficient and well-organized method of differentiating stem cells directly into cartilage cell lines both in vivo and in the laboratory. These undifferentiated mesenchymal stem cells are limited in their use because they lack information on the long-term stability of repaired tissues and are at risk of forming heterologous tissues in vivo by their tendency to differentiate into other types of cells. (De Bari, C et al., Arthritis Rheum, 50: 142, 2004).
유전적 재조합을 하지 않거나 미분화된 중간엽 줄기세포를 무릎 관절에 직접 주사하였을 때, 분화되어 연골조직을 복원시키지 못하고, 오히려 종양을 형성하였다는 보고가 있다(Gilbert, JE et al., Am. J. KneeSurg., 11:42, 1998, Noel, D et al., Stem Cells, 22:74, 2004, Butnariu-Ephrat, Metal., Clin. Orthop.Relat., 330:234, 1996).When genetic recombination or undifferentiated mesenchymal stem cells are injected directly into the knee joint, they have been reported to differentiate and fail to restore cartilage tissue, but rather form tumors (Gilbert, JE et al., Am. J.). Knee Surg., 11:42, 1998, Noel, D et al., Stem Cells, 22:74, 2004, Butnariu-Ephrat, Metal., Clin. Orthop. Relat., 330: 234, 1996).
본 발명의 일 실시예에 따르면, Wnt 신호전달 억제제인 DKK-1 또는 sFRP-1을 중간엽 줄기세포를 연골세포로 분화시키는 단계 초기에 처리하여, 효율적으로 중간엽 줄기세포를 연골세포로 분화시키는 방법을 제공한다.According to one embodiment of the present invention, the Wnt signaling inhibitor DKK-1 or sFRP-1 is treated in the early stages of differentiating mesenchymal stem cells into chondrocytes, thereby efficiently differentiating mesenchymal stem cells into chondrocytes. Provide a method.
본 발명의 일 실시예는 중간엽줄기세포를 배양시작시부터 2 내지 8일간 DKK-1 또는 sFRP-1의 존재 하에서 배양하는 것을 포함하는 연골세포로의 분화 방법을 제공한다. One embodiment of the present invention provides a method for differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture.
또한 본 발명의 일 실시예는 중간엽줄기세포를 배양시작시부터 2 내지 8일간 DKK-1 또는 sFRP-1의 존재 하에서 배양하는 것을 포함하는 연골세포로의 분화 방법으로 제조된 분화된 연골세포를 함유하는 연골손상 질환 치료용 조성물을 제공한다. In addition, one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture Provided are compositions for treating cartilage damage diseases.
또한 본 발명의 일 실시예는 중간엽줄기세포를 배양시작시부터 2 내지 8일간 DKK-1 또는 sFRP-1의 존재 하에서 배양하는 것을 포함하는 연골세포로의 분화 방법으로 제조된 분화된 연골세포를 일정한 형태의 스캐폴드(scaffold)에서 계속 배양하는 것을 포함하는 인공관절의 제조방법을 제공한다. In addition, one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture It provides a method for producing an artificial joint comprising continuing to culture in a scaffold of a certain type.
또한 본 발명의 일 실시예는 중간엽줄기세포를 배양시작시부터 2 내지 8일간 DKK-1 또는 sFRP-1의 존재 하에서 배양하는 것을 포함하는 연골세포로의 분화 방법으로 제조된 분화된 연골세포를 일정한 형태의 스캐폴드(scaffold)에서 계속 배양하는 것을 포함하여 제조된 인공관절을 제공한다.In addition, one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture It provides a manufactured artificial joint comprising continuing to culture in a scaffold of a certain type.
본 발명의 일 실시예에 따르면, 여러종류의 세포로 분화 가능한 중간엽 줄기세포의 분화 초기에 DKK-1 또는 sFRP-1을 처리함으로써, 연골세포로의 분화를 효율적으로 유도할 수 있다. 이러한 방법으로 제조된 분화된 연골세포는 세포나 조직의 이식을 통한 생물학적인 방법으로 골관절염을 치료하는데 유용하게 사용될 수 있다. According to one embodiment of the present invention, by treating DKK-1 or sFRP-1 at the beginning of differentiation of mesenchymal stem cells capable of differentiating into various types of cells, differentiation into chondrocytes can be efficiently induced. Differentiated chondrocytes prepared in this way can be usefully used to treat osteoarthritis in a biological way through the transplantation of cells or tissues.
도 1은 DKK-1 또는 sFRP-1의 처리에 따른 β-카테닌의 유전자 발현양을 나타내는 그래프이다. (a)가 DKK-1에 의한 것, (b)가 sFRP-1에 의한 것이다.1 is a graph showing the amount of gene expression of β-catenin following treatment with DKK-1 or sFRP-1. (a) is by DKK-1, (b) is by sFRP-1.
도 2는 DKK-1 또는 sFRP-1의 처리에 따른 β-카테닌의 단백질 발현양을 나타내는 그래프이다. (a)는 웨스턴 블롯의 결과, (b)는 이를 그래프화 한 것이다. 2 is a graph showing the amount of protein expression of β-catenin following treatment with DKK-1 or sFRP-1. (a) is the result of western blot, (b) is a graph of this.
도 3은 DKK-1 또는 sFRP-1의 처리에 따른 β-카테닌 양을 알아보기 위한 면역 조직화학 염색의 결과 사진이다. Figure 3 is a photograph of the results of immunohistochemical staining to determine the amount of β-catenin following treatment with DKK-1 or sFRP-1.
도 4는 DKK-1 또는 sFRP-1의 처리에 따른 GAG의 양을 나타낸 그래프이다. (a)가 DKK-1에 의한 것, (b)가 sFRP-1에 의한 것이다.4 is a graph showing the amount of GAG according to the treatment of DKK-1 or sFRP-1. (a) is by DKK-1, (b) is by sFRP-1.
도 5는 사프라닌-O염색의 결과 사진이다. (a)가 DKK-1에 의한 것, (b)가 sFRP-1에 의한 것이다.5 is a photograph of the results of safranin-O staining. (a) is by DKK-1, (b) is by sFRP-1.
도 6은 DKK-1의 처리에 따른 연골분화시 필수적인 단백질 유전자 발현의변화를 나타내는 그래프이다. (a)는 COL2A1에 관한 것, (b)는 SOX-9에 관한 것이다. 6 is a graph showing changes in protein gene expression essential for cartilage differentiation following treatment with DKK-1. (a) relates to COL2A1, (b) relates to SOX-9.
도 7의 (a)는 COL2A1과 SOX-9에 대한 웨스턴 블롯의 결과, 도7(b)는 면역조직화학 염색 결과 사진이다.Figure 7 (a) is a result of Western blot for COL2A1 and SOX-9, Figure 7 (b) is a photograph of the immunohistochemical staining results.
본 발명의 일 실시예는 중간엽줄기세포를 배양시작시부터 2 내지 8일간 DKK-1 또는 sFRP-1의 존재 하에서 배양하는 것을 포함하는 연골세포로의 분화 방법을 제공한다. One embodiment of the present invention provides a method for differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture.
중간엽 줄기세포로는 윤활막(synovium), 제대혈 또는 지방조직 기원 줄기세포 등의 종류가 있고, 이제 제한되지 않으나, 골수 유래 중간엽 줄기세포를 사용하는 것이 적당하다. Mesenchymal stem cells include synoviium, umbilical cord blood or adipose tissue-derived stem cells, and the like, but are not limited thereto. It is appropriate to use bone marrow-derived mesenchymal stem cells.
본 발명의 골수로부터 골수기원 중간엽 줄기세포를 분리하기 위해서는 피콜(ficoll)을 이용하여 농도구배 차이를 이용하면 분리하기 용이하다. 분리된 골수기원 중간엽 줄기세포는 2 ~ 5 회, 바람직하게는 3 ~ 4회, 가장 바람직하게는 3 회 계대배양한 것을 연골형성에 사용하는 것이 분화가능한 줄기세포만을 분리한다는 점에서 바람직하다.In order to separate the bone marrow-derived mesenchymal stem cells from the bone marrow of the present invention, it is easy to separate using a concentration gradient difference using ficoll. The isolated myelogenous mesenchymal mesenchymal stem cells are preferably used in two to five passages, preferably three to four times, and most preferably three times, in that they separate only stem cells that can differentiate.
본 발명에서 중간엽 줄기세포를 배양하는 방법으로는 공지의 3차원 배양방법을 이용할 수 있다. 현재까지 중간엽 줄기세포를 연골세포로 분화시키는 3차원 배양방법으로는 펠렛(pellet) 배양과 알지네이트 비드 및 알지네이트 층 배양이 주로 이용되고 있다.As a method for culturing the mesenchymal stem cells in the present invention can be used a known three-dimensional culture method. To date, pellet culture, alginate beads, and alginate layer culture are mainly used as a three-dimensional culture method for differentiating mesenchymal stem cells into chondrocytes.
특히, 펠렛 배양은 연골세포의 표현형을 유지시키는데 효과적이고, 원심분리를 통해 쉽게 세포를 응집하여 세포와 세포간의 접합 효과를 유도하여 초기 연골 조직 생성과 비슷한 세포외 환경을 제공할 수 있다.In particular, pellet culture is effective in maintaining the phenotype of chondrocytes, and can easily aggregate cells through centrifugation to induce a conjugation effect between cells, thereby providing an extracellular environment similar to the production of early cartilage tissue.
또한, 본 발명은 중간엽 줄기세포를 연골세포로 분화시킴에 있어서, DKK-1 또는 sFRP-1존재 하에서 배양하는데, 배양 시작시부터 2일 내지 8일, 3일 내지 7일 처리하는 것이 적당하다. In addition, in the present invention, when differentiating mesenchymal stem cells into chondrocytes, the cells are cultured in the presence of DKK-1 or sFRP-1, which is preferably treated from 2 to 8 days and 3 to 7 days from the start of the culture. .
DKK-1은 간엽줄기세포에서 연골의 분화에 관여하는 Wnt/β-카테닌 신호전달경로의 억제자로, 보조 리셉터인 LRP5/6와 크레멘(Kremen)에 결합하여 Wnt 신호전달경로를 억제한다.DKK-1 is an inhibitor of the Wnt / β-catenin signaling pathway, which is involved in the differentiation of cartilage in mesenchymal stem cells, and binds to the auxiliary receptors, LRP5 / 6 and Kremen, to inhibit Wnt signaling pathway.
sFRP(secreted frizzled-related protein)-1 은 간엽줄기세포에서 연골의 분화에 관여하는 Wnt/β-카테닌 신호전달경로의 억제자로, Wnt 단백질과 상호작용을 위한 시스틴이 풍부한 도메인을 가지고 있어, Wnt 단백질이 세포막에 있는 프리즐드(Frizzled)라는 수용체나 세포 표면에 있는 보조 리셉터인 LRP5/6과 결합하는 것을 막는다. Secreted frizzled-related protein (sFRP-1) is an inhibitor of the Wnt / β-catenin signaling pathway involved in cartilage differentiation in mesenchymal stem cells and has a cystine-rich domain for interaction with Wnt proteins. It prevents binding to the frizzled receptor on the cell membrane or LRP5 / 6, an auxiliary receptor on the cell surface.
Wnt는 지질이 결합된 여러 당단백의 그룹으로서, 세포운명의 결정, 극성, 분화 이동 등 여러 현상에 관여하며 발생에 있어 체간과 사지의 축형성에 중요한 신호를 보내는 작용을 한다. 태아발생에 있어서 골격의 발생과 형성, 성인에 있어 골격의 재형성에 관여하지만 다른 신호전달체계와의 상호작용관계, 시기와 장소에 따라 상반된 작용을 갖는 복잡한 기전을 가지고 있다. Wnt is a group of several glycoproteins bound to lipids. Wnt is involved in various phenomena such as cell fate determination, polarity, and differentiation migration and plays an important role in the development of trunk and limb axis formation. It is involved in the development and formation of the skeleton in fetal development and in the remodeling of the skeleton in adults, but it has a complex mechanism of interaction with other signaling systems, depending on time and place.
일반적인 Wnt 신호전달체계는 비교적 간단한데, Wnt가 세포막에 있는 프리즐드(Frizzled)라는 수용체에 결합하면, 이 수용체가 β-카테닌을 분해하는 단백질 복합체에서 axin이라는 보조인자를 유리시켜 세포질내 β-카테닌 농도가 증가되고, β-카테닌이 세포핵내로 들어가 Lef1/Tcf-1이라는 전사인자를 활성화시켜 여러 대상 유전자의 전사를 유도하는 것이다.The general Wnt signaling system is relatively simple. When Wnt binds to a receptor called frizzled on the cell membrane, it releases the cofactor, axin, from the protein complex that breaks down β-catenin, thereby inducing cytoplasmic β-catenin levels. Is increased, β-catenin enters the cell nucleus and activates the transcription factor Lef1 / Tcf-1 to induce the transcription of several genes.
이러한 일반적인 Wnt/β-카테닌 신호전달경로는 미분화된 간엽줄기세포에서 골모세포로의 분화를 촉진하고 연골세포로의 분화를 억제하는 자율기전을 구성한다. Wnt가 과잉발현될 경우 골형성의 증가와 연골세포 형성의 억제가 일어나고, 반대로 β-카테닌이 억제될 경우 골모세포분화 대신에 연골세포의 분화가 일어나는 것을 볼 때 β-카테닌의 양이 간엽줄기세포가 골모세포가 될 것인지 연골세포가 될 것인지를 결정한다고 여겨진다. This general Wnt / β-catenin signaling pathway constitutes an autonomic mechanism that promotes differentiation of undifferentiated mesenchymal stem cells into osteoblasts and inhibits differentiation into chondrocytes. Overexpression of Wnt leads to increased bone formation and inhibition of chondrocyte formation. On the contrary, when β-catenin is inhibited, chondrocyte differentiation occurs instead of osteoblast differentiation. Is thought to determine whether to become osteoblasts or chondrocytes.
Wnt/β-카테닌 신호전달체계에서 골형성이 촉진되는 기전으로는 β-카테닌에 의해 활성화되는 Lef1/Tcf-1 전사인자가 골분화에서 가장 중요한 전사인자인 Runx2의 생성을 직접 유도하는 기전이고, 연골형성의 억제는 β-카테닌이 연골형성을 유도하는 전사인자인 SOX-9과 직접 결합하여 불활성화 시키는 기전이다. The mechanism by which bone formation is promoted in the Wnt / β-catenin signaling system is a mechanism by which β-catenin-activated Lef1 / Tcf-1 transcription factors directly induce the production of Runx2, the most important transcription factor in bone differentiation. Inhibition of cartilage formation is a mechanism by which β-catenin directly binds to and inactivates SOX-9, a transcription factor that induces cartilage formation.
Wnt/β-카테닌 신호전달체계에 의한 간엽줄기세포의 세포 분화의 결정은 발생 초기, 짧은 시간내에 강력한 발현에 의하여 결정되는 것으로 알려져 있는 바, DKK-1 또는 sFRP-1을 배양 시작시부터 2일 내지 8일, 3일 내지 7일간 처리하는 것이 좋다. 예를 들어 분리 후 3회 계대배양한 골수기원 중간엽 줄기세포를 연골세포로 분화하기 위해 3주 배양할 경우, 처음 일주일간만 DKK-1 또는 sFRP-1을 처리하는 것이다. 처리기간이 2일보다 짧으면 Wnt/β-카테닌 신호전달체계의 억제가 효율적으로 일어나지 않고, 처리기간이 8일보다 길면 세포사멸이 일어날 수 있다. Determination of cell differentiation of mesenchymal stem cells by the Wnt / β-catenin signaling system is determined by strong expression in the early stages of development and within a short time. Two days from the start of incubation of DKK-1 or sFRP-1 It is good to process for 8 to 8 days, 3 to 7 days. For example, when three-week cultures of bone marrow-derived mesenchymal stem cells that have been passaged three times after separation to differentiate into chondrocytes are treated with DKK-1 or sFRP-1 for the first week only. If the treatment period is shorter than 2 days, inhibition of the Wnt / β-catenin signaling system does not occur efficiently. If the treatment period is longer than 8 days, cell death may occur.
DKK-1 또는 sFRP-1의 양은 50 내지 350ng/ml, 80 내지 320ng/ml, 100 내지 300ng/ml, 150내지 300 ng/ml 이 적당하다. The amount of DKK-1 or sFRP-1 is suitably 50 to 350 ng / ml, 80 to 320 ng / ml, 100 to 300 ng / ml, 150 to 300 ng / ml.
50ng/ml미만이면 억제효과가 미미하며, 350ng/ml이상이면 불필요한 사용이 된다. If it is less than 50ng / ml, the inhibitory effect is insignificant. If it is more than 350ng / ml, it is unnecessary to use.
또한, 배양 배지는 인슐린, 덱사메타손, 아스코르베이트 2-포스페이트, L-프롤린 및 소듐 피루베이트로 이루어진 군에서 선택된 어느 하나 이상의 물질을 포함하는 것이 좋으며, 각각의 양은 인슐린 0.5 내지 3g/l, 덱사메타손(dexametasone) 10-6내지 10-8M, 아스코르베이트 2-포스페이트 10~100mM, L-프롤린 10~100mM 및 소듐 피루베이트 0.5 내지 3mM이 적당하다. In addition, the culture medium may include any one or more substances selected from the group consisting of insulin, dexamethasone, ascorbate 2-phosphate, L-proline and sodium pyruvate, each amount of insulin 0.5 to 3 g / l, dexamethasone ( dexametasone) 10 -6 to 10 -8 M, ascorbate 2-phosphate 10-100 mM, L-proline 10-100 mM and sodium pyruvate 0.5-3 mM.
또한 본 발명의 일 실시예는 중간엽줄기세포를 배양시작시부터 2 내지 8일간 DKK-1 또는 sFRP-1의 존재 하에서 배양하는 것을 포함하는 연골세포로의 분화 방법으로 제조된 분화된 연골세포를 함유하는 연골손상 질환 치료용 조성물을 제공한다. In addition, one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture Provided are compositions for treating cartilage damage diseases.
본 발명의 일 실시예에 따른 방법으로 생산되는 골수기원 중간엽 줄기세포로부터 분화된 연골세포는 연골손상 등을 치료하기 위한 세포대체요법용 세포 조성물의 유효성분으로 이용될 수 있다. 본 발명의 일 실시예로 생산된 연골세포를 이용하여 치료할 수 있는 연골손상 질환으로는 퇴행성 관절염, 류마티스성 관절염, 외상에 의한 관절 손상 등이 있으나, 이에 한정되지 아니한다.Chondrocytes differentiated from bone marrow origin mesenchymal stem cells produced by the method according to an embodiment of the present invention can be used as an active ingredient of a cell composition for cell replacement therapy for treating cartilage damage and the like. Cartilage damage diseases that can be treated using chondrocytes produced by one embodiment of the present invention include, but are not limited to, degenerative arthritis, rheumatoid arthritis, and joint damage due to trauma.
본 발명의 일 실시예에 의해 생산된 연골세포를 유효성분으로 하는 치료용 조성물은 공지의 방법에 따라 환자의 관절내로 직접 주입되거나, 3차원 배양 후 스캐폴드와 함께 이식될 수도 있으며, 치료하고자 하는 질환, 질환의 중증도, 투여경로, 환자의 체중, 연령 및 성별 등의 여러 관련인자를 고려하여 투여하는 세포 수를 조절하는 것이 바람직하다. The therapeutic composition comprising chondrocytes produced by one embodiment of the present invention as an active ingredient may be directly injected into the joint of a patient according to a known method, or may be transplanted together with a scaffold after three-dimensional culture. It is desirable to control the number of cells to be administered in consideration of various factors such as the disease, the severity of the disease, the route of administration, the weight, age and sex of the patient.
또한 본 발명의 일 실시예는 중간엽줄기세포를 배양시작시부터 2 내지 8일간 DKK-1 또는 sFRP-1의 존재 하에서 배양하는 것을 포함하는 연골세포로의 분화 방법으로 제조된 분화된 연골세포를 임의의 형태의 스캐폴드(scaffold)에서 계속 배양하는 것을 포함하는 인공관절의 제조방법을 제공한다. In addition, one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture Provided are methods of making artificial joints, including continuing culturing in any type of scaffold.
또한 본 발명의 일 실시예는 중간엽줄기세포를 배양시작시부터 2 내지 8일간 DKK-1 또는 sFRP-1의 존재 하에서 배양하는 것을 포함하는 연골세포로의 분화 방법으로 제조된 분화된 연골세포를 임의의 형태의 스캐폴드(scaffold)에서 배양하는 것을 포함하여 제조된 인공관절을 제공한다. In addition, one embodiment of the present invention is to differentiate the chondrocytes prepared by the method of differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture It provides a manufactured artificial joint comprising culturing in any form of scaffold.
본 발명의 일 실시예에 의해 분화된 연골세포를 임의의 형태의 스캐폴드(scaffold)에서 배양하는 통상의 방법을 사용하여 일정 형태의 인공연골을 얻을 수 있으며, 이를 이용하여 인공관절 또는 귀나 코의 성형에 사용되는 인공연골을 제조할 수 있다. Artificial cartilage of a certain type can be obtained using a conventional method of culturing chondrocytes differentiated by one embodiment of the present invention in a scaffold of any form, and by using the artificial joint or ear or nose Artificial cartilage used for molding can be produced.
[실시예]EXAMPLE
이하, 본 발명의 이해를 돕기 위하여 제조예, 실시예 및 실험예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the preparation examples, examples and experimental examples will be described in detail in order to help the understanding of the present invention. However, the following examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
<제조예 1> 간엽줄기세포 샘플 획득, 세포분리 및 배양Preparation Example 1 Mesenchymal Stem Cell Sample Acquisition, Cell Separation and Culture
간엽줄기세포 분리에 사용된 골수 샘플은 관절염으로 인해 인공고관절 전치환수를 시행받는 세명의 환자(평균나이: 50세, 37~64세)로부터 획득되었다. 골수로부터 간엽줄기세포를 분리한 후, 증식시켰다. 2회 계대배양한 후, 90% 우태혈청(Gibco BRL, Green Island, NY)과 10% 디메틸설폭사이드(dimethylsulfoxide)를 포함하는 냉동보존용 배지에서 세포증식을 중지시켰다. 이후의 실험에서는, 이 세포를 녹이고, 백만개의 세포를 1.2 *104 세포/㎠의 밀도로 10% 우태혈청과 1% 항생물질(100U/ml 페니실린, 0.1mg/ml 스트렙토마이신, 0.25mg/ml 암포테리신 B; Gibco BRL, Green Island, NY)를 함유하는 DMEM(Dulbecco's modified Eagle's medium)/F-12 배지(Gibco BRL, Green Island, NY)에 37℃, 5% 이산화탄소 존재 하에서 접종하여 사용하였다. Bone marrow samples used to isolate mesenchymal stem cells were obtained from three patients (mean age: 50 and 37-64 years) who underwent total hip replacement due to arthritis. Mesenchymal stem cells were isolated from the bone marrow and then expanded. After two passages, cell proliferation was stopped in cryopreservation medium containing 90% fetal bovine serum (Gibco BRL, Green Island, NY) and 10% dimethylsulfoxide. In subsequent experiments, the cells were thawed and one million cells were washed at a density of 1.2 * 10 4 cells / cm 2 with 10% fetal calf serum and 1% antibiotics (100 U / ml penicillin, 0.1 mg / ml streptomycin, 0.25 mg / ml). DMEM (Dulbecco's modified Eagle's medium) / F-12 medium (Gibco BRL, Green Island, NY) containing amphotericin B; Gibco BRL, Green Island, NY was inoculated at 37 ° C. in the presence of 5% carbon dioxide. .
<제조예 2> 펠렛 배양 (Pellet culture)Preparation Example 2 Pellet Culture
연골발생을 유도하기 위해서, in vitro 펠렛 배양을 3회 계대배양 한 2*105 간엽줄기세포에 대해 준비하였는데, 대조군(비교예 1)에는 1% ITS(인슐린 1g/l), 10-7 M 덱사메타손(dexamethasone), 50 mM 아스코르베이트 2-포스페이트(ascorbate-2-phosphate), 50 mM L-프롤린, 및 1mM 소듐 피루베이트(sodium pyruvate)가 보충된 DMEM/F-12 배지를 사용하였다. 실험군(실시예1 내지 6)의 배지에는 100(실시예 1), 200(실시예 2) 및 300(실시예 3)ng/ml의 DKK-1, 100(실시예 4), 200(실시예 5) 및 300(실시예 6)ng/ml의 sFRP-1을 추가하였다.To induce chondrogenesis, in vitro pellet cultures were prepared for 2 passages of 2 * 10 5 mesenchymal stem cells that were passaged three times. In the control group (Comparative Example 1), 1% ITS (insulin 1 g / l), 10 -7 M DMEM / F-12 medium supplemented with dexamethasone, 50 mM ascorbate 2-phosphate, 50 mM L-proline, and 1 mM sodium pyruvate was used. The medium of the experimental group (Examples 1 to 6) contained 100 (Example 1), 200 (Example 2) and 300 (Example 3) ng / ml of DKK-1, 100 (Example 4), 200 (Example 5) and 300 (Example 6) ng / ml of sFRP-1 were added.
3일과 6일 후 분석을 위해 펠렛을 회수하였다. 펠렛 배양을 위해 1ml 세포 부유액을 15ml 폴리프로필렌 원심분리용 튜브에 넣고 원심분리기에 500g 로 5분간 원심분리하였다. 그 후 튜브는 37℃, 5% 이산화탄소 존재하는 인큐베이터에 보관하였다. After 3 and 6 days pellets were recovered for analysis. For pellet culture, 1 ml cell suspension was placed in a 15 ml polypropylene centrifuge tube and centrifuged at 500 g for 5 minutes in a centrifuge. The tubes were then stored in an incubator at 37 ° C. with 5% carbon dioxide.
표 1 각 시험군의 배지조성
비교예1 실시예1 실시예2 실시예3 실시예4 실시예5 실시예6
DMEM/F-12 배지, ITS, 덱사메타손, 아스코르베이트 2-포스페이트, L-프롤린, 소듐 피루베이트
DKK-1의 양(ng/ml) 0 100 200 300 0 0 0
sFRP-1의 양(ng/ml) 0 0 0 0 100 200 300
Table 1 Medium composition of each test group
Comparative Example 1 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
DMEM / F-12 medium, ITS, dexamethasone, ascorbate 2-phosphate, L-proline, sodium pyruvate
Amount of DKK-1 (ng / ml) 0 100 200 300 0 0 0
amount of sFRP-1 (ng / ml) 0 0 0 0 100 200 300
<실험예 1> 세포 생존력 변화 검토 Experimental Example 1 Examination of Cell Viability Change
세포 생존력 변화를 측정하기 위해, Alamar Blue 분석법이 수행되었다. 이 분석법은 세포 성장으로 인해 생성된 성장배지의 화학적 환원에 반응하여 핑크색 형광 염료 레소루핀(resorufin)으로 변하는 파란색 비형광 염료 레사주린(resazurin)을 이용하여 세포 생존력을 측정하는 것이다. To measure cell viability changes, an Alamar Blue assay was performed. This assay measures cell viability using a blue non-fluorescent dye resazurin that turns into a pink fluorescent dye resorufin in response to chemical reduction of the growth medium produced by cell growth.
3회 계대배양한 간엽줄기세포를 5*104 세포/30㎕/웰의 밀도로 98개의 평판 웰에 분배하였다. 대조군(비교예 2)은 10% 우태혈청과 1% 항생물질(100U/ml 페니실린, 0.1mg/ml 스트렙토마이신, 0.25mg/ml 암포테리신 B; Gibco BRL, Green Island, NY)를 함유하는 DMEM(Dulbecco's modified Eagle's medium)/F-12 배지(Gibco BRL, Green Island, NY)에 37℃, 5% 이산화탄소 존재 하에서 배양하였다.Three passaged mesenchymal stem cells were distributed to 98 plate wells at a density of 5 * 10 4 cells / 30 μl / well. Control (Comparative Example 2) was DMEM containing 10% fetal calf serum and 1% antibiotics (100 U / ml penicillin, 0.1 mg / ml streptomycin, 0.25 mg / ml amphotericin B; Gibco BRL, Green Island, NY). (Dulbecco's modified Eagle's medium) / F-12 medium (Gibco BRL, Green Island, NY) was incubated in the presence of 37 ℃, 5% carbon dioxide.
다른 실험군(실시예 7 내지 12)은 대조군(비교예 2)의 배지에 100(실시예 7), 200(실시예 8) 및 300(실시예 9)ng/ml의 재조합 DKK-1(R&D Systems, Minneapolis, MN), 100(실시예 10), 200(실시예 11) 및 300(실시예 12)ng/ml의 재조합 sFRP-1(R&D Systems, Minneapolis, MN)를 추가한 각각의 배지로 처리되었다. 각각의 실험군마다 3번씩 배양하였고, 배지는 3일마다 교체하였다. 배양 후 3일과 6일이 지난 후, 10㎕ Alamar BlueTM 용액(Biotium, Hayward, CA)을 첨가하였고, 그 후 37℃의 인큐베이터에서 4시간동안 배양하였다. Another experimental group (Examples 7 to 12) contained 100 (Example 7), 200 (Example 8) and 300 (Example 9) ng / ml of recombinant DKK-1 (R & D Systems) in the medium of the control group (Comparative Example 2). , Minneapolis, MN), 100 (Example 10), 200 (Example 11) and 300 (Example 12) treated with respective media to which ng / ml of recombinant sFRP-1 (R & D Systems, Minneapolis, MN) was added It became. Three times in each experimental group was incubated, the medium was changed every three days. After 3 and 6 days of incubation, 10 μl Alamar Blue solution (Biotium, Hayward, CA) was added and then incubated for 4 hours in an incubator at 37 ° C.
흡광도는 570과 600nm에서 마이크로리터 평판 리더(microliter plate reader)로 측정하였다. OD570-OD600을 매 시료마다 측정하였고, 표준곡선을 통해 세포수를 유추하였다. 각각의 실험군별 세포수는 대조군에 의해 분리되었고, 결과는 대 조군 대비 퍼센트로 나타냈다. Absorbance was measured with a microliter plate reader at 570 and 600 nm. OD 570 -OD 600 was measured for each sample and cell number was inferred through the standard curve. The number of cells in each experimental group was separated by the control group, and the result was expressed as a percentage of the control group.
표 2 DKK-1 또는 sFRP-1 처리에 따른 세포 생존력 변화
대조군(비교예2) DKK-1 100ng/ml(실시예7) DKK-1 200ng/ml(실시예8) DKK-1 300ng/ml(실시예9) sFRP-1100ng/ml(실시예10) sFRP-1200ng/ml(실시예11) sFRP-1300ng/ml(실시예12)
3일 후(%) 100 98.7±1.4 96.1±2.1 93.9±0.7 95.6±2.9 94.5±0.7 97.6±0.9
6일 후(%) 100 97.1±2.2 97.7±2.8 93.1±2.5 97.7±5.5 97.7±8.1 98.9±4.5
TABLE 2 Changes in Cell Viability Following DKK-1 or sFRP-1 Treatment
Control group (Comparative Example 2) DKK-1 100ng / ml (Example 7) DKK-1 200ng / ml (Example 8) DKK-1 300ng / ml (Example 9) sFRP-1 100ng / ml (Example 10) sFRP-1200ng / ml (Example 11) sFRP-1300ng / ml (Example 12)
3 days later(%) 100 98.7 ± 1.4 96.1 ± 2.1 93.9 ± 0.7 95.6 ± 2.9 94.5 ± 0.7 97.6 ± 0.9
After 6 days (%) 100 97.1 ± 2.2 97.7 ± 2.8 93.1 ± 2.5 97.7 ± 5.5 97.7 ± 8.1 98.9 ± 4.5
세포 생존률은 3일, 6일 배양 후 모두 7%정도 감소된 것으로 나타났으며, 3일배양한 실험군과 6일 배양한 실험군 사이에 주목할만한 차이는 존재하지 않았다. DKK-1 양이 증가함에 따라 세포 생존력도 이에 비례하여 감소하였으며 sFRP-1 양과는 무관하게 세포 생존력의 변화가 나타났다. 그러나 전체 생존력 감소율은 매우 미미한 것으로 나타났다. Cell viability was reduced by 7% after 3 and 6 days of cultivation, and there was no significant difference between the 3 day and 6 day culture groups. As DKK-1 content increased, cell viability decreased proportionally, and cell viability changed regardless of sFRP-1 content. However, the overall decrease in viability was minimal.
<실험예 2> DNA정량분석Experimental Example 2 DNA Quantitative Analysis
배양후 3일, 6일이 지난 비교예 2, 실시예 7 내지 실시예 12의 펠렛은 60℃의 파파인(papain) 완충용액에 하룻밤동안 처리되었다. 그 후 DNA량은 Quant-iTTM dsDNA 분석키트와 큐빗(Qubit) 형광 강도 측정 시스템(Invitrogen, Carlsbad, CA)를 사용하여 측정하였다.The pellets of Comparative Example 2, Examples 7 to 12 after 3 days and 6 days of incubation were treated in papain buffer solution at 60 ° C. overnight. Subsequently, the amount of DNA was measured using a Quant-iT dsDNA assay kit and a qubit fluorescence intensity measurement system (Invitrogen, Carlsbad, CA).
표 3 DKK-1 처리에 따른 DNA 함량 변화
대조군(비교예2) DKK-1 100ng/ml(실시예7) DKK-1 200ng/ml(실시예8) DKK-1 300ng/ml(실시예9) sFRP-1100ng/ml(실시예10) sFRP-1200ng/ml(실시예11) sFRP-1300ng/ml(실시예12)
3일 후 0.321±0.070 0.315±0.106 0.283±0.062 0.279±0.066 0.333±0.039 0.299±0.077 0.300±0.073
6일 후 0.303±0.058 0.370±0.077 0.307±0.116 0.282±0.084 0.316±0.100 0.291±0.098 0.246±0.036
TABLE 3 DNA Content Changes after DKK-1 Treatment
Control group (Comparative Example 2) DKK-1 100ng / ml (Example 7) DKK-1 200ng / ml (Example 8) DKK-1 300ng / ml (Example 9) sFRP-1 100ng / ml (Example 10) sFRP-1200ng / ml (Example 11) sFRP-1300ng / ml (Example 12)
3 days later 0.321 ± 0.070 0.315 ± 0.106 0.283 ± 0.062 0.279 ± 0.066 0.333 ± 0.039 0.299 ± 0.077 0.300 ± 0.073
6 days later 0.303 ± 0.058 0.370 ± 0.077 0.307 ± 0.116 0.282 ± 0.084 0.316 ± 0.100 0.291 ± 0.098 0.246 ± 0.036
DNA 양은 DKK-1을 300ng/ml 처리하였을 때 대조군에 비해 13% 감소하였고, sFRP-1을 300ng/ml 처리하였을 때는 대조군에 비해 19% 감소하였다. 그러나 100ng/ml를 처리하였을 때는 변화가 없거나 오히려 더욱 증가하였다. The amount of DNA was reduced by 13% compared to the control group when treated with 300ng / ml of DKK-1 and 19% compared to the control when treated with 300ng / ml of sFRP-1. However, 100 ng / ml treatment did not change or increased even more.
<실험예 3> RT-PCR을 통한 β-카테닌 유전자 발현양 조사Experimental Example 3 Investigation of the Expression of β-Catenin Gene by RT-PCR
배양 후 3일, 6일이 지난 비교예 1, 실시예 1내지 실시예 6에 대해 역전사-중합효소 연쇄반응을 이용하여 β-카테닌의 발현 억제정도를 조사하였다. The degree of inhibition of expression of β-catenin was examined using reverse transcriptase-polymerase chain reaction for Comparative Example 1, Examples 1 to 6 after 3 days and 6 days of culture.
총 RNA는 표준 구아니딘 이소싸이오시아네이트(guanidine isothiocyanate) Tri-Reagent®(sigma chemical, St. Louis, MO)를 사용하여 분리하였고, Quant-iTTM RNA 분석키트와 큐빗(Qubit) 형광 강도 측정 시스템(Invitrogen, Carlsbad, CA)를 사용하여 정량하였다. RT-PCR을 위해 RevertAidTM H Minus first-strand 합성 시스템(Fermentas, Hanoveer, MD)을 사용하여 총 RNA 1㎍을 올리고(dT)프라이머 0.5㎍와 함께 역전사시켰다. 모든 PCR은 LightCycler 480 system®(Roche)로 수행하였다. 표준 10㎕ 반응은 4.5㎕(10ng) cDNA, 0.5㎕ 100mM 주가닥, 0.5㎕ 100mM 보조가닥 프라이머 및 4.5㎕ LightCycler 480 SYBR Green ⅠMaster Mix (Roche Diagnostics, Mannheim, Germany)로 수행하였다. Total RNA was isolated using standard guanidine isothiocyanate Tri-Reagent® (sigma chemical, St. Louis, Mo.), Quant-iT RNA analysis kit and Qubit fluorescence intensity measurement system ( Invitrogen, Carlsbad, CA) was used for quantification. For RT-PCR, 1 μg total RNA was reverse transcribed with 0.5 μg oligo (dT) primers using a RevertAid H Minus first-strand synthesis system (Fermentas, Hanoveer, MD). All PCRs were performed with the LightCycler 480 system® (Roche). Standard 10 μl reaction was performed with 4.5 μl (10 ng) cDNA, 0.5 μl 100 mM main strand, 0.5 μl 100 mM auxiliary strand primer and 4.5 μl LightCycler 480 SYBR Green IMaster Mix (Roche Diagnostics, Mannheim, Germany).
온도는 52℃, 프라이머의 서열은 5'-CAAGTGGGTGGTATAGAGG-3', 5'-GCGGGACAAAGGGCAAGA-3'를 사용했다. The temperature was 52 ° C., and the primer sequences were 5′-CAAGTGGGTGGTATAGAGG-3 ′ and 5′-GCGGGACAAAGGGCAAGA-3 ′.
글리세르알데하이드-3-포스페이트 디하이드로나아제(glyceraldehydes-3-phosphate dehydrogenase)에 대한 Ct값이 표준화를 위한 기준으로 사용되었다. 따라서 대조군 대비 표준화가 이루어졌다. 각 환자에게서 체취된 간엽줄기세포당 세번씩 실험을 수행하였다.C t values for glyceraldehydes-3-phosphate dehydrogenase were used as criteria for standardization. Therefore, standardization was made compared to the control. Experiments were performed three times per mesenchymal stem cell taken from each patient.
도 1에 개시된 바에 따르면, 실험 결과 β-카테닌 유전자 발현은 배양 후 6일째가 배양 후 3일째보다 낮게 나타났으며, DKK-1또는 sFRP-1은 β-카테닌 유전자 발현에는 그다지 큰 영향을 미치지 못함을 알 수 있었다.As shown in FIG. 1, the experimental results showed that β-catenin gene expression was lower than 6 days after culture, and DKK-1 or sFRP-1 did not significantly affect β-catenin gene expression. And it was found.
<실험예 4> 웨스턴 블롯을 통한 β-카테닌 단백질 발현량 조사Experimental Example 4 Investigation of Expression of β-Catenin Protein by Western Blot
6일간 배양한 비교예 1, 실시예 2 및 실시예 5에 대해 β-카테닌(catenin)의 단백질 발현양을 알아보기 위해서 웨스턴 블롯을 통해 이를 분석하였다. In order to determine the protein expression amount of β-catenin for Comparative Example 1, Example 2 and Example 5 cultured for 6 days, it was analyzed by Western blot.
총 단백질을 추출하기 위해서, 세포를 차가운 인산염 완충용액으로 두번 세척하고, 25mM 50㎕ RIPA 완충용액(25mM 트리스-염산, pH7.6, 150mM NaCl, 1% NP-40, 0.1% 소듐 도데실 설페이트(sodium dodecyl sulfate), 에틸렌다이아민테트라아세트산 제외된 단백질 분해효소 억제제)으로 세포증식을 억제시켰다. 용해질을 얼음에 녹이고, 단백질을 침전시키기 위해 12,000g로 10분동안 원심분리시켰다. 단백질 양은 큐빗(Qubit) 분석키트(Qubit fluoromoter; Invitrogen)를 사용하여 당업자에게 알려진 통상의 방법으로 측정하였다. 단백질 추출물(20g)을 10% SDS(sodium dodecyl sulfate)-폴리아크릴아마이드 겔 전기영동시켰다.  To extract total protein, cells were washed twice with cold phosphate buffer, 25 mM 50 μl RIPA buffer (25 mM tris-hydrochloric acid, pH7.6, 150 mM NaCl, 1% NP-40, 0.1% sodium dodecyl sulfate). sodium dodecyl sulfate), a protease inhibitor excluding ethylenediaminetetraacetic acid). The lysate was dissolved in ice and centrifuged at 12,000 g for 10 minutes to precipitate the protein. Protein amounts were determined using conventional methods known to those skilled in the art using a Qubit fluoromoter (Invitrogen). Protein extract (20 g) was subjected to 10% sodium dodecyl sulfate (SDS) -polyacrylamide gel electrophoresis.
분리된 단백질은 Bio TraceTM NT 니트로셀룰로오스 이동막에 전기영동되었다. 막(Pall Life Science, East Hills, NY)은 0.1% TBS-T(tween-20)를 함유하고 있는 트리스 완충 용액(TBS)으로 세척한 후 2.5% 무지방 가루우유(BioRad, Hercules, CA)를 함유하고 있는 TBS-T를 한시간동안 처리하였다. TBS-T로 막을 세번 세척한 후, TBS-T에 있는 1차 항체를 부가하고 2시간동안 배양하였다. 그 후 TBS-T로 3번 막을 씻고, TBS-T에 있는 양고추냉이 퍼옥시다아제(horseradish peroxidase, HRP)결합된 2차 항체를 1시간 처리하였고, 막을 씻는 과정을 반복하였다. 세번 세척한 후, 단백질 띠를 화학 발광 웨스턴 블롯 분석 시스템(Amersham, Seoul, Korea)으로 관찰하였다.The isolated protein was electrophoresed on a Bio Trace NT nitrocellulose transfer membrane. Membranes (Pall Life Science, East Hills, NY) were washed with Tris buffer solution (TBS) containing 0.1% TBS-T (tween-20) and then 2.5% nonfat dry milk (BioRad, Hercules, CA). TBS-T containing was treated for one hour. After washing the membrane three times with TBS-T, the primary antibody in TBS-T was added and incubated for 2 hours. Thereafter, the membrane was washed three times with TBS-T, horseradish peroxidase (HRP) -bound secondary antibody in TBS-T was treated for 1 hour, and the membrane was washed repeatedly. After washing three times, protein bands were observed with a chemiluminescent western blot analysis system (Amersham, Seoul, Korea).
결과를 정량화하기 위해, 단백질 띠를 Multi Gauge 소프트웨어(Fujifilm, Tokyo, Japan)으로 디지털화하였고, 내부 대조군으로 쓰인 β-액틴으로 표준화하였다. 1차 항체는 TBS-T/2.5% 무지방 건조우유에 각각 1:1000으로 희석된 쥐의 β-카테닌 단일 클론 항체(Santa Cruz Biotechnology, Santa Cruz, CA) 및 쥐의 안티 β-액틴 항체(Sigma, St. Louis, MO)를 사용하였다. To quantify the results, protein bands were digitized with Multi Gauge software (Fujifilm, Tokyo, Japan) and normalized to β-actin as an internal control. The primary antibody was mouse β-catenin monoclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA) diluted 1: 1000 in TBS-T / 2.5% nonfat dry milk and mouse anti β-actin antibody (Sigma). , St. Louis, Mo.).
이차 항체는 TBS-T/2.5% 무지방 건조우유에 1:2000으로 희석된 양고추냉이 퍼옥시다아제(horseradish peroxidase, HRP)에 결합된 염소의 토끼, 쥐의 IgG에 대한 항체를 사용하였다. As a secondary antibody, antibodies to goat rabbit and mouse IgG bound to horseradish peroxidase (HRP) diluted 1: 2000 in TBS-T / 2.5% nonfat dry milk were used.
각 환자에게서 체취된 간엽줄기세포당 세번씩 실험을 수행하였다. Experiments were performed three times per mesenchymal stem cell taken from each patient.
도 2에 개시된 바에 따르면, 실험 결과 β-카테닌 유전자 발현에는 DKK-1및 sFRP-1이 큰 영향을 미치지 못했지만, 단백질 발현양에 있어서는 DKK-1또는 sFRP-1의 처리가 큰 영향을 미치는 것으로 나타났다.As shown in FIG. 2, the experimental results showed that DKK-1 and sFRP-1 had no significant effect on β-catenin gene expression, but treatment of DKK-1 or sFRP-1 had a significant effect on the amount of protein expression. .
β-카테닌 단백질 발현양은 DKK-1또는 sFRP-1 200ng/ml의 처리에 의해 각각 약 10%, 약 17% 감소되었다. The amount of β-catenin protein expression was reduced by about 10% and about 17%, respectively, by treatment with 200 ng / ml of DKK-1 or sFRP-1.
<실험예 5> β-카테닌에 대한 면역 조직화학 염색 Experimental Example 5 Immunohistochemical Staining for β-Catenin
배양 후 6일이 지난 비교예 1, 실시예 2 및 실시예 5의 펠렛을 4% 파라포름알데하이드(paraformaldehyde) 용액에 4시간동안 고정시키고 100% 및 95% 에탄올로 탈수시킨 후, 자일렌(xylene)으로 세척하였다. 그 후 파라핀에 고정시켰다. 그 후 β-카테닌(catenin)의 면역 조직화학(immunohistochemistry) 염색을 수행하였다. After 6 days of incubation, the pellets of Comparative Examples 1, 2 and 5 were fixed in 4% paraformaldehyde solution for 4 hours, dehydrated with 100% and 95% ethanol, and then xylene (xylene). )). It was then fixed in paraffin. Thereafter, immunohistochemistry staining of β-catenin was performed.
면역 조직화학염색을 위해서 Dakocytomation LSAB2 시스템 HRP 키트(DAKO, Hambrug, Germany)을 사용하였다. Dakocytomation LSAB2 system HRP kit (DAKO, Hambrug, Germany) was used for immunohistochemical staining.
β-카테닌(catenin)을 검출하기 위해서, 이에 항체를 10mM 시트르산 완충용액(pH 6.0)과 함께 마이크로웨이브 오븐을 사용하여 15분간 처리하였다. 그 후 슬라이드를 1x세척 완충용액(DAKO)로 세척하였다. 이어서 퍼옥시다아제가 없는 용액과 5분간 배양하였다. 염소 혈청에 있는 쥐의 사람 β-카테닌에 대한 단일 클론 항체(Santa Cruz Biotechnology, Santa Cruz, CA)가 1:50으로 희석되었고, 4℃에서 하루밤동안 대상 부분과 반응시켰다. 1x세척 완충용액(DAKO)으로 3번 세척한 후 양고추냉이 퍼옥시다아제(horseradish peroxidase, HRP)결합된 2차 항체(DAKO)를 30분동안 처리하였다. 충분히 씻은 후, 대상부분을 기질 완충액과 다이아미노벤지딘(diaminobenzidine) 색원체(DAKO, 50:1)과 1 내지 30분 반응시키고 고정하였다. In order to detect β-catenin, the antibody was treated for 15 minutes using a microwave oven with 10 mM citric acid buffer (pH 6.0). The slides were then washed with lx wash buffer (DAKO). It was then incubated for 5 minutes with a solution without peroxidase. Monoclonal antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) against rat human β-catenin in goat serum were diluted 1:50 and reacted with the subject portions overnight at 4 ° C. After washing three times with 1 × washing buffer (DAKO), horseradish peroxidase (HRP) bound secondary antibody (DAKO) was treated for 30 minutes. After washing sufficiently, the target part was reacted with the substrate buffer and the diaminobenzidine chromogen (DAKO, 50: 1) for 1 to 30 minutes and fixed.
도 3에 개시된 바에 따르면, DKK-1 또는 sFRP-1 200ng/ml의 처리로 인해 β-카테닌의 양이 감소한 것을 알 수 있다. As shown in Figure 3, it can be seen that the amount of β-catenin is reduced due to the treatment of DKK-1 or sFRP-1 200ng / ml.
<실험예 6> 글루코사미노글리칸(Glucosaminoglycan: GAG) 측정Experimental Example 6 Measurement of Glucosaminoglycan (GAG)
배양후 3일, 6일이 지난 비교예 1, 실시예 1내지 실시예 6의 펠렛은 GAG의 양을 측정하기 위해 60℃의 파파인(papain) 완충용액에 하룻밤동안 처리된 후 블리스칸(Blyscan) 키트(Biocolor, Carrickfergus, United Kingdom)를 사용하여 측정하였다. The pellets of Comparative Example 1, Example 1 to Example 6, three days or six days after the culture, were treated with papain buffer solution at 60 ° C. overnight to measure the amount of GAG, followed by Blyscan. It was measured using the kit (Biocolor, Carrickfergus, United Kingdom).
GAG의 양은 소의 기관에서 추출된 콘드로이틴 4-설페이트를 함유하는 표준용액으로 그려진 표준곡선을 통해 유추하였다. The amount of GAG was inferred through a standard curve drawn with a standard solution containing chondroitin 4-sulfate extracted from bovine organs.
흡광도는 Spectra max plus 348(Molecular Devics, Sunnyvale, CA)를 이용하여 656nm에서 측정하였다. 그 수치를 DNA양으로 나누어서 세포당 글루코사미노글리칸의 양을 측정하였다.Absorbance was measured at 656 nm using Spectra max plus 348 (Molecular Devics, Sunnyvale, Calif.). The amount was divided by the amount of DNA to measure the amount of glucosaminoglycan per cell.
도 4에 개시된 바에 따르면, 배양 후 6일이 지난 세포에서의 GAG 발현양이 3일 후보다 더 높게 나타났고, 300ng/ml의 DKK-1 또는 sFRP-1을 처리한 경우에 효과가 가장 크게 나타났음을 알 수 있다.As shown in FIG. 4, the amount of GAG expression in the cells 6 days after the culturing was higher than that after 3 days, and the effect was the greatest when treated with 300ng / ml of DKK-1 or sFRP-1. It can be seen.
<실험예 7> 사프라닌-O염색Experimental Example 7 Safranin-O Dyeing
배양 후 6일이 지난 비교예 1, 실시예 1내지 실시예 6의 펠렛을 4% 파라포름알데하이드(paraformaldehyde) 용액에 4시간동안 고정시키고 100% 및 95% 에탄올로 탈수시킨 후, 자일렌(xylene)으로 세척하였다. 그 후 파라핀에 고정시켰다. 그 후 프로테오글리칸(proteoglycan)의 사프라닌-O 염색을 수행하였다. After 6 days of incubation, the pellets of Comparative Examples 1 and 6 were fixed in 4% paraformaldehyde solution for 4 hours, dehydrated with 100% and 95% ethanol, and then xylene (xylene). )). It was then fixed in paraffin. Thereafter, safranin-O staining of proteoglycan was performed.
사프라닌-O 염색을 위해서, 견본을 자일렌과 에탄올로 탈파라핀화하였다. 이에 Fast green(FCF) 용액(0.02%)와 수성 사프라닌-O(0.1%)를 5분간 가한 후, 고정시켰다. For safranin-O staining, the samples were deparaffinized with xylene and ethanol. Fast green (FCF) solution (0.02%) and aqueous safranin-O (0.1%) were added for 5 minutes and then fixed.
도 5를 참조하면, DKK-1또는 sFRP-1의 양에 따라 증가된 색상변화를 확인할 수 있다.Referring to Figure 5, it can be seen that the color change increased with the amount of DKK-1 or sFRP-1.
<실험예 8> COL2A1과 SOX-9에 대한 RT-PCRExperimental Example 8 RT-PCR for COL2A1 and SOX-9
배양 후 지난 비교예 1, 실시예 1내지 실시예 6에 대해 역전사-중합효소 연쇄반응을 이용하여 COL2A1과 SOX-9 유전자 발현정도를 조사하였다. After incubation, the expression levels of COL2A1 and SOX-9 genes were examined using the reverse transcriptase-polymerase chain reaction for Comparative Example 1, Example 1 to Example 6.
실험 방법은 <실험예 3>과 동일하나, COL2A1에 대해서 실험할 때 온도는 55℃, 프라이머의 서열은 5'-CAACATGGAGACTGGCGAGAC-3', 5'ACAGCAGGCGTAGGAAGGTCA-3'를 사용하였고, SOX-9에 대해서 실험할 때는 55℃, 프라이머의 서열은 5'-GGAGCTCGAAACTGACTGGAA-3', 5'-GAGGCGAATTGGAGAGGAGGA-3'를 사용하였다. Experimental method is the same as in <Experimental Example 3>, but when the experiment on the COL2A1 temperature was 55 ℃, the sequence of the primer was used 5'-CAACATGGAGACTGGCGAGAC-3 ', 5'ACAGCAGGCGTAGGAAGGTCA-3', for SOX-9 When the experiment was 55 ℃, the sequence of the primer 5'-GGAGCTCGAAACTGACTGGAA-3 ', 5'-GAGGCGAATTGGAGAGGAGGA-3' was used.
결과를 도 6에 나타내었다. DKK-1 COL2A1유전자 발현을 현저하게 증가시켰으며, 효과는 200ng/ml일 때 가장 크게 나타났다. The results are shown in FIG. DKK-1 COL2A1 gene expression was significantly increased and the effect was greatest at 200 ng / ml.
sFRP-1도 COL2A1 유전자 발현을 현저하게 증가시켰으며, sFRP-1양이 증가함에 따라 효과는 더욱 크게 나타났다.sFRP-1 also significantly increased COL2A1 gene expression, and the effect was greater as sFRP-1 increased.
SOX-9에 대한 유전자 발현은 DKK-1또는 sFRP-1양이 증가함에 따라 같이 증가하였다. Gene expression for SOX-9 increased as the amount of DKK-1 or sFRP-1 increased.
<실험예 9> COL2A1과 SOX-9에 대한 웨스턴 블롯 및 면역조직화학 염색Experimental Example 9 Western Blot and Immunohistochemical Staining for COL2A1 and SOX-9
배양 후 6일이 지난 비교예 1, 실시예 2및 실시예 5에 있어서, COL2A1과 SOX-9에 대한 웨스턴 블롯 및 면역조직화학 염색을 수행하였다. In Comparative Example 1, Example 2, and Example 5, 6 days after the culture, Western blot and immunohistochemical staining for COL2A1 and SOX-9 were performed.
웨스턴 블롯에 대한 실험 방법은 <실험예 4>와 동일하나, COL2A1에 대해 실험시에는 1차 항체로 TBS-T/2.5% 무지방 건조우유에 각각 1:1000으로 희석된 쥐의 닭의 콜라겐 타입 2(COL2A1)에 대한 단일 클론 항체(Chemicon, Temecula, CA)및 쥐의 안티 β-액틴 항체(Sigma, St. Louis, MO)를 사용하였다. Experimental method for Western blot is the same as in <Experimental Example 4>, but collagen type of rat chicken diluted 1: 1000 in TBS-T / 2.5% nonfat dry milk with primary antibody when tested for COL2A1 Monoclonal antibodies against 2 (COL2A1) (Chemicon, Temecula, Calif.) And murine anti β-actin antibodies (Sigma, St. Louis, Mo.) were used.
SOX-9에 대해 실험할때는 1차 항체로 TBS-T/2.5% 무지방 건조우유에 각각 1:2000 및 1:1000으로 희석된 토끼의 SOX-9 복합 클론 항체(Santa Cruz Biotechnology, Santa Cruz, CA) 및 쥐의 안티 β-액틴 항체(Sigma, St. Louis, MO)를 사용하였다. When tested against SOX-9, rabbit SOX-9 polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA) diluted 1: 2000 and 1: 1000 in TBS-T / 2.5% fat-free dry milk, respectively, as the primary antibody. ) And a mouse anti β-actin antibody (Sigma, St. Louis, MO).
면역 조직화학을 위해서 Dakocytomation LSAB2 시스템 HRP 키트(DAKO, Hambrug, Germany)을 사용하였다. COL2A1 항원을 복구하기 위해서, 대상부분을 COL2A1 항체로 처리한 후 Pepsin Soluble®(DBS, Pleasanton, CA)를 15분간 37℃에서 처리하였다. SOX-9을 검출하기 위해서, 이에 항체를 10mM 시트르산 완충용액(pH 6.0)과 함께 마이크로웨이브 오븐을 사용하여 15분간 처리하였다. 그 후 슬라이드를 1x세척 완충용액(DAKO)로 세척하였다. 이어서 퍼옥시다아제가 없는 용액과 5분간 배양하였다. 염소 혈청에 있는 쥐의 닭의 콜라겐 타입 2(COL2A1)에 대한 단일 클론 항체(Chemicon, Temecula, CA) 및 토끼의 사람 SOX-9에 대한 복합 클론 항체(Santa Cruz Biotechnology, Santa Cruz, CA)는 각각 1:100, 1:500으로 희석되었고, 4℃에서 하루밤동안 대상 부분과 반응시켰다. 1x세척 완충용액(DAKO)으로 3번 세척한 후 양고추냉이 퍼옥시다아제(horseradish peroxidase, HRP)결합된 2차 항체(DAKO)를 30분동안 처리하였다. 충분히 씻은 후, 대상부분을 기질 완충액과 다이아미노벤지딘(diaminobenzidine) 색원체(DAKO, 50:1)과 1 내지 30분 반응시키고 고정하였다. Dakocytomation LSAB2 System HRP Kit (DAKO, Hambrug, Germany) was used for immunohistochemistry. To recover the COL2A1 antigen, subjects were treated with COL2A1 antibody followed by Pepsin Soluble® (DBS, Pleasanton, CA) at 37 ° C. for 15 minutes. To detect SOX-9, the antibody was then treated for 15 minutes using a microwave oven with 10 mM citric acid buffer (pH 6.0). The slides were then washed with lx wash buffer (DAKO). It was then incubated for 5 minutes with a solution without peroxidase. Monoclonal antibodies against collagen type 2 (COL2A1) of rat chickens in goat serum (Chemicon, Temecula, CA) and polyclonal antibodies against human SOX-9 of rabbits (Santa Cruz Biotechnology, Santa Cruz, CA), respectively Diluted 1: 100, 1: 500, and reacted with the target part overnight at 4 ° C. After washing three times with 1 × washing buffer (DAKO), horseradish peroxidase (HRP) bound secondary antibody (DAKO) was treated for 30 minutes. After washing sufficiently, the target part was reacted with the substrate buffer and the diaminobenzidine chromogen (DAKO, 50: 1) for 1 to 30 minutes and fixed.
웨스턴 블롯 결과를 도7(a)에, 면역조직화학 염색 결과를 도 7(b)에 나타내었다. Western blot results are shown in Figure 7 (a), immunohistochemical staining results are shown in Figure 7 (b).
도 7(b)를 보면, DKK-1 또는 sFRP-1 200ng/ml의 처리로 인해 COL2A1과 SOX-9의 양이 증가한 것을 볼 수 있다. Referring to Figure 7 (b), it can be seen that the amount of COL2A1 and SOX-9 increased due to the treatment of DKK-1 or sFRP-1 200ng / ml.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it will be apparent to those skilled in the art that such a specific description is only a preferred embodiment, thereby not limiting the scope of the present invention. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

  1. 중간엽줄기세포를 배양시작시부터 2 내지 8일간 DKK-1 또는 sFRP-1 존재 하에서 배양하는 것을 포함하는 연골세포로의 분화 방법.Method for differentiation into chondrocytes comprising culturing the mesenchymal stem cells in the presence of DKK-1 or sFRP-1 for 2 to 8 days from the start of the culture.
  2. 제 1항에 있어서, The method of claim 1,
    중간엽줄기세포는 골수 유래인 연골세포로의 분화 방법.Mesenchymal stem cells are a method of differentiation into chondrocytes derived from bone marrow.
  3. 제 1항에 있어서, The method of claim 1,
    상기 DKK-1 또는 sFRP-1의 양은 50 내지 350 ng/ml인 연골세포로의 분화방법. The amount of DKK-1 or sFRP-1 is 50 to 350 ng / ml differentiation into chondrocytes.
  4. 제 1항에 있어서, The method of claim 1,
    배양 배지는 인슐린, 덱사메타손, 아스코르베이트 2-포스페이트, L-프롤린 및 소듐 피루베이트로 이루어진 군에서 선택된 어느 하나 이상의 물질을 포함하는 것인 연골세포로의 분화 방법.The culture medium is a method of differentiating to chondrocytes comprising any one or more substances selected from the group consisting of insulin, dexamethasone, ascorbate 2-phosphate, L-proline and sodium pyruvate.
  5. 제1항 내지 제4항의 방법 중 어느 하나의 방법을 통해 분화된 연골세포를 함유하는 연골손상 질환 치료용 조성물.A composition for treating cartilage damage disease containing chondrocytes differentiated through any one of the methods of claims 1 to 4.
  6. 제5항에 있어서, The method of claim 5,
    상기 연골손상 질환은 퇴행성 관절염 또는 류마티스성 관절염인 조성물.The cartilage injury disease is degenerative arthritis or rheumatoid arthritis composition.
  7. 제1항 내지 제4항의 방법 중 어느 하나의 방법을 통해 분화된 연골세포를 임의의 형태의 스캐폴드(scaffold)에서 배양하는 것을 포함하는 인공관절의 제조방법.A method for producing an artificial joint comprising culturing chondrocytes differentiated by any one of the methods of claims 1 to 4 in a scaffold of any form.
  8. 제7항의 방법으로 제조된 인공관절.Artificial joint produced by the method of claim 7.
PCT/KR2010/006837 2009-11-30 2010-10-06 Chondrogenesis of mesenchymal stem cells using dkk-1 or sfrp-1 WO2011065661A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090117288A KR100990436B1 (en) 2009-11-30 2009-11-30 Chondrogenesis of mesenchymal stem cells using dkk-1 or sfrp-1
KR10-2009-0117288 2009-11-30

Publications (2)

Publication Number Publication Date
WO2011065661A2 true WO2011065661A2 (en) 2011-06-03
WO2011065661A3 WO2011065661A3 (en) 2011-09-01

Family

ID=43135926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006837 WO2011065661A2 (en) 2009-11-30 2010-10-06 Chondrogenesis of mesenchymal stem cells using dkk-1 or sfrp-1

Country Status (2)

Country Link
KR (1) KR100990436B1 (en)
WO (1) WO2011065661A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014052912A1 (en) * 2012-09-28 2014-04-03 Scripps Health Methods of differentiating stem cells into chondrocytes
US9914911B2 (en) 2012-10-29 2018-03-13 Scripps Health Methods of reprogramming chondrocytes
US9974885B2 (en) 2012-10-29 2018-05-22 Scripps Health Methods of transplanting chondrocytes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102197871B1 (en) * 2019-03-28 2021-01-04 이화여자대학교 산학협력단 Method for inducing differentiation stem cells into chondrocytes using folic acid, folic acid derivatives or antifolates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267658A (en) * 2006-03-31 2007-10-18 Cardio Corp Method for producing myocardial cell and differentiation induction accelerator to myocardial cell
KR20090069013A (en) * 2007-12-24 2009-06-29 동국대학교 산학협력단 Chondrogenesis of bone marrow mesenchymal stem cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267658A (en) * 2006-03-31 2007-10-18 Cardio Corp Method for producing myocardial cell and differentiation induction accelerator to myocardial cell
KR20090069013A (en) * 2007-12-24 2009-06-29 동국대학교 산학협력단 Chondrogenesis of bone marrow mesenchymal stem cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANG, C.Y. ET AL.: 'Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture' THE ANATOMICAL RECORD PART A vol. 278, no. 1, May 2004, pages 428 - 436 *
IM, GUN-IL ET AL.: 'The Effects ofWnt Inhibitors on the Chondrogenesis of Human Mesenchymal Stem Cells' TISSUE ENGINEERING PART A vol. 16, no. 7, 08 September 2009, pages 2405 - 2413 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014052912A1 (en) * 2012-09-28 2014-04-03 Scripps Health Methods of differentiating stem cells into chondrocytes
US10724005B2 (en) 2012-09-28 2020-07-28 Scripps Health Methods of differentiating stem cells into chondrocytes
US11859210B2 (en) 2012-09-28 2024-01-02 Scripps Health Methods of differentiating stem cells into chondrocytes
US9914911B2 (en) 2012-10-29 2018-03-13 Scripps Health Methods of reprogramming chondrocytes
US9974885B2 (en) 2012-10-29 2018-05-22 Scripps Health Methods of transplanting chondrocytes
US10179193B2 (en) 2012-10-29 2019-01-15 Scripps Health Methods of transplanting chondrocytes
US10385318B2 (en) 2012-10-29 2019-08-20 Scripps Health Method of making a population of chondrocytes from reprogrammed chondrocytes

Also Published As

Publication number Publication date
WO2011065661A3 (en) 2011-09-01
KR100990436B1 (en) 2010-10-29

Similar Documents

Publication Publication Date Title
US6849255B2 (en) Methods and compositions for enhancing cartilage repair
JP7236114B2 (en) Methods, somatic cells, and compositions for producing somatic cells
US20040235165A1 (en) In vitro differentiation of adult stem cells
US20120282228A1 (en) Method of producing progenitor cells from differentiated cells
US20180171290A1 (en) Method of producing progenitor cells from differentiated cells
WO2020204317A1 (en) Method for inducing differentiation of stem cells into chondrocytes by using oligopeptides
CN106916783B (en) Muscle stem cell in-vitro culture method and application thereof
WO2014181954A1 (en) Culture medium composition for improving regenerative capacity of stem cells, and stem cell culturing method using same
WO2011065661A2 (en) Chondrogenesis of mesenchymal stem cells using dkk-1 or sfrp-1
TW202200786A (en) Method for producing organoid from lung epithelial cells or lung cancer cells
US9422522B2 (en) Method of producing adipocytes from fibroblast cells
WO2020197059A2 (en) Method for inducing differentiation of stem cells into cartilage cells, using folic acid, folic acid derivative, or folic acid inhibitor
WO2024076173A1 (en) Composition for inducing differentiation of adipose-derived stem cells into dermal papilla cells, and differentiation method using composition
WO2015186906A1 (en) Autologous and allogeneic adipose-derived mesenchymal stem cell composition for healing tendon or ligament injury, and preparation method therefor
Jansen et al. Human periosteum‐derived cells from elderly patients as a source for cartilage tissue engineering?
WO2012133992A1 (en) Method for differentiating adipose-derived mesenchymal stem cells into chondrocytes
WO2022031008A1 (en) Method for producing induced pluripotent stem cell-derived osteoarthritis model using aquaporin 1 overexpression
KR20180085699A (en) Chondrogenic pellet differentiation using cell-size seperation by centrifugal pulse
US20220315897A1 (en) Method for in vitro production of hyaline cartilage tissue
WO2019221477A1 (en) Composition for promoting stem cell differentiation, comprising progenitor cell culture solution and multilayer graphene film, and use thereof
Ba et al. Increased expression of Sox9 during balance of BMSCs/chondrocyte bricks in platelet‐rich plasma promotes construction of a stable 3‐D chondrogenesis microenvironment for BMSCs
Adam et al. Characterization of cells derived from inflamed intra-bony periodontal defects
EP4397312A1 (en) Therapeutic agent for arthropathy, and method for producing therapeutic agent for arthropathy
WO2023018244A1 (en) Composition for treatment of cartilage-related disease and preparation method therefor
WO2015080376A1 (en) Method for differentiating nerve cells and hair cells from placental chorion or warthon&#39;s jelly-derived mesenchymal stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833473

Country of ref document: EP

Kind code of ref document: A2