WO2019216278A1 - 量子計算システム及び量子計算システムの使用方法 - Google Patents

量子計算システム及び量子計算システムの使用方法 Download PDF

Info

Publication number
WO2019216278A1
WO2019216278A1 PCT/JP2019/018010 JP2019018010W WO2019216278A1 WO 2019216278 A1 WO2019216278 A1 WO 2019216278A1 JP 2019018010 W JP2019018010 W JP 2019018010W WO 2019216278 A1 WO2019216278 A1 WO 2019216278A1
Authority
WO
WIPO (PCT)
Prior art keywords
qubit
qubits
coupled
wiring
quantum
Prior art date
Application number
PCT/JP2019/018010
Other languages
English (en)
French (fr)
Inventor
兆申 蔡
寛人 向井
圭一 坂田
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Priority to EP19800485.5A priority Critical patent/EP3792843A4/en
Priority to CN201980031001.3A priority patent/CN112106079A/zh
Priority to JP2020518280A priority patent/JP7301389B2/ja
Priority to US17/053,401 priority patent/US11980107B2/en
Priority to EP23196858.7A priority patent/EP4270260A3/en
Publication of WO2019216278A1 publication Critical patent/WO2019216278A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/20Models of quantum computing, e.g. quantum circuits or universal quantum computers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure

Definitions

  • the present invention relates to a quantum computation system and a method for using the quantum computation system.
  • the superconducting circuit using the surface code that is currently proposed when enlarged, it consists of a substrate on which two-dimensional qubits are arranged and a control wiring arranged perpendicularly to the substrate.
  • a three-dimensional superconducting circuit structure is required (R. Barends et al., “Superconducting” quantum “circuits” at “the“ surface ”code“ threshold ”for“ fault ”tolerance,“ Nature ”508,“ 500 ”(2014)).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a quantum computation system capable of realizing a cluster state with a two-dimensional superconducting circuit and a method of using the quantum computation system. It is another object of the present invention to provide a quantum computing system capable of realizing surface codes with a quasi-two-dimensional superconducting circuit.
  • the quantum computing system is arranged in a line, arranged in a line with a first qubit group composed of first qubits coupled to adjacent ones,
  • a plurality of first basic configurations configured to include a second qubit group composed of second qubits coupled to the first qubits that are not coupled to each other and arranged in the same row;
  • the first qubit group and the second qubit group have a structure in which the first qubit group and the second qubit group are inverted so as to be symmetric with respect to the arrangement direction of the first qubit and the second qubit of the first basic configuration.
  • each of the second qubits and the control device is configured using a quasi-two-dimensional wiring formed on the quasi-two dimensions so as to cross three-dimensionally.
  • the method for using the quantum computing system according to the second aspect is a method for using the quantum computing system according to the first aspect, and generates a three-dimensional cluster state by operating a qubit according to a procedure described later. .
  • the quantum computing system is arranged so as to be arranged in a line and arranged adjacent to the first qubit group including the first qubits that are not coupled to each other. And a second qubit group composed of second qubits coupled to the first qubits arranged in the same row and arranged in a row and coupled to each other. And a third qubit group comprising third qubits coupled to the second qubits arranged in the same row, each of the first qubits and each of the second qubits And a control wiring for connecting each of the third qubits and the control device to a two-dimensional wiring formed two-dimensionally so as not to intersect with another control wiring, or with another control wiring. Is formed on a quasi-two-dimensional It is constructed using pseudo two-dimensional wiring.
  • a method of using a quantum computation system according to a fourth aspect is a method of using the quantum computation system according to the third aspect, and generates a two-dimensional cluster state by performing a qubit operation according to a procedure described later. .
  • the quantum computation system is arranged so as to be arranged in a line and arranged adjacent to the first qubit group including the first qubits that are not coupled to each other. And a second qubit group composed of second qubits coupled to the first qubits arranged in the same row, and a third qubit coupled to all the second qubits.
  • a control wiring for connecting each of the first qubits, each of the second qubits, and the third qubit and the control device so as not to cross other control wirings.
  • a method of using a quantum computation system according to a sixth aspect is a method of using the quantum computation system according to the fifth aspect, and generates a two-dimensional cluster state by performing a qubit operation according to a procedure described later. .
  • the quantum computing system is arranged in a line, arranged in a line with a first qubit group composed of first qubits coupled to adjacent ones, A second qubit group consisting of second qubits that are not coupled to each other and are coupled to the first qubits arranged in the same row, each of the first qubits, and
  • the control wiring for connecting each of the second qubits and the control device is configured using a two-dimensional wiring formed two-dimensionally so as not to intersect with other control wiring.
  • a method for using a quantum computing system according to an eighth aspect is a method for using a quantum computing system according to the seventh aspect, wherein a two-dimensional cluster state is generated by manipulating qubits according to a procedure described later. .
  • a quantum computing system is arranged in a line and is coupled to a first qubit group including first qubits coupled to adjacent ones, and all the first qubits.
  • Each of the first qubits and the control wiring for connecting the second qubit and the control device are two-dimensional so as not to cross other control wirings. It is configured using a two-dimensional wiring formed above or a pseudo two-dimensional wiring formed on the pseudo two-dimensional so as to cross three-dimensionally with another control wiring.
  • a method for using a quantum computing system according to a tenth aspect is a method for using the quantum computing system according to the ninth aspect described above, and generates a two-dimensional cluster state by manipulating qubits according to a procedure described later. .
  • the quantum computation system is arranged so as to be arranged in a line and arranged adjacent to the first qubit group including the first qubits that are not coupled to each other. And a second qubit group composed of second qubits coupled to the first qubits arranged in the same row, and a third qubit coupled to all the second qubits.
  • a plurality of basic configurations including qubits, wherein the plurality of basic configurations are arranged in a line, and the third qubits of the basic configurations adjacent to each other are combined to form the first qubit 17.
  • Each of the second qubits according to claim 16, and each of the third qubits and a control wiring for connecting each of the third qubits and the control device are two-dimensionally formed so as not to cross other control wirings. Two-dimensional wiring or other With quasi-two-dimensional wiring formed on the quasi-two-dimensional to control lines and crossing are configured.
  • a method for using a quantum computing system according to a twelfth aspect is a method for using the quantum computing system according to the eleventh aspect, wherein a three-dimensional cluster state is generated by manipulating qubits according to a procedure described later. .
  • a quantum computing system is arranged in a line and is coupled to a first qubit group including first qubits coupled to adjacent ones, and all the first qubits.
  • a plurality of basic configurations including the second qubits wherein the plurality of basic configurations are arranged in a line, and the adjacent second qubits of the basic configurations are combined,
  • a control wiring for connecting each of the first qubits and each of the second qubits to a control device is a two-dimensional wiring formed two-dimensionally so as not to cross other control wirings; or It is configured using a quasi-two-dimensional wiring formed on the quasi-two-dimensional so as to cross three-dimensionally with other control wiring.
  • a method for using a quantum computation system according to a fourteenth aspect is a method for using the quantum computation system according to the thirteenth aspect, and generates a three-dimensional cluster state by performing a qubit operation according to a procedure described later. .
  • a quantum computation system includes a first basic configuration configured to include a first qubit group including first qubits arranged in a line and coupled to adjacent ones.
  • a plurality of second basic configurations configured to include a second qubit group composed of second qubits arranged in a row and coupled to adjacent ones.
  • the first basic configuration is arranged such that one basic configuration is arranged in a row, and the plurality of second basic configurations are arranged in a row in a row different from the plurality of first basic configurations, and are combined.
  • the wiring for coupling the first qubit and the second qubit corresponding to each other in the pair is two-dimensionally arranged so as not to cross other wiring.
  • the wiring is configured using a two-dimensional wiring formed two-dimensionally so as not to intersect with other control wirings, or a quasi-two-dimensional wiring formed quasi-two-dimensionally intersecting with other control wirings.
  • an effect that a two-dimensional cluster state or a three-dimensional cluster state can be realized by a two-dimensional or quasi-two-dimensional superconducting circuit. Is obtained. Further, according to the quantum computation system of one embodiment of the present invention, an effect that the surface code can be realized by a quasi-two-dimensional superconducting circuit is obtained.
  • a topological one-way quantum computation and a cluster state machine gun are used to realize a quantum computation system with a two-dimensional superconducting circuit.
  • the cluster state machine gun method uses a special effect in the quantum dot system, it cannot be used directly in other quantum systems such as superconductivity. However, it is possible to obtain the same effect by imitating this system.
  • the circuit representation of the cluster state machine gun is the Y-axis rotation operation for the qubit QD corresponding to the quantum dot, the preparation of a new qubit, the CNOT gate operation using the former for the qubit QD and the newly prepared qubit as the control bit, It consists of repetition.
  • This operation can be used to generate a one-dimensional cluster state (S. (E. Economou, N. Lindner, T. Rudolph, “Optically Generated 2-Dimensional Photonic Cluster State from Coupled Quantum Dots, (See “Physical Review Review Letters 105, 093601" (2010).)
  • the quantum computation system 100 includes a quantum computation circuit 101 and a control device 102.
  • Quantum calculation circuit 101 is arranged in a row and arranged in a row, and is arranged in a row and connected to adjacent ones, and qubit group 111 is arranged in a row, and It comprises a qubit group 121 composed of qubits 120 coupled to qubits 110 arranged in the same row.
  • the quantum computation circuit 101 includes a qubit group 131 including qubits 130 arranged in a line, not coupled to each other, and coupled to qubits 120 arranged in the same row. Configured.
  • the qubit 110 is an example of the first qubit
  • the qubit 120 is an example of the second qubit
  • the qubit 130 is an example of the third qubit
  • the qubit group 111 is the first qubit. It is an example of a group.
  • the qubit group 121 is an example of a second qubit group
  • the qubit group 131 is an example of a third qubit group.
  • the quantum computation circuit 101 performs control of qubits (1 qubit gate, 2 qubit gate, qubit measurement, qubit initialization) through control wirings 151 to 153 and measurement wiring 154. It is connected to the control device 102.
  • each of the qubits 110, 120, and 130 is, for example, a superconducting qubit.
  • control wirings 151 to 153 and the measurement wiring 154 are two-dimensionally formed so as not to intersect with other wirings, the quantum calculation circuit 101 can be configured two-dimensionally.
  • control wirings 151 to 153 and the measurement wiring 154 may be formed in a pseudo two-dimensional manner. In this case, if there are intersecting portions in the control wirings 151 to 153 and the measurement wiring 154, they may be formed so as to intersect three-dimensionally.
  • a two-dimensional cluster state can be generated by manipulating the quantum bits through the control wirings 151 to 153 and the measurement wiring 154 with respect to the quantum calculation circuit 101 shown in FIG.
  • control is performed in accordance with steps S241 to S248 shown in FIG. 2 (an example in which the number of qubit rows to be described later is 3).
  • the qubit 120 in FIG. 1 corresponds to the qubit 220 in FIG. 2
  • the qubit 130 in FIG. 1 corresponds to the qubit 230 in FIG.
  • step S241 the Y-axis rotation operation is performed on each of all the qubits 110, and the state of each qubit 110 is changed.
  • step S242 a CNOT gate operation using the qubit 110 as a control bit is performed on all pairs of the coupled qubit 110 and qubit 120 to change the state of each qubit 120.
  • step S243 CZ gate operation is performed on all sets of two adjacent qubits 120, and the state of each qubit 120 is changed.
  • step S244 a SWAP gate operation is performed on each of all pairs of coupled qubits 120 and qubits 130 to change the states of qubits 120 and qubits 130.
  • step S245 the Y-axis rotation operation is performed on each of all the qubits 110, and the state of each qubit 110 is changed.
  • step S246 a CNOT gate operation using the qubit 110 as a control bit is performed on all pairs of the coupled qubit 110 and qubit 120, and the state of each qubit 120 is changed.
  • step S247 measurement and initialization operation on an appropriate base is performed on the qubit 130.
  • step S248 steps S243 to S247 are repeated an appropriate number of times.
  • the two-dimensional cluster state is generated by the above operation.
  • a two-dimensional cluster state can be realized with high accuracy by a two-dimensional control wiring.
  • a circuit in which a required number of pairs of the qubit 110, the qubit 120, and the qubit 130 are arranged may be used.
  • the quantum computation system 300 includes a quantum computation circuit 301 and a control device 302.
  • Quantum calculation circuit 301 is arranged in a row and arranged in a row with qubit group 311 composed of qubits 310 that are not coupled to each other, and is coupled to an adjacent one, and A qubit group 321 composed of qubits 320 coupled to qubits 310 arranged in the same row is provided.
  • the quantum calculation circuit 301 includes a qubit 330 that is coupled to all the qubits 320.
  • the qubit 310 is an example of the first qubit
  • the qubit 320 is an example of the second qubit
  • the qubit 330 is an example of the third qubit
  • the qubit group 311 is the first qubit.
  • the qubit group 321 is an example of a second qubit group.
  • the quantum calculation circuit 301 performs control through the control wirings 351 to 353 and the measurement wiring 354 in order to execute a qubit operation (1 qubit gate, 2 qubit gate, qubit measurement, qubit initialization).
  • a device 302 is connected.
  • each of the qubits 310, 320, and 330 is, for example, a superconducting qubit.
  • control wirings 351 to 353 and the measurement wiring 354 are two-dimensionally formed so as not to intersect with other wirings, the quantum calculation circuit 301 can be configured two-dimensionally.
  • control wirings 351 to 353 and the measurement wiring 354 may be formed in a pseudo two-dimensional manner. In this case, if there are intersecting portions in the control wirings 351 to 353 and the measurement wiring 354, they may be formed so as to intersect three-dimensionally.
  • a two-dimensional cluster state can be generated by manipulating the quantum bits through the control wirings 351 to 353 and the measurement wiring 354 with respect to the quantum calculation circuit 301 shown in FIG.
  • control is performed according to steps S441 to S449 shown in FIG. 4 (illustrated when the number of qubit rows to be described later is 3).
  • the qubit 320 in FIG. 3 corresponds to the qubit 420 in FIG. 4
  • the qubit 330 in FIG. 3 corresponds to the qubit 430 in FIG.
  • step S441 the Y-axis rotation operation is performed for each of all the qubits 310, and the state of each qubit 310 is changed.
  • step S442 a CNOT gate operation using the qubits 310 as control bits is performed on all pairs of the coupled qubits 310 and qubits 320, and the state of each qubit 320 is changed.
  • step S443 CZ gate operation is performed on all sets of two adjacent qubits 320, and the state of each qubit 120 is changed.
  • step S444 a SWAP gate operation is performed on the qubits 320 and qubits 330 in the first row to change the states of the qubits 320 and 330.
  • step S445 the Y-axis rotation operation is performed on the qubits 310 in the first row to change the state of the qubits 310.
  • step S446 a CNOT gate operation using the qubit 310 as a control bit is performed on the qubit 310 and the qubit 320 in the first row to change the state of the qubit 320.
  • step S447 measurement and initialization operation on an appropriate base are performed on the qubit 330.
  • step S448 the operation is repeated in all rows while changing the pair of qubits 310 and qubits 320 for the above steps S444 to S447 one by one in the second row and the third row.
  • step S449 steps S443 to S448 are repeated an appropriate number of times.
  • the two-dimensional cluster state is generated by the above operation.
  • a two-dimensional cluster state can be realized with high accuracy by a two-dimensional control wiring.
  • a circuit in which a required number of pairs of quantum bits 310 and 320 are arranged may be used.
  • a quantum computation system 500 includes a quantum computation circuit 501 and a control device 502.
  • Quantum calculation circuits 501 are arranged in a row and arranged in a row with qubit groups 511 composed of qubits 510 that are coupled to adjacent ones, and are not coupled to each other. And a qubit group 521 composed of qubits 520 coupled to qubits 510 arranged in the same row.
  • the qubit 510 is an example of the first qubit
  • the qubit 520 is an example of the second qubit
  • the qubit group 511 is an example of the first qubit group
  • the qubit group 521 is the second qubit. It is an example of a qubit group.
  • the quantum calculation circuit 501 performs control through the control wirings 551 and 552 and the measurement wiring 553 in order to execute a qubit operation (1 qubit gate, 2 qubit gate, qubit measurement, qubit initialization).
  • a device 502 is connected.
  • each of the qubits 510 and 520 is, for example, a superconducting qubit.
  • control wirings 551 and 552 and the measurement wiring 553 are two-dimensionally formed so as not to intersect with other wirings, the quantum calculation circuit 501 can be configured two-dimensionally.
  • control wirings 551 and 552 and the measurement wiring 553 may be formed in a pseudo two-dimensional manner. In this case, if there are intersecting portions in the control wirings 551 and 552 and the measurement wiring 553, they may be formed so as to intersect three-dimensionally.
  • a two-dimensional cluster state can be generated by manipulating the quantum bits through the control wirings 551 and 552 and the measurement wiring 553 with respect to the quantum calculation circuit 501 shown in FIG.
  • control is performed according to steps S631 to S635 shown in FIG. 6 (when the number of qubit rows to be described later is 3).
  • step S631 the Y-axis rotation operation is performed on each of all the qubits 510, and the state of each qubit 510 is changed.
  • step S632 CZ gate operation is performed on all sets of two adjacent qubits 510, and the state of each qubit 510 is changed.
  • step S633 a CNOT gate operation using the qubit 610 as a control bit is performed on all pairs of the coupled qubit 610 and qubit 620 to change the state of each qubit 610.
  • step S634 measurement and initialization operation on an appropriate base are performed on the qubit 620.
  • step S635 steps S631 to S634 are repeated an appropriate number of times.
  • the two-dimensional cluster state is generated by the above operation.
  • a two-dimensional cluster state can be realized with high accuracy by a two-dimensional control wiring.
  • a circuit in which a required number of pairs of the qubit 510 and the qubit 520 are arranged may be used.
  • a quantum computation system 700 includes a quantum computation circuit 701 and a control device 702.
  • the quantum computation circuit 701 is arranged in a line, and includes a first qubit group 711 composed of qubits 710 coupled to adjacent ones, and qubits 720 coupled to all qubits 710. It is configured with.
  • the qubit 710 is an example of the first qubit
  • the qubit 720 is an example of the second qubit
  • the qubit group 711 is an example of the first qubit group.
  • the quantum calculation circuit 701 performs control through the control wirings 751 and 752 and the measurement wiring 753 in order to execute a qubit operation (1 qubit gate, 2 qubit gate, qubit measurement, qubit initialization).
  • a device 702 is connected.
  • each of the qubits 710 and 720 is, for example, a superconducting qubit.
  • control wirings 751 and 752 and the measurement wiring 753 are two-dimensionally formed so as not to intersect with other wirings, the quantum calculation circuit 701 can be configured two-dimensionally.
  • control wirings 751 and 752 and the measurement wiring 753 may be formed in a pseudo two-dimensional manner. In this case, if there are intersecting portions in the control wirings 751 and 752 and the measurement wiring 753, they may be formed so as to intersect three-dimensionally.
  • a two-dimensional cluster state can be generated by manipulating the quantum bits through the control wirings 751 and 752 and the measurement wiring 753 with respect to the quantum calculation circuit 701 shown in FIG.
  • control is performed according to steps S831 to S836 shown in FIG. 8 (when the number of qubit rows to be described later is 3).
  • step S831 the Y-axis rotation operation is performed on each of all the qubits 710, and the state of each qubit 710 is changed.
  • step S832 CZ gate operation is performed on all sets of two adjacent qubits 710 to change the state of each qubit 710.
  • step S833 a CNOT gate operation using the qubit 710 as a control bit is performed on the qubit 710 and the qubit 720 in the first row, and the state of each qubit 720 is changed.
  • step S834 measurement and initialization operation on an appropriate base are performed on the qubit 720.
  • step S835 the operation is repeated in all rows while changing the second and third rows of the pair of qubits 710 and qubits 720 in steps S833 and S834.
  • step S836 steps S831 to S835 are repeated an appropriate number of times.
  • the two-dimensional cluster state is generated by the above operation.
  • a two-dimensional cluster state can be realized with high accuracy by a two-dimensional control wiring.
  • a circuit in which a required number of quantum bits 710 are arranged may be used.
  • a quantum computation system 900 includes a quantum computation circuit 901 and a control device 902.
  • Quantum calculation circuits 901 are arranged in a row and arranged in a row with qubit groups 911 composed of qubits 910 that are not coupled to each other, and are coupled to adjacent ones, and A plurality of basic configurations 960 each including a qubit group 921 composed of qubits 920 coupled to qubits 910 arranged in the same row and qubits 930 coupled to all qubits 920 are provided. I have. A plurality of basic configurations 960 are arranged in a line, and are configured by combining quantum bits 930 of adjacent basic configurations 960.
  • the qubit 910 is an example of the first qubit
  • the qubit 920 is an example of the second qubit
  • the qubit 930 is an example of the third qubit
  • the qubit group 911 is the first qubit.
  • the qubit group 921 is an example of a second qubit group.
  • the basic configuration 960 is an example of the basic configuration.
  • the quantum calculation circuit 901 passes through the control wirings 951 to 953 and the measurement wiring 954 in order to execute a qubit operation (1 qubit gate, 2 qubit gate, qubit measurement, qubit initialization).
  • a control device 902 is connected.
  • each of the qubits 910, 920, 930 is, for example, a superconducting qubit.
  • control wirings 951 to 953 and the measurement wiring 954 are two-dimensionally formed so as not to intersect with other wirings, the quantum calculation circuit 901 can be configured two-dimensionally.
  • control wirings 951 to 953 and the measurement wiring 954 may be formed quasi-two-dimensionally. In this case, if there are intersecting portions in the control wirings 951 to 953 and the measurement wiring 954, they may be formed so as to intersect three-dimensionally.
  • a three-dimensional cluster state can be generated by manipulating the quantum bits through the control wirings 951 to 953 and the measurement wiring 954 with respect to the quantum calculation circuit 901 shown in FIG.
  • control is performed according to steps S1041 to S1050 shown in FIG.
  • step S1041 the Y-axis rotation operation is performed on each of all the qubits 910, and the state of each qubit 910 is changed.
  • step S1042 a CNOT gate operation using the qubit 910 as a control bit is performed on all pairs of the coupled qubit 910 and qubit 920, and the state of each qubit 920 is changed.
  • step S1043 CZ gate operation is performed on all sets of two adjacent qubits 920, and the state of each qubit 920 is changed.
  • step S1044 the SWAP gate operation is performed on the qubits 920 and 930 in the first row in all the basic configurations 960 to change the states of the qubits 920 and 930.
  • step S 1045 the Y-axis rotation operation is performed on the qubit 910 in the first row in all the basic configurations 960 to change the state of the qubit 910.
  • step S 1046 the CNOT gate operation using the qubit 910 as the control bit is performed on the qubit 910 and the qubit 920 in the first row in all the basic configurations 960 to change the state of the qubit 920.
  • step S1047 the CZ gate operation is performed on all sets of two adjacent qubits 930, and the state of each qubit 930 is changed.
  • step S1048 measurement and initialization operation on an appropriate base is performed on the qubit 930.
  • step S1049 the operation is repeated in all rows while changing the rows of the qubit 910 and qubit 920 targeting steps S1044 to S1048 to the second row and the third row one by one.
  • step S1050 steps S1043 to S1049 are repeated an appropriate number of times.
  • a three-dimensional cluster state is generated by the above operations.
  • a three-dimensional cluster state can be realized with high accuracy by a two-dimensional control wiring.
  • a required number of pairs of quantum bits 910 and qubits 920 may be arranged, or a circuit in which only a necessary number of basic configurations 960 are arranged may be used.
  • a quantum computation system 1100 includes a quantum computation circuit 1101 and a control device 1102.
  • the quantum computation circuit 1101 includes a qubit group 1111 composed of qubits 1110 arranged in a row and coupled to adjacent ones, and qubits 1120 coupled to all qubits 1110.
  • a plurality of basic configurations 1160 are provided.
  • a plurality of basic configurations 1160 are arranged in a line, and are configured by combining qubits 1120 of adjacent basic configurations 1160.
  • the qubit 1110 is an example of the first qubit
  • the qubit 1120 is an example of the second qubit
  • the qubit group 1111 is an example of the first qubit group
  • the basic configuration 1160 is the basic configuration. It is an example.
  • the quantum calculation circuit 1101 performs control through the control wirings 1151 to 1152 and the measurement wiring 1153 in order to execute a qubit operation (1 qubit gate, 2 qubit gate, qubit measurement, qubit initialization).
  • a device 1102 is connected.
  • each of the qubits 1110 and 1120 is, for example, a superconducting qubit.
  • control wirings 1151 to 1152 and the measurement wiring 1153 are two-dimensionally formed so as not to intersect with other wirings, the quantum calculation circuit 1101 can be configured two-dimensionally.
  • control wirings 1151 to 1152 and the measurement wiring 1153 may be formed quasi-two-dimensionally. In this case, if there are intersecting portions in the control wirings 1151 to 1152 and the measurement wiring 1153, they may be formed so as to intersect three-dimensionally.
  • a three-dimensional cluster state can be generated by manipulating the quantum bits through the control wirings 1151 and 1152 and the measurement wiring 1153 with respect to the quantum calculation circuit 1101 shown in FIG.
  • control is performed in accordance with steps S1231 to S1237 shown in FIG.
  • step S1231 the Y-axis rotation operation is performed on each of all the qubits 1110 to change the state of each qubit 1110.
  • step S1232 CZ gate operation is performed on all sets of two adjacent qubits 1110 to change the state of each qubit 1110.
  • step S1233 in all the basic configurations 1160, a CNOT gate operation using the qubit 1110 as a control bit is performed on the qubit 1110 and the qubit 1120 in the first row, and the state of the qubit 1120 is changed.
  • step S1234 CZ gate operation is performed on all sets of two adjacent qubits 1120 to change the state of each qubit 1120.
  • step S1235 measurement and initialization operations are performed on an appropriate basis for all qubits 1120.
  • step S1236 the operation is repeated in all rows while changing the qubit 1110 for steps S1233, S1234, and S1235 one by one from the second row and the third row.
  • step S1237 steps S1231 to S1236 are repeated an appropriate number of times.
  • a three-dimensional cluster state is generated by the above operations.
  • a three-dimensional cluster state can be realized with high accuracy by a two-dimensional control wiring.
  • a circuit in which a required number of qubits 1110 are arranged, or a necessary number of basic configurations 1160 may be arranged.
  • the quantum computation system 1300 includes a quantum computation circuit 1301 and a control device 1302.
  • the quantum computation circuits 1301 are arranged in a row and arranged in a row with a qubit group 1311 composed of qubits 1310 coupled to adjacent ones, and are not coupled to each other.
  • a plurality of basic configurations 1371 including a qubit group 1321 including qubits 1320 coupled to qubits 1310 arranged in the same row are provided.
  • the quantum computation circuit 1301 includes a plurality of basic configurations 1372 having a structure that is inverted so as to be bilaterally symmetric about the arrangement direction of the qubits 1310 and qubits 1320 of the basic configuration 1371.
  • the basic configuration 1371 and the basic configuration 1372 are arranged alternately, and the basic configuration 1371 and the basic configuration 1372 are arranged in a line.
  • qubits 1310 in the same row are coupled in each row, and a wiring 1330 for coupling the qubits 1310 is configured using a quasi-two-dimensional wiring by a three-dimensional intersection. ing.
  • the qubit 1310 is an example of the first qubit
  • the qubit 1320 is an example of the second qubit
  • the qubit group 1311 is an example of the first qubit group
  • the qubit group 1321 is the second qubit. It is an example of a qubit group.
  • the basic configuration 1371 is an example of the first basic configuration
  • the basic configuration 1372 is an example of the second basic configuration.
  • the quantum calculation circuit 1301 performs control through the control wirings 1351 and 1352 and the measurement wiring 1353 in order to execute a qubit operation (1 qubit gate, 2 qubit gate, qubit measurement, qubit initialization).
  • a device 1302 is connected.
  • each of the qubits 1310 and 1320 is, for example, a superconducting qubit.
  • the wiring 1330 for coupling the qubits 1310 has a three-dimensional intersection. Can be constructed in a quasi-two-dimensional manner.
  • a three-dimensional cluster state can be generated by manipulating the quantum bits through the control wirings 1351 and 1352 and the measurement wiring 1353 with respect to the quantum calculation circuit 1301 shown in FIG.
  • control is performed in accordance with steps S1431 to S1437 shown in FIG. 14 (noted with some operations omitted by wavy lines).
  • the basic configuration 1371 in FIG. 13 is the basic configuration 1471 in FIG. 14, and the basic configuration 1372 in FIG. Corresponds to the basic configuration 1472 in FIG.
  • step S143 Hadamard gate operation is performed on all qubits 1410 to change the state of each qubit 1410.
  • step S1432 CZ gate operation is performed on all pairs of adjacent qubits 1410 in all basic configurations to change the state of each qubit 1410.
  • step S1433 CZ gate operation is performed on all pairs of qubits 1410 coupled across the basic configurations, and the state of each qubit 1410 is changed.
  • step S1434 a CNOT gate operation using the qubit 1410 as a control bit is performed on all pairs of the coupled qubit 1410 and qubit 1420 to change the state of each qubit 1420.
  • step S1435 Hadamard gate operation is performed on all the qubits 1410 to change the state of each qubit 1410.
  • step S1436 measurement and initialization operations are performed on an appropriate basis for all qubits 1420.
  • step S1437 steps S1432 to S1436 are repeated an appropriate number of times.
  • a three-dimensional cluster state is generated by the above operations.
  • a three-dimensional cluster state can be realized with high accuracy by using a pseudo-two-dimensional wiring.
  • a required number of sets of the qubits 1310 and qubits 1320 may be arranged, or a basic number 1371 and a basic number 1372 may be arranged as necessary.
  • the quantum computing system is configured by a superconducting quantum circuit has been described as an example. You may make it comprise a quantum computing system with a photon, a semiconductor, etc.
  • the quantum computation system 1500 includes a quantum computation circuit 1501 and a control device 1502.
  • the quantum computation circuit 1501 includes a plurality of basic configurations 1571 configured to include a qubit group 1511 composed of qubits 1510 arranged in a line and coupled to adjacent ones. Are arranged in a line.
  • the quantum computation circuit 1501 includes a plurality of basic configurations 1581 configured to include a qubit group 1521 including qubits 1520 arranged in a line and coupled to adjacent ones.
  • a plurality of basic configurations 1581 are arranged in a line different from the basic configuration 1571 in one row.
  • a wiring 1530 for connecting the qubit 1510 and the qubit 1520 corresponding to each other in the pair is formed two-dimensionally.
  • the wiring 1530 is formed so as to cross three-dimensionally at the intersection.
  • the qubit 1510 is an example of the first qubit
  • the qubit 1520 is an example of the second qubit
  • the qubit group 1511 is an example of the first qubit group
  • the qubit group 1521 is the second qubit. It is an example of a qubit group.
  • the basic configuration 1571 is an example of the first basic configuration
  • the basic configuration 1581 is an example of the second basic configuration.
  • the quantum computation circuit 1501 performs control operations 1551 and 1561 and a measurement wiring 1552, a qubit operation (1 qubit gate, 2 qubit gate, qubit measurement, qubit initialization), A controller 1502 is connected through 1562.
  • each of the qubits 1510 and 1520 is, for example, a superconducting qubit.
  • Control wires 1551 and 1561 and measurement wires 1552 and 1562 are formed two-dimensionally, and a wire 1530 for coupling the qubit 1510 and the qubit 1520 is formed two-dimensionally. There is a three-dimensional intersection. Therefore, the quantum calculation circuit 1501 can be configured in a pseudo two-dimensional manner. Note that the control wirings 1551 and 1561 and the measurement wirings 1552 and 1562 may be formed in a pseudo two-dimensional manner. In this case, if there are intersecting portions in the control wirings 1551 and 1561 and the measurement wirings 1552 and 1562, they may be formed so as to intersect three-dimensionally.
  • the surface code is realized by manipulating the quantum bit through the control wirings 1551 and 1561 and the measurement wirings 1552 and 1562 with respect to the quantum calculation circuit 1501 shown in FIG.
  • the surface code can be realized with high accuracy by the wiring on the pseudo two-dimensional.
  • the present invention is not limited to the above-described embodiment, and various modifications and applications can be made without departing from the gist of the present invention.
  • the quantum computing system is configured by a superconducting quantum circuit
  • the present invention is not limited to this, and the quantum computing system is configured by photons, semiconductors, or the like. Also good.
  • FIG. 15 illustrates the basic configuration 1571 and the basic configuration 1581 alternately arranged as an embodiment, but the present invention is not limited to this.
  • a quantum computation system in which the arrangement of the basic configuration 1571 and the basic configuration 1581 is changed by appropriately deforming the wiring 1530 may be configured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

量子計算システムは、1列に並ぶように配置され、互いに結合していない第1量子ビットからなる第1量子ビット群と、1列に並ぶように配置され、隣り合うものと結合しており、かつ同じ行に配置された前記第1量子ビットと結合している第2量子ビットからなる第2量子ビット群と、全ての前記第2量子ビットと結合している第3量子ビットとを含んで構成される基本構成を複数備え、前記複数の基本構成が1列に並ぶように配置され、隣り合う前記基本構成の前記第3量子ビットを結合させた量子計算回路を備えて構成されている。これにより、量子計算回路の構成において、2次元クラスター状態、又は3次元クラスター状態を2次元上の制御配線で実現する、あるいは、表面符号を擬2次元の超伝導回路で実現する。

Description

量子計算システム及び量子計算システムの使用方法
 本発明は量子計算システム及び量子計算システムの使用方法に関する。
 現実の量子系にはノイズがあるため、量子計算を行うには量子誤り訂正が必要である。量子誤り訂正を行う1つの方法として表面符号(surface code, toric code)を利用する方法が知られている(A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics 303, 2 (2003).)。特に最も研究の進んでいる超伝導量子回路においては、既に表面符号の部分的な実装が行われている(J. M. Chow et al., “Implementing a strand of a scalable fault-tolerant quantum computing fabric,” Nature Communications 5, 4015 (2014).、J. Kelly et al., “State preservation by repetitive error detection in a superconducting quantum circuit,” Nature 519, 66 (2015).、A. D. Corcoles et al., “Demonstration of a quantum error detection code using a square lattice of four superconducting qubits,” Nature Communications 6, 6979 (2015).)。
 表面符号以外の量子誤り訂正方法としては、3次元クラスター状態と呼ばれる特殊な状態を利用して量子計算を行うトポロジカル一方向量子計算(topological one-way quantum computation)がある(R. Raussendorf, J. Harrington, “Fault-Tolerant Quantum Computation with High Threshold in Two Dimensions,” Physical Review Letters 98, 190504 (2007).
)。このクラスター状態は2体相互作用を持つ物理系の基底状態として発生しないため、その生成方法が課題である(M. A. Nielsen, “Cluster-state quantum computation,” Reports on Mathematical Physics 57, 147 (2006).)。クラスター状態を生成する手法としては、1次元クラスター状態と2次元クラスター状態について、量子ドットを利用した系におけるクラスター状態マシンガン(cluster state machine gun)と呼ばれる手法が提案されている(N. H. Lindner, T. Rudolph, “Proposal for Pulsed On-Demand Sources of Photonic Cluster State Strings,” Physical Review Letters 103, 113602 (2009).、S. E. Economou, N. Lindner, T. Rudolph, “Optically Generated 2-Dimensional Photonic Cluster State from Coupled Quantum Dots,” Physical Review Letters 105, 093601 (2010).)。
 しかしながら、現在提案されている表面符号を用いた超伝導回路を大規模化する際には、2次元的に量子ビットが配列された基板と、その基板に対し垂直に配置された制御配線からなる3次元の超伝導回路構造を必要とする(R. Barends et al., “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature 508, 500 (2014).)。
 またトポロジカル一方向量子計算を用いた超伝導回路については、具体的かつ簡潔に構成可能な提案は未だ存在しない。このため現在の手法では、誤り訂正機能を持つ大規模な超伝導回路を作製するのは困難である。
 また、現在提案されている表面符号を用いた超伝導回路を大規模化する際には、2次元的に量子ビットが配列された基板と、その基板に対し垂直に配置された制御配線からなる3次元の超伝導回路構造を必要とする(R. Barends et al., “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature 508, 500 (2014).、J. H. Bejanin et al., “Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket,” Physical Review Applied 6, 044010 (2016).)。
 本発明は上記問題点を解消するためになされたもので、クラスター状態を2次元の超伝導回路で実現することができる量子計算システム及び量子計算システムの使用方法を提供することを目的とする。
 また、表面符号を擬2次元の超伝導回路で実現することができる量子計算システムを提供することを目的とする。
 第1の態様に係る量子計算システムは、1列に並ぶように配置され、隣り合うものと結合している第1量子ビットからなる第1量子ビット群と、1列に並ぶように配置され、互いに結合しておらず、かつ同じ行に配置された前記第1量子ビットと結合している第2量子ビットからなる第2量子ビット群とを含んで構成される第1基本構成を複数備えると共に、前記第1基本構成の前記第1量子ビット及び前記第2量子ビットの配列方向を軸として対称となるように前記第1量子ビット群及び前記第2量子ビット群を反転させた構造を持つ第2基本構成を複数備え、前記第1基本構成と前記第2基本構成とが互い違いとなるように配置され、かつ、前記第1基本構成及び前記第2基本構成が、それぞれ1列に並ぶように配置され、互い違いの配置において隣り合う全ての第1基本構成及び第2基本構成間において同じ行の前記第1量子ビット間を各行で結合させ、前記第1量子ビット間を結合させるための配線が、他の配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成され、前記第1量子ビットの各々、前記第2量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成されている。
 第2の態様に係る量子計算システムの使用方法は、上記第1の態様に係る量子計算システムの使用方法であって、後述する手順に従って量子ビットの操作を行うことで3次元クラスター状態を生成する。
 第3の態様に係る量子計算システムは、1列に並ぶように配置され、互いに結合していない第1量子ビットからなる第1量子ビット群と、1列に並ぶように配置され、隣り合うものと結合しており、かつ同じ行に配置された前記第1量子ビットと結合している第2量子ビットからなる第2量子ビット群と、1列に並ぶように配置され、互いに結合しておらず、かつ同じ行に配置された前記第2量子ビットと結合している第3量子ビットからなる第3量子ビット群と、を備え、前記第1量子ビットの各々、前記第2量子ビットの各々、及び前記第3量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成されている。
 第4の態様に係る量子計算システムの使用方法は、上記第3の態様に係る量子計算システムの使用方法であって、後述する手順に従って量子ビットの操作を行うことで2次元クラスター状態を生成する。
 第5の態様に係る量子計算システムは、1列に並ぶように配置され、互いに結合していない第1量子ビットからなる第1量子ビット群と、1列に並ぶように配置され、隣り合うものと結合しており、かつ同じ行に配置された前記第1量子ビットと結合している第2量子ビットからなる第2量子ビット群と、全ての前記第2量子ビットと結合している第3量子ビットと、を備え、前記第1量子ビットの各々、前記第2量子ビットの各々、及び前記第3量子ビットと制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成されている。
 第6の態様に係る量子計算システムの使用方法は、上記第5の態様に係る量子計算システムの使用方法であって、後述する手順に従って量子ビットの操作を行うことで2次元クラスター状態を生成する。
 第7の態様に係る量子計算システムは、1列に並ぶように配置され、隣り合うものと結合している第1量子ビットからなる第1量子ビット群と、1列に並ぶように配置され、互いに結合しておらず、かつ同じ行に配置された前記第1量子ビットと結合している第2量子ビットからなる第2量子ビット群と、を備え、前記第1量子ビットの各々、及び前記第2量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線を用いて構成されている。
 第8の態様に係る量子計算システムの使用方法は、上記第7の態様に係る量子計算システムの使用方法であって、後述する手順に従って量子ビットの操作を行うことで2次元クラスター状態を生成する。
 第9の態様に係る量子計算システムは、1列に並ぶように配置され、隣り合うものと結合している第1量子ビットからなる第1量子ビット群と、全ての前記第1量子ビットと結合している第2量子ビットと、を備え、前記第1量子ビットの各々、及び前記第2量子ビットと制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成されている。
 第10の態様に係る量子計算システムの使用方法は、上記第9の態様に係る量子計算システムの使用方法であって、後述する手順に従って量子ビットの操作を行うことで2次元クラスター状態を生成する。
 第11の態様に係る量子計算システムは、1列に並ぶように配置され、互いに結合していない第1量子ビットからなる第1量子ビット群と、1列に並ぶように配置され、隣り合うものと結合しており、かつ同じ行に配置された前記第1量子ビットと結合している第2量子ビットからなる第2量子ビット群と、全ての前記第2量子ビットと結合している第3量子ビットとを含んで構成される基本構成を複数備え、前記複数の基本構成が1列に並ぶように配置され、隣り合う前記基本構成の前記第3量子ビットを結合させ、前記第1量子ビットの各々、請求項16記載の第2量子ビットの各々、及び前記第3量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成されている。
 第12の態様に係る量子計算システムの使用方法は、上記第11の態様に係る量子計算システムの使用方法であって、後述する手順に従って量子ビットの操作を行うことで3次元クラスター状態を生成する。
 第13の態様に係る量子計算システムは、1列に並ぶように配置され、隣り合うものと結合している第1量子ビットからなる第1量子ビット群と、全ての前記第1量子ビットと結合している第2量子ビットとを含んで構成される基本構成を複数備え、前記複数の基本構成が1列に並ぶように配置され、隣り合う前記基本構成の前記第2量子ビットを結合させ、前記第1量子ビットの各々、及び前記第2量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成されている。
 第14の態様に係る量子計算システムの使用方法は、上記第13の態様に係る量子計算システムの使用方法であって、後述する手順に従って量子ビットの操作を行うことで3次元クラスター状態を生成する。
 第15の態様に係る量子計算システムは、1列に並ぶように配置され、隣り合うものと結合している第1量子ビットからなる第1量子ビット群を含んで構成される第1基本構成を複数備えると共に、1列に並ぶように配置され、隣り合うものと結合している第2量子ビットからなる第2量子ビット群を含んで構成される第2基本構成を複数備え、前記複数の第1基本構成が1列に並ぶように配置され、前記複数の第2基本構成が、前記複数の第1基本構成とは異なる列で1列に並ぶように配置され、結合する前記第1基本構成及び前記第2基本構成のペアの各々に対し、前記ペア内で対応する前記第1量子ビットと前記第2量子ビットとを結合させるための配線が、他の配線と交差しないように2次元上に形成された2次元配線、又は他の配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成され、前記第1量子ビットの各々及び前記第2量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成されている。
 本発明の一態様の量子計算システム及び量子計算システムの使用方法によれば、2次元クラスター状態、又は3次元クラスター状態を2次元又は擬2次元の超伝導回路で実現することができる、という効果が得られる。
 また、本発明の一態様の量子計算システムによれば、表面符号を擬2次元の超伝導回路で実現することができる、という効果が得られる。
本発明の第1の実施の形態に係る量子計算システムの構成を示す模式図である。 本発明の第1の実施の形態に係る量子計算システムの制御方法を示す図である。 本発明の第2の実施の形態に係る量子計算システムの構成を示す模式図である。 本発明の第2の実施の形態に係る量子計算システムの制御方法を示す図である。 本発明の第3の実施の形態に係る量子計算システムの構成を示す模式図である。 本発明の第3の実施の形態に係る量子計算システムの制御方法を示す図である 本発明の第4の実施の形態に係る量子計算システムの構成を示す模式図である。 本発明の第4の実施の形態に係る量子計算システムの制御方法を示す図である 本発明の第5の実施の形態に係る量子計算システムの構成を示す模式図である。 本発明の第5の実施の形態に係る量子計算システムの制御方法を示す図である。 本発明の第6の実施の形態に係る量子計算システムの構成を示す模式図である。 本発明の第6の実施の形態に係る量子計算システムの制御方法を示す図である。 本発明の第7の実施の形態に係る量子計算システムの構成を示す模式図である。 本発明の第7の実施の形態に係る量子計算システムの制御方法を示す図である。 本発明の第8の実施の形態に係る量子計算システムの構成を示す模式図である。
 以下、図面を参照して本発明の実施の形態を詳細に説明する。
<本発明の実施の形態の概要>
 本発明の実施の形態では、2次元の超伝導回路により量子計算システムを実現するためトポロジカル一方向量子計算、及びクラスター状態マシンガンを利用する。
 クラスター状態マシンガンの手法では量子ドット系における特殊な効果を利用しているため、超伝導等の他の量子系でこれを直接利用することはできない。しかしこの系を模倣することで同様の効果を得ることが可能である。
 クラスター状態マシンガンの回路表現は、量子ドットに対応する量子ビットQDに対するY軸回転操作、新たな量子ビットの用意、量子ビットQDと新たに用意した量子ビットに対する前者を制御ビットとしたCNOTゲート操作、の繰り返しで構成される。この操作を行うことで1次元クラスター状態を生成することが可能である(前述の「S. E. Economou, N. Lindner, T. Rudolph, “Optically Generated 2-Dimensional Photonic Cluster State from Coupled Quantum Dots,” Physical Review Letters 105, 093601 (2010).」を参照)。
[第1の実施の形態]
<システム構成>
 以下、本発明の第1の実施の形態に係る量子計算システムについて説明する。
 図1に示すように、本発明の第1の実施の形態に係る量子計算システム100は、量子計算回路101と、制御装置102とを備えている。
 量子計算回路101は、1列に並ぶように配置され、互いに結合していない量子ビット110からなる量子ビット群111と、1列に並ぶように配置され、隣り合うものと結合しており、かつ同じ行に配置された量子ビット110と結合している量子ビット120からなる量子ビット群121とを備えて構成されている。また、量子計算回路101は、1列に並ぶように配置され、互いに結合しておらず、かつ同じ行に配置された量子ビット120と結合している量子ビット130からなる量子ビット群131を備えて構成されている。
なお、量子ビット110が第1量子ビットの一例であり、量子ビット120が第2量子ビットの一例であり、量子ビット130が第3量子ビットの一例であり、量子ビット群111が第1量子ビット群の一例である。また、量子ビット群121が第2量子ビット群の一例であり、量子ビット群131が第3量子ビット群の一例である。
 また、量子計算回路101は、量子ビットの操作(1量子ビットゲート、2量子ビットゲート、量子ビットの測定、量子ビットの初期化)を実行するために、制御配線151~153及び測定配線154を通して制御装置102と接続されている。
 本実施の形態では、量子ビット110、120、130の各々は、例えば、超伝導量子ビットである。
 また、制御配線151~153及び測定配線154が、他の配線と交差しないように2次元上に形成されているため、量子計算回路101は2次元的に構成することが可能である。なお、制御配線151~153及び測定配線154が擬2次元上に形成されていてもよい。この場合には、制御配線151~153及び測定配線154に交差部分があれば、立体交差するように形成すればよい。
<量子計算システムの作用>
 次に、本発明の第1の実施の形態に係る量子計算システム100の作用について説明する。
 図1に示す量子計算回路101に対して、制御配線151~153及び測定配線154を通して量子ビットを操作することにより、2次元クラスター状態を生成することが出来る。
 具体的には図2(後述する量子ビットの行数が3の場合を例示)に示すステップS241~S248に従って制御を行う。
 なお、図1における量子ビット110は図2における量子ビット210、図1における量子ビット120は図2における量子ビット220、図1における量子ビット130は図2における量子ビット230にそれぞれ対応する。
 ステップS241では、全ての量子ビット110の各々に対し、Y軸回転操作を行い、各量子ビット110の状態を変化させる。
 また、ステップS242では、結合している量子ビット110と量子ビット120の全ての組に対し量子ビット110を制御ビットとするCNOTゲート操作を行い、各量子ビット120の状態を変化させる。
 また、ステップS243では、隣り合う2つの量子ビット120の全ての組に対しCZゲート操作を行い、各量子ビット120の状態を変化させる。
 また、ステップS244では、結合している量子ビット120と量子ビット130の全ての組の各々に対しSWAPゲート操作を行い、量子ビット120と量子ビット130の状態を変化させる。
 また、ステップS245では、全ての量子ビット110の各々に対しY軸回転操作を行い、各量子ビット110の状態を変化させる。
 また、ステップS246では、結合している量子ビット110と量子ビット120の全ての組に対し量子ビット110を制御ビットとするCNOTゲート操作を行い、各量子ビット120の状態を変化させる。
 また、ステップS247では、量子ビット130に対し適当な基底における測定と初期化操作を行う。
 また、ステップS248では、上記ステップS243~S247を適当な回数だけ繰り返す。
 以上の操作により2次元クラスター状態が生成される。
 以上説明したように、本発明の第1の実施の形態に係る量子計算システムによれば、2次元クラスター状態を2次元上の制御配線により高い精度で実現することが出来る。
 なお、上記の実施の形態において、量子ビット110と量子ビット120と量子ビット130の組を必要な数だけ並べた回路としてもよい。
[第2の実施の形態]
<システム構成>
 以下、本発明の第2の実施の形態に係る量子計算システムについて説明する。
 図3に示すように、本発明の第2の実施の形態に係る量子計算システム300は、量子計算回路301と、制御装置302とを備えている。
 量子計算回路301は、1列に並ぶように配置され、互いに結合していない量子ビット310からなる量子ビット群311と、1列に並ぶように配置され、隣り合うものと結合しており、かつ同じ行に配置された量子ビット310と結合している量子ビット320からなる量子ビット群321とを備えて構成されている。また、量子計算回路301は、全ての量子ビット320と結合している量子ビット330を備えて構成されている。
 なお、量子ビット310が第1量子ビットの一例であり、量子ビット320が第2量子ビットの一例であり、量子ビット330が第3量子ビットの一例であり、量子ビット群311が第1量子ビット群の一例であり、量子ビット群321が第2量子ビット群の一例である。
 また、量子計算回路301は量子ビットの操作(1量子ビットゲート、2量子ビットゲート、量子ビットの測定、量子ビットの初期化)を実行するために、制御配線351~353及び測定配線354を通して制御装置302と接続されている。
 本実施の形態では、量子ビット310、320、330の各々は、例えば、超伝導量子ビットである。
 また、制御配線351~353及び測定配線354が、他の配線と交差しないように2次元上に形成されているため、量子計算回路301は2次元的に構成することが可能である。なお、制御配線351~353及び測定配線354が擬2次元上に形成されていてもよい。この場合には、制御配線351~353及び測定配線354に交差部分があれば、立体交差するように形成すればよい。
<量子計算システムの作用>
 次に、本発明の第2の実施の形態に係る量子計算システム300の作用について説明する。
 図3に示す量子計算回路301に対して、制御配線351~353及び測定配線354を通して量子ビットを操作することにより、2次元クラスター状態を生成することが出来る。
 具体的には図4(後述する量子ビットの行数が3の場合を例示)に示すステップS441~S449に従って制御を行う。
 なお、図3における量子ビット310は図4における量子ビット410、図3における量子ビット320は図4における量子ビット420、図3における量子ビット330は図4における量子ビット430にそれぞれ対応する。
 ステップS441では、全ての量子ビット310の各々に対し、Y軸回転操作を行い、各量子ビット310の状態を変化させる。
 また、ステップS442では、結合している量子ビット310と量子ビット320の全ての組に対し量子ビット310を制御ビットとするCNOTゲート操作を行い、各量子ビット320の状態を変化させる。
 また、ステップS443では、隣り合う2つの量子ビット320の全ての組に対しCZゲート操作を行い、各量子ビット120の状態を変化させる。
 また、ステップS444では、1行目の量子ビット320と量子ビット330に対しSWAPゲート操作を行い、量子ビット320と量子ビット330の状態を変化させる。
 また、ステップS445では、1行目の量子ビット310に対しY軸回転操作を行い、量子ビット310の状態を変化させる。
 また、ステップS446では、1行目の量子ビット310と量子ビット320に対し量子ビット310を制御ビットとするCNOTゲート操作を行い、量子ビット320の状態を変化させる。
 また、ステップS447では、量子ビット330に対し適当な基底における測定と初期化操作を行う。
 また、ステップS448では、上記ステップS444~S447を対象とする量子ビット310と量子ビット320の組を2行目、3行目と1つずつ行を変えながら、全ての行で操作を繰り返す。
 また、ステップS449では、上記ステップS443~S448を適当な回数だけ繰り返す。
 以上の操作により2次元クラスター状態が生成される。
 以上説明したように、本発明の第2の実施の形態に係る量子計算システムによれば、2次元クラスター状態を2次元上の制御配線により高い精度で実現することが出来る。
 なお、上記の実施の形態において、量子ビット310と量子ビット320の組を必要な数だけ並べた回路としてもよい。
[第3の実施の形態]
<システム構成>
 以下、本発明の第3の実施の形態に係る量子計算システム500について説明する。
 図5に示すように、本発明の第3の実施の形態に係る量子計算システム500は、量子計算回路501と、制御装置502とを備えている。
 量子計算回路501は、1列に並ぶように配置され、隣り合うものと結合している量子ビット510からなる量子ビット群511と、1列に並ぶように配置され、互いに結合しておらず、かつ同じ行に配置された量子ビット510と結合している量子ビット520からなる量子ビット群521とを備えて構成されている。
 なお、量子ビット510が第1量子ビットの一例であり、量子ビット520が第2量子ビットの一例であり、量子ビット群511が第1量子ビット群の一例であり、量子ビット群521が第2量子ビット群の一例である。
 また、量子計算回路501は量子ビットの操作(1量子ビットゲート、2量子ビットゲート、量子ビットの測定、量子ビットの初期化)を実行するために、制御配線551、552及び測定配線553を通して制御装置502と接続されている。
 本実施の形態では、量子ビット510、520の各々は、例えば、超伝導量子ビットである。
 また、制御配線551、552及び測定配線553が、他の配線と交差しないように2次元上に形成されているため、量子計算回路501は2次元的に構成することが可能である。なお、制御配線551、552及び測定配線553が擬2次元上に形成されていてもよい。この場合には、制御配線551、552及び測定配線553に交差部分があれば、立体交差するように形成すればよい。
<量子計算システムの作用>
 次に、本発明の第3の実施の形態に係る量子計算システムの作用について説明する。
 図5に示す量子計算回路501に対して、制御配線551、552及び測定配線553を通して量子ビットを操作することにより、2次元クラスター状態を生成することが出来る。
 具体的には図6(後述する量子ビットの行数が3の場合)に示すステップS631~S635に従って制御を行う。
 なお、図5における量子ビット510は図6における量子ビット610、図5における量子ビット520は図6における量子ビット620にそれぞれ対応する。
 ステップS631では、すべての量子ビット510の各々に対し、Y軸回転操作を行い、各量子ビット510の状態を変化させる。
 また、ステップS632では、隣り合う2つの量子ビット510の全ての組に対しCZゲート操作を行い、各量子ビット510の状態を変化させる。
 また、ステップS633では、結合している量子ビット610と量子ビット620の全ての組に対し量子ビット610を制御ビットとするCNOTゲート操作を行い、各量子ビット610の状態を変化させる。
 また、ステップS634では、量子ビット620に対し適当な基底における測定と初期化操作を行う。
 また、ステップS635では、上記ステップS631~S634を適当な回数だけ繰り返す。
 以上の操作により2次元クラスター状態が生成される。
 以上説明したように、本発明の第3の実施形態に係る量子計算システムによれば、2次元クラスター状態を2次元上の制御配線により高い精度で実現することができる。
 なお、上記の実施の形態において、量子ビット510と量子ビット520の組を必要な数だけ並べた回路としてもよい。
[第4の実施の形態]
<システム構成>
 以下、本発明の第4の実施の形態に係る量子計算システム700について説明する。
 図7に示すように、本発明の第4の実施の形態に係る量子計算システム700は、量子計算回路701と、制御装置702とを備えている。
 量子計算回路701は、1列に並ぶように配置され、隣り合うものと結合している量子ビット710からなる第1量子ビット群711と、全ての量子ビット710と結合している量子ビット720とを備えて構成されている。
 なお、量子ビット710が第1量子ビットの一例であり、量子ビット720が第2量子ビットの一例であり、量子ビット群711が第1量子ビット群の一例である。
 また、量子計算回路701は量子ビットの操作(1量子ビットゲート、2量子ビットゲート、量子ビットの測定、量子ビットの初期化)を実行するために、制御配線751、752及び測定配線753を通して制御装置702と接続されている。
 本実施の形態では、量子ビット710、720の各々は、例えば、超伝導量子ビットである。
 また、制御配線751、752及び測定配線753が、他の配線と交差しないように2次元上に形成されているため、量子計算回路701は2次元的に構成することが可能である。なお、制御配線751、752及び測定配線753が擬2次元上に形成されていてもよい。この場合には、制御配線751、752及び測定配線753に交差部分があれば、立体交差するように形成すればよい。
<量子計算システムの作用>
 次に、本発明の第4の実施の形態に係る量子計算システムの作用について説明する。
 図7に示す量子計算回路701に対して、制御配線751、752及び測定配線753を通して量子ビットを操作することにより、2次元クラスター状態を生成することが出来る。
 具体的には図8(後述する量子ビットの行数が3の場合)に示すステップS831~S836に従って制御を行う。
 なお、図7における量子ビット710は図8における量子ビット810、図7における量子ビット720は図8における量子ビット820にそれぞれ対応する。
 ステップS831では、すべての量子ビット710の各々に対し、Y軸回転操作を行い、各量子ビット710の状態を変化させる。
 
 また、ステップS832では、隣り合う2つの量子ビット710の全ての組に対しCZゲート操作を行い、各量子ビット710の状態を変化させる。
 また、ステップS833では、1行目の量子ビット710と量子ビット720に対し量子ビット710を制御ビットとするCNOTゲート操作を行い、各量子ビット720の状態を変化させる。
 また、ステップS834では、量子ビット720に対し適当な基底における測定と初期化操作を行う。
 また、ステップS835では、上記ステップS833とS834を対象とする量子ビット710と量子ビット720の組を2行目、3行目と1つずつ行を変えながら、全ての行で操作を繰り返す。
 また、ステップS836では、上記ステップS831~S835を適当な回数だけ繰り返す。
 以上の操作により2次元クラスター状態が生成される。
 以上説明したように、本発明の第4の実施形態に係る量子計算システムによれば、2次元クラスター状態を2次元上の制御配線により高い精度で実現することができる。
 なお、上記の実施の形態において、量子ビット710を必要な数だけ並べた回路としてもよい。
[第5の実施の形態]
<システム構成>
 以下、本発明の第5の実施の形態に係る量子計算システムについて説明する。
 図9に示すように、本発明の第5の実施の形態に係る量子計算システム900は、量子計算回路901と、制御装置902とを備えている。
 量子計算回路901は、1列に並ぶように配置され、互いに結合していない量子ビット910からなる量子ビット群911と、1列に並ぶように配置され、隣り合うものと結合しており、かつ同じ行に配置された量子ビット910と結合している量子ビット920からなる量子ビット群921と、全ての量子ビット920と結合している量子ビット930とを含んで構成される基本構成960を複数備えている。複数の基本構成960が1列に並ぶように配置され、隣り合う基本構成960の量子ビット930を結合させて構成されている。
 なお、量子ビット910が第1量子ビットの一例であり、量子ビット920が第2量子ビットの一例であり、量子ビット930が第3量子ビットの一例であり、量子ビット群911が第1量子ビット群の一例であり、量子ビット群921が第2量子ビット群の一例である。基本構成960が基本構成の一例である。
 また、量子計算回路901は、量子ビットの操作(1量子ビットゲート、2量子ビットゲート、量子ビットの測定、量子ビットの初期化)を実行するために、制御配線951~953及び測定配線954を通して制御装置902と接続されている。
 本実施の形態では、量子ビット910、920、930の各々は、例えば、超伝導量子ビットである。
 また、制御配線951~953及び測定配線954が、他の配線と交差しないように2次元上に形成されているため、量子計算回路901は2次元的に構成することが可能である。なお、制御配線951~953及び測定配線954が擬2次元上に形成されていてもよい。この場合には、制御配線951~953及び測定配線954に交差部分があれば、立体交差するように形成すればよい。
<量子計算システムの作用>
 次に、本発明の第5の実施の形態に係る量子計算システムの作用について説明する。
 図9に示す量子計算回路901に対して、制御配線951~953及び測定配線954を通して量子ビットを操作することにより、3次元クラスター状態を生成することが出来る。
 具体的には図10(後述する量子ビットの行数が2の基本構成960が2つの場合を例示)に示すステップS1041~S1050に従って制御を行う。
 なお、図9における量子ビット910は図10における量子ビット1010、図9における量子ビット920は図10における量子ビット1020、図9における量子ビット930は図10における量子ビット1030にそれぞれ対応する。
 ステップS1041では、全ての量子ビット910の各々に対し、Y軸回転操作を行い、各量子ビット910の状態を変化させる。
 また、ステップS1042では、結合している量子ビット910と量子ビット920の全ての組に対し量子ビット910を制御ビットとするCNOTゲート操作を行い、各量子ビット920の状態を変化させる。
 また、ステップS1043では、隣り合う2つの量子ビット920の全ての組に対しCZゲート操作を行い、各量子ビット920の状態を変化させる。
 また、ステップS1044では、全ての基本構成960において1行目の量子ビット920と量子ビット930に対しSWAPゲート操作を行い、量子ビット920と量子ビット930の状態を変化させる。
 また、ステップS1045では、全ての基本構成960において1行目の量子ビット910に対しY軸回転操作を行い、量子ビット910の状態を変化させる。
 また、ステップS1046では、全ての基本構成960において1行目の量子ビット910と量子ビット920に対し量子ビット910を制御ビットとするCNOTゲート操作を行い、量子ビット920の状態を変化させる。
 また、ステップS1047では、隣り合う2つの量子ビット930の全ての組に対しCZゲート操作を行い、各量子ビット930の状態を変化させる。
 また、ステップS1048では、量子ビット930に対し適当な基底における測定と初期化操作を行う。
 また、ステップS1049では、上記ステップS1044~S1048を対象とする量子ビット910と量子ビット920の組を2行目、3行目と1つずつ行を変えながら、全ての行で操作を繰り返す。
 また、ステップS1050では、上記ステップS1043~S1049を適当な回数だけ繰り返す。
 以上の操作により3次元クラスター状態が生成される。
 以上説明したように、本発明の第5の実施の形態に係る量子計算システムによれば、3次元クラスター状態を2次元上の制御配線により高い精度で実現することが出来る。
 なお、上記の実施の形態において、量子ビット910と量子ビット920の組を必要な数だけ並べる、又は基本構成960を必要な数だけ並べた回路としてもよい。
[第6の実施の形態]
<システム構成>
 以下、本発明の第6の実施の形態に係る量子計算システム1100について説明する。
 図11に示すように、本発明の第6の実施の形態に係る量子計算システム1100は、量子計算回路1101と、制御装置1102とを備えている。
 量子計算回路1101は、1列に並ぶように配置され、隣り合うものと結合している量子ビット1110からなる量子ビット群1111と、全ての量子ビット1110と結合している量子ビット1120とを含んで構成される基本構成1160を複数備えている。複数の基本構成1160が1列に並ぶように配置され、隣り合う基本構成1160の量子ビット1120を結合させて構成されている。
 なお、量子ビット1110が第1量子ビットの一例であり、量子ビット1120が第2量子ビットの一例であり、量子ビット群1111が第1量子ビット群の一例であり、基本構成1160が基本構成の一例である。
 また、量子計算回路1101は量子ビットの操作(1量子ビットゲート、2量子ビットゲート、量子ビットの測定、量子ビットの初期化)を実行するために、制御配線1151~1152及び測定配線1153を通して制御装置1102と接続されている。
 本実施の形態では、量子ビット1110、1120の各々は、例えば、超伝導量子ビットである。
 また、制御配線1151~1152及び測定配線1153が、他の配線と交差しないように2次元上に形成されているため、量子計算回路1101は2次元的に構成することが可能である。なお、制御配線1151~1152及び測定配線1153が擬2次元上に形成されていてもよい。この場合には、制御配線1151~1152及び測定配線1153に交差部分があれば、立体交差するように形成すればよい。
<量子計算システムの作用>
 次に、本発明の第6の実施の形態に係る量子計算システムの作用について説明する。
 図11に示す量子計算回路1101に対して、制御配線1151、1152及び測定配線1153を通して量子ビットを操作することにより、3次元クラスター状態を生成することが出来る。
 具体的には図12(後述する量子ビットの行数が2の基本構成1160が2つの場合を例示)に示すステップS1231~S1237に従って制御を行う。
 なお、図11における量子ビット1110は図12における量子ビット1210、図11における量子ビット1120は図12における量子ビット1220にそれぞれ対応する。
 ステップS1231では、全ての量子ビット1110の各々に対し、Y軸回転操作を行い、各量子ビット1110の状態を変化させる。
 また、ステップS1232では、隣り合う2つの量子ビット1110の全ての組に対しCZゲート操作を行い、各量子ビット1110の状態を変化させる。
 また、ステップS1233では、全ての基本構成1160において1行目の量子ビット1110と量子ビット1120に対し量子ビット1110を制御ビットとするCNOTゲート操作を行い、量子ビット1120の状態を変化させる。
 また、ステップS1234では、隣り合う2つの量子ビット1120の全ての組に対しCZゲート操作を行い、各量子ビット1120の状態を変化させる。
 また、ステップS1235では、全ての量子ビット1120に対し適当な基底における測定と初期化操作を行う。
 また、ステップS1236では、上記ステップS1233、S1234、S1235を対象とする量子ビット1110を2行目、3行目と1つずつ行を変えながら、全ての行で操作を繰り返す。
 また、ステップS1237では、上記ステップS1231~S1236を適当な回数だけ繰り返す。
 以上の操作により3次元クラスター状態が生成される。
 以上説明したように、本発明の第6の実施の形態に係る量子計算システムによれば、3次元クラスター状態を2次元上の制御配線により高い精度で実現することが出来る。
 なお、上記の実施の形態において、量子ビット1110を必要な数だけ並べる、又は基本構成1160を必要な数だけ並べた回路としてもよい。
[第7の実施の形態]
<システム構成>
 以下、本発明の第7の実施の形態に係る量子計算システムについて説明する。
 図13に示すように、本発明の第7の実施の形態に係る量子計算システム1300は、量子計算回路1301と、制御装置1302とを備えている。
 量子計算回路1301は、1列に並ぶように配置され、隣り合うものと結合している量子ビット1310からなる量子ビット群1311と、1列に並ぶように配置され、互いに結合しておらず、かつ同じ行に配置された量子ビット1310と結合している量子ビット1320からなる量子ビット群1321とを含んで構成される基本構成1371を複数備える。量子計算回路1301は、基本構成1371の量子ビット1310及び量子ビット1320の配列方向を軸として左右対称となるように反転させた構造を持つ基本構成1372を複数備える。基本構成1371と基本構成1372とが互い違いとなるように配置され、かつ、基本構成1371と基本構成1372のそれぞれが1列に並ぶよう配置される。隣り合う全ての基本構成1371及び基本構成1372間において同じ行の量子ビット1310間を各行で結合させ、量子ビット1310間を結合させるための配線1330が立体交差による擬2次元配線を用いて構成されている。
 なお、量子ビット1310が第1量子ビットの一例であり、量子ビット1320が第2量子ビットの一例であり、量子ビット群1311が第1量子ビット群の一例であり、量子ビット群1321が第2量子ビット群の一例である。基本構成1371が第1基本構成の一例であり、基本構成1372が第2基本構成の一例である。
 また、量子計算回路1301は量子ビットの操作(1量子ビットゲート、2量子ビットゲート、量子ビットの測定、量子ビットの初期化)を実行するために、制御配線1351、1352及び測定配線1353を通して制御装置1302と接続されている。
 本実施の形態では、量子ビット1310、1320の各々は、例えば、超伝導量子ビットである。
 制御配線1351、1352及び測定配線1353が、他の配線と交差しないように2次元上に形成されており、量子ビット1310間を結合させるための配線1330に立体交差があるため、量子計算回路1301を、擬2次元的に構成することが可能である。
<量子計算システムの作用>
 次に、本発明の第7の実施の形態に係る量子計算システム1300の作用について説明する。
 図13に示す量子計算回路1301に対して、制御配線1351、1352及び測定配線1353を通して量子ビットを操作することにより、3次元クラスター状態を生成することが出来る。
 具体的には図14(波線により一部の操作を省略して表記している)に示すステップS1431~S1437に従って制御を行う。
 なお、図13における量子ビット1310は図14における量子ビット1410、図13における量子ビット1320は図14における量子ビット1420、図13における基本構成1371は図14における基本構成1471、図13における基本構成1372は図14における基本構成1472にそれぞれ対応する。
 ステップS1431では、全ての量子ビット1410に対しHadamardゲート操作を行い、各量子ビット1410の状態を変化させる。
 また、ステップS1432では、全ての基本構成内において隣り合う量子ビット1410の全ての組に対しCZゲート操作を行い、各量子ビット1410の状態を変化させる。
 また、ステップS1433では、基本構成間を跨いで結合している量子ビット1410の全ての組に対しCZゲート操作を行い、各量子ビット1410の状態を変化させる。
 また、ステップS1434では、結合している量子ビット1410と量子ビット1420の全ての組に対し量子ビット1410を制御ビットとするCNOTゲート操作を行い、各量子ビット1420の状態を変化させる。
 また、ステップS1435では、全ての量子ビット1410に対しHadamardゲート操作を行い、各量子ビット1410の状態を変化させる。
 ステップS1436では、全ての量子ビット1420に対し適当な基底における測定と初期化操作を行う。
 また、ステップS1437では、上記ステップS1432~S1436を適当な回数だけ繰り返す。
 以上の操作により3次元クラスター状態が生成される。
 以上説明したように、本発明の第7の実施の形態に係る量子計算システムによれば、3次元クラスター状態を擬2次元上の配線により高い精度で実現することが出来る。
 なお、上記の実施の形態において、量子ビット1310と量子ビット1320の組を必要な数だけ並べる、又は基本構成1371と基本構成1372を必要な数だけ並べた回路としてもよい。
 なお、本発明は、上述した実施の形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
 例えば、上記の第1の実施の形態、第2の実施の形態、第3の実施の形態、第4の実施の形態、第5の実施の形態、第6の実施の形態、及び第7の実施の形態では量子計算システムを超伝導量子回路により構成する場合を例に説明したが、これに限定されるものではない。光子や半導体等により量子計算システムを構成するようにしてもよい。
[第8の実施の形態]
<システム構成>
 以下、本発明の第8の実施の形態に係る量子計算システムについて説明する。
 図15に示すように、本発明の第8の実施の形態に係る量子計算システム1500は、量子計算回路1501と、制御装置1502とを備えている。
 量子計算回路1501は、1列に並ぶように配置され、隣り合うものと結合している量子ビット1510からなる量子ビット群1511を含んで構成される基本構成1571を複数備え、複数の基本構成1571が1列に並ぶように配置されている。
 また、量子計算回路1501は、1列に並ぶように配置され、隣り合うものと結合している量子ビット1520からなる量子ビット群1521を含んで構成される基本構成1581を複数備えている。複数の基本構成1581が、基本構成1571とは異なる列で1列に並ぶように配置されている。
 また、結合する基本構成1571及び基本構成1581のペアの各々に対し、当該ペア内で対応する量子ビット1510と量子ビット1520とを結合させるための配線1530が2次元上に形成され、配線1530の交差部分において配線1530が立体交差するように形成されている。
 なお、量子ビット1510が第1量子ビットの一例であり、量子ビット1520が第2量子ビットの一例であり、量子ビット群1511が第1量子ビット群の一例であり、量子ビット群1521が第2量子ビット群の一例である。また、基本構成1571が第1基本構成の一例であり、基本構成1581が第2基本構成の一例である。
 また、量子計算回路1501は、量子ビットの操作(1量子ビットゲート、2量子ビットゲート、量子ビットの測定、量子ビットの初期化)を実行するために、制御配線1551、1561及び測定配線1552、1562を通して制御装置1502と接続されている。
 本実施の形態では、量子ビット1510、1520の各々は、例えば、超伝導量子ビットである。
 制御配線1551、1561及び測定配線1552、1562が2次元上に形成されていると共に、量子ビット1510と量子ビット1520とを結合させるための配線1530が2次元上に形成され、配線1530の交差部分に立体交差がある。このため、量子計算回路1501を、擬2次元的に構成することが可能である。なお、制御配線1551、1561及び測定配線1552、1562が擬2次元上に形成されていてもよい。この場合には、制御配線1551、1561及び測定配線1552、1562に交差部分があれば、立体交差するように形成すればよい。
<量子計算システムの作用>
 次に、本発明の第8の実施の形態に係る量子計算システム1500の作用について説明する。
 図15に示す量子計算回路1501に対して、制御配線1551、1561及び測定配線1552、1562を通して量子ビットを操作することにより、表面符号を実現する。
 表面符号及び表面符号上における量子計算のための具体的な制御方法に関しては、例えば、「A. G. Fowler et al., “Surface codes: Towards practical large-scale quantum computation,” Physical Review A 86, 032324 (2012).」に記載されている方法と同様であるため、説明を省略する。
 なお、本実施の形態において、基本構成1571及び基本構成1581内の量子ビット1510及び量子ビット1520や、基本構成1571及び基本構成1581を必要な数だけ並べた回路としてもよい。
 以上説明したように、本発明の第8の実施の形態に係る量子計算システムによれば、表面符号を擬2次元上の配線により高い精度で実現することが出来る。
 なお、本発明は、上述した実施の形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
 例えば、上記の実施の形態では量子計算システムを超伝導量子回路により構成する場合を例に説明したが、これに限定されるものではなく、光子や半導体等により量子計算システムを構成するようにしてもよい。
 また、図15では実施の形態として基本構成1571及び基本構成1581を交互に配置したものを例示したが、これに限定されるものではない。例えば、適当に配線1530を変形させることにより、基本構成1571及び基本構成1581の配置を変えた量子計算システムを構成するようにしてもよい。
 日本出願2018-090547、日本出願2018-148870、及び日本出願2018-131507の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (15)

  1.  1列に並ぶように配置され、隣り合うものと結合している第1量子ビットからなる第1量子ビット群と、1列に並ぶように配置され、互いに結合しておらず、かつ同じ行に配置された前記第1量子ビットと結合している第2量子ビットからなる第2量子ビット群とを含んで構成される第1基本構成を複数備えると共に、前記第1基本構成の前記第1量子ビット及び前記第2量子ビットの配列方向を軸として対称となるように前記第1量子ビット群及び前記第2量子ビット群を反転させた構造を持つ第2基本構成を複数備え、前記第1基本構成と前記第2基本構成とが互い違いとなるように配置され、かつ、前記第1基本構成及び前記第2基本構成が、それぞれ1列に並ぶように配置され、互い違いの配置において隣り合う全ての第1基本構成及び第2基本構成間において同じ行の前記第1量子ビット間を各行で結合させ、前記第1量子ビット間を結合させるための配線が、他の配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成され、
     前記第1量子ビットの各々、前記第2量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成された量子計算システム。
  2.  請求項1に記載の量子計算システムの使用方法であって、特定の手順に従って前記第1量子ビットの各々及び前記第2量子ビットの各々の操作を行う量子計算システムの使用方法。
  3.  1列に並ぶように配置され、互いに結合していない第1量子ビットからなる第1量子ビット群と、1列に並ぶように配置され、隣り合うものと結合しており、かつ同じ行に配置された前記第1量子ビットと結合している第2量子ビットからなる第2量子ビット群と、1列に並ぶように配置され、互いに結合しておらず、かつ同じ行に配置された前記第2量子ビットと結合している第3量子ビットからなる第3量子ビット群と、を備え、
     前記第1量子ビットの各々、前記第2量子ビットの各々、及び前記第3量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成された量子計算システム。
  4.  請求項3に記載の量子計算システムの使用方法であって、特定の手順に従って前記第1量子ビットの各々、前記第2量子ビットの各々、及び前記第3量子ビットの各々の操作を行う量子計算システムの使用方法。
  5.  1列に並ぶように配置され、互いに結合していない第1量子ビットからなる第1量子ビット群と、1列に並ぶように配置され、隣り合うものと結合しており、かつ同じ行に配置された前記第1量子ビットと結合している第2量子ビットからなる第2量子ビット群と、全ての前記第2量子ビットと結合している第3量子ビットと、を備え、
     前記第1量子ビットの各々、前記第2量子ビットの各々、及び前記第3量子ビットと制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成された量子計算システム。
  6.  請求項5に記載の量子計算システムの使用方法であって、特定の手順に従って前記第1量子ビットの各々、前記第2量子ビットの各々、及び前記第3量子ビットの操作を行う量子計算システムの使用方法。
  7.  1列に並ぶように配置され、隣り合うものと結合している第1量子ビットからなる第1量子ビット群と、1列に並ぶように配置され、互いに結合しておらず、かつ同じ行に配置された前記第1量子ビットと結合している第2量子ビットからなる第2量子ビット群と、を備え、
     前記第1量子ビットの各々、及び前記第2量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線を用いて構成された量子計算システム。
  8.  請求項7に記載の量子計算システムの使用方法であって、特定の手順に従って前記第1量子ビットの各々、及び前記第2量子ビットの各々の操作を行う量子計算システムの使用方法。
  9.  1列に並ぶように配置され、隣り合うものと結合している第1量子ビットからなる第1量子ビット群と、全ての前記第1量子ビットと結合している第2量子ビットと、を備え、
     前記第1量子ビットの各々、及び前記第2量子ビットと制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成された量子計算システム。
  10.  請求項9に記載の量子計算システムの使用方法であって、特定の手順に従って前記第1量子ビットの各々、及び前記第2量子ビットの操作を行う量子計算システムの使用方法。
  11.  1列に並ぶように配置され、互いに結合していない第1量子ビットからなる第1量子ビット群と、1列に並ぶように配置され、隣り合うものと結合しており、かつ同じ行に配置された前記第1量子ビットと結合している第2量子ビットからなる第2量子ビット群と、全ての前記第2量子ビットと結合している第3量子ビットとを含んで構成される基本構成を複数備え、前記複数の基本構成が1列に並ぶように配置され、隣り合う前記基本構成の前記第3量子ビットを結合させ、
     前記第1量子ビットの各々、前記第2量子ビットの各々、及び前記第3量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成された量子計算システム。
  12.  請求項11に記載の量子計算システムの使用方法であって、特定の手順に従って前記第1量子ビットの各々、前記第2量子ビットの各々、及び前記第3量子ビットの各々の操作を行う量子計算システムの使用方法。
  13.  1列に並ぶように配置され、隣り合うものと結合している第1量子ビットからなる第1量子ビット群と、全ての前記第1量子ビットと結合している第2量子ビットとを含んで構成される基本構成を複数備え、前記複数の基本構成が1列に並ぶように配置され、隣り合う前記基本構成の前記第2量子ビットを結合させ、
     前記第1量子ビットの各々、及び前記第2量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成された量子計算システム。
  14.  請求項13に記載の量子計算システムの使用方法であって、特定の手順に従って前記第1量子ビットの各々、及び前記第2量子ビットの各々の操作を行う量子計算システムの使用方法。
  15.  1列に並ぶように配置され、隣り合うものと結合している第1量子ビットからなる第1量子ビット群を含んで構成される第1基本構成を複数備えると共に、1列に並ぶように配置され、隣り合うものと結合している第2量子ビットからなる第2量子ビット群を含んで構成される第2基本構成を複数備え、前記複数の第1基本構成が1列に並ぶように配置され、前記複数の第2基本構成が、前記複数の第1基本構成とは異なる列で1列に並ぶように配置され、結合する前記第1基本構成及び前記第2基本構成のペアの各々に対し、前記ペア内で対応する前記第1量子ビットと前記第2量子ビットとを結合させるための配線が、他の配線と交差しないように2次元上に形成された2次元配線、又は他の配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成され、
     前記第1量子ビットの各々及び前記第2量子ビットの各々と制御装置とを接続するための制御配線が、他の制御配線と交差しないように2次元上に形成された2次元配線、又は他の制御配線と立体交差するように擬2次元上に形成された擬2次元配線を用いて構成された量子計算システム。
PCT/JP2019/018010 2018-05-09 2019-04-26 量子計算システム及び量子計算システムの使用方法 WO2019216278A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19800485.5A EP3792843A4 (en) 2018-05-09 2019-04-26 QUANTUM COMPUTER SYSTEM AND METHOD OF USING QUANTUM COMPUTER SYSTEM
CN201980031001.3A CN112106079A (zh) 2018-05-09 2019-04-26 量子计算系统以及量子计算系统的使用方法
JP2020518280A JP7301389B2 (ja) 2018-05-09 2019-04-26 量子計算システム及び量子計算システムの使用方法
US17/053,401 US11980107B2 (en) 2018-05-09 2019-04-26 Quantum computing system and method of using quantum computing system
EP23196858.7A EP4270260A3 (en) 2018-05-09 2019-04-26 Quantum computing system and use method for quantum computing system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018090547 2018-05-09
JP2018-090547 2018-05-09
JP2018131507 2018-07-11
JP2018-131507 2018-07-11
JP2018148870 2018-08-07
JP2018-148870 2018-08-07

Publications (1)

Publication Number Publication Date
WO2019216278A1 true WO2019216278A1 (ja) 2019-11-14

Family

ID=68467544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018010 WO2019216278A1 (ja) 2018-05-09 2019-04-26 量子計算システム及び量子計算システムの使用方法

Country Status (5)

Country Link
US (1) US11980107B2 (ja)
EP (2) EP4270260A3 (ja)
JP (1) JP7301389B2 (ja)
CN (1) CN112106079A (ja)
WO (1) WO2019216278A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090547A (ja) 2016-12-06 2018-06-14 株式会社ピーズガード 除菌剤及びその製造方法
JP2018131507A (ja) 2017-02-14 2018-08-23 日東化工株式会社 樹脂洗浄剤
JP2018148870A (ja) 2017-03-13 2018-09-27 キユーピー株式会社 加熱調理用液卵及びこれを用いた卵加工品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619437B2 (en) * 2004-12-30 2009-11-17 D-Wave Systems, Inc. Coupling methods and architectures for information processing
JP2007287933A (ja) * 2006-04-17 2007-11-01 Nec Corp 量子ビット可変結合方法、それを適用した量子演算回路及び可変結合器、並びに量子計算機
US7870087B2 (en) * 2006-11-02 2011-01-11 D-Wave Systems Inc. Processing relational database problems using analog processors
US9379303B2 (en) * 2011-06-14 2016-06-28 Glocbalfoundries Inc. Modular array of fixed-coupling quantum systems for quantum information processing
WO2017214331A1 (en) * 2016-06-07 2017-12-14 D-Wave Systems Inc. Systems and methods for quantum processor topology

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090547A (ja) 2016-12-06 2018-06-14 株式会社ピーズガード 除菌剤及びその製造方法
JP2018131507A (ja) 2017-02-14 2018-08-23 日東化工株式会社 樹脂洗浄剤
JP2018148870A (ja) 2017-03-13 2018-09-27 キユーピー株式会社 加熱調理用液卵及びこれを用いた卵加工品

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
A.D. CORCOLES ET AL.: "Demonstration of a quantum error detection code using a square lattice of four superconducting qubits", NATURE COMMUNICATIONS, vol. 6, 2015, pages 6979
A.G. FOWLER ET AL.: "Surface codes: Towards practical large-scale quantum computation", PHYSICAL REVIEW A, vol. 86, 2012, pages 032324
A.Y. KITAEV: "Fault-tolerant quantum computation by anyons", ANNALS OF PHYSICS, vol. 303, 2003, pages 2
BERKLEY, A. J. ET AL.: "A scalable readout system for a superconducting adiabatic quantum optimization system", A SCALABLE READOUT SYSTEM FOR A SUPERCONDUCTING ADIABATIC QUANTUM OPTIMIZATION SYSTEM, 16 September 2010 (2010-09-16), pages 1 - 16, XP080323018, Retrieved from the Internet <URL:https://arxiv.org/abs/0905.0891v3> [retrieved on 20190711] *
DUNSWORTH, A. ET AL.: "A method for building low loss multi-layer wiring for superconducting microwave devices", APPLIED PHYSICS LETTERS, vol. 112, no. 6, 6 February 2018 (2018-02-06), pages 063502, XP055653773, Retrieved from the Internet <URL:https://aip.scitation.org/doi/pdf/10.1063/1.5014033?class=pdf> [retrieved on 20190711] *
J. H. BEJANIN ET AL.: "Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket", PHYSICAL REVIEW APPLIED, vol. 6, 2016, pages 044010
J. KELLY ET AL.: "State preservation by repetitive error detection in a superconducting quantum circuit", NATURE, vol. 519, 2015, pages 66
J.M. CHOW ET AL.: "Implementing a strand of a scalable fault-tolerant quantum computing fabric", NATURE COMMUNICATIONS, vol. 5, 2014, pages 4015
M.A. NIELSEN: "Cluster-state quantum computation", REPORTS ON MATHEMATICAL PHYSICS, vol. 57, 2006, pages 147
MUKAI, H. ET AL., PSEUDO-2D SUPERCONDUCTING QUANTUM COMPUTING CIRCUIT FOR THE SURFACE CODE, 21 February 2019 (2019-02-21), pages 1 - 6, XP055653821, Retrieved from the Internet <URL:https://arxiv.org/abs/1902.07911v1> [retrieved on 20190711] *
N.H. LINDNERT. RUDOLPH: "Proposal for Pulsed On-Demand Sources of Photonic Cluster State Strings", PHYSICAL REVIEW LETTERS, vol. 103, 2009, pages 113602
R. BARENDS ET AL.: "Superconducting quantum circuits at the surface code threshold for fault tolerance", NATURE, vol. 508, 2014, pages 500
R. RAUSSENDORFJ. HARRINGTON: "Fault-Tolerant Quantum Computation with High Threshold in Two Dimensions", PHYSICAL REVIEW LETTERS, vol. 98, 2007, pages 190504
ROY-GUAY, D.: "Quantum and Microelectronics Systems Integration", TECHNICAL REPORT, ICI-362, CMC-00200-05363, VI. 0, CMC MICROSYSTEMS, 15 November 2017 (2017-11-15), pages 1 - 32, XP055653805 *
S.E. ECONOMOUN. LINDNERT. RUDOLPH: "Optically Generated 2-Dimensional Photonic Cluster State from Coupled Quantum Dots", PHYSICAL REVIEW LETTERS, vol. 105, 2010, pages 093601
SCHMITT, V.: "Design, fabrication and test of a four superconducting quantum-bit processor", PHYSICS (PHYSICS), 12 October 2015 (2015-10-12), Paris VI, pages 1 - 18, XP055644046, Retrieved from the Internet <URL:https://tel.archives-ouvertes.fr/tel-01214394/document> [retrieved on 20190711] *
TABUCHI, Y: "Review of superconducting circuits for large-scale quantum computing", IEICE GENERAL CONFERENCE, vol. 2, 6 March 2018 (2018-03-06), pages SS-18 - SS-19, XP009524429, ISSN: 1349-1369 *

Also Published As

Publication number Publication date
EP4270260A3 (en) 2024-01-17
US20210233957A1 (en) 2021-07-29
US11980107B2 (en) 2024-05-07
JPWO2019216278A1 (ja) 2021-05-13
CN112106079A (zh) 2020-12-18
EP3792843A1 (en) 2021-03-17
EP3792843A4 (en) 2021-11-10
EP4270260A2 (en) 2023-11-01
JP7301389B2 (ja) 2023-07-03

Similar Documents

Publication Publication Date Title
US11893454B1 (en) Quantum computing in a three-dimensional device lattice
Bombin et al. Topological computation without braiding
US8957699B2 (en) Efficient Toffoli state generation from low-fidelity single qubit magic states
JP2019531531A (ja) 受動的なノイズ抑制を伴う量子演算
Raussendorf et al. The one-way quantum computer--a non-network model of quantum computation
Bartlett et al. Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation
Webster et al. Universal fault-tolerant quantum computing with stabilizer codes
Lao et al. Fault-tolerant quantum error correction on near-term quantum processors using flag and bridge qubits
Trisetyarso et al. Circuit design for a measurement-based quantum carry-lookahead adder
Kissinger Phase-free ZX diagrams are CSS codes (... or how to graphically grok the surface code)
Przytycki et al. Equivalence of two definitions of set-theoretic Yang–Baxter homology and general Yang–Baxter homology
WO2019216278A1 (ja) 量子計算システム及び量子計算システムの使用方法
Andrist et al. Error tolerance of topological codes with independent bit-flip and measurement errors
Kim et al. Learning robot structure and motion embeddings using graph neural networks
Lensky et al. Graph gauge theory of mobile non-Abelian anyons in a qubit stabilizer code
Kauffman et al. Braiding with majorana fermions
Goldin et al. The diffeomorphism group approach to anyons
Dai et al. Multibrane DGP model: Our universe as a stack of (2+ 1)-dimensional branes
Rao et al. Understanding chicken walks on n× n grid: Hamiltonian paths, discrete dynamics, and rectifiable paths
Nagayama et al. State injection, lattice surgery, and dense packing of the deformation-based surface code
Liu Four-genera of links and Heegaard Floer homology
KR20230117566A (ko) 양자 오류 보정
Sasada et al. Calculation of the self-energy of open quantum systems
Nemirovsky-Levy et al. Generation of Two-Dimensional Cluster States Using Hyperentanglement
Planat QUANTUM STATES ARISING FROM THE PAULI GROUPS: SYMMETRIES AND PARADOXES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019800485

Country of ref document: EP

Effective date: 20201209