WO2019216223A1 - Non-invasive diagnostic imaging agent for heart disease - Google Patents

Non-invasive diagnostic imaging agent for heart disease Download PDF

Info

Publication number
WO2019216223A1
WO2019216223A1 PCT/JP2019/017441 JP2019017441W WO2019216223A1 WO 2019216223 A1 WO2019216223 A1 WO 2019216223A1 JP 2019017441 W JP2019017441 W JP 2019017441W WO 2019216223 A1 WO2019216223 A1 WO 2019216223A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
heart disease
imaging agent
diagnostic imaging
mmol
Prior art date
Application number
PCT/JP2019/017441
Other languages
French (fr)
Japanese (ja)
Inventor
啓史 眞矢
Original Assignee
日本メジフィジックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メジフィジックス株式会社 filed Critical 日本メジフィジックス株式会社
Publication of WO2019216223A1 publication Critical patent/WO2019216223A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds

Definitions

  • the present invention relates to a noninvasive diagnostic imaging agent for heart disease.
  • RAAS renin-angiotensin-aldosterone system
  • Non-Patent Document 1 describes that blood collected by cardiac catheterization showed that aldosterone was synthesized and secreted in a human failing heart.
  • Non-Patent Document 2 reveals that the gene expression of CYP11B2, which is an aldosterone synthase, is enhanced by examination using an autopsy heart. And it has been shown that this increased expression of CYP11B2 gene is associated with myocardial fibrosis and cardiac dysfunction.
  • Non-Patent Document 6 Although not intended for cardiovascular diseases, various radioactive compounds having high selectivity for CYP11B2 have been developed for the purpose of depicting the lesions of the adrenal glands and enabling imaging diagnosis of primary aldosteronism ( (Patent Documents 4 to 11, Non-Patent Document 6)
  • Detecting the expression of CYP11B2 in the heart region of heart disease patients may lead to the evaluation of the progression of heart diseases such as heart failure.
  • heart diseases such as heart failure.
  • the lesion area gradually increases from a minute lesion of about several millimeters.
  • the timing of treatment intervention can be advanced, and the prognosis There is a possibility that it can contribute to improvement.
  • Nuclear medicine diagnosis using single photon tomography (SPECT) and positron emission tomography (PET) is one of the methods for detecting changes in the molecular level in vivo.
  • the present inventor has already created a heart failure model rat, confirmed that the expression of CYP11B2 is increased in the cardiac lesion, and further, nuclear medicine examination using a radiolabeled compound capable of binding to aldosterone synthase This shows that CYP11B2 expressed in the lesion can be detected (Patent Document 12). However, it is not clear whether the expression level of CYP11B2 is increased to a level detectable by a nuclear medicine examination using SPECT or PET in a minute lesion of heart disease.
  • a tracer that is applicable to a modality with excellent quantitativeness and has high ability to bind to a target is used, and after administration of a radiolabeled compound, There is a need to wait until the tracer accumulates in the heart lesion to such an extent that it can be detected by a nuclear medicine examination.
  • the exposure dose in the body produced by administering the radiolabeled compound into the living body increases in proportion to the exposure amount and the exposure time.
  • the exposure dose in the body increases, and the number of tests that can be performed may be limited due to the relationship with the threshold dose for organ damage caused by radiation. There is. Therefore, it has been desired to develop a tracer by PET that is superior in spatial resolution and quantitativeness for detection of minute lesions of heart disease and evaluation of the progression of the disease over time, and has a short waiting time after administration.
  • Radioactive fluorine (fluorine-18) has a half-life of 110 minutes and is a nuclide for PET that is widely used clinically.
  • Patent Document 12 shows SPECT and PET tracer data, but compared to SPECT tracer, PET, especially fluorine-18 tracer, is weakly accumulated in the cardiac lesion. The inventor's knowledge revealed that the image was not drawn.
  • the present invention has been made in view of the above circumstances, and has a high accumulation property in a cardiac lesion, and provides a compound suitable as a tracer for nuclear imaging examination of PET imaging. By using the compound, a cardiac lesion is obtained. Is to be detected in vivo.
  • a noninvasive diagnostic imaging agent for heart disease containing a radiolabeled compound represented by the following formula (1) or a salt thereof as an active ingredient.
  • X 1 represents a hydrogen atom or a halogen atom
  • X 2 represents a fluorine atom or a nitrile group
  • X 3 represents a radioactive fluorine atom.
  • the present invention it is possible to noninvasively detect a heart disease lesion, and in particular, it is possible to depict a heart lesion portion by PET imaging.
  • FIG. 1A and 1B are diagrams showing the results of autoradiography of compound [ 18 F] 101 and compound [ 18 F] 100 using ischemic heart disease model rat heart sections, respectively.
  • FIG. 2 is a bar graph showing the signal intensity of the ischemia / reperfusion site relative to the signal intensity of the standard radiation source in the autoradiography of FIG.
  • FIG. 3A is a PET imaging image of an ischemic heart disease model rat administered with compound [ 18 F] 101
  • FIG. 3B is a PET imaging image of a normal rat administered with [ 18 F] 101
  • FIG. PET imaging images of ischemic heart disease model rats administered with compound [ 18 F] 100.
  • (a) is a short-axis cross-sectional image
  • (b) is a horizontal long-axis cross-sectional image
  • (c) is a vertical long-axis cross-sectional image.
  • the triangular arrowhead indicates the ischemic site of the heart
  • the arrow indicates the heart site
  • the pentagonal arrow indicates the liver.
  • the present invention is a noninvasive diagnostic imaging agent for heart disease, which contains a radioactive fluorine-labeled compound represented by the above formula (1) or a salt thereof as an active ingredient. According to the diagnostic imaging agent of the present invention, it is possible to depict a site where the fibrosis of the heart is progressing.
  • the “noninvasive diagnostic imaging agent” is used for nuclear medicine diagnosis, and more specifically, used for positron emission tomography (PET).
  • the “heart disease” includes ischemic heart disease and non-ischemic heart disease, preferably a disease caused by fibrosis of the heart, and an example is heart failure.
  • the “ischemic heart disease” is not limited as long as it is a heart disease caused by myocardial ischemia, and examples thereof include coronary heart disease angina, myocardial infarction, acute coronary syndrome, ischemic heart failure and the like.
  • non-ischemic heart disease includes myocarditis, hypertensive heart disease, dilated cardiomyopathy, hypertrophic cardiomyopathy, non-ischemic heart failure, and the like.
  • X 1 when X 1 is a hydrogen atom, X 2 is preferably a fluorine atom. From the same viewpoint, in the above formula (1), when X 1 is a halogen atom, X 2 is preferably a fluorine atom or a nitrile group. From the same viewpoint, in the above formula (1), when X 1 is a fluorine atom, X 2 is preferably a fluorine atom or a nitrile group.
  • Preferred embodiments of the compound according to the present invention include three compounds represented by the following chemical formula.
  • the radioactive compound according to the present invention represented by the above formula (1) or a salt thereof can be produced, for example, according to the production method described in Patent Document 11 (International Publication No. 2015/199205). From the compound represented by the formula (2) or a salt thereof, it can be produced by a radiofluorination reaction.
  • X 1 represents a hydrogen atom or a halogen atom
  • X 2 represents a fluorine atom or a nitrile group
  • R 1 represents a halogen atom, a substituted or unsubstituted alkylsulfonyloxy group, or a substituted or unsubstituted aryl. A sulfonyloxy group is shown.
  • the substituted or unsubstituted alkylsulfonyloxy group is preferably an alkylsulfonyloxy group having 1 to 12 carbon atoms.
  • a hydrogen atom of the alkyl chain may be substituted with a halogen atom.
  • the substituted or unsubstituted arylsulfonyloxy group is preferably a substituted or unsubstituted benzenesulfonyloxy group, more preferably a substituted benzenesulfonyloxy group.
  • the hydrogen atom of the aryl ring is preferably substituted with an alkyl group having 1 to 12 carbon atoms or a nitro group.
  • substituted or unsubstituted alkylsulfonyloxy group and the substituted or unsubstituted arylsulfonyloxy group include a methanesulfonyloxy group, a benzenesulfonyloxy group, a p-toluenesulfonyloxy group, a p-nitrobenzenesulfonyloxy group, and trifluoromethane.
  • a sulfonyloxy group is mentioned.
  • radiohalide ions include radioactive fluoride ions (for example, [ 18 F] fluoride ions).
  • R 1 is a chlorine atom, a bromine atom, an iodine atom, a substituted or unsubstituted alkylsulfonyloxy group, or a substituted or unsubstituted arylsulfonyloxy group.
  • the nucleophilic substitution reaction using radioactive fluoride ions is preferably performed in the presence of a base such as an alkali metal carbonate (for example, sodium carbonate or potassium carbonate).
  • a radioactive compound in which X 3 is a radioactive fluorine atom in the radioactive compound represented by the formula (1) can be obtained.
  • the radiofluorination reaction is preferably carried out in the presence of a base. 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo [8.8.8] -hexacosane (trade name: Cryptofix 222 ) And the like in the presence of various phase transfer catalysts.
  • radioactive compound represented by the above formula (1) or a salt thereof is used as a medicine
  • a column filled with unreacted radioactive fluorine and insoluble impurities with a membrane filter and various packing materials. Purification by HPLC or the like is desirable.
  • the “salt” may be anything that is pharmaceutically acceptable.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, or acetic acid, trifluoroacetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycol Acid, salicylic acid, pyranosidic acid (glucuronic acid, galacturonic acid, etc.), ⁇ -hydroxy acid (citric acid, tartaric acid, etc.), amino acid (aspartic acid, glutamic acid, etc.), aromatic acid (benzoic acid, cinnamic acid, etc.), sulfone Salts derived from organic acids such as acids (p-toluenesulfonic acid, ethanesulfonic acid, etc.) can be used.
  • the noninvasive diagnostic imaging agent of the present invention is a formulation containing the above-mentioned radioactive fluorine-labeled compound or a salt thereof in a form suitable for administration into a living body.
  • This non-invasive diagnostic imaging agent is preferably administered parenterally, that is, by injection, and more preferably an aqueous solution.
  • Such compositions may optionally contain additional components such as pH adjusters, pharmaceutically acceptable solubilizers, stabilizers or antioxidants.
  • the molecular structure of each compound was identified by 1 H-NMR spectrum.
  • NMR apparatus AVANCE III (manufactured by Bruker) was used, the resonance frequency was 500 MHz, tetramethylsilane (TMS) was used as an internal standard, and TMS resonance was set to 0.00 ppm. All chemical shifts are in ppm on the delta scale ( ⁇ ), and for signal fine splitting, the abbreviations (s: singlet, d: doublet, t: triplet, dd: double doublet, dt: double triplet, m: (Multiplet, bs: broad singlet, quin: quintet).
  • room temperature is 25 ° C.
  • 6-chloro-5-fluoro-2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] -1- [2- (p-toluenesulfonyloxy) ethyl] benzimidazole (Compound 12) ( A mixed solution (1.0 mL) of acetonitrile / dimethyl sulfoxide (9: 1) in which 5 mg, 0.0102 mmol) was dissolved was added and heated at 100 ° C. for 5 minutes.
  • Example 3 In Vitro Autoradiography Using Ischemic Heart Disease Model Rats Wistar rats (male) were thoracotomized under isoflurane anesthesia, the left coronary artery was ligated for 30 minutes, reperfused, thoraxed, and Bloody heart disease model rats were prepared. One week after the operation, the model rat was sacrificed under isoflurane anesthesia, and then the heart was removed and sliced into 5 ⁇ m and attached to a slide glass (stored at ⁇ 80 ° C. until use). The sections were returned from ⁇ 80 ° C. to room temperature, and immersed as pre-incubation in phosphate buffered saline (PBS) at 37 ° C.
  • PBS phosphate buffered saline
  • reaction human plasma containing compound [ 18 F] 101 (radioactivity concentration: about 40 kBq / mL) or compound [ 18 F] 100 (radioactivity concentration: about 40 kBq / mL) is prepared (hereinafter referred to as reaction).
  • reaction human plasma containing compound [ 18 F] 101 (radioactivity concentration: about 40 kBq / mL) or compound [ 18 F] 100 (radioactivity concentration: about 40 kBq / mL) is prepared (hereinafter referred to as reaction).
  • the pre-incubated section was immersed in the reaction solution at 37 ° C. for 10 minutes. Thereafter, the slices were washed by immersing in human plasma at 37 ° C. for 2 minutes and 5 times. The section after washing was sufficiently dried.
  • reaction solution a known amount was immersed in a slide glass pasted with a filter paper cut out in a circle, and the dried product was used as a standard radiation source.
  • the section after drying and the standard radiation source were exposed to an imaging plate (BAS-SR2040, manufactured by Fuji Film), and an autoradiogram was obtained with a fluoro image analyzer (Typhoon FLA 7000 IP, manufactured by GE Healthcare Japan).
  • FIG. 1A The result of compound [ 18 F] 101 is shown in FIG. 1A, and the result of compound [ 18 F] 100 is shown in FIG. 1B.
  • FIG. 1A accumulation of compound [ 18 F] 101 in the lesion area was confirmed.
  • FIG. 1B almost no accumulation of compound [ 18 F] 100 in the lesion area was observed.
  • FIG. 2 is a bar graph showing the signal intensity of the ischemia / reperfusion site relative to the signal intensity of the standard radiation source in the autoradiography of FIG. As shown in FIG. 2, accumulation of compound [ 18 F] 101 in the lesion area was confirmed, but accumulation of compound [ 18 F] 100 in the lesion area was hardly observed.
  • Example 4 PET imaging experiment using ischemic heart disease model rats Wistar rats (male) were thoracotomized under isoflurane anesthesia, and the left coronary artery was ligated for 30 minutes, then reperfused, closed, and ischemic.
  • a heart disease model rat was prepared.
  • Compound [ 18 F] 101 is administered to the model rat one week after surgery (approximately 40 MBq / animal), and imaging is performed for approximately 10 minutes using a PET apparatus (exploreVISTA, manufactured by GEHC) 60 minutes after administration. Carried out. The results are shown in FIG. 3A.
  • the same experiment was conducted using normal rats (control rats). The results are shown in FIG. 3B.
  • compound [ 18 F] 100 was administered to a model rat prepared in the same manner as described above one week after the operation (about 40 MBq / animal), and immediately after the administration, it was dynamic and used for 60 minutes after the administration using the PET apparatus. Imaging was performed, and the image of the last frame (10 minutes), that is, the image from 50 minutes to 10 minutes after administration, is shown in FIG. 3C.
  • FIG. 3C 3A to 3C, (a) is a short-axis cross-sectional image, (b) is a horizontal long-axis cross-sectional image, and (c) is a vertical long-axis cross-sectional image.
  • the triangular arrowhead indicates the ischemic site of the heart, the arrow indicates the heart site, and the pentagonal arrow indicates the liver.
  • the compound [ 18 F] 101 of the present invention was accumulated in the model rat lesion (ischemic site), and the lesion (ischemic site) could be depicted. Further, the comparison between FIG. 3A and FIG. 3C shows that the lesioned part of the compound [ 18 F] 101 of the present invention can be depicted more than the compound [ 18 F] 100.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

The present invention provides compounds that accumulate at a high level in cardiac lesions and are suitable as a nuclear medicine tracer in PET imaging, enables in vivo detection of cardiac lesions by using said compounds, and provides a non-invasive diagnostic imaging agent for heart disease containing as an active ingredient a radiolabeled compound represented by formula (1) or a salt thereof. [In the formula, X1 represents a hydrogen atom or a halogen atom, X2 represents a fluorine atom or a nitrile group, and X3 represents a radioactive fluorine atom.]

Description

心疾患の非侵襲的画像診断剤Non-invasive diagnostic imaging agent for heart disease
 本発明は、心疾患の非侵襲的画像診断剤に関する。 The present invention relates to a noninvasive diagnostic imaging agent for heart disease.
 慢性心不全では、心臓において心室肥大や線維化などの左室リモデリングが進行するが、レニン-アンジオテンシン-アルドステロン系(RAAS)の亢進がこの過程に関連していることが報告されている。RAASは体内で血圧を調整する循環系の調節機構であるが、近年、この全身循環系のRAASに加え、心臓局所でのRAASやアルドステロン合成系の存在を示すデータが報告されている。 In chronic heart failure, left ventricular remodeling such as ventricular hypertrophy and fibrosis proceeds in the heart, and it has been reported that the renin-angiotensin-aldosterone system (RAAS) is related to this process. RAAS is a circulatory regulation mechanism that regulates blood pressure in the body, but recently, in addition to this systemic circulatory RAAS, data indicating the presence of RAAS and aldosterone synthesizing system in the heart region has been reported.
 例えば、非特許文献1には、ヒト不全心でアルドステロンが合成・分泌されていることが心カテーテル検査の採血で示されたことが記載されている。 For example, Non-Patent Document 1 describes that blood collected by cardiac catheterization showed that aldosterone was synthesized and secreted in a human failing heart.
 また、非特許文献2には、アルドステロン合成酵素であるCYP11B2の遺伝子発現が亢進していることが剖検心を用いた検討で明らかにされている。そして、このCYP11B2の遺伝子発現の亢進が心筋の線維化や心臓機能障害と関連することが示されている。 Also, Non-Patent Document 2 reveals that the gene expression of CYP11B2, which is an aldosterone synthase, is enhanced by examination using an autopsy heart. And it has been shown that this increased expression of CYP11B2 gene is associated with myocardial fibrosis and cardiac dysfunction.
 また、CYP11B2を選択的に阻害する化合物を種々開発し、CYP11B2を選択的に阻害することで、心血管疾患を治療しようとする試みがなされている(特許文献1~3、非特許文献3~5)。 In addition, various compounds that selectively inhibit CYP11B2 have been developed, and attempts have been made to treat cardiovascular diseases by selectively inhibiting CYP11B2 (Patent Documents 1 to 3, Non-patent Documents 3 to 3). 5).
 心血管疾患を対象にするものではないが、副腎の病変を描出し原発性アルドステロン症の画像診断を可能にすることを目的として、CYP11B2に高い選択性を示す放射性化合物も種々開発されている(特許文献4~11、非特許文献6) Although not intended for cardiovascular diseases, various radioactive compounds having high selectivity for CYP11B2 have been developed for the purpose of depicting the lesions of the adrenal glands and enabling imaging diagnosis of primary aldosteronism ( (Patent Documents 4 to 11, Non-Patent Document 6)
 心臓でのCYP11B2の発現を検出する非侵襲的な方法として国際公開2017/213247パンフレットがあり、生体内における心臓のイメージングに関してSPECT又はPET用トレーサーが報告されており、心疾患患者において線維化進行等の心筋リモデリング過程の核医学診断が行える可能性が示されている。 There is an international publication 2017/213247 pamphlet as a non-invasive method for detecting the expression of CYP11B2 in the heart, and a SPECT or PET tracer has been reported for cardiac imaging in vivo. It has been shown that nuclear medicine diagnosis of myocardial remodeling can be performed.
特表2013-512271号公報Special table 2013-512271 gazette 特表2011-520799号公報Special table 2011-520799 gazette 特表2014-526539号公報Special table 2014-526539 gazette 特表2013-534911号公報Special table 2013-534911 gazette 特開2014-129315号公報JP 2014-129315 A 特開2015-093831号公報Japanese Patent Laying-Open No. 2015-093831 特開2015-093832号公報Japanese Patent Laying-Open No. 2015-093932 特開2015-093833号公報Japanese Patent Laying-Open No. 2015-093833 特開2015-110563号公報JP 2015-110563 A 特開2015-193545号公報JP2015-193545A 国際公開2015/199205パンフレットInternational Publication 2015/199205 Pamphlet 国際公開2017/213247パンフレットInternational Publication 2017/213247 Pamphlet
 心疾患患者の心臓局所でのCYP11B2の発現を検出することが、心不全など心疾患の進行過程の評価に繋がる可能性が考えられる。また、心疾患の罹患初期においては数mm程度の微小な病変から徐々に病変部が増大していくと考えられ、より早期に病変を検出することで治療介入のタイミングを早めることができ、予後の改善に貢献できる可能性が考えられる。 Detecting the expression of CYP11B2 in the heart region of heart disease patients may lead to the evaluation of the progression of heart diseases such as heart failure. In the early stage of heart disease, it is thought that the lesion area gradually increases from a minute lesion of about several millimeters. By detecting the lesion earlier, the timing of treatment intervention can be advanced, and the prognosis There is a possibility that it can contribute to improvement.
 生体内における分子レベルの変化を検出する方法の一つにシングルフォトン断層撮影(SPECT)及びポジトロン放出断層撮影(PET)を用いた核医学診断が挙げられる。 Nuclear medicine diagnosis using single photon tomography (SPECT) and positron emission tomography (PET) is one of the methods for detecting changes in the molecular level in vivo.
 既に、本発明者は、心不全モデルラットを作成し、心臓病変部でCYP11B2の発現が亢進していることを確認し、さらに、アルドステロン合成酵素に結合能を有する放射性標識化合物を用いた核医学検査により、病変部に発現したCYP11B2を検出できることを示している(特許文献12)。しかしながら、心疾患の微小な病変ではCYP11B2の発現量が必ずしもSPECTやPETを用いた核医学検査で検出可能なレベルまで亢進しているかは明らかではない。また、微小な病変の進行過程を経時的に評価するためには、定量性に優れたモダリティに適用可能であって、かつ標的への結合能が高いトレーサーを用い、放射性標識化合物の投与後、核医学検査で検出可能な程度に、トレーサーが心臓病変部へ集積するまで待機する必要が生じる。 The present inventor has already created a heart failure model rat, confirmed that the expression of CYP11B2 is increased in the cardiac lesion, and further, nuclear medicine examination using a radiolabeled compound capable of binding to aldosterone synthase This shows that CYP11B2 expressed in the lesion can be detected (Patent Document 12). However, it is not clear whether the expression level of CYP11B2 is increased to a level detectable by a nuclear medicine examination using SPECT or PET in a minute lesion of heart disease. In addition, in order to evaluate the progression of minute lesions over time, a tracer that is applicable to a modality with excellent quantitativeness and has high ability to bind to a target is used, and after administration of a radiolabeled compound, There is a need to wait until the tracer accumulates in the heart lesion to such an extent that it can be detected by a nuclear medicine examination.
 ここで、放射性標識化合物を生体内に投与することで生じる体内被ばく線量は、その曝露量と曝露時間に比例して増大する。核医学検査の度に比較的長い待機時間を要し、曝露時間が増大すると、体内被ばく線量も増大し、放射線による臓器障害のしきい線量との関係から検査可能な回数が制限される可能性がある。そのため、心疾患の微小な病変の検出及びその進行過程の経時的な評価にはより空間分解能及び定量性が優れ、投与後の待機時間が短いPETによるトレーサーの開発が望まれていた。 Here, the exposure dose in the body produced by administering the radiolabeled compound into the living body increases in proportion to the exposure amount and the exposure time. When a nuclear medicine test requires a relatively long waiting time, and the exposure time increases, the exposure dose in the body also increases, and the number of tests that can be performed may be limited due to the relationship with the threshold dose for organ damage caused by radiation. There is. Therefore, it has been desired to develop a tracer by PET that is superior in spatial resolution and quantitativeness for detection of minute lesions of heart disease and evaluation of the progression of the disease over time, and has a short waiting time after administration.
 放射性フッ素(フッ素-18)は、半減期が110分であり、臨床で汎用されているPET用核種である。特許文献12にはSPECT及びPET用トレーサーのデータが示されているが、SPECTトレーサーに比較しPET、特にフッ素-18トレーサーの心臓病変部への集積は弱く、またPET撮像実験では心臓病変部の描出ができていなかったことが本発明者の知見により明らかとなった。 Radioactive fluorine (fluorine-18) has a half-life of 110 minutes and is a nuclide for PET that is widely used clinically. Patent Document 12 shows SPECT and PET tracer data, but compared to SPECT tracer, PET, especially fluorine-18 tracer, is weakly accumulated in the cardiac lesion. The inventor's knowledge revealed that the image was not drawn.
 本発明は、上記事情に鑑みてなされたものであり、心臓病変部への集積性が高く、PET撮像の核医学検査のトレーサーとして好適な化合物を提供し、該化合物を用いることで心臓病変部をin vivoで検出できるようにすることにある。 The present invention has been made in view of the above circumstances, and has a high accumulation property in a cardiac lesion, and provides a compound suitable as a tracer for nuclear imaging examination of PET imaging. By using the compound, a cardiac lesion is obtained. Is to be detected in vivo.
 本発明によれば、下記式(1)で表わされる放射性標識化合物又はその塩を有効成分として含有する、心疾患の非侵襲的画像診断剤が提供される。
Figure JPOXMLDOC01-appb-C000002

〔式中、Xは水素原子又はハロゲン原子を示し、Xはフッ素原子又はニトリル基を、Xは放射性フッ素原子を示す。〕
According to the present invention, there is provided a noninvasive diagnostic imaging agent for heart disease containing a radiolabeled compound represented by the following formula (1) or a salt thereof as an active ingredient.
Figure JPOXMLDOC01-appb-C000002

[Wherein, X 1 represents a hydrogen atom or a halogen atom, X 2 represents a fluorine atom or a nitrile group, and X 3 represents a radioactive fluorine atom. ]
 本発明によれば、心疾患の病変を非侵襲的に検出することが可能になり、特に、PET撮像により心臓病変部の描出が可能になる。 According to the present invention, it is possible to noninvasively detect a heart disease lesion, and in particular, it is possible to depict a heart lesion portion by PET imaging.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
図1A及びBはそれぞれ、虚血性心疾患モデルラット心臓切片を用いた化合物[18F]101及び化合物[18F]100のオートラジオグラフィーの結果を示す図である。1A and 1B are diagrams showing the results of autoradiography of compound [ 18 F] 101 and compound [ 18 F] 100 using ischemic heart disease model rat heart sections, respectively. 図2は、図1のオートラジオグラフィーにおける標準線源のシグナル強度に対する虚血再灌流部位のシグナル強度を棒グラフで示す図である。FIG. 2 is a bar graph showing the signal intensity of the ischemia / reperfusion site relative to the signal intensity of the standard radiation source in the autoradiography of FIG. 図3Aは、化合物[18F]101を投与した虚血性心疾患モデルラットのPETイメージング画像であり、図3Bは、[18F]101を投与した正常ラットのPETイメージング画像であり、図3Cは、化合物[18F]100を投与した虚血性心疾患モデルラットのPETイメージング画像である。図中、(a)が短軸断面画像であり、(b)が水平長軸断面画像であり、(c)が垂直長軸断面画像である。三角矢頭は心臓の虚血部位を、矢印は心臓部位を、五角形矢印は肝臓を示す。FIG. 3A is a PET imaging image of an ischemic heart disease model rat administered with compound [ 18 F] 101, FIG. 3B is a PET imaging image of a normal rat administered with [ 18 F] 101, and FIG. , PET imaging images of ischemic heart disease model rats administered with compound [ 18 F] 100. In the figure, (a) is a short-axis cross-sectional image, (b) is a horizontal long-axis cross-sectional image, and (c) is a vertical long-axis cross-sectional image. The triangular arrowhead indicates the ischemic site of the heart, the arrow indicates the heart site, and the pentagonal arrow indicates the liver.
 本発明は、上記式(1)で表される放射性フッ素標識化合物又はその塩を有効成分として含有する、心疾患の非侵襲的画像診断剤である。本発明の画像診断剤によれば、心臓の線維化が進行している部位を描出することができる。 The present invention is a noninvasive diagnostic imaging agent for heart disease, which contains a radioactive fluorine-labeled compound represented by the above formula (1) or a salt thereof as an active ingredient. According to the diagnostic imaging agent of the present invention, it is possible to depict a site where the fibrosis of the heart is progressing.
 本発明において「非侵襲的画像診断剤」とは、核医学診断に用いられるものであり、より具体的には、ポジトロン放出断層撮影(PET)に用いられるものである。 In the present invention, the “noninvasive diagnostic imaging agent” is used for nuclear medicine diagnosis, and more specifically, used for positron emission tomography (PET).
 本発明において「心疾患」とは、虚血性心疾患と非虚血性心疾患とを含むものであり、好ましくは、心臓の線維化により生じる疾患であり、一例として、心不全が挙げられる。
 本発明において「虚血性心疾患」とは、心筋虚血により生じる心疾患であれば限定されず、例えば、冠動脈性心疾患狭心症、心筋梗塞、急性冠症候群、虚血性心不全などが挙げられる。
 また、本発明において「非虚血性心疾患」とは、心筋炎、高血圧性心疾患、拡張型心筋症、肥大型心筋症、非虚血性心不全などが挙げられる。
In the present invention, the “heart disease” includes ischemic heart disease and non-ischemic heart disease, preferably a disease caused by fibrosis of the heart, and an example is heart failure.
In the present invention, the “ischemic heart disease” is not limited as long as it is a heart disease caused by myocardial ischemia, and examples thereof include coronary heart disease angina, myocardial infarction, acute coronary syndrome, ischemic heart failure and the like. .
In the present invention, “non-ischemic heart disease” includes myocarditis, hypertensive heart disease, dilated cardiomyopathy, hypertrophic cardiomyopathy, non-ischemic heart failure, and the like.
 本発明において、心疾患の撮像性を高める観点から、上記式(1)において、Xが水素原子である場合は、Xはフッ素原子であることが好ましい。また、同様の観点から、上記式(1)において、Xがハロゲン原子である場合は、Xはフッ素原子又はニトリル基であることが好ましい。また、同様の観点から、上記式(1)において、Xがフッ素原子である場合は、Xはフッ素原子又はニトリル基であることが好ましい。
 上記式(1)中、Xとして放射性フッ素原子を用いることにより、核医学検査用、より具体的にはポジトロン放出断層撮影(PET)用の画像診断剤の用途に応用することができる。本発明は、心疾患という狭小部位を撮像の対象とするので、空間分解能及び定量性が良好なポジトロン放出断層撮影を用いることが好ましい。
In the present invention, from the viewpoint of improving the imaging ability of heart disease, in the above formula (1), when X 1 is a hydrogen atom, X 2 is preferably a fluorine atom. From the same viewpoint, in the above formula (1), when X 1 is a halogen atom, X 2 is preferably a fluorine atom or a nitrile group. From the same viewpoint, in the above formula (1), when X 1 is a fluorine atom, X 2 is preferably a fluorine atom or a nitrile group.
In the above formula (1), by using a radioactive fluorine atom as X 3 , it can be applied to the use of a diagnostic imaging agent for nuclear medicine examination, more specifically for positron emission tomography (PET). In the present invention, since a narrow site of heart disease is to be imaged, it is preferable to use positron emission tomography with good spatial resolution and quantitativeness.
 本発明に係る化合物の好ましい態様として、下記化学式で表される3つの化合物が挙げられる。 Preferred embodiments of the compound according to the present invention include three compounds represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(1)で示した本発明に係る放射性化合物又はその塩は、例えば、特許文献11(国際公開第2015/199205号)に記載の製造方法に準じて製造でき、具体的には、下記式(2)で表される化合物又はその塩から、放射性フッ素化反応により製造することができる。 The radioactive compound according to the present invention represented by the above formula (1) or a salt thereof can be produced, for example, according to the production method described in Patent Document 11 (International Publication No. 2015/199205). From the compound represented by the formula (2) or a salt thereof, it can be produced by a radiofluorination reaction.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(2)中、Xは水素原子又はハロゲン原子を示し、Xはフッ素原子又はニトリル基を、Rはハロゲン原子、置換若しくは非置換アルキルスルホニルオキシ基、又は、置換若しくは非置換アリールスルホニルオキシ基を示す。 In the above formula (2), X 1 represents a hydrogen atom or a halogen atom, X 2 represents a fluorine atom or a nitrile group, R 1 represents a halogen atom, a substituted or unsubstituted alkylsulfonyloxy group, or a substituted or unsubstituted aryl. A sulfonyloxy group is shown.
 上記式(2)中、X及びXの好ましい態様は上記式(1)について上述したものと同じである。上記式(2)中、置換又は非置換アルキルスルホニルオキシ基としては、炭素数1~12のアルキルスルホニルオキシ基が好ましい。置換アルキルスルホニルオキシ基は、アルキル鎖の水素原子がハロゲン原子で置換されていてもよい。また、本発明において、置換又は非置換アリールスルホニルオキシ基としては、置換又は非置換ベンゼンスルホニルオキシ基が好ましく、より好ましくは置換ベンゼンスルホニルオキシ基である。置換アリールスルホニルオキシ基は、アリール環の水素原子が炭素数1~12のアルキル基、又は、ニトロ基で置換されていることが好ましい。置換又は非置換アルキルスルホニルオキシ基及び置換又は非置換アリールスルホニルオキシ基の好ましい具体例としては、メタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、p-トルエンスルホニルオキシ基、p-ニトロベンゼンスルホニルオキシ基又はトリフルオロメタンスルホニルオキシ基が挙げられる。 In the above formula (2), preferred embodiments of X 1 and X 2 are the same as those described above for the above formula (1). In the above formula (2), the substituted or unsubstituted alkylsulfonyloxy group is preferably an alkylsulfonyloxy group having 1 to 12 carbon atoms. In the substituted alkylsulfonyloxy group, a hydrogen atom of the alkyl chain may be substituted with a halogen atom. In the present invention, the substituted or unsubstituted arylsulfonyloxy group is preferably a substituted or unsubstituted benzenesulfonyloxy group, more preferably a substituted benzenesulfonyloxy group. In the substituted arylsulfonyloxy group, the hydrogen atom of the aryl ring is preferably substituted with an alkyl group having 1 to 12 carbon atoms or a nitro group. Preferable specific examples of the substituted or unsubstituted alkylsulfonyloxy group and the substituted or unsubstituted arylsulfonyloxy group include a methanesulfonyloxy group, a benzenesulfonyloxy group, a p-toluenesulfonyloxy group, a p-nitrobenzenesulfonyloxy group, and trifluoromethane. A sulfonyloxy group is mentioned.
 以下、上記式(1)で表される放射性化合物の製造方法の一例について、下記スキーム1を用いつつ説明する。上記式(1)で表される化合物において、Xがヒドロキシ基の化合物を出発物質とし、ヒドロキシ基に、上記式(2)中、Rで示す基(ハロゲン原子、置換若しくは非置換アルキルスルホニルオキシ基、又は、置換若しくは非置換アリールスルホニルオキシ基)を導入し、上記式(2)で表される化合物を標識前駆体として得る(スキーム1、ステップa)。次いで、放射性ハロゲン化物イオンを用いたRで示す基への求核置換反応を行い、上記式(1)で表される放射性化合物を得る(スキーム1、ステップb)。 Hereinafter, an example of a method for producing the radioactive compound represented by the above formula (1) will be described using the following scheme 1. In the compound represented by the above formula (1), a compound in which X 3 is a hydroxy group is used as a starting material, and the group represented by R 1 in the above formula (2) (halogen atom, substituted or unsubstituted alkylsulfonyl) An oxy group or a substituted or unsubstituted arylsulfonyloxy group) is introduced to obtain a compound represented by the above formula (2) as a labeling precursor (Scheme 1, step a). Next, a nucleophilic substitution reaction is performed on the group represented by R 1 using a radiohalide ion to obtain a radioactive compound represented by the above formula (1) (Scheme 1, step b).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 ここで、「放射性ハロゲン化物イオン」としては、放射性フッ化物イオン(例えば、[18F]フッ化物イオン)が挙げられる。標識前駆体としては、式(2)で表される化合物中、Rが、塩素原子、臭素原子、ヨウ素原子、置換若しくは非置換アルキルスルホニルオキシ基、又は、置換若しくは非置換アリールスルホニルオキシ基であることが好ましい。また、放射性フッ化物イオンを用いた求核置換反応は、アルカリ金属の炭酸塩(例えば、炭酸ナトリウムや炭酸カリウム)などの塩基存在下に行うことが好ましい。 Here, “radiohalide ions” include radioactive fluoride ions (for example, [ 18 F] fluoride ions). As a labeling precursor, in the compound represented by the formula (2), R 1 is a chlorine atom, a bromine atom, an iodine atom, a substituted or unsubstituted alkylsulfonyloxy group, or a substituted or unsubstituted arylsulfonyloxy group. Preferably there is. In addition, the nucleophilic substitution reaction using radioactive fluoride ions is preferably performed in the presence of a base such as an alkali metal carbonate (for example, sodium carbonate or potassium carbonate).
 例えば、放射性フッ化物イオンを用いて放射性フッ素化反応を行うことにより、式(1)で表される放射性化合物において、Xが放射性フッ素原子の放射性化合物を得ることができる。放射性フッ素化反応は、塩基存在下に行うことが好ましく、4,7,13,16,21,24-ヘキサオキサ-1,10-ジアザビシクロ[8.8.8]-ヘキサコサン(商品名:クリプトフィックス222)等の各種相間移動触媒存在下に行ってもよい。 For example, by performing a radioactive fluorination reaction using radioactive fluoride ions, a radioactive compound in which X 3 is a radioactive fluorine atom in the radioactive compound represented by the formula (1) can be obtained. The radiofluorination reaction is preferably carried out in the presence of a base. 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo [8.8.8] -hexacosane (trade name: Cryptofix 222 ) And the like in the presence of various phase transfer catalysts.
 上記式(1)で表される放射性化合物又はその塩を医薬として用いる場合には、放射性フッ素化反応後、未反応の放射性フッ素及び不溶性の不純物を、メンブランフィルター、種々の充填剤を充填したカラム、HPLC等により精製することが望ましい。 When the radioactive compound represented by the above formula (1) or a salt thereof is used as a medicine, after the radioactive fluorination reaction, a column filled with unreacted radioactive fluorine and insoluble impurities with a membrane filter and various packing materials. Purification by HPLC or the like is desirable.
 本発明において、「塩」とは、医薬として許容されるものであればよい。例えば、塩酸、臭化水素酸、硫酸、硝酸、リン酸などの無機酸、又は、酢酸、トリフルオロ酢酸、マレイン酸、コハク酸、マンデル酸、フマル酸、マロン酸、ピルビン酸、シュウ酸、グリコール酸、サリチル酸、ピラノシジル酸(グルクロン酸、ガラクツロン酸など)、α-ヒドロキシ酸(クエン酸、酒石酸など)、アミノ酸(アスパラギン酸、グルタミン酸など)、芳香族酸(安息香酸、ケイ皮酸など)、スルホン酸(p-トルエンスルホン酸、エタンスルホン酸など)などの有機酸から誘導される塩にすることができる。 In the present invention, the “salt” may be anything that is pharmaceutically acceptable. For example, inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, or acetic acid, trifluoroacetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycol Acid, salicylic acid, pyranosidic acid (glucuronic acid, galacturonic acid, etc.), α-hydroxy acid (citric acid, tartaric acid, etc.), amino acid (aspartic acid, glutamic acid, etc.), aromatic acid (benzoic acid, cinnamic acid, etc.), sulfone Salts derived from organic acids such as acids (p-toluenesulfonic acid, ethanesulfonic acid, etc.) can be used.
 本発明の非侵襲的画像診断剤は、上記の放射性フッ素標識化合物又はその塩を生体内への投与に適した形態で含む処方物である。この非侵襲的画像診断剤は、非経口的に、即ち注射によって投与することが好ましく、水溶液であることがより好ましい。かかる組成物は適宜、pH調節剤、製薬学的に許容される可溶化剤、安定剤又は酸化防止剤などの追加成分を含んでいてもよい。 The noninvasive diagnostic imaging agent of the present invention is a formulation containing the above-mentioned radioactive fluorine-labeled compound or a salt thereof in a form suitable for administration into a living body. This non-invasive diagnostic imaging agent is preferably administered parenterally, that is, by injection, and more preferably an aqueous solution. Such compositions may optionally contain additional components such as pH adjusters, pharmaceutically acceptable solubilizers, stabilizers or antioxidants.
 以下、実施例を記載して本発明をさらに詳しく説明するが、本発明はこれらの内容に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these contents.
 実施例中、各化合物の分子構造は、1H‐NMRスペクトルで同定した。NMR装置として、AVANCEIII(ブルカー製)を使用し、共鳴周波数は500MHzを用い、テトラメチルシラン(TMS)を内部標準として使用し、TMS共鳴を0.00ppmに設定した。全ての化学シフトはデルタスケール(δ)上のppmであり、そしてシグナルの微細分裂については、略号(s:シングレット、d:ダブレット、t:トリプレット、dd:ダブルダブレット、dt:ダブルトリプレット、m:マルチプレット、bs:ブロードシングレット、quin:クインテット)を用いて示した。
 以下、実施例において「室温」は、25℃である。
 各化合物の合成例において、化合物合成における各ステップは、必要に応じて繰り返し行い、他の合成において中間体等として用いる際に必要な量を確保した。
In the examples, the molecular structure of each compound was identified by 1 H-NMR spectrum. As the NMR apparatus, AVANCE III (manufactured by Bruker) was used, the resonance frequency was 500 MHz, tetramethylsilane (TMS) was used as an internal standard, and TMS resonance was set to 0.00 ppm. All chemical shifts are in ppm on the delta scale (δ), and for signal fine splitting, the abbreviations (s: singlet, d: doublet, t: triplet, dd: double doublet, dt: double triplet, m: (Multiplet, bs: broad singlet, quin: quintet).
In the following examples, “room temperature” is 25 ° C.
In the synthesis examples of each compound, each step in the compound synthesis was repeated as necessary, and an amount necessary for use as an intermediate or the like in other synthesis was ensured.
 (参考例1)化合物100の合成
 国際公開第2015/199205の図1に示すスキームに従い、化合物100の合成を行った。
(Reference Example 1) Synthesis of Compound 100 Compound 100 was synthesized according to the scheme shown in FIG. 1 of International Publication No. 2015/199205.
 (参考例2)化合物[18F]100の合成
 国際公開第2015/199205の図2に示すスキームに従い、化合物[18F]100の合成を行った。
According (Reference Example 2) Compound [18 F] 100 Synthesis WO 2015/199205 scheme shown in Figure 2 of the, was synthesized compound [18 F] 100.
(実施例1)化合物101の合成
 下記スキーム2に従い、化合物101の合成を行った。
Example 1 Synthesis of Compound 101 Compound 101 was synthesized according to Scheme 2 below.
N-(5-フルオロ-2-ニトロフェニル)-2-フルオロエチルアミン(化合物2)の合成
 2,4―ジフルオロニトロベンゼン(化合物1)(109.7μL、1.0mmol)をジクロロメタン(3.0mL)に溶解したのち、アルゴンガス雰囲気下、氷冷下にて、炭酸カリウム(691.0mg、5.0mmol)と2-フルオロエチルアミン(298.6mg、3.0mmmol)を加え、室温にて2日間撹拌した。反応終了後、室温にて水を加えたのち、ジクロロメタンで3回抽出を行った。合わせたジクロロメタン層を無水硫酸ナトリウムで乾燥後減圧濃縮し、粗生成物をシリカゲルクロマトグラフィー(溶離液:n―ヘキサン/酢酸エチル=20/1→10/1)にて精製を行い、N-(5-フルオロ-2-ニトロフェニル)-2-フルオロエチルアミン(化合物2)(231.2mg、1.14mmol)を得た。
化合物2のH-NMR(溶媒:重クロロホルム):δ8.36(bs、1H)、8.25(dd、J=9.5、6.1Hz、1H)、6.52(dd、J=11.3、2.6Hz、1H)、6.44-6.41(m、1H)、4.70(dt、J=47、5.0Hz、2H)、3.62(dq、J=25、4.1Hz、2H)。
Synthesis of N- (5-fluoro-2-nitrophenyl) -2-fluoroethylamine (Compound 2) 2,4-Difluoronitrobenzene (Compound 1) (109.7 μL, 1.0 mmol) in dichloromethane (3.0 mL) After dissolution, potassium carbonate (691.0 mg, 5.0 mmol) and 2-fluoroethylamine (298.6 mg, 3.0 mmol) were added under argon gas atmosphere and ice cooling, followed by stirring at room temperature for 2 days. . After completion of the reaction, water was added at room temperature, followed by extraction with dichloromethane three times. The combined dichloromethane layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: n-hexane / ethyl acetate = 20/1 → 10/1), and N- ( 5-Fluoro-2-nitrophenyl) -2-fluoroethylamine (Compound 2) (231.2 mg, 1.14 mmol) was obtained.
1 H-NMR of compound 2 (solvent: deuterated chloroform): δ 8.36 (bs, 1H), 8.25 (dd, J = 9.5, 6.1 Hz, 1H), 6.52 (dd, J = 11.3, 2.6 Hz, 1H), 6.44-6.41 (m, 1H), 4.70 (dt, J = 47, 5.0 Hz, 2H), 3.62 (dq, J = 25) 4.1 Hz, 2H).
3-フルオロ-N-[2-フルオロエチル]-1、6-フェニレンジアミン(化合物3)の合成
 N-(5-フルオロ-2-ニトロフェニル)-2-フルオロエチルアミン(化合物2)(231.2mg、1.14mmol)を酢酸エチル(4.0mL)に溶解したのち、塩化スズ(II)(867.4mg、4.57mmol)と水(82.3μL、4.57mmol)を加え、アルゴンガス雰囲気下、8時間加熱還流した。反応終了後、4M水酸化ナトリウム水溶液を加え、析出した沈殿物を濾過し、得られた濾液を酢酸エチルで3回抽出した。合わせた酢酸エチル層を無水硫酸ナトリウムで乾燥後減圧濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(溶離液:n―ヘキサン/酢酸エチル=5/1→2/1)にて精製を行い、3-フルオロ-N-[2-フルオロエチル]-1、6-フェニレンジアミン(化合物3)(137.9mg、0.801mmol)を得た。
化合物3のH-NMR(溶媒:重クロロホルム):δ6.66-6.63(m、1H)、6.39-6.35(m、2H)、4.67(dt、J=47、4.9Hz、2H)、3.41(dt、J=27、4.8Hz、1H)、3.18(bs、2H)。
Synthesis of 3-fluoro-N- [2-fluoroethyl] -1,6-phenylenediamine (compound 3) N- (5-fluoro-2-nitrophenyl) -2-fluoroethylamine (compound 2) (231.2 mg , 1.14 mmol) was dissolved in ethyl acetate (4.0 mL), and then tin (II) chloride (867.4 mg, 4.57 mmol) and water (82.3 μL, 4.57 mmol) were added. And refluxed for 8 hours. After completion of the reaction, 4M aqueous sodium hydroxide solution was added, the deposited precipitate was filtered, and the obtained filtrate was extracted three times with ethyl acetate. The combined ethyl acetate layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure, and the resulting crude product was purified by silica gel chromatography (eluent: n-hexane / ethyl acetate = 5/1 → 2/1). 3-fluoro-N- [2-fluoroethyl] -1,6-phenylenediamine (Compound 3) (137.9 mg, 0.801 mmol) was obtained.
1 H-NMR of compound 3 (solvent: deuterated chloroform): δ 6.66-6.63 (m, 1H), 6.39-6.35 (m, 2H), 4.67 (dt, J = 47, 4.9 Hz, 2H), 3.41 (dt, J = 27, 4.8 Hz, 1H), 3.18 (bs, 2H).
5-{6-フルオロ-1-[2-フルオロエチル]ベンゾイミダゾール-2-イル}ピリジン-3-メタノール(化合物4)の合成
 5-ヒドロキシメチル-3-ピリジンカルボキシアルデヒド(109.9mg、0.801mmmol)をN,N‘-ジメチルホルムアミド(1mL)に溶解したのち、氷冷下にて3-フルオロ-N-[2-フルオロエチル]-1、6-フェニレンジアミン(化合物3)(137.9mg、0.801mmol)を溶解したN、N’-ジメチルホルムアミド溶液(2mL)とOxone(登録商標)一過硫酸塩化合物(590.8mg、0.961mmol)を加え、アルゴンガス雰囲気下、室温にて2時間30分撹拌した。反応終了後、氷冷下にて飽和チオ硫酸ナトリウム水溶液と飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで3回抽出した。合わせた酢酸エチル層を無水硫酸ナトリウムで乾燥後減圧濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(溶離液:酢酸エチル/n-ヘキサン/メタノール=10/5/1)にて精製を行い、5-{6-フルオロ-1-[2-フルオロエチル]ベンゾイミダゾール-2-イル}ピリジン-3-メタノール(化合物4)(148.7mg、0.514mmol)を得た。
化合物4のH-NMR(溶媒:重クロロホルム):δ8.87(d、J=2.1Hz、1H)、8.76(d、J=2.1Hz、1H)、8.13(t、J=2.1Hz、1H)、7.78(dd、J=8.9、4.9Hz、1H)、7.15-7.09(m、2H)、4.86(d、J=5.6Hz、2H)、4.80(dt、J=47、4.8Hz、2H)、4.50(dt、J=25、4.8Hz、2H)。
Synthesis of 5- {6-Fluoro-1- [2-fluoroethyl] benzimidazol-2-yl} pyridine-3-methanol (Compound 4) 5-Hydroxymethyl-3-pyridinecarboxaldehyde (109.9 mg, 0. 801 mmol) was dissolved in N, N′-dimethylformamide (1 mL), and then under ice-cooling, 3-fluoro-N- [2-fluoroethyl] -1,6-phenylenediamine (Compound 3) (137.9 mg) , 0.801 mmol) dissolved in N, N′-dimethylformamide solution (2 mL) and Oxone® monopersulfate compound (590.8 mg, 0.961 mmol) were added at room temperature under an argon gas atmosphere. Stir for 2 hours 30 minutes. After completion of the reaction, a saturated aqueous sodium thiosulfate solution and a saturated aqueous sodium hydrogen carbonate solution were added under ice-cooling, and the mixture was extracted 3 times with ethyl acetate. The combined ethyl acetate layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure, and the resulting crude product was purified by silica gel chromatography (eluent: ethyl acetate / n-hexane / methanol = 10/5/1). , 5- {6-fluoro-1- [2-fluoroethyl] benzimidazol-2-yl} pyridine-3-methanol (Compound 4) (148.7 mg, 0.514 mmol) was obtained.
1 H-NMR of compound 4 (solvent: deuterated chloroform): δ 8.87 (d, J = 2.1 Hz, 1H), 8.76 (d, J = 2.1 Hz, 1H), 8.13 (t, J = 2.1 Hz, 1H), 7.78 (dd, J = 8.9, 4.9 Hz, 1H), 7.15-7.09 (m, 2H), 4.86 (d, J = 5 .6 Hz, 2H), 4.80 (dt, J = 47, 4.8 Hz, 2H), 4.50 (dt, J = 25, 4.8 Hz, 2H).
6-フルオロ-1-(2-フルオロエチル)-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]ベンゾイミダゾール(化合物101)の合成
 5-{6-フルオロ-1-[2-フルオロエチル]ベンゾイミダゾール-2-イル}ピリジン-3-メタノール(化合物4)(148.7mg、0.514mmol)をテトラヒドロフラン(5mL)に溶解したのち、トリエチルアミン(214.3μL、1.54mmol)を加えた。さらに、-20℃にてp-トルエンスルホン酸無水物(335.5mg、1.03mmol)を加え、アルゴンガス雰囲気下、-20℃で4時間撹拌した。さらに、トリエチルアミン(214.3μL、1.54mmol)及びp-トルエンスルホン酸無水物(335.5mg、1.03mmol)を加え、アルゴンガス雰囲気下、-20℃で3時間撹拌した。反応終了後、トリエチルアミン(1.1mL、7.71mmol)及びイミダゾール(349.9mg、5.14mmol)を加え、アルゴンガス雰囲気下、室温にて一晩撹拌した。反応終了後、シリカゲルクロマトグラフィー(溶離液:クロロホルム/メタノール=20/1)にて精製を行い、得られた画分を減圧濃縮し、酢酸エチルに溶解させ飽和炭酸水素ナトリウム水溶液で洗浄した。続いて、洗浄した酢酸エチル層を無水硫酸ナトリウムで乾燥後濃縮し、6-フルオロ-1-(2-フルオロエチル)-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]ベンゾイミダゾール(化合物101)(31.5mg、0.0931mmol)を得た。
化合物101のH-NMR(溶媒:重クロロホルム):δ8.94(d、J=2.0Hz、1H)、8.64(d、J=2.2Hz、1H)、7.87(t、J=1.9Hz、1H)、7.77(dd、J=9.5、4.9Hz、1H)、7.62(s、1H)、7.14(s、1H)、7.13-7.09(m、2H)、6.96(t、J=1.3Hz、1H)、5.26(s、2H)、4.77(dt、J=47、4.7Hz、2H)、4.42(dt、J=25、4.8Hz、2H)。
Synthesis of 6-fluoro-1- (2-fluoroethyl) -2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] benzimidazole (Compound 101) 5- {6-Fluoro-1- [2 -Fluoroethyl] benzimidazol-2-yl} pyridine-3-methanol (compound 4) (148.7 mg, 0.514 mmol) was dissolved in tetrahydrofuran (5 mL), and then triethylamine (214.3 μL, 1.54 mmol) was added. added. Further, p-toluenesulfonic anhydride (335.5 mg, 1.03 mmol) was added at −20 ° C., and the mixture was stirred at −20 ° C. for 4 hours under an argon gas atmosphere. Further, triethylamine (214.3 μL, 1.54 mmol) and p-toluenesulfonic anhydride (335.5 mg, 1.03 mmol) were added, and the mixture was stirred at −20 ° C. for 3 hours under an argon gas atmosphere. After completion of the reaction, triethylamine (1.1 mL, 7.71 mmol) and imidazole (349.9 mg, 5.14 mmol) were added, and the mixture was stirred overnight at room temperature under an argon gas atmosphere. After completion of the reaction, purification was performed by silica gel chromatography (eluent: chloroform / methanol = 20/1), and the obtained fraction was concentrated under reduced pressure, dissolved in ethyl acetate and washed with saturated aqueous sodium hydrogen carbonate solution. Subsequently, the washed ethyl acetate layer was dried over anhydrous sodium sulfate and concentrated to give 6-fluoro-1- (2-fluoroethyl) -2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] benzo Imidazole (Compound 101) (31.5 mg, 0.0931 mmol) was obtained.
1 H-NMR of compound 101 (solvent: deuterated chloroform): δ 8.94 (d, J = 2.0 Hz, 1 H), 8.64 (d, J = 2.2 Hz, 1 H), 7.87 (t, J = 1.9 Hz, 1H), 7.77 (dd, J = 9.5, 4.9 Hz, 1H), 7.62 (s, 1H), 7.14 (s, 1H), 7.13- 7.09 (m, 2H), 6.96 (t, J = 1.3 Hz, 1H), 5.26 (s, 2H), 4.77 (dt, J = 47, 4.7 Hz, 2H), 4.42 (dt, J = 25, 4.8 Hz, 2H).
(実施例2)化合物[18F]101の合成
下記スキーム2に従い、化合物[18F]101の合成を行った。
According (Example 2) the following synthetic Scheme 2 compounds [18 F] 101, was synthesized compound [18 F] 101.
2-(tert-ブチルジフェニルシリルオキシ)エチルアミン(化合物6)の合成
 2-アミノエタノール(化合物5)(2.2mL、40.0mmol)をジクロロメタン(100mL)に溶解したのち、室温下にて、tert-ブチルジフェニルシリルクロリド(15.6mL、60.0mmol)とイミダゾール(5.44g、80.0mmol)を加え、アルゴンガス雰囲気下、室温にて一晩撹拌した。反応終了後、氷冷下で水を加えたのち、ジクロロメタンで3回抽出した。合わせたジクロロメタン層を無水硫酸ナトリウムで乾燥後減圧濃縮して得られた粗生成物をシリカゲルクロマトグラフィー(溶離液:酢酸エチル→酢酸エチル/メタノール=10/1→5/1)にて精製を行い、2-(tert-ブチルジフェニルシリルオキシ)エチルアミン(化合物6)(12.2g、40.7mmol)を得た。
化合物6のH-NMR(溶媒:重クロロホルム):δ7.67-7.65(m、4H)、7.44-7.36(m、6H)、3.70(t、J=5.3Hz、2H)、2.84(t、J=5.3Hz、2H)、2.79(bs、2H)、3.08(bs、2H)、1.07(s、9H)。
Synthesis of 2- (tert-butyldiphenylsilyloxy) ethylamine (Compound 6) 2-Aminoethanol (Compound 5) (2.2 mL, 40.0 mmol) was dissolved in dichloromethane (100 mL), and then at room temperature, tert. -Butyldiphenylsilyl chloride (15.6 mL, 60.0 mmol) and imidazole (5.44 g, 80.0 mmol) were added, and the mixture was stirred overnight at room temperature under an argon gas atmosphere. After completion of the reaction, water was added under ice cooling, followed by extraction with dichloromethane three times. The combined dichloromethane layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure, and the resulting crude product was purified by silica gel chromatography (eluent: ethyl acetate → ethyl acetate / methanol = 10/1 → 5/1). , 2- (tert-butyldiphenylsilyloxy) ethylamine (Compound 6) (12.2 g, 40.7 mmol) was obtained.
1 H-NMR of compound 6 (solvent: deuterated chloroform): δ 7.67-7.65 (m, 4H), 7.44-7.36 (m, 6H), 3.70 (t, J = 5. 3 Hz, 2H), 2.84 (t, J = 5.3 Hz, 2H), 2.79 (bs, 2H), 3.08 (bs, 2H), 1.07 (s, 9H).
N-(5-フルオロ-2-ニトロフェニル)-2-(tert-ブチルジフェニルシリルオキシ)エチルアミン(化合物7)の合成
 2,4-ジフルオロニトロベンゼン(化合物1)(66.9μL、0.606mmol)をジクロロメタン(2.0mL)に溶解したのち、アルゴンガス雰囲気下、氷冷下にて、炭酸カリウム(420.5mg、3.04mmol)と2-(tert-ブチルジフェニルシリルオキシ)エチルアミン(化合物6)(546.7mg、1,83mmol)を加え、室温にて一晩撹拌した。反応終了後、室温にて水を加えたのち、ジクロロメタンで3回抽出を行った。合わせたジクロロメタン層を無水硫酸ナトリウムで乾燥後減圧濃縮し、粗生成物をシリカゲルクロマトグラフィー(溶離液:n-ヘキサン/酢酸エチル=20/1→10/1)にて精製を行い、N-(5-フルオロ-2-ニトロフェニル)-2-(tert-ブチルジフェニルシリルオキシ)エチルアミン(化合物7)(286.9mg、0.654mmol)を得た。
化合物7のH-NMR(溶媒:重クロロホルム):δ8.51(bs、1H)、8.22(dd、J=9.5、6.2Hz、1H)、7.67-7.65(m、4H)、7.43-7.36(m、6H)、6.43(dd、J=11.5、2.6Hz、1H)、6.37-6.33(m、1H)、3.90(t、J=5.4Hz、2H)、3.47(q、J=5.4Hz、2H)、1.07(s、9H)。
Synthesis of N- (5-fluoro-2-nitrophenyl) -2- (tert-butyldiphenylsilyloxy) ethylamine (Compound 7) 2,4-Difluoronitrobenzene (Compound 1) (66.9 μL, 0.606 mmol) After dissolving in dichloromethane (2.0 mL), potassium carbonate (420.5 mg, 3.04 mmol) and 2- (tert-butyldiphenylsilyloxy) ethylamine (Compound 6) (compound 6) under argon gas atmosphere and ice cooling (546.7 mg, 1,83 mmol) was added, and the mixture was stirred overnight at room temperature. After completion of the reaction, water was added at room temperature, followed by extraction with dichloromethane three times. The combined dichloromethane layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: n-hexane / ethyl acetate = 20/1 → 10/1), and N- ( 5-Fluoro-2-nitrophenyl) -2- (tert-butyldiphenylsilyloxy) ethylamine (Compound 7) (286.9 mg, 0.654 mmol) was obtained.
1 H-NMR of compound 7 (solvent: deuterated chloroform): δ 8.51 (bs, 1H), 8.22 (dd, J = 9.5, 6.2 Hz, 1H), 7.67-7.65 ( m, 4H), 7.43-7.36 (m, 6H), 6.43 (dd, J = 11.5, 2.6 Hz, 1H), 6.37-6.33 (m, 1H), 3.90 (t, J = 5.4 Hz, 2H), 3.47 (q, J = 5.4 Hz, 2H), 1.07 (s, 9H).
3-フルオロ-N-[2-(tert-ブチルジフェニルシリルオキシ)エチル]-1,6-フェニレンジアミン(化合物8)の合成
 N-(5-フルオロ-2-ニトロフェニル)-2-(tert-ブチルジフェニルシリルオキシ)エチルアミン(化合物7)(286.9mg、0.654mmol)をメタノール(3.0mL)に溶解したのち、アルゴンガス雰囲気下にて、10%パラジウムカーボン(11.2mg)を加えた。続いて、水素ガス雰囲気下、室温にて一晩撹拌した。反応終了後、セライトろ過し、ろ液を減圧濃縮して粗生成物をシリカゲルクロマトグラフィー(溶離液:n-ヘキサン/酢酸エチル=20/1→5/1)にて精製を行い、3-フルオロ-N-[2-(tert-ブチルジフェニルシリルオキシ)エチル]-1、6-フェニレンジアミン(化合物8)(122.4mg、0.300mmol)を得た。
化合物8のH-NMR(溶媒:重クロロホルム):δ7.67(dd、J=6.0、1.3Hz、4H)、7.43-7.41(m、2H)、7.39-7.36(m、4H)、6.62(dd、J=8.3、5.7Hz、1H)、6.34-6.28(m、2H)、4.16(bs、1H)、3.91(t、J=5.4Hz、2H)、3.21(q、J=5.2Hz、2H)、3.08(bs、2H)、1.07(s、9H)。
Synthesis of 3-fluoro-N- [2- (tert-butyldiphenylsilyloxy) ethyl] -1,6-phenylenediamine (compound 8) N- (5-fluoro-2-nitrophenyl) -2- (tert- Butyldiphenylsilyloxy) ethylamine (Compound 7) (286.9 mg, 0.654 mmol) was dissolved in methanol (3.0 mL), and 10% palladium carbon (11.2 mg) was added under an argon gas atmosphere. . Subsequently, the mixture was stirred overnight at room temperature in a hydrogen gas atmosphere. After completion of the reaction, the mixture was filtered through Celite, the filtrate was concentrated under reduced pressure, and the crude product was purified by silica gel chromatography (eluent: n-hexane / ethyl acetate = 20/1 → 5/1) to give 3-fluoro -N- [2- (tert-butyldiphenylsilyloxy) ethyl] -1,6-phenylenediamine (Compound 8) (122.4 mg, 0.300 mmol) was obtained.
1 H-NMR of compound 8 (solvent: deuterated chloroform): δ 7.67 (dd, J = 6.0, 1.3 Hz, 4H), 7.43-7.41 (m, 2H), 7.39- 7.36 (m, 4H), 6.62 (dd, J = 8.3, 5.7 Hz, 1H), 6.34-6.28 (m, 2H), 4.16 (bs, 1H), 3.91 (t, J = 5.4 Hz, 2H), 3.21 (q, J = 5.2 Hz, 2H), 3.08 (bs, 2H), 1.07 (s, 9H).
5-{6-フルオロ-1-[2-(tert-ブチルジフェニルシリルオキシ)エチル]ベンゾイミダゾール-2-イル}ピリジン-3-メタノール(化合物9)の合成
 5-ヒドロキシメチル-3-ピリジンカルボキシアルデヒド(40.8mg、0.298mol)をN,N‘-ジメチルホルムアミド(0.5mL)に溶解したのち、氷冷下、3-フルオロ-N-[2-(tert-ブチルジフェニルシリルオキシ)エチル]-1,6-フェニレンジアミン(化合物8)(122.4mg、0.300mol)とOxone(登録商標)一過硫酸塩化合物(221.3mg、0.360mmol)を加え、アルゴンガス雰囲気下、室温にて30分撹拌した。反応終了後、氷冷下にて飽和チオ硫酸ナトリウム水溶液と飽和炭酸水素ナトリウム水溶液を加えたのち、酢酸エチルで3回抽出した。合わせた酢酸エチル層を無水硫酸ナトリウムで乾燥後減圧濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(溶離液:酢酸エチル/n-ヘキサン/メタノール=10/5/1)にて精製を行い、5-{6-フルオロ-1-[2-(tert-ブチルジフェニルシリルオキシ)エチル]ベンゾイミダゾール-2-イル}ピリジン-3-メタノール(化合物9)(131.3mg、0.250mmol)を得た。
化合物9のH-NMR(溶媒:重クロロホルム):δ8.96(d、J=2.1Hz、1H)、8.73(d、J=2.1Hz、1H)、8.12(t、J=2.1Hz、1H)、7.77(dd、J=8.8、4.8Hz、1H)、7.38-7.36(m、6H)、7.29-7.28(m、4H)、7.09-7.05(m、1H)、6.91(dd、J=8.7、2.4Hz、1H)、4.76(d、J=5.8Hz、2H)、4.40(t、J=5.7Hz、2H)、3.94(t、J=5.7Hz、2H)、0.89(s、9H)。
Synthesis of 5- {6-fluoro-1- [2- (tert-butyldiphenylsilyloxy) ethyl] benzimidazol-2-yl} pyridine-3-methanol (Compound 9) 5-hydroxymethyl-3-pyridinecarboxaldehyde (40.8 mg, 0.298 mol) was dissolved in N, N′-dimethylformamide (0.5 mL), and then under ice-cooling, 3-fluoro-N- [2- (tert-butyldiphenylsilyloxy) ethyl] -1,6-phenylenediamine (Compound 8) (122.4 mg, 0.300 mol) and Oxone (registered trademark) monopersulfate compound (221.3 mg, 0.360 mmol) were added, and the mixture was brought to room temperature under an argon gas atmosphere. And stirred for 30 minutes. After completion of the reaction, a saturated aqueous sodium thiosulfate solution and a saturated aqueous sodium hydrogen carbonate solution were added under ice cooling, followed by extraction with ethyl acetate three times. The combined ethyl acetate layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure, and the resulting crude product was purified by silica gel chromatography (eluent: ethyl acetate / n-hexane / methanol = 10/5/1). , 5- {6-Fluoro-1- [2- (tert-butyldiphenylsilyloxy) ethyl] benzimidazol-2-yl} pyridine-3-methanol (Compound 9) (131.3 mg, 0.250 mmol) was obtained. It was.
1 H-NMR of compound 9 (solvent: deuterated chloroform): δ 8.96 (d, J = 2.1 Hz, 1H), 8.73 (d, J = 2.1 Hz, 1H), 8.12 (t, J = 2.1 Hz, 1H), 7.77 (dd, J = 8.8, 4.8 Hz, 1H), 7.38-7.36 (m, 6H), 7.29-7.28 (m 4H), 7.09-7.05 (m, 1H), 6.91 (dd, J = 8.7, 2.4 Hz, 1H), 4.76 (d, J = 5.8 Hz, 2H) 4.40 (t, J = 5.7 Hz, 2H), 3.94 (t, J = 5.7 Hz, 2H), 0.89 (s, 9H).
6-フルオロ-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]-1-[2-(tert-ブチルジフェニルシリルオキシ)エチル]ベンゾイミダゾール(化合物10)の合成
 5-{6-フルオロ-1-[2-(tert-ブチルジフェニルシリルオキシ)エチル]ベンゾイミダゾール-2-イル}ピリジン-3-メタノール(化合物9)(131.3mg、0.250mmol)をジクロロメタン(2.5mL)に溶解したのち、氷冷下、トリエチルアミン(104.4μL、0.750mmol)とp-トルエンスルホン酸無水物(163.0mg、0.500mmol)を加え、アルゴンガス雰囲気下、室温にて1時間30分撹拌した。反応終了後、水を加え、ジクロロメタンで3回抽出した。合わせたジクロロメタン層を無水硫酸ナトリウムで乾燥後減圧濃縮して粗生成物を得た。イミダゾール(85.0mg、1.25mmol)をN,N‘-ジメチルホルムアミド(0.2mL)に溶解したのち、氷冷した。トリエチルアミン(174.1μL、1.25mmol)を加えたのち、先に得た粗生成物をN,N‘-ジメチルホルムアミド(0.8mL)に溶解して加え、アルゴンガス雰囲気下、室温で4時間撹拌した。反応終了後、水を加え、酢酸エチルで3回抽出した。合わせた酢酸エチル層を無水硫酸ナトリウムで乾燥後減圧濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン/メタノール=30/1→20/1→10/1)にて精製を行い、6-フルオロ-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]-1-[2-(tert-ブチルジフェニルシリルオキシ)エチル]ベンゾイミダゾール(化合物10)(128.1mg、0.222mmol)を得た。
化合物10のH-NMR(溶媒:重クロロホルム):δ9.06(d、J=2.2z、1H)、8.55(d、J=2.2Hz、1H)、7.92(t、J=2.2Hz、1H)、7.76(dd、J=8.8、4.8Hz、1H)、7.55(s、1H)、7.40-7.35(m、6H)、7.29-7.27(m、4H)、7.09-7.05(m、2H)、6.90-6.86(m、2H)、5.13(s、2H)、4.34(t、J=5.5Hz、2H)、3.94(t、J=5.5Hz、2H)、0.89(s、9H)。
Synthesis of 6-fluoro-2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] -1- [2- (tert-butyldiphenylsilyloxy) ethyl] benzimidazole (Compound 10) 5- {6 -Fluoro-1- [2- (tert-butyldiphenylsilyloxy) ethyl] benzimidazol-2-yl} pyridine-3-methanol (Compound 9) (131.3 mg, 0.250 mmol) in dichloromethane (2.5 mL) Then, triethylamine (104.4 μL, 0.750 mmol) and p-toluenesulfonic anhydride (163.0 mg, 0.500 mmol) were added under ice-cooling, and the mixture was stirred at room temperature for 1 hour 30 hours under an argon gas atmosphere. Stir for minutes. After completion of the reaction, water was added and extracted three times with dichloromethane. The combined dichloromethane layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain a crude product. Imidazole (85.0 mg, 1.25 mmol) was dissolved in N, N′-dimethylformamide (0.2 mL) and then ice-cooled. After adding triethylamine (174.1 μL, 1.25 mmol), the crude product obtained previously was dissolved in N, N′-dimethylformamide (0.8 mL) and added at room temperature under an argon gas atmosphere for 4 hours. Stir. After completion of the reaction, water was added and extracted three times with ethyl acetate. The combined ethyl acetate layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure, and the resulting crude product was purified by silica gel chromatography (eluent: dichloromethane / methanol = 30/1 → 20/1 → 10/1). 6-fluoro-2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] -1- [2- (tert-butyldiphenylsilyloxy) ethyl] benzimidazole (Compound 10) (128.1 mg 0.222 mmol).
1 H-NMR of compound 10 (solvent: deuterated chloroform): δ 9.06 (d, J = 2.2z, 1H), 8.55 (d, J = 2.2 Hz, 1H), 7.92 (t, J = 2.2 Hz, 1H), 7.76 (dd, J = 8.8, 4.8 Hz, 1H), 7.55 (s, 1H), 7.40-7.35 (m, 6H), 7.29-7.27 (m, 4H), 7.09-7.05 (m, 2H), 6.90-6.86 (m, 2H), 5.13 (s, 2H), 4. 34 (t, J = 5.5 Hz, 2H), 3.94 (t, J = 5.5 Hz, 2H), 0.89 (s, 9H).
2-{6-フルオロ-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]ベンゾイミダゾール-1-イル}エタノール(化合物11)の合成
 6-フルオロ-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]-1-[2-(tert-ブチルジフェニルシリルオキシ)エチル]ベンゾイミダゾール(化合物10)(128.1mg、0.222mmol)をテトラヒドロフラン(2.0mL)に溶解したのち、室温にてテトラブチルアンモニウムフルオリド(0.33mL、テトラヒドロフラン溶液、約1M、0.33mmol)を加え、アルゴンガス雰囲気下、室温にて1時間30分撹拌した。反応終了後、反応溶液を減圧濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン/メタノール=20/1→10/1→5/1)にて精製を行い、2-{6-フルオロ-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]ベンゾイミダゾール-1-イル}エタノール(化合物11)(25.8mg、0.0765mmol)を得た。
化合物11のH-NMR(溶媒:重クロロホルム):δ9.07(d、J=2.2Hz、1H)、8.64(d、J=2.2Hz、1H)、7.87(t、J=2.2Hz、1H)、7.73(dd、J=8.9、4.8Hz、1H)、7.62(s、1H)、7.15(d、J=2.4Hz、1H)、7.13(s、1H)、7.12(dt、J=10.3、2.4Hz、1H)、6.98(t、J=1.3Hz、1H)、5.27(s、2H)、4.21(t、J=5.7Hz、2H)、3.99(t、J=5.7Hz、2H)、2.44(bs、1H)。
Synthesis of 2- {6-fluoro-2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] benzimidazol-1-yl} ethanol (Compound 11) 6-Fluoro-2- [5- (imidazole -1-ylmethyl) pyridin-3-yl] -1- [2- (tert-butyldiphenylsilyloxy) ethyl] benzimidazole (Compound 10) (128.1 mg, 0.222 mmol) in tetrahydrofuran (2.0 mL) After dissolution, tetrabutylammonium fluoride (0.33 mL, tetrahydrofuran solution, about 1 M, 0.33 mmol) was added at room temperature, and the mixture was stirred at room temperature for 1 hour 30 minutes in an argon gas atmosphere. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and the resulting crude product was purified by silica gel chromatography (eluent: dichloromethane / methanol = 20/1 → 10/1 → 5/1). 6-Fluoro-2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] benzimidazol-1-yl} ethanol (Compound 11) (25.8 mg, 0.0765 mmol) was obtained.
1 H-NMR of compound 11 (solvent: deuterated chloroform): δ 9.07 (d, J = 2.2 Hz, 1H), 8.64 (d, J = 2.2 Hz, 1H), 7.87 (t, J = 2.2 Hz, 1H), 7.73 (dd, J = 8.9, 4.8 Hz, 1H), 7.62 (s, 1H), 7.15 (d, J = 2.4 Hz, 1H) ), 7.13 (s, 1H), 7.12 (dt, J = 10.3, 2.4 Hz, 1H), 6.98 (t, J = 1.3 Hz, 1H), 5.27 (s) 2H), 4.21 (t, J = 5.7 Hz, 2H), 3.99 (t, J = 5.7 Hz, 2H), 2.44 (bs, 1H).
6-クロロ-5-フルオロ-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]-1-[2-(p-トルエンスルホニルオキシ)エチル]ベンゾイミダゾール(化合物12)の合成
 2-{6-フルオロ-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]ベンゾイミダゾール-1-イル}エタノール(化合物11)(20.0mg、0.0593mmol)をジクロロメタン(1.0mL)に溶解したのち、p-トルエンスルホニルクロリド(22.6mg、0.119mol)、トリエチルアミン(24.8μL、0.176mmol)を加え、アルゴンガス雰囲気下、室温にて3時間撹拌した。反応終了後、シリカゲルクロマトグラフィー(溶離液:クロロホルム/メタノール=20/1→10/1)にて精製を行い、得られた画分を減圧濃縮し、酢酸エチルに溶解させ水で洗浄した。続いて、洗浄した酢酸エチル層を無水硫酸ナトリウムで乾燥後濃縮し、6-フルオロ-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]-1-[2-(p-トルエンスルホニルオキシ)エチル]ベンゾイミダゾール(化合物12)(10.9mg、0.0229mmol)を得た。
化合物12のH-NMR(溶媒:重メタノール):δ8.82(d、J=2.1Hz、1H)、8.70(d、J=2.1Hz、1H)、8.02(t、J=2.1Hz、1H)、7.90(s、1H)、7.62(dd、J=8.8、4.7Hz、1H)、7.28(dd、J=6.4、1.8Hz、3H)、7.21(dd、J=8.9、2.4Hz、1H)、7.13-7.10(m、1H)、7.06(t、J=2.3Hz、3H)、5.46(s、2H)、4.49(t、J=5.9Hz、2H)、4.25(t、J=5.9Hz、2H)、2.32(s、3H)。
Synthesis of 6-chloro-5-fluoro-2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] -1- [2- (p-toluenesulfonyloxy) ethyl] benzimidazole (Compound 12) -{6-Fluoro-2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] benzimidazol-1-yl} ethanol (Compound 11) (20.0 mg, 0.0593 mmol) in dichloromethane (1. (0 mL), p-toluenesulfonyl chloride (22.6 mg, 0.119 mol) and triethylamine (24.8 μL, 0.176 mmol) were added, and the mixture was stirred at room temperature for 3 hours in an argon gas atmosphere. After completion of the reaction, purification was performed by silica gel chromatography (eluent: chloroform / methanol = 20/1 → 10/1), and the obtained fraction was concentrated under reduced pressure, dissolved in ethyl acetate and washed with water. Subsequently, the washed ethyl acetate layer was dried over anhydrous sodium sulfate and concentrated to give 6-fluoro-2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] -1- [2- (p-toluene). [Sulfonyloxy) ethyl] benzimidazole (Compound 12) (10.9 mg, 0.0229 mmol) was obtained.
1 H-NMR of compound 12 (solvent: deuterated methanol): δ 8.82 (d, J = 2.1 Hz, 1H), 8.70 (d, J = 2.1 Hz, 1H), 8.02 (t, J = 2.1 Hz, 1H), 7.90 (s, 1H), 7.62 (dd, J = 8.8, 4.7 Hz, 1H), 7.28 (dd, J = 6.4, 1 .8 Hz, 3 H), 7.21 (dd, J = 8.9, 2.4 Hz, 1 H), 7.13-7.10 (m, 1 H), 7.06 (t, J = 2.3 Hz, 3H), 5.46 (s, 2H), 4.49 (t, J = 5.9 Hz, 2H), 4.25 (t, J = 5.9 Hz, 2H), 2.32 (s, 3H) .
化合物[ 18 F]101の合成
 [18F]フッ化物イオン含有H 18O(放射能量2330MBq、合成開始時補正値)を、Sep-Pakカラム(商品名:Sep-Pak(登録商標)Light Cartridge Accell(登録商標) Plus QMA Carbonate、Waters社製、充填剤の充填量130mg)に通液し、[18F]フッ化物イオンを吸着捕集した。このカラムに炭酸カリウム水溶液(42.4μmol/L、0.3mL)及びクリプトフィックス222(商品名、メルク社製)(14mg、37.2μmol)のアセトニトリル溶液(0.7mL)を通液して、[18F]フッ化物イオンを溶出した。これをアルゴンガス通気下110℃に加熱して水を蒸発させた後、アセトニトリル(0.5mL×2)を加えて共沸させ乾固させた。ここに6-クロロ-5-フルオロ-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]-1-[2-(p-トルエンスルホニルオキシ)エチル]ベンゾイミダゾール(化合物12)(5mg、0.0102mmol)を溶解したアセトニトリル/ジメチルスルホキシド(9:1)混液(1.0mL)を加え、100℃で5分加熱した。反応終了後、注射用水(2.0mL)を加え、下記の条件のHPLCに付して6-フルオロ-1-(2-[18F]フルオロエチル)-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]ベンゾイミダゾール(化合物[18F]101)画分を分取した。
<HPLC条件>
 カラム:Develosil RPAQUEOUS(商品名、野村化学社製、サイズ:10×250mm)
 移動相:10mM炭酸水素アンモニウム溶液/アセトニトリル=70/30
 流速:4.0 mL/分
 検出器:紫外可視吸光光度計(検出波長:254nm)
当該画分に水10mLを添加した液をSep-Pak C18カラム(商品名:Sep-Pak(登録商標) Light C18 Cartridges、Waters社製、充填剤の充填量130mg)に通液し、6-フルオロ-1-(2-[18F]フルオロエチル)-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]ベンゾイミダゾール(化合物[18F]101)を当該カラムに吸着捕集した。このカラムを水5mLで洗浄した後、エタノール1mLを通液して6-フルオロ-1-(2-[18F]フルオロエチル)-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]ベンゾイミダゾール(化合物[18F]101)を溶出させることで、6-フルオロ-1-(2-[18F]フルオロエチル)-2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]ベンゾイミダゾール(化合物[18F]101)のエタノール溶液を得た。得られた放射能量は合成直後において707MBq(合成開始後49分)であった。また、下記の条件によるTLC分析を行ったところ、その放射化学的純度は98.3%であった。
<TLC分析条件>
TLCプレート:Silica Gel 60 F254(製品名、メルク社製)
展開相:アセトニトリル/水/ジエチルアミン=10/1/1
RI検出器:Rita Star、raytest社製
Figure JPOXMLDOC01-appb-C000008
Synthesis of Compound [ 18 F] 101 [ 18 F] Fluoride ion-containing H 2 18 O (radioactivity 2330 MBq, corrected value at the start of synthesis) was added to a Sep-Pak column (trade name: Sep-Pak (registered trademark) Light Cartridge). The solution was passed through an Acculle (registered trademark) Plus QMA Carbonate, manufactured by Waters Inc., and a filler filling amount of 130 mg), and [ 18 F] fluoride ions were collected by adsorption. An acetonitrile solution (0.7 mL) of potassium carbonate aqueous solution (42.4 μmol / L, 0.3 mL) and Cryptofix 222 (trade name, manufactured by Merck) (14 mg, 37.2 μmol) was passed through this column, [ 18 F] fluoride ions were eluted. This was heated to 110 ° C. under argon gas to evaporate water, and then acetonitrile (0.5 mL × 2) was added to azeotrope to dryness. Here, 6-chloro-5-fluoro-2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] -1- [2- (p-toluenesulfonyloxy) ethyl] benzimidazole (Compound 12) ( A mixed solution (1.0 mL) of acetonitrile / dimethyl sulfoxide (9: 1) in which 5 mg, 0.0102 mmol) was dissolved was added and heated at 100 ° C. for 5 minutes. After completion of the reaction, water for injection (2.0 mL) was added and subjected to HPLC under the following conditions to give 6-fluoro-1- (2- [ 18 F] fluoroethyl) -2- [5- (imidazole-1- (Ilmethyl) pyridin-3-yl] benzimidazole (compound [ 18 F] 101) fraction was collected.
<HPLC conditions>
Column: Develosil RPAQUEOUS (trade name, manufactured by Nomura Chemical Co., Ltd., size: 10 × 250 mm)
Mobile phase: 10 mM ammonium bicarbonate solution / acetonitrile = 70/30
Flow rate: 4.0 mL / min Detector: UV-visible spectrophotometer (detection wavelength: 254 nm)
A solution obtained by adding 10 mL of water to the fraction was passed through a Sep-Pak C18 column (trade name: Sep-Pak (registered trademark) Light C18 Cartridges, manufactured by Waters, 130 mg of packing material), and 6-fluoro -1- (2- [ 18 F] fluoroethyl) -2- [5- (imidazol-1-ylmethyl) pyridin-3-yl] benzimidazole (compound [ 18 F] 101) was adsorbed and collected on the column. . After washing this column with 5 mL of water, 1 mL of ethanol was passed through and 6-fluoro-1- (2- [ 18 F] fluoroethyl) -2- [5- (imidazol-1-ylmethyl) pyridine-3- Il] benzimidazole (compound [ 18 F] 101) is eluted to give 6-fluoro-1- (2- [ 18 F] fluoroethyl) -2- [5- (imidazol-1-ylmethyl) pyridine-3 An ethanol solution of -yl] benzimidazole (compound [ 18 F] 101) was obtained. The amount of radioactivity obtained was 707 MBq (49 minutes after the start of synthesis) immediately after synthesis. Moreover, when the TLC analysis by the following conditions was conducted, the radiochemical purity was 98.3%.
<TLC analysis conditions>
TLC plate: Silica Gel 60 F 254 (product name, manufactured by Merck)
Developing phase: acetonitrile / water / diethylamine = 10/1/1
RI detector: Rita Star, manufactured by raytest
Figure JPOXMLDOC01-appb-C000008
(実施例3)虚血性心疾患モデルラットを用いたインビトロオートラジオグラフィー
 Wistarラット(雄)をイソフルラン麻酔下で開胸し、左冠動脈を30分間結紮した後、再灌流し、閉胸し、虚血性心疾患モデルラットを作製した。
 手術後1週に上記モデルラットをイソフルラン麻酔下で屠殺後、心臓を摘出して5μmに薄切した切片をスライドグラスに貼り付けしたもの(使用時まで-80℃保管)を作製した。切片を-80℃から室温へ戻し、プレインキュベーションとして、リン酸緩衝生理食塩水(PBS)に37℃、5分間浸漬し、次いでヒト血漿に37℃、5分間浸漬した。次いで、反応工程として、化合物[18F]101(放射能濃度:約40kBq/mL)又は化合物[18F]100(放射能濃度:約40kBq/mL)を含むヒト血漿をそれぞれ調製(以下、反応液)し、プレインキュベーションした切片を反応液に37℃、10分間浸漬した。その後、ヒト血漿で37℃、2分間、5回浸漬し、切片の洗浄を行った。洗浄後の切片を十分に乾燥した。また、スライドグラスに円形に切り抜いたろ紙を張り付けたものに、反応液を既知量浸み込ませ、乾燥したものを標準線源とした。
 乾燥後の切片及び標準線源をイメージングプレート(BAS-SR2040、富士フイルム社製)に曝露し、フルオロ・イメージアナライザー(Typhoon FLA 7000 IP、GEヘルスケアジャパン社製)でオートラジオグラムを取得した。
Example 3 In Vitro Autoradiography Using Ischemic Heart Disease Model Rats Wistar rats (male) were thoracotomized under isoflurane anesthesia, the left coronary artery was ligated for 30 minutes, reperfused, thoraxed, and Bloody heart disease model rats were prepared.
One week after the operation, the model rat was sacrificed under isoflurane anesthesia, and then the heart was removed and sliced into 5 μm and attached to a slide glass (stored at −80 ° C. until use). The sections were returned from −80 ° C. to room temperature, and immersed as pre-incubation in phosphate buffered saline (PBS) at 37 ° C. for 5 minutes, and then immersed in human plasma at 37 ° C. for 5 minutes. Next, as a reaction step, human plasma containing compound [ 18 F] 101 (radioactivity concentration: about 40 kBq / mL) or compound [ 18 F] 100 (radioactivity concentration: about 40 kBq / mL) is prepared (hereinafter referred to as reaction). The pre-incubated section was immersed in the reaction solution at 37 ° C. for 10 minutes. Thereafter, the slices were washed by immersing in human plasma at 37 ° C. for 2 minutes and 5 times. The section after washing was sufficiently dried. In addition, a known amount of the reaction solution was immersed in a slide glass pasted with a filter paper cut out in a circle, and the dried product was used as a standard radiation source.
The section after drying and the standard radiation source were exposed to an imaging plate (BAS-SR2040, manufactured by Fuji Film), and an autoradiogram was obtained with a fluoro image analyzer (Typhoon FLA 7000 IP, manufactured by GE Healthcare Japan).
 化合物[18F]101の結果を図1Aに示し、化合物[18F]100の結果を図1Bに示す。図1Aで示すように、病変領域への化合物[18F]101の集積が確認された。これに対し、図1Bで示すように、病変領域への化合物[18F]100の集積はほとんど見られなかった。 The result of compound [ 18 F] 101 is shown in FIG. 1A, and the result of compound [ 18 F] 100 is shown in FIG. 1B. As shown in FIG. 1A, accumulation of compound [ 18 F] 101 in the lesion area was confirmed. In contrast, as shown in FIG. 1B, almost no accumulation of compound [ 18 F] 100 in the lesion area was observed.
 化合物[18F]101及び化合物[18F]100のオートラジオグラムについて、虚血再灌流部位にROIをとり、各部位の放射能カウント(補正値)を標準線源に対する補正値として式(1)のように求めて、比較した。
Figure JPOXMLDOC01-appb-M000009

その結果を図2に示す(n=1)。図2は、図1のオートラジオグラフィーにおける標準線源のシグナル強度に対する虚血再灌流部位のシグナル強度を棒グラフで示す図である。図2で示すように、病変領域への化合物[18F]101の集積が確認されたが、病変領域への化合物[18F]100の集積はほとんど見られなかった。
For the autoradiograms of Compound [ 18 F] 101 and Compound [ 18 F] 100, the ROI is taken at the ischemia reperfusion site, and the radioactivity count (correction value) at each site is used as the correction value for the standard radiation source. ) And compared.
Figure JPOXMLDOC01-appb-M000009

The result is shown in FIG. 2 (n = 1). FIG. 2 is a bar graph showing the signal intensity of the ischemia / reperfusion site relative to the signal intensity of the standard radiation source in the autoradiography of FIG. As shown in FIG. 2, accumulation of compound [ 18 F] 101 in the lesion area was confirmed, but accumulation of compound [ 18 F] 100 in the lesion area was hardly observed.
(実施例4)虚血性心疾患モデルラットを用いたPET撮像実験
 Wistarラット(雄)をイソフルラン麻酔下で開胸し、左冠動脈を30分間結紮した後、再灌流し、閉胸し、虚血性心疾患モデルラットを作製した。
 上記モデルラットに、手術から1週間後に化合物[18F]101を投与し(約40MBq/匹)、投与後60分より、PET装置(exploreVISTA、GEHC社製)を用い、約10分間の撮像を実施した。結果を図3Aに示す。
 また、正常ラット(対照ラット)を用いて同様の実験を行った。結果を図3Bに示す。また、上記と同様に作成されたモデルラットに、手術から1週間後に化合物[18F]100を投与し(約40MBq/匹)、投与直後からdynamicで投与後60分まで上記PET装置を用いて撮像を実施し、最後の1フレーム(10分間)の画像、すなわち、投与後50分から10分間の画像を図3Cに示した。
 図3A~C中、(a)が短軸断面画像であり、(b)が水平長軸断面画像であり、(c)が垂直長軸断面画像である。三角矢頭は心臓の虚血部位を、矢印は心臓部位を、五角形矢印は肝臓を示す。
 図3Aと図3Bとの対比から明らかなように、本発明の化合物[18F]101はモデルラット病変部(虚血部位)へ集積し、病変部(虚血部位)を描出できた。
 また、図3Aと図3Cとの対比から、本発明の化合物[18F]101は、化合物[18F]100に比べて病変部がより描出できることが示された。
(Example 4) PET imaging experiment using ischemic heart disease model rats Wistar rats (male) were thoracotomized under isoflurane anesthesia, and the left coronary artery was ligated for 30 minutes, then reperfused, closed, and ischemic. A heart disease model rat was prepared.
Compound [ 18 F] 101 is administered to the model rat one week after surgery (approximately 40 MBq / animal), and imaging is performed for approximately 10 minutes using a PET apparatus (exploreVISTA, manufactured by GEHC) 60 minutes after administration. Carried out. The results are shown in FIG. 3A.
The same experiment was conducted using normal rats (control rats). The results are shown in FIG. 3B. Further, compound [ 18 F] 100 was administered to a model rat prepared in the same manner as described above one week after the operation (about 40 MBq / animal), and immediately after the administration, it was dynamic and used for 60 minutes after the administration using the PET apparatus. Imaging was performed, and the image of the last frame (10 minutes), that is, the image from 50 minutes to 10 minutes after administration, is shown in FIG. 3C.
3A to 3C, (a) is a short-axis cross-sectional image, (b) is a horizontal long-axis cross-sectional image, and (c) is a vertical long-axis cross-sectional image. The triangular arrowhead indicates the ischemic site of the heart, the arrow indicates the heart site, and the pentagonal arrow indicates the liver.
As is clear from the comparison between FIG. 3A and FIG. 3B, the compound [ 18 F] 101 of the present invention was accumulated in the model rat lesion (ischemic site), and the lesion (ischemic site) could be depicted.
Further, the comparison between FIG. 3A and FIG. 3C shows that the lesioned part of the compound [ 18 F] 101 of the present invention can be depicted more than the compound [ 18 F] 100.
 この出願は、2018年5月8日に出願された日本出願特願2018-089920号を基礎とする優先権を主張し、その開示の総てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-089920 filed on May 8, 2018, the entire disclosure of which is incorporated herein.

Claims (9)

  1.  下記式(1)で表わされる放射性標識化合物又はその塩を有効成分として含有する、心疾患の非侵襲的画像診断剤。
    Figure JPOXMLDOC01-appb-C000001

    〔式中、Xは水素原子又はハロゲン原子を示し、Xはフッ素原子又はニトリル基を、Xは放射性フッ素原子を示す。〕
    A noninvasive diagnostic imaging agent for heart disease, containing a radiolabeled compound represented by the following formula (1) or a salt thereof as an active ingredient.
    Figure JPOXMLDOC01-appb-C000001

    [Wherein, X 1 represents a hydrogen atom or a halogen atom, X 2 represents a fluorine atom or a nitrile group, and X 3 represents a radioactive fluorine atom. ]
  2.  前記式(1)中、Xが水素原子である、請求項1記載の非侵襲的画像診断剤。 The noninvasive diagnostic imaging agent according to claim 1 , wherein in the formula (1), X 1 is a hydrogen atom.
  3.  前記式(1)中、Xがフッ素原子である、請求項2記載の非侵襲的画像診断剤。 The noninvasive diagnostic imaging agent according to claim 2 , wherein X2 in the formula (1) is a fluorine atom.
  4.  前記式(1)中、Xがハロゲン原子である、請求項1記載の非侵襲的画像診断剤。 The noninvasive diagnostic imaging agent according to claim 1 , wherein X1 in the formula (1) is a halogen atom.
  5.  ポジトロン放出断層撮影に用いられるための請求項1乃至4いずれか一項に記載の非侵襲的画像診断剤。 The noninvasive diagnostic imaging agent according to any one of claims 1 to 4, for use in positron emission tomography.
  6.  前記心疾患が虚血性心疾患である、請求項1乃至5いずれか一項に記載の非侵襲的画像診断剤。 The noninvasive diagnostic imaging agent according to any one of claims 1 to 5, wherein the heart disease is an ischemic heart disease.
  7.  前記虚血性心疾患は、冠動脈性心疾患狭心症、心筋梗塞、急性冠症候群又は虚血性心不全である、請求項6に記載の非侵襲的画像診断剤。 The non-invasive diagnostic imaging agent according to claim 6, wherein the ischemic heart disease is coronary heart disease angina, myocardial infarction, acute coronary syndrome or ischemic heart failure.
  8.  前記心疾患が非虚血性心疾患である、請求項1乃至5いずれか一項に記載の非侵襲的画像診断剤。 The noninvasive diagnostic imaging agent according to any one of claims 1 to 5, wherein the heart disease is a non-ischemic heart disease.
  9.  前記非虚血性心疾患が、心筋炎、高血圧性心疾患、拡張型心筋症、肥大型心筋症又は非虚血性心不全である、請求項8に記載の非侵襲的画像診断剤。 The noninvasive diagnostic imaging agent according to claim 8, wherein the non-ischemic heart disease is myocarditis, hypertensive heart disease, dilated cardiomyopathy, hypertrophic cardiomyopathy or non-ischemic heart failure.
PCT/JP2019/017441 2018-05-08 2019-04-24 Non-invasive diagnostic imaging agent for heart disease WO2019216223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-089920 2018-05-08
JP2018089920A JP2021130610A (en) 2018-05-08 2018-05-08 Non-invasive diagnostic imaging agent for heart disease

Publications (1)

Publication Number Publication Date
WO2019216223A1 true WO2019216223A1 (en) 2019-11-14

Family

ID=68468298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017441 WO2019216223A1 (en) 2018-05-08 2019-04-24 Non-invasive diagnostic imaging agent for heart disease

Country Status (3)

Country Link
JP (1) JP2021130610A (en)
TW (1) TW202015743A (en)
WO (1) WO2019216223A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199205A1 (en) * 2014-06-26 2015-12-30 日本メジフィジックス株式会社 2-(3-pyridinyl)-1h-benzimidazole derivative compound and medicine containing same
WO2017213247A1 (en) * 2016-06-10 2017-12-14 日本メジフィジックス株式会社 Non-invasive diagnostic imaging agent for heart disease

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199205A1 (en) * 2014-06-26 2015-12-30 日本メジフィジックス株式会社 2-(3-pyridinyl)-1h-benzimidazole derivative compound and medicine containing same
WO2017213247A1 (en) * 2016-06-10 2017-12-14 日本メジフィジックス株式会社 Non-invasive diagnostic imaging agent for heart disease

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABE, T. ET AL.: "A Novel CYP11B2-Specific Imaging Agent for Detection of Unilateral Subtypes of", PRIMARY ALDOSTERONISM, J CLIN ENDOCRINOL METAB, vol. 101, no. 3, 2016, pages 1008 - 15, XP055456963, ISSN: 0021-972X, DOI: 10.1210/jc.2015-3431 *

Also Published As

Publication number Publication date
TW202015743A (en) 2020-05-01
JP2021130610A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US10358434B2 (en) 2-(3-pyridinyl)-1H-benzimidazole derivative compound and medicament containing same
US9987381B2 (en) Radioligands for imaging the LPA-1 receptor
US20220305144A1 (en) Radioligands for imaging the id01 enzyme
JP7209970B2 (en) 2-[5-(imidazol-1-ylmethyl)pyridin-3-yl]benzimidazole derivative compound and medicine containing the same
WO2019216223A1 (en) Non-invasive diagnostic imaging agent for heart disease
CA3026617A1 (en) Non-invasive diagnostic imaging agent for heart disease
US20110250137A1 (en) Radioisotope-labeled lysine and ornithine derivatives, their use and processes for their preparation
JP6609868B2 (en) Radioactive halogen-labeled pyrido [1,2-a] benzimidazole derivative compound
JP2016079108A (en) Radioactive iodine labeled styryl substituted aromatic heterocyclic compound
JP6273251B2 (en) Aromatic amino acid derivative and PET probe using the same
US20230263915A1 (en) Radiolabeled compounds
JP6041751B2 (en) Styrylpyridine derivative compound
JP2015093831A (en) Aldosterone synthase inhibitor
JP2014218454A (en) Styrylpyridine derivative compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP