WO2019216208A1 - Device for monitoring supplying of release agent and device for spraying release agent onto glass bottle forming die - Google Patents

Device for monitoring supplying of release agent and device for spraying release agent onto glass bottle forming die Download PDF

Info

Publication number
WO2019216208A1
WO2019216208A1 PCT/JP2019/017269 JP2019017269W WO2019216208A1 WO 2019216208 A1 WO2019216208 A1 WO 2019216208A1 JP 2019017269 W JP2019017269 W JP 2019017269W WO 2019216208 A1 WO2019216208 A1 WO 2019216208A1
Authority
WO
WIPO (PCT)
Prior art keywords
release agent
syringe
monitoring device
supply monitoring
agent supply
Prior art date
Application number
PCT/JP2019/017269
Other languages
French (fr)
Japanese (ja)
Inventor
河原隆介
石黒翔太
Original Assignee
日本山村硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本山村硝子株式会社 filed Critical 日本山村硝子株式会社
Publication of WO2019216208A1 publication Critical patent/WO2019216208A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/02Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it by lubrication; Use of materials as release or lubricating compositions
    • C03B40/027Apparatus for applying lubricants to glass shaping moulds or tools
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/44Means for discharging combined with glass-blowing machines, e.g. take-outs

Definitions

  • the present invention relates to a release agent supply monitoring device and a release agent spraying device to a glass bottle molding die.
  • a fluid supply device may be used in a factory or the like (for example, see Patent Document 1).
  • the fluid supply apparatus described in Patent Literature 1 includes a syringe pump, and a liquid is sent in a pressurized state by the syringe pump.
  • a gob (a high-temperature molten glass lump) is usually formed into a parison with a rough mold.
  • the parison is transferred to a finishing mold and inflated with compressed air in the finishing mold to be finally molded.
  • the molding of the glass bottle is completed.
  • lubricity and releasability are greatly required, and it is important to apply a mold release agent (the mold release agent here has a lubricating action). . Therefore, the mold release agent needs to be applied to the inner surface of the mold periodically, for example, every few tens of minutes in order to prevent deterioration of lubricity and mold release characteristics.
  • Release agents are usually highly viscous. When the release agent is sprayed on the inner surface of the mold by the spray nozzle, the release agent having a high viscosity may be clogged by the nozzle. If the release agent is clogged with the nozzle, an appropriate amount of the release agent cannot be sprayed onto the mold. For this reason, it is important to make it possible to detect abnormal spraying of the release agent in the production of glass bottles of uniform quality.
  • the present invention has been made in view of the above circumstances, and a release agent supply monitoring device capable of more accurately detecting an abnormal spraying of a highly viscous release agent, and a release to a glass bottle mold It aims at providing an agent spraying device.
  • a release agent supply monitoring device is the release agent in the release agent spraying device for spraying the release agent onto the glass bottle molding die.
  • a detection unit for detecting the release agent is provided.
  • the detection unit detects the release agent, it is possible to more accurately detect the spray abnormality related to the release agent having a high viscosity.
  • the detection unit is installed in a pump that supplies the release agent to a spray nozzle of the release agent spraying device, and the pump sucks the release agent with a working fluid and the release agent.
  • the detection unit may detect a volume change of the release agent in the syringe.
  • the detection unit can detect the release agent spray abnormality more accurately by detecting the volume change of the release agent as an element having a large change in the syringe at the time of spraying the release agent.
  • the syringe may have a port through which the working fluid passes and a release agent storage portion in which the release agent is stored.
  • the detection unit can detect an abnormality in spraying of the release agent, for example, by detecting a change in volume of the release agent in the release agent storage unit.
  • the detection unit may detect the presence or absence of abnormal spraying of the release agent by detecting a change in the liquid level position of the release agent in the release agent storage unit.
  • the detection unit can detect a spraying abnormality of the release agent with a simple configuration that detects a change in the liquid level position of the release agent.
  • the detection unit may include an optical sensor that detects light.
  • the optical sensor of the detection unit can detect the release agent in a non-contact manner. Thereby, the release agent having a high viscosity does not stick to the optical sensor.
  • the syringe may include a light transmitting part, and the optical sensor may detect the release agent through the light transmitting part.
  • This structure can more reliably prevent the optical sensor from coming into contact with the release agent. Moreover, it is not necessary to embed the optical sensor in the syringe, and the degree of freedom of the installation position of the optical sensor in the syringe can be further increased.
  • the syringe may have an inner diameter of 3.0 mm to 6.0 mm.
  • the release agent remaining on the inner peripheral surface (wall surface) of the syringe after the release of the release agent is caught by surface tension to form a bridge (air It will be in a state of being involved). If suction is performed in this state, the detection unit misidentifies the bridge portion, not the original liquid level, as the liquid level, and the syringe cannot suck a predetermined amount and cannot perform quantitative discharge at the next discharge. In addition, the release agent having a high viscosity sticks to the inner peripheral surface of the syringe, and it is difficult to move it smoothly in the syringe, and it becomes easier to form a bridge.
  • the fluidity of the release agent in the syringe can be increased, the smooth movement of the release agent in the syringe accompanying the drive of the pump can be realized, and the bridge is formed. Can also be suppressed. As a result, the release agent can be detected more accurately by the detection unit. Moreover, when the internal diameter of a syringe exceeds 6.0 mm, the change of the flow rate of a mold release agent with respect to the liquid level change of the mold release agent in a syringe will become large.
  • inhaled in a syringe and the liquid level position of a mold release agent when a mold release agent is discharged from a syringe become small.
  • the syringe has a port through which the working fluid passes, and a release agent storage portion in which the release agent is stored, and a critical surface on an inner peripheral surface of the release agent storage portion of the syringe
  • the tension may be 30 mN / m or less.
  • the wettability of the release agent with respect to the inner peripheral surface of the syringe can be further reduced.
  • the release agent in the syringe is more smoothly transferred as the pump is driven. Therefore, the state change detection of the release agent by the detection unit can be performed more accurately.
  • the pump has a piston disposed in the syringe, and the piston is moved in an advance / retreat direction along the axial direction of the syringe by the working fluid, and the release agent is sucked by the advance / retreat movement. And may discharge.
  • the entire release agent in the syringe including the release agent near the inner peripheral surface (wall surface) of the syringe can be smoothly transferred as the piston moves.
  • the detection unit may detect the position of the piston in the forward / backward direction.
  • the detection unit can detect more accurately whether or not the release agent is being discharged from the syringe as set by detecting the movement of the piston.
  • the detection unit may include a probe that is displaced in the advance / retreat direction in conjunction with the advance / retreat movement of the piston.
  • the detection unit can detect the movement of the piston through the displacement of the probe, that is, the spraying condition of the release agent.
  • the probe may be disconnected from the piston and maintained at a certain position when the advance displacement amount of the piston at the time of discharging the release agent is equal to or greater than a predetermined value.
  • the allowable value of the probe movement amount is less than the maximum movement amount of the piston. For this reason, the sensitivity of the probe (the gain of the probe output with respect to the movement of the piston) can be increased. Thereby, the detection part can detect the state change of the mold release agent in the syringe more accurately.
  • At least a part of the probe may be accommodated in the syringe.
  • the probe is protected by the syringe. Therefore, it can suppress more reliably that the detection value in a detection part becomes an abnormal value because a probe contacts a foreign material.
  • the release agent supply monitoring device may further include a stopper for restricting the displacement of the piston in the advance / retreat direction to a predetermined range.
  • the movement amount of the piston does not need to be too large.
  • the allowable value of the movement amount of the probe may be small.
  • the sensitivity of the probe can be increased.
  • the detection part can detect the state change of the mold release agent in the syringe more accurately.
  • inhalation more than setting is performed by pressure abnormality etc., damage to a detection part can be prevented.
  • a release agent spraying device includes the release agent supply monitoring device, a pump that supplies the release agent, and a discharge from the pump. A spray nozzle for spraying the released release agent.
  • FIG. 5A is a view showing the suction operation of the release agent pump
  • FIG. 5B is a view showing the discharge operation of the release agent pump. It is a figure which shows the principal part of one modification of this invention.
  • FIG. 8A is a view showing the main part of the modification shown in FIG. 7, and shows a state where the piston is located at the upper limit position.
  • FIG. 8B is a diagram showing the main part of the modification shown in FIG. 7, and shows a state where the piston is located at the lower limit position.
  • FIG. 1 is a schematic plan view of a glass bottle manufacturing apparatus 1 according to an embodiment of the present invention, and a part thereof is omitted and simplified.
  • FIG. 2 is a schematic side view of the glass bottle manufacturing apparatus 1, in which a part is shown in cross section and a part is omitted.
  • FIG. 3 is a schematic side view of the release agent spraying apparatus 3 of the glass bottle manufacturing apparatus 1.
  • FIG. 4 is a schematic side view of the periphery of the release agent pump 30 of the release agent spraying apparatus 3, and a part thereof is shown in cross section.
  • glass bottle manufacturing apparatus 1 (hereinafter also simply referred to as manufacturing apparatus 1) forms gob 101 (molten glass lump) into parison 102, and further, parison 102 is converted into a glass bottle. 103.
  • the gob 101 is supplied to the manufacturing apparatus 1 from a gob supply mechanism (not shown). Further, in the present embodiment, the manufacturing apparatus 1 can simultaneously mold two gobs 101 for each section 2 into the glass bottle 103. In addition, some manufacturing apparatuses 1 can form one, three, and four gobs 101 for each section 2 into the glass bottle 103 at the same time, and the number that can be simultaneously formed in one section is not limited to two.
  • the manufacturing apparatus 1 has a plurality of sections 2 and a release agent spraying apparatus 3.
  • the sections 2 are provided, for example, 8 to 12, and are arranged at substantially equal intervals along a predetermined arrangement direction A1.
  • the total length of these sections 2 in the arrangement direction A1 is about 6 m to 8 m.
  • Each section 2 has a rough mold part 5, a mouth mold part 6, and a finishing mold part 7.
  • the rough mold portion 5 is used to form the gob 101 into the parison 102 in cooperation with the mouth mold portion 6.
  • the rough mold part 5 is supplied (filled) with the gob 101 from the above-described gob supply mechanism.
  • the rough mold portion 5 has two rough molds 8 and a rough mold opening / closing mechanism (not shown).
  • Each rough mold 8 has a pair of split molds 8a and 8b facing each other. These split molds 8a and 8b are combined with each other to form a cavity 8c for filling the gob 101.
  • the pair of split molds 8a and 8b of each coarse mold 8 is opened and closed by a coarse mold opening / closing mechanism (not shown).
  • the mouth mold 9 of the mouth mold portion 6 is disposed on the lower surface of the rough mold 8.
  • the mouth mold portion 6 is provided for molding the mouth portion 103 a from the gob 101. Further, the mouth mold 6 is configured to transfer the parison 102 molded by the rough mold 8 to the finishing mold 7.
  • the mouth part 6 has two mouth molds 9, a mouth holder 10 that supports these mouth molds 9, a rotary shaft 11 to which the mouth holder 10 is attached, and a mouth opening / closing mechanism (not shown). is doing.
  • Each mouth mold 9 has a pair of semi-cylindrical split molds 9a, 9b facing each other, and these split molds 9a, 9b are combined with each other to form a cylindrical mouth mold 9. Yes.
  • the split molds 9a and 9b are appropriately switched between an open state separated from each other and a closed state closed from each other by the operation of an opening / closing mechanism (not shown).
  • an opening / closing mechanism not shown.
  • the mouth holder 10 is an arm member formed in an L shape in this embodiment.
  • the base end of the mouth holder 10 is attached to a horizontally extending rotary shaft 11, and the mouth holder 10 and the mouth die 9 can turn around the central axis of the rotary shaft 11 by a rotating mechanism (not shown). is there.
  • the mouth mold 9 reciprocates between a position below the rough mold 8 (position in FIG. 1) and a position above the finishing mold portion 7.
  • the finishing mold part 7 has two finishing molds 12, two bottom molds 13, and a finishing mold opening / closing mechanism (not shown).
  • Each finishing mold 12 molds the glass bottle 103 by molding a part of the parison 102 excluding the mouth 103a in cooperation with the corresponding bottom mold 13.
  • Each finishing mold 12 has a pair of split molds 12a and 12b facing each other. The pair of split molds 12a and 12b of the finishing mold 12 are opened and closed by a finishing mold opening / closing mechanism. The finished mold 12 is formed by combining these split molds 12a and 12b.
  • the inner surface of the finishing die 12 and the upper surface of the bottom die 13 form a cavity 12c into which a portion other than the mouth portion 103a of the parison 102 is inserted.
  • a coating layer is formed on the inner surface of the finishing die 12 and the upper surface of the bottom die 13 by carbon coating or the like.
  • a release agent L1 is periodically applied to the inner surface by the spray device 3. The mold release agent L1 is for making it easy to release the glass bottle 103 from the finishing mold 12 and the bottom mold 13.
  • the glass bottle 103 is taken out from the finishing mold 12 by a take-out arm (not shown).
  • the mold release agent L1 for ensuring the mold release property (ease of separation) between the finishing mold 12 and the glass bottle 103 is applied between the molding processes of the glass bottle 103.
  • a release agent spraying device 3 is used.
  • the release agent spraying device 3 is also simply referred to as a spraying device 3.
  • One spraying device 3 is provided in the plurality of sections 2 with respect to the finishing mold part 7. That is, the release agent L ⁇ b> 1 is sprayed from one spraying device 3 to all finishing mold parts 7.
  • the configuration of the release agent spray on the rough mold portion 5 and the mouth mold portion 6 will not be described.
  • the release agent spray on the rough mold portion 5 and the mouth mold portion 6 is performed with the spray device 3. You may carry out by the spraying apparatus of the same structure.
  • the release agent L1 applied by the spraying device 3 mineral oil containing graphite particles as a solid lubricant can be exemplified.
  • the color of the release agent L1 is black.
  • the viscosity when a # 4LVL spindle is rotated for 30 seconds with a B-type viscometer according to the ASTM-D2196 standard at a measurement temperature of 25 ° C. is 1000 cps or less.
  • the spraying device 3 is configured to apply the release agent L1 to at least a part of the inner surface of the finishing mold 12 and the bottom mold 13 where the cavity 12c is formed.
  • the spray device 3 includes a transport mechanism 15, a nozzle 16 that sprays the release agent L ⁇ b> 1, a displacement mechanism 17 that displaces the nozzle 16, and a release agent supply unit 18 that supplies the release agent L ⁇ b> 1 to the nozzle 16. , A control unit 19 that controls the transport mechanism 15, the displacement mechanism 17, and the release agent supply unit 18, and a release agent supply monitoring device 50.
  • the transport mechanism 15 is provided to displace the nozzle 16, the displacement mechanism 17, the release agent supply unit 18, and the control unit 19 along the arrangement direction A1.
  • the conveyance mechanism 15 arrange
  • the transport mechanism 15 includes a rail 20 extending along the arrangement direction A1, a base member 21 that moves on the rail 20, and a drive mechanism (not shown) that provides the base member 21 with a driving force in the arrangement direction A1. Z).
  • a displacement mechanism 17, a release agent supply unit 18, and a control unit 19 are installed on the base member 21.
  • the nozzle 16 is used for spraying the release agent L1.
  • the nozzle 16 is formed in an elongated rod shape.
  • the same number of nozzles 16 as the number of finishing dies 12 in one section 2 are provided, and two nozzles 16 are provided in this embodiment.
  • Each nozzle 16 is formed to a length that allows at least the tip of the nozzle 16 to be inserted into the cavity 12c.
  • Each nozzle 16 may spray the release agent L1 while ascending, may spray the release agent L1 while descending, or after being inserted into the cavity 12c, the nozzle 16 is stopped and released.
  • the mold L1 may be sprayed.
  • Spray nozzles 16 a are formed at the tip and middle of the nozzle 16.
  • the diameter of the spray port 16a is set to about 1 mm or less, for example.
  • the mold release agent L1 is sprayed from the spray port 16a so as to form, for example, full cone spray patterns B1 and B2.
  • each nozzle 16 is fixed to a hollow shaft-like manifold 22.
  • a passage for the release agent L1 is formed in the manifold 22, and the release agent L1 passes through the passage in the nozzles 16 through the manifold 22 and is sprayed from the corresponding spray ports 16a.
  • the nozzle 16 When the release agent is sprayed by the nozzle 16, the nozzle 16 may be displaced up and down by the displacement mechanism 17 with respect to the finishing mold 12, or may be stationary.
  • the displacement mechanism 17 is used for displacing the nozzle 16 with respect to the finishing mold 12 and maintaining the position of the nozzle 16.
  • the displacement mechanism 17 is formed using, for example, a multi-joint robot such as a six-axis robot.
  • the displacement mechanism 17 is not particularly limited as long as at least the nozzle 16 can be taken in and out of the cavity 12c of the finishing die 12.
  • a manifold 22 is fixed to the distal end portion of the displacement mechanism 17. As a result, the manifold 22 and the nozzle 16 are displaced integrally with the distal end portion of the displacement mechanism 17.
  • the release agent supply unit 18 is provided to supply the release agent L1 to the nozzle 16 via the manifold 22.
  • the release agent supply unit 18 includes a release agent tank 28, a release agent pump 30, and a release agent supply monitoring device 50.
  • the compressed air is supplied from a compressed air supply source 26 including a compressor or the like (not shown) installed at a position away from the release agent supply unit 18 to a release agent tank 28 and a regulator 35 described later of the release agent pump 30. Supplied.
  • a compressed air supply source 26 including a compressor or the like (not shown) installed at a position away from the release agent supply unit 18 to a release agent tank 28 and a regulator 35 described later of the release agent pump 30. Supplied.
  • the release agent tank 28 is a tank in which the release agent L1 is stored.
  • the release agent tank 28 is connected to the compressed air supply source 26 via the regulator 27.
  • the air pressure adjusted by the regulator 27 is acting on the release agent L1 in the release agent tank 28.
  • the release agent pump 30 is provided to supply the release agent L1 toward the nozzle 16 at a predetermined pressure.
  • the release agent pump 30 is a positive displacement pump, which is a kind of reciprocating pump.
  • the release agent pump 30 sucks and discharges the release agent L1 using the compressed air supplied from the compressed air supply source 26 as a working fluid.
  • the release agent pump 30 includes a check valve 31, a relay pipe 32, an on-off valve 33, a syringe 34, and a regulator 35.
  • the check valve 31 is connected to the release agent tank 28 and the relay pipe 32. Although the check valve 31 allows the release agent L1 to move from the release agent tank 28 to the relay pipe 32, the check valve regulates the backflow of the release agent L1 from the relay pipe 32 to the release agent tank 28. It is.
  • the relay pipe 32 is a pipe connecting the check valve 31 (release agent tank 28), the syringe 34, and the nozzle 16 (hose 36).
  • the relay pipe 32 is a T pipe, for example, and has three ports, and a check valve 31, a syringe 34, and an on-off valve 33 are connected to these three ports, respectively.
  • the on-off valve 33 is, for example, a needle valve, and can be switched between a fully open state and a fully closed state by being given predetermined pilot air.
  • the on-off valve 33 is connected to the manifold 22 via, for example, a flexible hose 36.
  • the release agent L1 that has passed through the on-off valve 33 reaches the nozzle 16 through the hose 36 and the manifold 22, and is sprayed from the spray port 16a of the nozzle 16.
  • the syringe 34 alternatively performs an operation of sucking the release agent L1 by compressed air and an operation of discharging the release agent L1.
  • the syringe 34 is a member formed in an elongated cylindrical shape, and the mold release agent L1 and compressed air are introduced therein.
  • the syringe 34 is supplied with both high-pressure compressed air and a high-pressure release agent L1. Further, the syringe 34 can discharge the release agent L1 in the syringe 34 evenly by the operation of the compressed air, so that a more even amount of the release agent can be applied to the release agent spraying target portion of the finishing die 7. It is important to apply L1.
  • the syringe 34 is arrange
  • the syringe 34 is optically monitored by the release agent supply monitoring device 50 for the state of the release agent L1. For this reason, the syringe 34 is formed with the material which has translucency. That is, in this embodiment, the whole syringe 34 is a translucent part which has translucency.
  • it is preferable that the inner peripheral surface 34a of the syringe 34 has low wettability of the release agent L1.
  • the volume change of the release agent L1 in the syringe 34 that is, the discharge amount of the release agent L1 in one release agent spraying operation of the release agent pump 30 is as small as about 0.3 g.
  • critical surface tension (gamma) c in the internal peripheral surface 34a (The internal peripheral surface of the mold release agent accommodating part 38 mentioned later) of the syringe 34 is preferable is 30 mN / m or less, and it is more preferable that it is 25 mN / m or less.
  • a material of the syringe 34 that is preferable for use in the above-described environment a material that is a transparent tube and excellent in chemical resistance and pressure resistance is preferable.
  • fluororesins such as PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin) are particularly preferable, and other examples include silicone resins.
  • the syringe 34 is formed in a cylindrical shape that extends straight, and in the present embodiment, extends vertically.
  • the inner diameter D1 of the syringe 34 is preferably 3.0 mm to 6.0 mm. More specifically, the lower limit of the inner diameter D1 of the syringe 34 is preferably 4.0 mm or less, and more preferably 3.0 mm.
  • the upper limit of the inner diameter D1 of the syringe 34 is preferably 6.0 mm or less, and more preferably 5.0 mm.
  • the syringe 34 has a release agent port 37, a release agent storage portion 38, a compressed air storage portion 39, and a compressed air port 40.
  • the release agent port 37 is a port through which the release agent L1 flows in and out, and is connected to the relay pipe 32.
  • the release agent port 37 is disposed at the lower end of the syringe 34.
  • the release agent port 37 is continuous with the release agent accommodating portion 38.
  • the release agent container 38 is a portion where the release agent L1 is stored.
  • the upper limit position P ⁇ b> 1 of the release agent accommodating portion 38 is set closer to the compressed air port 40.
  • the upper limit position P1 is the highest position of the liquid level L1a (upper surface) when the release agent L1 is sucked into the syringe 34.
  • the lower limit position P4 of the release agent accommodating portion 38 is set closer to the release agent port 37.
  • the lower limit position P4 is the position of the liquid level L1a when the discharge of the release agent L1 from the syringe 34 to the nozzle 16 is completed, and is the lowest position of the release agent L1 in the syringe 34.
  • the lower limit position P4 is a position where the release agent L1 is always present at least at this position when no abnormality occurs in the release agent pump 30.
  • the discharge amount of the release agent L1 in one release agent spraying operation of the release agent pump 30 is as small as about 0.3 g.
  • the distance between the upper limit position P1 and the lower limit position P4 is actually as small as about several tens of millimeters. In the case where the inner diameter D1 of the syringe 34 is 6.0 mm, the distance (liquid level fluctuation amount) between the upper limit position P1 and the lower limit position P4 is about 10 mm.
  • the compressed air port 40 is a port through which compressed air as a working fluid passes, and is connected to the compressed air supply source 26 via a 90-degree elbow 41 and a regulator 35, for example.
  • the compressed air port 40 is disposed at the upper end of the syringe 34.
  • the compressed air port 40 is continuous with the compressed air accommodating portion 39.
  • the compressed air accommodating part 39 is a part where compressed air is stored.
  • a part of the compressed air storage unit 39 is also a release agent storage unit 38.
  • the lower limit position of the compressed air storage portion 39 when the maximum amount of the release agent L1 is stored in the release agent storage portion 38 is the same as the upper limit position P1. Further, the lower limit position of the compressed air storage unit 39 when the discharge operation of the release agent L1 from the release agent storage unit 38 to the nozzle 16 is completed is the same as the lower limit position P4.
  • the regulator 35 is provided to adjust the pressure of the compressed air supplied from the compressed air supply source 26 into the syringe 34.
  • the regulator 35 includes, for example, a pressure increasing valve, an open valve that releases a certain amount of compressed air to the atmosphere, and an electromagnetic solenoid that opens and closes the open valve, and is supplied with compressed air by receiving a predetermined electrical signal.
  • This is an electropneumatic regulator that selectively performs the operation of adjusting the pressure of the compressed air from the source 26 and the operation of releasing at least a part of the compressed air to the atmosphere.
  • the regulator 35 is controlled by the control unit 19.
  • the control unit 19 has a configuration for outputting a predetermined output signal based on a predetermined input signal, and can be formed using, for example, a programmable controller (PLC).
  • the controller 19 may be formed using a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the control unit 19 is configured to control the displacement operation of the nozzle 16 and the operation of supplying the release agent L1 from the release agent pump 30 to the nozzle 16 (spraying operation of the nozzle 16).
  • the spray control of the release agent L1 from the nozzle 16 to the finishing mold part 7 includes control of the spray amount itself from the nozzle 16, control of the ascending / descending speed of the nozzle 16 with the spray amount fixed, and nozzle 16 Can be performed by controlling the spraying timing of the release agent L1.
  • the desired application can also be achieved by on / off control of the spray of the release agent L1 from the nozzle 16.
  • the control unit 19 is connected to the transport mechanism 15, the displacement mechanism 17, the opening / closing valve 33 of the release agent pump 30, and the release agent discharge regulator 35. And controls the release agent pump 30.
  • the control unit 19 gives a predetermined command signal to the transport mechanism 15 to drive the electric motor of the transport mechanism 15 and arranges the transport mechanism 15 and the nozzles 16 at predetermined positions in the arrangement direction A1. Further, the control unit 19 gives a predetermined command signal to the displacement mechanism 17 to drive the electric motor of the displacement mechanism 17, and the nozzle 16 together with the distal end portion of the displacement mechanism 17 is directed to the finish mold portion 7 to be sprayed. Displace.
  • control unit 19 controls supply of compressed air to the syringe 34 and discharge of compressed air from the syringe 34 by controlling the regulator 35.
  • the control unit 19 controls the opening / closing operation of the opening / closing valve 33. Accordingly, the control unit 19 controls the supply of the release agent L1 from the release agent pump 30 to the nozzle 16.
  • the control unit 19 closes the on-off valve 33 and controls the regulator 35, whereby the compressed air storage unit of the syringe 34 is controlled.
  • the air pressure in 39 is made lower than the pressure of the regulator 27 that adjusts the internal pressure of the release agent tank 28 (compressed air is released from the regulator 35).
  • the compressed air in the compressed air accommodating portion 39 of the syringe 34 is released to the atmosphere through the regulator 35, and the volume of the compressed air in the syringe 34 is reduced.
  • the release agent L1 from the release agent tank 28 pushes up the valve body 31a of the check valve 31 and enters the release agent accommodating portion 38 of the syringe 34 through the relay pipe 32.
  • the control unit 19 controls the regulator 35 to adjust the air pressure in the compressed air storage unit 39 of the syringe 34 to the internal pressure of the release agent tank 28.
  • the pressure is set to be higher than the pressure 27 (the release of compressed air from the regulator 35 is stopped). Thereby, the valve body 31a of the check valve 31 is closed, and the inflow of the release agent L1 into the syringe 34 is stopped.
  • the control unit 19 opens the on-off valve 33 as shown in FIGS. 3 and 5B. Thereby, the compressed air whose pressure is adjusted by the regulator 35 pushes out the release agent L1 in the syringe 34. As a result, the release agent L1 reaches the nozzle 16 via the relay pipe 32, the on-off valve 33, the hose 36, and the manifold 22, and is sprayed from the spray port 16a. When the upper end position of the release agent L1 in the syringe 34 reaches the lower limit position P4, the control unit 19 closes the on-off valve 33. Thereby, spraying of the release agent L1 from the release agent pump 30 is completed.
  • a release agent supply monitoring device 50 (hereinafter, also simply referred to as a monitoring device 50) is provided in order to detect the presence / absence of abnormality in the release agent spray device 3. ing.
  • the release agent supply monitoring device 50 includes a detection unit 51 and a control unit 19. That is, the control unit 19 is a control unit of the spray device 3 and is also an element of the release agent supply monitoring device 50.
  • the detection unit 51 is configured to detect the release agent L1 in order to confirm the presence or absence of spray abnormality of the release agent L1 in the release agent spraying device 3.
  • the detection unit 51 is installed in the release agent pump 30 that supplies the release agent to the nozzle 16.
  • the detection unit 51 detects a change in the volume of the release agent L1 in the syringe 34. More specifically, the detection unit 51 detects the presence or absence of a spray abnormality of the release agent L1 by detecting a change in the position of the liquid level L1a of the release agent L1 in the release agent storage unit 38 of the syringe 34. To do.
  • the detection unit 51 includes optical sensors 52 and 53 that detect light.
  • the optical sensors 52 and 53 are fixed to the outer periphery of the syringe 34.
  • Each optical sensor 52, 53 has a light receiving portion. Then, each of the optical sensors 52 and 53 outputs a signal corresponding to the intensity of light detected by the light receiving unit to the control unit 19 as a detection signal.
  • Each of the optical sensors 52 and 53 only needs to output a signal corresponding to the intensity of light detected by the light receiving unit as a detection signal, and the specific principle is not limited.
  • the optical sensor 52 is installed in the upper detection position P2 in the vicinity of the upper limit position P1 and below the upper limit position P1, and when the release agent L1 exists at the upper detection position P2, the release agent L1. A different detection signal is output when the signal is not present at the upper detection position P2.
  • the optical sensor 53 is installed at the lower detection position P3 in the vicinity of the lower limit position P4 and above the lower limit position P4, and when the release agent L1 is present at the lower detection position P3, the mold release Different detection signals are output when the agent L1 is not present at the lower detection position P3.
  • the upper detection position P2 and the lower detection position P3 are arranged between the upper limit position P1 and the lower limit position P4. This is a countermeasure against the formation of a concave meniscus by the interaction of the release agent L1 with the syringe 34 at the position of the liquid level L1a that is the upper end of the release agent L1 in the syringe 34.
  • the upper detection position P2 and the lower detection position P3 between the upper limit position P1 and the lower limit position P4, the influence of the meniscus due to the interaction between the release agent L1 and the syringe 34 can be avoided.
  • the optical sensors 52 and 53 detect the release agent L1 in a non-contact manner through the syringe 34 formed of a light transmitting part.
  • this embodiment demonstrates the structure which detects the mold release agent L1 using the optical sensors 52 and 53, it may not be this way.
  • a sensor having a structure in which the detection signal differs depending on the presence or absence of the release agent L1, such as a magnetic sensor or a thermal sensor, may be used instead of the optical sensors 52 and 53.
  • an abnormality in which the spray amount of the release agent L1 from the spray port 16a of the nozzle 16 deviates from a design value can be exemplified.
  • this abnormality (1) spraying caused by the failure of the compressed air supply source 26, the on-off valve 33, the regulators 35, 27, the check valve 31, or the breakage of the release agent L1 or the compressed air piping Release due to pressure change, (2) change in spraying time due to malfunction of on-off valve 33, (3) change in release agent temperature (viscosity) due to temperature change, and (4) clogging of spray port 16a of nozzle 16.
  • the change of the spray area of agent L1 can be illustrated.
  • an abnormality that occurs in the spray device 3 is detected by the monitoring device 50. More specifically, when a release agent discharge abnormality by the syringe 34 of the release agent pump 30 occurs, the liquid of the release agent L1 is started after the release operation of the release agent L1 by the release agent pump 30 is started. It is conceivable that the surface L1a does not reach the lower detection position P3 within a predetermined time. Further, when a release agent suction abnormality by the syringe 34 of the release agent pump 30 occurs, after the release operation of the release agent L1 by the release agent pump 30 starts, the liquid level L1a of the release agent L1 is predetermined. It is conceivable that the upper detection position P2 is not reached in time.
  • the control unit 19 detects such an abnormality through the presence or absence of detection of the release agent L1 by the optical sensors 52 and 53.
  • the detection unit 51 detects the release agent L1, so that the spray abnormality related to the release agent L1 with high viscosity can be detected more accurately.
  • the detection unit 51 detects the volume change of the release agent L1 in the syringe 34. According to this configuration, the detection unit 51 detects the spraying abnormality of the release agent L1 more accurately by detecting the volume change of the release agent L1 as an element having a large change in the syringe 34 when the release agent is sprayed. it can. More specifically, the detection unit 51 can detect a spray abnormality of the release agent L1 by detecting a volume change of the release agent L1 in the release agent storage unit 38.
  • the detection unit 51 detects the presence or absence of a spray abnormality of the release agent L1 by detecting a change in the position of the liquid level L1a of the release agent L1 in the release agent storage unit 38. According to this configuration, the detection unit 51 can detect a spray abnormality of the release agent L1 with a simple configuration that detects a change in the position of the liquid level L1a of the release agent L1.
  • the optical sensors 52 and 53 of the detection unit 51 can detect the release agent L1 in a non-contact manner.
  • the release agent L1 having a high viscosity does not stick to the optical sensors 52 and 53.
  • the optical sensors 52 and 53 detect the release agent L1 through the light transmitting part of the syringe 34. According to this structure, it can prevent more reliably that the optical sensors 52 and 53 contact the mold release agent L1. Moreover, it is not necessary to embed the optical sensors 52 and 53 in the syringe 34, and the degree of freedom of the installation position of the optical sensors 52 and 53 in the syringe 34 can be further increased.
  • the inner diameter D1 of the syringe 34 is set to 3.0 mm to 6.0 mm.
  • the release agent L1 remaining on the inner peripheral surface (wall surface) of the syringe 34 after discharging the release agent L1 is attracted by surface tension to form a bridge (air It will be in a state of being involved). If suction is performed in this state, the bridge portion is mistakenly recognized as the liquid level L1a before the original liquid level L1a comes to the upper limit detection position P2, and the syringe 34 cannot suck a predetermined amount, and is fixed at the next discharge. Discharging becomes impossible.
  • the detection unit 51 can more accurately detect the release agent L1.
  • the detection part 51 can detect the mold release agent L1 more correctly.
  • the syringe 34 is made of PTFE, the inner diameter D1 of the syringe 34 is 3.0 mm to 6.0 mm, and the measurement temperature is 25 degrees below with a B-type viscometer according to the ASTM-D2196 standard of the release agent L1.
  • the spray amount of the release agent L1 per one time is a very small amount of about 0.3 g, a suitable release agent supply monitoring device 50 can be realized.
  • the critical surface tension on the inner peripheral surface 34a of the release agent accommodating portion 38 of the syringe 34 is 30 mN / m or less. According to this configuration, the wettability of the release agent L1 with respect to the inner peripheral surface 34a of the syringe 34 can be further reduced. Thereby, the release agent L1 in the syringe 34 is more smoothly transferred as the release agent pump 30 is driven. Therefore, the state change detection of the release agent L1 by the detection unit 51 can be performed more accurately.
  • the release agent L1 in the path of the release agent L1 from the release agent tank 28 to the nozzle 16, the release agent L1 is once stored in the syringe 34 branched by the relay pipe 32 from this path.
  • the detection unit 51 detects a flow rate change in the syringe 34. According to this structure, the quantity of the mold release agent L1 in the syringe 34 with respect to the flow volume of the mold release agent L1 in the said path
  • the release agent L1 in the path of the release agent L1 from the release agent tank 28 to the nozzle 16 is directly measured without providing a branch path, the release agent with respect to the measured flow rate of the release agent L1.
  • the capacity of the release agent L1 in the tank 28 is large, and as a result, it is difficult to accurately measure the release agent flow rate.
  • the release agent supply monitoring device 50 can more accurately detect the spray abnormality of the release agent L1. Thereby, the spray abnormality of the mold release agent L1 from the spray nozzle 16 to the finishing mold
  • a block 55 that separates the release agent L ⁇ b> 1 from the compressed air may be provided in the syringe 34.
  • the block 55 is a columnar member having a cylindrical outer peripheral surface similar to the shape of the inner peripheral surface 34 a of the syringe 34.
  • a magnetic sensor is installed at a place where the optical sensors 52 and 53 are arranged instead of the optical sensors 52 and 53, and a detection signal of the magnetic sensor is sent to the control unit 19. It may be output.
  • FIG. 7 is a schematic side view of a release agent spraying apparatus 3 according to still another modification
  • a release agent pump 30A is used instead of the release agent pump 30, and the monitoring device Instead of 50, a monitoring device 50A may be used.
  • FIG. 8A is a view showing the main part of the modification shown in FIG. 7, and shows a state where the piston 56 is located at the upper limit position P1A.
  • FIG. 8B is a diagram showing the main part of the modification shown in FIG. 7, and shows a state where the piston 56 is located at the lower limit position P4A.
  • the release agent pump 30A includes a check valve 31, a relay pipe 32A, an on-off valve 33, a syringe 34A, a piston 56, And a regulator 35.
  • the relay pipe 32A is a pipe that connects the check valve 31, the syringe 34A, and the on-off valve 33, and is integrally formed with the syringe 34A in this modification.
  • a check valve 31, a syringe 34A, and an on-off valve 33 are connected to the three ports of the relay pipe 32A, respectively.
  • the syringe 34A selectively performs an operation of sucking the release agent L1 by compressed air and an operation of discharging the release agent L1.
  • the syringe 34A is a member formed in a hollow shaft shape, and the release agent L1 and compressed air are introduced into the syringe 34A.
  • the syringe 34A is supplied with both high-pressure compressed air and a high-pressure release agent L1.
  • the state of the release agent L1 of the syringe 34A is monitored by the release agent supply monitoring device 50A. In this embodiment, since the release agent L1 is sucked and discharged using the piston 56, the wettability of the inner peripheral surface 34aA of the syringe 34A is not a big problem.
  • the syringe 34A has an L-shaped space formed therein.
  • the syringe 34A has a release agent port 37A, a release agent storage portion 38A, a compressed air storage portion 39A, and a compressed air port 40A.
  • the release agent port 37A is a port through which the release agent L1 passes, and is connected to the relay pipe 32A.
  • the release agent port 37A is disposed at the lower end of the syringe 34A.
  • the release agent port 37A is continuous with the release agent accommodating portion 38A.
  • the release agent accommodating portion 38A is a portion where the release agent L1 is stored.
  • the upper limit position P1A of the release agent container 38A is set closer to the compressed air port 40A.
  • the upper limit position P1A is the highest position of the liquid level when the release agent L1 is sucked into the syringe 34A.
  • the lower limit position P4A of the release agent container 38A is set closer to the release agent port 37A.
  • the lower limit position P4A is a liquid level position at the time when the discharge of the release agent L1 from the syringe 34A to the nozzle 16 is completed, and is the lowest position of the release agent L1 in the syringe 34A.
  • the discharge amount of the release agent L1 in one release agent spraying operation of the release agent pump 30A is as small as about 0.3 g.
  • the distance between the upper limit position P1A and the lower limit position P4A is as small as about several tens of millimeters.
  • Compressed air port 40A is a port through which compressed air passes, and is connected to compressed air supply source 26 via regulator 35.
  • the compressed air port 40A is disposed on the side surface of the syringe 34A.
  • the compressed air port 40A is continuous with the compressed air accommodating portion 39A.
  • the compressed air accommodating portion 39A is a portion where compressed air is stored.
  • the piston 56 is a cylindrical member disposed in the syringe 34A.
  • the piston 56 moves in the advance / retreat direction A2 along the axial direction of the syringe 34A by the compressed air as the working fluid, and sucks and discharges the release agent L1 by this advance / retreat movement.
  • the piston 56 moves from the lower limit position P4A to the upper limit position P1A in response to the pressure from the release agent L1 while the compressed air is released from the regulator 35.
  • the piston 56 discharges the release agent L1 in the syringe 34A by being supplied with compressed air from the regulator 35. In this manner, the piston 56 moves in the advance / retreat direction A2 along the axial direction of the syringe 34A by the compressed air, and the release agent L1 is sucked and discharged by the advance / retreat movement.
  • An annular seal member 57 such as an O-ring is attached to the outer peripheral portion of the piston 56, and seals between the outer peripheral portion of the piston 56 and the inner peripheral surface 34aA of the syringe 34A in a liquid-tight and air-tight manner. .
  • the piston 56 has a displaceable region restricted between the upper limit position P1A and the lower limit position P4A in the syringe 34A.
  • an upper limit stopper 58 and a lower limit stopper 59 are provided in the syringe 34A.
  • the stoppers 58 and 59 restrict the displacement of the piston 56 in the advance / retreat direction A2 to a predetermined range.
  • the upper limit stopper 58 is installed at a position corresponding to the position of the piston 56 when the liquid level of the release agent L1 reaches the upper limit position P1A.
  • the upper limit stopper 58 is a small piece protruding from the inner peripheral surface 34aA of the syringe 34A, and is formed in an annular shape, for example.
  • the upper limit stopper 58 restricts the piston 56 from being displaced upward by contacting the upper end surface 56 a of the piston 56.
  • the lower limit stopper 59 is installed at a position corresponding to the position of the piston 56 when the liquid level of the release agent L1 reaches the lower limit position P4A.
  • the lower limit stopper 59 is a stepped portion protruding from the inner peripheral surface 34aA of the syringe 34A, and is formed in an annular shape, for example.
  • the lower limit stopper 59 restricts the piston 56 from being displaced downward by contacting the lower end surface 56 b of the piston 56.
  • the drive control of the release agent pump 30A by the control unit 19 is the same as the drive control of the release agent pump 30 by the control unit 19.
  • the release agent supply monitoring device 50 ⁇ / b> A includes a detection unit 51 ⁇ / b> A and a control unit 19.
  • the detection unit 51A is configured to detect the release agent L1 in order to confirm the presence or absence of the spray abnormality of the release agent L1 in the spray device 3.
  • the detector 51 ⁇ / b> A is installed in a release agent pump 30 ⁇ / b> A that supplies a release agent to the nozzle 16.
  • the detection unit 51A detects the volume change of the release agent L1 in the syringe 34A. More specifically, the detection unit 51A detects the position of the piston 56 in the advance / retreat direction A2.
  • the detection unit 51 ⁇ / b> A has a displacement sensor 60.
  • the displacement sensor 60 is installed in the syringe 34A.
  • the displacement sensor 60 is a contact-type displacement meter.
  • the displacement sensor 60 includes a housing 61 and a movable probe 62 supported by the housing 61.
  • the housing 61 is formed in an elongated shaft shape, and is fixed to the upper end portion of the syringe 34A.
  • a part of the needle-shaped probe 62 is accommodated in the housing 61.
  • a moving range in the forward / backward direction A2 is restricted to a predetermined range by a stopper (not shown) provided in the housing 61.
  • a part of the probe 62 protrudes from the housing 61 along the advance / retreat direction A2.
  • a through hole 34b is formed at the upper end of the syringe 34A, and the housing 61 and the probe 62 extend into the syringe 34 through the through hole 34b.
  • the probe 62 is disposed in the syringe 34.
  • the probe 62 is urged toward the piston 56 by a spring (not shown), and the tip of the probe 62 is configured to contact the upper end surface 56 a of the piston 56.
  • the probe 62 In conjunction with the displacement of the piston 56 in the advance / retreat direction A2, the probe 62 is also integrally displaced in the advance / retreat direction A2.
  • a detection signal corresponding to the position of the probe 62 with respect to the housing 61 is output from the displacement sensor 60 to the control unit 19.
  • the resolution of the displacement sensor 60 is as high as about 1 ⁇ m, and as a result, minute nozzle clogging can be detected.
  • the displacement of the probe 62 in the ejection direction A21 is restricted. That is, the probe 62 is released from the connection with the piston 56 and maintained at a fixed position when the advancement displacement amount of the piston 56 at the time of discharging the release agent L1 is equal to or greater than the predetermined value ⁇ x1.
  • the release agent pump 30A and the detection unit 51A are different from the release agent pump 30 and the detection unit 51 in that the detection force (detection value) of the release agent L1 is not affected by the viscosity of the release agent L1. Accuracy). Further, since the diameter of the piston 56 can be made larger than the inner diameter D1 of the syringe 34 of the release agent pump 30, even if the liquid level change amount in the release agent pump 30A and the liquid level change amount in the release agent pump 30 are the same, The discharge amount of the release agent L1 in the release agent pump 30A can be increased. Thereby, the discharge amount of the release agent L1 that can be detected by the detection unit 51A can be made wider.
  • the upper limit position P1A and the upper detection position P2A are set to be the same in the forward / backward direction A2. This is because, unlike the liquid surface of the release agent L1, the lower end surface 56b of the piston 56 is always kept flat, so that a meniscus is formed by the interaction between the release agent L1 and the syringe 34A. This is because there is no need to consider.
  • the lower detection position P3A is arranged at a position advanced from the lower limit position P4A by the upper limit position P1A side ⁇ x2. This is because if the displacement amount of the probe 62 is large, the amount of change in the output from the displacement sensor 60 with respect to the displacement amount of the probe 62 becomes large and the position detection accuracy decreases. This is because the amount of displacement is limited.
  • a predetermined gap ⁇ x2 is provided between the probe 62 and the piston 56.
  • a configuration in which the displacement of the piston 56 is detected using the displacement sensor 60 will be described.
  • a sensor having a structure in which a detection signal differs depending on the displacement of the piston 56 such as a magnetic sensor or an optical sensor may be used instead of the displacement sensor 60.
  • An abnormality that occurs in the spray device 3 is detected by the monitoring device 50A. More specifically, when a release agent discharge abnormality by the syringe 34A of the release agent pump 30A occurs, the lower end surface of the piston 56 is started after the release operation of the release agent L1 by the release agent pump 30A is started. It is conceivable that 56b does not reach the lower detection position P3A within a predetermined time. In addition, when a release agent suction abnormality by the syringe 34A of the release agent pump 30A occurs, after the release operation of the release agent L1 by the release agent pump 30A starts, the lower end surface 56b of the piston 56 remains within a predetermined time. It is conceivable that the upper detection position P2A is not reached. Therefore, in this modification, the control unit 19 detects such an abnormality.
  • the syringe 34A since the piston 56 is provided, the syringe 34A includes the release agent L1 in the vicinity of the inner peripheral surface 34aA (wall surface) of the syringe 34A as the piston 56 moves. The entire mold release agent can be transferred smoothly.
  • the detection unit 51A can detect more accurately whether or not the release agent L1 is discharged from the syringe 34A as set by detecting the movement of the piston 56.
  • the detection unit 51A can detect the movement of the piston 56 through the displacement of the probe 62, that is, the spray state of the release agent L1.
  • the probe 62 is released from the connection with the piston 56 and maintained at the fixed position P3A when the advancement displacement amount of the piston 56 at the time of discharging the release agent L1 is equal to or greater than the predetermined value ⁇ x1.
  • the allowable value of the movement amount of the probe 62 may be less than the maximum movement amount of the piston 56.
  • the sensitivity of the probe 62 (the gain of the output of the probe 62 with respect to the movement of the piston 56) can be increased.
  • 51 A of detection parts can detect the state change of the mold release agent L1 in the syringe 34 more correctly.
  • the probe 62 is accommodated in the syringe 34A. According to this configuration, the probe 62 is protected by the syringe 34A. Therefore, it can suppress more reliably that the detection value in 51 A of detection parts becomes an abnormal value because the probe 62 contacts a foreign material.
  • stoppers 58 and 59 for restricting the displacement of the piston 56 in the advance / retreat direction A2 to a predetermined range are provided.
  • the movement amount of the piston 56 does not need to be too large.
  • the allowable value of the movement amount of the probe 62 may be small.
  • the sensitivity of the probe 62 can be increased.
  • detection part 51A can detect the state change of mold release agent L1 in syringe 34A more correctly.
  • the piston 56 sucks more than the setting due to abnormal pressure in the syringe 34A or the like, it is possible to prevent the detection unit 51A from being damaged.
  • the probe 62 is arranged at a location where the release agent L1 does not exist, so that the detection operation by the displacement sensor 60 can be performed in a state that is not easily affected by the viscosity of the release agent L1. it can.
  • a heater for heat insulation may be provided in a passage or the like through which the release agent L1 passes in the spray device 3.
  • the heater may be an electric heater or may include a heat insulating material.
  • the present invention can be widely applied as a release agent supply monitoring device and a release agent spraying device to a glass bottle mold.
  • Release agent spraying device Coarse mold part (mold) 6 Mouth mold (mold) 7 Finishing mold (mold) 16 Spray nozzle 30, 30A Release agent pump (pump) 34, 34A Syringe 34a Inner peripheral surface 38, 38A Release agent container 40, 40A Compressed air port (port through which working fluid passes) 50, 50A Release agent supply monitoring device 51, 51A Detector 52, 53 Optical sensor 56 Piston 58, 59 Stopper 62 Probe 103 Glass bottle (glass molded product) A2 Advancing and retracting direction D1 Syringe inner diameter L1 Release agent

Abstract

Provided are: a device for monitoring the supplying of a release agent, the device being capable of accurately detecting abnormal spraying of a release agent having a high viscosity; and a device for spraying a release agent onto a glass bottle forming die. A device 50 for monitoring the supplying of a release agent is provided with a detection unit 51. The detection unit 51 detects a release agent L1 to check for abnormal spraying of the release agent L1 in a release agent spraying device 3. The detection unit 51 has optical sensors 52, 53 that generate different results according to whether or not the release agent L1 is detected.

Description

離型剤供給監視装置、および、ガラスびん成形用金型への離型剤噴霧装置Release agent supply monitoring device and release agent spraying device for glass bottle mold
 本発明は、離型剤供給監視装置、および、ガラスびん成形用金型への離型剤噴霧装置に関する。 The present invention relates to a release agent supply monitoring device and a release agent spraying device to a glass bottle molding die.
 工場等において、流体供給装置が用いられる場合がある(例えば、特許文献1参照)。特許文献1に記載の流体供給装置は、シリンジポンプを備えており、このシリンジポンプによって液体が加圧状態で送られる。 A fluid supply device may be used in a factory or the like (for example, see Patent Document 1). The fluid supply apparatus described in Patent Literature 1 includes a syringe pump, and a liquid is sent in a pressurized state by the syringe pump.
 ところで、ガラスびんの製造工程では、通常、ゴブ(高温の溶融状態のガラス塊)が粗型でパリソンに成形される。次いで、パリソンが仕上型に移送されて仕上型において圧縮空気で膨らまされることで最終成形される。これにより、ガラスびんの成形が完了する。粗型および仕上型等の金型においては、潤滑性および離型性が大きく求められ、離型剤(ここでの離型剤は潤滑作用を持つものである)を塗布することが重要である。よって、離型剤は、潤滑性および離型性の低下を防止するため、例えば数十分毎に定期的に金型内面に塗布される必要がある。 By the way, in the glass bottle manufacturing process, a gob (a high-temperature molten glass lump) is usually formed into a parison with a rough mold. Next, the parison is transferred to a finishing mold and inflated with compressed air in the finishing mold to be finally molded. Thereby, the molding of the glass bottle is completed. In molds such as rough molds and finish molds, lubricity and releasability are greatly required, and it is important to apply a mold release agent (the mold release agent here has a lubricating action). . Therefore, the mold release agent needs to be applied to the inner surface of the mold periodically, for example, every few tens of minutes in order to prevent deterioration of lubricity and mold release characteristics.
特許第4957957号明細書Japanese Patent No. 4957957
 離型剤は、通常、粘性が高い。この離型剤がスプレーノズルによって金型内面に噴霧される場合、粘性の高い当該離型剤は、ノズルで目詰まりするおそれがある。ノズルで離型剤が目詰まりすると、適量の離型剤を金型へ噴霧できなくなってしまう。このため、離型剤の噴霧異常を検出できるようにしておくことが、均等な品質のガラスびん製造において重要である。 Release agents are usually highly viscous. When the release agent is sprayed on the inner surface of the mold by the spray nozzle, the release agent having a high viscosity may be clogged by the nozzle. If the release agent is clogged with the nozzle, an appropriate amount of the release agent cannot be sprayed onto the mold. For this reason, it is important to make it possible to detect abnormal spraying of the release agent in the production of glass bottles of uniform quality.
 本発明は、上記の事情に鑑みてなされたものであり、粘性の高い離型剤の噴霧異常をより的確に検出できる離型剤供給監視装置、および、ガラスびん成形用金型への離型剤噴霧装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a release agent supply monitoring device capable of more accurately detecting an abnormal spraying of a highly viscous release agent, and a release to a glass bottle mold It aims at providing an agent spraying device.
 (1)上記課題を解決するために、この発明のある局面に係わる離型剤供給監視装置は、ガラスびん成型用金型への離型剤を噴霧する離型剤噴霧装置における前記離型剤の噴霧異常の有無を確認するために前記離型剤を検出する検出部、を備えている。 (1) In order to solve the above-mentioned problem, a release agent supply monitoring device according to an aspect of the present invention is the release agent in the release agent spraying device for spraying the release agent onto the glass bottle molding die. In order to confirm the presence or absence of spray abnormality, a detection unit for detecting the release agent is provided.
 この構成によると、検出部が離型剤を検出することで、粘性の高い離型剤に関する噴霧異常をより的確に検出できる。 According to this configuration, when the detection unit detects the release agent, it is possible to more accurately detect the spray abnormality related to the release agent having a high viscosity.
 (2)前記検出部は、前記離型剤を前記離型剤噴霧装置の噴霧ノズルへ供給するポンプに設置され、前記ポンプは、作動流体によって前記離型剤を吸引する動作および前記離型剤を吐出する動作を行うシリンジを含み、前記検出部は、前記シリンジにおける前記離型剤の容積変化を検出する場合がある。 (2) The detection unit is installed in a pump that supplies the release agent to a spray nozzle of the release agent spraying device, and the pump sucks the release agent with a working fluid and the release agent. In some cases, the detection unit may detect a volume change of the release agent in the syringe.
 この構成によると、検出部は、離型剤噴霧時においてシリンジにおける変化の大きい要素としての離型剤の容積変化を検出することで、離型剤の噴霧異常をより的確に検出できる。 According to this configuration, the detection unit can detect the release agent spray abnormality more accurately by detecting the volume change of the release agent as an element having a large change in the syringe at the time of spraying the release agent.
 (3)前記シリンジは、前記作動流体が通過するポートと、前記離型剤が溜められる離型剤収容部と、を有している場合がある。 (3) The syringe may have a port through which the working fluid passes and a release agent storage portion in which the release agent is stored.
 この構成によると、検出部は、例えば、離型剤収容部における離型剤の容積変化を検出することで、離型剤の噴霧異常を検出できる。 According to this configuration, the detection unit can detect an abnormality in spraying of the release agent, for example, by detecting a change in volume of the release agent in the release agent storage unit.
 (4)前記検出部は、前記離型剤収容部における前記離型剤の液面位置の変化を検出することで、前記離型剤の噴霧異常の有無を検出する場合がある。 (4) The detection unit may detect the presence or absence of abnormal spraying of the release agent by detecting a change in the liquid level position of the release agent in the release agent storage unit.
 この構成によると、検出部は、離型剤の液面位置の変化を検出する簡易な構成で、離型剤の噴霧異常を検出できる。 According to this configuration, the detection unit can detect a spraying abnormality of the release agent with a simple configuration that detects a change in the liquid level position of the release agent.
 (5)前記検出部は、光を検出する光センサを含む場合がある。 (5) The detection unit may include an optical sensor that detects light.
 この構成によると、検出部の光センサは、離型剤を非接触で検出できる。これにより、粘度の高い離型剤が光センサにこびりつかずに済む。 According to this configuration, the optical sensor of the detection unit can detect the release agent in a non-contact manner. Thereby, the release agent having a high viscosity does not stick to the optical sensor.
 (6)前記シリンジは、透光部を含み、前記光センサは、前記透光部を通して前記離型剤を検出する場合がある。 (6) The syringe may include a light transmitting part, and the optical sensor may detect the release agent through the light transmitting part.
 この構成によると、光センサが離型剤に接触することをより確実に防止できる。また、光センサをシリンジに埋め込む必要がなく、シリンジへの光センサの設置位置の自由度をより高くできる。 This structure can more reliably prevent the optical sensor from coming into contact with the release agent. Moreover, it is not necessary to embed the optical sensor in the syringe, and the degree of freedom of the installation position of the optical sensor in the syringe can be further increased.
 (7)前記シリンジの内径が3.0mm~6.0mmである場合がある。 (7) The syringe may have an inner diameter of 3.0 mm to 6.0 mm.
 この構成によると、シリンジの内径が3.0mm未満であると、離型剤の吐出後にシリンジ内周面(壁面)に残った離型剤が表面張力によって、引っ付き、ブリッジを形成する(エアを巻き込んだ状態になる)。この状態で吸込みを行うと、検出部が本来の液面でなくブリッジ部分を液面と誤認し、シリンジは、所定量を吸込みできず、次の吐出時に定量吐出できなくなる。また、粘性の高い離型剤がシリンジの内周面に粘着してしまい、シリンジ内でスムーズに移動させ難いうえ、よりブリッジを形成し易くなる。一方、シリンジの内径を3.0mm以上にすることで、シリンジ内の離型剤の流動性を高くでき、ポンプの駆動に伴うシリンジ内の離型剤のスムーズな移動を実現でき、ブリッジの形成も抑制できる。その結果、検出部による離型剤の検出をより正確に行える。また、シリンジの内径が6.0mmを超えると、シリンジ内における離型剤の液面変化に対する離型剤の流量の変化が大きくなる。このため、シリンジ内に離型剤が吸い込まれたときの離型剤の液面位置と、シリンジから離型剤が吐出されたときの離型剤の液面位置と、の変化が小さくなる。このため、検出部は、離型剤の状態変化を正確に検出することが難しくなってしまう。すなわち、シリンジの内径を6.0mm以下にすることで、ポンプの駆動に伴うシリンジ内での離型剤の液面変化をより大きくできる。これにより、検出部は、離型剤をより正確に検出できる。 According to this configuration, if the inner diameter of the syringe is less than 3.0 mm, the release agent remaining on the inner peripheral surface (wall surface) of the syringe after the release of the release agent is caught by surface tension to form a bridge (air It will be in a state of being involved). If suction is performed in this state, the detection unit misidentifies the bridge portion, not the original liquid level, as the liquid level, and the syringe cannot suck a predetermined amount and cannot perform quantitative discharge at the next discharge. In addition, the release agent having a high viscosity sticks to the inner peripheral surface of the syringe, and it is difficult to move it smoothly in the syringe, and it becomes easier to form a bridge. On the other hand, by setting the inner diameter of the syringe to 3.0 mm or more, the fluidity of the release agent in the syringe can be increased, the smooth movement of the release agent in the syringe accompanying the drive of the pump can be realized, and the bridge is formed. Can also be suppressed. As a result, the release agent can be detected more accurately by the detection unit. Moreover, when the internal diameter of a syringe exceeds 6.0 mm, the change of the flow rate of a mold release agent with respect to the liquid level change of the mold release agent in a syringe will become large. For this reason, the change of the liquid level position of a mold release agent when a mold release agent is suck | inhaled in a syringe and the liquid level position of a mold release agent when a mold release agent is discharged from a syringe become small. For this reason, it becomes difficult for the detection unit to accurately detect the state change of the release agent. That is, by making the inner diameter of the syringe 6.0 mm or less, the change in the liquid level of the release agent in the syringe accompanying the driving of the pump can be further increased. Thereby, the detection part can detect a mold release agent more correctly.
 (8)前記シリンジは、前記作動流体が通過するポートと、前記離型剤が溜められる離型剤収容部と、を有し、前記シリンジの前記離型剤収容部の内周面における臨界表面張力が30mN/m以下である場合がある。 (8) The syringe has a port through which the working fluid passes, and a release agent storage portion in which the release agent is stored, and a critical surface on an inner peripheral surface of the release agent storage portion of the syringe The tension may be 30 mN / m or less.
 この構成によると、シリンジの内周面に対する離型剤の濡れ性をより低くすることができる。これにより、ポンプの駆動に伴いシリンジ内の離型剤がよりスムーズに移送される。よって、検出部による離型剤の状態変化検出をより的確に行うことができる。 According to this configuration, the wettability of the release agent with respect to the inner peripheral surface of the syringe can be further reduced. Thereby, the release agent in the syringe is more smoothly transferred as the pump is driven. Therefore, the state change detection of the release agent by the detection unit can be performed more accurately.
 (9)前記ポンプは、前記シリンジ内に配置されたピストンを有し、前記ピストンは、前記作動流体によって前記シリンジの軸線方向に沿う進退方向に移動し、この進退移動によって前記離型剤を吸引および吐出する場合がある。 (9) The pump has a piston disposed in the syringe, and the piston is moved in an advance / retreat direction along the axial direction of the syringe by the working fluid, and the release agent is sucked by the advance / retreat movement. And may discharge.
 この構成によると、ピストンが設けられていることにより、ピストンの移動に伴いシリンジの内周面(壁面)付近の離型剤を含めて、シリンジ内の離型剤全体をスムーズに移送できる。 According to this configuration, since the piston is provided, the entire release agent in the syringe including the release agent near the inner peripheral surface (wall surface) of the syringe can be smoothly transferred as the piston moves.
 (10)前記検出部は、前記進退方向における前記ピストンの位置を検出する場合がある。 (10) The detection unit may detect the position of the piston in the forward / backward direction.
 この構成によると、検出部は、ピストンの動きを検出することで、シリンジから離型剤が設定通りに吐出されているか否かを、より正確に検出できる。 According to this configuration, the detection unit can detect more accurately whether or not the release agent is being discharged from the syringe as set by detecting the movement of the piston.
 (11)前記検出部は、前記ピストンの進退移動に連動して前記進退方向に変位するプローブを含む場合がある。 (11) The detection unit may include a probe that is displaced in the advance / retreat direction in conjunction with the advance / retreat movement of the piston.
 この構成によると、検出部は、プローブの変位を通じてピストンの移動、すなわち、離型剤の噴霧状況を検出できる。 According to this configuration, the detection unit can detect the movement of the piston through the displacement of the probe, that is, the spraying condition of the release agent.
 (12)前記プローブは、前記離型剤の吐出時における前記ピストンの進出変位量が所定値以上の際に、前記ピストンとの連結を解除され一定位置に維持される場合がある。 (12) The probe may be disconnected from the piston and maintained at a certain position when the advance displacement amount of the piston at the time of discharging the release agent is equal to or greater than a predetermined value.
 この構成によると、プローブの移動量の許容値は、ピストンの最大移動量未満で済む。このため、プローブの感度(ピストンの移動に対するプローブ出力のゲイン)を高くできる。これにより、検出部は、シリンジ内における離型剤の状態変化を、より正確に検出できる。 ¡According to this configuration, the allowable value of the probe movement amount is less than the maximum movement amount of the piston. For this reason, the sensitivity of the probe (the gain of the probe output with respect to the movement of the piston) can be increased. Thereby, the detection part can detect the state change of the mold release agent in the syringe more accurately.
 (13)前記プローブの少なくとも一部が前記シリンジ内に収容されている場合がある。 (13) At least a part of the probe may be accommodated in the syringe.
 この構成によると、プローブがシリンジによって保護される。よって、プローブが異物に接触することで検出部での検出値が異常値となることをより確実に抑制できる。 プ ロ ー ブ According to this configuration, the probe is protected by the syringe. Therefore, it can suppress more reliably that the detection value in a detection part becomes an abnormal value because a probe contacts a foreign material.
 (14)前記離型剤供給監視装置は、前記進退方向における前記ピストンの変位を所定範囲に規制するためのストッパをさらに備えている場合がある。 (14) The release agent supply monitoring device may further include a stopper for restricting the displacement of the piston in the advance / retreat direction to a predetermined range.
 この構成によると、ピストンの移動量が大きくなりすぎずに済む。このため、プローブの移動量の許容値が小さくて済む。このため、プローブの感度を高くできる。これにより、検出部は、シリンジ内における離型剤の状態変化を、より正確に検出できる。また、圧力異常などにより設定以上の吸込みを行った場合において、検出部の破損を防ぐことができる。 According to this configuration, the movement amount of the piston does not need to be too large. For this reason, the allowable value of the movement amount of the probe may be small. For this reason, the sensitivity of the probe can be increased. Thereby, the detection part can detect the state change of the mold release agent in the syringe more accurately. Moreover, when the suction | inhalation more than setting is performed by pressure abnormality etc., damage to a detection part can be prevented.
 (15)上記課題を解決するために、この発明のある局面に係わるは、離型剤噴霧装置は、前記離型剤供給監視装置と、前記離型剤を供給するポンプと、前記ポンプから吐出された離型剤を噴霧する噴霧ノズルと、を備えている。 (15) In order to solve the above-described problem, according to an aspect of the present invention, a release agent spraying device includes the release agent supply monitoring device, a pump that supplies the release agent, and a discharge from the pump. A spray nozzle for spraying the released release agent.
 この構成によると、離型剤供給監視装置によって、離型剤の噴霧異常をより的確に検出できる。これにより、噴霧ノズルからガラスびん成形用金型への離型剤の噴霧異常をより確実に、かつ早期に見つけることができる。その結果、ガラスびん成形用金型で製造されるガラスびんに製品不良が生じた場合の破棄数を減らすことができる。よって、ガラスびんの歩留まりをより高くできる。 According to this configuration, it is possible to detect the release agent spray abnormality more accurately by the release agent supply monitoring device. Thereby, the spray abnormality of the mold release agent from the spray nozzle to the glass bottle molding die can be detected more reliably and early. As a result, it is possible to reduce the number of discards when a product defect occurs in a glass bottle manufactured with a glass bottle molding die. Therefore, the yield of the glass bottle can be further increased.
 本発明によると、粘性の高い離型剤の噴霧異常をより的確に検出できる。 According to the present invention, it is possible to more accurately detect the spray abnormality of the release agent having a high viscosity.
本発明の一実施形態にかかるガラスびん製造装置の模式的な平面図であり、一部を省略・簡略化して示している。It is a typical top view of the glass bottle manufacturing device concerning one embodiment of the present invention, and a part is omitted and simplified. ガラスびん製造装置の模式的な側面図であり、一部を断面で示しているとともに一部を省略して示している。It is a typical side view of a glass bottle manufacturing apparatus, and has shown a part abbreviate | omitting and showing a part. ガラスびん製造装置の離型剤噴霧装置の模式的な側面図である。It is a typical side view of the mold release agent spraying apparatus of a glass bottle manufacturing apparatus. 離型剤噴霧装置の離型剤ポンプ周辺の模式的な側面図であり、一部を断面で示している。It is a typical side view around a mold release agent pump of a mold release agent spraying device, and a part is shown with a section. 図5(A)は離型剤ポンプの吸込み動作を示す図であり、図5(B)は離型剤ポンプの吐出動作を示す図である。FIG. 5A is a view showing the suction operation of the release agent pump, and FIG. 5B is a view showing the discharge operation of the release agent pump. 本発明の一変形例の主要部を示す図である。It is a figure which shows the principal part of one modification of this invention. さらに別の変形例に係る離型剤噴霧装置の模式的な側面図である。It is a typical side view of the mold release agent spraying apparatus which concerns on another modification. 図8(A)は図7に示す変形例の主要部を示す図であり、ピストンが上限位置に位置している状態を示している。図8(B)は図7に示す変形例の主要部を示す図であり、ピストンが下限位置に位置している状態を示している。FIG. 8A is a view showing the main part of the modification shown in FIG. 7, and shows a state where the piston is located at the upper limit position. FIG. 8B is a diagram showing the main part of the modification shown in FIG. 7, and shows a state where the piston is located at the lower limit position.
 以下、本発明を実施するための形態について図面を参照しつつ説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態にかかるガラスびん製造装置1の模式的な平面図であり、一部を省略・簡略化して示している。図2は、ガラスびん製造装置1の模式的な側面図であり、一部を断面で示しているとともに一部を省略して示している。図3は、ガラスびん製造装置1の離型剤噴霧装置3の模式的な側面図である。図4は、離型剤噴霧装置3の離型剤ポンプ30周辺の模式的な側面図であり、一部を断面で示している。 FIG. 1 is a schematic plan view of a glass bottle manufacturing apparatus 1 according to an embodiment of the present invention, and a part thereof is omitted and simplified. FIG. 2 is a schematic side view of the glass bottle manufacturing apparatus 1, in which a part is shown in cross section and a part is omitted. FIG. 3 is a schematic side view of the release agent spraying apparatus 3 of the glass bottle manufacturing apparatus 1. FIG. 4 is a schematic side view of the periphery of the release agent pump 30 of the release agent spraying apparatus 3, and a part thereof is shown in cross section.
 図1~図4を参照して、ガラスびん製造装置1(以下、単に製造装置1ともいう。)は、ゴブ101(溶融したガラス塊)をパリソン102に成形し、さらに、パリソン102をガラスびん103に成形する。製造装置1には、図示しないゴブ供給機構からゴブ101を供給される。また、本実施形態では、製造装置1は、1つのセクション2毎に2つのゴブ101を同時にガラスびん103に成形することができる。なお、製造装置1には、セクション2毎に一つ、三つ、四つのゴブ101を同時にガラスびん103に成形できるものもあり、一つのセクションで同時に成形できる数は2つに限らない。 1 to 4, glass bottle manufacturing apparatus 1 (hereinafter also simply referred to as manufacturing apparatus 1) forms gob 101 (molten glass lump) into parison 102, and further, parison 102 is converted into a glass bottle. 103. The gob 101 is supplied to the manufacturing apparatus 1 from a gob supply mechanism (not shown). Further, in the present embodiment, the manufacturing apparatus 1 can simultaneously mold two gobs 101 for each section 2 into the glass bottle 103. In addition, some manufacturing apparatuses 1 can form one, three, and four gobs 101 for each section 2 into the glass bottle 103 at the same time, and the number that can be simultaneously formed in one section is not limited to two.
 製造装置1は、複数のセクション2と、離型剤噴霧装置3と、を有している。 The manufacturing apparatus 1 has a plurality of sections 2 and a release agent spraying apparatus 3.
 セクション2は、例えば、8~12設けられており、所定の配列方向A1に沿って略等間隔に並んでいる。配列方向A1におけるこれらのセクション2の合計の長さは約6m~8m程度である。 The sections 2 are provided, for example, 8 to 12, and are arranged at substantially equal intervals along a predetermined arrangement direction A1. The total length of these sections 2 in the arrangement direction A1 is about 6 m to 8 m.
 各セクション2は、粗型部5と、口型部6と、仕上型部7と、を有している。 Each section 2 has a rough mold part 5, a mouth mold part 6, and a finishing mold part 7.
 粗型部5は、口型部6と協働してゴブ101をパリソン102に成形するために用いられる。粗型部5は、前述のゴブ供給機構からゴブ101を供給(充填)される。 The rough mold portion 5 is used to form the gob 101 into the parison 102 in cooperation with the mouth mold portion 6. The rough mold part 5 is supplied (filled) with the gob 101 from the above-described gob supply mechanism.
 粗型部5は、二つの粗型8と、図示しない粗型開閉機構等と、を有している。 The rough mold portion 5 has two rough molds 8 and a rough mold opening / closing mechanism (not shown).
 各粗型8は、互いに向かい合った一対の割型8a,8bを有している。これらの割型8a,8bが互いに組み合わされることで、ゴブ101が充填されるためのキャビティ8cが形成されている。各粗型8の一対の割型8a,8bは、図示しない粗型開閉機構によって、開閉動作される。 Each rough mold 8 has a pair of split molds 8a and 8b facing each other. These split molds 8a and 8b are combined with each other to form a cavity 8c for filling the gob 101. The pair of split molds 8a and 8b of each coarse mold 8 is opened and closed by a coarse mold opening / closing mechanism (not shown).
 ゴブ101をパリソン102へ成形するとき、粗型8の下面に口型部6の口型9が配置される。口型部6は、ゴブ101から口部103aを成形するために設けられている。また、口型部6は、粗型8で成形されたパリソン102を仕上型部7へ移送するように構成されている。 When the gob 101 is formed into the parison 102, the mouth mold 9 of the mouth mold portion 6 is disposed on the lower surface of the rough mold 8. The mouth mold portion 6 is provided for molding the mouth portion 103 a from the gob 101. Further, the mouth mold 6 is configured to transfer the parison 102 molded by the rough mold 8 to the finishing mold 7.
 口型部6は、二つの口型9と、これらの口型9を支持する口型ホルダー10と、口型ホルダー10が取り付けられた回転軸11と、図示しない口型開閉機構と、を有している。 The mouth part 6 has two mouth molds 9, a mouth holder 10 that supports these mouth molds 9, a rotary shaft 11 to which the mouth holder 10 is attached, and a mouth opening / closing mechanism (not shown). is doing.
 各口型9は、互いに向かい合った半円筒状の一対の割型9a,9bを有しており、これらの割型9a,9bが互いに組み合わされることで、円筒状の口型9が形成されている。割型9a,9bは、図示しない開閉機構の動作によって、互いに分離した開状態と互いに閉じられた閉状態とに適宜切り替えられる。ゴブ101をパリソン102に成形する際、口型9の一部が、粗型8に嵌合される。 Each mouth mold 9 has a pair of semi-cylindrical split molds 9a, 9b facing each other, and these split molds 9a, 9b are combined with each other to form a cylindrical mouth mold 9. Yes. The split molds 9a and 9b are appropriately switched between an open state separated from each other and a closed state closed from each other by the operation of an opening / closing mechanism (not shown). When the gob 101 is formed into the parison 102, a part of the mouth mold 9 is fitted into the rough mold 8.
 口型ホルダー10は、本実施形態では、L字状に形成されたアーム部材である。口型ホルダー10の基端部は、水平に延びる回転軸11に取付けられており、図示しない回転機構によって、口型ホルダー10および口型9が、回転軸11の中心軸の周りを旋回可能である。この旋回動作によって、口型9は、粗型8の下方の位置(図1の位置)と、仕上型部7の上方の位置との間を往復移動する。 The mouth holder 10 is an arm member formed in an L shape in this embodiment. The base end of the mouth holder 10 is attached to a horizontally extending rotary shaft 11, and the mouth holder 10 and the mouth die 9 can turn around the central axis of the rotary shaft 11 by a rotating mechanism (not shown). is there. By this turning operation, the mouth mold 9 reciprocates between a position below the rough mold 8 (position in FIG. 1) and a position above the finishing mold portion 7.
 仕上型部7は、二つの仕上型12と、二つの底型13と、図示しない仕上型開閉機構と、を有している。 The finishing mold part 7 has two finishing molds 12, two bottom molds 13, and a finishing mold opening / closing mechanism (not shown).
 各仕上型12は、対応する底型13と協働してパリソン102のうち口部103aを除く部分を成形することで、ガラスびん103を成形する。各仕上型12は、互いに向かい合った一対の割型12a,12bを有している。仕上型12の一対の割型12a,12bは、仕上型開閉機構によって、開閉動作される。これらの割型12a,12bが互いに組み合わされることで、仕上型12が形成される。 Each finishing mold 12 molds the glass bottle 103 by molding a part of the parison 102 excluding the mouth 103a in cooperation with the corresponding bottom mold 13. Each finishing mold 12 has a pair of split molds 12a and 12b facing each other. The pair of split molds 12a and 12b of the finishing mold 12 are opened and closed by a finishing mold opening / closing mechanism. The finished mold 12 is formed by combining these split molds 12a and 12b.
 仕上型12の内面および底型13の上面は、パリソン102のうち口部103a以外の部分が挿入されるキャビティ12cを形成している。仕上型12の内面および底型13の上面は、カーボンコーティング等によってコーティング層が形成されている。そして、この内面には、さらに、噴霧装置3によって定期的に離型剤L1が塗布される。離型剤L1は、ガラスびん103を仕上型12および底型13から離型し易くさせるためのものである。 The inner surface of the finishing die 12 and the upper surface of the bottom die 13 form a cavity 12c into which a portion other than the mouth portion 103a of the parison 102 is inserted. A coating layer is formed on the inner surface of the finishing die 12 and the upper surface of the bottom die 13 by carbon coating or the like. Further, a release agent L1 is periodically applied to the inner surface by the spray device 3. The mold release agent L1 is for making it easy to release the glass bottle 103 from the finishing mold 12 and the bottom mold 13.
 上記の仕上型部7において、大部分がキャビティ12c内に配置されたパリソン102へ向けて図示しないブローヘッドから成形用の圧縮空気が供給されることで、パリソン102がガラスびん103に成形される。その後、図示しないテイクアウトアームによってガラスびん103が仕上型12から取り出される。 In the finishing mold portion 7, most of the parison 102 is molded into the glass bottle 103 by supplying compressed air for molding from a blow head (not shown) toward the parison 102 disposed in the cavity 12 c. . Thereafter, the glass bottle 103 is taken out from the finishing mold 12 by a take-out arm (not shown).
 仕上型12とガラスびん103との間の離型性(分離のし易さ)を確保するための離型剤L1は、ガラスびん103の成形工程の合間に塗布される。この離型剤L1を塗布するために、離型剤噴霧装置3が用いられる。なお、以下では、離型剤噴霧装置3を単に噴霧装置3ともいう。 The mold release agent L1 for ensuring the mold release property (ease of separation) between the finishing mold 12 and the glass bottle 103 is applied between the molding processes of the glass bottle 103. In order to apply the release agent L1, a release agent spraying device 3 is used. Hereinafter, the release agent spraying device 3 is also simply referred to as a spraying device 3.
 噴霧装置3は、仕上型部7に関して、複数のセクション2に一つ設けられている。すなわち、全ての仕上型部7へ一つの噴霧装置3から離型剤L1が噴霧される。 噴霧 One spraying device 3 is provided in the plurality of sections 2 with respect to the finishing mold part 7. That is, the release agent L <b> 1 is sprayed from one spraying device 3 to all finishing mold parts 7.
 なお、本実施形態では、粗型部5および口型部6への離型剤噴霧の構成は説明しないけれども、粗型部5および口型部6への離型剤噴霧を、噴霧装置3と同様の構成の噴霧装置によって行ってもよい。 In the present embodiment, the configuration of the release agent spray on the rough mold portion 5 and the mouth mold portion 6 will not be described. However, the release agent spray on the rough mold portion 5 and the mouth mold portion 6 is performed with the spray device 3. You may carry out by the spraying apparatus of the same structure.
 噴霧装置3が塗布する離型剤L1として、黒鉛粒子を固体潤滑剤として含有する鉱物油を例示できる。離型剤L1の特性として、色は黒色である。また、ASTM‐D2196規格に従ったB型粘度計で測定温度が25度下において#4LV スピンドルを30秒回転させたときの粘度が1000cps以下であることが好ましい。  As the release agent L1 applied by the spraying device 3, mineral oil containing graphite particles as a solid lubricant can be exemplified. The color of the release agent L1 is black. Further, it is preferable that the viscosity when a # 4LVL spindle is rotated for 30 seconds with a B-type viscometer according to the ASTM-D2196 standard at a measurement temperature of 25 ° C. is 1000 cps or less.
 本実施形態では、噴霧装置3は、仕上型12および底型13の内面のうち、キャビティ12cを形成している部分の少なくとも一部に離型剤L1を塗布するように構成されている。 In this embodiment, the spraying device 3 is configured to apply the release agent L1 to at least a part of the inner surface of the finishing mold 12 and the bottom mold 13 where the cavity 12c is formed.
 噴霧装置3は、搬送機構15と、離型剤L1を噴霧するノズル16と、ノズル16を変位させるための変位機構17と、ノズル16へ離型剤L1を供給する離型剤供給部18と、搬送機構15、変位機構17および離型剤供給部18を制御する制御部19と、離型剤供給監視装置50と、を有している。 The spray device 3 includes a transport mechanism 15, a nozzle 16 that sprays the release agent L <b> 1, a displacement mechanism 17 that displaces the nozzle 16, and a release agent supply unit 18 that supplies the release agent L <b> 1 to the nozzle 16. , A control unit 19 that controls the transport mechanism 15, the displacement mechanism 17, and the release agent supply unit 18, and a release agent supply monitoring device 50.
 搬送機構15は、ノズル16と、変位機構17と、離型剤供給部18と、制御部19と、を配列方向A1に沿って変位させるために設けられている。搬送機構15は、離型剤L1を噴霧される仕上型部7の側方へノズル16を配置する。搬送機構15は、配列方向A1に沿って延びるレール20と、レール20上を移動するベース部材21と、ベース部材21に配列方向A1への駆動力を付与する電動モータを含む駆動機構(図示せず)と、を有している。ベース部材21に、変位機構17と、離型剤供給部18と、制御部19と、が設置されている。 The transport mechanism 15 is provided to displace the nozzle 16, the displacement mechanism 17, the release agent supply unit 18, and the control unit 19 along the arrangement direction A1. The conveyance mechanism 15 arrange | positions the nozzle 16 to the side of the finishing mold part 7 sprayed with the mold release agent L1. The transport mechanism 15 includes a rail 20 extending along the arrangement direction A1, a base member 21 that moves on the rail 20, and a drive mechanism (not shown) that provides the base member 21 with a driving force in the arrangement direction A1. Z). A displacement mechanism 17, a release agent supply unit 18, and a control unit 19 are installed on the base member 21.
 ノズル16は、離型剤L1を噴霧するために用いられる。ノズル16は、細長い棒状に形成されている。ノズル16は、一つのセクション2における仕上型12の数と同じ数設けられており、本実施形態では、二つ設けられている。各ノズル16は、少なくとも、当該ノズル16の先端をキャビティ12c内に挿入されることが可能な長さに形成されている。各ノズル16は、上昇しながら離型剤L1を噴霧してもよいし、降下しながら離型剤L1を噴霧してもよいし、キャビティ12c内に挿入された後、停止した状態で、離型剤L1を噴霧してもよい。ノズル16の先端部および中間部に噴霧口16aが形成されている。噴霧口16aの口径は、例えば、1mm以下程度に設定される。離型剤L1は、噴霧口16aから例えばフルコーン状の噴霧パターンB1,B2を形成するように、離型剤L1を噴霧する。 The nozzle 16 is used for spraying the release agent L1. The nozzle 16 is formed in an elongated rod shape. The same number of nozzles 16 as the number of finishing dies 12 in one section 2 are provided, and two nozzles 16 are provided in this embodiment. Each nozzle 16 is formed to a length that allows at least the tip of the nozzle 16 to be inserted into the cavity 12c. Each nozzle 16 may spray the release agent L1 while ascending, may spray the release agent L1 while descending, or after being inserted into the cavity 12c, the nozzle 16 is stopped and released. The mold L1 may be sprayed. Spray nozzles 16 a are formed at the tip and middle of the nozzle 16. The diameter of the spray port 16a is set to about 1 mm or less, for example. The mold release agent L1 is sprayed from the spray port 16a so as to form, for example, full cone spray patterns B1 and B2.
 各ノズル16の基端部は、中空軸状のマニホールド22に固定されている。マニホールド22内に離型剤L1の通路が形成されており、離型剤L1は、マニホールド22を通って各ノズル16内の通路を通り、対応する噴霧口16aから噴霧される。 The base end portion of each nozzle 16 is fixed to a hollow shaft-like manifold 22. A passage for the release agent L1 is formed in the manifold 22, and the release agent L1 passes through the passage in the nozzles 16 through the manifold 22 and is sprayed from the corresponding spray ports 16a.
 ノズル16による離型剤噴霧時、ノズル16は、仕上型12に対して変位機構17によって上下に変位されてもよいし、静止されてもよい。 When the release agent is sprayed by the nozzle 16, the nozzle 16 may be displaced up and down by the displacement mechanism 17 with respect to the finishing mold 12, or may be stationary.
 変位機構17は、ノズル16を仕上型12に対して変位させるとともに、ノズル16の位置を維持するために用いられる。変位機構17は、例えば、六軸ロボット等の多関節のロボットを用いて形成されている。なお、変位機構17は、少なくとも、ノズル16を、仕上型12のキャビティ12cに出し入れすることが可能であればよく、具体的な機構は限定されない。変位機構17の先端部に、マニホールド22が固定されている。これにより、変位機構17の先端部と一体的にマニホールド22およびノズル16が変位する。 The displacement mechanism 17 is used for displacing the nozzle 16 with respect to the finishing mold 12 and maintaining the position of the nozzle 16. The displacement mechanism 17 is formed using, for example, a multi-joint robot such as a six-axis robot. The displacement mechanism 17 is not particularly limited as long as at least the nozzle 16 can be taken in and out of the cavity 12c of the finishing die 12. A manifold 22 is fixed to the distal end portion of the displacement mechanism 17. As a result, the manifold 22 and the nozzle 16 are displaced integrally with the distal end portion of the displacement mechanism 17.
 離型剤供給部18は、マニホールド22を介してノズル16へ離型剤L1を供給するために設けられている。 The release agent supply unit 18 is provided to supply the release agent L1 to the nozzle 16 via the manifold 22.
 離型剤供給部18は、離型剤タンク28と、離型剤ポンプ30と、離型剤供給監視装置50と、を有している。 The release agent supply unit 18 includes a release agent tank 28, a release agent pump 30, and a release agent supply monitoring device 50.
 圧縮空気は、離型剤供給部18から離れた位置に設置された図示しないコンプレッサ等を含む圧縮空気供給源26から離型剤タンク28と、離型剤ポンプ30の後述するレギュレータ35と、に供給される。 The compressed air is supplied from a compressed air supply source 26 including a compressor or the like (not shown) installed at a position away from the release agent supply unit 18 to a release agent tank 28 and a regulator 35 described later of the release agent pump 30. Supplied.
 離型剤タンク28は、離型剤L1が溜められているタンクである。離型剤タンク28は、レギュレータ27を介して圧縮空気供給源26に接続されている。離型剤タンク28内の離型剤L1には、このレギュレータ27で調整された空気圧が作用している。 The release agent tank 28 is a tank in which the release agent L1 is stored. The release agent tank 28 is connected to the compressed air supply source 26 via the regulator 27. The air pressure adjusted by the regulator 27 is acting on the release agent L1 in the release agent tank 28.
 離型剤ポンプ30は、離型剤L1を、所定の圧力でノズル16へ向けて供給するために設けられている。離型剤ポンプ30は、本実施形態では、容積式ポンプであり、往復ポンプの一種である。離型剤ポンプ30は、圧縮空気供給源26から供給された圧縮空気を作動流体として、離型剤L1を吸引および吐出する。 The release agent pump 30 is provided to supply the release agent L1 toward the nozzle 16 at a predetermined pressure. In this embodiment, the release agent pump 30 is a positive displacement pump, which is a kind of reciprocating pump. The release agent pump 30 sucks and discharges the release agent L1 using the compressed air supplied from the compressed air supply source 26 as a working fluid.
 離型剤ポンプ30は、逆止弁31と、中継管32と、開閉弁33と、シリンジ34と、レギュレータ35と、を有している。 The release agent pump 30 includes a check valve 31, a relay pipe 32, an on-off valve 33, a syringe 34, and a regulator 35.
 逆止弁31は、離型剤タンク28と、中継管32と、に接続されている。逆止弁31は、離型剤タンク28から中継管32への離型剤L1の移動は許容するけれども、中継管32から離型剤タンク28への離型剤L1の逆流を規制するチェックバルブである。 The check valve 31 is connected to the release agent tank 28 and the relay pipe 32. Although the check valve 31 allows the release agent L1 to move from the release agent tank 28 to the relay pipe 32, the check valve regulates the backflow of the release agent L1 from the relay pipe 32 to the release agent tank 28. It is.
 中継管32は、逆止弁31(離型剤タンク28)と、シリンジ34と、ノズル16(ホース36)と、を接続する管である。中継管32は、例えばT管であって3つのポートを有しており、これら3つのポートに、それぞれ、逆止弁31、シリンジ34、および、開閉弁33が接続されている。 The relay pipe 32 is a pipe connecting the check valve 31 (release agent tank 28), the syringe 34, and the nozzle 16 (hose 36). The relay pipe 32 is a T pipe, for example, and has three ports, and a check valve 31, a syringe 34, and an on-off valve 33 are connected to these three ports, respectively.
 開閉弁33は、例えば、ニードル弁であり、所定のパイロットエアを与えられることで、全開状態と全閉状態とを切り替えられる。開閉弁33は、例えば可撓性のホース36を介してマニホールド22に接続されている。開閉弁33を通った離型剤L1は、ホース36およびマニホールド22を通ってノズル16に到達し、ノズル16の噴霧口16aから噴霧される。 The on-off valve 33 is, for example, a needle valve, and can be switched between a fully open state and a fully closed state by being given predetermined pilot air. The on-off valve 33 is connected to the manifold 22 via, for example, a flexible hose 36. The release agent L1 that has passed through the on-off valve 33 reaches the nozzle 16 through the hose 36 and the manifold 22, and is sprayed from the spray port 16a of the nozzle 16.
 シリンジ34は、圧縮空気によって離型剤L1を吸引する動作および離型剤L1を吐出する動作を択一的に行う。シリンジ34は、細長い筒状に形成された部材であり、離型剤L1および圧縮空気が導入される。シリンジ34は、高圧の圧縮空気と、高圧の離型剤L1の双方が供給される。また、シリンジ34は、圧縮空気の動作によってシリンジ34内の離型剤L1を均等に吐出できるようにすることが、仕上型部7の離型剤噴霧対象部位へより均等な量の離型剤L1を塗布するのに重要である。また、シリンジ34は、高温の各仕上型部7の近傍に配置される。このため、シリンジ34を構成する材料は、耐熱性を要求される。また、シリンジ34は、離型剤供給監視装置50によって光学的に離型剤L1の状態を監視される。このため、シリンジ34は、透光性を有する材料で形成されている。すなわち、本実施形態では、シリンジ34の全体が、透光性を有する透光部である。また、シリンジ34の内周面34aは、離型剤L1の濡れ性が低いことが好ましい。さらに、シリンジ34内における離型剤L1の容量変化、すなわち、離型剤ポンプ30の一回の離型剤噴霧動作における離型剤L1の吐出量は、約0.3g程度と微小である。そして、シリンジ34の内周面34a(後述する離型剤収容部38の内周面)における臨界表面張力γcが30mN/m以下であることが好ましく、25mN/m以下であることがより好ましい。 The syringe 34 alternatively performs an operation of sucking the release agent L1 by compressed air and an operation of discharging the release agent L1. The syringe 34 is a member formed in an elongated cylindrical shape, and the mold release agent L1 and compressed air are introduced therein. The syringe 34 is supplied with both high-pressure compressed air and a high-pressure release agent L1. Further, the syringe 34 can discharge the release agent L1 in the syringe 34 evenly by the operation of the compressed air, so that a more even amount of the release agent can be applied to the release agent spraying target portion of the finishing die 7. It is important to apply L1. Moreover, the syringe 34 is arrange | positioned in the vicinity of each finishing mold part 7 of high temperature. For this reason, the material constituting the syringe 34 is required to have heat resistance. The syringe 34 is optically monitored by the release agent supply monitoring device 50 for the state of the release agent L1. For this reason, the syringe 34 is formed with the material which has translucency. That is, in this embodiment, the whole syringe 34 is a translucent part which has translucency. Moreover, it is preferable that the inner peripheral surface 34a of the syringe 34 has low wettability of the release agent L1. Further, the volume change of the release agent L1 in the syringe 34, that is, the discharge amount of the release agent L1 in one release agent spraying operation of the release agent pump 30 is as small as about 0.3 g. And critical surface tension (gamma) c in the internal peripheral surface 34a (The internal peripheral surface of the mold release agent accommodating part 38 mentioned later) of the syringe 34 is preferable is 30 mN / m or less, and it is more preferable that it is 25 mN / m or less.
 上述の環境下での使用に好ましいシリンジ34の材料として、透明チューブであって、耐薬品性および耐圧に優れた材料が好ましい。このような材料として、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合樹脂)等のフッ素樹脂が特に好ましく、他にシリコーン系樹脂を例示できる。 As a material of the syringe 34 that is preferable for use in the above-described environment, a material that is a transparent tube and excellent in chemical resistance and pressure resistance is preferable. As such a material, fluororesins such as PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin) are particularly preferable, and other examples include silicone resins.
 本実施形態では、シリンジ34は、真っ直ぐに延びる円筒状に形成されており、本実施形態では、鉛直に延びている。シリンジ34の内径D1は、3.0mm~6.0mmであることが好ましい。より具体的には、シリンジ34の内径D1の下限は、4.0mm以下であることが好ましく、3.0mmであることがより好ましい。また、シリンジ34の内径D1の上限は、6.0mm以下であることが好ましく5.0mmであることがより好ましい。 In this embodiment, the syringe 34 is formed in a cylindrical shape that extends straight, and in the present embodiment, extends vertically. The inner diameter D1 of the syringe 34 is preferably 3.0 mm to 6.0 mm. More specifically, the lower limit of the inner diameter D1 of the syringe 34 is preferably 4.0 mm or less, and more preferably 3.0 mm. The upper limit of the inner diameter D1 of the syringe 34 is preferably 6.0 mm or less, and more preferably 5.0 mm.
 シリンジ34は、離型剤ポート37と、離型剤収容部38と、圧縮空気収容部39と、圧縮空気ポート40と、を有している。 The syringe 34 has a release agent port 37, a release agent storage portion 38, a compressed air storage portion 39, and a compressed air port 40.
 離型剤ポート37は、離型剤L1が流入および流出するためのポートであり、中継管32に接続されている。離型剤ポート37は、本実施形態では、シリンジ34の下端部に配置されている。離型剤ポート37は、離型剤収容部38に連続している。離型剤収容部38は、離型剤L1が溜められる部分である。離型剤収容部38の上限位置P1は、圧縮空気ポート40寄りに設定されている。上限位置P1は、シリンジ34に離型剤L1が吸い込まれたときの液面L1a(上面)の最高位置である。 The release agent port 37 is a port through which the release agent L1 flows in and out, and is connected to the relay pipe 32. In this embodiment, the release agent port 37 is disposed at the lower end of the syringe 34. The release agent port 37 is continuous with the release agent accommodating portion 38. The release agent container 38 is a portion where the release agent L1 is stored. The upper limit position P <b> 1 of the release agent accommodating portion 38 is set closer to the compressed air port 40. The upper limit position P1 is the highest position of the liquid level L1a (upper surface) when the release agent L1 is sucked into the syringe 34.
 離型剤収容部38の下限位置P4は、離型剤ポート37寄りに設定されている。下限位置P4は、シリンジ34からノズル16への離型剤L1の吐出完了時における液面L1aの位置であり、シリンジ34内における離型剤L1の最低位置である。下限位置P4とは、離型剤ポンプ30に異常が発生していないとき、少なくともこの位置には離型剤L1が常時存在している位置である。前述したように、離型剤ポンプ30の一回の離型剤噴霧動作における離型剤L1の吐出量は、約0.3g程度と微小である。このため、上限位置P1と下限位置P4との距離は、実際は10数mm程度と微小である。シリンジ34の内径D1=6.0mmの場合で、上限位置P1と下限位置P4との距離(液面変動量)は、10mm程度である。 The lower limit position P4 of the release agent accommodating portion 38 is set closer to the release agent port 37. The lower limit position P4 is the position of the liquid level L1a when the discharge of the release agent L1 from the syringe 34 to the nozzle 16 is completed, and is the lowest position of the release agent L1 in the syringe 34. The lower limit position P4 is a position where the release agent L1 is always present at least at this position when no abnormality occurs in the release agent pump 30. As described above, the discharge amount of the release agent L1 in one release agent spraying operation of the release agent pump 30 is as small as about 0.3 g. For this reason, the distance between the upper limit position P1 and the lower limit position P4 is actually as small as about several tens of millimeters. In the case where the inner diameter D1 of the syringe 34 is 6.0 mm, the distance (liquid level fluctuation amount) between the upper limit position P1 and the lower limit position P4 is about 10 mm.
 圧縮空気ポート40は、作動流体としての圧縮空気が通過するためのポートであり、例えば、90度エルボ41およびレギュレータ35を介して圧縮空気供給源26に接続されている。圧縮空気ポート40は、本実施形態では、シリンジ34の上端部に配置されている。圧縮空気ポート40は、圧縮空気収容部39に連続している。圧縮空気収容部39は、圧縮空気が溜められる部分である。圧縮空気収容部39の一部は、離型剤収容部38でもある。離型剤収容部38に離型剤L1が最大量溜められているときの圧縮空気収容部39の下限位置は、上限位置P1と同じである。また、離型剤収容部38からノズル16への離型剤L1の吐出動作が完了したときの圧縮空気収容部39の下限位置は、下限位置P4と同じである。 The compressed air port 40 is a port through which compressed air as a working fluid passes, and is connected to the compressed air supply source 26 via a 90-degree elbow 41 and a regulator 35, for example. In the present embodiment, the compressed air port 40 is disposed at the upper end of the syringe 34. The compressed air port 40 is continuous with the compressed air accommodating portion 39. The compressed air accommodating part 39 is a part where compressed air is stored. A part of the compressed air storage unit 39 is also a release agent storage unit 38. The lower limit position of the compressed air storage portion 39 when the maximum amount of the release agent L1 is stored in the release agent storage portion 38 is the same as the upper limit position P1. Further, the lower limit position of the compressed air storage unit 39 when the discharge operation of the release agent L1 from the release agent storage unit 38 to the nozzle 16 is completed is the same as the lower limit position P4.
 レギュレータ35は、圧縮空気供給源26からシリンジ34内に供給される圧縮空気の圧力を調整するために設けられている。レギュレータ35は、例えば、増圧弁と、圧縮空気を一定量大気開放する開放弁と、この開放弁を開閉する電磁ソレノイドと、を含んでおり、所定の電気信号を与えられることで、圧縮空気供給源26からの圧縮空気の気圧を調整する動作と、圧縮空気の少なくとも一部を大気開放する動作と、を択一的に行う電空レギュレータである。レギュレータ35は、制御部19によって制御される。 The regulator 35 is provided to adjust the pressure of the compressed air supplied from the compressed air supply source 26 into the syringe 34. The regulator 35 includes, for example, a pressure increasing valve, an open valve that releases a certain amount of compressed air to the atmosphere, and an electromagnetic solenoid that opens and closes the open valve, and is supplied with compressed air by receiving a predetermined electrical signal. This is an electropneumatic regulator that selectively performs the operation of adjusting the pressure of the compressed air from the source 26 and the operation of releasing at least a part of the compressed air to the atmosphere. The regulator 35 is controlled by the control unit 19.
 制御部19は、所定の入力信号に基づいて、所定の出力信号を出力する構成を有し、例えば、プログラマブルコントローラ(PLC)を用いて形成することができる。なお、制御部19は、CPU(Central Processing Unit)、RAM(Random Access Memory)およびROM(Read Only Memory)を含むコンピュータを用いて形成されていてもよい。 The control unit 19 has a configuration for outputting a predetermined output signal based on a predetermined input signal, and can be formed using, for example, a programmable controller (PLC). The controller 19 may be formed using a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
 制御部19は、ノズル16の変位動作と、離型剤ポンプ30からノズル16への離型剤L1の供給動作(ノズル16の噴霧動作)と、を制御するように構成されている。ノズル16から仕上型部7への離型剤L1の噴霧制御は、ノズル16からの噴霧量自体の制御や、噴霧量を固定した状態でのノズル16の上昇・下降速度の制御や、ノズル16からの離型剤L1の噴霧タイミングの制御によって行うことができる。もちろんノズル16からの離型剤L1の噴霧のオン-オフ制御でも所望の塗布が可能である。 The control unit 19 is configured to control the displacement operation of the nozzle 16 and the operation of supplying the release agent L1 from the release agent pump 30 to the nozzle 16 (spraying operation of the nozzle 16). The spray control of the release agent L1 from the nozzle 16 to the finishing mold part 7 includes control of the spray amount itself from the nozzle 16, control of the ascending / descending speed of the nozzle 16 with the spray amount fixed, and nozzle 16 Can be performed by controlling the spraying timing of the release agent L1. Of course, the desired application can also be achieved by on / off control of the spray of the release agent L1 from the nozzle 16.
 制御部19は、搬送機構15と、変位機構17と、離型剤ポンプ30の開閉弁33と、離型剤吐出用のレギュレータ35と、に接続されており、これら搬送機構15、変位機構17および離型剤ポンプ30を制御する。制御部19は、搬送機構15に所定の指令信号を与えることで、搬送機構15の電動モータを駆動し、搬送機構15およびノズル16等を配列方向A1における所定位置に配置する。また、制御部19は、変位機構17に所定の指令信号を与えることで、変位機構17の電動モータを駆動し、変位機構17の先端部とともにノズル16を噴霧対象の仕上型部7に対して変位する。 The control unit 19 is connected to the transport mechanism 15, the displacement mechanism 17, the opening / closing valve 33 of the release agent pump 30, and the release agent discharge regulator 35. And controls the release agent pump 30. The control unit 19 gives a predetermined command signal to the transport mechanism 15 to drive the electric motor of the transport mechanism 15 and arranges the transport mechanism 15 and the nozzles 16 at predetermined positions in the arrangement direction A1. Further, the control unit 19 gives a predetermined command signal to the displacement mechanism 17 to drive the electric motor of the displacement mechanism 17, and the nozzle 16 together with the distal end portion of the displacement mechanism 17 is directed to the finish mold portion 7 to be sprayed. Displace.
 また、制御部19は、レギュレータ35を制御することで、シリンジ34への圧縮空気の供給およびシリンジ34からの圧縮空気の排出を制御する。また、制御部19は、開閉弁33の開閉動作を制御する。これにより、制御部19は離型剤ポンプ30からノズル16への離型剤L1の供給を制御する。 Further, the control unit 19 controls supply of compressed air to the syringe 34 and discharge of compressed air from the syringe 34 by controlling the regulator 35. The control unit 19 controls the opening / closing operation of the opening / closing valve 33. Accordingly, the control unit 19 controls the supply of the release agent L1 from the release agent pump 30 to the nozzle 16.
 上記の構成により、離型剤ポンプ30のシリンジ34に離型剤L1が吸い込まれるとき、制御部19は、開閉弁33を閉じるとともに、レギュレータ35を制御することで、シリンジ34の圧縮空気収容部39内の空気圧を、離型剤タンク28の内圧を調整しているレギュレータ27の圧力よりも低い状態にする(レギュレータ35から圧縮空気を逃がす)。これにより、図5(A)に示すように、シリンジ34の圧縮空気収容部39内の圧縮空気がレギュレータ35を通して大気開放され、シリンジ34内の圧縮空気の容量が減少する。このとき、離型剤タンク28からの離型剤L1は、逆止弁31の弁体31aを押し上げて中継管32を通してシリンジ34の離型剤収容部38内に進入する。離型剤L1が上限位置P1まで到達すると、制御部19は、レギュレータ35を制御することで、シリンジ34の圧縮空気収容部39内の空気圧を離型剤タンク28の内圧を調整しているレギュレータ27の圧力よりも高い状態にする(レギュレータ35からの圧縮空気の大気開放を停止させる)。これにより、逆止弁31の弁体31aが閉じ、シリンジ34への離型剤L1の流入が停止される。 With the above configuration, when the release agent L1 is sucked into the syringe 34 of the release agent pump 30, the control unit 19 closes the on-off valve 33 and controls the regulator 35, whereby the compressed air storage unit of the syringe 34 is controlled. The air pressure in 39 is made lower than the pressure of the regulator 27 that adjusts the internal pressure of the release agent tank 28 (compressed air is released from the regulator 35). As a result, as shown in FIG. 5A, the compressed air in the compressed air accommodating portion 39 of the syringe 34 is released to the atmosphere through the regulator 35, and the volume of the compressed air in the syringe 34 is reduced. At this time, the release agent L1 from the release agent tank 28 pushes up the valve body 31a of the check valve 31 and enters the release agent accommodating portion 38 of the syringe 34 through the relay pipe 32. When the release agent L1 reaches the upper limit position P1, the control unit 19 controls the regulator 35 to adjust the air pressure in the compressed air storage unit 39 of the syringe 34 to the internal pressure of the release agent tank 28. The pressure is set to be higher than the pressure 27 (the release of compressed air from the regulator 35 is stopped). Thereby, the valve body 31a of the check valve 31 is closed, and the inflow of the release agent L1 into the syringe 34 is stopped.
 次に、制御部19は、図3および図5(B)に示すように、開閉弁33を開く。これにより、レギュレータ35によって圧力調整された圧縮空気が、シリンジ34内の離型剤L1を押し出す。その結果、離型剤L1は、中継管32、開閉弁33、ホース36およびマニホールド22を介してノズル16に到達し、噴霧口16aから噴霧される。シリンジ34内の離型剤L1の上端位置が下限位置P4に到達すると、制御部19が開閉弁33を閉じる。これにより、離型剤ポンプ30からの離型剤L1の噴霧が完了する。 Next, the control unit 19 opens the on-off valve 33 as shown in FIGS. 3 and 5B. Thereby, the compressed air whose pressure is adjusted by the regulator 35 pushes out the release agent L1 in the syringe 34. As a result, the release agent L1 reaches the nozzle 16 via the relay pipe 32, the on-off valve 33, the hose 36, and the manifold 22, and is sprayed from the spray port 16a. When the upper end position of the release agent L1 in the syringe 34 reaches the lower limit position P4, the control unit 19 closes the on-off valve 33. Thereby, spraying of the release agent L1 from the release agent pump 30 is completed.
 図3および図4を参照して、このような離型剤噴霧装置3における異常の有無を検出するために、離型剤供給監視装置50(以下では、単に監視装置50ともいう)が設けられている。 With reference to FIG. 3 and FIG. 4, a release agent supply monitoring device 50 (hereinafter, also simply referred to as a monitoring device 50) is provided in order to detect the presence / absence of abnormality in the release agent spray device 3. ing.
 離型剤供給監視装置50は、検出部51と、制御部19と、を有している。すなわち、制御部19は、噴霧装置3の制御部であるとともに、離型剤供給監視装置50の一要素でもある。 The release agent supply monitoring device 50 includes a detection unit 51 and a control unit 19. That is, the control unit 19 is a control unit of the spray device 3 and is also an element of the release agent supply monitoring device 50.
 検出部51は、離型剤噴霧装置3における離型剤L1の噴霧異常の有無を確認するために離型剤L1を検出するように構成されている。検出部51は、離型剤をノズル16へ供給する離型剤ポンプ30に設置されている。 The detection unit 51 is configured to detect the release agent L1 in order to confirm the presence or absence of spray abnormality of the release agent L1 in the release agent spraying device 3. The detection unit 51 is installed in the release agent pump 30 that supplies the release agent to the nozzle 16.
 検出部51は、本実施形態では、シリンジ34における離型剤L1の容積変化を検出する。より具体的には、検出部51は、シリンジ34の離型剤収容部38における離型剤L1の液面L1aの位置の変化を検出することで、離型剤L1の噴霧異常の有無を検出する。 In this embodiment, the detection unit 51 detects a change in the volume of the release agent L1 in the syringe 34. More specifically, the detection unit 51 detects the presence or absence of a spray abnormality of the release agent L1 by detecting a change in the position of the liquid level L1a of the release agent L1 in the release agent storage unit 38 of the syringe 34. To do.
 検出部51は、光を検出する光センサ52,53を有している。各光センサ52,53は、シリンジ34の外周部に固定されている。各光センサ52,53は、受光部を有している。そして、各光センサ52,53は、受光部が検出した光の強さ等に応じた信号を検出信号として、制御部19へ出力する。各光センサ52,53は、受光部が検出した光の強さ等に応じた信号を検出信号として出力できればよく、具体的な原理は限定されない。 The detection unit 51 includes optical sensors 52 and 53 that detect light. The optical sensors 52 and 53 are fixed to the outer periphery of the syringe 34. Each optical sensor 52, 53 has a light receiving portion. Then, each of the optical sensors 52 and 53 outputs a signal corresponding to the intensity of light detected by the light receiving unit to the control unit 19 as a detection signal. Each of the optical sensors 52 and 53 only needs to output a signal corresponding to the intensity of light detected by the light receiving unit as a detection signal, and the specific principle is not limited.
 光センサ52は、上限位置P1の近傍で且つ上限位置P1よりも下方の上側検出位置P2に設置されており、離型剤L1が上側検出位置P2に存在しているときと、離型剤L1が上側検出位置P2に存在していないときとで、異なる検出信号を出力する。光センサ53は、下限位置P4の近傍で且つ下限位置P4よりも上方の下側検出位置P3に設置されており、離型剤L1が下側検出位置P3に存在しているときと、離型剤L1が下側検出位置P3に存在していないときとで、異なる検出信号を出力する。 The optical sensor 52 is installed in the upper detection position P2 in the vicinity of the upper limit position P1 and below the upper limit position P1, and when the release agent L1 exists at the upper detection position P2, the release agent L1. A different detection signal is output when the signal is not present at the upper detection position P2. The optical sensor 53 is installed at the lower detection position P3 in the vicinity of the lower limit position P4 and above the lower limit position P4, and when the release agent L1 is present at the lower detection position P3, the mold release Different detection signals are output when the agent L1 is not present at the lower detection position P3.
 このように、シリンジ34の長手方向に関して、上限位置P1と下限位置P4との間に上側検出位置P2と下側検出位置P3が配置されている。これは、シリンジ34内における離型剤L1の上端である液面L1aの位置では、離型剤L1がシリンジ34との相互作用で、凹型のメニスカスを形成することへの対策である。上限位置P1と下限位置P4との間に上側検出位置P2と下側検出位置P3を配置することで、離型剤L1とシリンジ34の相互作用によるメニスカスの影響を受けずに済む。前述したように、シリンジ34の少なくとも一部(本実施形態では全部)は、透光性を有している。このため、光センサ52,53は、透光部からなるシリンジ34を通して離型剤L1を非接触で検出する。 Thus, with respect to the longitudinal direction of the syringe 34, the upper detection position P2 and the lower detection position P3 are arranged between the upper limit position P1 and the lower limit position P4. This is a countermeasure against the formation of a concave meniscus by the interaction of the release agent L1 with the syringe 34 at the position of the liquid level L1a that is the upper end of the release agent L1 in the syringe 34. By arranging the upper detection position P2 and the lower detection position P3 between the upper limit position P1 and the lower limit position P4, the influence of the meniscus due to the interaction between the release agent L1 and the syringe 34 can be avoided. As described above, at least a part (all in the present embodiment) of the syringe 34 has translucency. For this reason, the optical sensors 52 and 53 detect the release agent L1 in a non-contact manner through the syringe 34 formed of a light transmitting part.
 なお、本実施形態では、光センサ52,53を用いて離型剤L1を検出する構成を説明するけれども、この通りでなくてもよい。例えば、磁気センサ、感熱センサ等、離型剤L1の有無によって検出信号が異なる構造のセンサを、光センサ52,53に代えて用いてもよい。 In addition, although this embodiment demonstrates the structure which detects the mold release agent L1 using the optical sensors 52 and 53, it may not be this way. For example, a sensor having a structure in which the detection signal differs depending on the presence or absence of the release agent L1, such as a magnetic sensor or a thermal sensor, may be used instead of the optical sensors 52 and 53.
 噴霧装置3で生じる異常として、ノズル16の噴霧口16aからの離型剤L1の噴霧量が設計上の値から乖離する異常を例示できる。この異常として、(1)圧縮空気供給源26や開閉弁33やレギュレータ35、27や逆止弁31の弁の故障、または、離型剤L1もしくは圧縮空気用の配管の破れ等に起因する噴霧圧力変化、(2)開閉弁33の動作不良による噴霧時間の変化、(3)気温変化による離型剤温度(粘性)の変化、(4)ノズル16の噴霧口16aの目詰まりによる、離型剤L1の噴霧面積の変化を例示できる。 As an abnormality that occurs in the spray device 3, an abnormality in which the spray amount of the release agent L1 from the spray port 16a of the nozzle 16 deviates from a design value can be exemplified. As this abnormality, (1) spraying caused by the failure of the compressed air supply source 26, the on-off valve 33, the regulators 35, 27, the check valve 31, or the breakage of the release agent L1 or the compressed air piping Release due to pressure change, (2) change in spraying time due to malfunction of on-off valve 33, (3) change in release agent temperature (viscosity) due to temperature change, and (4) clogging of spray port 16a of nozzle 16. The change of the spray area of agent L1 can be illustrated.
 そして、噴霧装置3で生じる異常は、監視装置50で検出される。より具体的には、離型剤ポンプ30のシリンジ34による離型剤吐出異常が生じた場合には、離型剤ポンプ30による離型剤L1の吐出動作開始の後、離型剤L1の液面L1aが所定時間内に下側検出位置P3まで到達しないことが考えられる。また、離型剤ポンプ30のシリンジ34による離型剤吸込み異常が生じた場合には、離型剤ポンプ30による離型剤L1の吸込み動作開始の後、離型剤L1の液面L1aが所定時間内に上側検出位置P2まで到達しないことが考えられる。また、吸込み動作の後、開閉弁33を開く前(吐出開始前)に離型剤L1の液面L1aが上側検出位置P2を下回ることが考えられる。よって、本実施形態では、制御部19は、このような異常を、光センサ52,53による離型剤L1の検出の有無を通じて、検出する。 Then, an abnormality that occurs in the spray device 3 is detected by the monitoring device 50. More specifically, when a release agent discharge abnormality by the syringe 34 of the release agent pump 30 occurs, the liquid of the release agent L1 is started after the release operation of the release agent L1 by the release agent pump 30 is started. It is conceivable that the surface L1a does not reach the lower detection position P3 within a predetermined time. Further, when a release agent suction abnormality by the syringe 34 of the release agent pump 30 occurs, after the release operation of the release agent L1 by the release agent pump 30 starts, the liquid level L1a of the release agent L1 is predetermined. It is conceivable that the upper detection position P2 is not reached in time. Further, it is conceivable that after the suction operation, the liquid level L1a of the release agent L1 falls below the upper detection position P2 before opening the on-off valve 33 (before starting the discharge). Therefore, in this embodiment, the control unit 19 detects such an abnormality through the presence or absence of detection of the release agent L1 by the optical sensors 52 and 53.
 以上説明したように、本実施形態によると、検出部51が離型剤L1を検出することで、粘性の高い離型剤L1に関する噴霧異常をより的確に検出できる。 As described above, according to the present embodiment, the detection unit 51 detects the release agent L1, so that the spray abnormality related to the release agent L1 with high viscosity can be detected more accurately.
 また、本実施形態によると、検出部51は、シリンジ34における離型剤L1の容積変化を検出する。この構成によると、検出部51は、離型剤噴霧時においてシリンジ34における変化の大きい要素としての離型剤L1の容積変化を検出することで、離型剤L1の噴霧異常をより的確に検出できる。より具体的には、検出部51は、離型剤収容部38における離型剤L1の容積変化を検出することで、離型剤L1の噴霧異常を検出できる。 Further, according to the present embodiment, the detection unit 51 detects the volume change of the release agent L1 in the syringe 34. According to this configuration, the detection unit 51 detects the spraying abnormality of the release agent L1 more accurately by detecting the volume change of the release agent L1 as an element having a large change in the syringe 34 when the release agent is sprayed. it can. More specifically, the detection unit 51 can detect a spray abnormality of the release agent L1 by detecting a volume change of the release agent L1 in the release agent storage unit 38.
 また、本実施形態によると、検出部51は、離型剤収容部38における離型剤L1の液面L1aの位置変化を検出することで、離型剤L1の噴霧異常の有無を検出する。この構成によると、検出部51は、離型剤L1の液面L1aの位置変化を検出する簡易な構成で、離型剤L1の噴霧異常を検出できる。 Further, according to the present embodiment, the detection unit 51 detects the presence or absence of a spray abnormality of the release agent L1 by detecting a change in the position of the liquid level L1a of the release agent L1 in the release agent storage unit 38. According to this configuration, the detection unit 51 can detect a spray abnormality of the release agent L1 with a simple configuration that detects a change in the position of the liquid level L1a of the release agent L1.
 また、本実施形態によると、検出部51の光センサ52,53は、離型剤L1を非接触で検出できる。これにより、粘度の高い離型剤L1が光センサ52,53にこびりつかずに済む。 Moreover, according to this embodiment, the optical sensors 52 and 53 of the detection unit 51 can detect the release agent L1 in a non-contact manner. As a result, the release agent L1 having a high viscosity does not stick to the optical sensors 52 and 53.
 また、本実施形態によると、光センサ52,53は、シリンジ34の透光部を通して離型剤L1を検出する。この構成によると、光センサ52,53が離型剤L1に接触することをより確実に防止できる。また、光センサ52,53をシリンジ34に埋め込む必要がなく、シリンジ34への光センサ52,53の設置位置の自由度をより高くできる。 Further, according to the present embodiment, the optical sensors 52 and 53 detect the release agent L1 through the light transmitting part of the syringe 34. According to this structure, it can prevent more reliably that the optical sensors 52 and 53 contact the mold release agent L1. Moreover, it is not necessary to embed the optical sensors 52 and 53 in the syringe 34, and the degree of freedom of the installation position of the optical sensors 52 and 53 in the syringe 34 can be further increased.
 また、本実施形態によると、シリンジ34の内径D1が3.0mm~6.0mmに設定されている。シリンジ34の内径D1が3.0mm未満であると、離型剤L1の吐出後にシリンジ34内周面(壁面)に残った離型剤L1が表面張力によって、引っ付き、ブリッジを形成する(エアを巻き込んだ状態になる)。この状態で吸込みを行うと、上限検出位置P2に本来の液面L1aがくる前にブリッジ部分を液面L1aと誤認し、シリンジ34は、所定量を吸い込むことができなくなり、次の吐出時に定量吐出ができなくなる。また、シリンジ34の内径が3.0mm未満であると、粘性の高い離型剤L1がシリンジ34の内周面34aに粘着してしまい、シリンジ34内でスムーズに移動させ難いうえ、よりブリッジ形成しやすくなる。一方、シリンジ34の内径を3.0mm以上にすることで、シリンジ34内の離型剤L1の流動性を高くでき、離型剤ポンプ30の駆動に伴うシリンジ34内の離型剤L1のスムーズな移動を実現できるうえ、吐出後のブリッジの形成を抑制できる。その結果、検出部51による離型剤L1の検出をより正確に行える。また、シリンジ34の内径D1が6.0mmを超えると、シリンジ34内における離型剤L1の液面変化に対する離型剤L1の流量の変化が大きくなる。このため、シリンジ34内に離型剤L1が吸い込まれたときの離型剤L1の液面L1aの位置と、シリンジ34から離型剤L1が吐出されたときの離型剤L1の液面L1aの位置と、の変化が小さくなる。このため、検出部51は、離型剤L1の状態変化を正確に検出することが難しくなってしまう。すなわち、シリンジ34の内径D1を6.0mm以下にすることで、離型剤ポンプ30の駆動に伴うシリンジ34内での離型剤L1の液面変化をより大きくできる。これにより、検出部51は、離型剤L1をより正確に検出できる。 Further, according to the present embodiment, the inner diameter D1 of the syringe 34 is set to 3.0 mm to 6.0 mm. When the inner diameter D1 of the syringe 34 is less than 3.0 mm, the release agent L1 remaining on the inner peripheral surface (wall surface) of the syringe 34 after discharging the release agent L1 is attracted by surface tension to form a bridge (air It will be in a state of being involved). If suction is performed in this state, the bridge portion is mistakenly recognized as the liquid level L1a before the original liquid level L1a comes to the upper limit detection position P2, and the syringe 34 cannot suck a predetermined amount, and is fixed at the next discharge. Discharging becomes impossible. Further, when the inner diameter of the syringe 34 is less than 3.0 mm, the highly viscous release agent L1 adheres to the inner peripheral surface 34a of the syringe 34, and is difficult to move smoothly in the syringe 34, and more bridge formation is performed. It becomes easy to do. On the other hand, by setting the inner diameter of the syringe 34 to 3.0 mm or more, the fluidity of the release agent L1 in the syringe 34 can be increased, and the release agent L1 in the syringe 34 can be smoothly moved along with the drive of the release agent pump 30. Movement can be realized, and formation of a bridge after discharge can be suppressed. As a result, the detection unit 51 can more accurately detect the release agent L1. When the inner diameter D1 of the syringe 34 exceeds 6.0 mm, the change in the flow rate of the release agent L1 with respect to the change in the liquid level of the release agent L1 in the syringe 34 increases. Therefore, the position of the liquid level L1a of the release agent L1 when the release agent L1 is sucked into the syringe 34 and the liquid level L1a of the release agent L1 when the release agent L1 is discharged from the syringe 34 The change of the position becomes smaller. For this reason, it becomes difficult for the detection unit 51 to accurately detect the state change of the release agent L1. That is, by setting the inner diameter D1 of the syringe 34 to 6.0 mm or less, the liquid level change of the release agent L1 in the syringe 34 accompanying the driving of the release agent pump 30 can be further increased. Thereby, the detection part 51 can detect the mold release agent L1 more correctly.
 特に、シリンジ34がPTFE製で、シリンジ34の内径D1が3.0mm~6.0mmで、且つ、離型剤L1のASTM‐D2196規格に従ったB型粘度計で測定温度が25度下において#4LV スピンドルを30秒回転させたときの粘度が1000cps以下である組み合わせが、離型剤L1のスムーズな流動と検出部51による正確な離型剤検出の点で好ましい。さらに、一回あたりの離型剤L1の噴霧量が0.3g程度の微少量である場合に、適した離型剤供給監視装置50を実現できる。 In particular, the syringe 34 is made of PTFE, the inner diameter D1 of the syringe 34 is 3.0 mm to 6.0 mm, and the measurement temperature is 25 degrees below with a B-type viscometer according to the ASTM-D2196 standard of the release agent L1. A combination in which the viscosity when the # 4LV と き spindle is rotated for 30 seconds is 1000 cps or less is preferable in terms of smooth flow of the release agent L1 and accurate detection of the release agent by the detection unit 51. Furthermore, when the spray amount of the release agent L1 per one time is a very small amount of about 0.3 g, a suitable release agent supply monitoring device 50 can be realized.
 また、本実施形態によると、シリンジ34の離型剤収容部38の内周面34aにおける臨界表面張力が30mN/m以下である。この構成によると、シリンジ34の内周面34aに対する離型剤L1の濡れ性をより低くすることができる。これにより、離型剤ポンプ30の駆動に伴いシリンジ34内の離型剤L1がよりスムーズに移送される。よって、検出部51による離型剤L1の状態変化検出をより的確に行うことができる。 Further, according to the present embodiment, the critical surface tension on the inner peripheral surface 34a of the release agent accommodating portion 38 of the syringe 34 is 30 mN / m or less. According to this configuration, the wettability of the release agent L1 with respect to the inner peripheral surface 34a of the syringe 34 can be further reduced. Thereby, the release agent L1 in the syringe 34 is more smoothly transferred as the release agent pump 30 is driven. Therefore, the state change detection of the release agent L1 by the detection unit 51 can be performed more accurately.
 また、本実施形態によると、離型剤タンク28からノズル16までの離型剤L1の経路の中で、この経路から中継管32で分岐したシリンジ34内に一旦離型剤L1が溜められ、検出部51は、このシリンジ34内の流量変化を検出する。この構成によると、上記経路中における離型剤L1の流量に対するシリンジ34内の離型剤L1の量を少なくできる。その結果、検出部51が離型剤L1の噴霧量をより正確に測定できる。例えば、離型剤タンク28からノズル16までの離型剤L1の経路中の離型剤L1の流量を、分岐路を設けずに直接計測した場合、離型剤L1の計測流量に対する離型剤タンク28の離型剤L1の容量が大きく、その結果、正確な離型剤流量測定を行い難い。 Further, according to the present embodiment, in the path of the release agent L1 from the release agent tank 28 to the nozzle 16, the release agent L1 is once stored in the syringe 34 branched by the relay pipe 32 from this path. The detection unit 51 detects a flow rate change in the syringe 34. According to this structure, the quantity of the mold release agent L1 in the syringe 34 with respect to the flow volume of the mold release agent L1 in the said path | route can be decreased. As a result, the detection unit 51 can more accurately measure the spray amount of the release agent L1. For example, when the flow rate of the release agent L1 in the path of the release agent L1 from the release agent tank 28 to the nozzle 16 is directly measured without providing a branch path, the release agent with respect to the measured flow rate of the release agent L1. The capacity of the release agent L1 in the tank 28 is large, and as a result, it is difficult to accurately measure the release agent flow rate.
 以上の次第で、離型剤供給監視装置50によって、離型剤L1の噴霧異常をより的確に検出できる。これにより、噴霧ノズル16から仕上型部7への離型剤L1の噴霧異常をより確実に、かつ早期に発見できる。その結果、各セクション2で製造されるガラスびん103に製品不良が生じた場合の破棄数を減らすことができる。よって、ガラスびん103の歩留まりをより高くできる。 Depending on the above, the release agent supply monitoring device 50 can more accurately detect the spray abnormality of the release agent L1. Thereby, the spray abnormality of the mold release agent L1 from the spray nozzle 16 to the finishing mold | type part 7 can be discovered more reliably and early. As a result, it is possible to reduce the number of discards when product defects occur in the glass bottles 103 manufactured in each section 2. Therefore, the yield of the glass bottle 103 can be further increased.
 以上、本発明の実施形態について説明した。しかしながら、本発明は上記実施形態に限られず、請求の範囲に記載した限りにおいて様々な変更が可能である。なお、以下では、上述の実施形態と異なる点について主に説明し、上述の実施形態と同様の構成には図に同様の符号を付して詳細な説明を省略する場合がある。 The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made as long as they are described in the claims. In the following, differences from the above-described embodiment will be mainly described, and the same components as those in the above-described embodiment may be denoted by the same reference numerals and detailed description thereof may be omitted.
 (1)上述の実施形態では、シリンジ34内において、離型剤L1と圧縮空気とが直接接する形態を例に説明した。しかしながら、この通りでなくてもよい。例えば、図6に示すように、シリンジ34内に、離型剤L1と圧縮空気とを隔てるブロック55が設けられていてもよい。ブロック55は、シリンジ34の内周面34aの形状と同様の円筒状の外周面を有する、円柱状部材である。ブロック55が金属製(磁性体)である場合、光センサ52,53に代えて、光センサ52,53が配置される箇所に磁気センサを設置し、この磁気センサの検出信号を制御部19へ出力してもよい。 (1) In the above-described embodiment, the mode in which the release agent L1 and the compressed air are in direct contact with each other in the syringe 34 has been described as an example. However, this need not be the case. For example, as shown in FIG. 6, a block 55 that separates the release agent L <b> 1 from the compressed air may be provided in the syringe 34. The block 55 is a columnar member having a cylindrical outer peripheral surface similar to the shape of the inner peripheral surface 34 a of the syringe 34. When the block 55 is made of metal (magnetic material), a magnetic sensor is installed at a place where the optical sensors 52 and 53 are arranged instead of the optical sensors 52 and 53, and a detection signal of the magnetic sensor is sent to the control unit 19. It may be output.
 (2)上述の実施形態および変形例では、検出部51が非接触センサを用いて離型剤L1を検出する形態を例に説明した。しかしながら、この通りでなくてもよい。例えば、さらに別の変形例に係る離型剤噴霧装置3の模式的な側面図である図7を参照して、離型剤ポンプ30に代えて離型剤ポンプ30Aが用いられるとともに、監視装置50に代えて監視装置50Aが用いられてもよい。図8(A)は図7に示す変形例の主要部を示す図であり、ピストン56が上限位置P1Aに位置している状態を示している。図8(B)は図7に示す変形例の主要部を示す図であり、ピストン56が下限位置P4Aに位置している状態を示している。 (2) In the above-described embodiment and modification, the detection unit 51 has been described as an example in which the release agent L1 is detected using a non-contact sensor. However, this need not be the case. For example, referring to FIG. 7 which is a schematic side view of a release agent spraying apparatus 3 according to still another modification, a release agent pump 30A is used instead of the release agent pump 30, and the monitoring device Instead of 50, a monitoring device 50A may be used. FIG. 8A is a view showing the main part of the modification shown in FIG. 7, and shows a state where the piston 56 is located at the upper limit position P1A. FIG. 8B is a diagram showing the main part of the modification shown in FIG. 7, and shows a state where the piston 56 is located at the lower limit position P4A.
 図7、図8(A)および図8(B)を参照して、離型剤ポンプ30Aは、逆止弁31と、中継管32Aと、開閉弁33と、シリンジ34Aと、ピストン56と、レギュレータ35と、を有している。 With reference to FIG. 7, FIG. 8 (A) and FIG. 8 (B), the release agent pump 30A includes a check valve 31, a relay pipe 32A, an on-off valve 33, a syringe 34A, a piston 56, And a regulator 35.
 中継管32Aは、逆止弁31と、シリンジ34Aと、開閉弁33とを接続する管であり、本変形例では、シリンジ34Aと一体成形されている。中継管32Aの3つのポートに、それぞれ、逆止弁31、シリンジ34A、および、開閉弁33が接続されている。 The relay pipe 32A is a pipe that connects the check valve 31, the syringe 34A, and the on-off valve 33, and is integrally formed with the syringe 34A in this modification. A check valve 31, a syringe 34A, and an on-off valve 33 are connected to the three ports of the relay pipe 32A, respectively.
 シリンジ34Aは、圧縮空気によって離型剤L1を吸引する動作および離型剤L1を吐出する動作を択一的に行う。シリンジ34Aは、中空軸状に形成された部材であり、離型剤L1および圧縮空気が導入される。シリンジ34Aは、高圧の圧縮空気と、高圧の離型剤L1の双方が供給される。シリンジ34Aは、離型剤供給監視装置50Aによって離型剤L1の状態を監視される。本実施形態では、ピストン56を用いて離型剤L1の吸込みおよび吐出を行うため、シリンジ34Aの内周面34aAの濡れ性については大きな問題とはならない。本実施形態では、シリンジ34Aは、内部にL字状の空間が形成されている。 The syringe 34A selectively performs an operation of sucking the release agent L1 by compressed air and an operation of discharging the release agent L1. The syringe 34A is a member formed in a hollow shaft shape, and the release agent L1 and compressed air are introduced into the syringe 34A. The syringe 34A is supplied with both high-pressure compressed air and a high-pressure release agent L1. The state of the release agent L1 of the syringe 34A is monitored by the release agent supply monitoring device 50A. In this embodiment, since the release agent L1 is sucked and discharged using the piston 56, the wettability of the inner peripheral surface 34aA of the syringe 34A is not a big problem. In the present embodiment, the syringe 34A has an L-shaped space formed therein.
 シリンジ34Aは、離型剤ポート37Aと、離型剤収容部38Aと、圧縮空気収容部39Aと、圧縮空気ポート40Aと、を有している。 The syringe 34A has a release agent port 37A, a release agent storage portion 38A, a compressed air storage portion 39A, and a compressed air port 40A.
 離型剤ポート37Aは、離型剤L1が通過するためのポートであり、中継管32Aに接続されている。離型剤ポート37Aは、本実施形態では、シリンジ34Aの下端部に配置されている。離型剤ポート37Aは、離型剤収容部38Aに連続している。離型剤収容部38Aは、離型剤L1が溜められる部分である。離型剤収容部38Aの上限位置P1Aは、圧縮空気ポート40A寄りに設定されている。上限位置P1Aは、シリンジ34Aに離型剤L1が吸い込まれたときの液面位置の最高位置である。離型剤収容部38Aの下限位置P4Aは離型剤ポート37A寄りに設定されている。下限位置P4Aは、シリンジ34Aからノズル16への離型剤L1の吐出完了時における液面位置であり、シリンジ34A内における離型剤L1の最低位置である。前述したように、離型剤ポンプ30Aの一回の離型剤噴霧動作における離型剤L1の吐出量は、約0.3g程度と微小である。このため、上限位置P1Aと下限位置P4Aとの距離は、10数mm程度と微小である。 The release agent port 37A is a port through which the release agent L1 passes, and is connected to the relay pipe 32A. In this embodiment, the release agent port 37A is disposed at the lower end of the syringe 34A. The release agent port 37A is continuous with the release agent accommodating portion 38A. The release agent accommodating portion 38A is a portion where the release agent L1 is stored. The upper limit position P1A of the release agent container 38A is set closer to the compressed air port 40A. The upper limit position P1A is the highest position of the liquid level when the release agent L1 is sucked into the syringe 34A. The lower limit position P4A of the release agent container 38A is set closer to the release agent port 37A. The lower limit position P4A is a liquid level position at the time when the discharge of the release agent L1 from the syringe 34A to the nozzle 16 is completed, and is the lowest position of the release agent L1 in the syringe 34A. As described above, the discharge amount of the release agent L1 in one release agent spraying operation of the release agent pump 30A is as small as about 0.3 g. For this reason, the distance between the upper limit position P1A and the lower limit position P4A is as small as about several tens of millimeters.
 圧縮空気ポート40Aは、圧縮空気が通過するためのポートであり、レギュレータ35を介して圧縮空気供給源26に接続されている。圧縮空気ポート40Aは、本実施形態では、シリンジ34Aの側面に配置されている。圧縮空気ポート40Aは、圧縮空気収容部39Aに連続している。圧縮空気収容部39Aは、圧縮空気が溜められる部分である。 Compressed air port 40A is a port through which compressed air passes, and is connected to compressed air supply source 26 via regulator 35. In this embodiment, the compressed air port 40A is disposed on the side surface of the syringe 34A. The compressed air port 40A is continuous with the compressed air accommodating portion 39A. The compressed air accommodating portion 39A is a portion where compressed air is stored.
 ピストン56は、シリンジ34A内に配置された円筒状部材である。ピストン56は、作動流体としての圧縮空気によってシリンジ34Aの軸線方向に沿う進退方向A2に移動し、この進退移動によって離型剤L1を吸引および吐出する。ピストン56は、レギュレータ35から圧縮空気が逃がされるとともに離型剤L1からの圧力を受けて下限位置P4Aから上限位置P1Aへ移動する。また、ピストン56は、レギュレータ35から圧縮空気を供給されることで、シリンジ34A内の離型剤L1を吐出する。このように、ピストン56は、圧縮空気によってシリンジ34Aの軸線方向に沿う進退方向A2に移動し、この進退移動によって離型剤L1を吸引および吐出する。 The piston 56 is a cylindrical member disposed in the syringe 34A. The piston 56 moves in the advance / retreat direction A2 along the axial direction of the syringe 34A by the compressed air as the working fluid, and sucks and discharges the release agent L1 by this advance / retreat movement. The piston 56 moves from the lower limit position P4A to the upper limit position P1A in response to the pressure from the release agent L1 while the compressed air is released from the regulator 35. Moreover, the piston 56 discharges the release agent L1 in the syringe 34A by being supplied with compressed air from the regulator 35. In this manner, the piston 56 moves in the advance / retreat direction A2 along the axial direction of the syringe 34A by the compressed air, and the release agent L1 is sucked and discharged by the advance / retreat movement.
 ピストン56の外周部にはOリング等の環状シール部材57が取り付けられており、ピストン56の外周部とシリンジ34Aの内周面34aAとの間を液密的および気密的に封止している。 An annular seal member 57 such as an O-ring is attached to the outer peripheral portion of the piston 56, and seals between the outer peripheral portion of the piston 56 and the inner peripheral surface 34aA of the syringe 34A in a liquid-tight and air-tight manner. .
 ピストン56は、シリンジ34A内において、変位可能な領域が上限位置P1Aと下限位置P4Aとの間に規制されている。具体的には、シリンジ34A内に、上限ストッパ58および下限ストッパ59が設けられている。ストッパ58,59は、進退方向A2におけるピストン56の変位を所定範囲に規制する。 The piston 56 has a displaceable region restricted between the upper limit position P1A and the lower limit position P4A in the syringe 34A. Specifically, an upper limit stopper 58 and a lower limit stopper 59 are provided in the syringe 34A. The stoppers 58 and 59 restrict the displacement of the piston 56 in the advance / retreat direction A2 to a predetermined range.
 上限ストッパ58は、離型剤L1の液面が上限位置P1Aに到達したときにおけるピストン56の位置に対応する位置に設置されている。上限ストッパ58は、シリンジ34Aの内周面34aAから突出する小片状部分であり、例えば円環状に形成されている。上限ストッパ58は、ピストン56の上端面56aと接触することで、ピストン56が上方に変位することを規制する。 The upper limit stopper 58 is installed at a position corresponding to the position of the piston 56 when the liquid level of the release agent L1 reaches the upper limit position P1A. The upper limit stopper 58 is a small piece protruding from the inner peripheral surface 34aA of the syringe 34A, and is formed in an annular shape, for example. The upper limit stopper 58 restricts the piston 56 from being displaced upward by contacting the upper end surface 56 a of the piston 56.
 下限ストッパ59は、離型剤L1の液面が下限位置P4Aに到達したときにおけるピストン56の位置に対応する位置に設置されている。下限ストッパ59は、シリンジ34Aの内周面34aAから突出する段状部分であり、例えば円環状に形成されている。下限ストッパ59は、ピストン56の下端面56bと接触することで、ピストン56が下方に変位することを規制する。 The lower limit stopper 59 is installed at a position corresponding to the position of the piston 56 when the liquid level of the release agent L1 reaches the lower limit position P4A. The lower limit stopper 59 is a stepped portion protruding from the inner peripheral surface 34aA of the syringe 34A, and is formed in an annular shape, for example. The lower limit stopper 59 restricts the piston 56 from being displaced downward by contacting the lower end surface 56 b of the piston 56.
 制御部19による離型剤ポンプ30Aの駆動制御は、制御部19による離型剤ポンプ30の駆動制御と同じである。 The drive control of the release agent pump 30A by the control unit 19 is the same as the drive control of the release agent pump 30 by the control unit 19.
 離型剤供給監視装置50Aは、検出部51Aと、制御部19と、を有している。 The release agent supply monitoring device 50 </ b> A includes a detection unit 51 </ b> A and a control unit 19.
 検出部51Aは、噴霧装置3における離型剤L1の噴霧異常の有無を確認するために離型剤L1を検出するように構成されている。検出部51Aは、離型剤をノズル16へ供給する離型剤ポンプ30Aに設置されている。 The detection unit 51A is configured to detect the release agent L1 in order to confirm the presence or absence of the spray abnormality of the release agent L1 in the spray device 3. The detector 51 </ b> A is installed in a release agent pump 30 </ b> A that supplies a release agent to the nozzle 16.
 検出部51Aは、本実施形態では、シリンジ34Aにおける離型剤L1の容積変化を検出する。より具体的には、検出部51Aは、進退方向A2におけるピストン56の位置を検出する。 In this embodiment, the detection unit 51A detects the volume change of the release agent L1 in the syringe 34A. More specifically, the detection unit 51A detects the position of the piston 56 in the advance / retreat direction A2.
 検出部51Aは、変位センサ60を有している。変位センサ60は、シリンジ34Aに設置されている。変位センサ60は、接触式の変位計である。変位センサ60は、ハウジング61と、ハウジング61に支持された可動式のプローブ62と、を有している。 The detection unit 51 </ b> A has a displacement sensor 60. The displacement sensor 60 is installed in the syringe 34A. The displacement sensor 60 is a contact-type displacement meter. The displacement sensor 60 includes a housing 61 and a movable probe 62 supported by the housing 61.
 ハウジング61は、細長い軸状に形成されており、シリンジ34Aの上端部に固定されている。ハウジング61には、ニードル形状のプローブ62の一部が収容されている。プローブ62は、例えば、ハウジング61内に設けられた図示しないストッパによって、進退方向A2の移動範囲を所定範囲に規制されている。プローブ62の一部は、ハウジング61から進退方向A2に沿って突出している。シリンジ34Aの上端部に貫通孔34bが形成されており、ハウジング61およびプローブ62は、この貫通孔34bを通ってシリンジ34内に延びている。すなわち、プローブ62の少なくとも一部がシリンジ34内に配置されている。プローブ62は、図示しないばねによってピストン56側に向けて付勢されており、プローブ62の先端がピストン56の上端面56aに接触するように構成されている。 The housing 61 is formed in an elongated shaft shape, and is fixed to the upper end portion of the syringe 34A. A part of the needle-shaped probe 62 is accommodated in the housing 61. In the probe 62, for example, a moving range in the forward / backward direction A2 is restricted to a predetermined range by a stopper (not shown) provided in the housing 61. A part of the probe 62 protrudes from the housing 61 along the advance / retreat direction A2. A through hole 34b is formed at the upper end of the syringe 34A, and the housing 61 and the probe 62 extend into the syringe 34 through the through hole 34b. That is, at least a part of the probe 62 is disposed in the syringe 34. The probe 62 is urged toward the piston 56 by a spring (not shown), and the tip of the probe 62 is configured to contact the upper end surface 56 a of the piston 56.
 進退方向A2におけるピストン56の変位に連動してプローブ62も進退方向A2に一体的に変位する。ハウジング61に対するプローブ62の位置に応じた検出信号が、変位センサ60から制御部19へ出力される。変位センサ60の分解能は、約1μmと高性能であり、その結果、微小なノズル詰まりも検出できる。そして、進退方向A2のうち、ピストン56が離型剤L1を吐出するときの吐出方向A21(下方向)にピストン56が上限位置P1Aから所定値Δx1以上変位したとき、プローブ62は、ハウジング61に設けられたストッパに受けられる。これにより、プローブ62は、吐出方向A21への変位を規制される。すなわち、プローブ62は、離型剤L1の吐出時におけるピストン56の進出変位量が所定値Δx1以上の際に、ピストン56との連結を解除され一定位置に維持される。 In conjunction with the displacement of the piston 56 in the advance / retreat direction A2, the probe 62 is also integrally displaced in the advance / retreat direction A2. A detection signal corresponding to the position of the probe 62 with respect to the housing 61 is output from the displacement sensor 60 to the control unit 19. The resolution of the displacement sensor 60 is as high as about 1 μm, and as a result, minute nozzle clogging can be detected. When the piston 56 is displaced from the upper limit position P1A by a predetermined value Δx1 or more in the discharge direction A21 (downward) when the piston 56 discharges the release agent L1 in the advance / retreat direction A2, the probe 62 is moved to the housing 61. It is received by the provided stopper. Thereby, the displacement of the probe 62 in the ejection direction A21 is restricted. That is, the probe 62 is released from the connection with the piston 56 and maintained at a fixed position when the advancement displacement amount of the piston 56 at the time of discharging the release agent L1 is equal to or greater than the predetermined value Δx1.
 上述の構成により、離型剤ポンプ30Aおよび検出部51Aは、離型剤ポンプ30および検出部51と異なり、離型剤L1の粘性に影響を受けずに離型剤L1の検出力(検出数値精度等)をより高くできる。また、ピストン56の直径を離型剤ポンプ30のシリンジ34の内径D1よりも大きくできるので、離型剤ポンプ30Aにおける液面変化量と、離型剤ポンプ30における液面変化量が同じでも、離型剤ポンプ30Aにおける離型剤L1の吐出量をより多くできる。これにより、検出部51Aで検出可能な離型剤L1の吐出量をより広くできる。 With the above-described configuration, the release agent pump 30A and the detection unit 51A are different from the release agent pump 30 and the detection unit 51 in that the detection force (detection value) of the release agent L1 is not affected by the viscosity of the release agent L1. Accuracy). Further, since the diameter of the piston 56 can be made larger than the inner diameter D1 of the syringe 34 of the release agent pump 30, even if the liquid level change amount in the release agent pump 30A and the liquid level change amount in the release agent pump 30 are the same, The discharge amount of the release agent L1 in the release agent pump 30A can be increased. Thereby, the discharge amount of the release agent L1 that can be detected by the detection unit 51A can be made wider.
 本実施形態では、上限位置P1Aと上側検出位置P2Aとが進退方向A2において同じに設定されている。これは、ピストン56の下端面56bは、離型剤L1の液面と異なり、常時平坦な状態が維持されるため、離型剤L1とシリンジ34Aとの相互作用によってメニスカスが形成されることを考慮する必要がないためである。一方で、下限位置P4Aから上限位置P1A側Δx2だけ進んだ箇所に、下側検出位置P3Aが配置されている。これは、プローブ62の変位量が大きいと、プローブ62の変位量に対する変位センサ60からの出力の変化量が大きくなり位置検出精度が低下するため、高い位置検出精度を確保するためにプローブ62の変位量を制限していることによる。そして、ピストン56が下限位置P4Aにあるとき、プローブ62とピストン56との間には、所定の隙間Δx2が空けられている。 In the present embodiment, the upper limit position P1A and the upper detection position P2A are set to be the same in the forward / backward direction A2. This is because, unlike the liquid surface of the release agent L1, the lower end surface 56b of the piston 56 is always kept flat, so that a meniscus is formed by the interaction between the release agent L1 and the syringe 34A. This is because there is no need to consider. On the other hand, the lower detection position P3A is arranged at a position advanced from the lower limit position P4A by the upper limit position P1A side Δx2. This is because if the displacement amount of the probe 62 is large, the amount of change in the output from the displacement sensor 60 with respect to the displacement amount of the probe 62 becomes large and the position detection accuracy decreases. This is because the amount of displacement is limited. When the piston 56 is at the lower limit position P4A, a predetermined gap Δx2 is provided between the probe 62 and the piston 56.
 なお、本実施形態では、変位センサ60を用いてピストン56の変位を検出する構成を説明するけれども、この通りでなくてもよい。例えば、磁気センサ、光センサ等、ピストン56の変位によって検出信号が異なる構造のセンサを、変位センサ60に代えて用いてもよい。 In the present embodiment, a configuration in which the displacement of the piston 56 is detected using the displacement sensor 60 will be described. However, this need not be the case. For example, a sensor having a structure in which a detection signal differs depending on the displacement of the piston 56 such as a magnetic sensor or an optical sensor may be used instead of the displacement sensor 60.
 噴霧装置3で生じる異常は、監視装置50Aで検出される。より具体的には、離型剤ポンプ30Aのシリンジ34Aによる離型剤吐出異常が生じた場合には、離型剤ポンプ30Aによる離型剤L1の吐出動作の開始の後、ピストン56の下端面56bが所定時間内に下側検出位置P3Aまで到達しないことが考えられる。また、離型剤ポンプ30Aのシリンジ34Aによる離型剤吸込み異常が生じた場合には、離型剤ポンプ30Aによる離型剤L1の吸込み動作開始の後、ピストン56の下端面56bが所定時間内に上側検出位置P2Aまで到達しないことが考えられる。よって、本変形例では、制御部19は、このような異常を検出する。 An abnormality that occurs in the spray device 3 is detected by the monitoring device 50A. More specifically, when a release agent discharge abnormality by the syringe 34A of the release agent pump 30A occurs, the lower end surface of the piston 56 is started after the release operation of the release agent L1 by the release agent pump 30A is started. It is conceivable that 56b does not reach the lower detection position P3A within a predetermined time. In addition, when a release agent suction abnormality by the syringe 34A of the release agent pump 30A occurs, after the release operation of the release agent L1 by the release agent pump 30A starts, the lower end surface 56b of the piston 56 remains within a predetermined time. It is conceivable that the upper detection position P2A is not reached. Therefore, in this modification, the control unit 19 detects such an abnormality.
 以上説明したように、この変形例によると、ピストン56が設けられていることにより、ピストン56の移動に伴いシリンジ34Aの内周面34aA(壁面)付近の離型剤L1を含めて、シリンジ34A内の離型剤全体をスムーズに移送できる。 As described above, according to this modification, since the piston 56 is provided, the syringe 34A includes the release agent L1 in the vicinity of the inner peripheral surface 34aA (wall surface) of the syringe 34A as the piston 56 moves. The entire mold release agent can be transferred smoothly.
 また、この変形例によると、検出部51Aは、ピストン56の動きを検出することで、シリンジ34Aから離型剤L1が設定通りに吐出されているか否かを、より正確に検出できる。 Further, according to this modification, the detection unit 51A can detect more accurately whether or not the release agent L1 is discharged from the syringe 34A as set by detecting the movement of the piston 56.
 また、この変形例によると、検出部51Aは、プローブ62の変位を通じてピストン56の移動、すなわち、離型剤L1の噴霧状況を検出できる。 Further, according to this modification, the detection unit 51A can detect the movement of the piston 56 through the displacement of the probe 62, that is, the spray state of the release agent L1.
 また、この変形例によると、プローブ62は、離型剤L1の吐出時におけるピストン56の進出変位量が所定値Δx1以上の際に、ピストン56との連結を解除され一定位置P3Aに維持される。この構成によると、プローブ62の移動量の許容値は、ピストン56の最大移動量未満で済む。このため、プローブ62の感度(ピストン56の移動に対するプローブ62の出力のゲイン)を高くできる。これにより、検出部51Aは、シリンジ34内における離型剤L1の状態変化を、より正確に検出できる。 According to this modification, the probe 62 is released from the connection with the piston 56 and maintained at the fixed position P3A when the advancement displacement amount of the piston 56 at the time of discharging the release agent L1 is equal to or greater than the predetermined value Δx1. . According to this configuration, the allowable value of the movement amount of the probe 62 may be less than the maximum movement amount of the piston 56. For this reason, the sensitivity of the probe 62 (the gain of the output of the probe 62 with respect to the movement of the piston 56) can be increased. Thereby, 51 A of detection parts can detect the state change of the mold release agent L1 in the syringe 34 more correctly.
 また、この変形例によると、プローブ62の少なくとも一部がシリンジ34A内に収容されている。この構成によると、プローブ62がシリンジ34Aによって保護される。よって、プローブ62が異物に接触することで検出部51Aでの検出値が異常値となることをより確実に抑制できる。 Further, according to this modification, at least a part of the probe 62 is accommodated in the syringe 34A. According to this configuration, the probe 62 is protected by the syringe 34A. Therefore, it can suppress more reliably that the detection value in 51 A of detection parts becomes an abnormal value because the probe 62 contacts a foreign material.
 また、この変形例によると、進退方向A2におけるピストン56の変位を所定範囲に規制するためのストッパ58,59が設けられている。この構成によると、ピストン56の移動量が大きくなりすぎずに済む。このため、プローブ62の移動量の許容値が小さくて済む。このため、プローブ62の感度を高くできる。これにより、検出部51Aは、シリンジ34A内における離型剤L1の状態変化を、より正確に検出できる。また、シリンジ34A内の圧力異常などによりピストン56が設定以上の吸込みを行った場合において、検出部51Aの破損を防ぐことができる。 Further, according to this modification, stoppers 58 and 59 for restricting the displacement of the piston 56 in the advance / retreat direction A2 to a predetermined range are provided. According to this configuration, the movement amount of the piston 56 does not need to be too large. For this reason, the allowable value of the movement amount of the probe 62 may be small. For this reason, the sensitivity of the probe 62 can be increased. Thereby, detection part 51A can detect the state change of mold release agent L1 in syringe 34A more correctly. Further, in the case where the piston 56 sucks more than the setting due to abnormal pressure in the syringe 34A or the like, it is possible to prevent the detection unit 51A from being damaged.
 また、本変形例によると、離型剤L1が存在していない箇所にプローブ62が配置されるので、離型剤L1の粘度の影響を受けにくい状態で変位センサ60による検出動作を行うことができる。 Further, according to the present modification, the probe 62 is arranged at a location where the release agent L1 does not exist, so that the detection operation by the displacement sensor 60 can be performed in a state that is not easily affected by the viscosity of the release agent L1. it can.
 (3)また、上述の実施形態および変形例において、噴霧装置3のうち、離型剤L1が通過する通路等に保温用のヒータが設けられていてもよい。ヒータは、電熱ヒータであってもよいし、断熱材を含んでいてもよい。ヒータが設けられることで、例えば冬場における離型剤L1の温度を一定以上に維持できる。これにより、離型剤L1の粘度が高くなりすぎることを抑制できる。よって、離型剤L1がノズル16等で詰まること、すなわち離型剤L1の噴霧異常が生じることをより確実に抑制できる。 (3) Further, in the above-described embodiments and modifications, a heater for heat insulation may be provided in a passage or the like through which the release agent L1 passes in the spray device 3. The heater may be an electric heater or may include a heat insulating material. By providing the heater, for example, the temperature of the release agent L1 in winter can be maintained above a certain level. Thereby, it can suppress that the viscosity of the mold release agent L1 becomes high too much. Therefore, it can suppress more reliably that the mold release agent L1 clogs with the nozzle 16 grade | etc., Ie, the spray abnormality of the mold release agent L1 arises.
 本発明は、離型剤供給監視装置、および、ガラスびん成形用金型への離型剤噴霧装置として、広く適用できる。 The present invention can be widely applied as a release agent supply monitoring device and a release agent spraying device to a glass bottle mold.
3 離型剤噴霧装置
5 粗型部(金型)
6 口型部(金型)
7 仕上型部(金型)
16 噴霧ノズル
30,30A 離型剤ポンプ(ポンプ)
34,34A シリンジ
34a 内周面
38,38A 離型剤収容部
40,40A 圧縮空気ポート(作動流体が通過するポート)
50,50A 離型剤供給監視装置
51,51A 検出部
52,53 光センサ
56 ピストン
58,59 ストッパ
62 プローブ
103 ガラスびん(ガラス成形品)
A2 進退方向
D1 シリンジの内径
L1 離型剤
3 Release agent spraying device 5 Coarse mold part (mold)
6 Mouth mold (mold)
7 Finishing mold (mold)
16 Spray nozzle 30, 30A Release agent pump (pump)
34, 34A Syringe 34a Inner peripheral surface 38, 38A Release agent container 40, 40A Compressed air port (port through which working fluid passes)
50, 50A Release agent supply monitoring device 51, 51A Detector 52, 53 Optical sensor 56 Piston 58, 59 Stopper 62 Probe 103 Glass bottle (glass molded product)
A2 Advancing and retracting direction D1 Syringe inner diameter L1 Release agent

Claims (15)

  1.  ガラスびん成形用金型への離型剤を噴霧する離型剤噴霧装置における前記離型剤の噴霧異常の有無を確認するために前記離型剤を検出する検出部、
    を備えていることを特徴とする、離型剤供給監視装置。
    A detection unit for detecting the release agent in order to confirm the presence or absence of spray abnormality of the release agent in a release agent spraying apparatus for spraying the release agent to the glass bottle molding die;
    A release agent supply monitoring device, comprising:
  2.  請求項1に記載の離型剤供給監視装置であって、
     前記検出部は、前記離型剤を前記離型剤噴霧装置の噴霧ノズルへ供給するポンプに設置され、
     前記ポンプは、作動流体によって前記離型剤を吸引する動作および前記離型剤を吐出する動作を行うシリンジを含み、
     前記検出部は、前記シリンジにおける前記離型剤の容積変化を検出することを特徴とする、離型剤供給監視装置。
    The release agent supply monitoring device according to claim 1,
    The detection unit is installed in a pump that supplies the release agent to a spray nozzle of the release agent spraying device,
    The pump includes a syringe that performs an operation of sucking the release agent with a working fluid and an operation of discharging the release agent,
    The said detection part detects the volume change of the said mold release agent in the said syringe, The mold release agent supply monitoring apparatus characterized by the above-mentioned.
  3.  請求項2に記載の離型剤供給監視装置であって、
     前記シリンジは、前記作動流体が通過するポートと、前記離型剤が溜められる離型剤収容部と、を有していることを特徴とする、離型剤供給監視装置。
    The release agent supply monitoring device according to claim 2,
    The release agent supply monitoring device, wherein the syringe has a port through which the working fluid passes and a release agent storage portion in which the release agent is stored.
  4.  請求項3に記載の離型剤供給監視装置であって、
     前記検出部は、前記離型剤収容部における前記離型剤の液面位置の変化を検出することで、前記離型剤の噴霧異常の有無を検出することを特徴とする、離型剤供給監視装置。
    The release agent supply monitoring device according to claim 3,
    The detection unit detects the presence or absence of spray abnormality of the release agent by detecting a change in the liquid level position of the release agent in the release agent storage unit. Monitoring device.
  5.  請求項2~4の何れか1項に記載の離型剤供給監視装置であって、
     前記検出部は、光を検出する光センサを含むことを特徴とする、離型剤供給監視装置。
    A release agent supply monitoring device according to any one of claims 2 to 4,
    The release agent supply monitoring device, wherein the detection unit includes an optical sensor for detecting light.
  6.  請求項5に記載の離型剤供給監視装置であって、
     前記シリンジは、透光部を含み、
     前記光センサは、前記透光部を通して前記離型剤を検出することを特徴とする、離型剤供給監視装置。
    The release agent supply monitoring device according to claim 5,
    The syringe includes a translucent part,
    The release agent supply monitoring device, wherein the optical sensor detects the release agent through the translucent part.
  7.  請求項2~請求項6の何れか1項に記載の離型剤供給監視装置であって、
     前記シリンジの内径が3.0mm~6.0mmであることを特徴とする、離型剤供給監視装置。
    A release agent supply monitoring device according to any one of claims 2 to 6,
    A mold release agent supply monitoring device, wherein an inner diameter of the syringe is 3.0 mm to 6.0 mm.
  8.  請求項2~請求項7の何れか1項に記載の離型剤供給監視装置であって、
     前記シリンジは、前記作動流体が通過するポートと、前記離型剤が溜められる離型剤収容部と、を有し、
     前記シリンジの前記離型剤収容部の内周面における臨界表面張力が30mN/m以下であることを特徴とする、離型剤供給監視装置。
    A release agent supply monitoring device according to any one of claims 2 to 7,
    The syringe has a port through which the working fluid passes, and a release agent storage part in which the release agent is stored,
    The release agent supply monitoring apparatus, wherein a critical surface tension of the inner peripheral surface of the release agent container of the syringe is 30 mN / m or less.
  9.  請求項2~請求項4の何れか1項に記載の離型剤供給監視装置であって、
     前記ポンプは、前記シリンジ内に配置されたピストンを有し、
     前記ピストンは、前記作動流体によって前記シリンジの軸線方向に沿う進退方向に移動し、この進退移動によって前記離型剤を吸引および吐出することを特徴とする、離型剤供給監視装置。
    A release agent supply monitoring device according to any one of claims 2 to 4,
    The pump has a piston disposed in the syringe;
    The said piston moves to the advancing / retreating direction along the axial direction of the said syringe with the said working fluid, The said releasing agent is attracted | sucked and discharged by this advancing / retreating apparatus, The release agent supply monitoring apparatus characterized by the above-mentioned.
  10.  請求項9に記載の離型剤供給監視装置であって、
     前記検出部は、前記進退方向における前記ピストンの位置を検出することを特徴とする、離型剤供給監視装置。
    The release agent supply monitoring device according to claim 9,
    The release agent supply monitoring device, wherein the detection unit detects a position of the piston in the forward / backward direction.
  11.  請求項10に記載の離型剤供給監視装置であって、
     前記検出部は、前記ピストンの進退移動に連動して前記進退方向に変位するプローブを含むことを特徴とする、離型剤供給監視装置。
    A release agent supply monitoring device according to claim 10,
    The release agent supply monitoring apparatus, wherein the detection unit includes a probe that is displaced in the advance / retreat direction in conjunction with the advance / retreat movement of the piston.
  12.  請求項11に記載の離型剤供給監視装置であって、
     前記プローブは、前記離型剤の吐出時における前記ピストンの進出変位量が所定値以上の際に、前記ピストンとの連結を解除され一定位置に維持されることを特徴とする、離型剤供給監視装置。
    The release agent supply monitoring device according to claim 11,
    The probe is released from the piston and maintained at a fixed position when the displacement of the piston during discharge of the release agent is greater than or equal to a predetermined value. Monitoring device.
  13.  請求項11または請求項12に記載の離型剤供給監視装置であって、
     前記プローブの少なくとも一部が前記シリンジ内に収容されていることを特徴とする、離型剤供給監視装置。
    The release agent supply monitoring device according to claim 11 or 12,
    A release agent supply monitoring device, wherein at least a part of the probe is accommodated in the syringe.
  14.  請求項9~請求項13の何れか1項に記載の離型剤供給監視装置であって、
     前記進退方向における前記ピストンの変位を所定範囲に規制するためのストッパをさらに備えていることを特徴とする、離型剤供給監視装置。
    A release agent supply monitoring device according to any one of claims 9 to 13,
    A release agent supply monitoring device, further comprising a stopper for restricting the displacement of the piston in the advance / retreat direction to a predetermined range.
  15.  請求項1~請求項14の何れか1項に記載の離型剤供給監視装置と、
     前記離型剤を供給するポンプと、
     前記ポンプから吐出された離型剤を噴霧する噴霧ノズルと、
    を備えていることを特徴とする、ガラスびん成形用金型への離型剤噴霧装置。
    A release agent supply monitoring device according to any one of claims 1 to 14,
    A pump for supplying the release agent;
    A spray nozzle for spraying the release agent discharged from the pump;
    An apparatus for spraying a release agent onto a mold for forming a glass bottle, comprising:
PCT/JP2019/017269 2018-05-07 2019-04-23 Device for monitoring supplying of release agent and device for spraying release agent onto glass bottle forming die WO2019216208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018089478A JP6511565B1 (en) 2018-05-07 2018-05-07 Release agent supply monitoring device and release agent spray device for glass bottle molding die
JP2018-089478 2018-05-07

Publications (1)

Publication Number Publication Date
WO2019216208A1 true WO2019216208A1 (en) 2019-11-14

Family

ID=66530698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017269 WO2019216208A1 (en) 2018-05-07 2019-04-23 Device for monitoring supplying of release agent and device for spraying release agent onto glass bottle forming die

Country Status (3)

Country Link
JP (1) JP6511565B1 (en)
TW (1) TWI774952B (en)
WO (1) WO2019216208A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792883B (en) * 2022-01-24 2023-02-11 高科晶捷自動化股份有限公司 Fluid control structure of dispensing apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046935A (en) * 1983-04-22 1985-03-14 アヘソン・インタ−ナシヨナル・ソシエテ・アノニム Device for manufacturing hollow glass body
JPS60141641A (en) * 1983-12-27 1985-07-26 Yamamura Glass Kk Device for coating liquid lubricant on die of glass bottle preparing machine
JPH06234547A (en) * 1992-12-18 1994-08-23 Asahi Glass Co Ltd Ceramic color composition and production of curved glass plate using the same
JP2006064545A (en) * 2004-08-27 2006-03-09 Mitsubishi Chemicals Corp Fluid discharge mechanism, fluid discharge method and fluid-dispensing device
JP2010017681A (en) * 2008-07-14 2010-01-28 Robotech Co Ltd Flow rate measurement and control system of spray device
JP4957957B2 (en) * 2006-11-15 2012-06-20 横河電機株式会社 Liquid supply device
US20160008834A1 (en) * 2014-07-14 2016-01-14 Graco Minnesota Inc. Material dispense tracking and control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046935A (en) * 1983-04-22 1985-03-14 アヘソン・インタ−ナシヨナル・ソシエテ・アノニム Device for manufacturing hollow glass body
JPS60141641A (en) * 1983-12-27 1985-07-26 Yamamura Glass Kk Device for coating liquid lubricant on die of glass bottle preparing machine
JPH06234547A (en) * 1992-12-18 1994-08-23 Asahi Glass Co Ltd Ceramic color composition and production of curved glass plate using the same
JP2006064545A (en) * 2004-08-27 2006-03-09 Mitsubishi Chemicals Corp Fluid discharge mechanism, fluid discharge method and fluid-dispensing device
JP4957957B2 (en) * 2006-11-15 2012-06-20 横河電機株式会社 Liquid supply device
JP2010017681A (en) * 2008-07-14 2010-01-28 Robotech Co Ltd Flow rate measurement and control system of spray device
US20160008834A1 (en) * 2014-07-14 2016-01-14 Graco Minnesota Inc. Material dispense tracking and control

Also Published As

Publication number Publication date
TW201946696A (en) 2019-12-16
JP2019196275A (en) 2019-11-14
TWI774952B (en) 2022-08-21
JP6511565B1 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
KR100754342B1 (en) Method and apparatus for dispensing fluids
JP5646196B2 (en) Discharge device, liquid dispensing device, and liquid dispensing method
US6715506B1 (en) Method and device for injecting a fixed quantity of liquid
JP6150459B2 (en) Metering device, lubrication system and method for delivering a predefined amount of lubricant
KR100592504B1 (en) Liquid constant rate discharge method and device
WO2019216208A1 (en) Device for monitoring supplying of release agent and device for spraying release agent onto glass bottle forming die
CN104941875B (en) A kind of adjustable contactless high-speed injection valve of stroke
US20220203596A1 (en) Liquid blow molding device
CN207457009U (en) A kind of apparatus for measuring contact angle
CN111515054A (en) High-precision spraying double-closed-loop supply system
JP2006308374A (en) Liquid-dispensing device and liquid dispensation method
KR101916575B1 (en) Flowrate Measuring Type Viscous Liquid Pump
US4317475A (en) Liquid filling and level sensing apparatus
CN110979771B (en) Non-contact liquid filling device
JP2013001417A (en) Liquid filling apparatus and liquid filling method
JP2009228603A (en) Device for taking out high viscosity object and method for taking out high viscosity object
US20140283928A1 (en) Flow amount control apparatus
US20210047228A1 (en) Application equipment for applying mold release lubricant to glass bottle forming molds
CN215197788U (en) Spraying equipment
US11559823B2 (en) Volumetric measurement and regulation device incorporated in a time-pressure dispenser
JP2023182547A (en) Installation for application of coating product, and method for controlling such installation
CN108760168A (en) Test device for air tightness
KR101852266B1 (en) Flowrate Measuring Type Apparatus for Dispensing Viscous Liquid
JP3756040B2 (en) Metal molten metal dispensing device
JP2002310389A (en) Mixing valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799863

Country of ref document: EP

Kind code of ref document: A1