WO2019216121A1 - Servo motor drive device and galvano drive device, and laser machining device - Google Patents

Servo motor drive device and galvano drive device, and laser machining device Download PDF

Info

Publication number
WO2019216121A1
WO2019216121A1 PCT/JP2019/016025 JP2019016025W WO2019216121A1 WO 2019216121 A1 WO2019216121 A1 WO 2019216121A1 JP 2019016025 W JP2019016025 W JP 2019016025W WO 2019216121 A1 WO2019216121 A1 WO 2019216121A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
signal
galvano
determination
wear
Prior art date
Application number
PCT/JP2019/016025
Other languages
French (fr)
Japanese (ja)
Inventor
松井 浩之
友紀 小宮
吉晋 松村
荒井 昭浩
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019216121A1 publication Critical patent/WO2019216121A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present disclosure relates to a servo motor driving device, a galvano driving device in which a galvano scanner is driven by the servo motor, and a laser processing apparatus including the galvano driving device.
  • the laser processing apparatus performs two-dimensional scanning with a galvano scanner for laser light output from a laser light source, thereby marking characters, symbols, figures, etc. on the surface to be processed, drilling, cutting, and the like.
  • the galvanometer mirror is rotated based on the rotation of the output shaft of the servo motor, and the laser beam is scanned on the XY plane.
  • the output shaft of the servo motor is supported by a bearing (ball bearing) provided in the case of the servo motor.
  • the wear of the bearing hinders the smooth rotation of the output shaft of the servo motor, and the galvano scanner hinders the smooth rotation of the galvano mirror, thereby reducing the scanning accuracy. Therefore, by performing feedback control based on the deviation between the target rotational position (angle) of the galvano mirror and the actual rotational position (angle), the actual rotational position is matched with the target rotational position.
  • a servo motor driving device configured to control in this manner.
  • Patent Documents 1 to 6 are known as prior art documents related to such a servo motor driving device.
  • the deviation of the rotational position of the output shaft due to the wear of the bearing is corrected, so it is difficult to determine the fine degree of wear of the bearing.
  • An object of the present disclosure is to provide a servo motor drive device, a galvano drive device, and a laser processing device that can detect wear of a bearing of a drive motor at an early stage.
  • a galvano drive device that solves the above-described problem is a galvano drive unit that rotates a galvano mirror by rotation of an output shaft of a drive motor, and the galvo drive unit rotates the galvano mirror to a preset rotation position.
  • a drive control unit that outputs a drive signal, a rotation state detection unit that outputs a rotation state signal indicating a rotation state of the galvano mirror based on the drive signal, and a deviation between the drive signal and the rotation state signal
  • the drive control unit has a determination mode for outputting a determination drive signal
  • a wear detecting unit for detecting a degree of wear of the bearing of the output shaft based on a rotation state of the galvano mirror based on a determination drive signal;
  • Sometimes disable the operation of the feedback control unit characterized in that the rotation state signal further comprising a switching unit to supply only to the wear detection unit.
  • the drive control unit outputs a determination drive signal for rotating the entire effective rotation range of the galvano mirror in the determination mode, and the wear detection unit is configured for the determination. It is preferable to detect the wear degree over the entire effective rotation range of the galvanometer mirror based on the rotation state signal based on the drive signal.
  • the wear degree can be detected over the entire effective rotation range of the galvanometer mirror.
  • the drive control unit outputs a determination drive signal for repeatedly rotating the galvano mirror in the determination mode, and the wear detection unit is configured to rotate based on the determination drive signal. It is preferable to detect the degree of wear of the bearing of the output shaft based on the dynamic state signal.
  • the drive control unit outputs a determination drive signal for repeatedly rotating the galvano mirror in a reciprocating direction in the determination mode
  • the wear detection unit is configured to output the determination drive signal. It is preferable to detect the degree of wear of the bearing of the output shaft over the reciprocating direction of the galvanometer mirror based on the rotation state signal based on the.
  • the drive control unit outputs a trapezoidal wave as the determination drive signal.
  • This configuration improves the detection accuracy of minor wear by gradually increasing the torque for rotating the galvano mirror and gradually decreasing the torque to generate the rotation state signal.
  • the drive control unit outputs a drive position signal for rotating the galvano mirror to a preset rotation position as the drive signal, and for determination as the determination drive signal.
  • a driving position monitor (observation) signal is output, and the wear detection unit detects in advance a current position signal obtained by detecting the rotation position of the galvanometer mirror based on the determination driving position monitor (observation) signal as the rotation state signal. It is preferable to detect the degree of wear of the bearing of the output shaft by comparing with a set reference value.
  • the drive control unit shifts to the determination mode following power-on.
  • the drive control unit shifts to the determination mode when the power is shut down, and the wear detection unit includes a storage unit that stores the detection result in the determination mode, and when the power is turned on again. It is preferable to provide an output unit that outputs the detection result stored in the storage unit.
  • the galvano drive device further includes a temperature detection unit that outputs a current temperature signal that detects the temperature of the drive motor to the wear detection unit, and the wear detection unit is configured to output the current temperature signal based on the current temperature signal. It is preferable to correct the temperature of either the position signal or the reference value.
  • a laser processing apparatus that solves the above problem irradiates a processing surface with laser light emitted from a laser light source via a galvano mirror that is rotated by a galvano driving device according to any one of the above.
  • the operation of the feedback control unit is invalidated in the determination mode, so that it is possible to detect the fine degree of wear of the bearing of the drive motor from the current position signal.
  • the replacement timing of the drive motor can be easily predicted, and the drive motor can be replaced at a time other than when the laser processing apparatus is in operation.
  • a servo motor driving apparatus that solves the above problems includes a servo motor, a servo motor driving unit that drives the servo motor, a drive control unit that outputs a driving signal to the servo motor driving unit, and the driving signal based on the driving signal.
  • a rotation state detection unit that outputs a rotation state signal that detects a rotation state of the output shaft of the servo motor, and the drive signal is corrected so as to correct a deviation between the drive signal and the rotation state signal.
  • a feedback control unit for supplying the servomotor to the servomotor, wherein the drive control unit has a determination mode for outputting a determination drive signal, and the servomotor is operated based on the determination drive signal.
  • a wear detecting unit for detecting the degree of wear of the bearing of the output shaft based on a moving state, and invalidating the operation of the feedback control unit during the determination mode; Characterized in that the Kikaido state signal further comprising a switching unit to supply only to the wear detection unit.
  • the block diagram which shows the laser processing apparatus of 1st embodiment The block diagram which shows the structure at the time of normal operation
  • Explanatory drawing which shows rotation operation
  • the flowchart which shows operation
  • the flowchart which shows operation
  • the block diagram which shows the laser processing apparatus of 2nd embodiment.
  • the block diagram which shows the structure at the time of normal operation
  • the servo motor driving device of the present disclosure includes a servo motor driving unit that drives a servo motor, a drive control unit that outputs a driving signal to the servo motor driving unit, and a rotation state of an output shaft of the servo motor based on the driving signal.
  • a rotation state detection unit that outputs a rotation state signal, and a feedback control unit that corrects the drive signal and supplies the servo signal to the servo motor so as to correct a deviation between the drive signal and the rotation state signal.
  • the drive control unit has a determination mode for outputting a determination drive signal.
  • the servo motor drive device disables the operation of the wear detection unit that detects the wear degree of the bearing of the output shaft based on the rotation state of the servo motor based on the determination drive signal, and the operation of the feedback control unit in the determination mode. And a switching unit that supplies the state signal only to the wear detection unit.
  • the servo motor driving device is applied to a laser processing device including a galvano driving device.
  • the galvano drive device includes a servo motor drive device and a galvano mirror driven by the servo motor drive device.
  • a first embodiment of a servo motor driving device for controlling the operation of a galvano driving device mounted on a laser processing apparatus will be described with reference to the drawings.
  • FIG. 1 shows an example of a block diagram of a laser processing apparatus.
  • the laser processing apparatus includes a galvanometer mirror 1 and a laser light source 17.
  • the galvanometer mirror 1 is rotated based on the rotation of the output shaft 3 of the drive motor 2 and irradiates the laser beam L supplied from the laser light source 17 toward the processing surface of the workpiece.
  • the drive motor 2 functions as a servo motor.
  • the drive motor 2 includes a bearing (not shown) such as a ball bearing provided in the case, an output shaft 3 rotatably supported by the bearing, and a coil 4. Based on the current supplied to the coil 4, the rotation angle and rotation speed of the output shaft 3 of the drive motor 2 are controlled.
  • the drive control unit 5 that controls the laser processing operation outputs a drive position signal dp for controlling the rotational position of the galvano mirror 1 to the amplifier 7 and the integrator 8 via the adder 6. Further, the drive control unit 5 outputs a drive position signal dp to the switch 11.
  • the amplifier 7 amplifies the drive position signal dp and outputs it to the adder 9, and the integrator 8 integrates the voltage value of the drive position signal dp and outputs it to the adder 9.
  • the adder 9 adds the voltage signals output from the amplifier 7, the integrator 8, and the speed detection unit 10, and outputs the result to the switch 11.
  • the switch 11 is switch-controlled based on the control signal cs1 output from the drive control unit 5, and either the output signal of the adder 9 or the drive position signal dp is converted into a V / I converter (voltage / current converter) 12. Output to.
  • the drive position signal dp and the output signal of the adder 9 are voltage signals.
  • the V / I converter 12 converts the drive position signal dp or the output signal of the adder 9 into a current signal and supplies it to the drive motor 2 as a drive current di.
  • the adder 6, the amplifier 7, the integrator 8, and the adder 9 function as a feedback control unit.
  • the output shaft 3 of the drive motor 2 is rotated at a rotation speed and a rotation angle based on the drive current di. Then, the galvanometer mirror 1 is rotated based on the rotation of the output shaft 3.
  • the drive motor 2, which is a servo motor, the rotating shaft 3, the coil 4, and the V / I converter 12 function as a servo motor drive unit.
  • the galvano mirror 1, the drive motor 2, the rotating shaft 3, the coil 4, and the V / I converter 12 function as a galvano drive unit.
  • the servo motor driving unit of the servo motor driving device corresponds to the galvano driving unit of the galvano driving device.
  • the servo motor driving unit can supply a driving current di to the servo motor and drive various objects attached to the rotation shaft 3 of the servo motor.
  • the servo motor driving device is applied to a laser processing device including a galvano driving device.
  • the galvano drive unit can drive the galvanometer mirror 1 attached to the rotation shaft 3 of the drive motor 2 by supplying a drive current di to the drive motor 2.
  • the servo motor drive device includes an FA robot arm control device, an angle control device such as an inspection table, a movement control device for a mounting table such as a machine tool, a robot joint control device, and a rotation of a surveillance camera.
  • the present invention can be applied to a control device, a control device that controls a plotter or a stamping machine with three axes in the XYZ directions.
  • the servo motor drive unit drives the FA robot arm, inspection table, mounting table, robot joint, surveillance camera, and the like by the servo motor.
  • the V / I converter 12 supplies the drive current di.
  • the configuration is not limited to the V / I converter 12 as long as the drive current di is supplied.
  • the drive motor 2 is provided with a position detection unit 13 that detects the rotation position (rotation angle) of the output shaft 3, that is, the rotation angle of the galvanometer mirror 1.
  • the position detector 13 detects the rotation angle of the galvanometer mirror 1 and converts it into a current position signal rt which is a voltage signal.
  • the current position signal rt is a rotation state signal indicating the actual rotation state of the galvanometer mirror 1.
  • the position detector 13 supplies the current position signal rt to the speed detector 10 and the switch 14.
  • the speed detector 10 generates a voltage signal indicating the rotational speed of the galvano mirror 1 by differentiating the current position signal rt, and outputs the voltage signal to the adder 9.
  • the switch 14 is switch-controlled based on the control signal cs 2 output from the drive control unit 5, and outputs the current position signal rt output from the position detection unit 13 to either the adder 6 or the wear detection unit 15. . That is, the switcher 14 selectively outputs the current position signal rt to the adder 6 and the wear detector 15 based on the control signal cs2.
  • the drive control unit 5 has a determination mode for determining wear of the bearing of the drive motor 2.
  • the drive control unit 5 supplies a control signal cs2 for selecting the wear detection unit 15 to the switcher 14 in the determination mode.
  • the switch 14 receives the control signal cs2, the switch 14 outputs the current position signal rt only to the wear detector 15.
  • the wear detection unit 15 When receiving the current position signal rt via the switch 14, the wear detection unit 15 compares the current position signal rt with a preset reference value, and wears the bearing of the drive motor 2 based on the comparison result. Is detected.
  • the drive control unit 5 is set to be in the determination mode when the laser processing apparatus is started or shut down.
  • the drive control unit 5 outputs a predetermined determination drive position monitor (observation) signal dpc in the determination mode.
  • the reference value set in the wear detection unit 15 includes a numerical value corresponding to the current position signal rt in a state where there is no wear when the drive motor 2 operates based on the determination drive position monitor (observation) signal dpc. It is set in advance. As a result, the wear detection unit 15 can detect the wear of the bearing of the drive motor 2 by determining an error between the reference value and the current position signal rt.
  • FIG. 4 shows an example of the rotation operation of the output shaft 3 of the drive motor 2 and the galvanometer mirror 1 that operate based on the determination drive position monitor (observation) signal dpc in the determination mode.
  • the galvanometer mirror 1 can be reciprocally rotated at a certain rotation limit angle ⁇ 1.
  • the effective rotation range ⁇ 2 that is the rotation range of the output shaft 3 of the drive motor 2 in the specification is set to a range narrower than the rotation limit angle ⁇ 1.
  • the galvanometer mirror 1 is controlled to reciprocate within the effective rotation range ⁇ 2.
  • the drive control unit 5 outputs the determination drive position monitor (observation) signal dpc to reciprocately rotate the output shaft 3 within the range of the rotation limit angle ⁇ 1, and the wear detection unit 15 is in this state.
  • the present position signal rt is received and the degree of wear is detected. Further, as shown in FIG. 5, the degree of wear may be detected by reciprocatingly rotating the output shaft 3 within an arbitrary determination angle ⁇ 3 that is narrower than the rotation limit angle ⁇ 1.
  • the drive control unit 5 In the determination mode, the drive control unit 5 outputs a determination drive position monitor (observation) signal dpc to repeatedly rotate the output shaft 3 and the galvanometer mirror 1, and the wear detection unit 15 determines the current position in that case. The degree of wear is detected based on the signal rt.
  • the revolving operation is performed by reciprocally rotating the galvanometer mirror 1 in the range of the rotation limit angle ⁇ 1.
  • the wear detector 15 detects the wear degree based on the current position signal rt of the galvanometer mirror 1.
  • the wear detector 15 determines the degree of wear based on the current position signal rt1 when the galvanometer mirror 1 moves forward, and does not determine the degree of wear when receiving the current position signal rt2 when it moves backward.
  • FIG. 9 shows a case where the galvanometer mirror 1 is reciprocated and the degree of wear is determined based on the current position signal rt during forward movement and backward movement.
  • the current position signal rt at the time of forward movement from the origin position x to the maximum rotation position y of the output shaft 3 and at the time of return movement from the maximum rotation position y to the origin position x is the wear detection unit 15. Is output to determine the degree of wear.
  • a signal whose voltage level changes to a trapezoid is output from the drive control unit 5.
  • a temperature detector 16 is installed in the drive motor 2.
  • the temperature detection unit 16 outputs a current temperature signal tm that detects the temperature of the drive motor 2 to the wear detection unit 15.
  • the wear detector 15 detects the degree of wear by correcting the temperature of the reference value based on the current temperature signal tm and comparing the corrected reference value with the current position signal rt.
  • the viscosity of the grease filled in the bearing of the output shaft of the drive motor 2 changes depending on the temperature. For this reason, when determining the degree of wear following the power-on of the laser processing apparatus, the temperature of the drive motor 2 is low, so the viscosity of the grease is high. Further, when determining the degree of wear that is performed following the start of the shutdown process of the laser processing apparatus, the viscosity of the grease is low because the temperature of the drive motor 2 is high.
  • the wear detection unit 15 corrects the reference value based on a change in the temperature of the drive motor 2, thereby eliminating the influence of the viscosity of the grease when detecting the degree of friction by comparing the current position signal rt with the reference value. To work.
  • the determination mode for determining the degree of wear of the bearing of the drive motor 2 is performed when the laser processing apparatus is turned on or following the start of the shutdown process.
  • FIG. 11 shows a case where the judgment mode is started following power-on.
  • the drive control unit 5 starts the determination mode
  • the wear detection unit 15 performs the wear degree determination operation (step 1)
  • the display device Display Display the judgment result. Thereafter, the operation shifts to the normal operation, and the operation of the galvanometer mirror 1 is controlled by the drive motor 2 (step 2).
  • the drive control unit 5 directly supplies the determination drive position monitor (observation) signal dpc to the switch 11.
  • the determination drive position monitor (observation) signal dpc is a signal shown in FIG.
  • the V / I converter 12 converts the determination drive position monitor (observation) signal dpc into a drive current di and supplies it to the drive motor 2.
  • the output shaft 3 of the drive motor 2 is rotationally driven based on the supply of the drive current di, and the galvanometer mirror 1 is rotated based on the rotation of the output shaft 3.
  • the galvanometer mirror 1 is reciprocally rotated within the effective rotation range ⁇ 2 or an arbitrary determination angle ⁇ 3 narrower than the effective rotation range ⁇ 2 based on the determination drive position monitor (observation) signal dpc.
  • the position detection unit 13 outputs a current position signal rt that detects the rotation angle of the galvanometer mirror 1 to the switch 14.
  • the switcher 14 is switched to the wear detector 15 side by the control signal cs2 for selecting the wear detector 15, and the current position signal rt is output to the wear detector 15.
  • the wear detection unit 15 When receiving the current position signal rt, the wear detection unit 15 compares the current position signal rt with a preset reference value, detects the comparison result, and outputs it to the display unit or the like. The operator can confirm the degree of wear of the bearing of the drive motor 2 by confirming the comparison result.
  • step 2 the switch 11 is switched to the adder 9 side by the control signal cs2 for selecting the adder 9, and the switch 14 is switched to the adder 6 side.
  • the drive control unit 5 supplies the drive position signal dp to the adder 6, the drive position signal dp is supplied to the V / I converter 12 via the amplifier 7, integrator 8, adder 9 and switch 14. To be supplied.
  • the V / I converter 12 generates a drive current di based on the added value of the output signals of the amplifier 7 and the integrator 8 and supplies it to the coil 4 of the drive motor 2.
  • the output shaft 3 of the drive motor 2 is rotated based on the supply of the drive current di, and the galvanometer mirror 1 is rotated.
  • the position detector 13 When the galvanometer mirror 1 is rotated, the position detector 13 generates a current position signal rt obtained by converting the rotation position (rotation angle) of the galvanometer mirror 1 into a voltage, and sends it to the speed detector 10 and the switch 14. Supply.
  • the speed detection unit 10 generates a voltage signal corresponding to the rotation speed of the output shaft 3 based on the current position signal rt, and outputs the voltage signal to the adder 9.
  • the current position signal rt is output to the adder 6 via the switcher 14.
  • FIG. 12 shows a case where the determination mode is started when the power source of the laser processing apparatus is shut down.
  • the drive control unit 5 shifts to a normal operation, and the operation of the galvanometer mirror 1 is controlled by the drive motor 2 (step 11).
  • step 12 When the normal operation is finished and the shutdown operation is started (step 12), the drive control unit 5 starts the determination mode, and the wear detection unit 15 performs the wear degree determination operation (step 13).
  • the determination operation in step 13 is the same as the operation in step 1 shown in FIG.
  • the determination result is stored in a storage unit provided in advance in the wear detection unit 15, and can be confirmed on the display unit or the like when the power is turned on again.
  • the display unit functions as an output unit.
  • the switches 11 and 14 are switched, and feedback for correcting a deviation between the drive position signal dp output from the drive control unit 5 and the current position signal rt detected by the position detection unit 13. Control is stopped. In this state, the wear detection unit 15 detects the degree of wear of the bearing of the output shaft 3 of the drive motor 2 based on a comparison between the current position signal rt and a preset reference value. Therefore, it becomes easy to confirm the fine degree of wear.
  • the galvanometer mirror 1 is rotated over the entire effective rotation range ⁇ 2 by the determination drive position monitor (observation) signal dpc output from the drive control unit 5. Accordingly, the wear degree can be detected over the entire effective rotation range ⁇ 2 of the galvanometer mirror 1.
  • the galvanometer mirror 1 is repeatedly reciprocated within the effective rotation range ⁇ 2 or the determination angle ⁇ 3 in response to the determination drive position monitor (observation) signal dpc output from the drive control unit 5 to move forward and backward. Wear determination can be performed based on the current position signal rt at the time. Therefore, since it is possible to detect wear that is difficult to detect by wear determination only during forward movement or reverse movement, it is possible to improve the determination accuracy of the degree of wear.
  • the determination drive position monitor (observation) signal dpc is a trapezoidal wave. Accordingly, the torque for rotating the galvano mirror 1 can be gradually increased from a small torque with time, then gradually decreased, and this can be repeated, so that even minor wear can be detected with high accuracy. it can.
  • the degree of wear can be confirmed prior to the operation of the laser processing apparatus by performing the wear determination by shifting to the determination mode following the power-on of the laser processing apparatus. Therefore, it is possible to prevent laser processing in a state where wear has progressed, and to prevent the generation of defective products.
  • temperature correction can be added to the wear determination by the wear detection unit 15. That is, when the temperature of the drive motor 2 is not increased in the wear determination performed after the power is turned on or when the temperature of the drive motor 2 is increased in the wear determination at the time of shutdown, the viscosity of the bearing grease is determined. Varies with temperature.
  • the wear detection unit 15 corrects the reference value so as to correspond to the change in the viscosity of the grease, and compares the corrected reference value with the current position signal rt for wear. Judgment can be made. Therefore, the accuracy of wear determination can be improved.
  • FIG. 13 to FIG. 15 show a second embodiment of a servo motor driving device applied to a laser processing apparatus provided with a galvano driving device.
  • the rotation state signal for detecting the rotation state of the galvanometer mirror 1 in the determination mode is generated based on the value of the current flowing through the coil 4 of the drive motor 2.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the output signal of the switch 11 is output to the V / I converter 12 via the adder 21.
  • the drive current di output from the V / I converter 12 is supplied to the I / V converter 22 via the coil 4.
  • the I / V converter 22 generates a rotation state signal rs obtained by converting the current value of the drive current di into a voltage signal, and outputs the rotation state signal rs to the switch 23.
  • the switch 23 is controlled to be switched based on the control signal cs3 output from the drive control unit 5, outputs the rotation state signal rs to the adder 21 during normal operation, and detects the wear of the rotation state signal rs in the determination mode. To the unit 15.
  • the current position signal rt output from the position detector 13 is output only to the adder 6.
  • a predetermined drive current monitor (observation) signal for determination (observation) dpi is output from the drive control unit 5 to the adder 21 via the switch 11.
  • the determination drive current monitor (observation) signal dpi is a signal for supplying a constant current to the coil 4 of the drive motor 2 to rotate the output shaft 3 with a constant torque, for example.
  • Other configurations are the same as those of the first embodiment.
  • the drive position signal dp is output from the drive control unit 5 to the adder 6 during normal operation, as shown in FIG.
  • a drive current di based on the drive position signal dp is supplied to the coil 4 of the drive motor 2, and the galvano mirror 1 is rotated by the operation of the drive motor 2.
  • the rotation state of the galvanometer mirror 1 is detected by the position detector 13 and output as the current position signal rt. Then, the current position signal rt is supplied to the adder 6, and a voltage signal corresponding to the rotation speed of the output shaft 3 detected based on the current position signal rt is output to the adder 9.
  • the switches 11 and 23 are switched, and the determination drive current monitor (observation) signal dpi is output to the V / I converter 12 via the switch 11 and the adder 21. Is done. Then, the drive current di based on the determination drive current monitor (observation) signal dpi is supplied to the coil 4 of the drive motor 2, the output shaft 3 of the drive motor 2 rotates, and the galvanometer mirror 1 is rotated.
  • the I / V converter 22 outputs a rotation state signal rs based on the fluctuation of the drive current di to the wear detection unit 15 via the switch 23.
  • the wear detector 15 determines the fluctuation of the drive current di, that is, the degree of wear of the output shaft 3 based on the rotation state signal rs.
  • the switches 11 and 23 are switched, and feedback for correcting a deviation between the drive position signal dp output from the drive control unit 5 and the current position signal rt detected by the position detection unit 13. Control is stopped. Then, the drive motor 2 is driven with a constant current based on the determination drive current monitor (observation) signal dpi output from the drive control unit 5. In this state, the degree of wear of the bearing of the output shaft 3 of the drive motor 2 is detected on the basis of the rotation state signal rs detected by the wear detector 15 in the drive current di. Therefore, it becomes easy to confirm the fine degree of wear.
  • the wear detection unit 15 may add a temperature correction to the current position signal rt output from the position detection unit 13 and compare the corrected current position signal with a reference value to detect the degree of wear.
  • the determination drive current monitor (observation) signal dpi does not have to be a constant current.
  • the wear detector 15 may detect the difference between the current supplied to the coil 4 of the drive motor 2 by the determination drive current monitor (observation) signal dpi and the current actually flowing through the coil 4.
  • the switch 11 is inserted in the subsequent stage of the V / I converter 12, and the determination drive position monitor (observation) signal dpc or the determination drive current monitor (observation) signal dpi is supplied.
  • the current signal may be directly supplied to the coil 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

This drive control unit (5) is provided with: a wear detection unit (15) provided with a determination mode for outputting a determination drive signal (dpc), the wear detection unit (15) detecting the degree of wear of a bearing of an output shaft (3) of a drive motor (2) on the basis of a rotation state of a galvano mirror (1) based on the determination drive signal (dpc); and switching units (11, 14) for disabling operation of feedback control units (7, 8) during the determination mode and supplying a rotation state signal (rt) only to the wear detection unit (15).

Description

サーボモータ駆動装置及びガルバノ駆動装置、並びにレーザ加工装置Servo motor drive device, galvano drive device, and laser processing device
 本開示は、サーボモータ駆動装置及びサーボモータでガルバノスキャナが駆動されるガルバノ駆動装置、並びにガルバノ駆動装置を備えたレーザ加工装置に関するものである。 The present disclosure relates to a servo motor driving device, a galvano driving device in which a galvano scanner is driven by the servo motor, and a laser processing apparatus including the galvano driving device.
 レーザ加工装置は、レーザ光源から出力されるレーザ光をガルバノスキャナで2次元的にスキャニングすることで、被加工面上に文字、記号、図形等をマーキングし、あるいは穴あけ、切断等を行う。 The laser processing apparatus performs two-dimensional scanning with a galvano scanner for laser light output from a laser light source, thereby marking characters, symbols, figures, etc. on the surface to be processed, drilling, cutting, and the like.
 ガルバノスキャナでは、サーボモータの出力軸の回転に基づいてガルバノミラーが回転されて、レーザ光をX-Y平面上においてスキャニングする。サーボモータの出力軸は、サーボモータのケース内に設けられる軸受(ボールベアリング)に支持されている。 In the galvano scanner, the galvanometer mirror is rotated based on the rotation of the output shaft of the servo motor, and the laser beam is scanned on the XY plane. The output shaft of the servo motor is supported by a bearing (ball bearing) provided in the case of the servo motor.
 軸受の摩耗は、サーボモータの出力軸の円滑な回転を阻害し、ガルバノスキャナではガルバノミラーの円滑な回動を妨げて、スキャニング精度を低下させる。
 そこで、ガルバノミラーの目標の回動位置(角度)と、実際の回動位置(角度)との偏差に基づいてフィードバック制御を行うことにより、実際の回動位置を目標の回動位置に一致させるように制御するように構成されたサーボモータ駆動装置が提案されている。
The wear of the bearing hinders the smooth rotation of the output shaft of the servo motor, and the galvano scanner hinders the smooth rotation of the galvano mirror, thereby reducing the scanning accuracy.
Therefore, by performing feedback control based on the deviation between the target rotational position (angle) of the galvano mirror and the actual rotational position (angle), the actual rotational position is matched with the target rotational position. There has been proposed a servo motor driving device configured to control in this manner.
 このようなサーボモータ駆動装置に関連する先行技術文献として、特許文献1~6が知られている。 Patent Documents 1 to 6 are known as prior art documents related to such a servo motor driving device.
特開2003-23792号公報JP 2003-23792 A 特開2007-32712号公報JP 2007-32712 A 特開2003-191083号公報JP 2003-191083 A 特開2013-167777号公報JP 2013-167777 A 特開平04-127980号公報Japanese Patent Laid-Open No. 04-127980 特開平09-38787号公報Japanese Patent Application Laid-Open No. 09-38787
 上記のようなフィードバック制御機能を備えたサーボモータ駆動装置では、軸受の摩耗による出力軸の回転位置の偏差を補正するので、軸受の細かな摩耗度合を判別することは困難である。 In the servo motor drive device having the feedback control function as described above, the deviation of the rotational position of the output shaft due to the wear of the bearing is corrected, so it is difficult to determine the fine degree of wear of the bearing.
 従って、フィードバック制御を行いながら、出力軸の目標の回転位置と実際の回転位置との偏差が大きくなると、サーボモータの交換が必要となる。その結果、例えばレーザ加工装置でガルバノスキャナが稼働する際にサーボモータの交換が必要となると、その修復作業のために作業効率が低下する。 Therefore, if the deviation between the target rotational position of the output shaft and the actual rotational position becomes large while performing feedback control, it is necessary to replace the servo motor. As a result, for example, when the servo motor needs to be replaced when the galvano scanner is operated in the laser processing apparatus, the work efficiency is reduced due to the repair work.
 本開示の目的は、駆動モータの軸受の摩耗を早期に検出し得るサーボモータ駆動装置及びガルバノ駆動装置、並びにレーザ加工装置を提供することにある。
 上記課題を解決するガルバノ駆動装置は、駆動モータの出力軸の回転によりガルバノミラーを回動させるガルバノ駆動部と、前記ガルバノ駆動部に、前記ガルバノミラーをあらかじめ設定された回動位置まで回動させる駆動信号を出力する駆動制御部と、前記駆動信号に基づく前記ガルバノミラーの回動状態を示す回動状態信号を出力する回動状態検出部と、前記駆動信号と前記回動状態信号との偏差を補正するように、前記駆動信号を補正して前記駆動モータに供給するフィードバック制御部とを備えるガルバノ駆動装置において、前記駆動制御部は、判定用駆動信号を出力する判定モードを有し、前記判定用駆動信号に基づく前記ガルバノミラーの回動状態に基づいて前記出力軸の軸受の摩耗度合を検出する摩耗検出部と、前記判定モード時に前記フィードバック制御部の動作を無効化し、前記回動状態信号を前記摩耗検出部のみに供給する切換部をさらに備えたことを特徴とする。
An object of the present disclosure is to provide a servo motor drive device, a galvano drive device, and a laser processing device that can detect wear of a bearing of a drive motor at an early stage.
A galvano drive device that solves the above-described problem is a galvano drive unit that rotates a galvano mirror by rotation of an output shaft of a drive motor, and the galvo drive unit rotates the galvano mirror to a preset rotation position. A drive control unit that outputs a drive signal, a rotation state detection unit that outputs a rotation state signal indicating a rotation state of the galvano mirror based on the drive signal, and a deviation between the drive signal and the rotation state signal In the galvano drive device comprising a feedback control unit that corrects the drive signal and supplies the drive signal to the drive motor, the drive control unit has a determination mode for outputting a determination drive signal, A wear detecting unit for detecting a degree of wear of the bearing of the output shaft based on a rotation state of the galvano mirror based on a determination drive signal; Sometimes disable the operation of the feedback control unit, characterized in that the rotation state signal further comprising a switching unit to supply only to the wear detection unit.
 この構成により、判定モードではフィードバック制御部の動作が無効化されるので、回動状態信号から駆動モータの軸受の細かな摩耗度合が検出可能となる。
 また、上記のガルバノ駆動装置では、前記駆動制御部は、前記判定モード時に、前記ガルバノミラーの有効回動範囲全域を回動させる判定用駆動信号を出力し、前記摩耗検出部は、前記判定用駆動信号に基づく回動状態信号に基づいて、前記ガルバノミラーの有効回動範囲全域に亘って摩耗度合を検出することが好ましい。
With this configuration, since the operation of the feedback control unit is invalidated in the determination mode, it is possible to detect the fine degree of wear of the bearing of the drive motor from the rotation state signal.
In the galvano drive device described above, the drive control unit outputs a determination drive signal for rotating the entire effective rotation range of the galvano mirror in the determination mode, and the wear detection unit is configured for the determination. It is preferable to detect the wear degree over the entire effective rotation range of the galvanometer mirror based on the rotation state signal based on the drive signal.
 この構成により、判定モード時には、ガルバノミラーの有効回動範囲の全域に亘って摩耗度合が検出可能となる。
 また、上記のガルバノ駆動装置では、前記駆動制御部は、前記判定モード時に、前記ガルバノミラーを繰り返し回動させる判定用駆動信号を出力し、前記摩耗検出部は、前記判定用駆動信号に基づく回動状態信号に基づいて、前記出力軸の軸受の摩耗度合を検出することが好ましい。
With this configuration, in the determination mode, the wear degree can be detected over the entire effective rotation range of the galvanometer mirror.
In the galvano drive device, the drive control unit outputs a determination drive signal for repeatedly rotating the galvano mirror in the determination mode, and the wear detection unit is configured to rotate based on the determination drive signal. It is preferable to detect the degree of wear of the bearing of the output shaft based on the dynamic state signal.
 この構成により、ガルバノミラーを繰り返し回動させて回動状態信号と基準値を比較するので、摩耗度合の検出精度が向上する。
 また、上記のガルバノ駆動装置では、前記駆動制御部は、前記判定モード時に、前記ガルバノミラーを往復方向に繰り返し回動させる判定用駆動信号を出力し、前記摩耗検出部は、前記判定用駆動信号に基づく回動状態信号に基づいて、前記ガルバノミラーの往復方向に亘って前記出力軸の軸受の摩耗度合を検出することが好ましい。
With this configuration, since the galvano mirror is repeatedly rotated to compare the rotation state signal with the reference value, the detection accuracy of the degree of wear is improved.
In the galvano drive device, the drive control unit outputs a determination drive signal for repeatedly rotating the galvano mirror in a reciprocating direction in the determination mode, and the wear detection unit is configured to output the determination drive signal. It is preferable to detect the degree of wear of the bearing of the output shaft over the reciprocating direction of the galvanometer mirror based on the rotation state signal based on the.
 この構成により、ガルバノミラーの往動時及び復動時における出力軸の軸受の摩耗度合を検出することができるので、摩耗度合の検出精度が向上する。
 また、上記のガルバノ駆動装置では、前記駆動制御部は、前記判定用駆動信号として台形波を出力することが好ましい。
With this configuration, it is possible to detect the degree of wear of the bearing of the output shaft when the galvano mirror is moving forward and backward, so that the accuracy of detecting the degree of wear is improved.
In the galvano drive device described above, it is preferable that the drive control unit outputs a trapezoidal wave as the determination drive signal.
 この構成により、ガルバノミラーを回動させるトルクを時間的に徐々に増大させ、且つ徐々に減少させて回動状態信号を生成することにより、軽微な摩耗の検出精度が向上する。 This configuration improves the detection accuracy of minor wear by gradually increasing the torque for rotating the galvano mirror and gradually decreasing the torque to generate the rotation state signal.
 また、上記のガルバノ駆動装置では、前記駆動制御部は、前記駆動信号として前記ガルバノミラーをあらかじめ設定された回動位置まで回動させる駆動位置信号を出力するとともに、前記判定用駆動信号として判定用駆動位置モニタ(観察)信号を出力し、前記摩耗検出部は、前記回動状態信号として前記判定用駆動位置モニタ(観察)信号に基づく前記ガルバノミラーの回動位置を検出した現在位置信号とあらかじめ設定された基準値とを比較することにより、前記出力軸の軸受の摩耗度合を検出することが好ましい。 In the galvano drive device described above, the drive control unit outputs a drive position signal for rotating the galvano mirror to a preset rotation position as the drive signal, and for determination as the determination drive signal. A driving position monitor (observation) signal is output, and the wear detection unit detects in advance a current position signal obtained by detecting the rotation position of the galvanometer mirror based on the determination driving position monitor (observation) signal as the rotation state signal. It is preferable to detect the degree of wear of the bearing of the output shaft by comparing with a set reference value.
 この構成により、判定モードではフィードバック制御部の動作が無効化されるので、現在位置信号から駆動モータの軸受の細かな摩耗度合が検出可能となる。
 また、上記のガルバノ駆動装置では、前記駆動制御部は、電源の投入に続いて前記判定モードに移行することが好ましい。
With this configuration, since the operation of the feedback control unit is invalidated in the determination mode, it is possible to detect the fine degree of wear of the bearing of the drive motor from the current position signal.
In the galvano drive device described above, it is preferable that the drive control unit shifts to the determination mode following power-on.
 この構成により、ガルバノ駆動装置の立ち上げ時に摩耗度合を検出可能となるので、摩耗が進んでいる状態でのガルバノ駆動装置及びレーザ加工装置の稼働が防止される。
 また、上記のガルバノ駆動装置では、前記駆動制御部は、電源のシャットダウン時に前記判定モードに移行し、前記摩耗検出部は、前記判定モードにおける検出結果を記憶する記憶部と、電源の再投入時に、前記記憶部に記憶された検出結果を出力する出力部を備えることが好ましい。
With this configuration, since the degree of wear can be detected when the galvano drive device is started up, the galvano drive device and the laser processing device are prevented from operating in a state in which wear is progressing.
In the galvano drive device described above, the drive control unit shifts to the determination mode when the power is shut down, and the wear detection unit includes a storage unit that stores the detection result in the determination mode, and when the power is turned on again. It is preferable to provide an output unit that outputs the detection result stored in the storage unit.
 この構成により、電源のシャットダウン時に判定モードに移行して、検出結果を記憶部に記憶し、電源の再投入時にその検出結果を出力部で出力するので、摩耗が進んだ状態でのガルバノ駆動装置の稼働が防止可能となる。 With this configuration, when the power is shut down, the mode is shifted to the determination mode, the detection result is stored in the storage unit, and the detection result is output at the output unit when the power is turned on again. Can be prevented.
 また、上記のガルバノ駆動装置では、前記駆動モータの温度を検出した現在温度信号を前記摩耗検出部に出力する温度検出部を備え、前記摩耗検出部は、前記現在温度信号に基づいて、前記現在位置信号と前記基準値のいずれかを温度補正することが好ましい。 The galvano drive device further includes a temperature detection unit that outputs a current temperature signal that detects the temperature of the drive motor to the wear detection unit, and the wear detection unit is configured to output the current temperature signal based on the current temperature signal. It is preferable to correct the temperature of either the position signal or the reference value.
 この構成により、駆動モータの温度の変化により軸受のグリスの粘度が変化しても、軸受の摩耗度合の検出精度が低下することはない。
 上記課題を解決するレーザ加工装置は、レーザ光源から出射されるレーザ光を、上記のいずれか1つに記載のガルバノ駆動装置で回動されるガルバノミラーを介して被加工面に照射することを特徴とする。
With this configuration, even if the viscosity of the grease of the bearing changes due to a change in the temperature of the drive motor, the detection accuracy of the degree of wear of the bearing does not decrease.
A laser processing apparatus that solves the above problem irradiates a processing surface with laser light emitted from a laser light source via a galvano mirror that is rotated by a galvano driving device according to any one of the above. Features.
 この構成により、判定モードではフィードバック制御部の動作が無効化されるので、現在位置信号から駆動モータの軸受の細かな摩耗度合が検出可能となる。駆動モータの交換時期の予測が容易となり、駆動モータの交換は、レーザ加工装置の稼働時以外の時間に行うことが可能となる。 With this configuration, the operation of the feedback control unit is invalidated in the determination mode, so that it is possible to detect the fine degree of wear of the bearing of the drive motor from the current position signal. The replacement timing of the drive motor can be easily predicted, and the drive motor can be replaced at a time other than when the laser processing apparatus is in operation.
 上記課題を解決するサーボモータ駆動装置は、サーボモータと、前記サーボモータを駆動するサーボモータ駆動部と、前記サーボモータ駆動部に、駆動信号を出力する駆動制御部と、前記駆動信号に基づく前記サーボモータの出力軸の回動状態を検出した回動状態信号を出力する回動状態検出部と、前記駆動信号と前記回動状態信号との偏差を補正するように、前記駆動信号を補正して前記サーボモータに供給するフィードバック制御部とを備えるサーボモータ駆動装置において、前記駆動制御部は、判定用駆動信号を出力する判定モードを有し、前記判定用駆動信号に基づく前記サーボモータの回動状態に基づいて前記出力軸の軸受の摩耗度合を検出する摩耗検出部と、前記判定モード時に前記フィードバック制御部の動作を無効化し、前記回動状態信号を前記摩耗検出部のみに供給する切換部をさらに備えたことを特徴とする。 A servo motor driving apparatus that solves the above problems includes a servo motor, a servo motor driving unit that drives the servo motor, a drive control unit that outputs a driving signal to the servo motor driving unit, and the driving signal based on the driving signal. A rotation state detection unit that outputs a rotation state signal that detects a rotation state of the output shaft of the servo motor, and the drive signal is corrected so as to correct a deviation between the drive signal and the rotation state signal. And a feedback control unit for supplying the servomotor to the servomotor, wherein the drive control unit has a determination mode for outputting a determination drive signal, and the servomotor is operated based on the determination drive signal. A wear detecting unit for detecting the degree of wear of the bearing of the output shaft based on a moving state, and invalidating the operation of the feedback control unit during the determination mode; Characterized in that the Kikaido state signal further comprising a switching unit to supply only to the wear detection unit.
 この構成により、判定モードではフィードバック制御部の動作が無効化されるので、回動状態信号からサーボモータの軸受の細かな摩耗度合が検出可能となる。
 本発明のサーボモータ駆動装置及びガルバノ駆動装置、並びにレーザ加工装置によれば、駆動モータの軸受の摩耗を早期に検出することができる。
With this configuration, since the operation of the feedback control unit is invalidated in the determination mode, it is possible to detect the fine degree of wear of the bearings of the servo motor from the rotation state signal.
According to the servo motor drive device, the galvano drive device, and the laser processing device of the present invention, it is possible to detect the wear of the bearing of the drive motor at an early stage.
第一の実施形態のレーザ加工装置を示すブロック図。The block diagram which shows the laser processing apparatus of 1st embodiment. 第一の実施形態のレーザ加工装置の通常動作時の構成を示すブロック図。The block diagram which shows the structure at the time of normal operation | movement of the laser processing apparatus of 1st embodiment. 第一の実施形態のレーザ加工装置の摩耗判定時の構成を示すブロック図。The block diagram which shows the structure at the time of wear determination of the laser processing apparatus of 1st embodiment. 駆動モータの出力軸の回動範囲を示す説明図。Explanatory drawing which shows the rotation range of the output shaft of a drive motor. 駆動モータの出力軸の判定モード時の回動範囲を示す説明図。Explanatory drawing which shows the rotation range at the time of the determination mode of the output shaft of a drive motor. 駆動モータの出力軸の判定モード時の回動動作を示す説明図。Explanatory drawing which shows rotation operation | movement at the time of the determination mode of the output shaft of a drive motor. 判定用駆動位置モニタ(観察)信号を示す説明図。Explanatory drawing which shows the drive position monitor (observation) signal for determination. 判定モード時の現在位置信号を示す説明図。Explanatory drawing which shows the present position signal at the time of determination mode. 駆動モータの出力軸の判定モード時の回動動作を示す説明図。Explanatory drawing which shows rotation operation | movement at the time of the determination mode of the output shaft of a drive motor. 判定用駆動位置モニタ(観察)信号を示す説明図。Explanatory drawing which shows the drive position monitor (observation) signal for determination. レーザ加工装置の動作を示すフローチャート。The flowchart which shows operation | movement of a laser processing apparatus. レーザ加工装置の動作を示すフローチャート。The flowchart which shows operation | movement of a laser processing apparatus. 第二の実施形態のレーザ加工装置を示すブロック図。The block diagram which shows the laser processing apparatus of 2nd embodiment. 第二の実施形態のレーサ加工装置の通常動作時の構成を示すブロック図。The block diagram which shows the structure at the time of normal operation | movement of the racer processing apparatus of 2nd embodiment. 第二の実施形態のレーザ加工装置の摩耗判定時の構成を示すブロック図。The block diagram which shows the structure at the time of wear determination of the laser processing apparatus of 2nd embodiment.
 本開示のサーボモータ駆動装置は、サーボモータを駆動するサーボモータ駆動部と、サーボモータ駆動部に、駆動信号を出力する駆動制御部と、駆動信号に基づくサーボモータの出力軸の回動状態を示す回動状態信号を出力する回動状態検出部と、駆動信号と回動状態信号との偏差を補正するように、駆動信号を補正してサーボモータに供給するフィードバック制御部とを備える。駆動制御部は、判定用駆動信号を出力する判定モードを有する。サーボモータ駆動装置は、判定用駆動信号に基づくサーボモータの回動状態に基づいて出力軸の軸受の摩耗度合を検出する摩耗検出部と、判定モード時にフィードバック制御部の動作を無効化し、回動状態信号を摩耗検出部のみに供給する切換部とをさらに備える。この構成により、判定モードではフィードバック制御部の動作が無効化されるので、回動状態信号からサーボモータの軸受の細かな摩耗度合が検出可能となる。 The servo motor driving device of the present disclosure includes a servo motor driving unit that drives a servo motor, a drive control unit that outputs a driving signal to the servo motor driving unit, and a rotation state of an output shaft of the servo motor based on the driving signal. A rotation state detection unit that outputs a rotation state signal, and a feedback control unit that corrects the drive signal and supplies the servo signal to the servo motor so as to correct a deviation between the drive signal and the rotation state signal. The drive control unit has a determination mode for outputting a determination drive signal. The servo motor drive device disables the operation of the wear detection unit that detects the wear degree of the bearing of the output shaft based on the rotation state of the servo motor based on the determination drive signal, and the operation of the feedback control unit in the determination mode. And a switching unit that supplies the state signal only to the wear detection unit. With this configuration, since the operation of the feedback control unit is invalidated in the determination mode, it is possible to detect the fine degree of wear of the bearings of the servo motor from the rotation state signal.
 (第一の実施形態)
 第一の実施形態では、サーボモータ駆動装置が、ガルバノ駆動装置を備えるレーザ加工装置に適用されている。ガルバノ駆動装置は、サーボモータ駆動装置と、サーボモータ駆動装置によって駆動されるガルバノミラーと、を備える。以下、レーザ加工装置に搭載されるガルバノ駆動装置の動作を制御するサーボモータ駆動装置の第一の実施形態を図面に従って説明する。
(First embodiment)
In the first embodiment, the servo motor driving device is applied to a laser processing device including a galvano driving device. The galvano drive device includes a servo motor drive device and a galvano mirror driven by the servo motor drive device. Hereinafter, a first embodiment of a servo motor driving device for controlling the operation of a galvano driving device mounted on a laser processing apparatus will be described with reference to the drawings.
 図1は、レーザ加工装置のブロック図の一例を示す。レーザ加工装置は、ガルバノミラー1と、レーザ光源17とを備える。ガルバノミラー1は、駆動モータ2の出力軸3の回転に基づいて回動され、レーザ光源17から供給されるレーザ光Lを被加工物の加工面に向かって照射する。駆動モータ2は、サーボモータとして機能する。駆動モータ2は、ケース内に設けられるボールベアリング等の軸受(図示せず)と、軸受に回転可能に支持された出力軸3と、コイル4とを含む。コイル4に供給される電流に基づいて、駆動モータ2の出力軸3の回転角及び回転速度が制御される。 FIG. 1 shows an example of a block diagram of a laser processing apparatus. The laser processing apparatus includes a galvanometer mirror 1 and a laser light source 17. The galvanometer mirror 1 is rotated based on the rotation of the output shaft 3 of the drive motor 2 and irradiates the laser beam L supplied from the laser light source 17 toward the processing surface of the workpiece. The drive motor 2 functions as a servo motor. The drive motor 2 includes a bearing (not shown) such as a ball bearing provided in the case, an output shaft 3 rotatably supported by the bearing, and a coil 4. Based on the current supplied to the coil 4, the rotation angle and rotation speed of the output shaft 3 of the drive motor 2 are controlled.
 レーザ加工動作を制御する駆動制御部5は、ガルバノミラー1の回動位置を制御するための駆動位置信号dpを、加算器6を介して増幅器7及び積分器8に出力する。また、駆動制御部5は、駆動位置信号dpを切換器11に出力する。増幅器7は駆動位置信号dpを増幅して加算器9に出力し、積分器8は駆動位置信号dpの電圧値を積分して加算器9に出力する。 The drive control unit 5 that controls the laser processing operation outputs a drive position signal dp for controlling the rotational position of the galvano mirror 1 to the amplifier 7 and the integrator 8 via the adder 6. Further, the drive control unit 5 outputs a drive position signal dp to the switch 11. The amplifier 7 amplifies the drive position signal dp and outputs it to the adder 9, and the integrator 8 integrates the voltage value of the drive position signal dp and outputs it to the adder 9.
 加算器9は、増幅器7、積分器8及び速度検出部10から出力される電圧信号を加算して切換器11に出力する。
 切換器11は、駆動制御部5から出力される制御信号cs1に基づいて切替制御され、加算器9の出力信号と駆動位置信号dpのいずれかをV/I変換器(電圧電流変換器)12に出力する。駆動位置信号dp及び加算器9の出力信号は、電圧信号である。V/I変換器12は、駆動位置信号dp若しくは加算器9の出力信号を電流信号に変換して駆動モータ2に駆動電流diとして供給する。加算器6、増幅器7、積分器8、および加算器9は、フィードバック制御部として機能する。
The adder 9 adds the voltage signals output from the amplifier 7, the integrator 8, and the speed detection unit 10, and outputs the result to the switch 11.
The switch 11 is switch-controlled based on the control signal cs1 output from the drive control unit 5, and either the output signal of the adder 9 or the drive position signal dp is converted into a V / I converter (voltage / current converter) 12. Output to. The drive position signal dp and the output signal of the adder 9 are voltage signals. The V / I converter 12 converts the drive position signal dp or the output signal of the adder 9 into a current signal and supplies it to the drive motor 2 as a drive current di. The adder 6, the amplifier 7, the integrator 8, and the adder 9 function as a feedback control unit.
 駆動モータ2の出力軸3は、駆動電流diに基づく回転速度及び回転角度で回転される。そして、出力軸3の回転に基づいてガルバノミラー1が回動される。ここで、サーボモータ駆動装置では、サーボモータである駆動モータ2と、回動軸3と、コイル4と、V/I変換器12とは、サーボモータ駆動部として機能する。ガルバノ駆動装置では、ガルバノミラー1と、駆動モータ2と、回動軸3と、コイル4と、V/I変換器12とは、ガルバノ駆動部として機能する。サーボモータ駆動装置のサーボモータ駆動部は、ガルバノ駆動装置のガルバノ駆動部と対応している。サーボモータ駆動部は、サーボモータに駆動電流diを供給し、サーボモータの回動軸3に取り付けられた種々の対象を駆動することができる。第1の実施形態では、サーボモータ駆動装置は、ガルバノ駆動装置を備えるレーザ加工装置に適用されている。この場合、ガルバノ駆動部は、駆動モータ2に駆動電流diを供給して、駆動モータ2の回動軸3に取り付けられたガルバノミラー1を駆動することができる。他の実施形態では、サーボモータ駆動装置は、FAロボットのアーム制御装置、検査テーブル等の角度制御装置、工作機械等の載置テーブルの移動制御装置、ロボットの関節部制御装置、監視カメラの回転制御装置、プロッタや刻印機をXYZ方向の3軸で制御する制御装置等に適用可能である。この場合、サーボモータ駆動部は、FAロボットのアーム、検査テーブル、載置テーブル、ロボットの関節部、および監視カメラ等をサーボモータによって駆動することになる。第1の実施形態では、V/I変換器12が駆動電流diを供給していたが、駆動電流diを供給する構成であればV/I変換器12に限定されない。 The output shaft 3 of the drive motor 2 is rotated at a rotation speed and a rotation angle based on the drive current di. Then, the galvanometer mirror 1 is rotated based on the rotation of the output shaft 3. Here, in the servo motor drive device, the drive motor 2, which is a servo motor, the rotating shaft 3, the coil 4, and the V / I converter 12 function as a servo motor drive unit. In the galvano drive device, the galvano mirror 1, the drive motor 2, the rotating shaft 3, the coil 4, and the V / I converter 12 function as a galvano drive unit. The servo motor driving unit of the servo motor driving device corresponds to the galvano driving unit of the galvano driving device. The servo motor driving unit can supply a driving current di to the servo motor and drive various objects attached to the rotation shaft 3 of the servo motor. In the first embodiment, the servo motor driving device is applied to a laser processing device including a galvano driving device. In this case, the galvano drive unit can drive the galvanometer mirror 1 attached to the rotation shaft 3 of the drive motor 2 by supplying a drive current di to the drive motor 2. In another embodiment, the servo motor drive device includes an FA robot arm control device, an angle control device such as an inspection table, a movement control device for a mounting table such as a machine tool, a robot joint control device, and a rotation of a surveillance camera. The present invention can be applied to a control device, a control device that controls a plotter or a stamping machine with three axes in the XYZ directions. In this case, the servo motor drive unit drives the FA robot arm, inspection table, mounting table, robot joint, surveillance camera, and the like by the servo motor. In the first embodiment, the V / I converter 12 supplies the drive current di. However, the configuration is not limited to the V / I converter 12 as long as the drive current di is supplied.
 駆動モータ2には、出力軸3の回転位置(回転角)すなわちガルバノミラー1の回動角を検出する位置検出部13が設けられている。位置検出部13は、ガルバノミラー1の回動角を検出して電圧信号である現在位置信号rtに変換する。現在位置信号rtは、ガルバノミラー1の実際の回動状態を示す回動状態信号である。 The drive motor 2 is provided with a position detection unit 13 that detects the rotation position (rotation angle) of the output shaft 3, that is, the rotation angle of the galvanometer mirror 1. The position detector 13 detects the rotation angle of the galvanometer mirror 1 and converts it into a current position signal rt which is a voltage signal. The current position signal rt is a rotation state signal indicating the actual rotation state of the galvanometer mirror 1.
 位置検出部13は、現在位置信号rtを、速度検出部10及び切換器14に供給する。速度検出部10は、現在位置信号rtを微分することによりガルバノミラー1の回転速度を示す電圧信号を生成し、その電圧信号を加算器9に出力する。 The position detector 13 supplies the current position signal rt to the speed detector 10 and the switch 14. The speed detector 10 generates a voltage signal indicating the rotational speed of the galvano mirror 1 by differentiating the current position signal rt, and outputs the voltage signal to the adder 9.
 切換器14は、駆動制御部5から出力される制御信号cs2に基づいて切替制御され、位置検出部13から出力される現在位置信号rtを加算器6と摩耗検出部15のいずれかに出力する。つまり、切換器14は、制御信号cs2に基づいて、現在位置信号rtを加算器6および摩耗検出部15に選択的に出力する。駆動制御部5は、駆動モータ2の軸受の摩耗を判定するための判定モードを有する。駆動制御部5は、判定モードにおいて、摩耗検出部15を選択するための制御信号cs2を切換器14に供給する。切換器14は、制御信号cs2を受け取ると、現在位置信号rtを摩耗検出部15のみに出力する。 The switch 14 is switch-controlled based on the control signal cs 2 output from the drive control unit 5, and outputs the current position signal rt output from the position detection unit 13 to either the adder 6 or the wear detection unit 15. . That is, the switcher 14 selectively outputs the current position signal rt to the adder 6 and the wear detector 15 based on the control signal cs2. The drive control unit 5 has a determination mode for determining wear of the bearing of the drive motor 2. The drive control unit 5 supplies a control signal cs2 for selecting the wear detection unit 15 to the switcher 14 in the determination mode. When the switch 14 receives the control signal cs2, the switch 14 outputs the current position signal rt only to the wear detector 15.
 摩耗検出部15は、現在位置信号rtを切換器14を介して受け取ると、現在位置信号rtとあらかじめ設定されている基準値とを比較し、その比較結果に基づいて駆動モータ2の軸受の摩耗を検出する。 When receiving the current position signal rt via the switch 14, the wear detection unit 15 compares the current position signal rt with a preset reference value, and wears the bearing of the drive motor 2 based on the comparison result. Is detected.
 駆動制御部5は、レーザ加工装置の起動時あるいはシャットダウン時に判定モードとなるように設定されている。駆動制御部5は、判定モード時にはあらかじめ設定された判定用駆動位置モニタ(観察)信号dpcを出力する。 The drive control unit 5 is set to be in the determination mode when the laser processing apparatus is started or shut down. The drive control unit 5 outputs a predetermined determination drive position monitor (observation) signal dpc in the determination mode.
 摩耗検出部15に設定されている基準値には、判定用駆動位置モニタ(観察)信号dpcに基づいて駆動モータ2が作動するとき、摩耗がない状態での現在位置信号rtに対応する数値があらかじめ設定されている。これにより、摩耗検出部15は、基準値と現在位置信号rtとの誤差を判定して駆動モータ2の軸受の摩耗を検出することができる。 The reference value set in the wear detection unit 15 includes a numerical value corresponding to the current position signal rt in a state where there is no wear when the drive motor 2 operates based on the determination drive position monitor (observation) signal dpc. It is set in advance. As a result, the wear detection unit 15 can detect the wear of the bearing of the drive motor 2 by determining an error between the reference value and the current position signal rt.
 図4は、判定モード時に判定用駆動位置モニタ(観察)信号dpcに基づいて動作する駆動モータ2の出力軸3及びガルバノミラー1の回転動作の一例を示す。通常、ガルバノミラー1は一定の回動限界角度α1で往復回動可能である。仕様上の駆動モータ2の出力軸3の回動範囲である有効回動範囲α2は、回動限界角度α1より狭い範囲に設定されている。ガルバノミラー1は、有効回動範囲α2内で往復回動するように制御される。 FIG. 4 shows an example of the rotation operation of the output shaft 3 of the drive motor 2 and the galvanometer mirror 1 that operate based on the determination drive position monitor (observation) signal dpc in the determination mode. Normally, the galvanometer mirror 1 can be reciprocally rotated at a certain rotation limit angle α1. The effective rotation range α2 that is the rotation range of the output shaft 3 of the drive motor 2 in the specification is set to a range narrower than the rotation limit angle α1. The galvanometer mirror 1 is controlled to reciprocate within the effective rotation range α2.
 判定モードでは、駆動制御部5は、判定用駆動位置モニタ(観察)信号dpcを出力して回動限界角度α1の範囲で出力軸3を往復回動させ、摩耗検出部15は、その状態での現在位置信号rtを受け取って摩耗度合を検出する。また、図5に示すように、回動限界角度α1より狭い任意の判定角度α3の範囲で出力軸3を往復回動させて摩耗度合を検出してもよい。 In the determination mode, the drive control unit 5 outputs the determination drive position monitor (observation) signal dpc to reciprocately rotate the output shaft 3 within the range of the rotation limit angle α1, and the wear detection unit 15 is in this state. The present position signal rt is received and the degree of wear is detected. Further, as shown in FIG. 5, the degree of wear may be detected by reciprocatingly rotating the output shaft 3 within an arbitrary determination angle α3 that is narrower than the rotation limit angle α1.
 また、判定モードでは、駆動制御部5は、判定用駆動位置モニタ(観察)信号dpcを出力して出力軸3及びガルバノミラー1を繰り返し回動させ、摩耗検出部15は、その場合の現在位置信号rtに基づいて摩耗度合を検出する。 In the determination mode, the drive control unit 5 outputs a determination drive position monitor (observation) signal dpc to repeatedly rotate the output shaft 3 and the galvanometer mirror 1, and the wear detection unit 15 determines the current position in that case. The degree of wear is detected based on the signal rt.
 具体的には、例えば図6に示すように、回動限界角度α1の範囲でガルバノミラー1を往復回動させることにより、繰り返しの回動動作が行われる。この時、原点位置xから最大回動位置yまで回動させるとき、摩耗検出部15は、ガルバノミラー1の現在位置信号rtに基づいて摩耗度合を検出する。 Specifically, for example, as shown in FIG. 6, the revolving operation is performed by reciprocally rotating the galvanometer mirror 1 in the range of the rotation limit angle α1. At this time, when rotating from the origin position x to the maximum rotation position y, the wear detector 15 detects the wear degree based on the current position signal rt of the galvanometer mirror 1.
 このとき、例えば図7に示すように、原点位置xから最大回動位置yまでの往動時は、ガルバノミラー1の回動速度が放物線状に増大するような判定用駆動位置モニタ(観察)信号dpcが出力され、位置検出部13から図8に示すような現在位置信号rtが摩耗検出部15に出力される。 At this time, as shown in FIG. 7, for example, at the time of forward movement from the origin position x to the maximum rotation position y, a determination drive position monitor (observation) in which the rotation speed of the galvanometer mirror 1 increases in a parabolic shape. The signal dpc is output, and the current position signal rt as shown in FIG. 8 is output from the position detector 13 to the wear detector 15.
 摩耗検出部15は、ガルバノミラー1の往動時の現在位置信号rt1に基づいて摩耗度合を判定し、復動時の現在位置信号rt2を受け取る場合には摩耗度合を判定しない。
 図9は、ガルバノミラー1を往復動作させ、往動時及び復動時の現在位置信号rtに基づいて摩耗度合を判定する場合を示す。この場合には、例えば出力軸3の原点位置xから最大回動位置yまでの往動時と、最大回動位置yから原点位置xまでの復動時の現在位置信号rtが摩耗検出部15に出力されて摩耗度合が判定される。
The wear detector 15 determines the degree of wear based on the current position signal rt1 when the galvanometer mirror 1 moves forward, and does not determine the degree of wear when receiving the current position signal rt2 when it moves backward.
FIG. 9 shows a case where the galvanometer mirror 1 is reciprocated and the degree of wear is determined based on the current position signal rt during forward movement and backward movement. In this case, for example, the current position signal rt at the time of forward movement from the origin position x to the maximum rotation position y of the output shaft 3 and at the time of return movement from the maximum rotation position y to the origin position x is the wear detection unit 15. Is output to determine the degree of wear.
 この時の判定用駆動位置モニタ(観察)信号dpcは、図10に示すように、電圧レベルが台形状に遷移する信号が駆動制御部5から出力される。
 図1に示すように、駆動モータ2には温度検出部16が設置されている。温度検出部16は、駆動モータ2の温度を検出した現在温度信号tmを、摩耗検出部15に出力する。
As the determination drive position monitor (observation) signal dpc at this time, as shown in FIG. 10, a signal whose voltage level changes to a trapezoid is output from the drive control unit 5.
As shown in FIG. 1, a temperature detector 16 is installed in the drive motor 2. The temperature detection unit 16 outputs a current temperature signal tm that detects the temperature of the drive motor 2 to the wear detection unit 15.
 摩耗検出部15は、現在温度信号tmに基づいて基準値を温度補正し、補正した基準値と現在位置信号rtを比較することにより、摩耗度合を検出する。
 駆動モータ2の出力軸の軸受に充填されているグリスは、温度によって粘度が変化する。このため、レーザ加工装置の電源投入に続く摩耗度合の判定時には、駆動モータ2の温度が低いため、グリスの粘度が高い。また、レーザ加工装置のシャットダウン処理の開始に続いて行われる摩耗度合の判定時には、駆動モータ2の温度が高いため、グリスの粘度が低い。
The wear detector 15 detects the degree of wear by correcting the temperature of the reference value based on the current temperature signal tm and comparing the corrected reference value with the current position signal rt.
The viscosity of the grease filled in the bearing of the output shaft of the drive motor 2 changes depending on the temperature. For this reason, when determining the degree of wear following the power-on of the laser processing apparatus, the temperature of the drive motor 2 is low, so the viscosity of the grease is high. Further, when determining the degree of wear that is performed following the start of the shutdown process of the laser processing apparatus, the viscosity of the grease is low because the temperature of the drive motor 2 is high.
 摩耗検出部15は、駆動モータ2の温度の変化に基づいて基準値を温度補正することにより、現在位置信号rtと基準値を比較して摩擦度合を検出するとき、グリスの粘度の影響をなくすように動作する。 The wear detection unit 15 corrects the reference value based on a change in the temperature of the drive motor 2, thereby eliminating the influence of the viscosity of the grease when detecting the degree of friction by comparing the current position signal rt with the reference value. To work.
 次に、上記のように構成されたレーザ加工装置及びガルバノ駆動装置の作用を説明する。
 駆動モータ2の軸受の摩耗度合を判定する判定モードは、レーザ加工装置の電源投入時あるいはシャットダウン処理の開始に続いて行われる。
Next, the operation of the laser processing apparatus and the galvano drive apparatus configured as described above will be described.
The determination mode for determining the degree of wear of the bearing of the drive motor 2 is performed when the laser processing apparatus is turned on or following the start of the shutdown process.
 図11は、電源投入に続いて判定モードを開始する場合を示す。図11に示すように、レーザ加工装置に電源が投入されると、駆動制御部5が判定モードを開始して、摩耗検出部15が摩耗度合の判定動作を行い(ステップ1)、表示装置が判定結果を表示する。その後、通常動作に移行して、駆動モータ2によりガルバノミラー1の動作が制御される(ステップ2)。 FIG. 11 shows a case where the judgment mode is started following power-on. As shown in FIG. 11, when the laser processing apparatus is powered on, the drive control unit 5 starts the determination mode, the wear detection unit 15 performs the wear degree determination operation (step 1), and the display device Display the judgment result. Thereafter, the operation shifts to the normal operation, and the operation of the galvanometer mirror 1 is controlled by the drive motor 2 (step 2).
 ステップ1の判定動作時には、図3に示すように、駆動制御部5は、判定用駆動位置モニタ(観察)信号dpcを切換器11に直接的に供給する。判定用駆動位置モニタ(観察)信号dpcは、図7あるいは図10に示す信号である。そして、V/I変換器12は、判定用駆動位置モニタ(観察)信号dpcを駆動電流diに変換して駆動モータ2に供給する。 During the determination operation in step 1, as shown in FIG. 3, the drive control unit 5 directly supplies the determination drive position monitor (observation) signal dpc to the switch 11. The determination drive position monitor (observation) signal dpc is a signal shown in FIG. Then, the V / I converter 12 converts the determination drive position monitor (observation) signal dpc into a drive current di and supplies it to the drive motor 2.
 駆動モータ2の出力軸3は、駆動電流diの供給に基づいて回転駆動され、出力軸3の回転に基づいてガルバノミラー1が回動される。この時、判定用駆動位置モニタ(観察)信号dpcによりガルバノミラー1は有効回動範囲α2あるいは有効回動範囲α2より狭い任意の判定角度α3の範囲で往復回動する。 The output shaft 3 of the drive motor 2 is rotationally driven based on the supply of the drive current di, and the galvanometer mirror 1 is rotated based on the rotation of the output shaft 3. At this time, the galvanometer mirror 1 is reciprocally rotated within the effective rotation range α2 or an arbitrary determination angle α3 narrower than the effective rotation range α2 based on the determination drive position monitor (observation) signal dpc.
 位置検出部13は、ガルバノミラー1の回動角を検出した現在位置信号rtを切換器14に出力する。判定モードでは、切換器14は、摩耗検出部15を選択するための制御信号cs2によって摩耗検出部15側に切り換えられ、現在位置信号rtは摩耗検出部15に出力される。 The position detection unit 13 outputs a current position signal rt that detects the rotation angle of the galvanometer mirror 1 to the switch 14. In the determination mode, the switcher 14 is switched to the wear detector 15 side by the control signal cs2 for selecting the wear detector 15, and the current position signal rt is output to the wear detector 15.
 摩耗検出部15は、現在位置信号rtを受け取ると、現在位置信号rtとあらかじめ設定されている基準値とを比較し、その比較結果を検出して表示部等に出力する。作業者は、その比較結果を確認することにより、駆動モータ2の軸受の摩耗度合が確認可能となる。 When receiving the current position signal rt, the wear detection unit 15 compares the current position signal rt with a preset reference value, detects the comparison result, and outputs it to the display unit or the like. The operator can confirm the degree of wear of the bearing of the drive motor 2 by confirming the comparison result.
 ステップ2の通常動作では、図2に示すように、切換器11は、加算器9を選択するための制御信号cs2によって加算器9側に切り換えられ、切換器14は加算器6側に切り換えられる。この状態で、駆動制御部5が駆動位置信号dpを加算器6に供給すると、その駆動位置信号dpが増幅器7、積分器8、加算器9及び切換器14を介してV/I変換器12に供給される。 In the normal operation of step 2, as shown in FIG. 2, the switch 11 is switched to the adder 9 side by the control signal cs2 for selecting the adder 9, and the switch 14 is switched to the adder 6 side. . In this state, when the drive control unit 5 supplies the drive position signal dp to the adder 6, the drive position signal dp is supplied to the V / I converter 12 via the amplifier 7, integrator 8, adder 9 and switch 14. To be supplied.
 V/I変換器12は、増幅器7及び積分器8の出力信号の加算値に基づいて駆動電流diを生成して駆動モータ2のコイル4に供給する。駆動モータ2の出力軸3は、駆動電流diの供給に基づいて回転され、ガルバノミラー1が回動される。 The V / I converter 12 generates a drive current di based on the added value of the output signals of the amplifier 7 and the integrator 8 and supplies it to the coil 4 of the drive motor 2. The output shaft 3 of the drive motor 2 is rotated based on the supply of the drive current di, and the galvanometer mirror 1 is rotated.
 ガルバノミラー1が回動されると、位置検出部13は、ガルバノミラー1の回動位置(回動角)を電圧に変換した現在位置信号rtを生成して速度検出部10及び切換器14に供給する。 When the galvanometer mirror 1 is rotated, the position detector 13 generates a current position signal rt obtained by converting the rotation position (rotation angle) of the galvanometer mirror 1 into a voltage, and sends it to the speed detector 10 and the switch 14. Supply.
 速度検出部10は、現在位置信号rtに基づいて出力軸3の回転速度に相当する電圧信号を生成し、加算器9に出力する。また、現在位置信号rtは、切換器14を経て加算器6に出力される。 The speed detection unit 10 generates a voltage signal corresponding to the rotation speed of the output shaft 3 based on the current position signal rt, and outputs the voltage signal to the adder 9. The current position signal rt is output to the adder 6 via the switcher 14.
 このような動作により、ガルバノミラー1の回動角及び回動速度が、駆動位置信号dpによる回動角及び回動速度に一致するようにフィードバック制御が行われる。
 図12は、レーザ加工装置の電源をシャットダウンするときに、判定モードを開始する場合を示す。レーザ加工装置に電源が投入されると、駆動制御部5が通常動作に移行して、駆動モータ2によりガルバノミラー1の動作が制御される(ステップ11)。
By such an operation, feedback control is performed so that the rotation angle and rotation speed of the galvanometer mirror 1 coincide with the rotation angle and rotation speed by the drive position signal dp.
FIG. 12 shows a case where the determination mode is started when the power source of the laser processing apparatus is shut down. When the laser processing apparatus is turned on, the drive control unit 5 shifts to a normal operation, and the operation of the galvanometer mirror 1 is controlled by the drive motor 2 (step 11).
 通常動作が終了して、シャットダウン動作が開始されると(ステップ12)、駆動制御部5が判定モードを開始して摩耗検出部15が摩耗度合の判定動作を行う(ステップ13)。ステップ13の判定動作は、図11に示すステップ1の動作と同様である。 When the normal operation is finished and the shutdown operation is started (step 12), the drive control unit 5 starts the determination mode, and the wear detection unit 15 performs the wear degree determination operation (step 13). The determination operation in step 13 is the same as the operation in step 1 shown in FIG.
 判定動作が終了すると、例えば判定結果を摩耗検出部15にあらかじめ設けられている記憶部に記憶し、電源再投入時に表示部等で確認可能として、電源を遮断する。表示部は、出力部として機能する。 When the determination operation is completed, for example, the determination result is stored in a storage unit provided in advance in the wear detection unit 15, and can be confirmed on the display unit or the like when the power is turned on again. The display unit functions as an output unit.
 上記のようなレーザ加工装置及びガルバノ駆動装置では、次に示す効果を得ることができる。
 (1)判定モードでは、切換器11,14が切り換えられて、駆動制御部5から出力される駆動位置信号dpと、位置検出部13で検出された現在位置信号rtとの偏差を補正するフィードバック制御が停止される。この状態で、摩耗検出部15で現在位置信号rtとあらかじめ設定されている基準値との比較に基づいて、駆動モータ2の出力軸3の軸受の摩耗度合が検出される。従って、細かな摩耗度合を確認することが容易となる。
In the laser processing apparatus and the galvano drive apparatus as described above, the following effects can be obtained.
(1) In the determination mode, the switches 11 and 14 are switched, and feedback for correcting a deviation between the drive position signal dp output from the drive control unit 5 and the current position signal rt detected by the position detection unit 13. Control is stopped. In this state, the wear detection unit 15 detects the degree of wear of the bearing of the output shaft 3 of the drive motor 2 based on a comparison between the current position signal rt and a preset reference value. Therefore, it becomes easy to confirm the fine degree of wear.
 (2)細かな摩耗度合を確認することができるので、駆動モータ2の最適な交換時期を予測することが容易となる。従って、通常動作時にレーザ加工装置の運転を停止して駆動モータ2を交換する必要はなくなるため、作業効率を向上させることができる。 (2) Since it is possible to confirm a fine degree of wear, it is easy to predict an optimal replacement time for the drive motor 2. Accordingly, it is not necessary to stop the operation of the laser processing apparatus and replace the drive motor 2 during normal operation, so that work efficiency can be improved.
 (3)判定モード時に、駆動制御部5から出力される判定用駆動位置モニタ(観察)信号dpcでガルバノミラー1が有効回動範囲α2の全域に亘って回動される。従って、ガルバノミラー1の有効回動範囲α2の全域に亘って摩耗度合を検出することができる。 (3) In the determination mode, the galvanometer mirror 1 is rotated over the entire effective rotation range α2 by the determination drive position monitor (observation) signal dpc output from the drive control unit 5. Accordingly, the wear degree can be detected over the entire effective rotation range α2 of the galvanometer mirror 1.
 (4)駆動制御部5から出力される判定用駆動位置モニタ(観察)信号dpcにより、ガルバノミラー1を有効回動範囲α2あるいは判定角度α3で繰り返し回動させることにより、摩耗度合の判定精度を向上させることができる。 (4) The determination accuracy of the degree of wear is increased by repeatedly rotating the galvanomirror 1 within the effective rotation range α2 or the determination angle α3 based on the determination drive position monitor (observation) signal dpc output from the drive control unit 5. Can be improved.
 (5)駆動制御部5から出力される判定用駆動位置モニタ(観察)信号dpcでガルバノミラー1を有効回動範囲α2あるいは判定角度α3の範囲で繰り返し往復回動させ、往動時及び復動時の現在位置信号rtに基づいて摩耗判定を行うことができる。従って、往動時あるいは復動時の一方でのみの摩耗判定では検出しにくい摩耗をも検出可能となるので、摩耗度合の判定精度を向上させることができる。 (5) The galvanometer mirror 1 is repeatedly reciprocated within the effective rotation range α2 or the determination angle α3 in response to the determination drive position monitor (observation) signal dpc output from the drive control unit 5 to move forward and backward. Wear determination can be performed based on the current position signal rt at the time. Therefore, since it is possible to detect wear that is difficult to detect by wear determination only during forward movement or reverse movement, it is possible to improve the determination accuracy of the degree of wear.
 (6)ガルバノミラー1を有効回動範囲α2あるいは判定角度α3の範囲で繰り返し往復回動させるとき、判定用駆動位置モニタ(観察)信号dpcを台形波とした。従って、ガルバノミラー1を回動させるためのトルクを小さいトルクから時間的に徐々に増加させ、次いで徐々に減少させ、且つこれを繰り返すことができるので、より軽微な摩耗を精度よく検出することができる。 (6) When the galvanometer mirror 1 is repeatedly reciprocated within the effective rotation range α2 or the determination angle α3, the determination drive position monitor (observation) signal dpc is a trapezoidal wave. Accordingly, the torque for rotating the galvano mirror 1 can be gradually increased from a small torque with time, then gradually decreased, and this can be repeated, so that even minor wear can be detected with high accuracy. it can.
 (7)レーザ加工装置の電源投入に続いて、判定モードに移行して摩耗判定を行うことにより、レーザ加工装置の稼働に先立って摩耗度合を確認することができる。従って、摩耗が進行した状態でのレーザ加工処理を防止して、不良品の生成を未然に防止することができる。 (7) The degree of wear can be confirmed prior to the operation of the laser processing apparatus by performing the wear determination by shifting to the determination mode following the power-on of the laser processing apparatus. Therefore, it is possible to prevent laser processing in a state where wear has progressed, and to prevent the generation of defective products.
 (8)レーザ加工装置のシャットダウンの開始時に、判定モードに移行して摩耗判定を行い、その判定結果を摩耗検出部15に記憶することができる。そして、レーザ加工装置の次の稼働時に、電源の投入に基づいて判定結果を表示部等に表示することができるので、摩耗が進んだ状態でのレーザ加工装置の稼働を防止することができる。 (8) At the start of the shutdown of the laser processing apparatus, it is possible to shift to the determination mode and perform wear determination, and store the determination result in the wear detection unit 15. Then, at the next operation of the laser processing apparatus, the determination result can be displayed on the display unit or the like based on power-on, so that the operation of the laser processing apparatus in a state where wear has progressed can be prevented.
 (9)温度検出部で検出された駆動モータ2の温度信号を摩耗検出部15に出力することにより、摩耗検出部15による摩耗判定に温度補正を加えることができる。すなわち、電源投入に続いて行われる摩耗判定において、駆動モータ2の温度が上昇していないとき、あるいはシャットダウン時の摩耗判定において、駆動モータ2の温度が上昇しているとき、軸受のグリスの粘度が温度によって変化する。摩耗検出部15は、現在位置信号rtを基準値と比較するとき、グリスの粘性変化に対応するように基準値を補正して、その補正後の基準値と現在位置信号rtを比較して摩耗判定を行うことができる。従って、摩耗判定の精度を向上させることができる。 (9) By outputting the temperature signal of the drive motor 2 detected by the temperature detection unit to the wear detection unit 15, temperature correction can be added to the wear determination by the wear detection unit 15. That is, when the temperature of the drive motor 2 is not increased in the wear determination performed after the power is turned on or when the temperature of the drive motor 2 is increased in the wear determination at the time of shutdown, the viscosity of the bearing grease is determined. Varies with temperature. When comparing the current position signal rt with the reference value, the wear detection unit 15 corrects the reference value so as to correspond to the change in the viscosity of the grease, and compares the corrected reference value with the current position signal rt for wear. Judgment can be made. Therefore, the accuracy of wear determination can be improved.
 (第二の実施形態)
 図13~図15は、ガルバノ駆動装置を備えるレーザ加工装置に適用されたサーボモータ駆動装置の第二の実施形態を示す。この実施形態では判定モード時にガルバノミラー1の回動状態を検出する回動状態信号を、駆動モータ2のコイル4に流れる電流値に基づいて生成するようにしたものである。第一の実施形態と同一構成部分は、同一符号を付して詳細な説明を省略する。
(Second embodiment)
FIG. 13 to FIG. 15 show a second embodiment of a servo motor driving device applied to a laser processing apparatus provided with a galvano driving device. In this embodiment, the rotation state signal for detecting the rotation state of the galvanometer mirror 1 in the determination mode is generated based on the value of the current flowing through the coil 4 of the drive motor 2. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図13に示すように、切換器11の出力信号は加算器21を介してV/I変換器12に出力される。V/I変換器12から出力される駆動電流diは、コイル4を経てI/V変換器22に供給される。 As shown in FIG. 13, the output signal of the switch 11 is output to the V / I converter 12 via the adder 21. The drive current di output from the V / I converter 12 is supplied to the I / V converter 22 via the coil 4.
 I/V変換器22は、駆動電流diの電流値を電圧信号に変換した回動状態信号rsを生成し、切換器23に出力する。切換器23は、駆動制御部5から出力される制御信号cs3に基づいて切り換え制御され、通常動作時には回動状態信号rsを加算器21に出力し、判定モードでは回動状態信号rsを摩耗検出部15に出力する。 The I / V converter 22 generates a rotation state signal rs obtained by converting the current value of the drive current di into a voltage signal, and outputs the rotation state signal rs to the switch 23. The switch 23 is controlled to be switched based on the control signal cs3 output from the drive control unit 5, outputs the rotation state signal rs to the adder 21 during normal operation, and detects the wear of the rotation state signal rs in the determination mode. To the unit 15.
 位置検出部13から出力される現在位置信号rtは、加算器6にのみ出力される。判定モード時には、駆動制御部5からあらかじめ設定された判定用駆動電流モニタ(観察)信号dpiが切換器11を介して加算器21に出力される。判定用駆動電流モニタ(観察)信号dpiは、例えば駆動モータ2のコイル4に定電流を供給して、出力軸3を一定のトルクで回転させる信号である。その他の構成は、第一の実施形態と同様である。 The current position signal rt output from the position detector 13 is output only to the adder 6. In the determination mode, a predetermined drive current monitor (observation) signal for determination (observation) dpi is output from the drive control unit 5 to the adder 21 via the switch 11. The determination drive current monitor (observation) signal dpi is a signal for supplying a constant current to the coil 4 of the drive motor 2 to rotate the output shaft 3 with a constant torque, for example. Other configurations are the same as those of the first embodiment.
 上記のように構成されたレーザ加工装置では、図14に示すように、通常動作時には駆動制御部5から駆動位置信号dpが加算器6に出力される。そして、駆動位置信号dpに基づく駆動電流diが駆動モータ2のコイル4に供給され、駆動モータ2の動作によりガルバノミラー1が回動される。 In the laser machining apparatus configured as described above, the drive position signal dp is output from the drive control unit 5 to the adder 6 during normal operation, as shown in FIG. A drive current di based on the drive position signal dp is supplied to the coil 4 of the drive motor 2, and the galvano mirror 1 is rotated by the operation of the drive motor 2.
 ガルバノミラー1の回動状態は、位置検出部13で検出されて現在位置信号rtとして出力される。そして、現在位置信号rtが加算器6に供給され、現在位置信号rtに基づいて検出された出力軸3の回転速度に相当する電圧信号が加算器9に出力される。 The rotation state of the galvanometer mirror 1 is detected by the position detector 13 and output as the current position signal rt. Then, the current position signal rt is supplied to the adder 6, and a voltage signal corresponding to the rotation speed of the output shaft 3 detected based on the current position signal rt is output to the adder 9.
 このような動作により、ガルバノミラー1の回動角及び回動速度が、駆動位置信号dpによる回動角及び回動速度に一致するようにフィードバック制御が行われる。
 また、駆動電流diの電流値がI/V変換器22により電圧信号に変換されて加算器21に出力される。このため、駆動電流diの変動を抑制するようにフィードバック制御が行われる。
By such an operation, feedback control is performed so that the rotation angle and rotation speed of the galvanometer mirror 1 coincide with the rotation angle and rotation speed by the drive position signal dp.
The current value of the drive current di is converted into a voltage signal by the I / V converter 22 and output to the adder 21. For this reason, feedback control is performed so as to suppress fluctuations in the drive current di.
 図15に示すように、判定モード時には、切換器11,23が切り換えられて、判定用駆動電流モニタ(観察)信号dpiが切換器11及び加算器21を介してV/I変換器12に出力される。すると、駆動モータ2のコイル4に判定用駆動電流モニタ(観察)信号dpiに基づく駆動電流diが供給され、駆動モータ2の出力軸3が回転して、ガルバノミラー1が回動される。 As shown in FIG. 15, in the determination mode, the switches 11 and 23 are switched, and the determination drive current monitor (observation) signal dpi is output to the V / I converter 12 via the switch 11 and the adder 21. Is done. Then, the drive current di based on the determination drive current monitor (observation) signal dpi is supplied to the coil 4 of the drive motor 2, the output shaft 3 of the drive motor 2 rotates, and the galvanometer mirror 1 is rotated.
 ここで、出力軸3の軸受に摩耗が生じていると、出力軸3が円滑に回転されない状態となる。すると、I/V変換器22に入力される駆動電流diが定電流とはならず、リップルが生じる状態となる。 Here, if the bearing of the output shaft 3 is worn, the output shaft 3 is not smoothly rotated. Then, the drive current di input to the I / V converter 22 does not become a constant current, and a ripple is generated.
 I/V変換器22は、駆動電流diの変動に基づく回動状態信号rsを切換器23を介して摩耗検出部15に出力する。摩耗検出部15は、回動状態信号rsに基づいて駆動電流diの変動、すなわち出力軸3の摩耗度合を判定する。 The I / V converter 22 outputs a rotation state signal rs based on the fluctuation of the drive current di to the wear detection unit 15 via the switch 23. The wear detector 15 determines the fluctuation of the drive current di, that is, the degree of wear of the output shaft 3 based on the rotation state signal rs.
 上記のようなレーザ加工装置及びガルバノ駆動装置では、次に示す効果を得ることができる。
 (1)判定モードでは、切換器11,23が切り換えられて、駆動制御部5から出力される駆動位置信号dpと、位置検出部13で検出された現在位置信号rtとの偏差を補正するフィードバック制御が停止される。そして、駆動制御部5から出力される判定用駆動電流モニタ(観察)信号dpiに基づく定電流で駆動モータ2が駆動される。この状態で、摩耗検出部15で駆動電流diの変動を検出した回動状態信号rsに基づいて、駆動モータ2の出力軸3の軸受の摩耗度合が検出される。従って、細かな摩耗度合を確認することが容易となる。
In the laser processing apparatus and the galvano drive apparatus as described above, the following effects can be obtained.
(1) In the determination mode, the switches 11 and 23 are switched, and feedback for correcting a deviation between the drive position signal dp output from the drive control unit 5 and the current position signal rt detected by the position detection unit 13. Control is stopped. Then, the drive motor 2 is driven with a constant current based on the determination drive current monitor (observation) signal dpi output from the drive control unit 5. In this state, the degree of wear of the bearing of the output shaft 3 of the drive motor 2 is detected on the basis of the rotation state signal rs detected by the wear detector 15 in the drive current di. Therefore, it becomes easy to confirm the fine degree of wear.
 (2)駆動電流diの変動を検出した回動状態信号rsに基づいて、細かな摩耗度合を確認することにより、第一の実施形態と同様な効果を得ることができる。
 なお、上記実施形態は以下のように変更してもよい。
(2) By confirming the fine degree of wear based on the rotation state signal rs in which the fluctuation of the drive current di is detected, the same effect as in the first embodiment can be obtained.
In addition, you may change the said embodiment as follows.
 ・摩耗検出部15では、位置検出部13から出力される現在位置信号rtに温度補正を加え、その補正後の現在位置信号と基準値を比較して摩耗度合を検出するようにしてもよい。 The wear detection unit 15 may add a temperature correction to the current position signal rt output from the position detection unit 13 and compare the corrected current position signal with a reference value to detect the degree of wear.
 ・判定用駆動電流モニタ(観察)信号dpiは、定電流である必要はない。判定用駆動電流モニタ(観察)信号dpiにより駆動モータ2のコイル4に供給する電流と、コイル4に実際に流れる電流との差を摩耗検出部15で検出するようにしてもよい。 · The determination drive current monitor (observation) signal dpi does not have to be a constant current. The wear detector 15 may detect the difference between the current supplied to the coil 4 of the drive motor 2 by the determination drive current monitor (observation) signal dpi and the current actually flowing through the coil 4.
 ・第一及び第二の実施形態において、切換器11をV/I変換器12の後段に挿入して、判定用駆動位置モニタ(観察)信号dpcあるいは判定用駆動電流モニタ(観察)信号dpiをコイル4に直接に供給する電流信号としてもよい。 In the first and second embodiments, the switch 11 is inserted in the subsequent stage of the V / I converter 12, and the determination drive position monitor (observation) signal dpc or the determination drive current monitor (observation) signal dpi is supplied. The current signal may be directly supplied to the coil 4.

Claims (11)

  1.  駆動モータの出力軸の回転によりガルバノミラーを回動させるガルバノ駆動部と、
     前記ガルバノ駆動部に、前記ガルバノミラーをあらかじめ設定された回動位置まで回動させる駆動信号を出力する駆動制御部と、
     前記駆動信号に基づく前記ガルバノミラーの回動状態を示す回動状態信号を出力する回動状態検出部と、
     前記駆動信号と前記回動状態信号との偏差を補正するように、前記駆動信号を補正して前記駆動モータに供給するフィードバック制御部と
    を備えるガルバノ駆動装置において、
     前記駆動制御部は、判定用駆動信号を出力する判定モードを有し、
     前記判定用駆動信号に基づく前記ガルバノミラーの回動状態に基づいて前記出力軸の軸受の摩耗度合を検出する摩耗検出部と、
     前記判定モード時に前記フィードバック制御部の動作を無効化し、前記回動状態信号を前記摩耗検出部のみに供給する切換部と
    をさらに備えたことを特徴とするガルバノ駆動装置。
    A galvano drive for rotating the galvano mirror by rotation of the output shaft of the drive motor;
    A drive control unit that outputs a drive signal to the galvano drive unit to rotate the galvano mirror to a preset rotation position;
    A rotation state detection unit that outputs a rotation state signal indicating a rotation state of the galvanometer mirror based on the drive signal;
    In a galvano drive device comprising a feedback control unit that corrects the drive signal and supplies it to the drive motor so as to correct a deviation between the drive signal and the rotation state signal.
    The drive control unit has a determination mode for outputting a determination drive signal;
    A wear detector that detects a degree of wear of the bearing of the output shaft based on a rotation state of the galvanometer mirror based on the determination drive signal;
    A galvano drive device further comprising: a switching unit that invalidates the operation of the feedback control unit in the determination mode and supplies the rotation state signal only to the wear detection unit.
  2.  請求項1に記載のガルバノ駆動装置において、
     前記駆動制御部は、前記判定モード時に、前記ガルバノミラーの有効回動範囲全域を回動させる判定用駆動信号を出力し、
     前記摩耗検出部は、前記判定用駆動信号に基づく回動状態信号に基づいて、前記ガルバノミラーの有効回動範囲全域に亘って摩耗度合を検出することを特徴とするガルバノ駆動装置。
    The galvano drive device according to claim 1,
    The drive control unit outputs a determination drive signal for rotating the entire effective rotation range of the galvanometer mirror in the determination mode,
    The galvano drive device, wherein the wear detection unit detects a wear degree over an entire effective rotation range of the galvano mirror based on a rotation state signal based on the determination drive signal.
  3.  請求項1又は2に記載のガルバノ駆動装置において、
     前記駆動制御部は、前記判定モード時に、前記ガルバノミラーを繰り返し回動させる判定用駆動信号を出力し、
     前記摩耗検出部は、前記判定用駆動信号に基づく回動状態信号に基づいて、前記出力軸の軸受の摩耗度合を検出することを特徴とするガルバノ駆動装置。
    In the galvano drive device according to claim 1 or 2,
    The drive control unit outputs a determination drive signal for repeatedly rotating the galvanometer mirror in the determination mode,
    The galvano drive device, wherein the wear detection unit detects a degree of wear of the bearing of the output shaft based on a rotation state signal based on the determination drive signal.
  4.  請求項3に記載のガルバノ駆動装置において、
     前記駆動制御部は、前記判定モード時に、前記ガルバノミラーを往復方向に繰り返し回動させる判定用駆動信号を出力し、
     前記摩耗検出部は、前記判定用駆動信号に基づく回動状態信号に基づいて、前記ガルバノミラーの往復方向に亘って前記出力軸の軸受の摩耗度合を検出することを特徴とするガルバノ駆動装置。
    The galvano drive device according to claim 3,
    The drive control unit outputs a determination drive signal for repeatedly rotating the galvano mirror in a reciprocating direction during the determination mode,
    The galvano drive device, wherein the wear detector detects a degree of wear of the bearing of the output shaft over a reciprocating direction of the galvanometer mirror based on a rotation state signal based on the determination drive signal.
  5.  請求項4に記載のガルバノ駆動装置において、
     前記駆動制御部は、前記判定用駆動信号として台形波を出力することを特徴とするガルバノ駆動装置。
    The galvano drive device according to claim 4,
    The galvano drive device, wherein the drive control unit outputs a trapezoidal wave as the determination drive signal.
  6.  請求項1乃至5のいずれか1項に記載のガルバノ駆動装置において、
     前記駆動制御部は、前記駆動信号として前記ガルバノミラーをあらかじめ設定された回動位置まで回動させる駆動位置信号を出力するとともに、前記判定用駆動信号として判定用駆動位置モニタ(観察)信号を出力し、
     前記摩耗検出部は、前記回動状態信号として前記判定用駆動位置モニタ(観察)信号に基づく前記ガルバノミラーの回動位置を示す現在位置信号とあらかじめ設定された基準値とを比較することにより、前記出力軸の軸受の摩耗度合を検出することを特徴とするガルバノ駆動装置。
    In the galvano drive device according to any one of claims 1 to 5,
    The drive control unit outputs a drive position signal for rotating the galvanometer mirror to a preset rotation position as the drive signal, and outputs a determination drive position monitor (observation) signal as the determination drive signal. And
    The wear detection unit compares the current position signal indicating the rotation position of the galvano mirror based on the determination drive position monitor (observation) signal as the rotation state signal with a preset reference value. A galvano drive device that detects a degree of wear of a bearing of the output shaft.
  7.  請求項1乃至6のいずれか1項に記載のガルバノ駆動装置において、
     前記駆動制御部は、電源の投入に続いて前記判定モードに移行することを特徴とするガルバノ駆動装置。
    The galvano drive device according to any one of claims 1 to 6,
    The galvano drive device, wherein the drive control unit shifts to the determination mode following power-on.
  8.  請求項1乃至6のいずれか1項に記載のガルバノ駆動装置において、
     前記駆動制御部は、電源のシャットダウン時に前記判定モードに移行し、
     前記摩耗検出部は、
     前記判定モードにおける検出結果を記憶する記憶部と、
     電源の再投入時に、前記記憶部に記憶された検出結果を出力する出力部と
    を備えたことを特徴とするガルバノ駆動装置。
    The galvano drive device according to any one of claims 1 to 6,
    The drive control unit shifts to the determination mode when the power is shut down,
    The wear detector
    A storage unit for storing a detection result in the determination mode;
    A galvano drive device comprising: an output unit that outputs a detection result stored in the storage unit when power is turned on again.
  9.  請求項6に記載のガルバノ駆動装置において、
     前記駆動モータの温度を示す現在温度信号を前記摩耗検出部に出力する温度検出部を備え、
     前記摩耗検出部は、前記現在温度信号に基づいて、前記現在位置信号および前記基準値のいずれかを温度補正することを特徴とするガルバノ駆動装置。
    The galvano drive device according to claim 6,
    A temperature detection unit that outputs a current temperature signal indicating the temperature of the drive motor to the wear detection unit;
    The galvano drive device, wherein the wear detection unit corrects the temperature of either the current position signal or the reference value based on the current temperature signal.
  10.  レーザ光源から出射されるレーザ光を、請求項1乃至9のいずれか1項に記載のガルバノ駆動装置で回動されるガルバノミラーを介して被加工面に照射することを特徴とするレーザ加工装置。 A laser processing apparatus for irradiating a processing surface with laser light emitted from a laser light source via a galvano mirror rotated by a galvano driving device according to any one of claims 1 to 9. .
  11.  サーボモータと、
     前記サーボモータを駆動するサーボモータ駆動部と、
     前記サーボモータ駆動部に、駆動信号を出力する駆動制御部と、
     前記駆動信号に基づく前記サーボモータの出力軸の回動状態を示す回動状態信号を出力する回動状態検出部と、
     前記駆動信号と前記回動状態信号との偏差を補正するように、前記駆動信号を補正して前記サーボモータに供給するフィードバック制御部と
    を備えるサーボモータ駆動装置において、
     前記駆動制御部は、判定用駆動信号を出力する判定モードを有し、
     前記判定用駆動信号に基づく前記サーボモータの回動状態に基づいて前記出力軸の軸受の摩耗度合を検出する摩耗検出部と、
     前記判定モード時に前記フィードバック制御部の動作を無効化し、前記回動状態信号を前記摩耗検出部のみに供給する切換部と
    をさらに備えたことを特徴とするサーボモータ駆動装置。
    A servo motor,
    A servo motor drive for driving the servo motor;
    A drive control unit for outputting a drive signal to the servo motor drive unit;
    A rotation state detection unit that outputs a rotation state signal indicating a rotation state of the output shaft of the servo motor based on the drive signal;
    In a servo motor drive device comprising a feedback control unit that corrects the drive signal and supplies it to the servo motor so as to correct a deviation between the drive signal and the rotation state signal.
    The drive control unit has a determination mode for outputting a determination drive signal;
    A wear detector that detects the degree of wear of the bearing of the output shaft based on the rotation state of the servo motor based on the determination drive signal;
    A servo motor driving device, further comprising: a switching unit that invalidates the operation of the feedback control unit in the determination mode and supplies the rotation state signal only to the wear detection unit.
PCT/JP2019/016025 2018-05-11 2019-04-12 Servo motor drive device and galvano drive device, and laser machining device WO2019216121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-092522 2018-05-11
JP2018092522A JP7241295B2 (en) 2018-05-11 2018-05-11 Servo motor drive device, galvano drive device, and laser processing device

Publications (1)

Publication Number Publication Date
WO2019216121A1 true WO2019216121A1 (en) 2019-11-14

Family

ID=68466974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016025 WO2019216121A1 (en) 2018-05-11 2019-04-12 Servo motor drive device and galvano drive device, and laser machining device

Country Status (2)

Country Link
JP (1) JP7241295B2 (en)
WO (1) WO2019216121A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071844A (en) 2019-10-30 2021-05-06 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Image processing device, image processing method and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192837A (en) * 2008-02-14 2009-08-27 Mitsubishi Electric Corp Galvano scanner controller
JP2016118603A (en) * 2014-12-19 2016-06-30 株式会社Jvcケンウッド Image display device and image correction method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745827B2 (en) * 1991-01-22 1998-04-28 松下電器産業株式会社 Optical output generator
US6304359B1 (en) * 1999-07-20 2001-10-16 Lasesys Corporation High scan efficiency galvanometric laser scanning device
US6967586B2 (en) * 2000-10-20 2005-11-22 Sankyo Seiki Mfg. Co., Ltd. Bearing test method, bearing test device, bearing monitoring device and storage device
JP2003191083A (en) * 2001-12-26 2003-07-08 Sunx Ltd Laser marking device
JP2007098412A (en) * 2005-09-30 2007-04-19 Sunx Ltd Laser beam machining apparatus
JP2007240626A (en) * 2006-03-06 2007-09-20 Ricoh Co Ltd Optical scanner driving method and device
JP5711032B2 (en) * 2011-03-31 2015-04-30 ビアメカニクス株式会社 Laser processing equipment
JP5718768B2 (en) * 2011-08-31 2015-05-13 株式会社キーエンス Optical galvano scanner and laser marker device having the same
JP5819746B2 (en) * 2012-02-16 2015-11-24 ビアメカニクス株式会社 Laser processing equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192837A (en) * 2008-02-14 2009-08-27 Mitsubishi Electric Corp Galvano scanner controller
JP2016118603A (en) * 2014-12-19 2016-06-30 株式会社Jvcケンウッド Image display device and image correction method

Also Published As

Publication number Publication date
JP7241295B2 (en) 2023-03-17
JP2019197193A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US10175684B2 (en) Laser processing robot system and control method of laser processing robot system
JP6457432B2 (en) Servo control device, control method and computer program for machine tool for rocking cutting
CN107234255B (en) Servo control device and control method for machine tool that performs oscillating cutting
CN107797515B (en) Control device, control method, and computer-readable medium for machine tool
US10503141B2 (en) Display device and machining system for oscillation cutting
JP4256353B2 (en) Servo control device and servo system adjustment method
US10434614B2 (en) Control device for machine tool performing oscillation cutting
JP6744815B2 (en) Machine tool control device and machine tool
US9104194B2 (en) Processing information acquisition system in processing machine supplying processing point with energy or material
US10843292B2 (en) Initial distance approach for laser processing
WO2019188155A1 (en) Laser cutting device and laser cutting method
JP6514264B2 (en) Machine tool control system
JP2011123616A (en) Servo control system for enhancing accuracy of high-speed oscillating operation
JP6382897B2 (en) Laser welding system
JP6732567B2 (en) Machine tool control device and machine tool
JP2019081185A (en) Laser processing system
JP2016047540A (en) Laser processing device having high-speed positioning function
KR102272649B1 (en) Laser cleaning device having a function of checking cleaning quality and method thereof
WO2019216121A1 (en) Servo motor drive device and galvano drive device, and laser machining device
US10866574B2 (en) Machine tool controller with learning error compensation
US20180329391A1 (en) Numerical controller
CN107303626B (en) Laser processing device and laser processing method
KR101560529B1 (en) Numerical control device
KR101638347B1 (en) Hole machining apparatus for vehicle
JP2018147030A (en) Control device of machine-tool and machine-tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799758

Country of ref document: EP

Kind code of ref document: A1