WO2019215984A1 - Image processing device and image generation method - Google Patents

Image processing device and image generation method Download PDF

Info

Publication number
WO2019215984A1
WO2019215984A1 PCT/JP2019/005819 JP2019005819W WO2019215984A1 WO 2019215984 A1 WO2019215984 A1 WO 2019215984A1 JP 2019005819 W JP2019005819 W JP 2019005819W WO 2019215984 A1 WO2019215984 A1 WO 2019215984A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
display
generation unit
instruction signal
unit
Prior art date
Application number
PCT/JP2019/005819
Other languages
French (fr)
Japanese (ja)
Inventor
菅武志
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2019215984A1 publication Critical patent/WO2019215984A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/16Stereoscopic photography by sequential viewing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to an image processing apparatus and an image generation method, and more particularly to an image processing apparatus and an image generation method capable of generating an image that can be stereoscopically and planarly viewed.
  • the left-eye image and the right-eye image are displayed on the display unit so that it is recognized that a stereoscopic image is located on the back side of the monitor.
  • 2D display and 3D display can be switched.
  • 3D display the left-eye image and the right-eye image are shifted, and two images are displayed on the monitor.
  • 2D display either the left eye image or the right eye image for 3D is displayed on the monitor with the shift amount 0.
  • Patent Documents 1 and 2 when switching between 3D display and 2D display, the eyes feel tired. Since the image is displayed on the monitor, the eye is focused on the monitor in both 3D display and 2D display. However, in 3D display, it is recognized that a stereoscopic image is positioned on the back side of the monitor, whereas in 2D display, it is recognized that a planar image is positioned on the monitor. Therefore, a difference occurs between the convergence angle in 3D display and the convergence angle in 2D display.
  • the 3D display is in a disagreement state. Therefore, when the switching between 3D display and 2D display increases, a match state and a mismatch state repeatedly occur. As a result, the eyes feel tired.
  • the present invention has been made in view of such a problem, and provides an image processing apparatus and an image generation method capable of performing a stereoscopic view and a planar view with less burden even when switching between a stereoscopic view and a planar view.
  • the purpose is to do.
  • an image processing apparatus includes: It is composed of a first image and a second image, and is composed of a stereoscopic display image that is recognized by the surgeon when positioned on the near side or the far side of the display unit capable of displaying the image, and the first image, An image generation unit capable of generating a flat display image that is recognized by the operator when positioned in front of or behind the display unit; An instruction signal generation unit that generates an instruction signal for switching an image generated by the image generation unit from one of a stereoscopic display image and a flat display image to the other image; When the instruction signal generated by the instruction signal generation unit is input, the image generation unit generates the other image that is recognized by the operator as being positioned on the same side as one of the near side and the back side. It is characterized by that.
  • An image generation method includes: An image generation method for generating a stereoscopic display image composed of a first image and a second image and a flat display image composed of the first image, An image generation step of generating a stereoscopic display image or a planar image that is recognized by the operator when positioned on the front side or the back side of the display unit capable of displaying an image; An instruction signal generating step for generating an instruction signal for switching the image to be generated from one of the stereoscopic display image and the flat display image to the other image; and An image generation step of generating, when the generated instruction signal is input, generating the other image that is recognized by the surgeon as being located on the same side as the one of the near side and the back side. And
  • an image processing apparatus and an image generation method capable of performing a stereoscopic view and a planar view with less burden even when switching between a stereoscopic view and a planar view.
  • the image processing apparatus includes a first image and a second image, and a stereoscopic display image that is recognized by an operator when positioned on the near side or the far side of a display unit that can display an image.
  • An image generator configured to generate a flat display image that is recognized by the surgeon when it is located on the front side or the back side of the display unit, and an image generated by the image generator
  • An instruction signal generation unit that generates an instruction signal for switching from one image to the other of the display image and the flat display image, and the image generation unit generates the instruction signal generated by the instruction signal generation unit Is input, the other image that is recognized by the surgeon when it is located on the same side as one of the near side and the back side is generated.
  • FIG. 1 is a diagram illustrating an image processing apparatus according to the present embodiment.
  • FIG. 1A illustrates a state in which a stereoscopic display image is generated on the back side from the display unit
  • FIG. 1B illustrates a state in which a flat display image is generated on the back side from the display unit.
  • FIG. 1C is a diagram showing the position of the image recognized by the operator.
  • the image processing apparatus 1 includes an image generation unit 2 and an instruction signal generation unit 3.
  • the image generation unit 2 a stereoscopic display image and a flat display image can be generated.
  • the stereoscopic display image is composed of a first image and a second image.
  • the first image IMG ⁇ b> 1 and the second image IMG ⁇ b> 2 are input from the storage unit 4 to the image generation unit 2.
  • the first image IMG1 and the second image IMG2 may be input to the image processing apparatus 1 through the input unit 5.
  • a stereoscopic display image 3DF is generated using the first image IMG1 and the second image IMG2.
  • the stereoscopic display image 3DF the first image IMG1 and the second image IMG2 are output from the image generation unit 2.
  • the stereoscopic display image 3DF is input to the display unit 7 through the output unit 6.
  • a stereoscopic display image 3DF is displayed on the display unit 7.
  • the surgeon views the stereoscopic display image 3DF, as shown in FIG. 1C, the surgeon recognizes that the stereoscopic image I 3DF is located at the position of the point PF.
  • Point PF is the intersection of the right eye line of sight and the left eye line of sight.
  • the position of the display unit 7 is used as a reference, the point PF is located on the back side of the display unit 7. Therefore, the surgeon recognizes that the stereoscopic image I 3DF is located behind the display unit 7.
  • the stereoscopic display image 3DF is an image that is recognized by the surgeon when positioned on the back side of the display unit 7.
  • the image generation unit 2 a stereoscopic display image 3DF that is recognized by the surgeon when positioned on the back side of the display unit 7 is generated.
  • the display unit 7 displays not only a stereoscopic display image but also a flat display image.
  • the instruction signal generation unit 3 In switching between the stereoscopic display image and the flat display image, the instruction signal generation unit 3 generates an instruction signal (hereinafter referred to as “switching signal”).
  • the switching signal is input to the image generation unit 2. The switching signal will be described later.
  • the flat display image is composed of the first image.
  • the first image IMG ⁇ b> 1 and the second image IMG ⁇ b> 2 are input from the storage unit 4 to the image generation unit 2.
  • the first image IMG1 and the second image IMG2 may be input to the image processing apparatus 1 through the input unit 5.
  • the image generation unit 2 generates a flat display image 2DF using the first image IMG1. Only the first image IMG1 is output from the image generation unit 2 as the flat display image 2DF. Only the second image IMG2 may be output from the image generation unit 2 as the flat display image 2DF.
  • the flat display image 2DF is input to the display unit 7 through the output unit 6.
  • a flat display image 2DF is displayed on the display unit 7.
  • the surgeon views the planar display image 2DF, as shown in FIG. 1C, the surgeon recognizes that the planar image I 2DF is positioned at the position of the point PF.
  • the point PF is located on the back side of the display unit 7. Therefore, the surgeon recognizes that the stereoscopic image I 2DF is located behind the display unit 7.
  • the flat display image 2DF is an image that is recognized by the surgeon when positioned on the back side of the display unit 7.
  • the image generation unit 2 generates a flat display image 2DF that is recognized by the surgeon when positioned on the far side of the display unit 7.
  • the stereoscopic display image is not limited to the stereoscopic display image 3DF.
  • the flat display image is not limited to the flat display image 2DF.
  • FIG. 2 is a diagram illustrating the image processing apparatus according to the present embodiment.
  • FIG. 2A is a diagram illustrating a state in which a stereoscopic display image is generated in front of the display unit
  • FIG. 2B is a diagram in which a flat display image is generated in front of the display unit.
  • FIG. 2 and FIG. 2C are diagrams showing the positions of images recognized by the operator.
  • the image generation unit 2 generates a stereoscopic display image 3DN using the first image IMG1 and the second image IMG2.
  • the first image IMG1 and the second image IMG2 are output from the image generation unit 2 as the stereoscopic display image 3DN.
  • the stereoscopic display image 3DN is input to the display unit 7 through the output unit 6.
  • a stereoscopic display image 3DN is displayed on the display unit 7.
  • the surgeon views the stereoscopic display image 3DN, as shown in FIG. 2C, the surgeon recognizes that the stereoscopic image I 3DN is located at the position of the point PN.
  • the point PN is also an intersection of the right eye line of sight and the left eye line of sight.
  • the position of the display unit 7 is used as a reference, the point PN is located on the near side of the display unit 7. Therefore, the surgeon recognizes that the stereoscopic image I 3DN is located on the front side of the display unit 7.
  • the stereoscopic display image 3DN is an image that is recognized by the operator when positioned on the near side of the display unit 7.
  • the image generation unit 2 generates a stereoscopic display image 3DN that is recognized by the surgeon when positioned on the near side of the display unit 7.
  • the display unit 7 displays not only a stereoscopic display image but also a flat display image.
  • the instruction signal generation unit 3 In switching between the stereoscopic display image and the flat display image, the instruction signal generation unit 3 generates a switching signal.
  • the switching signal is input to the image generation unit 2. The switching signal will be described later.
  • the flat display image is composed of the first image.
  • the first image IMG ⁇ b> 1 and the second image IMG ⁇ b> 2 are input from the storage unit 4 to the image generation unit 2.
  • the first image IMG1 and the second image IMG2 may be input to the image processing apparatus 1 through the input unit 5.
  • the image generation unit 2 generates a flat display image 2DN using the first image IMG1. Only the first image IMG1 is output from the image generation unit 2 as the flat display image 2DN. Only the second image IMG2 may be output from the image generation unit 2 as the flat display image 2DN.
  • the flat display image 2DN is input to the display unit 7 through the output unit 6.
  • a flat display image 2DN is displayed on the display unit 7.
  • the surgeon views the flat display image 2DN, as shown in FIG. 2C, the surgeon recognizes that the planar image I2DN is located at the position of the point PN.
  • the point PN is located on the near side of the display unit 7. Therefore, the surgeon recognizes that the stereoscopic image I 2DN is positioned in front of the display unit 7.
  • the flat display image 2DN is an image that is recognized by the surgeon when positioned on the near side of the display unit 7.
  • the image generation unit 2 generates a flat display image 2DN that is recognized by the surgeon when positioned on the near side of the display unit 7.
  • the image generation unit generates an image that is recognized by the surgeon when the image generation unit is positioned behind the display unit as a stereoscopic display image, and the back side of the display unit as a flat display image. It is preferable to generate an image that is recognized by the surgeon when positioned in the position.
  • the convergence angle when the surgeon views the stereoscopic display image can be reduced.
  • eye fatigue during stereoscopic display can be reduced.
  • the convergence angle when the surgeon views the flat display image can be reduced.
  • eye fatigue during flat display can be reduced.
  • the image generation unit 2 generates a stereoscopic display image 3DF, a stereoscopic display image 3DN, a flat display image 2DF, and a flat display image 2DN. These four images can be used for image switching.
  • the stereoscopic display image 3DF is displayed on the display unit 7.
  • the displayed image is switched from the stereoscopic display image to the flat display image.
  • the flat display image that can be displayed is the flat display image 2DF or the flat display image 2DN.
  • the flat display image 2DF is an image that is recognized by the surgeon when positioned on the back side of the display unit 7.
  • the flat display image 2DN is an image that is recognized by the operator when positioned on the near side of the display unit 7.
  • the stereoscopic display image 3DF is an image that is recognized by the operator when positioned on the back side of the display unit 7. Therefore, the flat display image 2DF is displayed.
  • the instruction signal generator 3 generates a switching signal SGF.
  • the switching signal SGF is a signal instructing generation of the flat display image 2DF.
  • the image generation unit 2 When the switching signal SGF is input to the image generation unit 2, the image generation unit 2 generates a flat display image 2DF.
  • the flat display image 2DF is displayed on the display unit 7.
  • the displayed image is switched from the flat display image to the stereoscopic display image.
  • the stereoscopic display image 3DF is displayed.
  • the instruction signal generation unit 3 generates a signal for instructing generation of the stereoscopic display image 3DF as a switching signal.
  • the image generation unit 2 When the switching signal is input to the image generation unit 2, the image generation unit 2 generates a stereoscopic display image 3DF.
  • the image generation unit generates an image that is recognized by the surgeon when positioned as a stereoscopic display image on the near side of the display unit, and is a front side of the display unit as a flat display image. It is preferable to generate an image that is recognized by the surgeon when positioned in the position.
  • the image generation unit 2 generates the stereoscopic display image 3DF, the stereoscopic display image 3DN, the flat display image 2DF, and the flat display image 2DN. These four images can be used for image switching.
  • a stereoscopic display image 3DN is displayed on the display unit 7.
  • the displayed image is switched from the stereoscopic display image to the flat display image.
  • the flat display image that can be displayed is the flat display image 2DF or the flat display image 2DN.
  • the flat display image 2DF is an image that is recognized by the surgeon when positioned on the back side of the display unit 7.
  • the flat display image 2DN is an image that is recognized by the operator when positioned on the near side of the display unit 7.
  • the stereoscopic display image 3DN is an image that is recognized by the operator when positioned on the near side of the display unit 7. Therefore, the flat display image 2DN is displayed.
  • the switching signal SGN is generated by the instruction signal generator 3.
  • the switching signal SGN is a signal instructing generation of the flat display image 2DN.
  • the image generation unit 2 When the switching signal SGN is input to the image generation unit 2, the image generation unit 2 generates a flat display image 2DN.
  • the flat display image 2DN is displayed on the display unit 7.
  • the displayed image is switched from the flat display image to the stereoscopic display image.
  • the stereoscopic display image 3DN is displayed.
  • the instruction signal generation unit 3 generates a signal instructing generation of the stereoscopic display image 3DN as a switching signal.
  • the image generation unit 2 When the switching signal is input to the image generation unit 2, the image generation unit 2 generates a stereoscopic display image 3DN.
  • the instruction signal generation unit 3 generates an instruction signal for switching from one image to the other of the stereoscopic display image and the flat display image.
  • the image generation unit When the instruction signal generated by the instruction signal generation unit is input, the image generation unit generates the other image that is recognized by the operator as being positioned on the same side as one of the near side and the back side. .
  • the image generation unit includes a first image as a stereoscopic display image, and a second image obtained by shifting the first image by a first distance in the left-right direction of the display unit. And an image for the right eye that is the first image, and a first image that is shifted by a second distance in the left-right direction of the display unit with respect to the first image. It is preferable to generate an image including the left-eye image.
  • FIG. 3 is a diagram showing a stereoscopic view.
  • FIG. 3A is a diagram illustrating a state in which a stereoscopic image appears to be positioned on the display surface of the display unit.
  • FIG. 3B is a diagram illustrating a state in which a stereoscopic image appears to be located on the far side of the display unit.
  • FIG. 3C is a diagram illustrating a state in which a stereoscopic image appears to be positioned on the near side of the display unit.
  • the stereoscopic display image is composed of a first image and a second image.
  • the stereoscopic display image is displayed on the display unit 7.
  • the surgeon can stereoscopically view the subject.
  • the first image is indicated by a solid line
  • the second image is indicated by a dotted line.
  • image IMR right-eye image
  • image IML left-eye image
  • the image IMR is used for the first image and the image IML is used for the second image.
  • the image IMR and the image IML are displayed on the display unit 7.
  • the image IMR and the image IML are both drawn at positions away from the display unit 7 for ease of viewing.
  • the image IMR and the image IML are actually displayed on the display unit 7 in an overlapped state. However, for ease of viewing, the image IMR and the image IML are drawn with the image IMR and the image IML separated.
  • the stereoscopic display image is displayed on the display unit 7.
  • the stereoscopic display image is composed of the image IMR and the image IML. Therefore, the image IMR and the image IML are displayed on the display unit 7.
  • the surgeon can view stereoscopically by looking at the image IMR and the image IML.
  • first state in a state where the stereoscopic image appears to be positioned on the display surface of the display unit 7 (hereinafter referred to as “first state”), the image IMR and the image IML are overlapped. Is displayed.
  • the image IMR and the image IML are arranged in parallel. Is displayed.
  • the image IMR is displayed on the operator's right eye ER side
  • the image IML is displayed on the operator's left eye EL side.
  • the image IMR and the image IML are arranged in parallel. Is displayed.
  • the image IMR is displayed on the left eye EL side of the surgeon, and the image IML is displayed on the right eye ER side of the surgeon.
  • the direction in which the parallax is generated is the first direction, and the direction orthogonal to the first direction is the second direction.
  • the x direction represents the first direction
  • the z direction represents the second direction.
  • the image IMR and the image IML are displayed side by side in the first direction.
  • the first direction corresponds to the left-right direction on the display unit 7. Therefore, the image IML is shifted by the first distance in the left-right direction of the display unit 7 with respect to the image IMR.
  • the convergence angle decreases as the subject moves away from the surgeon. In addition, the convergence angle increases as the subject approaches the surgeon. Even when viewing stereoscopically using an image, the convergence angle changes in the same manner as when the subject is directly viewed.
  • the surgeon recognizes that the three-dimensional image is located behind the display unit 7.
  • the convergence angle ⁇ 2 in the second state is smaller than the convergence angle ⁇ 1 in the first state.
  • the surgeon recognizes that the stereoscopic image is located on the near side of the display unit 7.
  • the convergence angle ⁇ 3 in the third state is larger than the convergence angle ⁇ 1 in the first state.
  • FIG. 4 is a diagram showing a plan view.
  • FIG. 4A is a diagram illustrating a state in which a planar image appears to be positioned on the display surface of the display unit.
  • FIG. 4B is a diagram illustrating a state in which the planar image appears to be located on the back side with respect to the display unit.
  • FIG. 4C is a diagram illustrating a state in which a planar image appears to be positioned on the near side of the display unit.
  • the flat display image is composed of the first image.
  • the flat display image may be composed of the second image.
  • the flat display image is displayed on the display unit 7. By looking at the flat display image displayed on the display unit 7, the operator can view the subject in plan view.
  • an image IMR is used as the right-eye image.
  • the image IMR is also used as the left eye image.
  • the flat display image is displayed on the display unit 7.
  • the flat display image is composed of the image IMR. Therefore, only the image IMR is displayed on the display unit 7. The surgeon can view the subject in plan view by looking at the image IMR.
  • one image IMR is displayed. Yes.
  • the planar image appears to be located on the back side of the display unit 7 (hereinafter referred to as “fifth state”)
  • two images IMR are arranged in parallel. It is displayed.
  • the image IMR as the right eye image is displayed on the operator's right eye ER side
  • the image IMR as the left eye image is displayed on the operator's left eye EL side.
  • the two images IMR are displayed side by side in the first direction.
  • the first direction corresponds to the left-right direction on the display unit 7.
  • the other image IMR is shifted by the second distance in the left-right direction of the display unit 7 with respect to the image IMR.
  • the display of the stereoscopic display image and the display of the flat display image will be described.
  • the stereoscopic display image is displayed on the display surface of the display unit 7. Therefore, in the first state, the eyes are in focus on the display surface of the display unit 7.
  • the surgeon is stereoscopically viewing at the convergence angle ⁇ 1.
  • the stereoscopic display image is displayed on the display surface of the display unit 7. Therefore, the eyes are in focus on the display surface of the display unit 7 even in the second state.
  • the surgeon is stereoscopically viewing at a convergence angle ⁇ 2 smaller than the convergence angle ⁇ 1.
  • the first state and the second state have different convergence angles even though the positions where the eyes are in focus are the same.
  • an image having a deep depth of field is acquired.
  • the position of the near point in the depth of field is, for example, about 5 mm from the tip of the insertion portion.
  • the near point image is greatly distorted compared to the far point image. Therefore, if a near-point stereoscopic image appears to be located on the near side of the display unit 7, a great burden is placed on the operator.
  • the stereoscopic image appears to be located behind the display unit 7 as a whole. That is, the second state is preferable.
  • the second state is an unfavorable state for the operator.
  • the stereoscopic view in the second state is continued for a long time, the stereoscopic view can be easily performed even in the second state. Therefore, even if the stereoscopic display image is composed of an image acquired by an endoscope, the operator can perform stereoscopic viewing without difficulty if in the second state.
  • the image processing apparatus 1 includes the image generation unit 2 and the instruction signal generation unit 3.
  • the instruction signal generation unit 3 generates an instruction signal.
  • This instruction signal is a signal for switching the image generated by the image generation unit 2 from one of the stereoscopic display image and the flat display image to the other image.
  • the image generation unit 2 is recognized by the operator as being positioned on the same side as one of the near side and the back side. Generate an image.
  • the instruction signal generation unit 3 In the switching from the display of the stereoscopic display image in the second state to the display of the flat display image, the instruction signal generation unit 3 generates an instruction signal.
  • the stereoscopic display image in the second state is an image in a state where the stereoscopic image appears to be located on the back side of the display unit.
  • the flat display image in the fourth state is an image in a state where the flat image appears to be located on the display surface of the display unit.
  • the planar display image in the sixth state is an image in a state where the planar image appears to be positioned on the near side of the display unit. Therefore, the flat display image in the fourth state and the flat display image in the sixth state are not images in which the image recognized by the operator appears to be located on the back side of the display unit.
  • the image in the state where the planar image appears to be located on the back side of the display unit is the image in the fifth state. Therefore, when the instruction signal is input, the image generation unit 2 does not generate the fourth state flat display image or the sixth state flat display image, but generates the fifth state flat display image. .
  • the display of the image is switched from the display of the stereoscopic display image in the second state to the display of the flat display image in the fifth state.
  • the focus and the convergence angle of the eyes do not change. That is, the operator may perform a planar view while keeping a stereoscopic view at the convergence angle ⁇ 2. Therefore, there is no burden on the surgeon. Even if there are many changes between stereoscopic and planar views, the burden on the operator does not increase.
  • the stereoscopic display image is displayed on the display surface of the display unit 7. Therefore, the eyes are in focus on the display surface of the display unit 7 even in the third state.
  • the surgeon is stereoscopically viewing at a convergence angle ⁇ 3 larger than the convergence angle ⁇ 1.
  • the convergence angle is different even though the position where the eyes are in focus is the same.
  • the instruction signal is generated by the instruction signal generation unit 3 even when the display of the stereoscopic display image in the third state is switched to the display of the flat display image.
  • the stereoscopic display image in the third state is an image in a state where it appears that the stereoscopic image is positioned on the near side of the display unit.
  • the flat display image in the fourth state is an image in a state where the flat image appears to be located on the display surface of the display unit.
  • the planar display image in the fifth state is an image in a state where the planar image appears to be located on the far side from the display unit. Therefore, the flat display image in the fourth state and the flat display image in the fifth state are not images in which the image recognized by the operator appears to be located on the near side of the display unit.
  • the image in a state where the planar image appears to be positioned on the near side of the display unit is the image in the sixth state. Therefore, when the instruction signal is input, the image generation unit 2 does not generate the flat display image in the fourth state or the flat display image in the fifth state, but generates the flat display image in the sixth state. .
  • the display of the image is switched from the display of the stereoscopic display image in the third state to the display of the flat display image in the sixth state.
  • the focus and the convergence angle of the eyes do not change. That is, the surgeon may perform a planar view while keeping a stereoscopic view at the convergence angle ⁇ 3. Therefore, there is no burden on the surgeon. Even if there are many changes between stereoscopic and planar views, the burden on the operator does not increase.
  • a stereoscopic display image and a flat display image are generated.
  • a stereoscopic display image and a flat display image may be generated in advance, and when the instruction signal is input, either the stereoscopic display image or the flat display image may be displayed.
  • Point PF and point PN are intersections of the line of sight of the right eye ER and the line of sight of the left eye EL.
  • the distance from the operator's eyes to the intersection of the line of sight is greater than the distance from the operator's eyes to the display unit 7 Is long.
  • the distance from the operator's eyes to the intersection of the line of sight is greater than the distance from the operator's eyes to the display unit 7. Is shorter.
  • the distance from the display unit 7 to the point PF changes.
  • the distance from the display unit 7 to the point PN changes.
  • the shift distance in the left-right direction of the display unit 7 between the image IMR and the image IML is defined as the first distance.
  • the shift distance in the left-right direction of the display unit 7 between the one image IMR and the other image IMR is defined as the second distance during planar display shown in FIG.
  • the image generation unit uses a preset fixed value as the second distance when the instruction signal generated by the instruction signal generation unit is input to generate the flat display image. It is preferable to do.
  • cross point The intersection (hereinafter referred to as “cross point”) between the line of sight of the right eye and the line of sight of the left eye is a position where a stereoscopic image or a planar image can be seen.
  • cross point distance the distance from the display unit to the cross point
  • the position where the stereoscopic image can be seen and the position where the planar image can be seen change.
  • the stereoscopic effect changes when stereoscopically viewed.
  • the cross point distance does not vary greatly.
  • the cross point distance varies depending on the first distance and the second distance.
  • the optical system of the endoscope has a wide depth of field.
  • the position of the near point in the depth of field is, for example, a position 5 mm from the distal end of the insertion portion.
  • the position of the far point in the depth of field is, for example, a position 100 mm from the distal end of the insertion portion.
  • the distance from the optical system to the subject is the object distance.
  • images of a subject are acquired at various object distances.
  • FIG. 5 is a diagram showing how an optical image is formed.
  • FIG. 5A is a diagram showing the formation of an optical image at an object point distance of 1
  • FIG. 5B is a diagram showing the formation of an optical image at an object point distance of 2
  • FIG. It is a figure which shows formation of the optical image in the point distance 3.
  • the optical image of the subject OBJ is formed by the lens 10R and the lens 10L.
  • the lens 10R and the lens 10L are arranged in parallel across the central axis AXc.
  • Each of the lens 10R and the lens 10L forms an optical image OBR and an optical image OBL.
  • the optical image OBR is formed on the imaging surface of the imaging element 11R.
  • the optical image OBL is formed on the imaging surface of the imaging element 11L.
  • the optical image OBR and the optical image OBL are drawn at positions separated from the imaging surface toward the subject OBJ for the sake of clarity, but the optical image OBR and the optical image OBL are actually Is imaged on the imaging surface.
  • the intersection point AXR is an intersection point of the optical axis of the lens 10R and the image sensor 11R.
  • the intersection AXL is an intersection between the optical axis of the lens 10L and the image sensor 11L.
  • Image sensor 11R and image sensor 11L are arranged at the position of the optical image.
  • the optical image formed by the lens 10R is captured by the image sensor 11R.
  • the optical image formed by the lens 10L is picked up by the image pickup device 11L.
  • Both the lens 10R and the lens 10L are shifted with respect to the central axis AXc. Therefore, the optical image OBR formed by the lens 10R is formed at a position shifted with respect to the optical axis of the lens 10R.
  • the optical image OBL formed by the lens 10L is formed at a position shifted with respect to the optical axis of the lens 10L.
  • the distance WD is longer than the object distance 1. In this case, at the object distance 2, the optical image is formed at a position closer to the central axis AXc than the object distance 1. At the object distance 3, the distance WD is shorter than the object distance 1. In this case, at the object distance 3, the optical image is formed at a position farther from the central axis AXc than the object distance 1.
  • the interval between the optical image formed by the lens 10R and the optical image formed by the lens 10L varies depending on the object distance. Therefore, the interval between the image acquired by the image sensor 11R and the image acquired by the image sensor 11L also changes according to the object distance.
  • the stereoscopic display image is generated using an image acquired by the image sensor 11R and an image acquired by the image sensor 11L. Therefore, the first distance varies according to the object distance WD.
  • FIG. 6 is a diagram of the surgeon looking at the screen of the display unit during stereoscopic display.
  • the image OBR represents an optical image OBR image of the object OBJ by the lens 10R.
  • An image OBL ′ represents an image of the optical image OBL of the object OBJ by the lens 10L.
  • a position AXR ′ represents a position corresponding to an intersection AXR between the optical axis of the lens 10 ⁇ / b> R and the imaging element 11 ⁇ / b> R.
  • a position AXL ′ represents a position corresponding to the intersection AXL of the optical axis of the lens 10L and the image sensor 11L.
  • the first distance A1 is defined as the distance between the image OBR 'and the image OBL'.
  • the optical image OBR and the intersection point AXL match, and the optical image OBL and the intersection point AXL match. That is, also in the display unit 7, the image OBR 'and the position AXR' coincide with each other, and the image OBL 'and the position AXL' coincide with each other.
  • the image OBL 'and the image OBR' move toward the center of the screen.
  • the movement amount is defined as a movement amount B.
  • the optical image is a mirror image of an object, and when displayed on the screen, an image obtained by rotating the optical image by 180 degrees is displayed. Therefore, the movement direction of the optical image in FIG. 5 and the movement direction of the optical image in FIG. Is inverted.
  • the interval between the position AXL ′ and the position AXR ′ can be set as a fixed value.
  • an interval between the position AXL ′ and the position AXR ′ is defined as an interval C1.
  • the value of the interval C1 may be set so that the value of the first distance A1 becomes a positive value within the range of the depth of field. By doing so, it is possible to reduce eye fatigue during stereoscopic display.
  • FIG. 7 is a diagram in which the surgeon looks at the screen of the display unit during planar display.
  • the planar display image is generated using only one of the image acquired by the image sensor 11R and the image acquired by the image sensor 11L. In FIG. 7, only the image acquired by the image sensor 11L is used.
  • An image OBL ′ represents an image acquired by the image sensor 11L.
  • the image OBL ′′ represents an image obtained by copying the image OBL ′.
  • the position of the optical image OBL changes according to the object distance.
  • the image OBL ′ and the image OBL ′′ move with the same length in the same direction. Therefore, on the display unit 7, even if the object distance changes, the distance between the image OBL ′ and the image OBL ′′. Does not change.
  • the second distance A2 is defined as the distance between the image OBL 'and the image OBL ". Therefore, in the planar display, the second distance A2 is constant regardless of the object distance.
  • FIG. 7 two positions AXL ′ are shown on the display unit 7.
  • the interval between the left position AXL ′ (for the left eye) and the right position AXL ′ (for the right eye) can be set as a fixed value.
  • an interval between the left position AXL ′ (for the left eye) and the right position AXL ′ (for the right eye) is defined as an interval C2.
  • the second distance A2 is expressed by the following equation.
  • A2 C2
  • the interval C2 may be set so that the value of the second distance A2 becomes a positive value.
  • the interval C2 may be set so as to satisfy 0 ⁇ C2 ⁇ C1 ⁇ 0.7.
  • the image generation unit includes the first shift amount that is the first distance or the second distance when generating one image, and the first shift when generating the other image.
  • the second shift amount, which is the second distance is preferably the same amount.
  • the first shift that is the first distance or the second distance when the image generation unit generates one image.
  • the shift amount acquisition means for acquiring the amount and the first shift amount acquired by the shift amount acquisition means, the first distance or the second distance when the image generation section generates the other image. It is preferable to further include a determination unit that determines the second shift amount.
  • FIG. 8 is a diagram showing the image processing apparatus of the present embodiment. The same components as those in FIG.
  • the image processing apparatus 20 includes an image generation unit 21, a shift amount acquisition unit 22, and a determination unit 23.
  • the image generation unit 21 includes a shift amount acquisition unit 22.
  • the shift amount acquisition unit 22 is used to acquire a first shift amount that is the first distance or the second distance when the image generation unit 21 generates one image. Based on the first shift amount acquired by the shift amount acquisition unit, the determination unit 23 generates a second shift amount that is the first distance or the second distance when the image generation unit generates the other image. To decide.
  • the second distance in accordance with the change of the first distance.
  • the first distance varies depending on the object distance WD.
  • the first shift amount is acquired by the shift amount acquisition unit 22 based on the object distance information.
  • the second shift amount is determined based on the first shift amount.
  • the measurement of the object distance can be performed with an endoscope when an endoscope is connected to the image processing apparatus 20, for example.
  • a distance measuring device may be arranged at the distal end of the endoscope, and the object distance may be measured with the distance measuring device.
  • the image processing apparatus includes a switching unit that switches between the first mode and the second mode.
  • the operator recognizes that the image processing apparatus is positioned on the near side or the far side of the display unit.
  • the second mode an image that is recognized by the surgeon when positioned on the display unit is preferably generated.
  • the position where the stereoscopic image can be seen and the position where the planar image can be seen are not limited to the front side of the display unit and the back side of the display unit.
  • the position where the stereoscopic image can be seen or the position where the planar image can be seen may be on the display unit.
  • the image processing apparatus of the present embodiment in the first mode, in the first mode, an image that is recognized by the surgeon when it is positioned on the near side or the far side of the display unit is generated. In the second mode, an image recognized by the surgeon when positioned on the display unit is generated.
  • the stereoscopic image and the planar image appear to be located on the back side of the display unit 7. If the second mode is selected, the stereoscopic image and the planar image appear to be located on the display unit. In this way, various observations can be made.
  • the image processing apparatus includes a first display image and a second image, and a stereoscopic display image that is recognized by an operator when positioned on the back side of a display unit capable of displaying an image, An image generation unit that can generate a flat display image that is recognized by the surgeon when positioned on the back side of the display unit, and a stereoscopic display image and a flat display An instruction signal generation unit that generates an instruction signal for switching from one image to the other of the images, and the image generation unit receives the instruction signal generated by the instruction signal generation unit In addition, when one image is an image recognized by the surgeon when positioned on the back side, the other image recognized by the surgeon when positioned on the back side is generated.
  • the image processing apparatus includes a first display image and a second image, and a stereoscopic display image that is recognized by an operator when positioned on the near side of a display unit that can display an image, An image generator that can generate a flat display image that is recognized by the surgeon when positioned on the front side of the display unit, and a stereoscopic display image and a flat display of the image generated by the image generator An instruction signal generation unit that generates an instruction signal for switching from one image to the other of the images, and the image generation unit receives the instruction signal generated by the instruction signal generation unit In addition, when one image is an image recognized by the surgeon when positioned on the near side, the other image recognized by the surgeon when positioned on the near side is generated.
  • the image processing apparatus it is preferable to process an image of a subject imaged by an endoscope.
  • FIG. 9 is a diagram illustrating a state in which an endoscope is connected to the image processing apparatus of the present embodiment.
  • the image processing device 30 constitutes an endoscope device 34 together with an electronic endoscope 31, a light source device 32, and a monitor 33.
  • An electronic endoscope 31, a light source device 32, and a monitor 33 are connected to the image processing device 30.
  • the light source device 32 has a light source. Illumination light from the light source is supplied to the electronic endoscope 31. Illumination light is emitted from the tip of the electronic endoscope 31 to the subject.
  • the electronic endoscope 31 has an image sensor. The subject is imaged by the imaging element, and thereby an image of the subject is acquired.
  • the acquired subject image is sent to the image processing apparatus 30.
  • image processing is performed on the subject image as necessary.
  • the subject image is sent to the monitor 33, whereby the subject image is displayed on the monitor 33. The surgeon can recognize the subject by viewing the image of the subject displayed on the monitor 33.
  • the image displayed on the monitor 33 is not limited to the image acquired by the electronic endoscope 31. It may be an image acquired by another imaging device or an artificially created image.
  • the image processing apparatus 30, the image generation unit 35, and the instruction signal generation unit 36 are included.
  • the image generation unit 35 a stereoscopic display image and a flat display image can be generated.
  • the instruction signal generation unit generates an image generated by the image generation unit when the image processing apparatus performs storage processing of at least one of the first image and the second image. It is preferable to generate an instruction signal for switching from the stereoscopic display image to the flat display image.
  • the image generated by the image generation unit is a flat display image when the image storage process is performed.
  • the instruction signal generation unit generates an instruction signal for switching from the stereoscopic display image to the flat display image.
  • the generated instruction signal is input to the image generation unit.
  • the image generation unit generates a flat display image based on the instruction signal. As a result, a flat display image is displayed on the display unit.
  • the instruction signal generation unit does not generate an instruction signal. Therefore, a flat display image is displayed on the display unit.
  • the instruction signal generation unit displays a display during switching of the observation mode, which is a mode for acquiring at least one of the first image and the second image in the image processing apparatus. It is preferable to switch the display of the part to the flat display.
  • the observation mode may be switched.
  • the switching of the observation mode includes, for example, switching from white observation to NBI observation.
  • white observation a subject illuminated with white light is observed.
  • NBI observation a subject illuminated with blue narrow-band light is observed.
  • the image generated by the image generation unit be a flat display image when the observation mode switching process is performed.
  • the observation mode switching process is executed in a state where a stereoscopic display image by white observation is displayed.
  • the instruction signal generation unit generates an instruction signal for switching from the stereoscopic display image to the flat display image.
  • the generated instruction signal is input to the image generation unit.
  • the image generation unit generates a flat display image by white observation based on the instruction signal. As a result, a flat display image is displayed on the display unit.
  • the instruction signal generation unit generates an instruction signal for switching from the stereoscopic display image to the flat display image.
  • the generated instruction signal is input to the image generation unit.
  • the image generation unit generates a flat display image by NBI observation based on the instruction signal. As a result, a flat display image is displayed on the display unit.
  • image generation method of this embodiment An image generation method (hereinafter referred to as “image generation method of this embodiment”) executed by the image processing apparatus of this embodiment will be described.
  • the image generation method of the present embodiment is an image generation method for generating a stereoscopic display image composed of a first image and a second image and a flat display image composed of the first image,
  • An image generation step for generating a stereoscopic display image or a planar image that is recognized by the surgeon when positioned on the near side or the back side of the display unit capable of displaying an image, and the generated image are a stereoscopic display image and a planar display image.
  • An instruction signal generation step for generating an instruction signal for switching from one image to the other image, and when the generated instruction signal is input, the front side and the back side are on the same side as one image.
  • FIG. 10 is a flowchart of the image generation method of the present embodiment.
  • the operator recognizes that it is located on the same side as one image, step S1 for generating a stereoscopic display image or a planar image, step 2 for generating an instruction signal for switching images. Generating the other image.
  • the stereoscopic display image is composed of a first image and a second image.
  • the flat display image is composed of the first image.
  • step S1 a stereoscopic display image or a planar image that is recognized by the surgeon when it is positioned on the near side or the far side of the display unit capable of displaying an image is generated.
  • step S2 an instruction signal for switching the image to be generated from one of the stereoscopic display image and the flat display image to the other image is generated.
  • step 3 when the generated instruction signal is input, the other image that is recognized by the operator as being located on the same side as the one of the near side and the far side is generated.
  • an image that is recognized by the surgeon when positioned as a stereoscopic display image on the back side of the display unit is generated, and is positioned as a flat display image on the back side of the display unit. Then, it is preferable to generate an image that can be recognized by the surgeon.
  • the image generation step as a stereoscopic display image, a first image, and a second image obtained by shifting the first image by a first distance in the left-right direction of the display unit, And an image for the right eye that is the first image, and a first image that is shifted by a second distance in the left-right direction of the display unit with respect to the first image. It is preferable to generate an image including the left-eye image.
  • the present invention is suitable for an image processing apparatus and an image generation method capable of performing a stereoscopic view and a planar view with less burden even when switching between a stereoscopic view and a planar view.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Astronomy & Astrophysics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Endoscopes (AREA)

Abstract

The purpose of the present invention is to provide an image processing device and an image generation method capable of enabling stereoscopic viewing and monoscopic viewing with little burden when switching therebetween. The image processing device 1 has: an image generation unit 2 capable of generating a stereoscopic display image which is constituted by a first image IMG 1 and a second image IMG 2 and is to be perceived by an operator as being positioned on the near side or far side of a display unit capable displaying the image and a monoscopic display image which is constituted by the first image and is to be perceived by the operator as being positioned on the near side or far side of the display unit; and an instruction signal generation unit 3 for generating an instruction signal for switching the image to be generated by the image generation unit 2 from one of the stereoscopic display image and the monoscopic display image to the other. The image generation unit 2, when the instruction signal generated by the instruction signal generation unit 3 is input thereto, generates the other image so as to be perceived by the operator as being positioned on the same side, among the near side image and the far side, as the one of the images.

Description

画像処理装置及び画像生成方法Image processing apparatus and image generation method
 本発明は、画像処理装置及び画像生成方法に関し、立体視と平面視が可能な画像を生成できる画像処理装置及び画像生成方法に関する。 The present invention relates to an image processing apparatus and an image generation method, and more particularly to an image processing apparatus and an image generation method capable of generating an image that can be stereoscopically and planarly viewed.
 立体視をするための画像を生成する装置が、特許文献1、2に開示されている。 An apparatus for generating an image for stereoscopic viewing is disclosed in Patent Documents 1 and 2.
 特許文献1の内視鏡装置では、モニタの奥側に立体像が位置すると認識されるように、左目用画像と右目用画像を表示部に表示する。 In the endoscope apparatus of Patent Document 1, the left-eye image and the right-eye image are displayed on the display unit so that it is recognized that a stereoscopic image is located on the back side of the monitor.
 特許文献2の内視鏡システムでは、2D表示と3D表示とが切替え可能になっている。3D表示では、左眼用画像と右眼用画像をシフトして、2つの画像をモニタに表示している。2D表示では、3D用の左眼画像もしくは右眼画像のどちらか一方を、シフト量0でモニタに表示する。 In the endoscope system of Patent Document 2, 2D display and 3D display can be switched. In 3D display, the left-eye image and the right-eye image are shifted, and two images are displayed on the monitor. In the 2D display, either the left eye image or the right eye image for 3D is displayed on the monitor with the shift amount 0.
特許第6072392号公報Japanese Patent No. 6072392 特許第5784847号公報Japanese Patent No. 5784847
 特許文献1、2では、3D表示と2D表示とを切替えた際に、目に疲労感が生じてしまう。画像はモニタ上に表示されているので、3D表示でも2D表示でも、目のピントはモニタ上に合っている。しかしながら、3D表示では、モニタの奥側に立体像が位置すると認識されるのに対して、2D表示では、モニタ上に平面像が位置すると認識される。そのため、3D表示における輻輳角と2D表示おける輻輳角とに差が生じる。 In Patent Documents 1 and 2, when switching between 3D display and 2D display, the eyes feel tired. Since the image is displayed on the monitor, the eye is focused on the monitor in both 3D display and 2D display. However, in 3D display, it is recognized that a stereoscopic image is positioned on the back side of the monitor, whereas in 2D display, it is recognized that a planar image is positioned on the monitor. Therefore, a difference occurs between the convergence angle in 3D display and the convergence angle in 2D display.
 2D表示におけるピント位置と輻輳角を一致状態とすると、3D表示では、不一致状態になる。そのため、3D表示と2D表示との切替えが多くなると、一致状態と不一致状態とが繰り返し生じる。その結果、目に疲労感が生じる。 If the focus position and the convergence angle in the 2D display are in a coincidence state, the 3D display is in a disagreement state. Therefore, when the switching between 3D display and 2D display increases, a match state and a mismatch state repeatedly occur. As a result, the eyes feel tired.
 本発明は、このような課題に鑑みてなされたものであって、立体視と平面視との切替えを行っても、負担の少ない立体視と平面視が行える画像処理装置及び画像生成方法を提供することを目的とする。 The present invention has been made in view of such a problem, and provides an image processing apparatus and an image generation method capable of performing a stereoscopic view and a planar view with less burden even when switching between a stereoscopic view and a planar view. The purpose is to do.
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る画像処理装置は、
 第1の画像と第2の画像とから構成され、画像を表示可能な表示部よりも手前側または奥側に位置すると術者に認識される立体表示画像と、第1の画像から構成され、表示部よりも手前または奥側に位置すると術者に認識される平面表示画像とを生成可能である画像生成部と、
 画像生成部が生成する画像を、立体表示画像と平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号を生成する指示信号生成部と、を有し、
 画像生成部は、指示信号生成部により生成された指示信号が入力される際に、手前側と奥側のうち一方の画像と同じ側に位置すると術者に認識される他方の画像を生成することを特徴とする。
In order to solve the above-described problems and achieve the object, an image processing apparatus according to at least some embodiments of the present invention includes:
It is composed of a first image and a second image, and is composed of a stereoscopic display image that is recognized by the surgeon when positioned on the near side or the far side of the display unit capable of displaying the image, and the first image, An image generation unit capable of generating a flat display image that is recognized by the operator when positioned in front of or behind the display unit;
An instruction signal generation unit that generates an instruction signal for switching an image generated by the image generation unit from one of a stereoscopic display image and a flat display image to the other image;
When the instruction signal generated by the instruction signal generation unit is input, the image generation unit generates the other image that is recognized by the operator as being positioned on the same side as one of the near side and the back side. It is characterized by that.
 また、本発明の少なくとも幾つかの実施形態に係る画像生成方法は、
 第1の画像と第2の画像とから構成される立体表示画像と、第1の画像から構成される平面表示画像とを生成する画像生成方法であって、
 画像を表示可能な表示部よりも手前側または奥側に位置すると術者に認識される立体表示画像または平面画像を生成する画像生成ステップと、
 生成する画像を、立体表示画像と平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号を生成する指示信号生成ステップと、
 生成された指示信号が入力される際に、手前側と奥側のうち一方の画像と同じ側に位置すると術者に認識される他方の画像を生成する画像生成ステップと、を含むことを特徴とする。
An image generation method according to at least some embodiments of the present invention includes:
An image generation method for generating a stereoscopic display image composed of a first image and a second image and a flat display image composed of the first image,
An image generation step of generating a stereoscopic display image or a planar image that is recognized by the operator when positioned on the front side or the back side of the display unit capable of displaying an image;
An instruction signal generating step for generating an instruction signal for switching the image to be generated from one of the stereoscopic display image and the flat display image to the other image; and
An image generation step of generating, when the generated instruction signal is input, generating the other image that is recognized by the surgeon as being located on the same side as the one of the near side and the back side. And
 本発明によれば、立体視と平面視との切替えを行っても、負担の少ない立体視と平面視が行える画像処理装置及び画像生成方法を提供できる。 According to the present invention, it is possible to provide an image processing apparatus and an image generation method capable of performing a stereoscopic view and a planar view with less burden even when switching between a stereoscopic view and a planar view.
本実施形態の画像処理装置を示す図である。It is a figure which shows the image processing apparatus of this embodiment. 本実施形態の画像処理装置を示す図である。It is a figure which shows the image processing apparatus of this embodiment. 立体視の様子を示す図である。It is a figure which shows the mode of a stereoscopic vision. 平面視の様子を示す図である。It is a figure which shows the mode of planar view. 光学像が形成される様子を示す図である。It is a figure which shows a mode that an optical image is formed. 立体表示時に術者が表示部の画面を見た図である。It is the figure which the operator looked at the screen of a display part at the time of a three-dimensional display. 平面表示時に術者が表示部の画面を見た図である。It is the figure which the surgeon looked at the screen of a display part at the time of plane display. 本実施形態の画像処理装置を示す図である。It is a figure which shows the image processing apparatus of this embodiment. 本実施形態の画像処理装置に内視鏡が接続された様子を示す図である。It is a figure which shows a mode that the endoscope was connected to the image processing apparatus of this embodiment. 本実施形態の画像生成方法のフローチャートである。It is a flowchart of the image generation method of this embodiment.
 以下、本実施形態に係る画像処理装置及び画像生成方法について、図面を用いて、このような構成をとった理由と作用を説明する。なお、以下の実施形態によりこの発明が限定されるものではない。 Hereinafter, the reason and operation of the image processing apparatus and the image generation method according to this embodiment will be described with reference to the drawings. In addition, this invention is not limited by the following embodiment.
 本実施形態の画像処理装置は、第1の画像と第2の画像とから構成され、画像を表示可能な表示部よりも手前側または奥側に位置すると術者に認識される立体表示画像と、第1の画像から構成され、表示部よりも手前または奥側に位置すると術者に認識される平面表示画像とを生成可能である画像生成部と、画像生成部が生成する画像を、立体表示画像と平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号を生成する指示信号生成部と、を有し、画像生成部は、指示信号生成部により生成された指示信号が入力される際に、手前側と奥側のうち一方の画像と同じ側に位置すると術者に認識される他方の画像を生成することを特徴とする。 The image processing apparatus according to this embodiment includes a first image and a second image, and a stereoscopic display image that is recognized by an operator when positioned on the near side or the far side of a display unit that can display an image. An image generator configured to generate a flat display image that is recognized by the surgeon when it is located on the front side or the back side of the display unit, and an image generated by the image generator An instruction signal generation unit that generates an instruction signal for switching from one image to the other of the display image and the flat display image, and the image generation unit generates the instruction signal generated by the instruction signal generation unit Is input, the other image that is recognized by the surgeon when it is located on the same side as one of the near side and the back side is generated.
 図1は、本実施形態の画像処理装置を示す図である。図1(a)は、表示部よりも奥側に立体表示画像が生成される様子を示す図、図1(b)は、表示部よりも奥側に平面表示画像が生成される様子を示す図、図1(c)は、術者が認識する像の位置を示す図である。 FIG. 1 is a diagram illustrating an image processing apparatus according to the present embodiment. FIG. 1A illustrates a state in which a stereoscopic display image is generated on the back side from the display unit, and FIG. 1B illustrates a state in which a flat display image is generated on the back side from the display unit. FIG. 1C is a diagram showing the position of the image recognized by the operator.
 画像処理装置1は、画像生成部2と、指示信号生成部3と、を有する。画像生成部2では、立体表示画像と平面表示画像とが、生成可能である。 The image processing apparatus 1 includes an image generation unit 2 and an instruction signal generation unit 3. In the image generation unit 2, a stereoscopic display image and a flat display image can be generated.
 図1(a)に示すように、立体表示画像は、第1の画像と第2の画像とから構成される。画像処理装置1では、第1の画像IMG1と第2の画像IMG2が、記憶部4から画像生成部2に入力される。第1の画像IMG1と第2の画像IMG2は、入力部5を通して画像処理装置1に入力されても良い。 As shown in FIG. 1A, the stereoscopic display image is composed of a first image and a second image. In the image processing apparatus 1, the first image IMG <b> 1 and the second image IMG <b> 2 are input from the storage unit 4 to the image generation unit 2. The first image IMG1 and the second image IMG2 may be input to the image processing apparatus 1 through the input unit 5.
 画像生成部2では、第1の画像IMG1と第2の画像IMG2を用いて、立体表示画像3DFが生成される。立体表示画像3DFとして、第1の画像IMG1と第2の画像IMG2とが画像生成部2から出力される。立体表示画像3DFは、出力部6を通して表示部7に入力される。 In the image generation unit 2, a stereoscopic display image 3DF is generated using the first image IMG1 and the second image IMG2. As the stereoscopic display image 3DF, the first image IMG1 and the second image IMG2 are output from the image generation unit 2. The stereoscopic display image 3DF is input to the display unit 7 through the output unit 6.
 表示部7では、立体表示画像3DFが表示される。術者が立体表示画像3DFを見た場合、図1(c)に示すように、術者は、点PFの位置に立体像I3DFが位置していると認識する。点PFは、右目の視線と左目の視線との交点である。表示部7の位置を基準にすると、点PFは表示部7よりも奥側に位置している。よって、術者は、表示部7よりも奥側に、立体像I3DFが位置していると認識する。 On the display unit 7, a stereoscopic display image 3DF is displayed. When the surgeon views the stereoscopic display image 3DF, as shown in FIG. 1C, the surgeon recognizes that the stereoscopic image I 3DF is located at the position of the point PF. Point PF is the intersection of the right eye line of sight and the left eye line of sight. When the position of the display unit 7 is used as a reference, the point PF is located on the back side of the display unit 7. Therefore, the surgeon recognizes that the stereoscopic image I 3DF is located behind the display unit 7.
 このように、立体表示画像3DFは、表示部7よりも奥側に位置すると術者に認識される画像である。画像生成部2では、表示部7よりも奥側に位置すると術者に認識される立体表示画像3DFが生成される。 Thus, the stereoscopic display image 3DF is an image that is recognized by the surgeon when positioned on the back side of the display unit 7. In the image generation unit 2, a stereoscopic display image 3DF that is recognized by the surgeon when positioned on the back side of the display unit 7 is generated.
 表示部7には、立体表示画像だけでなく、平面表示画像も表示される。立体表示画像と平面表示画像との切替えでは、指示信号生成部3で、指示信号(以下「切替え信号」という)が生成される。切替え信号は、画像生成部2に入力される。切替え信号については、後述する。 The display unit 7 displays not only a stereoscopic display image but also a flat display image. In switching between the stereoscopic display image and the flat display image, the instruction signal generation unit 3 generates an instruction signal (hereinafter referred to as “switching signal”). The switching signal is input to the image generation unit 2. The switching signal will be described later.
 図1(b)に示すように、平面表示画像は、第1の画像から構成される。画像処理装置1では、第1の画像IMG1と第2の画像IMG2が、記憶部4から画像生成部2に入力される。第1の画像IMG1と第2の画像IMG2は、入力部5を通して画像処理装置1に入力されても良い。 As shown in FIG. 1B, the flat display image is composed of the first image. In the image processing apparatus 1, the first image IMG <b> 1 and the second image IMG <b> 2 are input from the storage unit 4 to the image generation unit 2. The first image IMG1 and the second image IMG2 may be input to the image processing apparatus 1 through the input unit 5.
 画像生成部2では、第1の画像IMG1を用いて、平面表示画像2DFが生成される。平面表示画像2DFとして、第1の画像IMG1だけが画像生成部2から出力される。平面表示画像2DFとして、第2の画像IMG2だけが画像生成部2から出力されても良い。平面表示画像2DFは、出力部6を通して表示部7に入力される。 The image generation unit 2 generates a flat display image 2DF using the first image IMG1. Only the first image IMG1 is output from the image generation unit 2 as the flat display image 2DF. Only the second image IMG2 may be output from the image generation unit 2 as the flat display image 2DF. The flat display image 2DF is input to the display unit 7 through the output unit 6.
 表示部7では、平面表示画像2DFが表示される。術者が平面表示画像2DFを見た場合、図1(c)に示すように、術者は、点PFの位置に平面像I2DFが位置していると認識する。表示部7の位置を基準にすると、点PFは表示部7よりも奥側に位置している。よって、術者は、表示部7よりも奥側に、立体像I2DFが位置していると認識する。 On the display unit 7, a flat display image 2DF is displayed. When the surgeon views the planar display image 2DF, as shown in FIG. 1C, the surgeon recognizes that the planar image I 2DF is positioned at the position of the point PF. When the position of the display unit 7 is used as a reference, the point PF is located on the back side of the display unit 7. Therefore, the surgeon recognizes that the stereoscopic image I 2DF is located behind the display unit 7.
 このように、平面表示画像2DFは、表示部7よりも奥側に位置すると術者に認識される画像である。画像生成部2では、表示部7よりも奥側に位置すると術者に認識される平面表示画像2DFが生成される。 Thus, the flat display image 2DF is an image that is recognized by the surgeon when positioned on the back side of the display unit 7. The image generation unit 2 generates a flat display image 2DF that is recognized by the surgeon when positioned on the far side of the display unit 7.
 立体表示画像は、立体表示画像3DFだけではない。また、平面表示画像は、平面表示画像2DFだけではない。 The stereoscopic display image is not limited to the stereoscopic display image 3DF. Further, the flat display image is not limited to the flat display image 2DF.
 図2は、本実施形態の画像処理装置を示す図である。図2(a)は、表示部よりも手前側に立体表示画像が生成される様子を示す図、図2(b)は、表示部よりも手前側に平面表示画像が生成される様子を示す図、図2(c)は、術者が認識する像の位置を示す図である。 FIG. 2 is a diagram illustrating the image processing apparatus according to the present embodiment. FIG. 2A is a diagram illustrating a state in which a stereoscopic display image is generated in front of the display unit, and FIG. 2B is a diagram in which a flat display image is generated in front of the display unit. FIG. 2 and FIG. 2C are diagrams showing the positions of images recognized by the operator.
 図2(a)に示すように、画像生成部2では、第1の画像IMG1と第2の画像IMG2を用いて、立体表示画像3DNが生成される。立体表示画像3DNとして、第1の画像IMG1と第2の画像IMG2とが画像生成部2から出力される。立体表示画像3DNは、出力部6を通して表示部7に入力される。 As shown in FIG. 2A, the image generation unit 2 generates a stereoscopic display image 3DN using the first image IMG1 and the second image IMG2. The first image IMG1 and the second image IMG2 are output from the image generation unit 2 as the stereoscopic display image 3DN. The stereoscopic display image 3DN is input to the display unit 7 through the output unit 6.
 表示部7では、立体表示画像3DNが表示される。術者が立体表示画像3DNを見た場合、図2(c)に示すように、術者は、点PNの位置に立体像I3DNが位置していると認識する。点PNも、右目の視線と左目の視線との交点である。表示部7の位置を基準にすると、点PNは表示部7よりも手前側に位置している。よって、術者は、表示部7よりも手前側に、立体像I3DNが位置していると認識する。 On the display unit 7, a stereoscopic display image 3DN is displayed. When the surgeon views the stereoscopic display image 3DN, as shown in FIG. 2C, the surgeon recognizes that the stereoscopic image I 3DN is located at the position of the point PN. The point PN is also an intersection of the right eye line of sight and the left eye line of sight. When the position of the display unit 7 is used as a reference, the point PN is located on the near side of the display unit 7. Therefore, the surgeon recognizes that the stereoscopic image I 3DN is located on the front side of the display unit 7.
 このように、立体表示画像3DNは、表示部7よりも手前側に位置すると術者に認識される画像である。画像生成部2では、表示部7よりも手前側に位置すると術者に認識される立体表示画像3DNが生成される。 Thus, the stereoscopic display image 3DN is an image that is recognized by the operator when positioned on the near side of the display unit 7. The image generation unit 2 generates a stereoscopic display image 3DN that is recognized by the surgeon when positioned on the near side of the display unit 7.
 表示部7には、立体表示画像だけでなく、平面表示画像も表示される。立体表示画像と平面表示画像との切替えでは、指示信号生成部3で、切替え信号が生成される。切替え信号は、画像生成部2に入力される。切替え信号については、後述する。 The display unit 7 displays not only a stereoscopic display image but also a flat display image. In switching between the stereoscopic display image and the flat display image, the instruction signal generation unit 3 generates a switching signal. The switching signal is input to the image generation unit 2. The switching signal will be described later.
 図2(b)に示すように、平面表示画像は、第1の画像から構成される。画像処理装置1では、第1の画像IMG1と第2の画像IMG2が、記憶部4から画像生成部2に入力される。第1の画像IMG1と第2の画像IMG2は、入力部5を通して画像処理装置1に入力されても良い。 As shown in FIG. 2B, the flat display image is composed of the first image. In the image processing apparatus 1, the first image IMG <b> 1 and the second image IMG <b> 2 are input from the storage unit 4 to the image generation unit 2. The first image IMG1 and the second image IMG2 may be input to the image processing apparatus 1 through the input unit 5.
 画像生成部2では、第1の画像IMG1を用いて、平面表示画像2DNが生成される。平面表示画像2DNとして、第1の画像IMG1だけが画像生成部2から出力される。平面表示画像2DNとして、第2の画像IMG2だけが画像生成部2から出力されても良い。平面表示画像2DNは、出力部6を通して表示部7に入力される。 The image generation unit 2 generates a flat display image 2DN using the first image IMG1. Only the first image IMG1 is output from the image generation unit 2 as the flat display image 2DN. Only the second image IMG2 may be output from the image generation unit 2 as the flat display image 2DN. The flat display image 2DN is input to the display unit 7 through the output unit 6.
 表示部7では、平面表示画像2DNが表示される。術者が平面表示画像2DNを見た場合、図2(c)に示すように、術者は、点PNの位置に平面像I2DNが位置していると認識する。表示部7の位置を基準にすると、点PNは表示部7よりも手前側に位置している。よって、術者は、表示部7よりも手前側に、立体像I2DNが位置していると認識する。 On the display unit 7, a flat display image 2DN is displayed. When the surgeon views the flat display image 2DN, as shown in FIG. 2C, the surgeon recognizes that the planar image I2DN is located at the position of the point PN. When the position of the display unit 7 is used as a reference, the point PN is located on the near side of the display unit 7. Therefore, the surgeon recognizes that the stereoscopic image I 2DN is positioned in front of the display unit 7.
 このように、平面表示画像2DNは、表示部7よりも手前側に位置すると術者に認識される画像である。画像生成部2では、表示部7よりも手前側に位置すると術者に認識される平面表示画像2DNが生成される。 Thus, the flat display image 2DN is an image that is recognized by the surgeon when positioned on the near side of the display unit 7. The image generation unit 2 generates a flat display image 2DN that is recognized by the surgeon when positioned on the near side of the display unit 7.
 立体表示画像と平面表示画像との切替えについて説明する。まず、表示部よりも奥側に位置すると術者に認識される画像について説明する。次に、表示部よりも手前側に位置すると術者に認識される画像について説明する。 <Switching between stereoscopic display image and flat display image will be described. First, an image recognized by the surgeon when positioned on the back side of the display unit will be described. Next, an image recognized by the operator when positioned on the near side of the display unit will be described.
 本実施形態の画像処理装置は、画像生成部は、立体表示画像として表示部よりも奥側に位置すると術者に認識される画像を生成し、かつ、平面表示画像として表示部よりも奥側に位置すると術者に認識される画像を生成することが好ましい。 In the image processing apparatus according to the present embodiment, the image generation unit generates an image that is recognized by the surgeon when the image generation unit is positioned behind the display unit as a stereoscopic display image, and the back side of the display unit as a flat display image. It is preferable to generate an image that is recognized by the surgeon when positioned in the position.
 立体表示画像を表示部よりも奥側に生成することで、術者が立体表示画像を見るときの輻輳角を小さくできる。その結果、立体表示時の目の疲労を低減することができる。さらに、平面表示画像を表示部よりも奥側に生成することで、術者が平面表示画像を見るときの輻輳角を小さくできる。その結果、平面表示時の目の疲労を低減することができる。 生成 By generating the stereoscopic display image on the back side of the display unit, the convergence angle when the surgeon views the stereoscopic display image can be reduced. As a result, eye fatigue during stereoscopic display can be reduced. Furthermore, by generating the flat display image behind the display unit, the convergence angle when the surgeon views the flat display image can be reduced. As a result, eye fatigue during flat display can be reduced.
 画像生成部2では、立体表示画像3DF、立体表示画像3DN、平面表示画像2DF、及び平面表示画像2DNが生成される。画像の切替えには、この4つの画像を使用できる。 The image generation unit 2 generates a stereoscopic display image 3DF, a stereoscopic display image 3DN, a flat display image 2DF, and a flat display image 2DN. These four images can be used for image switching.
 表示部7に、立体表示画像3DFが表示されているとする。この状態で、表示されている画像を、立体表示画像から平面表示画像に切替える。表示できる平面表示画像は、平面表示画像2DF、又は平面表示画像2DNである。 Suppose that the stereoscopic display image 3DF is displayed on the display unit 7. In this state, the displayed image is switched from the stereoscopic display image to the flat display image. The flat display image that can be displayed is the flat display image 2DF or the flat display image 2DN.
 平面表示画像2DFは、表示部7よりも奥側に位置すると術者に認識される画像である。平面表示画像2DNは、表示部7よりも手前側に位置すると術者に認識される画像である。上述のように、立体表示画像3DFは、表示部7よりも奥側に位置すると術者に認識される画像である。よって、平面表示画像2DFが表示される。 The flat display image 2DF is an image that is recognized by the surgeon when positioned on the back side of the display unit 7. The flat display image 2DN is an image that is recognized by the operator when positioned on the near side of the display unit 7. As described above, the stereoscopic display image 3DF is an image that is recognized by the operator when positioned on the back side of the display unit 7. Therefore, the flat display image 2DF is displayed.
 指示信号生成部3で、切替え信号SGFが生成される。切替え信号SGFは、平面表示画像2DFの生成を指示する信号である。切替え信号SGFが画像生成部2に入力されることで、画像生成部2で、平面表示画像2DFが生成される。 The instruction signal generator 3 generates a switching signal SGF. The switching signal SGF is a signal instructing generation of the flat display image 2DF. When the switching signal SGF is input to the image generation unit 2, the image generation unit 2 generates a flat display image 2DF.
 これにより、術者が用途によって、立体表示画像の表示と平面表示画像の表示とを切り替えることが可能になる。例えば、治療時は立体表示画像を表示し、診断時は平面表示を表示する、といった切り替えが可能になる。 This makes it possible for the surgeon to switch between displaying a stereoscopic display image and displaying a flat display image depending on the application. For example, it is possible to switch between displaying a stereoscopic display image during treatment and displaying a flat display during diagnosis.
 表示部7に、平面表示画像2DFが表示されているとする。この状態で、表示されている画像を、平面表示画像から立体表示画像に切替える。この場合、立体表示画像3DFが表示される。 Suppose that the flat display image 2DF is displayed on the display unit 7. In this state, the displayed image is switched from the flat display image to the stereoscopic display image. In this case, the stereoscopic display image 3DF is displayed.
 指示信号生成部3で、切替え信号として、立体表示画像3DFの生成を指示する信号が生成される。切替え信号が画像生成部2に入力されることで、画像生成部2で、立体表示画像3DFが生成される。 The instruction signal generation unit 3 generates a signal for instructing generation of the stereoscopic display image 3DF as a switching signal. When the switching signal is input to the image generation unit 2, the image generation unit 2 generates a stereoscopic display image 3DF.
 本実施形態の画像処理装置では、画像生成部は、立体表示画像として表示部よりも手前側に位置すると術者に認識される画像を生成し、かつ、平面表示画像として表示部よりも手前側に位置すると術者に認識される画像を生成することが好ましい。 In the image processing apparatus according to the present embodiment, the image generation unit generates an image that is recognized by the surgeon when positioned as a stereoscopic display image on the near side of the display unit, and is a front side of the display unit as a flat display image. It is preferable to generate an image that is recognized by the surgeon when positioned in the position.
 上述のように、画像生成部2では、立体表示画像3DF、立体表示画像3DN、平面表示画像2DF、及び平面表示画像2DNが生成される。画像の切替えには、この4つの画像を使用できる。 As described above, the image generation unit 2 generates the stereoscopic display image 3DF, the stereoscopic display image 3DN, the flat display image 2DF, and the flat display image 2DN. These four images can be used for image switching.
 表示部7に、立体表示画像3DNが表示されているとする。この状態で、表示されている画像を、立体表示画像から平面表示画像に切替える。表示できる平面表示画像は、平面表示画像2DF、又は平面表示画像2DNである。 It is assumed that a stereoscopic display image 3DN is displayed on the display unit 7. In this state, the displayed image is switched from the stereoscopic display image to the flat display image. The flat display image that can be displayed is the flat display image 2DF or the flat display image 2DN.
 平面表示画像2DFは、表示部7よりも奥側に位置すると術者に認識される画像である。平面表示画像2DNは、表示部7よりも手前側に位置すると術者に認識される画像である。上述のように、立体表示画像3DNは、表示部7よりも手前側に位置すると術者に認識される画像である。よって、平面表示画像2DNが表示される。 The flat display image 2DF is an image that is recognized by the surgeon when positioned on the back side of the display unit 7. The flat display image 2DN is an image that is recognized by the operator when positioned on the near side of the display unit 7. As described above, the stereoscopic display image 3DN is an image that is recognized by the operator when positioned on the near side of the display unit 7. Therefore, the flat display image 2DN is displayed.
 指示信号生成部3で、切替え信号SGNが生成される。切替え信号SGNは、平面表示画像2DNの生成を指示する信号である。切替え信号SGNが画像生成部2に入力されることで、画像生成部2で、平面表示画像2DNが生成される。 The switching signal SGN is generated by the instruction signal generator 3. The switching signal SGN is a signal instructing generation of the flat display image 2DN. When the switching signal SGN is input to the image generation unit 2, the image generation unit 2 generates a flat display image 2DN.
 表示部7に、平面表示画像2DNが表示されているとする。この状態で、表示されている画像を、平面表示画像から立体表示画像に切替える。この場合、立体表示画像3DNが表示される。 Suppose that the flat display image 2DN is displayed on the display unit 7. In this state, the displayed image is switched from the flat display image to the stereoscopic display image. In this case, the stereoscopic display image 3DN is displayed.
 指示信号生成部3で、切替え信号として、立体表示画像3DNの生成を指示する信号が生成される。切替え信号が画像生成部2に入力されることで、画像生成部2で、立体表示画像3DNが生成される。 The instruction signal generation unit 3 generates a signal instructing generation of the stereoscopic display image 3DN as a switching signal. When the switching signal is input to the image generation unit 2, the image generation unit 2 generates a stereoscopic display image 3DN.
 このように、指示信号生成部3では、立体表示画像と平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号が生成される。画像生成部は、指示信号生成部により生成された指示信号が入力される際に、手前側と奥側のうち一方の画像と同じ側に位置すると術者に認識される他方の画像を生成する。 As described above, the instruction signal generation unit 3 generates an instruction signal for switching from one image to the other of the stereoscopic display image and the flat display image. When the instruction signal generated by the instruction signal generation unit is input, the image generation unit generates the other image that is recognized by the operator as being positioned on the same side as one of the near side and the back side. .
 本実施形態の画像処理装置では、画像生成部は、立体表示画像として、第1の画像と、第1の画像に対して表示部の左右方向に第1の距離シフトさせた第2の画像とからなる画像を生成し、さらに、平面表示画像として、第1の画像である右眼用画像と、第1の画像に対して表示部の左右方向に第2の距離シフトさせた第1の画像である左眼用画像とからなる画像を生成することが好ましい。 In the image processing apparatus according to the present embodiment, the image generation unit includes a first image as a stereoscopic display image, and a second image obtained by shifting the first image by a first distance in the left-right direction of the display unit. And an image for the right eye that is the first image, and a first image that is shifted by a second distance in the left-right direction of the display unit with respect to the first image. It is preferable to generate an image including the left-eye image.
 図3は、立体視の様子を示す図である。図3(a)は、立体像が表示部の表示面上に位置しているように見える状態を示す図である。図3(b)は、立体像が表示部よりも奥側に位置しているように見える状態を示す図である。図3(c)は、立体像が表示部よりも手前側に位置しているように見える状態を示す図である。 FIG. 3 is a diagram showing a stereoscopic view. FIG. 3A is a diagram illustrating a state in which a stereoscopic image appears to be positioned on the display surface of the display unit. FIG. 3B is a diagram illustrating a state in which a stereoscopic image appears to be located on the far side of the display unit. FIG. 3C is a diagram illustrating a state in which a stereoscopic image appears to be positioned on the near side of the display unit.
 立体表示画像は、第1の画像と第2の画像とから構成されている。立体表示画像は、表示部7に表示される。表示部7に表示された立体表示画像を見ることで、術者は、被写体を立体視できる。第1の画像は実線で示され、第2の画像は点線で示されている。 The stereoscopic display image is composed of a first image and a second image. The stereoscopic display image is displayed on the display unit 7. By viewing the stereoscopic display image displayed on the display unit 7, the surgeon can stereoscopically view the subject. The first image is indicated by a solid line, and the second image is indicated by a dotted line.
 立体視では、右目用画像(以下、「画像IMR」という)と左目用画像(以下、「画像IML」という)とが使用される。画像IMRは、被写体を右目で見た時と同じような視差を有する画像である。画像IMLは、被写体を左目で見た時と同じような視差を有する画像である。 In stereoscopic vision, a right-eye image (hereinafter referred to as “image IMR”) and a left-eye image (hereinafter referred to as “image IML”) are used. The image IMR is an image having the same parallax as when the subject is viewed with the right eye. The image IML is an image having the same parallax as when the subject is viewed with the left eye.
 画像処理装置1を用いた立体視では、例えば、第1の画像に画像IMRが用いられ、第2の画像に画像IMLが用いられる。 In stereoscopic viewing using the image processing apparatus 1, for example, the image IMR is used for the first image and the image IML is used for the second image.
 画像IMRと画像IMLは、表示部7に表示されている。図3(a)、図3(b)及び図3(c)では、見易さのために、画像IMRと画像IMLは、共に表示部7から離れた位置に描かれている。 The image IMR and the image IML are displayed on the display unit 7. In FIG. 3A, FIG. 3B, and FIG. 3C, the image IMR and the image IML are both drawn at positions away from the display unit 7 for ease of viewing.
 図3(a)では、画像IMRと画像IMLは、実際には、重なった状態で表示部7に表示されている。ただし、見易さのために、画像IMRと画像IMLとを離した状態で、画像IMRと画像IMLが描かれている。 In FIG. 3A, the image IMR and the image IML are actually displayed on the display unit 7 in an overlapped state. However, for ease of viewing, the image IMR and the image IML are drawn with the image IMR and the image IML separated.
 立体表示画像は、表示部7に表示される。上述のように、立体表示画像は、画像IMRと画像IMLとから構成されている。よって、画像IMRと画像IMLが、表示部7に表示される。術者は画像IMRと画像IMLを見ることで、立体視ができる。 The stereoscopic display image is displayed on the display unit 7. As described above, the stereoscopic display image is composed of the image IMR and the image IML. Therefore, the image IMR and the image IML are displayed on the display unit 7. The surgeon can view stereoscopically by looking at the image IMR and the image IML.
 図3(a)に示すように、立体像が表示部7の表示面上に位置しているように見える状態(以下、「第1の状態」という)では、画像IMRと画像IMLは、重ねて表示されている。 As shown in FIG. 3A, in a state where the stereoscopic image appears to be positioned on the display surface of the display unit 7 (hereinafter referred to as “first state”), the image IMR and the image IML are overlapped. Is displayed.
 図3(b)に示すように、立体像が表示部7よりも奥側に位置しているように見える状態(以下、「第2の状態」という)では、画像IMRと画像IMLは、並列に表示されている。第2の状態では、画像IMRは術者の右目ER側に表示され、画像IMLは、術者の左目EL側に表示されている。 As shown in FIG. 3B, in a state where the stereoscopic image appears to be located behind the display unit 7 (hereinafter referred to as “second state”), the image IMR and the image IML are arranged in parallel. Is displayed. In the second state, the image IMR is displayed on the operator's right eye ER side, and the image IML is displayed on the operator's left eye EL side.
 図3(c)に示すように、立体像が表示部7よりも手前側に位置しているように見える状態(以下、「第3の状態」という)では、画像IMRと画像IMLは、並列に表示されている。第3の状態では、画像IMRは術者の左目EL側に表示され、画像IMLは、術者の右目ER側に表示されている。 As shown in FIG. 3C, in a state where the stereoscopic image appears to be positioned on the near side of the display unit 7 (hereinafter referred to as “third state”), the image IMR and the image IML are arranged in parallel. Is displayed. In the third state, the image IMR is displayed on the left eye EL side of the surgeon, and the image IML is displayed on the right eye ER side of the surgeon.
 視差が発生している方向を第1の方向とし、第1の方向と直交する方向を第2の方向とする。図3(a)では、x方向が第1の方向を表し、z方向が第2の方向を表している。 The direction in which the parallax is generated is the first direction, and the direction orthogonal to the first direction is the second direction. In FIG. 3A, the x direction represents the first direction, and the z direction represents the second direction.
 第2の状態と第3の状態では、画像IMRと画像IMLは、第1の方向に並んで表示されている。第1の方向は、表示部7における左右方向に対応する。よって、画像IMRに対して、画像IMLは表示部7の左右方向に、第1の距離だけシフトしている。 In the second state and the third state, the image IMR and the image IML are displayed side by side in the first direction. The first direction corresponds to the left-right direction on the display unit 7. Therefore, the image IML is shifted by the first distance in the left-right direction of the display unit 7 with respect to the image IMR.
 被写体を直接目視する場合では、被写体が術者から遠ざかるにつれて、輻輳角は小さくなる。また、被写体が術者に近づくにつれて、輻輳角は大きくなる。画像を用いて立体視する場合でも、輻輳角は、被写体を直接目視する場合と同じように変化する。 When viewing the subject directly, the convergence angle decreases as the subject moves away from the surgeon. In addition, the convergence angle increases as the subject approaches the surgeon. Even when viewing stereoscopically using an image, the convergence angle changes in the same manner as when the subject is directly viewed.
 第2の状態では、術者は、立体像が表示部7よりも奥側に位置していると認識する。第2の状態における輻輳角θ2は、第1の状態における輻輳角θ1よりも小さい。第3の状態では、術者は、立体像が表示部7よりも手前側に位置していると認識する。第3の状態における輻輳角θ3は、第1の状態における輻輳角θ1よりも大きい。 In the second state, the surgeon recognizes that the three-dimensional image is located behind the display unit 7. The convergence angle θ2 in the second state is smaller than the convergence angle θ1 in the first state. In the third state, the surgeon recognizes that the stereoscopic image is located on the near side of the display unit 7. The convergence angle θ3 in the third state is larger than the convergence angle θ1 in the first state.
 図4は、平面視の様子を示す図である。図4(a)は、平面像が表示部の表示面上に位置しているように見える状態を示す図である。図4(b)は、平面像が表示部よりも奥側に位置しているように見える状態を示す図である。図4(c)は、平面像が表示部よりも手前側に位置しているように見える状態を示す図である。 FIG. 4 is a diagram showing a plan view. FIG. 4A is a diagram illustrating a state in which a planar image appears to be positioned on the display surface of the display unit. FIG. 4B is a diagram illustrating a state in which the planar image appears to be located on the back side with respect to the display unit. FIG. 4C is a diagram illustrating a state in which a planar image appears to be positioned on the near side of the display unit.
 平面表示画像は、第1の画像から構成されている。平面表示画像は、第2の画像から構成されていても良い。平面表示画像は、表示部7に表示される。表示部7に表示された平面表示画像を見ることで、術者は、被写体を平面視できる。 The flat display image is composed of the first image. The flat display image may be composed of the second image. The flat display image is displayed on the display unit 7. By looking at the flat display image displayed on the display unit 7, the operator can view the subject in plan view.
 図4(a)、図4(b)、及び図4(c)では、右目用画像として、画像IMRが用いられている。また、左目用画像としても、画像IMRが用いられている。 4 (a), 4 (b), and 4 (c), an image IMR is used as the right-eye image. The image IMR is also used as the left eye image.
 平面表示画像は、表示部7に表示される。上述のように、平面表示画像は、画像IMRから構成されている。よって、画像IMRのみが、表示部7に表示される。術者は画像IMRを見ることで、被写体を平面視できる。 The flat display image is displayed on the display unit 7. As described above, the flat display image is composed of the image IMR. Therefore, only the image IMR is displayed on the display unit 7. The surgeon can view the subject in plan view by looking at the image IMR.
 図4(a)に示すように、平面像が表示部7の表示面上に位置しているように見える状態(以下、「第4の状態」という)では、1つの画像IMRが表示されている。 As shown in FIG. 4A, in a state where the planar image appears to be located on the display surface of the display unit 7 (hereinafter referred to as “fourth state”), one image IMR is displayed. Yes.
 図4(b)に示すように、平面像が表示部7よりも奥側に位置しているように見える状態(以下、「第5の状態」という)では、2つの画像IMRが、並列に表示されている。第5の状態では、右目用画像としての画像IMRは術者の右目ER側に表示され、左目用画像としての画像IMRは、術者の左目EL側に表示されている。 As shown in FIG. 4B, in a state where the planar image appears to be located on the back side of the display unit 7 (hereinafter referred to as “fifth state”), two images IMR are arranged in parallel. It is displayed. In the fifth state, the image IMR as the right eye image is displayed on the operator's right eye ER side, and the image IMR as the left eye image is displayed on the operator's left eye EL side.
 図4(c)に示すように、平面像が表示部7よりも手前側に位置しているように見える状態(以下、「第6の状態」という)では、2つの画像IMRが、並列に表示されている。第6の状態では、右目用画像としての画像IMRは術者の左目EL側に表示され、左目用画像としての画像IMRは、術者の右目ER側に表示されている。 As shown in FIG. 4C, in a state where the planar image appears to be located on the front side of the display unit 7 (hereinafter referred to as “sixth state”), two images IMR are arranged in parallel. It is displayed. In the sixth state, the image IMR as the right eye image is displayed on the left eye EL side of the operator, and the image IMR as the left eye image is displayed on the right eye ER side of the operator.
 第5の状態と第6の状態では、2つの画像IMRは、第1の方向に並んで表示されている。第1の方向は、表示部7における左右方向に対応する。一方画像IMRに対して、他方の画像IMRは表示部7の左右方向に、第2の距離だけシフトしている。 In the fifth state and the sixth state, the two images IMR are displayed side by side in the first direction. The first direction corresponds to the left-right direction on the display unit 7. On the other hand, the other image IMR is shifted by the second distance in the left-right direction of the display unit 7 with respect to the image IMR.
 立体表示画像の表示と平面表示画像の表示について説明する。第1の状態では、立体表示画像は表示部7の表示面上に表示されている。よって、第1の状態では、表示部7の表示面上に、目のピントが合っている。また、術者は、輻輳角θ1で立体視をしている。 The display of the stereoscopic display image and the display of the flat display image will be described. In the first state, the stereoscopic display image is displayed on the display surface of the display unit 7. Therefore, in the first state, the eyes are in focus on the display surface of the display unit 7. The surgeon is stereoscopically viewing at the convergence angle θ1.
 第2の状態では、立体表示画像は表示部7の表示面上に表示されている。よって、第2の状態でも、表示部7の表示面上に、目のピントが合っている。ただし、術者は、輻輳角θ1よりも小さい輻輳角θ2で立体視をしている。 In the second state, the stereoscopic display image is displayed on the display surface of the display unit 7. Therefore, the eyes are in focus on the display surface of the display unit 7 even in the second state. However, the surgeon is stereoscopically viewing at a convergence angle θ2 smaller than the convergence angle θ1.
 このように、第1の状態と第2の状態とでは、目のピントが合っている位置は同じでも、輻輳角が異なる。 As described above, the first state and the second state have different convergence angles even though the positions where the eyes are in focus are the same.
 例えば、内視鏡では、被写界深度の深い画像が取得される。被写界深度における近点の位置は、例えば、挿入部の先端から約5mmの位置である。近点の画像は遠点の画像に比べて、大きく歪曲している。そのため、表示部7の手前側に近点の立体像が位置しているように見えると、術者に大きな負担がかかる。 For example, in an endoscope, an image having a deep depth of field is acquired. The position of the near point in the depth of field is, for example, about 5 mm from the tip of the insertion portion. The near point image is greatly distorted compared to the far point image. Therefore, if a near-point stereoscopic image appears to be located on the near side of the display unit 7, a great burden is placed on the operator.
 術者への負担を軽減するには、立体像が全体的に表示部7よりも奥側に位置しているように見えると良い。すなわち、第2の状態にすると良い。 In order to reduce the burden on the surgeon, it is preferable that the stereoscopic image appears to be located behind the display unit 7 as a whole. That is, the second state is preferable.
 無理なく立体視ができる状態を第1の状態とすると、第2の状態は、術者にとって好ましくない状態ということになる。ただし、第2の状態での立体視を長く続けると、第2の状態でも無理なく立体視ができるようになる。よって、立体表示画像が内視鏡で取得された画像で構成されていても、第2の状態であれば、術者は無理なく立体視ができる。 If the state where the stereoscopic vision can be reasonably performed is the first state, the second state is an unfavorable state for the operator. However, if the stereoscopic view in the second state is continued for a long time, the stereoscopic view can be easily performed even in the second state. Therefore, even if the stereoscopic display image is composed of an image acquired by an endoscope, the operator can perform stereoscopic viewing without difficulty if in the second state.
 ただし、表示部には、立体表示画像だけでなく、平面表示画像も表示される。第4の状態では、平面表示画像は表示部7の表示面上に表示されているので、表示部7の表示面上に、目のピントが合っている。また、術者は、第1の状態と同じように輻輳角θ1で平面視をしている。 However, not only a stereoscopic display image but also a flat display image is displayed on the display unit. In the fourth state, since the flat display image is displayed on the display surface of the display unit 7, the eyes are focused on the display surface of the display unit 7. In addition, the surgeon performs a planar view at the convergence angle θ1 as in the first state.
 そのため、第2の状態の立体表示画像の表示から、第4の状態の平面表示画像の表示に切替えると、目のピントは変化しないが、輻輳角が変化する。すなわち、術者は、輻輳角θ2で立体視をしている状態から、輻輳角θ1で平面視をしなくてはならない。そのため、術者に大きな負担が生じる。立体視と平面視との切替えが多くなるほど、術者の負担は大きくなる。 Therefore, when the display of the stereoscopic display image in the second state is switched to the display of the flat display image in the fourth state, the focus of the eyes does not change, but the convergence angle changes. That is, the surgeon must perform a planar view at the convergence angle θ1 from the state of stereoscopic viewing at the convergence angle θ2. Therefore, a big burden arises for the surgeon. The greater the switching between stereoscopic and planar views, the greater the burden on the operator.
 上述のように、画像処理装置1は、画像生成部2と、指示信号生成部3と、を有する。指示信号生成部3では、指示信号が生成される。この指示信号は、画像生成部2が生成する画像を、立体表示画像と平面表示画像とのうち一方の画像から他方の画像へ切替えるための信号である。 As described above, the image processing apparatus 1 includes the image generation unit 2 and the instruction signal generation unit 3. The instruction signal generation unit 3 generates an instruction signal. This instruction signal is a signal for switching the image generated by the image generation unit 2 from one of the stereoscopic display image and the flat display image to the other image.
 そして、画像生成部2は、指示信号生成部3により生成された指示信号が入力される際に、手前側と奥側のうち一方の画像と同じ側に位置すると術者に認識される他方の画像を生成する。 Then, when the instruction signal generated by the instruction signal generation unit 3 is input, the image generation unit 2 is recognized by the operator as being positioned on the same side as one of the near side and the back side. Generate an image.
 第2の状態の立体表示画像の表示から平面表示画像の表示への切替えでは、指示信号生成部3で、指示信号が生成される。第2の状態の立体表示画像は、立体像が表示部よりも奥側に位置しているように見える状態の画像である。 In the switching from the display of the stereoscopic display image in the second state to the display of the flat display image, the instruction signal generation unit 3 generates an instruction signal. The stereoscopic display image in the second state is an image in a state where the stereoscopic image appears to be located on the back side of the display unit.
 第4の状態の平面表示画像は、平面像が表示部の表示面上に位置しているように見える状態の画像である。また、第6の状態の平面表示画像は、平面像が表示部よりも手前側に位置しているように見える状態の画像である。よって、第4の状態の平面表示画像や第6の状態の平面表示画像は、術者が認識する像が表示部よりも奥側に位置しているように見える状態の画像ではない。 The flat display image in the fourth state is an image in a state where the flat image appears to be located on the display surface of the display unit. Further, the planar display image in the sixth state is an image in a state where the planar image appears to be positioned on the near side of the display unit. Therefore, the flat display image in the fourth state and the flat display image in the sixth state are not images in which the image recognized by the operator appears to be located on the back side of the display unit.
 平面像が表示部よりも奥側に位置しているように見える状態の画像は、第5の状態の画像である。よって、画像生成部2は、指示信号が入力される際に、第4の状態の平面表示画像や第6の状態の平面表示画像を生成せず、第5の状態の平面表示画像を生成する。 The image in the state where the planar image appears to be located on the back side of the display unit is the image in the fifth state. Therefore, when the instruction signal is input, the image generation unit 2 does not generate the fourth state flat display image or the sixth state flat display image, but generates the fifth state flat display image. .
 このようにすると、画像の表示が、第2の状態の立体表示画像の表示から、第5の状態の平面表示画像の表示に切替わる。第2の状態と第5の状態とでは、目のピントも輻輳角も変化しない。すなわち、術者は、輻輳角θ2で立体視をしている状態のまま、平面視をすれば良い。そのため、術者に負担は生じない。立体視と平面視との切替えが多くても、術者の負担は大きくならない。 In this way, the display of the image is switched from the display of the stereoscopic display image in the second state to the display of the flat display image in the fifth state. In the second state and the fifth state, the focus and the convergence angle of the eyes do not change. That is, the operator may perform a planar view while keeping a stereoscopic view at the convergence angle θ2. Therefore, there is no burden on the surgeon. Even if there are many changes between stereoscopic and planar views, the burden on the operator does not increase.
 第3の状態では、立体表示画像は表示部7の表示面上に表示されている。よって、第3の状態でも、表示部7の表示面上に、目のピントが合っている。ただし、術者は、輻輳角θ1よりも大きい輻輳角θ3で立体視をしている。 In the third state, the stereoscopic display image is displayed on the display surface of the display unit 7. Therefore, the eyes are in focus on the display surface of the display unit 7 even in the third state. However, the surgeon is stereoscopically viewing at a convergence angle θ3 larger than the convergence angle θ1.
 よって、第1の状態と第3の状態とでは、目のピントが合っている位置は同じでも、輻輳角が異なる。 Therefore, in the first state and the third state, the convergence angle is different even though the position where the eyes are in focus is the same.
 第3の状態の立体表示画像の表示から平面表示画像の表示への切替えでも、指示信号生成部3で、指示信号が生成される。第3の状態の立体表示画像は、立体像が表示部よりも手前側に位置しているように見える状態の画像である。 The instruction signal is generated by the instruction signal generation unit 3 even when the display of the stereoscopic display image in the third state is switched to the display of the flat display image. The stereoscopic display image in the third state is an image in a state where it appears that the stereoscopic image is positioned on the near side of the display unit.
 第4の状態の平面表示画像は、平面像が表示部の表示面上に位置しているように見える状態の画像である。また、第5の状態の平面表示画像は、平面像が表示部よりも奥側に位置しているように見える状態の画像である。よって、第4の状態の平面表示画像や第5の状態の平面表示画像は、術者が認識する像が表示部よりも手前側に位置しているように見える状態の画像ではない。 The flat display image in the fourth state is an image in a state where the flat image appears to be located on the display surface of the display unit. Further, the planar display image in the fifth state is an image in a state where the planar image appears to be located on the far side from the display unit. Therefore, the flat display image in the fourth state and the flat display image in the fifth state are not images in which the image recognized by the operator appears to be located on the near side of the display unit.
 平面像が表示部よりも手前側に位置しているように見える状態の画像は、第6の状態の画像である。よって、画像生成部2は、指示信号が入力される際に、第4の状態の平面表示画像や第5の状態の平面表示画像を生成せず、第6の状態の平面表示画像を生成する。 The image in a state where the planar image appears to be positioned on the near side of the display unit is the image in the sixth state. Therefore, when the instruction signal is input, the image generation unit 2 does not generate the flat display image in the fourth state or the flat display image in the fifth state, but generates the flat display image in the sixth state. .
 このようにすると、画像の表示が、第3の状態の立体表示画像の表示から、第6の状態の平面表示画像の表示に切替わる。第3の状態と第6の状態とでは、目のピントも輻輳角も変化しない。すなわち、術者は、輻輳角θ3で立体視をしている状態のまま、平面視をすれば良い。そのため、術者に負担は生じない。立体視と平面視との切替えが多くても、術者の負担は大きくならない。 In this way, the display of the image is switched from the display of the stereoscopic display image in the third state to the display of the flat display image in the sixth state. In the third state and the sixth state, the focus and the convergence angle of the eyes do not change. That is, the surgeon may perform a planar view while keeping a stereoscopic view at the convergence angle θ3. Therefore, there is no burden on the surgeon. Even if there are many changes between stereoscopic and planar views, the burden on the operator does not increase.
 上述のように、画像生成部へ指示信号が入力される際に、立体表示画像と平面表示画像が生成される。ただし、予め立体表示画像と平面表示画像を生成しておき、指示信号が入力された際に、立体表示画像と平面表示画像のどちらかを表示するようにしても良い。 As described above, when an instruction signal is input to the image generation unit, a stereoscopic display image and a flat display image are generated. However, a stereoscopic display image and a flat display image may be generated in advance, and when the instruction signal is input, either the stereoscopic display image or the flat display image may be displayed.
 点PFと点PNは、右目ERの視線と左目ELの視線との交点である。立体像や平面像が表示部よりも奥側に位置しているように見える状態では、術者の目から表示部7までの距離よりも、術者の目から視線の交点までの距離の方が長い。立体像や平面像が表示部よりも手前側に位置しているように見える状態では、では、術者の目から表示部7までの距離よりも、術者の目から視線の交点までの距離の方が短い。 Point PF and point PN are intersections of the line of sight of the right eye ER and the line of sight of the left eye EL. In a state in which a stereoscopic image or planar image appears to be located behind the display unit, the distance from the operator's eyes to the intersection of the line of sight is greater than the distance from the operator's eyes to the display unit 7 Is long. In a state in which a stereoscopic image or a planar image appears to be positioned on the near side of the display unit, the distance from the operator's eyes to the intersection of the line of sight is greater than the distance from the operator's eyes to the display unit 7. Is shorter.
 第1の距離や第2の距離が変化すると、表示部7から点PFまでの距離が変化する。第1の距離や第2の距離が変化すると、表示部7から点PNまでの距離が変化する。 When the first distance or the second distance changes, the distance from the display unit 7 to the point PF changes. When the first distance or the second distance changes, the distance from the display unit 7 to the point PN changes.
 尚、図3に示す立体表示時に、画像IMRと画像IMLの表示部7の左右方向のシフト距離を、第1の距離と定義している。また、図4に示す平面表示時に、一方画像IMRと他方の画像IMRの表示部7の左右方向のシフト距離を、第2の距離と定義している。 In the stereoscopic display shown in FIG. 3, the shift distance in the left-right direction of the display unit 7 between the image IMR and the image IML is defined as the first distance. In addition, the shift distance in the left-right direction of the display unit 7 between the one image IMR and the other image IMR is defined as the second distance during planar display shown in FIG.
 本実施形態の画像処理装置では、画像生成部は、指示信号生成部により生成された指示信号が入力されて平面表示画像を生成する際の第2の距離として、あらかじめ設定された固定値を使用することが好ましい。 In the image processing apparatus of the present embodiment, the image generation unit uses a preset fixed value as the second distance when the instruction signal generated by the instruction signal generation unit is input to generate the flat display image. It is preferable to do.
 右目の視線と左目の視線との交点(以下、「クロスポイント」という)は、立体像や平面像が見える位置である。表示部からクロスポイントまでの距離(以下、「クロスポイント距離」という)が変化すると、立体像が見える位置や、平面像が見える位置が変化する。また、立体視をしたときに、立体感が変化する。 The intersection (hereinafter referred to as “cross point”) between the line of sight of the right eye and the line of sight of the left eye is a position where a stereoscopic image or a planar image can be seen. When the distance from the display unit to the cross point (hereinafter referred to as “cross point distance”) changes, the position where the stereoscopic image can be seen and the position where the planar image can be seen change. In addition, the stereoscopic effect changes when stereoscopically viewed.
 像が見える位置や立体感が変化すると、術者への負担、例えば、疲労感が大きくなる。よって、立体表示画像を見た時や、平面表示画像を見た時に、クロスポイント距離は大きく変動しない方が良い。クロスポイント距離は、第1の距離や第2の距離で変化する。 When the position where the image can be seen and the stereoscopic effect change, the burden on the operator, for example, the feeling of fatigue increases. Therefore, when viewing a stereoscopic display image or viewing a flat display image, it is preferable that the cross point distance does not vary greatly. The cross point distance varies depending on the first distance and the second distance.
 内視鏡の光学系は、広い被写界深度を有する。被写界深度における近点の位置は、例えば、挿入部の先端から5mmの位置である。被写界深度における遠点の位置は、例えば、挿入部の先端から100mmの位置である。被写界深度内に被写体が位置している場合、被写体の光学像を鮮明に形成できる。 The optical system of the endoscope has a wide depth of field. The position of the near point in the depth of field is, for example, a position 5 mm from the distal end of the insertion portion. The position of the far point in the depth of field is, for example, a position 100 mm from the distal end of the insertion portion. When the subject is located within the depth of field, an optical image of the subject can be clearly formed.
 光学系から被写体までの距離を物体距離とする。内視鏡では、様々な物体距離で、被写体の画像が取得される。 The distance from the optical system to the subject is the object distance. In an endoscope, images of a subject are acquired at various object distances.
 図5は、光学像が形成される様子を示す図である。図5(a)は、物点距離1での光学像の形成を示す図、図5(b)は、物点距離2での光学像の形成を示す図、図5(c)は、物点距離3での光学像の形成を示す図である。 FIG. 5 is a diagram showing how an optical image is formed. FIG. 5A is a diagram showing the formation of an optical image at an object point distance of 1, FIG. 5B is a diagram showing the formation of an optical image at an object point distance of 2, and FIG. It is a figure which shows formation of the optical image in the point distance 3.
 被写体OBJの光学像の形成は、レンズ10Rとレンズ10Lとで行われる。レンズ10Rとレンズ10Lは、中心軸AXcを挟んで並列に配置されている。レンズ10Rとレンズ10Lの各々で、光学像OBRと光学像OBLが形成される。 The optical image of the subject OBJ is formed by the lens 10R and the lens 10L. The lens 10R and the lens 10L are arranged in parallel across the central axis AXc. Each of the lens 10R and the lens 10L forms an optical image OBR and an optical image OBL.
 光学像OBRは、撮像素子11Rの撮像面に形成される。光学像OBLは、撮像素子11Lの撮像面に形成される。図5(a)では、見易さのために、光学像OBRと光学像OBLを、撮像面から被写体OBJ側に離した位置に描いているが、光学像OBRと光学像OBLは、実際には撮像面上に結像される。交点AXRは、レンズ10Rの光軸と撮像素子11Rとの交点である。交点AXLは、レンズ10Lの光軸と撮像素子11Lとの交点である。 The optical image OBR is formed on the imaging surface of the imaging element 11R. The optical image OBL is formed on the imaging surface of the imaging element 11L. In FIG. 5A, the optical image OBR and the optical image OBL are drawn at positions separated from the imaging surface toward the subject OBJ for the sake of clarity, but the optical image OBR and the optical image OBL are actually Is imaged on the imaging surface. The intersection point AXR is an intersection point of the optical axis of the lens 10R and the image sensor 11R. The intersection AXL is an intersection between the optical axis of the lens 10L and the image sensor 11L.
 光学像の位置には、撮像素子11Rと、撮像素子11Lが配置されている。レンズ10Rで形成された光学像は、撮像素子11Rで撮像される。レンズ10Lで形成された光学像は、撮像素子11Lで撮像される。 Image sensor 11R and image sensor 11L are arranged at the position of the optical image. The optical image formed by the lens 10R is captured by the image sensor 11R. The optical image formed by the lens 10L is picked up by the image pickup device 11L.
 レンズ10Rとレンズ10Lは、共に、中心軸AXcに対してシフトしている。そのため、レンズ10Rで形成された光学像OBRは、レンズ10Rの光軸に対してシフトした位置に形成される。レンズ10Lで形成された光学像OBLは、レンズ10Lの光軸に対してシフトした位置に形成される。 Both the lens 10R and the lens 10L are shifted with respect to the central axis AXc. Therefore, the optical image OBR formed by the lens 10R is formed at a position shifted with respect to the optical axis of the lens 10R. The optical image OBL formed by the lens 10L is formed at a position shifted with respect to the optical axis of the lens 10L.
 物体距離2では、距離WDは、物体距離1に比べて長い。この場合、物体距離2では、光学像は、物体距離1に比べて、中心軸AXcに近い位置に形成される。物体距離3では、距離WDは、物体距離1に比べて短い。この場合、物体距離3では、光学像は、物体距離1に比べて、中心軸AXcから離れた位置に形成される。 At the object distance 2, the distance WD is longer than the object distance 1. In this case, at the object distance 2, the optical image is formed at a position closer to the central axis AXc than the object distance 1. At the object distance 3, the distance WD is shorter than the object distance 1. In this case, at the object distance 3, the optical image is formed at a position farther from the central axis AXc than the object distance 1.
 このように、レンズ10Rで形成された光学像とレンズ10Lで形成された光学像との間隔は、物体距離に応じて変わる。そのため、撮像素子11Rで取得した画像と撮像素子11Lで取得した画像との間隔も、物体距離に応じて変わる。 Thus, the interval between the optical image formed by the lens 10R and the optical image formed by the lens 10L varies depending on the object distance. Therefore, the interval between the image acquired by the image sensor 11R and the image acquired by the image sensor 11L also changes according to the object distance.
 立体表示画像は、撮像素子11Rで取得した画像と、撮像素子11Lで取得した画像を用いて生成される。よって、物体距離WDに応じて、第1の距離が変動する。 The stereoscopic display image is generated using an image acquired by the image sensor 11R and an image acquired by the image sensor 11L. Therefore, the first distance varies according to the object distance WD.
 第1の距離の詳細を、図5(a)と図6を用いて説明する。図6は、立体表示時に術者が表示部の画面を見た図である。 Details of the first distance will be described with reference to FIGS. FIG. 6 is a diagram of the surgeon looking at the screen of the display unit during stereoscopic display.
 画像OBR’は、レンズ10Rによる物体OBJの光学像OBRの画像を表している。画像OBL’は、レンズ10Lによる物体OBJの光学像OBLの画像を表している。位置AXR’は、レンズ10Rの光軸と撮像素子11Rとの交点AXRに対応する位置を表している。位置AXL’は、レンズ10Lの光軸と撮像素子11Lの交点AXLに対応する位置を表している。 The image OBR 'represents an optical image OBR image of the object OBJ by the lens 10R. An image OBL ′ represents an image of the optical image OBL of the object OBJ by the lens 10L. A position AXR ′ represents a position corresponding to an intersection AXR between the optical axis of the lens 10 </ b> R and the imaging element 11 </ b> R. A position AXL ′ represents a position corresponding to the intersection AXL of the optical axis of the lens 10L and the image sensor 11L.
 第1の距離A1は、画像OBR’と画像OBL’の距離と定義される。物体OBJの距離が無限遠になると、光学像OBRと交点AXRとが一致し、光学像OBLと交点AXLとが一致する。すなわち、表示部7においても、画像OBR’と位置AXR’とが一致し、画像OBL’と位置AXL’とが一致する。物体OBJの距離が近くなると、画像OBL’と画像OBR’は画面中央方向に移動していく。その移動量を、移動量Bと定義する。 The first distance A1 is defined as the distance between the image OBR 'and the image OBL'. When the distance of the object OBJ becomes infinity, the optical image OBR and the intersection point AXL match, and the optical image OBL and the intersection point AXL match. That is, also in the display unit 7, the image OBR 'and the position AXR' coincide with each other, and the image OBL 'and the position AXL' coincide with each other. When the distance between the objects OBJ becomes shorter, the image OBL 'and the image OBR' move toward the center of the screen. The movement amount is defined as a movement amount B.
 尚、光学像は物体の鏡像であり、画面に表示する際は光学像を180度回転させた画像を表示するため、図5における光学像の移動方向と図6における光学像の画像の移動方向は反転している。 The optical image is a mirror image of an object, and when displayed on the screen, an image obtained by rotating the optical image by 180 degrees is displayed. Therefore, the movement direction of the optical image in FIG. 5 and the movement direction of the optical image in FIG. Is inverted.
 位置AXL’と位置AXR’との間隔は、固定値として設定可能である。ここでは、位置AXL’と位置AXR’の間隔を、間隔C1と定義する。この場合、第1の距離A1は、以下の式で表される。
 A1=C1-B×2
The interval between the position AXL ′ and the position AXR ′ can be set as a fixed value. Here, an interval between the position AXL ′ and the position AXR ′ is defined as an interval C1. In this case, the first distance A1 is expressed by the following equation.
A1 = C1-B × 2
 そこで、被写界深度の範囲内で第1の距離A1の値がプラスの値となるように、間隔C1の値を設定すればよい。このようにすることで、立体表示時の目の疲労を低減することができる。 Therefore, the value of the interval C1 may be set so that the value of the first distance A1 becomes a positive value within the range of the depth of field. By doing so, it is possible to reduce eye fatigue during stereoscopic display.
 第2の距離の詳細を、図7を用いて説明する。図7は、平面表示時に術者が表示部の画面を見た図である。 Details of the second distance will be described with reference to FIG. FIG. 7 is a diagram in which the surgeon looks at the screen of the display unit during planar display.
 平面表示画像は、撮像素子11Rで取得した画像と、撮像素子11Lで取得した画像のうちの一方の画像のみを用いて生成される。図7では、撮像素子11Lで取得した画像のみを使用している。画像OBL’は、撮像素子11Lで取得した画像を表している。画像OBL”は、画像OBL’を複製した画像を表している。 The planar display image is generated using only one of the image acquired by the image sensor 11R and the image acquired by the image sensor 11L. In FIG. 7, only the image acquired by the image sensor 11L is used. An image OBL ′ represents an image acquired by the image sensor 11L. The image OBL ″ represents an image obtained by copying the image OBL ′.
 物体距離に応じて、光学像OBLの位置は変化する。しかしながら、表示部7では、画像OBL’と画像OBL”は同一方向に同じ長さで移動する。そのため、表示部7では、物体距離が変化しても、画像OBL’と画像OBL”との距離は変化しない。 The position of the optical image OBL changes according to the object distance. However, on the display unit 7, the image OBL ′ and the image OBL ″ move with the same length in the same direction. Therefore, on the display unit 7, even if the object distance changes, the distance between the image OBL ′ and the image OBL ″. Does not change.
 第2の距離A2は、画像OBL’と画像OBL”との距離と定義される。よって、平面表示では、物体距離によらず第2の距離A2は一定となる。 The second distance A2 is defined as the distance between the image OBL 'and the image OBL ". Therefore, in the planar display, the second distance A2 is constant regardless of the object distance.
 図7では、2つの位置AXL’が表示部7に示されている。左側の位置AXL’(左眼用)と右側の位置AXL’(右眼用)との間隔は、固定値として設定可能である。ここでは、左側の位置AXL’(左眼用)と右側の位置AXL’(右眼用)との間隔を、間隔C2と定義する。この場合、第2の距離A2は、以下の式で表される。
 A2=C2
In FIG. 7, two positions AXL ′ are shown on the display unit 7. The interval between the left position AXL ′ (for the left eye) and the right position AXL ′ (for the right eye) can be set as a fixed value. Here, an interval between the left position AXL ′ (for the left eye) and the right position AXL ′ (for the right eye) is defined as an interval C2. In this case, the second distance A2 is expressed by the following equation.
A2 = C2
 そこで、第2の距離A2の値がプラスの値になるように、間隔C2を設定すれば良い。例えば0<C2<C1×0.7を満足するように間隔C2を設定すれば良い。このようにすることで、立体表示時の平均的な奥行きの位置に、平面表示できる。そのため、切り替え時の輻輳と調節の不一致による疲労を低減することができる。第2の距離A2の値を固定値とすることで、装置のコスト削減が可能となる。 Therefore, the interval C2 may be set so that the value of the second distance A2 becomes a positive value. For example, the interval C2 may be set so as to satisfy 0 <C2 <C1 × 0.7. By doing in this way, planar display can be performed at an average depth position during stereoscopic display. For this reason, it is possible to reduce fatigue due to a mismatch between the congestion and adjustment at the time of switching. By making the value of the second distance A2 a fixed value, the cost of the apparatus can be reduced.
 本実施形態の画像処理装置では、画像生成部は、一方の画像を生成する際の第1の距離または第2の距離である第1のシフト量と、他方の画像を生成する際の第1の距離または第2の距離である第2のシフト量とを同量とすることが好ましい。 In the image processing apparatus according to the present embodiment, the image generation unit includes the first shift amount that is the first distance or the second distance when generating one image, and the first shift when generating the other image. Or the second shift amount, which is the second distance, is preferably the same amount.
 このようにすることで、立体表示画像を見た時のクロスポイント距離に対する、平面表示画像を見た時のクロスポイント距離の変化を小さくできる。 This makes it possible to reduce the change in the cross point distance when viewing the flat display image with respect to the cross point distance when viewing the stereoscopic display image.
 本実施形態の画像処理装置は、指示信号生成部により指示信号が生成された際に、画像生成部が一方の画像を生成する際の第1の距離または第2の距離である第1のシフト量を取得するシフト量取得手段と、シフト量取得手段によって取得された第1のシフト量に基づいて、画像生成部が他方の画像を生成する際の第1の距離または第2の距離である第2のシフト量を決定する決定部と、をさらに有することが好ましい。 In the image processing apparatus of the present embodiment, when the instruction signal is generated by the instruction signal generation unit, the first shift that is the first distance or the second distance when the image generation unit generates one image. Based on the shift amount acquisition means for acquiring the amount and the first shift amount acquired by the shift amount acquisition means, the first distance or the second distance when the image generation section generates the other image. It is preferable to further include a determination unit that determines the second shift amount.
 図8、本実施形態の画像処理装置を示す図である。図1と同じ構成については同じ番号を付し、説明は省略する。 FIG. 8 is a diagram showing the image processing apparatus of the present embodiment. The same components as those in FIG.
 画像処理装置20は、画像生成部21と、シフト量取得手段22と、決定部23と、を有する。画像生成部21は、シフト量取得手段22を有する。 The image processing apparatus 20 includes an image generation unit 21, a shift amount acquisition unit 22, and a determination unit 23. The image generation unit 21 includes a shift amount acquisition unit 22.
 シフト量取得手段22は、画像生成部21が一方の画像を生成する際の第1の距離または第2の距離である第1のシフト量を取得するために用いられる。決定部23は、シフト量取得手段によって取得された第1のシフト量に基づいて、画像生成部が他方の画像を生成する際の第1の距離または第2の距離である第2のシフト量を決定する。 The shift amount acquisition unit 22 is used to acquire a first shift amount that is the first distance or the second distance when the image generation unit 21 generates one image. Based on the first shift amount acquired by the shift amount acquisition unit, the determination unit 23 generates a second shift amount that is the first distance or the second distance when the image generation unit generates the other image. To decide.
 上述のように、第1の距離の変化に合わせて、第2の距離も変化させることが好ましい。図5に示すように、第1の距離は、物体距離WDに応じて変わる。画像処理装置20では、物体距離の情報に基づいて、シフト量取得手段22で第1のシフト量を取得している。そして、第1のシフト量に基づいて、第2のシフト量を決定する。このようにすることで、第1の距離の変化に合わせて、第2の距離も変化させることできる。 As described above, it is preferable to change the second distance in accordance with the change of the first distance. As shown in FIG. 5, the first distance varies depending on the object distance WD. In the image processing apparatus 20, the first shift amount is acquired by the shift amount acquisition unit 22 based on the object distance information. Then, the second shift amount is determined based on the first shift amount. By doing in this way, the 2nd distance can also be changed according to the change of the 1st distance.
 物体距離の測定は、例えば、画像処理装置20に内視鏡が接続されている場合、内視鏡で行うことができる。内視鏡の先端部に距離測定装置を配置し、距離測定装置で物体距離を測定すれば良い。 The measurement of the object distance can be performed with an endoscope when an endoscope is connected to the image processing apparatus 20, for example. A distance measuring device may be arranged at the distal end of the endoscope, and the object distance may be measured with the distance measuring device.
 本実施形態の画像処理装置では、第1のモードと第2のモードとを切替える切替部を有し、第1のモードでは、表示部よりも手前側または奥側に位置すると術者に認識される画像が生成され、第2のモードでは、表示部上に位置すると術者に認識される画像が生成されることが好ましい。 The image processing apparatus according to the present embodiment includes a switching unit that switches between the first mode and the second mode. In the first mode, the operator recognizes that the image processing apparatus is positioned on the near side or the far side of the display unit. In the second mode, an image that is recognized by the surgeon when positioned on the display unit is preferably generated.
 立体像が見える位置や平面像が見える位置は、表示部よりも手前側と表示部よりも奥側に限定されない。立体像が見える位置や平面像が見える位置は、表示部上であっても良い。 The position where the stereoscopic image can be seen and the position where the planar image can be seen are not limited to the front side of the display unit and the back side of the display unit. The position where the stereoscopic image can be seen or the position where the planar image can be seen may be on the display unit.
 本実施形態の画像処理装置では、第1のモードでは、第1のモードでは、表示部よりも手前側または奥側に位置すると術者に認識される画像が生成される。第2のモードでは、表示部上に位置すると術者に認識される画像が生成される。 In the image processing apparatus of the present embodiment, in the first mode, in the first mode, an image that is recognized by the surgeon when it is positioned on the near side or the far side of the display unit is generated. In the second mode, an image recognized by the surgeon when positioned on the display unit is generated.
 よって、第1のモードを選択すれば、立体像や平面像は表示部7よりも奥側に位置しているように見える。また、第2のモードを選択すれば、立体像や平面像は表示部上に位置しているように見える。このようにすることで、多彩な観察ができる。 Therefore, if the first mode is selected, the stereoscopic image and the planar image appear to be located on the back side of the display unit 7. If the second mode is selected, the stereoscopic image and the planar image appear to be located on the display unit. In this way, various observations can be made.
 本実施形態の画像処理装置は、第1の画像と第2の画像とから構成され、画像を表示可能な表示部よりも奥側に位置すると術者に認識される立体表示画像と、第1の画像から構成され、表示部よりも奥側に位置すると術者に認識される平面表示画像とを生成可能である画像生成部と、画像生成部が生成する画像を、立体表示画像と平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号を生成する指示信号生成部と、を有し、画像生成部は、指示信号生成部により生成された指示信号が入力される際に、一方の画像が奥側に位置すると術者に認識される画像であった場合は、奥側に位置すると術者に認識される他方の画像を生成することを特徴とする。 The image processing apparatus according to the present embodiment includes a first display image and a second image, and a stereoscopic display image that is recognized by an operator when positioned on the back side of a display unit capable of displaying an image, An image generation unit that can generate a flat display image that is recognized by the surgeon when positioned on the back side of the display unit, and a stereoscopic display image and a flat display An instruction signal generation unit that generates an instruction signal for switching from one image to the other of the images, and the image generation unit receives the instruction signal generated by the instruction signal generation unit In addition, when one image is an image recognized by the surgeon when positioned on the back side, the other image recognized by the surgeon when positioned on the back side is generated.
 本実施形態の画像処理装置は、第1の画像と第2の画像とから構成され、画像を表示可能な表示部よりも手前側に位置すると術者に認識される立体表示画像と、第1の画像から構成され、表示部よりも手前側に位置すると術者に認識される平面表示画像とを生成可能である画像生成部と、画像生成部が生成する画像を、立体表示画像と平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号を生成する指示信号生成部と、を有し、画像生成部は、指示信号生成部により生成された指示信号が入力される際に、一方の画像が手前側に位置すると術者に認識される画像であった場合は、手前側に位置すると術者に認識される他方の画像を生成することを特徴とする。 The image processing apparatus according to the present embodiment includes a first display image and a second image, and a stereoscopic display image that is recognized by an operator when positioned on the near side of a display unit that can display an image, An image generator that can generate a flat display image that is recognized by the surgeon when positioned on the front side of the display unit, and a stereoscopic display image and a flat display of the image generated by the image generator An instruction signal generation unit that generates an instruction signal for switching from one image to the other of the images, and the image generation unit receives the instruction signal generated by the instruction signal generation unit In addition, when one image is an image recognized by the surgeon when positioned on the near side, the other image recognized by the surgeon when positioned on the near side is generated.
 本実施形態の画像処理装置では、内視鏡によって撮像された被検体の画像の処理を行うことが好ましい。 In the image processing apparatus according to the present embodiment, it is preferable to process an image of a subject imaged by an endoscope.
 図9は、本実施形態の画像処理装置に内視鏡が接続された様子を示す図である。画像処理装置30は、電子内視鏡31、光源装置32、及びモニタ33と共に、内視鏡装置34を構成している。画像処理装置30には、電子内視鏡31、光源装置32、及びモニタ33が接続されている。 FIG. 9 is a diagram illustrating a state in which an endoscope is connected to the image processing apparatus of the present embodiment. The image processing device 30 constitutes an endoscope device 34 together with an electronic endoscope 31, a light source device 32, and a monitor 33. An electronic endoscope 31, a light source device 32, and a monitor 33 are connected to the image processing device 30.
 光源装置32は光源を有する。光源からの照明光は、電子内視鏡31に供給される。電子内視鏡31の先端から、照明光が被写体に照射される。電子内視鏡31は、撮像素子を有する。被写体は撮像素子によって撮像され、これにより、被写体の画像が取得される。 The light source device 32 has a light source. Illumination light from the light source is supplied to the electronic endoscope 31. Illumination light is emitted from the tip of the electronic endoscope 31 to the subject. The electronic endoscope 31 has an image sensor. The subject is imaged by the imaging element, and thereby an image of the subject is acquired.
 取得された被写体の画像は、画像処理装置30に送られる。画像処理装置30では、必要に応じて、被写体の画像に画像処理が施される。被写体の画像はモニタ33に送られ、これにより、モニタ33に被写体の画像が表示される。術者は、モニタ33に表示された被写体の画像を見ることで、被写体を認識できる。 The acquired subject image is sent to the image processing apparatus 30. In the image processing device 30, image processing is performed on the subject image as necessary. The subject image is sent to the monitor 33, whereby the subject image is displayed on the monitor 33. The surgeon can recognize the subject by viewing the image of the subject displayed on the monitor 33.
 モニタ33に表示される画像は、電子内視鏡31で取得された画像に限定されない。他の撮像装置で取得された画像や、人工的に作成された画像であっても良い。 The image displayed on the monitor 33 is not limited to the image acquired by the electronic endoscope 31. It may be an image acquired by another imaging device or an artificially created image.
 画像処理装置30、画像生成部35と、指示信号生成部36と、を有する。画像生成部35では、立体表示画像と平面表示画像とが、生成可能である。 The image processing apparatus 30, the image generation unit 35, and the instruction signal generation unit 36 are included. In the image generation unit 35, a stereoscopic display image and a flat display image can be generated.
 本実施形態の画像処理装置では、指示信号生成部は、該画像処理装置において第1の画像および第2の画像の少なくとも一方の画像の保存処理を行う際に、画像生成部が生成する画像を立体表示画像から平面表示画像へ切替えるための指示信号を生成することが好ましい。 In the image processing apparatus according to the present embodiment, the instruction signal generation unit generates an image generated by the image generation unit when the image processing apparatus performs storage processing of at least one of the first image and the second image. It is preferable to generate an instruction signal for switching from the stereoscopic display image to the flat display image.
 画像の保存処理の実行時に、立体表示画像の生成と立体表示画像の表示とを行うと、処理回路における回路規模が大きくなる。よって、画像の保存処理を行う際に、画像生成部が生成する画像を、平面表示画像にすることが好ましい。 If the generation of the stereoscopic display image and the display of the stereoscopic display image are performed during the image storage process, the circuit scale in the processing circuit increases. Therefore, it is preferable that the image generated by the image generation unit is a flat display image when the image storage process is performed.
 立体表示画像が表示されている状態で、画像の保存処理の実行が行われるとする。この場合、指示信号生成部で、立体表示画像から平面表示画像へ切替えるための指示信号が生成される。生成された指示信号は、画像生成部に入力される。画像生成部では、指示信号に基づいて、平面表示画像の生成を行う。その結果、平面表示画像が表示部に表示される。 Suppose that an image storage process is executed while a stereoscopic display image is displayed. In this case, the instruction signal generation unit generates an instruction signal for switching from the stereoscopic display image to the flat display image. The generated instruction signal is input to the image generation unit. The image generation unit generates a flat display image based on the instruction signal. As a result, a flat display image is displayed on the display unit.
 平面表示画像が表示されている状態で、画像の保存処理の実行が行われるとする。この場合、指示信号生成部では、指示信号は生成されない。よって、平面表示画像が表示部に表示される。 Suppose that an image storage process is executed while a flat display image is displayed. In this case, the instruction signal generation unit does not generate an instruction signal. Therefore, a flat display image is displayed on the display unit.
 本実施形態の画像処理装置では、指示信号生成部は、該画像処理装置において第1の画像および第2の画像の少なくとも一方の画像を取得する際のモードである観察モードの切替え中は、表示部の表示を平面表示に切替えることが好ましい。 In the image processing apparatus according to the present embodiment, the instruction signal generation unit displays a display during switching of the observation mode, which is a mode for acquiring at least one of the first image and the second image in the image processing apparatus. It is preferable to switch the display of the part to the flat display.
 内視鏡では、観察モードを切替える場合がある。観察モードを切替えとしては、例えば、白色観察からNBI観察への切替えがある。白色観察では、白色光で照明された被写体を観察する。NBI観察では、青色の狭帯域光で照明された被写体を観察する。 In the endoscope, the observation mode may be switched. The switching of the observation mode includes, for example, switching from white observation to NBI observation. In white observation, a subject illuminated with white light is observed. In NBI observation, a subject illuminated with blue narrow-band light is observed.
 また、観察モードの切替え処理中は、第1の画像と第2の画像の処理にズレが生じる。ズレが生じたままで立体表示画像を表示すると、立体視が困難になる。そのため、術者は疲労を感じるようになる。よって、そこで、観察モードの切替え処理を行う際に、画像生成部が生成する画像を、平面表示画像にすることが好ましい。 Also, during the process of switching the observation mode, the first image and the second image are misaligned. If a stereoscopic display image is displayed with the deviation occurring, stereoscopic viewing becomes difficult. Therefore, the surgeon feels tired. Therefore, it is preferable that the image generated by the image generation unit be a flat display image when the observation mode switching process is performed.
 白色観察による立体表示画像が表示されている状態で、観察モードの切替え処理の実行が行われるとする。この場合、指示信号生成部で、立体表示画像から平面表示画像へ切替えるための指示信号が生成される。生成された指示信号は、画像生成部に入力される。画像生成部では、指示信号に基づいて、白色観察による平面表示画像の生成を行う。その結果、平面表示画像が表示部に表示される。 Suppose that the observation mode switching process is executed in a state where a stereoscopic display image by white observation is displayed. In this case, the instruction signal generation unit generates an instruction signal for switching from the stereoscopic display image to the flat display image. The generated instruction signal is input to the image generation unit. The image generation unit generates a flat display image by white observation based on the instruction signal. As a result, a flat display image is displayed on the display unit.
 NBI観察による立体表示画像が表示されている状態で、観察モードの切替え処理の実行が行われるとする。この場合、指示信号生成部で、立体表示画像から平面表示画像へ切替えるための指示信号が生成される。生成された指示信号は、画像生成部に入力される。画像生成部では、指示信号に基づいて、NBI観察による平面表示画像の生成を行う。その結果、平面表示画像が表示部に表示される。 Suppose that an observation mode switching process is executed in a state where a stereoscopic display image by NBI observation is displayed. In this case, the instruction signal generation unit generates an instruction signal for switching from the stereoscopic display image to the flat display image. The generated instruction signal is input to the image generation unit. The image generation unit generates a flat display image by NBI observation based on the instruction signal. As a result, a flat display image is displayed on the display unit.
 本実施形態の画像処理装置で実行される画像生成方法(以下、「本実施形態の画像生成方法」という)について説明する。 An image generation method (hereinafter referred to as “image generation method of this embodiment”) executed by the image processing apparatus of this embodiment will be described.
 本実施形態の画像生成方法は、第1の画像と第2の画像とから構成される立体表示画像と、第1の画像から構成される平面表示画像とを生成する画像生成方法であって、画像を表示可能な表示部よりも手前側または奥側に位置すると術者に認識される立体表示画像または平面画像を生成する画像生成ステップと、生成する画像を、立体表示画像と平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号を生成する指示信号生成ステップと、生成された指示信号が入力される際に、手前側と奥側のうち一方の画像と同じ側に位置すると術者に認識される他方の画像を生成する画像生成ステップと、を含むことを特徴とする。 The image generation method of the present embodiment is an image generation method for generating a stereoscopic display image composed of a first image and a second image and a flat display image composed of the first image, An image generation step for generating a stereoscopic display image or a planar image that is recognized by the surgeon when positioned on the near side or the back side of the display unit capable of displaying an image, and the generated image are a stereoscopic display image and a planar display image. An instruction signal generation step for generating an instruction signal for switching from one image to the other image, and when the generated instruction signal is input, the front side and the back side are on the same side as one image. And an image generation step of generating the other image recognized by the surgeon when positioned.
 図10は、本実施形態の画像生成方法のフローチャートである。本実施形態の画像生成方法は、立体表示画像または平面画像を生成するステップS1と、画像を切替えるための指示信号を生成するステップ2と、一方の画像と同じ側に位置すると術者に認識される他方の画像を生成するステップ3と、を有する。 FIG. 10 is a flowchart of the image generation method of the present embodiment. In the image generation method of this embodiment, the operator recognizes that it is located on the same side as one image, step S1 for generating a stereoscopic display image or a planar image, step 2 for generating an instruction signal for switching images. Generating the other image.
 立体表示画像は、第1の画像と第2の画像とから構成される。平面表示画像は、第1の画像から構成される。 The stereoscopic display image is composed of a first image and a second image. The flat display image is composed of the first image.
 ステップS1では、画像を表示可能な表示部よりも手前側または奥側に位置すると術者に認識される立体表示画像または平面画像を生成する。ステップS2では、生成する画像を、立体表示画像と平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号を生成する。ステップ3では、生成された指示信号が入力される際に、手前側と奥側のうち一方の画像と同じ側に位置すると術者に認識される他方の画像を生成する。 In step S1, a stereoscopic display image or a planar image that is recognized by the surgeon when it is positioned on the near side or the far side of the display unit capable of displaying an image is generated. In step S2, an instruction signal for switching the image to be generated from one of the stereoscopic display image and the flat display image to the other image is generated. In step 3, when the generated instruction signal is input, the other image that is recognized by the operator as being located on the same side as the one of the near side and the far side is generated.
 本実施形態の画像生成方法は、画像生成ステップにおいて、立体表示画像として表示部よりも奥側に位置すると術者に認識される画像を生成し、平面表示画像として表示部よりも奥側に位置すると術者に認識される画像を生成することが好ましい。 In the image generation method of the present embodiment, in the image generation step, an image that is recognized by the surgeon when positioned as a stereoscopic display image on the back side of the display unit is generated, and is positioned as a flat display image on the back side of the display unit. Then, it is preferable to generate an image that can be recognized by the surgeon.
 本実施形態の画像生成方法は、画像生成ステップにおいて、立体表示画像として、第1の画像と、第1の画像に対して表示部の左右方向に第1の距離シフトさせた第2の画像とからなる画像を生成し、さらに、平面表示画像として、第1の画像である右眼用画像と、第1の画像に対して表示部の左右方向に第2の距離シフトさせた第1の画像である左眼用画像とからなる画像を生成することが好ましい。 In the image generation method of the present embodiment, in the image generation step, as a stereoscopic display image, a first image, and a second image obtained by shifting the first image by a first distance in the left-right direction of the display unit, And an image for the right eye that is the first image, and a first image that is shifted by a second distance in the left-right direction of the display unit with respect to the first image. It is preferable to generate an image including the left-eye image.
(付記)
 なお、これらの実施例から以下の構成の発明が導かれる。
(付記項1)
 指示信号生成部は、
 該画像処理装置において第1の画像および第2の画像の少なくとも一方の画像の保存処理を行う際に、画像生成部が生成する画像を立体表示画像から平面表示画像へ切替えるための指示信号を生成することを特徴とする。
(付記項2)
 指示信号生成部は、
 該画像処理装置において第1の画像および第2の画像の少なくとも一方の画像を取得する際のモードである観察モードの切替え中は、表示部の表示を平面表示に切替えることを特徴とする。
(Appendix)
In addition, the invention of the following structures is guide | induced from these Examples.
(Additional item 1)
The instruction signal generator
When the image processing apparatus stores at least one of the first image and the second image, an instruction signal for switching the image generated by the image generation unit from the stereoscopic display image to the flat display image is generated. It is characterized by doing.
(Appendix 2)
The instruction signal generator
During the switching of the observation mode, which is a mode for acquiring at least one of the first image and the second image in the image processing apparatus, the display on the display unit is switched to a flat display.
 以上のように、本発明は、立体視と平面視との切替えを行っても、負担の少ない立体視と平面視が行える画像処理装置及び画像生成方法に適している。 As described above, the present invention is suitable for an image processing apparatus and an image generation method capable of performing a stereoscopic view and a planar view with less burden even when switching between a stereoscopic view and a planar view.
 1 画像処理装置
 2 画像生成部
 3 指示信号生成部
 4 記憶部
 5 入力部
 6 出力部
 7 表示部
 10R、10L レンズ
 11R、11L 撮像素子
 20 画像処理装置
 21 画像生成部
 22 シフト量取得手段
 23 決定部
 30 画像処理装置
 31 電子内視鏡
 32 光源装置
 33 モニタ
 34 内視鏡装置
 35 画像生成部
 36 指示信号生成部
 IMG1 第1の画像
 IMG2 第2の画像
 3DF、3DN 立体表示画像
 2DF、2DN 平面表示画像
 I3DF、 立体像
 I2DF、 立体像
 PF、PN 点
 SGF、SGN 切替え信号
 ER 右目
 EL 左目
 IMR、IML 画像
 OBJ 被写体
 OBR、OBL 光学像
 OBR’、OBL’ 画像
 OBL” 画像OBL’を複製した画像
 WD 距離
 AXc 中心軸
 AXR、AXL 交点
 AXR’、AXL’ 位置
 A1 第1の距離
 A2 第2の距離
 B 移動量
 C1、C2 間隔
DESCRIPTION OF SYMBOLS 1 Image processing apparatus 2 Image generation part 3 Instruction signal generation part 4 Memory | storage part 5 Input part 6 Output part 7 Display part 10R, 10L Lens 11R, 11L Image sensor 20 Image processing apparatus 21 Image generation part 22 Shift amount acquisition means 23 Determination part DESCRIPTION OF SYMBOLS 30 Image processing apparatus 31 Electronic endoscope 32 Light source apparatus 33 Monitor 34 Endoscope apparatus 35 Image generation part 36 Instruction signal generation part IMG1 1st image IMG2 2nd image 3DF, 3DN 3D display image 2DF, 2DN plane display image I 3DF , 3D image I 2DF , 3D image PF, PN point SGF, SGN switching signal ER Right eye EL Left eye IMR, IML image OBJ Subject OBR, OBL Optical image OBR ', OBL' image OBL "Image OBL 'Duplicated image WD Distance AXc Center axis AXR, AXL Intersection AXR ', AXL' Position A1 1st 1 distance A2 2nd distance B Travel distance C1, C2 spacing

Claims (13)

  1.  第1の画像と第2の画像とから構成され、画像を表示可能な表示部よりも手前側または奥側に位置すると術者に認識される立体表示画像と、前記第1の画像から構成され、前記表示部よりも手前または奥側に位置すると術者に認識される平面表示画像とを生成可能である画像生成部と、
     前記画像生成部が生成する画像を、前記立体表示画像と前記平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号を生成する指示信号生成部と、を有し、
     前記画像生成部は、前記指示信号生成部により生成された前記指示信号が入力される際に、前記手前側と前記奥側のうち前記一方の画像と同じ側に位置すると術者に認識される前記他方の画像を生成することを特徴とする画像処理装置。
    It is composed of a first image and a second image, and is composed of a stereoscopic display image that is recognized by an operator when positioned on the near side or the far side of a display unit capable of displaying the image, and the first image. An image generation unit capable of generating a flat display image that is recognized by the surgeon when positioned in front of or behind the display unit;
    An instruction signal generation unit that generates an instruction signal for switching the image generated by the image generation unit from one of the stereoscopic display image and the flat display image to the other image;
    When the instruction signal generated by the instruction signal generation unit is input, the image generation unit is recognized by the operator as being positioned on the same side as the one of the near side and the back side. An image processing apparatus for generating the other image.
  2.  前記画像生成部は、
     前記立体表示画像として前記表示部よりも奥側に位置すると術者に認識される画像を生成し、
     かつ、前記平面表示画像として前記表示部よりも奥側に位置すると術者に認識される画像を生成することを特徴とする請求項1に記載の画像処理装置。
    The image generation unit
    Generating an image that is recognized by the surgeon as being located on the back side of the display unit as the stereoscopic display image;
    The image processing apparatus according to claim 1, wherein an image that is recognized by a surgeon is generated as the planar display image when positioned on the back side of the display unit.
  3.  前記画像生成部は、
     前記立体表示画像として、前記第1の画像と、前記第1の画像に対して前記表示部の左右方向に第1の距離シフトさせた第2の画像とからなる画像を生成し、
     さらに、前記平面表示画像として、前記第1の画像である右眼用画像と、前記第1の画像に対して前記表示部の左右方向に第2の距離シフトさせた前記第1の画像である左眼用画像とからなる画像を生成することを特徴とする請求項1に記載の画像処理装置。
    The image generation unit
    As the stereoscopic display image, an image including the first image and a second image shifted by a first distance in the left-right direction of the display unit with respect to the first image is generated,
    Furthermore, as the flat display image, there are a right-eye image that is the first image, and the first image that is shifted by a second distance in the left-right direction of the display unit with respect to the first image. The image processing apparatus according to claim 1, wherein an image including an image for the left eye is generated.
  4.  前記画像生成部は、
     前記指示信号生成部により生成された前記指示信号が入力されて前記平面表示画像を生成する際の前記第2の距離として、あらかじめ設定された固定値を使用することを特徴とする請求項3に記載の画像処理装置。
    The image generation unit
    The fixed value set in advance is used as the second distance when the instruction signal generated by the instruction signal generation unit is input to generate the flat display image. The image processing apparatus described.
  5.  前記画像生成部は、
     前記一方の画像を生成する際の前記第1の距離または前記第2の距離である第1のシフト量と、前記他方の画像を生成する際の前記第1の距離または前記第2の距離である第2のシフト量とを同量とすることを特徴とする請求項3に記載の画像処理装置。
    The image generation unit
    The first shift amount that is the first distance or the second distance when generating the one image, and the first distance or the second distance when generating the other image. The image processing apparatus according to claim 3, wherein a second shift amount is the same.
  6.  前記指示信号生成部により前記指示信号が生成された際に、前記画像生成部が前記一方の画像を生成する際の前記第1の距離または前記第2の距離である第1のシフト量を取得するシフト量取得手段と、
     前記シフト量取得手段によって取得された前記第1のシフト量に基づいて、前記画像生成部が前記他方の画像を生成する際の前記第1の距離または前記第2の距離である第2のシフト量を決定する決定部と、をさらに有することを特徴とする請求項3に記載の画像処理装置。
    When the instruction signal is generated by the instruction signal generation unit, the first shift amount that is the first distance or the second distance when the image generation unit generates the one image is acquired. Shift amount acquisition means to perform,
    A second shift that is the first distance or the second distance when the image generation unit generates the other image based on the first shift amount acquired by the shift amount acquisition unit. The image processing apparatus according to claim 3, further comprising a determination unit that determines an amount.
  7.  第1のモードと第2のモードとを切替える切替部を有し、
     第1のモードでは、前記表示部よりも手前側または奥側に位置すると術者に認識される画像が生成され、
     第2のモードでは、前記表示部上に位置すると術者に認識される画像が生成されることを特徴とする請求項1に記載の画像処理装置。
    A switching unit for switching between the first mode and the second mode;
    In the first mode, an image that is recognized by the surgeon when positioned on the near side or the far side of the display unit is generated,
    The image processing apparatus according to claim 1, wherein in the second mode, an image recognized by an operator when positioned on the display unit is generated.
  8.  第1の画像と第2の画像とから構成され、画像を表示可能な表示部よりも奥側に位置すると術者に認識される立体表示画像と、前記第1の画像から構成され、前記表示部よりも奥側に位置すると術者に認識される平面表示画像とを生成可能である画像生成部と、
     前記画像生成部が生成する画像を、前記立体表示画像と前記平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号を生成する指示信号生成部と、を有し、
     前記画像生成部は、前記指示信号生成部により生成された前記指示信号が入力される際に、前記一方の画像が前記奥側に位置すると術者に認識される画像であった場合は、前記奥側に位置すると術者に認識される前記他方の画像を生成することを特徴とする画像処理装置。
    The first image and the second image, and the three-dimensional display image recognized by the surgeon when positioned behind the display unit capable of displaying the image and the first image, and the display An image generation unit capable of generating a flat display image that is recognized by the operator when located on the back side of the unit;
    An instruction signal generation unit that generates an instruction signal for switching the image generated by the image generation unit from one of the stereoscopic display image and the flat display image to the other image;
    When the instruction signal generated by the instruction signal generation unit is input, the image generation unit is an image that is recognized by an operator when the one image is positioned on the back side. An image processing apparatus that generates the other image recognized by an operator when positioned on the back side.
  9.  第1の画像と第2の画像とから構成され、画像を表示可能な表示部よりも手前側に位置すると術者に認識される立体表示画像と、前記第1の画像から構成され、前記表示部よりも手前側に位置すると術者に認識される平面表示画像とを生成可能である画像生成部と、
     前記画像生成部が生成する画像を、前記立体表示画像と前記平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号を生成する指示信号生成部と、を有し、
     前記画像生成部は、前記指示信号生成部により生成された前記指示信号が入力される際に、前記一方の画像が前記手前側に位置すると術者に認識される画像であった場合は、前記手前側に位置すると術者に認識される前記他方の画像を生成することを特徴とする画像処理装置。
    The first image and the second image, the stereoscopic display image recognized by the surgeon when positioned on the near side of the display unit capable of displaying the image, the first image, and the display An image generation unit capable of generating a flat display image that is recognized by the operator when positioned on the near side of the unit;
    An instruction signal generation unit that generates an instruction signal for switching the image generated by the image generation unit from one of the stereoscopic display image and the flat display image to the other image;
    When the instruction signal generated by the instruction signal generation unit is input, the image generation unit is an image that is recognized by an operator when the one image is positioned on the near side. An image processing apparatus that generates the other image recognized by an operator when positioned on the near side.
  10.  該画像処理装置は、内視鏡によって撮像された被検体の画像の処理を行うことを特徴とする請求項1から9のいずれか1項に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the image processing apparatus processes an image of a subject imaged by an endoscope.
  11.  第1の画像と第2の画像とから構成される立体表示画像と、前記第1の画像から構成される平面表示画像とを生成する画像生成方法であって、
     画像を表示可能な表示部よりも手前側または奥側に位置すると術者に認識される前記立体表示画像または前記平面画像を生成する画像生成ステップと、
     生成する画像を、前記立体表示画像と前記平面表示画像とのうち一方の画像から他方の画像へ切替えるための指示信号を生成する指示信号生成ステップと、
     生成された前記指示信号が入力される際に、前記手前側と前記奥側のうち前記一方の画像と同じ側に位置すると術者に認識される前記他方の画像を生成する画像生成ステップと、を含むことを特徴とする画像生成方法。
    An image generation method for generating a stereoscopic display image composed of a first image and a second image and a flat display image composed of the first image,
    An image generating step for generating the stereoscopic display image or the planar image that is recognized by an operator when positioned on the front side or the back side of the display unit capable of displaying an image;
    An instruction signal generating step for generating an instruction signal for switching the image to be generated from one of the stereoscopic display image and the flat display image to the other image; and
    When the generated instruction signal is input, an image generation step of generating the other image that is recognized by an operator as being positioned on the same side as the one image on the near side and the back side; An image generation method comprising:
  12.  前記画像生成ステップにおいて、
     前記立体表示画像として前記表示部よりも奥側に位置すると術者に認識される画像を生成し、前記平面表示画像として前記表示部よりも奥側に位置すると術者に認識される画像を生成することを特徴とする請求項11に記載の画像生成方法。
    In the image generation step,
    An image that is recognized by the surgeon is generated as the stereoscopic display image is located behind the display unit, and an image that is recognized by the surgeon is generated as the flat display image is positioned behind the display unit. The image generation method according to claim 11, wherein:
  13.  前記画像生成ステップにおいて、
     前記立体表示画像として、前記第1の画像と、前記第1の画像に対して前記表示部の左右方向に第1の距離シフトさせた第2の画像とからなる画像を生成し、
     さらに、前記平面表示画像として、前記第1の画像である右眼用画像と、前記第1の画像に対して前記表示部の左右方向に第2の距離シフトさせた前記第1の画像である左眼用画像とからなる画像を生成することを特徴とする請求項11に記載の画像生成方法。
    In the image generation step,
    As the stereoscopic display image, an image including the first image and a second image shifted by a first distance in the left-right direction of the display unit with respect to the first image is generated,
    Furthermore, as the flat display image, there are a right-eye image that is the first image, and the first image that is shifted by a second distance in the left-right direction of the display unit with respect to the first image. The image generation method according to claim 11, wherein an image including an image for the left eye is generated.
PCT/JP2019/005819 2018-05-09 2019-02-18 Image processing device and image generation method WO2019215984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-090339 2018-05-09
JP2018090339 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019215984A1 true WO2019215984A1 (en) 2019-11-14

Family

ID=68466933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005819 WO2019215984A1 (en) 2018-05-09 2019-02-18 Image processing device and image generation method

Country Status (1)

Country Link
WO (1) WO2019215984A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355808A (en) * 1998-06-04 1999-12-24 Olympus Optical Co Ltd Video system
JP2010259006A (en) * 2009-04-28 2010-11-11 Nikon Corp Image presentation system, program, and image presentation method
JP2011015408A (en) * 2009-02-19 2011-01-20 Panasonic Corp Integrated circuit
JP2012090107A (en) * 2010-10-20 2012-05-10 Canon Inc Stereoscopic video processing device and control method therefor
WO2013027305A1 (en) * 2011-08-22 2013-02-28 パナソニック株式会社 Stereoscopic image processing device and stereoscopic image processing method
WO2014163109A1 (en) * 2013-04-03 2014-10-09 オリンパスメディカルシステムズ株式会社 Endoscope system for displaying 3-d image

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355808A (en) * 1998-06-04 1999-12-24 Olympus Optical Co Ltd Video system
JP2011015408A (en) * 2009-02-19 2011-01-20 Panasonic Corp Integrated circuit
JP2010259006A (en) * 2009-04-28 2010-11-11 Nikon Corp Image presentation system, program, and image presentation method
JP2012090107A (en) * 2010-10-20 2012-05-10 Canon Inc Stereoscopic video processing device and control method therefor
WO2013027305A1 (en) * 2011-08-22 2013-02-28 パナソニック株式会社 Stereoscopic image processing device and stereoscopic image processing method
WO2014163109A1 (en) * 2013-04-03 2014-10-09 オリンパスメディカルシステムズ株式会社 Endoscope system for displaying 3-d image

Similar Documents

Publication Publication Date Title
EP1763258B1 (en) Medical stereo observation system
JP3787939B2 (en) 3D image display device
JP2020114491A (en) Surgical microscope having data unit and method for overlaying images
JP5284731B2 (en) Stereoscopic image display system
WO2013175899A1 (en) Stereoscopic endoscope device
US8049773B2 (en) Stereoscopic observation system
JP2004309930A (en) Stereoscopic observation system
JPH06194580A (en) Stereoscopic viewing endoscope and its device
US7280274B2 (en) Three-dimensional image observation microscope system
JP6212877B2 (en) Image display device and image display method
JP2017509925A (en) 3D video microscope equipment
US20120300032A1 (en) Endoscope
JP4508569B2 (en) Binocular stereoscopic observation device, electronic image stereoscopic microscope, electronic image stereoscopic observation device, electronic image observation device
JP6767481B2 (en) Eye surgery using light field microscopy
JPWO2019026929A1 (en) Medical observation device
JP2015220643A (en) Stereoscopic observation device
JP2014140593A (en) Three-dimensional endoscope apparatus
JP4727356B2 (en) Medical stereoscopic observation device
WO2019215984A1 (en) Image processing device and image generation method
JP4970798B2 (en) Stereoscopic image observation device
CN113925441B (en) Imaging method and imaging system based on endoscope
JP2013009864A (en) Three-dimensional image processing device
JP2014064657A (en) Stereoscopic endoscope apparatus
JP2011215176A (en) Image processing apparatus and method
JP4246510B2 (en) Stereoscopic endoscope system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP