WO2019214484A1 - 一种用于微藻大规模培养采收的封闭坡式跑道池系统 - Google Patents
一种用于微藻大规模培养采收的封闭坡式跑道池系统 Download PDFInfo
- Publication number
- WO2019214484A1 WO2019214484A1 PCT/CN2019/084953 CN2019084953W WO2019214484A1 WO 2019214484 A1 WO2019214484 A1 WO 2019214484A1 CN 2019084953 W CN2019084953 W CN 2019084953W WO 2019214484 A1 WO2019214484 A1 WO 2019214484A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microalgae
- subsystem
- pool
- cultivation
- culture
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/18—Open ponds; Greenhouse type or underground installations
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/20—Material Coatings
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/22—Transparent or translucent parts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/24—Gas permeable parts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/34—Internal compartments or partitions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/38—Caps; Covers; Plugs; Pouring means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/18—Flow directing inserts
- C12M27/20—Baffles; Ribs; Ribbons; Auger vanes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/20—Degassing; Venting; Bubble traps
- C12M29/22—Oxygen discharge
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M33/00—Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
- C12M33/04—Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M37/00—Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M43/00—Combinations of bioreactors or fermenters with other apparatus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/02—Separating microorganisms from the culture medium; Concentration of biomass
Definitions
- the invention relates to a closed slope track pool system for large-scale cultivation and recovery of microalgae, belonging to the field of large-scale cultivation of microalgae.
- Algae is a general term for organisms that do not have roots, stems, and leaves. They live in a photosynthetic autotrophic mode. Microscopic algae, which are small in shape and need to be observed with a microscope, are called microalgae, including cyanobacteria, green algae, and red algae. Many eukaryotic and prokaryotic organisms with photosynthesis ability, such as brown algae, algae and dinoflagellates, as well as certain heterotrophic and symbiotic organisms. Microalgae have various forms such as single cells, single cell populations, and multicellular individuals. Microalgae cells contain a variety of carbohydrates and oils.
- microalgae can be used as a raw material for excellent nutraceuticals and biomass energy, so it is committed to large-scale cultivation of microalgae.
- Large-scale cultivation of microalgae requires specialized culture equipment.
- Photobioreactors are a type of device used for photosynthetic microorganisms and photosynthesis of tissue or cell culture. The culture density and growth rate of microalgae are affected by the structure of the reactor. And constraints, therefore, photobioreactors are one of the keys to economical, efficient, rapid, and large-scale cultivation of algae.
- photoreactors under research and development can be classified into open and closed depending on whether they are sealed.
- the open photobioreactor is low in cost, simple in operation, and low in production cost, but the culture environment is unstable, the culture conditions are not easy to control, the culture efficiency is low, and the environment is easily polluted.
- the closed photobioreactor is more precise than the open photobioreactor, the culture conditions are easier to control, and less polluted by the environment, so it can achieve higher algal liquid density, maintain a longer growth period, and maintain microalgae products. Hygiene and purity.
- the construction investment cost is high, it is not easy to clean, and in order to obtain sufficient light and mass transfer effect of the microalgae, to avoid the problems caused by algal cell sedimentation, it is necessary to flow the algae liquid, and it is necessary to drive all the algae liquid to flow. Energy consumption.
- microalgae are small, most of them are several micrometers to several tens of micrometers, and the cell surface is negatively charged, and the concentration in the culture solution is very low, and is uniformly dispersed and suspended in the algae liquid to form a stable state.
- Harvesting is very difficult.
- Commonly used conventional separation methods include precipitation, filtration, and centrifugation and air flotation.
- the filtration method is simple in operation and low in cost, but the small microalgae of the individual easily block the pores of the membrane and make the membrane fail in a short time. According to some data, the cost of microalgae harvesting accounts for 20% to 30% of the cost of breeding (including cultivation and harvesting). Therefore, the current cultivation equipment for large-scale cultivation of microalgae has high investment cost and is difficult to clean and operate. High energy consumption and high recovery costs.
- the present invention provides a closed slope type runway pool system for large-scale cultivation and recovery of microalgae, the system
- the invention comprises a culture subsystem (1) for microalgae cultivation, an algae liquid regulation subsystem (2) and a microalgae recovery subsystem (3); the culture subsystem (1) for microalgae cultivation respectively The algae liquid regulating subsystem (2) and the microalgae harvesting subsystem (3) are connected;
- the culture subsystem (1) for microalgae cultivation comprises a runway pool having a predetermined slope, and a filter is collected at the bottom of the runway pool to collect the collected microalgae.
- the culture subsystem (1) for microalgae cultivation further comprises a partition plate and a water pump; the runway pool having a predetermined slope is divided into two sides by the partition plate, and each side is independent and has a predetermined The sloped pool has opposite slopes on both sides, and the water pump is used to draw the algae liquid from the side with the lower water level to the side with the higher water level.
- the culture subsystem (1) for microalgae cultivation further comprises a transparent enclosure; the runway pool having a predetermined slope is covered by a transparent enclosure.
- the algae liquid regulating subsystem (2) is located at a lower end of the water flow pool of one side of the runway pool, and is separated from the breeding subsystem (1) by a filter membrane of the microalgae harvesting subsystem (3).
- the microalgae harvesting subsystem (3) further includes a bayonet mounting filter; the filter membrane is replaceable.
- the algae liquid regulating subsystem (2) comprises a liquid storage tank, a dosing port, a vent, an aeration port, a sampling port, a peristaltic pump and a solar collector; at the beginning of each culture cycle, Using the peristaltic pump to add a nutrient solution from the dosing port; the vent is an openable device for releasing oxygen generated in the reservoir; the aeration port is connected to a gas cylinder or an air pump, and is used for Adding CO 2 to the algae liquid; the sampling port is equipped with a valve, and the algae liquid is sampled through the sampling port to detect the content of each substance in the algae liquid; the solar collector is used for heating the algae liquid in the pool .
- the microalgae harvesting subsystem further comprises an ultraviolet lamp; the ultraviolet lamp is used to prevent pollution.
- the culture subsystem for microalgae cultivation further comprises a baffle; the baffle is disposed at the bottom of the runway pool for disturbing the water flow to improve mass transfer efficiency in the algae liquid.
- the bottom and the pool wall of the runway pool in the culture subsystem for microalgae cultivation are coated with a solar heat absorbing paint for absorbing solar energy to increase the temperature of the algae liquid.
- a circle of shallow water tank is disposed around the runway pool, the transparent enclosure is made of a light transmissive material, and the light transmissive material is sealed by a water seal method in the shallow water tank.
- the predetermined slope is 1%-5%.
- the algae liquid flows along the runway pool under the action of gravity, greatly reducing the energy consumption for driving the algae liquid flow;
- the photobioreactor is coupled to realize the purpose of low cost, simple operation, easy control of culture conditions and less environmental pollution.
- the real-time harvesting of microalgae by using the filter membrane greatly reduces the harvesting cost.
- FIG. 1 is a plan view showing a structure of a closed-slope track pool system provided by the present invention
- Figure 2 is a cross-sectional view of a closed-slope runway pool system provided by the present invention
- Figure 3 is a right side elevational view of the closed-slope runway pool system provided by the present invention.
- FIG. 4 is a schematic view showing a positional relationship between the runway pools on both sides of the closed-slope runway pool system provided by the present invention
- Figure 5 is a plan view showing another structure of the closed-slope runway pool system provided by the present invention.
- FIG. 6 is a schematic view showing another positional relationship of the runway pools on both sides of the closed-slope runway pool system provided by the present invention.
- 1 is the culture subsystem for microalgae culture
- 2 is the algae liquid regulation subsystem
- 3 is the microalgae harvesting subsystem
- 4 is the water seal tank
- 5 is the water pump
- 6 is the partition
- 7 is the filter 8 is the baffle
- 9 is the UV lamp bracket set point
- 10 is the UV lamp bracket
- 11 is the pool wall of the runway pool.
- the object of the present invention is to reduce the cost and energy consumption of large-scale cultivation and harvesting of microalgae, and to provide a closed-slope runway pool system combining the advantages of open and closed photobioreactors, which can be used for large-scale microalgae Cultivation and harvesting.
- the system has the advantages of both the runway pool and the closed photobioreactor: simple structure, low construction cost, simple operation and cleaning, easy control of conditions, low environmental pollution, high carbon dioxide utilization, good thermal insulation effect, etc. Low energy consumption and low harvesting cost.
- This embodiment provides a closed-slope runway pool system for large-scale cultivation and recovery of microalgae.
- the system includes:
- a culture subsystem (1) for microalgae culture an algal fluid regulation subsystem (2), and a microalgae recovery subsystem (3), wherein the culture subsystem (1) for microalgae cultivation comprises The runway pool with a predetermined slope; the predetermined slope is 1% - 5%.
- This embodiment is described by taking the slope 1% as an example.
- the culture subsystem (1) includes a partition 6 and a water pump 5; the runway pool having a predetermined slope is divided into two sides A and B by the partition 6, each side being independent with a predetermined slope of 1%
- the water tank 5 is used to reverse the slope on both sides, and the water pump 5 is used to draw the algae liquid from the low water level side to the water level high side at both ends of the runway pool.
- the pool 6 has a predetermined slope on both sides of the partition plate. Because the slope direction is opposite, the algae liquid flows to the lower end of the water level due to gravity, and the algae liquid can be extracted from the side of the side water level by the water pump 5.
- the water pump 5 at both ends may use a water pump equipped with a flow control valve.
- the algae liquid is gravity-dependent. After the action flows slowly from the A1 end along the A side ramp to the A2 end, the water pump draws the B2 end and continues to flow along the B side ramp to the B1 end.
- the top of the pool of the runway pool is covered with transparent material.
- the pool body is surrounded by a circle of water sealing tank 4. In practice, it is a shallow shallow water tank, and the transparent material is sealed by water sealing method in the shallow water tank.
- a baffle 8 is arranged at the bottom of the pool to disturb the flow of water to improve the mass transfer efficiency in the algae liquid.
- the bottom of the pool and the wall of the pool are covered with solar heat absorbing paint to absorb solar energy and increase the temperature of the algae liquid.
- the transparent material used in the pool top of the runway pool is a transparent material with good light transmittance.
- the film material used in the vegetable greenhouse can be used. Not limited.
- the algae liquid After the algae liquid flows to the B1 end, it enters the algal liquid regulating subsystem (2) through the filter 7 disposed therein;
- the algae liquid regulating subsystem (2) includes a liquid storage tank, a dosing port, a vent, an aeration port, a sampling port, a peristaltic pump and a solar collector; as can be seen from Fig. 1, the algae conditioning subsystem (2) is located at B
- the lower end of the side runway pool that is, the B1 end, is separated from the culture subsystem (1) by the filter membrane 7.
- the standard microalgae permeate through the membrane to the reservoir of the algae conditioning subsystem (2); the microalgae that meets the harvesting criteria cannot pass through the membrane 7.
- the membrane 7 is passed through the bayonet. Fixed for easy replacement.
- the algae liquid flows to the B1 end, and the algae liquid and the microalgae that have not reached the harvesting standard pass through the filter membrane disposed at the end of B1 and then flow into the liquid storage tank of the algae liquid regulating subsystem (2).
- the liquid regulating subsystem (2) uses a peristaltic pump that can precisely control the flow rate, and adds an aqueous solution of a reagent such as an acid base or a nutrient salt from the dosing port as required.
- the vent is configured to be openable and closable at night to release oxygen in the reservoir, which is covered with a gas permeable membrane to prevent contamination.
- the aeration port is connected to a gas cylinder or an air pump for supplementing the algae solution with CO 2 .
- the sampling port is equipped with a valve, and the algae liquid can flow out from the sampling port for detecting the content of each substance in the algae liquid.
- the solar collector heats the algae in the pool.
- the present application is not limited to the algae liquid regulating subsystem (2), and those skilled in the art can perform corresponding settings according to the conditions required for the microalgae cultivation process.
- the algae liquid adjustment subsystem (2) adjusts the algae liquid
- the algae liquid is pumped from the liquid storage tank to the A1 end through a water pump 5 equipped with a flow control valve to start a new round of culture and culture cycle.
- the microalgae harvesting subsystem (3) includes a filter membrane 7, a bayonet mount filter and an ultraviolet lamp. At the end of each culture period, the filter 7 which has collected the microalgae is taken out from the bayonet under the irradiation of the ultraviolet lamp, and a new filter membrane is inserted. In order to prevent contamination, the UV lamp harvests the microalgae on the filter after it is taken out.
- the UV lamp can be set in a suitable position according to the actual situation.
- the position of the black light triangle can be set at the position 9 marked by the black triangle in Fig. 1, where an ultraviolet lamp holder 10 is arranged, as shown in the figure.
- the UV lamp holder 10 is formed by connecting two connecting rods in the horizontal direction and the vertical direction, and for convenient use, the connection between the two connecting rods can also be rotated, so that the ultraviolet lamp can be used as needed.
- the vertical connecting rod can be set in a form of contractible stretching to facilitate adjustment of the height of the ultraviolet lamp. This application does not limit this, and those skilled in the art can complete the setting of the position and form of the UV lamp holder 10 according to common sense.
- the closed slope track pool system provided by the present application can set the length of the runway pool and the predetermined slope according to the growth cycle of the cultured microalgae.
- the algae liquid is pumped by a water pump equipped with a flow control valve.
- the collected microalgae are the microalgae that meet the collection standards. Under normal circumstances, the microalgae that meet the collection standards will not be met. Directly through the filter membrane as a species of algae.
- the slopes of the runway pools on both sides of A and B are opposite in direction, and the positional relationship between them can be shown in the schematic diagram of Fig. 4 or Fig. 6, wherein the reason for drawing the water pump 5 is shown in Fig. 4, so the two are horizontal.
- the gap is larger.
- the runway pool is longer and the slope is smaller.
- the horizontal gap between the two is smaller. Therefore, when the position relationship of the runway pools on both sides of A and B is as shown in Figure 4, through Figure 1.
- the water seal groove 4 at the position shown can make the transparent material seal the runway pools on both sides. If the sealing requirements are strict, the runway pools on both sides can be sealed separately, and no further description is made in this application.
- Fig. 6 When the position relationship of the runway pools on both sides of A and B is as shown in Fig. 6, there is no height difference at one end of the runway pools on both sides.
- the top view is shown in Fig. 5.
- One end of the dotted line frame is the end without height difference.
- the algae liquid does not need a water pump from A2 to B2, and only one water pump 5 is provided at the other end; since the height difference between A1 and B1 is twice the height difference formed by the predetermined gradient, it is necessary to perform the two sides separately when sealing. seal.
- the foregoing embodiment is only described by taking the same predetermined slope of the runway pools on both sides of the A and B as an example.
- the predetermined slopes of the two may be the same or different, which is not limited in the present application.
- the invention mainly has the following advantages: (1) utilizing the action of gravity to realize the flow of the algae liquid in the runway pool, and greatly reducing the energy consumption for driving the flow of the algae liquid; (2) realizing the system to be completely sealed with an inexpensive light-transmitting material, to be as small as possible Cost and minimize pollution, evaporation of water, carbon dioxide spillage, and enhanced insulation of algae; (3) use of solar energy to heat algae in the reservoir, and supplement carbon dioxide and nutrients, reducing Energy consumption and construction cost; (4) Real-time harvesting of microalgae by filter membrane, which greatly reduces the harvesting cost, and the microalgae remaining in the algae liquid enters the next cycle as algae species.
- the closure is required.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Clinical Laboratory Science (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Environmental & Geological Engineering (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明提供了一种用于微藻大规模培养采收的封闭坡式跑道池系统,属于微藻大规模培养领域。该系统主要包括用于微藻培养的养殖子系统、藻液调节子系统和微藻采收子系统。通过在用于微藻培养的养殖子系统中设置预定坡度的跑道池,使得藻液在重力的作用下沿跑道池流动,极大地降低了驱动藻液流动的能耗;通过将跑道池与封闭式光生物反应器相耦合,实现了造价低廉、操作简便、培养条件容易控制且受环境污染少的目的;通过利用滤膜实现微藻的实时采收,极大的降低了采收成本。
Description
本发明涉及一种用于微藻大规模培养采收的封闭坡式跑道池系统,属于微藻大规模培养领域。
藻类是没有根、茎、叶分化的、以光合自养模式生存的生物总称,其中形态微小,需要借助显微镜才能观察到的微小藻类被称为微藻,包括蓝细菌、绿藻、红藻、褐藻、金藻和甲藻等具有光合作用能力的众多真核和原核生物,以及某些异养型和共生型生物。微藻有单细胞、单细胞群体和多细胞个体等多种形态。微藻细胞内含有多种碳水化合物和油脂等,近年来越来越多的研究者认为,微藻可以作为优异的营养保健品和生物质能源的原料,因此致力于微藻的大规模养殖。微藻的大规模养殖需要专门的培养装置,光生物反应器就是用于光合微生物及具有光合能力的组织或细胞培养的一类装置,微藻的培养密度和生长速度都会受到反应器结构的影响和制约,因此,光生物反应器是经济、高效、快速、大量培养藻类的关键之一。
目前,正在研究开发的光反应器根据是否密封可分为开放式和封闭式。开放式光生物反应器造价低廉、操作简便、生产成本较低,但培养环境不稳定、培养条件不易控制,培养效率较低、容易受到环境污染。封闭式光生物反应器比开放式光生物反应器更精密,培养条件更容易控制,较少受到环境污染,因此可以达到可以较高的藻液密度,维持较长的生长期,保持微藻产品的卫生和纯度。但是建造投资成本高,不易清洗,且为了使微藻得到充分的光照和传质效果,避免因藻细胞沉降带来的问题,需要将藻液流动起来,而驱动全部藻液流动起来需要极高的能耗。
另外,由于微藻个体微小,大部分几微米到几十微米,且细胞表面多带负电荷,在培养液中的浓度很低,处于均匀地分散悬浮在藻液中,形成稳定的状态,因此采收难度很大。常用的传统分离方法有沉淀、过滤和离心和气浮等方法,其中过滤法操作简单、成本低廉,但个体较小的微藻容易堵塞滤膜的孔,使滤膜在很短的时间内失效。有数据表明,微藻采收的成本占其养殖成本(包括培养和采收)的20%~30%;所以目前用于微藻大规模养殖的培养装置存在着投资成本高,不易清洗、运行能耗高且采收成本高的问题。
发明内容
为了解决目前在微藻培养中存在的系统结构复杂,运行能耗高、采集成本高等问题,本发明提供了一种用于微藻大规模培养采收的封闭坡式跑道池系统,所述系统包括用于微藻培养的养殖子系统(1)、藻液调节子系统(2)和微藻采收子系统(3);所述用于微藻培养的养殖子系统(1)分别与所述藻液调节子系统(2)、微藻采收子系统(3)相连;
所述用于微藻培养的养殖子系统(1)包括具有预定坡度的跑道池,在跑道池坡底处设置滤膜收集达到收集标准的微藻。
可选的,所述用于微藻培养的养殖子系统(1)还包括隔板和水泵;所述具有预定坡度的跑道池通过所述隔板分为两侧,每侧为独立的具有预定坡度的水池,且两侧坡度走向相反,所述水泵用于将藻液从水位低的一侧抽提到水位高的一侧。
可选的,所述用于微藻培养的养殖子系统(1)还包括透明封闭罩;所述具有预定坡度的跑道池采用透明封闭罩覆盖。
可选的,所述藻液调节子系统(2)位于一侧跑道池水位较低的一端,通过所述微藻采收子系统(3)的滤膜与所述养殖子系统(1)隔开,所述微藻采收子系统(3)还包括安装滤膜的卡口;所述滤膜可更换。
可选的,所述藻液调节子系统(2)包括蓄液池、加药口、通气口、曝气口、采样口、蠕动泵和太阳能集热器;在每个培养周期开始的时候,利用所述蠕动泵从加药口加入营养液;所述通气口为可开合装置,用以释放所述蓄液池中产生的氧气;所述曝气口连接气瓶或空气泵,用于向藻液中补充CO
2;所述采样口装有阀门,通过所述采样口对藻液进行采样从而检测藻液中各物质的含量;所述太阳能集热器用于对池中藻液进行加热。
可选的,所述微藻采收子系统还包括紫外灯;所述紫外灯用于防止污染。
可选的,所述用于微藻培养的养殖子系统,还包括挡流板;所述挡流板设置在所述跑道池底部,用于扰动水流从而提高藻液中的传质效率。
可选的,所述用于微藻培养的养殖子系统中的跑道池的底部和池壁刷有太阳能吸热涂料,用于吸收太阳能从而提高藻液温度。
可选的,所述跑道池周围设置一圈浅水槽,所述透明封闭罩采用透光材料,所述透光材料在浅水槽中采用水封法密封。
可选的,所述预定坡度为1%-5%。
本发明有益效果是:
通过用于微藻培养的养殖子系统中具有预定坡度的跑道池,使得藻液在重力的作用下沿跑道池流动,极大的降低了驱动藻液流动的能耗;通过将跑道池与封闭式光生物反应器相耦 合,实现了造价低廉、操作简便、培养条件容易控制且受环境污染少的目的;通过利用滤膜实现微藻的实时采收,极大的降低了采收成本。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的封闭坡式跑道池系统一种结构的俯视图;
图2是本发明提供的封闭坡式跑道池系统的剖面图;
图3是本发明提供的封闭坡式跑道池系统的右视图;
图4是本发明提供的封闭坡式跑道池系统剖面图中两侧跑道池的一种位置关系示意图;
图5为本发明提供的封闭坡式跑道池系统另一种结构的俯视图;
图6是本发明提供的封闭坡式跑道池系统剖面图中两侧跑道池的另一种位置关系示意图;
其中,1为用于微藻培养的养殖子系统,2为藻液调节子系统,3为微藻采收子系统,4为水封槽,5为水泵,6为隔板,7为滤膜,8为挡流板,9为紫外灯支架设置点,10为紫外灯支架,11为跑道池的池壁。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本发明的目的是降低微藻大规模培养和采收的成本与能耗,提供了一种结合了开放式和封闭式光生物反应器优点的封闭坡式跑道池系统,可用于微藻大规模培养和采收。系统同时具有跑道池和封闭式光生物反应器的优点:结构简单、建造成本低廉、操作和清洗简单、条件易控制、不易受环境污染、二氧化碳利用率高、保温效果好等,同时还具有运行能耗低、采收成本低等优点。
实施例:
本实施例提供一种用于微藻大规模培养采收的封闭坡式跑道池系统,参见图1,所述系统包括:
用于微藻培养的养殖子系统(1)、藻液调节子系统(2)和微藻采收子系统(3),其中,所述用于微藻培养的养殖子系统(1)包括具有预定坡度的跑道池;预定坡度为1%-5%, 本实施例以坡度1%为例进行说明。
参考图1,养殖子系统(1)包括隔板6和水泵5;所述具有预定坡度的跑道池通过所述隔板6分为A、B两侧,每侧为独立的具有预定坡度1%的水池,且两侧坡度走向相反,所述水泵5用于在跑道池两端将藻液从水位低的一侧抽提到水位高的一侧。
具体的,隔板6两侧具有预定坡度的水池,因为坡度走向相反,所以藻液因重力作用流至水位低的一端后,可通过水泵5将藻液从该侧水位低的一侧抽提到水位高的另一侧;实际应用中,为方便准确控制该封闭坡式跑道池系统的各参数条件,两端的水泵5可采用配有流量控制阀的水泵,图1中,藻液因重力作用从A1端沿A侧坡道缓慢流至A2端后,由水泵抽提到B2端,继续沿B侧坡道流至B1端。
养殖子系统(1)跑道池的池顶用透明材料覆盖,池体周围环绕一圈水封槽4,实际应用中为一圈浅水槽,透明材料在浅水槽中用水封法密封。池底布设挡流板8,用以扰动水流从而提高藻液中的传质效率。池底和池壁刷有太阳能吸热涂料,用以吸收太阳能从而提高藻液温度。
需要进行说明的是,跑道池的池顶所采用的透明材料为透光性良好的透明材料,考虑造价的问题,在实际应用中,采用蔬菜大棚所采用的薄膜材料即可,本申请对此不作限定。
藻液流至B1端后,通过设置在此处的滤膜7进入藻液调节子系统(2)中;
藻液调节子系统(2)包括蓄液池、加药口、通气口、曝气口、采样口、蠕动泵和太阳能集热器;参考图1可知,藻液调节子系统(2)位于B侧跑道池水位低的一端即B1端,通过滤膜7与养殖子系统(1)隔开,当藻液在该侧跑道池从水位高的一端流至水位低的一端时,未达到采收标准的微藻透过滤膜流至藻液调节子系统(2)的蓄液池中;而达到采收标准的微藻则无法通过滤膜7,实际应用中,该滤膜7通过卡口进行固定,方便更换。
图1中,藻液流至B1端,藻液以及未达到采收标准的微藻透过设置在B1端处的滤膜后流至藻液调节子系统(2)的蓄液池中,藻液调节子系统(2)利用可精确控制流量的蠕动泵,从加药口按需求加入酸碱和营养盐等试剂的水溶液。通气口设置为可开合,夜间打开释放所述蓄液池中的氧气,其上覆盖有透气膜以防止污染。曝气口连接气瓶或空气泵,用于向藻液中补充CO
2。采样口装有阀门,藻液可从采样口流出用于检测藻液中各物质的含量。太阳能集热器为池中藻液进行加热。
需要进行说明的是,本申请对于藻液调节子系统(2)不做限定,本领域技术人员根据微藻培养过程所需条件即可进行相应设置。
藻液调节子系统(2)对藻液进行调整后,通过配有流量控制阀的水泵5将藻液从蓄液 池中抽提到A1端,使其开始新一轮的养殖培养周期。
微藻采收子系统(3)包括滤膜7、安装滤膜的卡口和紫外灯。每个培养周期结束时,在紫外灯照射下,从卡口中抽出已经收集到微藻的滤膜7,插入新滤膜。紫外灯为了防止污染,滤膜取出后收获滤膜上的微藻。
实际应用中,紫外灯可根据实际情况设置于合适的位置,比如,图1中黑色三角形所标注的位置9处即可为紫外灯支架设置点,在此处设置一个紫外灯支架10,如图3所示,该紫外灯支架10由水平方向和竖直方向的两节连接杆连接而成,且为方便使用,两节连接杆连接处还可采用旋转连接的方式,使得紫外灯可根据需要调整所在位置,当需要取出或者插入滤膜7时,将水平连接杆旋转至滤膜7正上方旁边的任意位置,取出或者插入滤膜7后,再将水平连接杆旋转回至滤膜7正上方以防止滤膜7附近处被污染,同时,还可将竖直方向的连接杆设置成可收缩拉伸的形式,以方便调节紫外灯的高度。本申请对此不作限定,本领域技术人员可根据常识完成此紫外灯支架10的位置及形式的设置。
本申请提供的封闭坡式跑道池系统,可根据所培养微藻的生长周期设置跑道池的长度以及预定坡度,在培养周期开始时(天亮时),用配有流量控制阀的水泵将藻液从藻液调节子系统(2)中缓慢导入到养殖子系统(1),由于跑道池具有一定坡度,所以藻液由于重力作用在跑道池内缓慢流动,经过一个培养周期(白天有阳光照射的8-12小时)后,通过微藻采收子系统(3)采收部分微藻,剩余的微藻作为藻种,随藻液流入藻液调节子系统(2),待第二天调节pH、温度、营养盐和CO
2含量等因素后,再次进入养殖子系统(1)循环,其中采集到的部分微藻为达到收集标准的微藻,一般情况下,达不到收集标准的微藻会直接通过滤膜作为藻种。
需要进行说明的是,A、B两侧跑道池坡度方向相反,二者位置关系可以是图4或图6示意图所示,其中图4中为方便绘出水泵5的原因,所以将二者水平差距画的较大,实际应用中,跑道池较长,坡度较小,二者之间水平差距较小,所以当A、B两侧跑道池位置关系如图4所示时,通过图1中所示位置处的水封槽4即可使得透明材料将两侧跑道池均进行密封,若密封要求较为严格,也可将两侧跑道池分别进行密封,本申请不再进行赘述。
另外A、B两侧跑道池位置关系如图4所示时,此时,两侧跑道池的两端都具有高度差,所以两端各自需要设置一个水泵5完成藻液从一侧到另一侧的转移。
而当A、B两侧跑道池位置关系如图6所示,即两侧跑道池有一端不存在高度差,俯视图如图5所示,虚线框内一端为不存在高度差的一端,此时,藻液从A2至B2无需水泵,只在另一端设置一个水泵5即可;由于此时A1与B1处高度差为两倍预定坡度形成的高度差, 所以在密封时,需要两侧分别进行密封。
需要进行说明的是,上述实施例仅以A、B两侧跑道池的预定坡度相同为例进行说明,实际应用中,二者预定坡度可相同也可不同,本申请对此不做限定。
本发明主要具有以下优点:(1)利用重力作用实现跑道池内藻液流动,极大地降低了驱动藻液流动的能耗;(2)以廉价的透光材料实现系统全密闭,以尽量小的造价且最大程度地减少了污染、水分的蒸发、二氧化碳的溢出,并加强了对藻液的保温;(3)在蓄液池内利用太阳能对藻液进行加热、并补充二氧化碳和营养盐,减少了能耗以及建设成本;(4)利用滤膜实现微藻的实时采收,极大地降低了采收成本,藻液中残留的微藻作为藻种进入下一次循环,另外,在需要对该封闭坡式跑道池系统进行清洗时,只需要将池顶用水封法密封的透明材料掀开,直接进行清洗,较现有的封闭光生物反应器,清洗较为方便。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种用于微藻大规模培养采收的封闭坡式跑道池系统,其特征在于,所述系统包括用于微藻培养的养殖子系统(1)、藻液调节子系统(2)和微藻采收子系统(3);所述用于微藻培养的养殖子系统(1)分别与所述藻液调节子系统(2)、微藻采收子系统(3)相连;所述用于微藻培养的养殖子系统(1)包括具有预定坡度的跑道池,在跑道池坡底处设置滤膜收集达到收集标准的微藻。
- 根据权利要求1所述的用于微藻大规模培养采收的封闭坡式跑道池系统,其特征在于,所述用于微藻培养的养殖子系统(1)还包括隔板和水泵;所述具有预定坡度的跑道池通过所述隔板分为两侧,每侧为独立的具有预定坡度的水池,且两侧坡度走向相反,所述水泵用于将藻液从水位低的一侧抽提到水位高的一侧。
- 根据权利要求1所述的用于微藻大规模培养采收的封闭坡式跑道池系统,其特征在于,所述用于微藻培养的养殖子系统(1)还包括透明封闭罩;所述具有预定坡度的跑道池采用透明封闭罩覆盖。
- 根据权利要求1所述的用于微藻大规模培养采收的封闭坡式跑道池系统,其特征在于,所述藻液调节子系统(2)位于一侧跑道池水位较低的一端,通过所述微藻采收子系统(3)的滤膜与所述养殖子系统(1)隔开,所述微藻采收子系统(3)还包括安装滤膜的卡口;所述滤膜可更换。
- 根据权利要求1所述的用于微藻大规模培养采收的封闭坡式跑道池系统,其特征在于,所述藻液调节子系统(2)包括蓄液池、加药口、通气口、曝气口、采样口、蠕动泵和太阳能集热器;在每个培养周期开始的时候,利用所述蠕动泵从加药口加入营养液;所述通气口为可开合装置,用以释放所述蓄液池中产生的氧气;所述曝气口连接气瓶或空气泵,用于向藻液中补充CO 2;所述采样口装有阀门,通过所述采样口对藻液进行采样从而检测藻液中各物质的含量;所述太阳能集热器用于对池中藻液进行加热。
- 根据权利要求1所述的用于微藻大规模培养采收的封闭坡式跑道池系统,其特征在于,所述微藻采收子系统还包括紫外灯;所述紫外灯用于防止污染。
- 根据权利要求1所述的用于微藻大规模培养采收的封闭坡式跑道池系统,其特征在于,所述用于微藻培养的养殖子系统,还包括挡流板;所述挡流板设置在所述跑道池底部,用于扰动水流从而提高藻液中的传质效率。
- 根据权利要求1所述的用于微藻大规模培养采收的封闭坡式跑道池系统,其特征在于,所述用于微藻培养的养殖子系统中的跑道池的底部和池壁刷有太阳能吸热涂料,用于吸收太阳能从而提高藻液温度。
- 根据权利要求1所述的用于微藻大规模培养采收的封闭坡式跑道池系统,其特征在于,所述跑道池周围设置一圈浅水槽,所述透明封闭罩采用透光材料,所述透光材料在浅水槽中采用水封法密封。
- 根据权利要求1所述的用于微藻大规模培养采收的封闭坡式跑道池系统,其特征在于,所述预定坡度范围为1%-5%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810425402.4A CN108641923A (zh) | 2018-05-07 | 2018-05-07 | 一种用于微藻大规模培养采收的封闭坡式跑道池系统 |
CN201810425402.4 | 2018-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019214484A1 true WO2019214484A1 (zh) | 2019-11-14 |
Family
ID=63749089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/084953 WO2019214484A1 (zh) | 2018-05-07 | 2019-04-29 | 一种用于微藻大规模培养采收的封闭坡式跑道池系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108641923A (zh) |
WO (1) | WO2019214484A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108641923A (zh) * | 2018-05-07 | 2018-10-12 | 江南大学 | 一种用于微藻大规模培养采收的封闭坡式跑道池系统 |
CN109971641B (zh) * | 2019-04-23 | 2024-08-30 | 胡小军 | 封闭式微藻绿色采收烘存系统 |
CN112391272A (zh) * | 2020-10-27 | 2021-02-23 | 北海市绿牌生物科技有限公司 | 一种微藻养殖系统及使用方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981271A (en) * | 1996-11-06 | 1999-11-09 | Mikrobiologicky Ustav Akademie Ved Ceske Republiky | Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the process |
CN202322801U (zh) * | 2011-09-23 | 2012-07-11 | 农业部规划设计研究院 | 一种适合封闭式跑道池微藻反应器的布光装置 |
CN102604815A (zh) * | 2011-01-19 | 2012-07-25 | 浙江齐成科技有限公司 | 能源藻类规模化培养系统 |
CN105002086A (zh) * | 2015-07-16 | 2015-10-28 | 中国海洋大学 | 一种利用微气泡持续气浮采收藻细胞的跑道池微藻养殖系统 |
CN108641923A (zh) * | 2018-05-07 | 2018-10-12 | 江南大学 | 一种用于微藻大规模培养采收的封闭坡式跑道池系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2600427Y (zh) * | 2003-03-04 | 2004-01-21 | 刘刚 | 微灌用连续供水水处理系统 |
WO2012077250A1 (ja) * | 2010-12-09 | 2012-06-14 | ▲緑▼合能源有限公司 | 混合系微細藻類を用いたバイオガス製造、供給方法並びにシステム |
CN102952747B (zh) * | 2012-12-10 | 2014-04-30 | 武汉环天禹生物环保科技有限公司 | 一种废水资源利用的碳素纤维微藻培育系统 |
CN204727884U (zh) * | 2015-06-04 | 2015-10-28 | 江南大学 | 一种高密度培养耦合预采收微藻的膜光生物反应器 |
CN205133581U (zh) * | 2015-10-27 | 2016-04-06 | 黄龙耀 | 一种工业化养殖微藻的光生物反应器 |
CN205347412U (zh) * | 2016-02-16 | 2016-06-29 | 金华职业技术学院 | 一种微藻采收培养装置 |
-
2018
- 2018-05-07 CN CN201810425402.4A patent/CN108641923A/zh active Pending
-
2019
- 2019-04-29 WO PCT/CN2019/084953 patent/WO2019214484A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981271A (en) * | 1996-11-06 | 1999-11-09 | Mikrobiologicky Ustav Akademie Ved Ceske Republiky | Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the process |
CN102604815A (zh) * | 2011-01-19 | 2012-07-25 | 浙江齐成科技有限公司 | 能源藻类规模化培养系统 |
CN202322801U (zh) * | 2011-09-23 | 2012-07-11 | 农业部规划设计研究院 | 一种适合封闭式跑道池微藻反应器的布光装置 |
CN105002086A (zh) * | 2015-07-16 | 2015-10-28 | 中国海洋大学 | 一种利用微气泡持续气浮采收藻细胞的跑道池微藻养殖系统 |
CN108641923A (zh) * | 2018-05-07 | 2018-10-12 | 江南大学 | 一种用于微藻大规模培养采收的封闭坡式跑道池系统 |
Non-Patent Citations (1)
Title |
---|
"Microalgae Cultivation Using Wastewater and Membrame Fooling in a Membrane Photobioreactor", MEMBRANE SCIENCE AND TECHNOLOGY, vol. 37, no. 5, 25 October 2017 (2017-10-25), pages 82 - 87 * |
Also Published As
Publication number | Publication date |
---|---|
CN108641923A (zh) | 2018-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201626959U (zh) | 用于细胞培养的微灌流装置 | |
WO2019214484A1 (zh) | 一种用于微藻大规模培养采收的封闭坡式跑道池系统 | |
CN101914431B (zh) | 一种全塑模块化光生物反应器系统培养微藻的装置与方法 | |
WO2015131830A1 (zh) | 光生物养殖装置 | |
CN202190608U (zh) | 藻类着生与培养装置 | |
CN208776708U (zh) | 一种适于兼养培养的微藻无菌培养装置 | |
CN103476245A (zh) | 用于培养微生物的方法和生物反应器 | |
CN105861370A (zh) | 一种微藻的高密度培养及预采收方法 | |
CN102273431A (zh) | 一种淡水轮虫和小球藻的共培养方法 | |
CN205347412U (zh) | 一种微藻采收培养装置 | |
CN104560637A (zh) | 一种可旋转挂膜式微藻光合反应器 | |
CN202898398U (zh) | 一种微藻培养及收集的光生物反应器 | |
CN107937276B (zh) | 一种二氧化碳和乙酸混合调控促进小球藻固碳生长的方法 | |
WO2023246341A1 (zh) | 一种细胞培养方法、细胞培养容器及细胞培养装置 | |
CN108641909A (zh) | 一种适于兼养培养的微藻无菌培养装置及培养方法 | |
CN107460129A (zh) | 生物质与培养液分离的工业化微藻培养方法 | |
CN202730113U (zh) | 一种微藻高密度培养设备 | |
CN217781130U (zh) | 一种微藻平板式光生物反应器 | |
Rinanti et al. | Integrated vertical photobioreactor system for carbon dioxide removal using phototrophic microalgae | |
CN201420081Y (zh) | 一种幕墙式微藻培养装置 | |
CN1303200C (zh) | 植物组织切割器外置型光生物反应器培养系统 | |
CN106706909B (zh) | 一种应用于评估微藻二氧化碳耐受力的方法及装置 | |
Oguchi et al. | Closed and continuous algae cultivation system for food production and gas exchange in CELSS | |
CN205275589U (zh) | 一种光合反应器 | |
CN201420080Y (zh) | 一种封闭式微藻产业光合作用培殖装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19799922 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19799922 Country of ref document: EP Kind code of ref document: A1 |