WO2019214200A1 - 激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统 - Google Patents

激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统 Download PDF

Info

Publication number
WO2019214200A1
WO2019214200A1 PCT/CN2018/115325 CN2018115325W WO2019214200A1 WO 2019214200 A1 WO2019214200 A1 WO 2019214200A1 CN 2018115325 W CN2018115325 W CN 2018115325W WO 2019214200 A1 WO2019214200 A1 WO 2019214200A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
pulse
control
control pulse
signal
Prior art date
Application number
PCT/CN2018/115325
Other languages
English (en)
French (fr)
Inventor
何高锋
蒋峰
Original Assignee
深圳市创鑫激光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创鑫激光股份有限公司 filed Critical 深圳市创鑫激光股份有限公司
Publication of WO2019214200A1 publication Critical patent/WO2019214200A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0912Electronics or drivers for the pump source, i.e. details of drivers or circuitry specific for laser pumping

Definitions

  • the embodiment of the invention belongs to the field of laser technology, and in particular relates to a laser pulse power control method and a pulsed fiber laser and a laser cutting system using the same.
  • the power control process of a laser generally involves switching control of a main oscillator switching signal, a modulated input switching signal, a parallel signal, etc., wherein the signal transmission line generally uses 9-line transmission power data and control data in such a manner.
  • the control interface is more complicated.
  • the use of multi-line transmission of data and control processes is cumbersome, and it is difficult to ensure synchronous control.
  • an embodiment of the present invention provides a laser pulse power control method and a pulsed fiber laser and a laser cutting system using the laser pulse power control method, so as to solve the complicated control interface of the existing laser control, and adopt multi-line transmission.
  • the data and control process is cumbersome and it is difficult to guarantee the problem of synchronous control.
  • an embodiment of the present invention provides a laser pulse power control method, including:
  • Detecting a laser control pulse signal and when detecting any one of the laser control pulses, switching the laser to a laser output state while acquiring an analog value of the analog input signal for a duration of the laser control pulse, according to the simulation
  • the value gives the magnitude of the operating current driven by the laser
  • a control signal is generated based on the operating current to cause the laser to output a laser pulse of a corresponding power according to the magnitude of the operating current for the duration of time.
  • analog value of the analog input signal in the duration of acquiring the laser control pulse includes:
  • the magnitude of the operating current obtained by the laser driving according to the analog value includes:
  • the method further includes:
  • the operating current of the laser is turned on.
  • the method further includes:
  • the operating current of the laser is turned off.
  • the acquiring the pulse period T of the laser control pulse comprises:
  • an embodiment of the present invention provides a pulsed fiber laser including a processor, a converter, a control board, a laser output unit, and a control interface, wherein the processor is respectively connected to the converter and the Controlling a board and communicating with an external device through the control interface, the converter further connecting the laser output unit, wherein
  • the processor is configured to acquire an analog input signal and receive a laser control pulse signal, and detect a laser control pulse signal, and when detecting any one of the laser control pulses, switch the laser to a laser output state, and simultaneously acquire a duration of the laser control pulse An analog value of the analog input signal in the segment, and a magnitude of a laser-driven operating current is obtained according to the analog value;
  • the converter is configured to generate a control signal based on the operating current to cause the laser output unit to output a laser pulse of a corresponding power according to the magnitude of the operating current during the duration.
  • the processor includes a connected first processing unit and a second processing unit;
  • the first processing unit is configured to acquire an analog input signal
  • the second processing unit is configured to receive and detect a laser control pulse signal, and when detecting any one of the laser control pulses, switch the laser output unit to a laser output state according to a switching signal of the control board, and acquire the An analog value of the analog input signal during a duration of the laser control pulse, and a magnitude of the laser driven operating current is obtained based on the analog value.
  • the second processing unit when the second processing unit acquires the analog value of the analog input signal in the duration of the laser control pulse, the second processing unit is specifically configured to be preset by the first processing unit according to the set number of acquisitions. Acquiring a plurality of sample values within a duration, and using an average of the plurality of sample values as an analog value of the analog input signal within the preset duration, wherein the analog value is at different times of the laser control pulse Real-time updates within the segment;
  • the converter obtains a magnitude of the laser-driven operating current according to the analog value, specifically for acquiring a maximum analog value of the analog input signal, and obtaining a laser-driven operating current according to the magnitude relationship between the average value and the maximum analog value. size.
  • the second processing unit is further configured to turn on the operating current of the laser when the laser control pulse is detected for the first time.
  • the second processing unit is further configured to acquire a pulse period T of the laser control pulse, and is used to start timing from the currently detected laser control pulse, and if a new laser control pulse is not detected after the duration T′ , the operating current of the laser is turned off.
  • the second processing unit when acquiring the pulse period T of the laser control pulse, is specifically configured to acquire a time difference T1 between the currently detected laser control pulse and the last detected laser control pulse, and acquire the current detected The pulse period T is obtained from T1 and T2 according to the time difference T2 between the laser control pulse and the next detected laser control pulse.
  • an embodiment of the present invention provides a laser cutting system, a control board, a host computer, and the above-mentioned pulse fiber laser, wherein the upper computer is connected to a control interface on the pulse fiber laser through the control board.
  • the laser pulse output of the pulsed fiber laser is controlled by transmitting a laser control pulse signal through the control board.
  • the laser cutting system includes a plurality of the pulsed fiber lasers, and the control board is provided with a connection port corresponding to the number of the pulsed fiber lasers, and the upper computer passes the control board pair A plurality of the pulsed fiber lasers are synchronously controlled.
  • the pulsed fiber laser, and the laser cutting system provided by the embodiments of the present invention, by continuously inputting the analog input signal and the laser control pulse signal, the laser power can be obtained as a function of the input amount of the analog input signal.
  • the changed laser pulse has a simpler control interface and higher control efficiency than the existing laser pulse power control, and can realize synchronous control of laser pulse power.
  • FIG. 1 is a flowchart of a laser pulse power control method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing relationship between laser pulse power and laser control pulse and analog quantity according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of relationship between analog quantity and operating current according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a pulse period of a laser control pulse according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of control of a pulsed fiber laser according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a pulsed fiber laser according to an embodiment of the present invention.
  • FIG. 7 is another structural block diagram of a pulsed fiber laser according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing relationship between a laser pulse output of a pulsed fiber laser and a PD sensor signal according to an embodiment of the present invention
  • FIG. 9 is a structural block diagram of a laser cutting system according to an embodiment of the present invention.
  • FIG. 10 is another structural block diagram of a laser cutting system according to an embodiment of the present invention.
  • a process, method, system, product, or device that comprises a series of steps or units is not limited to the listed steps or units, but optionally also includes steps or units not listed, or alternatively Other steps or units inherent to these processes, methods, products, or equipment.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • the embodiment of the invention provides a laser pulse power control method, as shown in the flow chart of FIG. 1 , the method includes:
  • the acquiring the analog value of the analog input signal in the duration of the laser control pulse comprises: acquiring the preset time length according to the set number of acquisitions. a plurality of sample values, and an average value of the plurality of sample values is used as an analog value of the analog input signal within the preset duration, for example, 10 sample values are collected in one acquisition period, and the 10 samples are collected. The average value of the values is used as an analog value of the analog input signal for the duration period.
  • the analog value of the analog input signal is updated in real time during different time periods of the laser control pulse signal.
  • the magnitude of the operating current obtained by the laser driving according to the analog value includes: obtaining a maximum analog value of the analog input signal, Obtaining a magnitude of the laser-driven operating current according to a ratio relationship between the average value and the maximum analog value; in the embodiment, the analog input signal may have a certain input range, that is, at a minimum analog value and a maximum
  • the analog values in the range of analog values correspond to different laser output powers of the laser (as shown in Figure 2).
  • the input range of the analog input signal is 0 ⁇ 10 volts
  • the minimum analog value of 0 volts corresponds to the laser-free output of the laser.
  • the maximum analog value of 10 volts corresponds to the maximum output power of the laser.
  • the relationship between the actual output power of the laser and the maximum output power may be determined according to the ratio relationship between the average value and the maximum analog value. Specifically, Since the operating current corresponding to the output power of the laser is constant, thereby The corresponding actual output power is obtained by controlling the magnitude of the operating current of the laser.
  • the analog quantity of the analog input signal and the working current may have a linear relationship, as shown in FIG. 3 .
  • Medium Power_val represents the analog quantity of the analog input signal
  • I represents the magnitude of the laser-driven operating current of the laser
  • the operating current of different magnitudes can be obtained by the analog quantity change of the analog input signal, thereby outputting laser pulses of different powers.
  • the power of the laser pulse can be adjusted in real time.
  • the method further includes turning on an operating current of the laser when the laser control pulse is detected for the first time, wherein the first detecting the laser control pulse means that the laser is in a state where the laser pulse stops outputting The first laser control pulse detected.
  • the pulse period T of the laser control pulse may be updated in real time.
  • the acquiring the pulse period T of the laser control pulse includes: acquiring the currently detected laser control pulse and the last detection.
  • the laser control pulse has a time difference T1, and acquires a time difference T2 between the currently detected laser control pulse and the next detected laser control pulse, and obtains the pulse period T according to T1 and T2, for example, referring to the schematic diagram shown in FIG.
  • a real-time pulse period T is obtained, where n is a positive integer, thereby reducing the period error caused by the device hardware, thereby reducing the interference to the laser control pulse output.
  • the laser pulse power control method provided by the embodiment actually controls the laser pulse power of the laser through a set of analog quantity and the laser control pulse signal.
  • the analog input signal controls the laser pulse power of the laser, and the analog input
  • the signal is transmitted by only one transmission line, and the analog input signal and the laser control pulse signal are continuously input, and the continuous input analog input signal is sampled in a targeted manner, and each time the laser detects a laser control pulse, a corresponding output is output.
  • the laser pulse the power of which depends on the analog quantity of the analog input signal collected during the corresponding laser pulse period. In this way, the laser can obtain a change in the input power of the set of laser power with the analog input signal.
  • the changed laser pulse is controlled by nine transmission lines compared to the conventional laser.
  • the scheme adopted in this embodiment can simplify the control interface, and the control efficiency is higher, and is more suitable for simple control in industrial situations.
  • the laser pulse outputted by the laser is synchronized with the laser control pulse signal, and the amplitude variation of the laser pulse outputted by the laser is synchronized with the analog quantity change of the analog input signal, so that the laser can be realized by the analog input signal and the laser control pulse signal. Synchronous control of laser pulse power.
  • the pulsed fiber laser includes a processor 10, a converter 20, a control board 30, a laser output unit 40, and a control interface 50.
  • the processors are respectively connected.
  • the converter and the control board are in communication with an external device through the control interface, the converter is further connected to the laser output unit, wherein the processor is configured to acquire an analog input signal and receive a laser control pulse signal Detecting a laser control pulse signal, and when detecting any one of the laser control pulses, switching the laser to a laser output state, and simultaneously acquiring an analog value of the analog input signal during a duration of the laser control pulse, according to the The analog value gives the magnitude of the operating current driven by the laser.
  • the processor includes a first processing unit 101 and a second processing unit 102.
  • the processor 10, the converter 20, the control board 30, and the control interface 50 can be integrated on the same circuit board.
  • the converter 20 can also be provided separately, such as near the location of the laser output unit 40.
  • the first processing unit 101 is configured to collect an analog input signal. Specifically, the process of collecting the analog input signal by the first processing unit 101 is real-time acquisition, and an independent analog signal source output connected to the pulsed fiber laser may be collected. Analog signal.
  • the first processing unit 101 may be an ADC (Analog-to-Digital Converter) chip or an MCU (Microcontroller). Unit, micro control unit).
  • the second processing unit 102 is configured to receive and detect a laser control pulse signal. When any one of the laser control pulses is detected, the laser output unit 40 of the pulsed fiber laser is switched to the laser output state according to the switching signal of the control board 30. Obtaining an analog value of the analog input signal in a duration of the laser control pulse, and obtaining an operating current of the laser output unit 40 according to the analog value, wherein the analog value of the analog input signal is The first processing unit 101 transmits the data to the second processing unit 102 in real time and continuously. In this embodiment, the real-time acquisition is performed according to a certain collection period, and the specific collection process is described below.
  • the second processing unit 102 can collect a laser control pulse signal outputted by an independent laser pulse signal source connected to the pulsed fiber laser, and control the pulsed fiber laser to generate a complete laser pulse by laser controlling the pulse signal.
  • the second processing unit 102 is configured to detect the laser control pulse signal, specifically by detecting the level value of the laser control pulse signal, when the level values of the two consecutive acquisitions are different, such as the nth time. It is low level, and the n+1th time is high level, which indicates that the laser control pulse is detected, and the pulse period of the laser control pulse signal can be obtained by acquiring the time difference between two adjacent laser control pulses.
  • the second processing unit 102 may be a CPU (Central Processing Unit) chip or an FPGA (Field-Programmable). Gate Array, field programmable gate array, the control board 30 may employ an acousto-optic card, including a laser voice-activated switch and a seed source, which may be controlled by the second processing unit 102.
  • the converter 20 is configured to generate a control signal based on the operating current to control the laser output unit 40 of the pulsed fiber laser by the control signal, and in the case that the laser output unit 40 of the pulsed fiber laser has turned on the operating current,
  • the laser output unit 40 of the pulsed fiber laser outputs a laser pulse of a corresponding power according to the magnitude of the operating current during the duration; specifically, the control signal is a signal for controlling the magnitude of the operating current of the laser output unit 40, Represents the magnitude of the operating current when the laser output unit 40 is powered.
  • the larger the value of the control signal the larger the operating current, and the higher the amplitude of the output laser pulse, the greater the power.
  • the converter 20 may be a DAC (Digital to Analog Converter) chip
  • the laser output unit 40 refers to laser pumping, specifically a laser diode LD (laser diode), a DAC chip.
  • the digital signal sent by the second processing unit 102 (such as the second processing unit 102 using the FPGA) is converted into an analog quantity, and the working current of the laser output unit 40 is controlled in real time by the magnitude of the analog.
  • the magnitude of the current is determined by the analog quantity output by the DAC chip, and the analog quantity output by the DAC chip is determined by the magnitude of the analog quantity collected by the first processing unit 101.
  • the magnitude of the operating current is collected by the first processing unit 101.
  • the magnitude of the analog quantity is related. In this embodiment, the magnitude of the working current is linear with the magnitude of the analog quantity collected by the first processing unit 101.
  • the control board 30 is a switch for outputting a laser pulse by a pulsed fiber laser, which is turned on when a laser control pulse is detected, that is, the control board 30 determines a point in time at which the pulsed fiber laser outputs a laser pulse.
  • the laser control pulse is not detected and the operating current of the laser is on, it belongs to the laser energy storage stage.
  • the second processing unit 102 will switch the pulsed fiber laser to the laser output wait state through the control board 30, when the next laser control pulse is detected, The pulsed fiber laser is then switched to the laser output state by the control board 30, and is cycled until there is no laser control pulse signal input or the pulse fiber laser operation ends.
  • the second processing unit 102 is specifically configured to be configured by the first processing unit 101 according to the simulated value of the analog input signal during the duration of the laser control pulse. Collecting a plurality of sample values for a certain period of time, and using an average value of the plurality of sample values as an analog value of the analog input signal in the duration period; the certain time may be an acquisition period, such as The ADC chip of 1M rate can reach 1us per acquisition period, and the number of acquisitions can be set as needed, for example, 10 times.
  • the first processing unit 101 uses the average value of 10 sample values collected in one acquisition period as the simulation.
  • the analog value of the input signal during the duration is transmitted to the second processing unit 102.
  • the magnitude of the operating current based on the laser output unit 40 is determined by the acquired analog value, and the converter 20 obtains the magnitude of the operating current of the laser output unit 40 according to the analog value, specifically for acquiring the
  • the maximum analog value of the analog input signal is obtained according to the magnitude relationship between the average value and the maximum analog value.
  • the analog input signal may have a certain input range, that is, corresponding to a minimum analog value and a maximum analog value, and the analog values in this range respectively correspond to different laser output powers of the pulsed fiber lasers.
  • the input range of the analog input signal is 0 ⁇ 10 volts, wherein the minimum analog value of 0 volt corresponds to the pulsed fiber laser without laser output, and the maximum analog value of 10 volt corresponds to the maximum output power of the pulsed fiber laser.
  • the second processing unit 102 can determine the relationship between the actual output power of the pulsed fiber laser and the maximum output power according to the magnitude relationship between the average value and the maximum analog value, due to the maximum output of the pulsed fiber laser.
  • the operating current corresponding to the power is constant, and the second processing unit 102 can further obtain the magnitude of the operating current corresponding to the actual output power of the pulsed fiber laser.
  • the first processing unit 101 collects The analog quantity of the analog input signal and the magnitude of the operating current are The linear relationship is as shown in FIG. 3.
  • Power_val represents the analog quantity of the analog input signal
  • I represents the magnitude of the operating current of the laser output unit 40 of the pulsed fiber laser, when the analog quantity is collected by the first processing unit 101.
  • the operating current of the laser output unit 40 corresponding to the analog quantity output by the converter 20 is the rated current, and when the analog quantity collected by the first processing unit 101 is the minimum analog quantity (ie, 0), The analog current output from the converter 20 corresponds to an operating current of the laser output unit 40 corresponding to zero, which actually turns off the laser output unit 40, which can be used as a protection for the pulsed fiber laser.
  • the value of Power_val since the first processing unit 101 is collected in real time, the value of Power_val also changes in real time, and the operating current I also changes in real time.
  • the second processing unit 102 converts the change of Power_val into the operating current I. The change, in turn, enables real-time control of the laser pulse power of the pulsed fiber laser.
  • the second processing unit 102 is further configured to turn on the operating current of the pulsed fiber laser when the laser control pulse is detected for the first time.
  • the first detection of the laser control pulse refers to the first laser control pulse detected by the pulsed fiber laser when the laser pulse stops outputting state.
  • the second processing unit 102 is further configured to acquire a pulse period T of the laser control pulse, and is used to start timing from the currently detected laser control pulse, and if a new laser control is not detected after the duration T′
  • the pulse fiber laser By turning on the operating current when the second processing unit 102 first detects the laser control pulse or not detecting the laser control pulse after a certain time, the pulse fiber laser is still waiting after the working current is turned on without the laser control pulse.
  • the state causes power loss, and also avoids the pulsed fiber laser being in a continuous working current on state and affecting the working life of the device.
  • the pulse period T of the laser control pulse in the embodiment may be updated in real time.
  • the second processing unit 102 is specifically configured to acquire the current detection when acquiring the pulse period T of the laser control pulse. Obtaining a time difference T1 between the laser control pulse and the last detected laser control pulse, and acquiring a time difference T2 between the currently detected laser control pulse and the next detected laser control pulse, and obtaining the pulse period T according to T1 and T2
  • a real-time pulse period T is obtained by obtaining an average value of Tn and Tn+1, where n is a positive integer, thereby reducing the period error caused by the device hardware, thereby reducing the pair. Interference from laser pulse output.
  • the MCU when the first processing unit 101 is an MCU, the MCU has a serial communication function, and can be used for communication interaction between the pulsed fiber laser and the host computer, for example, receiving the transmission sent by the host computer.
  • the instruction and the instruction are parsed.
  • the instruction sent by the host computer has two forms, one is the control instruction of the upper computer to the pulsed fiber laser to perform the corresponding operation task, and the other is the data instruction, such as reading the MCU. Internal information, configuration parameters for pulsed fiber lasers.
  • the MCU can also be used to communicate with the FPGA, and can forward the internal running state of the FPGA to the upper computer, or forward the instruction of the upper computer to the FPGA to the FPGA, the MCU.
  • the FPGA can communicate directly with the serial bus; the FPGA can be used to interact with an external control board to receive various control signals sent by the external control board, including switching the laser and controlling the laser emergency stop.
  • the pulsed fiber laser may further include a sensor module 60 coupled to the processor 10, and the sensor module 60 may include various sensors, such as shown in FIG. Temperature sensor 601 and photosensor 602; when the first processing unit 101 is an MCU and the second processing unit 102 is an FPGA, the MCU can also be used for monitoring external signals, such as monitoring the temperature of the pulsed fiber laser by the temperature sensor 601. Or monitoring the current and voltage of the pulsed fiber laser through other sensors. After the MCU is powered on, the signal inside the pulsed fiber laser can be monitored.
  • the MCU will send an instruction to the FPGA to stop the FPGA and make the laser
  • the output unit 40 stops working and records the alarm signal; and the FPGA can also be used to receive the signal of the photo sensor 602 to determine whether the laser light path is normal.
  • the photo sensor 602 can be configured as a photodiode (PD-).
  • the optical pulse signal can be collected in real time, after the laser is turned on, as shown in Fig. 8, photoelectric sensing 602 converts the laser pulse into an electrical pulse, and the FPGA monitors the signal of the photosensor 602 in real time.
  • the pulsed fiber laser may include a plurality of converters 20, each of which corresponds to one laser output unit 40, enabling synchronous control of laser pulse power of the plurality of laser output units 40.
  • the pulsed fiber laser provided by this embodiment actually collects a set of analog quantities and transmits them to the second processing unit 102 through the first processing unit 101, and controls the laser of the pulsed fiber laser with the laser control pulse signals acquired by the second processing unit 102.
  • Pulse power only one transmission line can transmit the analog input signal to control the laser pulse power of the pulsed fiber laser, and continuously input the analog input signal and the laser control pulse signal, and sample the continuous input analog input signal.
  • the pulsed fiber laser outputs a laser pulse correspondingly, and the power of the laser pulse depends on the amount of the first processing unit 101 collected in the corresponding laser control pulse period.
  • the analog quantity of the analog input signal in which the pulsed fiber laser can obtain a set of laser pulses that vary with the input of the analog input signal, and nine transmission line control is used compared to the conventional pulsed fiber laser.
  • the solution adopted in this embodiment can Control interfaces, control more efficient, more suitable for industrial applications simple control.
  • the laser pulse outputted by the pulsed fiber laser is synchronized with the laser control pulse signal, and the amplitude variation of the laser pulse outputted by the pulsed fiber laser is synchronized with the analog quantity change of the analog input signal, so the pulse signal is controlled by the analog input signal and the laser. Synchronous control of the laser pulse power of the pulsed fiber laser can be realized.
  • the embodiment of the present invention provides a laser cutting system, as shown in FIG. 9, comprising a host computer 1, a control board 2, and a pulsed fiber laser 3 in the above embodiment, wherein the host computer passes the control board 2 and the The pulsed fiber laser 3 communicates, controls the pulsed fiber laser 3 to output laser light, and cooperates with the production line or the machine tool to cut or mark the product.
  • the upper computer 1 is connected to the pulsed fiber laser 3 through the control board 2.
  • the control board 2 can be integrated into the host computer 1, that is, the control board 2 is an integral part of the host computer 1.
  • control board 2 can simulate various control signals during actual use of the actual laser, such as operation of turning on the laser, etc., so it can be used to test the pulsed fiber laser 3, specifically, due to the pulsed fiber laser.
  • the host computer 1 controls the pulsed fiber laser 3, it will perform control interaction with the pulsed fiber laser 3 through the control interface of the pulse fiber laser 3 (such as the DB25 interface), and the DB25 interface includes 25 connection pins.
  • the pins may include a switching laser IO, a guiding light control IO, an emergency stop IO, a laser alarm IO, etc.; the host computer 1 can control the pulsed fiber laser 3 through these IOs, and correspondingly obtain an alarm state of the pulsed fiber laser 3, Therefore, after the configuration of the pulsed fiber laser 3 is completed, the control signal can be sent to the pulsed fiber laser 3 through the control board 2 to test whether the response of the pulsed fiber laser 3 to the external control signal is correct, and the pulse fiber laser 3 is tested. Whether the DB25 interface is normal.
  • the system may include a plurality of the pulsed fiber lasers 3, and the control board 2 is provided with a connection corresponding to the number of the pulsed fiber lasers 3.
  • the upper computer 1 performs synchronous control of a plurality of the pulsed fiber lasers 3 through the control board 2.
  • the host computer 1 may include a memory that stores control instructions, and the memory is used as a non-volatile computer readable storage medium for storing non-volatile software programs, non-volatile computer executables.
  • a program or module such as a program command corresponding to the laser pulse power control method in the above embodiment of the present application.
  • the host computer 1 implements the solution described in the above method embodiments by running non-volatile software programs, instructions, and units stored in the memory.
  • the memory may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device such as a USB flash drive, a removable hard disk, a read only memory (Read -Only Memory, ROM), Random Access Memory (RAM), disk or optical disk, and other media that can store program code.
  • a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device such as a USB flash drive, a removable hard disk, a read only memory (Read -Only Memory, ROM), Random Access Memory (RAM), disk or optical disk, and other media that can store program code.
  • the laser cutting system provided by the embodiment of the present invention, by continuously inputting an analog input signal and a laser control pulse signal, a laser pulse whose laser power changes according to a change in the input amount of the analog input signal can be obtained, compared to the existing one.
  • Laser pulse power control, control interface is simpler, control efficiency is higher, and synchronous control of laser pulse power can be guaranteed.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光脉冲功率控制方法及脉冲光纤激光器(3)及激光切割系统。方法包括:采集模拟输入信号和接收激光控制脉冲信号(S101);检测激光控制脉冲信号,在检测到任意一个激光控制脉冲时,使激光器切换至激光输出状态,同时获取激光控制脉冲的持续时间段内的模拟输入信号的模拟值,根据模拟值得到激光驱动的工作电流的大小(S102);基于工作电流生成控制信号,以使激光器在持续时间段内根据工作电流的大小输出对应功率的激光脉冲(S103)。脉冲光纤激光器(3)及激光切割系统用于执行激光脉冲功率控制方法。通过连续输入的模拟输入信号和激光控制脉冲信号对激光脉冲功率进行控制,控制接口(50)更简单,控制效率更高,可实现同步控制。

Description

激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统 技术领域
本发明实施例属于激光技术领域,尤其涉及一种激光脉冲功率控制方法及应用该方法的脉冲光纤激光器和激光切割系统。
背景技术
在工业生产中,激光器的功率控制过程一般会涉及到主振荡器开关信号、调制输入开关信号、并行信号等的切换控制,其中信号传输线一般采用9线传输功率数据和控制数据,采用这样的方式一方面控制接口较为复杂,另一方面由于采用多线传输数据及控制过程较为繁琐,难以保证同步控制。
技术问题
为了解决上述问题,本发明实施例提供一种激光脉冲功率控制方法及应用该激光脉冲功率控制方法的脉冲光纤激光器和激光切割系统,以解决现有激光控制的控制接口较为复杂,采用多线传输数据及控制过程较为繁琐,难以保证同步控制的问题。
技术解决方案
第一方面,本发明实施例提供一种激光脉冲功率控制方法,包括:
采集模拟输入信号和接收激光控制脉冲信号;
检测激光控制脉冲信号,在检测到任意一个激光控制脉冲时,使激光器切换至激光输出状态,同时获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值,根据所述模拟值得到激光驱动的工作电流的大小;
基于所述工作电流生成控制信号,以使所述激光器在所述持续时间段内根据所述工作电流的大小输出对应功率的激光脉冲。
进一步地,所述获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值包括:
根据设定的采集次数在预设时长内获取多个采样值,并将所述多个采样值的平均值作为所述模拟输入信号在所述预设时长内的模拟值,其中所述模拟输入信号的模拟值在所述激光控制脉冲信号的不同时间段内实时更新;
所述根据所述模拟值得到激光驱动的工作电流的大小包括:
获取所述模拟输入信号的最大模拟值,以根据所述平均值和最大模拟值的比值关系得到激光驱动的工作电流的大小。
进一步地,所述方法还包括:
在首次检测到激光控制脉冲时,开启激光器的工作电流。
进一步地,所述方法还包括:
获取所述激光控制脉冲的脉冲周期T;
从当前检测到的激光控制脉冲开始计时,若持续时间T'后没有检测到新的激光控制脉冲,则关闭激光器的工作电流。
进一步地,所述获取所述激光控制脉冲的脉冲周期T包括:
获取当前检测到的激光控制脉冲与上一次检测到的激光控制脉冲的时间差T1,并获取当前检测到的激光控制脉冲与下一次检测到的激光控制脉冲的时间差T2,根据T1和T2得到所述脉冲周期T。
第二方面,本发明实施例提供一种脉冲光纤激光器,所述脉冲光纤激光器包括处理器、转换器、控制板、激光输出单元和控制接口,所述处理器分别连接所述转换器和所述控制板,并通过所述控制接口与外部设备通信,所述转换器还连接所述激光输出单元,其中,
所述处理器用于采集模拟输入信号和接收激光控制脉冲信号,检测激光控制脉冲信号,在检测到任意一个激光控制脉冲时,使激光器切换至激光输出状态,同时获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值,根据所述模拟值得到激光驱动的工作电流的大小;
所述转换器用于基于所述工作电流生成控制信号,以使所述激光输出单元在所述持续时间段内根据所述工作电流的大小输出对应功率的激光脉冲。
进一步地,所述处理器包括相连的第一处理单元和第二处理单元;
所述第一处理单元用于采集模拟输入信号;
所述第二处理单元用于接收并检测激光控制脉冲信号,在检测到任意一个激光控制脉冲时,根据所述控制板的开关信号使所述激光输出单元切换至激光输出状态,同时获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值,根据所述模拟值得到激光驱动的工作电流的大小。
进一步地,所述第二处理单元在获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值时具体用于通过所述第一处理单元根据设定的采集次数在预设时长内获取多个采样值,并将所述多个采样值的平均值作为所述模拟输入信号在所述预设时长内的模拟值,其中所述模拟值在所述激光控制脉冲的不同时间段内实时更新;
所述转换器根据所述模拟值得到激光驱动的工作电流的大小具体用于获取所述模拟输入信号的最大模拟值,根据所述平均值和最大模拟值的大小关系得到激光驱动的工作电流的大小。
进一步地,所述第二处理单元还用于在首次检测到激光控制脉冲时,开启激光器的工作电流。
进一步地,所述第二处理单元还用于获取所述激光控制脉冲的脉冲周期T,并用于从当前检测到的激光控制脉冲开始计时,若持续时间T'后没有检测到新的激光控制脉冲,则关闭激光器的工作电流。
进一步地,所述第二处理单元在获取所述激光控制脉冲的脉冲周期T时具体用于获取当前检测到的激光控制脉冲与上一次检测到的激光控制脉冲的时间差T1,并获取当前检测到的激光控制脉冲与下一次检测到的激光控制脉冲的时间差T2,根据T1和T2得到所述脉冲周期T。
第三方面,本发明实施例提供一种激光切割系统,控制板卡、上位机和上述的脉冲光纤激光器,所述上位机通过所述控制板卡连接至所述脉冲光纤激光器上的控制接口,以通过所述控制板卡发送激光控制脉冲信号,控制所述脉冲光纤激光器的激光脉冲输出。
进一步地,所述激光切割系统包括多个所述脉冲光纤激光器,所述控制板卡上设置有与所述脉冲光纤激光器的数量相对应的连接端口,所述上位机通过所述控制板卡对多个所述脉冲光纤激光器进行同步控制。
有益效果
根据本发明实施例提供的激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统,通过连续输入的模拟输入信号和激光控制脉冲信号,可以获得激光功率随所述模拟输入信号的输入量的变化而变化的激光脉冲,相比于现有的激光脉冲功率控制,控制接口更简单,控制效率更高,可实现激光脉冲功率的同步控制。
附图说明
图1为本发明实施例提供的激光脉冲功率控制方法的流程图;
图2为本发明实施例提供的激光脉冲功率与激光控制脉冲、模拟量的关系示意图;
图3为本发明实施例提供的模拟量与工作电流的关系示意图;
图4为本发明实施例提供的激光控制脉冲的脉冲周期示意图;
图5为本发明实施例提供的脉冲光纤激光器控制示意图;
图6为本发明实施例提供的脉冲光纤激光器的结构框图;
图7为本发明实施例提供的脉冲光纤激光器的另一种结构框图;
图8为本发明实施例提供的脉冲光纤激光器的激光脉冲输出与PD传感器信号的关系示意图;
图9为本发明实施例提供的激光切割系统的结构框图;
图10为本发明实施例提供的激光切割系统的另一种结构框图。
本发明的最佳实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本发明实施例提供一种激光脉冲功率控制方法,如图1所示的流程框图,所述方法包括:
S101、采集模拟输入信号和接收激光控制脉冲信号;该模拟输入信号可以是由连接激光器的独立模拟信号源输出,该激光控制脉冲信号可以是由连接激光器的独立的激光脉冲信号源输出。
S102、检测激光控制脉冲信号,在检测到任意一个激光控制脉冲时,使激光器切换至激光输出状态,同时获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值,根据所述模拟值得到激光驱动的工作电流的大小。
S103、基于所述工作电流生成控制信号,以使所述激光器在所述持续时间段内根据所述工作电流的大小输出对应功率的激光脉冲。
在步骤S102中,作为本实施例的可选方案,所述获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值包括:根据设定的采集次数在预设时长内获取多个采样值,并将所述多个采样值的平均值作为所述模拟输入信号在所述预设时长内的模拟值,比如在一个采集周期内采集10个采样值,将这10个采样值的平均值作为所述模拟输入信号在所述持续时间段内的模拟值,在本实施例中,所述模拟输入信号的模拟值在所述激光控制脉冲信号的不同时间段内实时更新。由于激光驱动的工作电流大小由采集的模拟值决定,进一步的,作为可选方案,所述根据所述模拟值得到激光驱动的工作电流的大小包括:获取所述模拟输入信号的最大模拟值,根据所述平均值和最大模拟值的比值关系得到激光驱动的工作电流的大小;在本实施例中,所述模拟输入信号可以具有一个确定的输入范围,即在一个最小的模拟值和一个最大的模拟值范围内的模拟值分别对应激光器不同的激光输出功率(如图2所示),比如所述模拟输入信号的输入范围为0~10伏特,其中最小模拟值0伏特对应激光器无激光输出,最大模拟值10伏特对应激光器的最大输出功率,如此,在一些实施例中,可以根据所述平均值和最大模拟值的比值关系确定激光器的实际输出功率与最大输出功率的关系,具体的,由于激光器的输出功率对应的工作电流是一定的,由此可通过控制激光器的工作电流的大小获得对应的实际输出功率,在本实施例中,所述模拟输入信号的模拟量和所述工作电流的大小可呈一定的线性关系,如图3所示,图中Power_val表示所述模拟输入信号的模拟量,I表示激光器的激光驱动的工作电流的大小,通过所述模拟输入信号的模拟量的变化可得到不同大小的工作电流,从而输出不同功率的激光脉冲,即可实时调节激光脉冲的功率。
可选的,在步骤S102中,所述方法还包括在首次检测到激光控制脉冲时,开启激光器的工作电流,其中,所述首次检测到激光控制脉冲是指激光器在处于激光脉冲停止输出状态时检测到的第一个激光控制脉冲。进一步地,所述方法还包括:获取所述激光控制脉冲的脉冲周期T;在获取到激光脉冲周期T后,检测当前是否有激光控制脉冲,并从检测到激光控制脉冲时开始计时,若持续时间T'后没有检测到新的激光控制脉冲,则关闭激光器的工作电流,其中T'大于T,比如取T'=1.1T,当然T'与T的比例关系可根据实际情况自由设定,在此不作限定。通过在首次检测到激光控制脉冲才开启工作电流或者在一定时间后没有检测到激光控制脉冲的方式可避免在没有激光控制脉冲的时候激光器仍处于工作电流开启后的等待状态而造成电量损耗,同时也可避免激光器处于持续的工作电流开启状态而影响设备的工作寿命。
在本实施例中,所述激光控制脉冲的脉冲周期T可以是实时更新的,具体的,所述获取所述激光控制脉冲的脉冲周期T包括:获取当前检测到的激光控制脉冲与上一次检测到的激光控制脉冲的时间差T1,并获取当前检测到的激光控制脉冲与下一次检测到的激光控制脉冲的时间差T2,根据T1和T2得到所述脉冲周期T,比如参阅图4所示的示意图,通过求取Tn和Tn+1的平均值得到实时的脉冲周期T,其中n为正整数,由此可以减小因设备硬件导致的周期误差,从而降低对激光控制脉冲输出的干扰。
本实施例提供的激光脉冲功率控制方法实际上是通过一组模拟量配合激光控制脉冲信号控制激光器的激光脉冲功率,如图5所示,模拟输入信号对激光器的激光脉冲功率进行控制,模拟输入信号只需一根传输线传输,通过连续输入的模拟输入信号和激光控制脉冲信号,并对连续输入的模拟输入信号进行有针对性的采样,激光器每检测到一个激光控制脉冲就会相应地输出一个激光脉冲,该激光脉冲的功率大小取决于对应的激光脉冲周期内所采集到的模拟输入信号的模拟量,通过这种方式激光器可以获得一组激光功率随所述模拟输入信号的输入量的变化而变化的激光脉冲,相比于传统激光器采用九根传输线控制,本实施例采用的方案能够简化控制接口,控制效率更高,更适合于工业场合的简单控制。
此外,激光器输出的激光脉冲与激光控制脉冲信号是同步的,激光器输出的激光脉冲的幅度变化与模拟输入信号的模拟量变化是同步的,因此通过模拟输入信号和激光控制脉冲信号能够实现激光器的激光脉冲功率的同步控制。
本发明实施例提供一种脉冲光纤激光器,如图6所示,所述脉冲光纤激光器包括处理器10、转换器20、控制板30、激光输出单元40和控制接口50,所述处理器分别连接所述转换器和所述控制板,并通过所述控制接口与外部设备通信,所述转换器还连接所述激光输出单元,其中,所述处理器用于采集模拟输入信号和接收激光控制脉冲信号,检测激光控制脉冲信号,在检测到任意一个激光控制脉冲时,使激光器切换至激光输出状态,同时获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值,根据所述模拟值得到激光驱动的工作电流的大小。所述处理器包括相连的第一处理单元101和第二处理单元102,在本实施例中,所述处理器10、转换器20、控制板30和控制接口50可集成在同一电路板上。在一些实施例中,也可以将转换器20单独设置,例如靠近激光输出单元40的位置。
其中,所述第一处理单元101用于采集模拟输入信号;具体的,所述第一处理单元101采集模拟输入信号的过程为实时采集,可以采集连接所述脉冲光纤激光器的独立模拟信号源输出的模拟信号。在本实施例中,所述第一处理单元101可以是ADC(Analog-to-Digital Converter, 模数转换器)芯片或者MCU(Microcontroller Unit, 微控制单元)。
所述第二处理单元102用于接收并检测激光控制脉冲信号,在检测到任意一个激光控制脉冲时,根据所述控制板30的开关信号使脉冲光纤激光器的激光输出单元40切换至激光输出状态,同时获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值,根据所述模拟值得到激光输出单元40的工作电流的大小,其中所述模拟输入信号的模拟值是由第一处理单元101实时且连续采集后传输至所述第二处理单元102,在本实施例中,实时采集按照一定的采集周期进行采集,具体采集过程下文进行展开说明。所述第二处理单元102可以采集连接脉冲光纤激光器的独立的激光脉冲信号源输出的激光控制脉冲信号,通过激光控制脉冲信号来控制脉冲光纤激光器产生完整的激光脉冲。在本实施例中,所述第二处理单元102用于检测激光控制脉冲信号具体是通过检测激光控制脉冲信号的电平值来实现,当连续两次采集的电平值不同,比如第n次是低电平,第n+1次是高电平,则表明检测到激光控制脉冲,通过获取相邻两个激光控制脉冲的时间差就可获得激光控制脉冲信号的脉冲周期。在本实施例中,所述第二处理单元102可以是CPU(Central Processing Unit,中央处理器)芯片或FPGA(Field-Programmable Gate Array,现场可编程门阵列),所述控制板30可以采用声光板卡,包括激光声控开关和种子源,所述控制板30可由第二处理单元102控制。
所述转换器20用于基于所述工作电流生成控制信号,以通过该控制信号控制脉冲光纤激光器的激光输出单元40,在脉冲光纤激光器的激光输出单元40已开启工作电流的情况下,使所述脉冲光纤激光器的激光输出单元40在所述持续时间段内根据所述工作电流的大小输出对应功率的激光脉冲;具体的,该控制信号是控制激光输出单元40的工作电流大小的信号,其代表给激光输出单元40供电时工作电流的大小,该控制信号的数值越大,则代表工作电流越大,输出的激光脉冲幅度越高,功率越大。在本实施例中,所述转换器20可以是DAC(Digital to analog converter, 数模转换器)芯片,所述激光输出单元40指激光泵浦,具体为激光二极管LD(laser diode),DAC芯片在本发明实施例中用于将第二处理单元102(比如第二处理单元102采用FPGA)发送的数字信号转换成模拟量,用模拟量的大小实时控制激光输出单元40的工作电流,这个工作电流大小由DAC芯片输出的模拟量确定,而DAC芯片输出的模拟量是由第一处理单元101采集的模拟量大小来决定的,综合来说,这个工作电流大小与第一处理单元101采集的模拟量大小相关,在本实施例中,这个工作电流大小与第一处理单元101采集的模拟量大小呈线性关系,具体下文展开说明。
在本实施例中,所述控制板30是脉冲光纤激光器输出激光脉冲的开关,其在检测到激光控制脉冲时打开,即所述控制板30决定了脉冲光纤激光器输出激光脉冲的时间点。在未检测到激光控制脉冲,而激光器的工作电流为开启状态时,属于激光储能阶段。在进一步的实施例中,当一个激光控制脉冲结束后,所述第二处理单元102将通过所述控制板30使脉冲光纤激光器切换至激光输出等待状态,在检测到下一个激光控制脉冲时,再通过所述控制板30使脉冲光纤激光器切换至激光输出状态,如此循环,直到没有激光控制脉冲信号输入或者脉冲光纤激光器作业结束。
在本实施例中,所述第二处理单元102在获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值时具体用于通过所述第一处理单元101根据设定的采集次数在一定时间内获取多个采样值,并将所述多个采样值的平均值作为所述模拟输入信号在所述持续时间段内的模拟值;该一定时间可以是一个采集周期,比如1M速率的ADC芯片就能达到每个采集周期1us,该采集次数可以根据需要设定,比如10次,第一处理单元101将一个采集周期内采集的10个采样值的平均值作为所述模拟输入信号在所述持续时间段内的模拟值传输给第二处理单元102。作为进一步的可选方案,基于激光输出单元40的工作电流大小由采集得到的模拟值决定,所述转换器20根据所述模拟值得到激光输出单元40的工作电流的大小具体用于获取所述模拟输入信号的最大模拟值,根据所述平均值和最大模拟值的大小关系得到激光输出单元40的工作电流的大小。在本实施例中,所述模拟输入信号可以具有一个确定的输入范围,即对应一个最小的模拟值和一个最大的模拟值,在这个范围内的模拟值分别对应脉冲光纤激光器不同的激光输出功率(如图2所示),比如所述模拟输入信号的输入范围为0~10伏特,其中最小模拟值0伏特对应脉冲光纤激光器无激光输出,最大模拟值10伏特对应脉冲光纤激光器的最大输出功率,如此,在一些实施例中,所述第二处理单元102可以根据所述平均值和最大模拟值的大小关系确定脉冲光纤激光器的实际输出功率与最大输出功率的关系,由于脉冲光纤激光器最大输出功率对应的工作电流是一定,由此所述第二处理单元102可进一步得到脉冲光纤激光器的实际输出功率所对应的工作电流的大小,在本实施例中,所述第一处理单元101采集的模拟输入信号的模拟量和所述工作电流的大小呈一定的线性关系,如图3所示,图中Power_val表示所述模拟输入信号的模拟量,I表示脉冲光纤激光器的激光输出单元40的工作电流的大小,当第一处理单元101采集的模拟量为最大模拟量时,此时转换器20输出的模拟量对应的激光输出单元40的工作电流就是额定电流,而当第一处理单元101采集的模拟量为最小模拟量(即为0)时,转换器20输出的模拟量对应的激光输出单元40的工作电流相应为0,实际上就是关闭了激光输出单元40,这可以作为对脉冲光纤激光器的一种保护。在本实施例中,由于第一处理单元101是实时采集,因此Power_val的值也是实时变化的,进而工作电流I也是实时变化的,具体由第二处理单元102将Power_val的变化转换为工作电流I的变化,进而可实现脉冲光纤激光器的激光脉冲功率的实时控制。
在本实施例中,所述第二处理单元102还用于在首次检测到激光控制脉冲时,开启脉冲光纤激光器的工作电流。其中,所述首次检测到激光控制脉冲是指脉冲光纤激光器在处于激光脉冲停止输出状态时检测到的第一个激光控制脉冲。进一步地,所述第二处理单元102还用于获取所述激光控制脉冲的脉冲周期T,并用于从当前检测到的激光控制脉冲开始计时,若持续时间T'后没有检测到新的激光控制脉冲,则关闭脉冲光纤激光器的工作电流,其中T'大于T,比如取T'=1.1T,当然T'与T的比例关系可根据实际情况自由设定,在此不作限定。通过在第二处理单元102首次检测到激光控制脉冲才开启工作电流或者在一定时间后没有检测到激光控制脉冲的方式可避免在没有激光控制脉冲的时候脉冲光纤激光器仍处于工作电流开启后的等待状态而造成电量损耗,同时也可避免脉冲光纤激光器处于持续的工作电流开启状态而影响设备的工作寿命。
进一步地,本实施例中所述激光控制脉冲的脉冲周期T可以是实时更新的,具体的,所述第二处理单元102在获取所述激光控制脉冲的脉冲周期T时具体用于获取当前检测到的激光控制脉冲与上一次检测到的激光控制脉冲的时间差T1,并获取当前检测到的激光控制脉冲与下一次检测到的激光控制脉冲的时间差T2,根据T1和T2得到所述脉冲周期T,比如参阅图4所示的示意图,通过求取Tn和Tn+1的平均值得到实时的脉冲周期T,其中n为正整数,由此可以减小因设备硬件导致的周期误差,从而降低对激光脉冲输出的干扰。
在本发明提供的脉冲光纤激光器上述实施例中,当所述第一处理单元101为MCU时,MCU具备串口通信的功能,可用于脉冲光纤激光器与上位机的通信交互,比如接收上位机发送的指令,并对指令进行解析,上位机发送的指令有两种形式,一种是上位机对脉冲光纤激光器的控制指令,以执行相应的操作任务,另一种是数据指令,比如读取MCU的内部信息,为脉冲光纤激光器配置工作参数。此外,当所述第二处理单元102为FPGA时,MCU的还可用于与FPGA进行通信,它可以将FPGA内部的运行状态转发给上位机,或者将上位机给FPGA的指令转发给FPGA,MCU与FPGA可直接使用串行总线进行通信;而FPGA的可用于与外部的控制板卡进行交互,接收外部控制板卡发送的各种控制信号,包括开关激光、控制激光器急停等。
在本发明一些实施例中,如图7所示,所述脉冲光纤激光器还可以包括与处理器10连接的传感器模块60,所述传感器模块60可以包括多种传感器,比如图7中所示的温度传感器601和光电传感器602;当所述第一处理单元101为MCU、所述第二处理单元102为FPGA时,MCU还可用于外部信号的监测,比如通过温度传感器601监测脉冲光纤激光器的温度,或者通过其他传感器监测脉冲光纤激光器的电流电压等,MCU上电之后就可开始对脉冲光纤激光器内部的信号进行监测,如果有信号超标,MCU将给FPGA发送指令,使FPGA停止工作,使激光输出单元40停止工作,并将报警信号记录下来;而FPGA还可用于接收光电传感器602的信号,以确定激光光路是否正常,具体的,光电传感器602可以设置为光电二极管(Photo-Diode, PD)可以实时采集光脉冲信号,在激光打开之后,如图8所示,光电传感器602将激光脉冲转换成电脉冲,而FPGA实时监测光电传感器602的信号,如果每一个激光脉冲都对应收到一个光电传感器602发出的信号,就说明整个激光光路是正常,如果光电传感器602的信号中断,就说明激光光路异常,说明激光器有故障,需要关闭激光器,则FPGA就会关闭激光输出单元40,使其停止工作。进一步地,如图7所示,所述脉冲光纤激光器可包括多个转换器20,每个转换器20对应一个激光输出单元40,可实现多个激光输出单元40的激光脉冲功率的同步控制。
本实施例提供的脉冲光纤激光器实际上是通过第一处理单元101采集一组模拟量传输给第二处理单元102,并配合第二处理单元102获取的激光控制脉冲信号来控制脉冲光纤激光器的激光脉冲功率,只需一根传输线传输模拟输入信号即可对脉冲光纤激光器的激光脉冲功率进行控制,通过连续输入的模拟输入信号和激光控制脉冲信号,并对连续输入的模拟输入信号进行采样,第二处理单元102每检测到一个激光控制脉,脉冲光纤激光器就会相应地输出一个激光脉冲,该激光脉冲的功率大小取决于对应的激光控制脉冲周期内所述第一处理单元101所采集到的模拟输入信号的模拟量,通过这种方式脉冲光纤激光器可以获得一组激光功率随所述模拟输入信号的输入量的变化而变化的激光脉冲,相比于传统脉冲光纤激光器采用九根传输线控制,本实施例采用的方案能够简化控制接口,控制效率更高,更适合于工业场合的简单控制。
此外,脉冲光纤激光器输出的激光脉冲与激光控制脉冲信号是同步的,脉冲光纤激光器输出的激光脉冲的幅度变化与模拟输入信号的模拟量变化是同步的,因此通过模拟输入信号和激光控制脉冲信号能够实现脉冲光纤激光器的激光脉冲功率的同步控制。
本发明实施例提供一种激光切割系统,如图9所示,包括上位机1、控制板卡2和上述实施例中的脉冲光纤激光器3,所述上位机通过所述控制板卡2与所述脉冲光纤激光器3通信,控制脉冲光纤激光器3输出激光,配合产线或者机床切割或者打标产品,具体地,所述上位机1通过所述控制板卡2连接至所述脉冲光纤激光器3上的控制接口,以通过所述控制板卡2发送激光控制脉冲信号,控制所述脉冲光纤激光器3的激光脉冲输出。在一些实施例中,可以将控制板卡2集成在上位机1内,即控制板卡2为上位机1的一组成部分。
在本实施例中,控制板卡2可以模拟实际激光器实际使用过程中的各种控制信号,比如开激光的操作等,故可用于对脉冲光纤激光器3进行测试,具体的,由于在脉冲光纤激光器3的实际使用过程中,上位机1对脉冲光纤激光器3进行控制时,会通过脉冲光纤激光器3的控制接口(比如DB25接口)与脉冲光纤激光器3进行控制交互,DB25接口包括25个连接插针,这些插针可包括开关激光IO,引导光控制IO,急停IO,激光器报警IO等;上位机1可以通过这些IO控制脉冲光纤激光器3,并相对应地获取脉冲光纤激光器3的报警状态,因此在脉冲光纤激光器3配置完成之后,可以通过控制板卡2给脉冲光纤激光器3发送控制信号来是测试脉冲光纤激光器3对于外部的控制信号做出的响应是否正确,并测试脉冲光纤激光器3的DB25接口是否正常。
在本发明一些实施例中,如图10所示,所述系统可包括多个所述脉冲光纤激光器3,所述控制板卡2上设置有与所述脉冲光纤激光器3的数量相对应的连接端口,所述上位机1通过所述控制板卡2对多个所述脉冲光纤激光器3进行同步控制。
在本实施例中,所述上位机1可包括存储控制指令的存储器,存储器作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序或模块,如本申请上述实施例中的激光脉冲功率控制方法对应的程序指令。上位机1通过运行存储在存储器中的非易失性软件程序、指令以及单元,从而实现上述方法实施例中所述方案。存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件,比如U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
根据本发明实施例提供的激光切割系统通过连续输入的模拟输入信号和激光控制脉冲信号,可以获得激光功率随所述模拟输入信号的输入量的变化而变化的激光脉冲,相比于现有的激光脉冲功率控制,控制接口更简单,控制效率更高,同时可保证激光脉冲功率的同步控制。
显然,以上所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,附图中给出了本发明的较佳实施例,但并不限制本发明的专利范围。本发明可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本发明说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本发明专利保护范围之内。

Claims (15)

  1. 一种激光脉冲功率控制方法,其特征在于,包括:
    采集模拟输入信号和接收激光控制脉冲信号;
    检测激光控制脉冲信号,在检测到任意一个激光控制脉冲时,使激光器切换至激光输出状态,同时获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值,根据所述模拟值得到激光驱动的工作电流的大小;
    基于所述工作电流生成控制信号,以使所述激光器在所述持续时间段内根据所述工作电流的大小输出对应功率的激光脉冲。
  2. 根据权利要求1所述的激光脉冲功率控制方法,其特征在于,所述获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值包括:
    根据设定的采集次数在预设时长内获取多个采样值,并将所述多个采样值的平均值作为所述模拟输入信号在所述预设时长内的模拟值,其中所述模拟输入信号的模拟值在所述激光控制脉冲信号的不同时间段内实时更新;
    所述根据所述模拟值得到激光驱动的工作电流的大小包括:
    获取所述模拟输入信号的最大模拟值,以根据所述平均值和最大模拟值的比值关系得到激光驱动的工作电流的大小。
  3. 根据权利要求1或2所述的激光脉冲功率控制方法,其特征在于,所述方法还包括:
    在首次检测到激光控制脉冲时,开启激光器的工作电流。
  4. 根据权利要求3所述的激光脉冲功率控制方法,其特征在于,还包括:
    获取所述激光控制脉冲的脉冲周期T;
    从当前检测到的激光控制脉冲开始计时,若持续时间T'后没有检测到新的激光控制脉冲,则关闭激光器的工作电流。
  5. 根据权利要求4所述的激光脉冲功率控制方法,其特征在于,所述获取所述激光控制脉冲的脉冲周期T包括:
    获取当前检测到的激光控制脉冲与上一次检测到的激光控制脉冲的时间差T1,并获取当前检测到的激光控制脉冲与下一次检测到的激光控制脉冲的时间差T2,根据T1和T2得到所述脉冲周期T。
  6. 一种脉冲光纤激光器,其特征在于,所述脉冲光纤激光器包括处理器、转换器、控制板、激光输出单元和控制接口,所述处理器分别连接所述转换器和所述控制板,并通过所述控制接口与外部设备通信,所述转换器还连接所述激光输出单元,其中,
    所述处理器用于采集模拟输入信号和接收激光控制脉冲信号,检测激光控制脉冲信号,在检测到任意一个激光控制脉冲时,使激光器切换至激光输出状态,同时获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值,根据所述模拟值得到激光驱动的工作电流的大小;
    所述转换器用于基于所述工作电流生成控制信号,以使所述激光输出单元在所述持续时间段内根据所述工作电流的大小输出对应功率的激光脉冲。
  7. 根据权利要求6所述的脉冲光纤激光器,其特征在于,所述处理器包括相连的第一处理单元和第二处理单元;
    所述第一处理单元用于采集模拟输入信号;
    所述第二处理单元用于接收并检测激光控制脉冲信号,在检测到任意一个激光控制脉冲时,根据所述控制板的开关信号使所述激光输出单元切换至激光输出状态,同时获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值,根据所述模拟值得到激光驱动的工作电流的大小。
  8. 根据权利要求7所述的脉冲光纤激光器,其特征在于,所述第二处理单元在获取所述激光控制脉冲的持续时间段内的所述模拟输入信号的模拟值时具体用于通过所述第一处理单元根据设定的采集次数在预设时长内获取多个采样值,并将所述多个采样值的平均值作为所述模拟输入信号在所述预设时长内的模拟值,其中所述模拟值在所述激光控制脉冲的不同时间段内实时更新;
    所述转换器根据所述模拟值得到激光驱动的工作电流的大小具体用于获取所述模拟输入信号的最大模拟值,以根据所述平均值和最大模拟值的比值关系得到激光驱动的工作电流的大小。
  9. 根据权利要求7或8所述的脉冲光纤激光器,其特征在于,所述第二处理单元还用于在首次检测到激光控制脉冲时,开启激光器的工作电流。
  10. 根据权利要求9所述的脉冲光纤激光器,其特征在于,所述第二处理单元还用于获取所述激光控制脉冲的脉冲周期T,并用于从当前检测到的激光控制脉冲开始计时,若持续时间T'后没有检测到新的激光控制脉冲,则关闭激光器的工作电流。
  11. 根据权利要求10所述的脉冲光纤激光器,其特征在于,所述第二处理单元在获取所述激光控制脉冲的脉冲周期T时具体用于获取当前检测到的激光控制脉冲与上一次检测到的激光控制脉冲的时间差T1,并获取当前检测到的激光控制脉冲与下一次检测到的激光控制脉冲的时间差T2,根据T1和T2得到所述脉冲周期T。
  12. 根据权利要求6所述的脉冲光纤激光器,其特征在于,所述脉冲光纤激光器还包括与处理器连接的传感器模块。
  13. 根据权利要求6或12所述的脉冲光纤激光器,其特征在于,所述转换器的数量是多个,每个转换器对应一个激光输出单元,实现多个激光输出单元的激光脉冲功率的同步控制。
  14. 一种激光切割系统,其特征在于,包括:控制板卡、上位机和权利要求6至13任意一项所述的脉冲光纤激光器,所述上位机通过所述控制板卡连接至所述脉冲光纤激光器上的控制接口,以通过所述控制板卡发送激光控制脉冲信号,控制所述脉冲光纤激光器的激光脉冲输出。
  15. 根据权利要求14所述的激光切割系统,其特征在于,所述激光切割系统包括多个所述脉冲光纤激光器,所述控制板卡上设置有与所述脉冲光纤激光器的数量相对应的连接端口,所述上位机通过所述控制板卡对多个所述脉冲光纤激光器进行同步控制。
     
PCT/CN2018/115325 2018-05-09 2018-11-14 激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统 WO2019214200A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810439391.5A CN108448373B (zh) 2018-05-09 2018-05-09 激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统
CN201810439391.5 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019214200A1 true WO2019214200A1 (zh) 2019-11-14

Family

ID=63202721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115325 WO2019214200A1 (zh) 2018-05-09 2018-11-14 激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统

Country Status (2)

Country Link
CN (1) CN108448373B (zh)
WO (1) WO2019214200A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448373B (zh) * 2018-05-09 2020-02-04 深圳市创鑫激光股份有限公司 激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统
CN110364922B (zh) * 2019-07-30 2021-07-20 苏州创鑫激光科技有限公司 一种激光器控制方法及其相关设备
CN112164968B (zh) * 2020-09-18 2021-08-17 苏州创鑫激光科技有限公司 一种激光器电流选取方法、系统、装置及可读存储介质
CN113252965B (zh) * 2021-07-08 2021-09-21 深圳市海创光学有限公司 探测电路、装置及方法
CN115357089A (zh) * 2021-11-08 2022-11-18 神盾股份有限公司 自动功率控制电路及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030174744A1 (en) * 2002-03-13 2003-09-18 Reilly Timothy J. Digital control of burst mode laser
JP2010199315A (ja) * 2009-02-25 2010-09-09 Toshiba Corp 固体レーザ発振装置及び固体レーザ出力パルスの変調方法
CN103606811A (zh) * 2013-12-11 2014-02-26 北京信息科技大学 基于cpld的脉冲光纤激光器驱动电源控制系统
CN103904547A (zh) * 2012-12-26 2014-07-02 三星电机株式会社 脉冲激光系统及其驱动方法
CN104360642A (zh) * 2014-11-17 2015-02-18 深圳市大族激光科技股份有限公司 一种激光切割机数控系统
CN106921107A (zh) * 2015-12-28 2017-07-04 恩耐公司 来自皮秒光纤激光器的完全可控突发成形的个体脉冲
CN107959223A (zh) * 2017-12-13 2018-04-24 深圳市创鑫激光股份有限公司 一种激光控制方法、激光设备及存储介质
CN108448373A (zh) * 2018-05-09 2018-08-24 深圳市创鑫激光股份有限公司 激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030174744A1 (en) * 2002-03-13 2003-09-18 Reilly Timothy J. Digital control of burst mode laser
JP2010199315A (ja) * 2009-02-25 2010-09-09 Toshiba Corp 固体レーザ発振装置及び固体レーザ出力パルスの変調方法
CN103904547A (zh) * 2012-12-26 2014-07-02 三星电机株式会社 脉冲激光系统及其驱动方法
CN103606811A (zh) * 2013-12-11 2014-02-26 北京信息科技大学 基于cpld的脉冲光纤激光器驱动电源控制系统
CN104360642A (zh) * 2014-11-17 2015-02-18 深圳市大族激光科技股份有限公司 一种激光切割机数控系统
CN106921107A (zh) * 2015-12-28 2017-07-04 恩耐公司 来自皮秒光纤激光器的完全可控突发成形的个体脉冲
CN107959223A (zh) * 2017-12-13 2018-04-24 深圳市创鑫激光股份有限公司 一种激光控制方法、激光设备及存储介质
CN108448373A (zh) * 2018-05-09 2018-08-24 深圳市创鑫激光股份有限公司 激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统

Also Published As

Publication number Publication date
CN108448373B (zh) 2020-02-04
CN108448373A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
WO2019214200A1 (zh) 激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统
CN101344440B (zh) 一种自动温度标定型分布式光纤测温传感装置及其使用方法
WO2000014483A1 (fr) Detecteur de position
CN102223181A (zh) 一种电可调光衰减器的控制方法及光衰减系统
CN205209651U (zh) 一种分布式测温模块、分布式测温系统
CN202145160U (zh) 光时域反射仪
TW406191B (en) Optical sensor apparatus and signal processing circuit used therein
CN104748843A (zh) 基于虚拟仪器的激光器激光功率远程监测方法及系统
CN102662105A (zh) 确定交流或交流耦合信号中直流偏压的电路,架构,装置和方法
CN102707133B (zh) 一种测量频率可变的交流电压的装置、系统和方法
CN112986161A (zh) 水质监测光谱仪的在线波长校准方法及设备
CN105698836A (zh) 一种基于光纤Bragg光栅传感网的在线监测方法
CN205081787U (zh) 一种光模块参数测试装置
CN104460409A (zh) 一种具有反馈光强度自适应调节的激光自混合干涉系统
CN106969270B (zh) 一种基于声波探测的检测管道泄漏的采集装置及使用方法
CN206533028U (zh) 一种激光器恒定功率数字控制系统
CN102564573B (zh) 多波长激光功率时分测量方法
CN202471240U (zh) 多波长激光功率时分测量装置
CN114034374B (zh) 分布式光纤声波传感系统的控制方法及相关设备
US11888439B2 (en) Method for determining a characteristic curve of a photovoltaic (PV) string, DC/DC converter, and photovoltaic system suitable for carrying out the method
CN209867713U (zh) 二氧化碳激光器激光功率自动记录系统
CN201297967Y (zh) 一种环路探测型分布式光纤温度传感装置
CN103376156A (zh) 带软件的光功率采集系统
CN203443891U (zh) 基于分光光度法的多通道多组分染液浓度检测装置
CN110505011A (zh) 光纤故障检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917800

Country of ref document: EP

Kind code of ref document: A1