WO2019212208A1 - Carbon dioxide absorbent comprising polyhydroxy amine-based polymer, catalyst for regenerating carbon dioxide absorbent, method for absorbing/isolating carbon dioxide by using same, and method for regenerating carbon dioxide absorbent - Google Patents

Carbon dioxide absorbent comprising polyhydroxy amine-based polymer, catalyst for regenerating carbon dioxide absorbent, method for absorbing/isolating carbon dioxide by using same, and method for regenerating carbon dioxide absorbent Download PDF

Info

Publication number
WO2019212208A1
WO2019212208A1 PCT/KR2019/005122 KR2019005122W WO2019212208A1 WO 2019212208 A1 WO2019212208 A1 WO 2019212208A1 KR 2019005122 W KR2019005122 W KR 2019005122W WO 2019212208 A1 WO2019212208 A1 WO 2019212208A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
dioxide absorbent
absorbent
amine
regenerating
Prior art date
Application number
PCT/KR2019/005122
Other languages
French (fr)
Korean (ko)
Inventor
김재익
이상득
최재영
조원일
이강봉
오인환
이석헌
나인욱
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2019212208A1 publication Critical patent/WO2019212208A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20415Tri- or polyamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer, a catalyst for regenerating a carbon dioxide absorbent, a method for absorbing / separating carbon dioxide using the same, and a method for regenerating a carbon dioxide absorbent. More specifically, the present invention provides a carbon dioxide absorbent comprising a polyamine hydroxide polymer having excellent carbon dioxide absorption ability, absorption rate, and reproducibility, a catalyst for regenerating a carbon dioxide absorbent, a method for absorbing / separating carbon dioxide using the same, and a method for regenerating a carbon dioxide absorbent. It is about.
  • transition metal oxide such as H-ZSM, ⁇ -Al 2 O 3 , MoO 3 , V 2 O 5 , TiO (OH) 2, etc.
  • Literature using catalysts has been reported. These metal oxides reduce the heat duty for amine regeneration, thereby demonstrating the possibility of regeneration temperatures of 90-110 ° C., lower than conventional 120 ° C.
  • An object of the present invention is to provide a carbon dioxide absorbent, a catalyst for regenerating a carbon dioxide absorbent, which has a high carbon dioxide absorbing ability and a highly durable polyhydroxyamine-based polymer capable of operating a carbon dioxide capture process under low regeneration temperature conditions in order to solve the above problems. It is to provide a method for absorbing / separating carbon dioxide and regenerating a carbon dioxide absorbent using the same.
  • a carbon dioxide absorbent comprising a polyhydroxylamine-based polymer represented by the following formula (1) or (2).
  • Halide is a halogen element and n is a repeating unit.
  • a method for preparing a carbon dioxide absorbent including the aforementioned polyhydroxyamine-based polymer comprising: reacting an amine compound, an aldehyde precursor, and an ammonium halide; comprising a polyhydroxyamine-based polymer It provides a method for producing a carbon dioxide absorbent.
  • absorbing carbon dioxide provides a method for absorbing carbon dioxide.
  • Exemplary embodiments of the present invention provide a catalyst for regenerating a carbon dioxide absorbent including a polyhydroxyamine-based polymer represented by Formula 1 or Formula 2 below.
  • Halide is a halogen element and n is a repeating unit.
  • a method for regenerating an amine-based carbon dioxide absorbent comprising: absorbing carbon dioxide from a gas mixture including carbon dioxide using an aqueous solution including an amine-based carbon dioxide absorbent; And a second step of removing the carbon dioxide absorbed from the aqueous solution containing the amine-based carbon dioxide absorbent using the catalyst for regenerating the carbon dioxide absorbent including the polyhydroxyamine-based polymer described above. to provide.
  • the carbon dioxide absorbent including the polyhydroxyamine-based polymer has a high carbon dioxide absorption capacity and a fast absorption rate, and has a significantly lower absorbent regeneration temperature than a conventional absorbent so that the total energy required for the absorption process is reduced. Consumption can be greatly reduced and the initial absorption capacity can be maintained almost even after repeated absorption / removal of carbon dioxide.
  • a catalyst for regenerating a carbon dioxide absorbent containing a polyhydroxyamine-based polymer functional groups such as hydroxyl and amine groups on the surface of the polymer enable decomposition and regeneration of the carbamate compound at a low temperature, thereby significantly increasing the regeneration efficiency, thereby reducing carbon dioxide wet.
  • the overall energy consumption of the capture process can be significantly reduced, and the initial absorption capacity can be stably maintained even after repeated carbon dioxide absorption and stripping.
  • the present invention it is possible to significantly reduce the overall energy consumption, so that the cost saving effect is expected, it can be applied to the entire industry that emits a large amount of carbon dioxide, synthesis of high value-added organic material using the collected carbon dioxide It is expected to be applicable to the field.
  • 1 is an FT-IR spectrum of a carbon dioxide absorbent according to an embodiment of the present invention.
  • Figure 2 is a graph of carbon dioxide absorption according to the CO 2 / N 2 ratio (10% / 90% and 30% / 70%) of the carbon dioxide absorbent according to an embodiment of the present invention.
  • FIG 3 is a graph of carbon dioxide absorption / regeneration at 25/80 ° C. of a carbon dioxide absorbent according to an embodiment of the present invention.
  • a carbon dioxide absorbent comprising a polyhydroxylamine-based polymer represented by the following formula (1) or (2).
  • Halide is a halogen element and n is a repeating unit.
  • Carbon dioxide absorbent comprising a polyhydroxyamine-based polymer according to an embodiment of the present invention is easy to regenerate, as shown in the following [Scheme 1] or [Scheme 2] using water as a solvent when the carbon dioxide absorption / separation described below Since it produces a bicarbonate (bicarbonate, HCO 3 ) compound there is an advantage that can significantly lower the renewable energy compared to the existing alkanolamine-based absorbent.
  • -OH peak located in the 3200 to 3600 cm -1 region, -CNH located in the 1515 to 1570cm -1 region peak may represent a -CN- positioned -CO- peak, from 1250 to 1360 cm -1 region located 900 to 1300 cm -1 region.
  • the halogen element may be Cl, I or Br, preferably I.
  • n may be an integer from 1 to 9.
  • a method for preparing a carbon dioxide absorbent including a polyhydroxyamine based polymer comprising: reacting an amine compound, an aldehyde precursor, and an ammonium halide; carbon dioxide comprising a polyhydroxyamine based polymer
  • a method for preparing an absorbent comprising: reacting an amine compound, an aldehyde precursor, and an ammonium halide; carbon dioxide comprising a polyhydroxyamine based polymer
  • the stabilizer and the molecular weight modifier may be further included to react.
  • the reaction may be a condensation reaction, and may be reacted through a method such as stirring at an appropriate temperature and pH. Specifically, at a temperature of 60 to 90 °C, while maintaining a pH of 2 to 5, it can be reacted by stirring for 1 to 3 hours.
  • the amine compound is urea, melamine, cyanamide, dicyandiamide, guanidine, biguanidine, guanylurea And at least one selected from the group consisting of polycyclic guanidine, and preferably urea.
  • the aldehyde precursor is formaldehyde, acetaldehyde, propionaldehyde, butylaldehyde, benzaldehyde, glutaraldehyde, glyoxal, glyoxal, malon It may be at least one selected from the group consisting of dialdehyde (malondialdehyde), succinic aldehyde (succindialdehyde), and phthalaldehyde (phthalaldehyde), preferably glyoxal.
  • dialdehyde malondialdehyde
  • succinic aldehyde succinic aldehyde
  • phthalaldehyde phthalaldehyde
  • the ammonium halide may be at least one selected from the group consisting of NH 4 Cl, NH 4 I, and NH 4 Br, preferably NH 4 I.
  • a carbon dioxide absorbent including the polyhydroxylamine-based polymer an amine compound, a stabilizer, and a molecular weight modifier may be added in the manufacturing process.
  • the amine compound may be hydroxyl amine or the like, and may include isopropyl alcohol or the like as the stabilizer and the molecular weight regulator.
  • a method of absorbing carbon dioxide comprising: absorbing carbon dioxide from a gas mixture including carbon dioxide by using an aqueous solution including a carbon dioxide absorbent including the aforementioned polyhydroxyamine-based polymer; It provides a carbon dioxide absorption method.
  • the carbon dioxide absorbent including the polyhydroxyamine-based polymer produces a bicarbonate (HCO 3 ) compound that is easily regenerated by using water as a solvent, thus greatly increasing the renewable energy compared with the conventional alkanolamine-based absorbent. It can be lowered, and compared to other organic solvents, there is an advantage that the handling or price is cheaper.
  • HCO 3 bicarbonate
  • the content of the carbon dioxide absorbent including the polyhydroxylamine-based polymer in the aqueous solution may be 1 to 99 parts by weight, and preferably 3 to 90 parts by weight based on 100 parts by weight of water.
  • the weight part is less than 1, the carbon dioxide absorption capacity may be lowered, and when the weight part is more than 99 parts by weight, the viscosity may be high and the absorption capacity may be reduced.
  • a carbon dioxide separation method comprising: a first step of absorbing carbon dioxide from a gas mixture including carbon dioxide by using an aqueous solution including a carbon dioxide absorbent including the polyamine hydroxide-based polymer described above; And a second step of removing the carbon dioxide absorbed from the aqueous solution including the carbon dioxide absorbent including the polyhydroxyamine-based polymer.
  • Types of gas mixtures containing carbon dioxide include chemical gases, power plants, steel companies, cement plants, exhaust gases, natural gas, sewage treatment plant biogas, and the like.
  • the content of the carbon dioxide absorbent including the polyhydroxyamine-based polymer in the aqueous solution may be 1 to 99 parts by weight based on 100 parts by weight of water.
  • the absorption temperature of the first step may be 10 to 60 ° C, for example 15 to 50 ° C, preferably 20 to 40 ° C. If the absorption temperature exceeds 60 °C desorption proceeds at the same time because the amount of carbon dioxide absorption is reduced, if the absorption temperature is less than 10 °C it requires an additional refrigeration equipment to lower the temperature, causing economic problems. .
  • the absorption pressure of the first step may be atmospheric pressure to 50 atmospheres, for example, atmospheric pressure to 40 atmospheres, preferably atmospheric pressure to 30 atmospheres. This is because the pressure of the exhaust gas is atmospheric pressure, so absorption is also most economically achieved. If the absorption pressure exceeds 50 atm, the absorption amount may increase rapidly, but it is necessary to add additional equipment and compressor to increase the pressure. do.
  • the stripping temperature of the second step may be 60 to 120 ° C, for example 65 to 100 ° C, preferably 70 to 90 ° C. If the stripping temperature is less than 60 °C because the stripping does not proceed and exceeds 100 °C does not have a significant difference from the temperature using the existing absorbent because the advantage of the absorbent according to one embodiment of the present invention is lost.
  • the stripping pressure of the second step may be atmospheric pressure. Removal is difficult to proceed at high pressure, which is required to increase the vapor pressure of the water to maintain this high pressure requires a high temperature, thereby reducing the economics. Therefore, stripping is preferably performed at normal pressure.
  • Atmospheric pressure means 1 atmosphere as “atmospheric pressure”.
  • Exemplary embodiments of the present invention provide a catalyst for regenerating a carbon dioxide absorbent including a polyhydroxyamine-based polymer represented by Formula 1 or Formula 2 below.
  • Halide is a halogen element and n is a repeating unit.
  • the catalyst for regenerating a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer material according to an embodiment of the present invention
  • the carbon dioxide absorbent is efficiently Regeneration (carbon dioxide stripping) is possible, and the energy of the overall absorption process can be saved, as well as the occurrence of corrosion and side reactions and loss of absorbents derived from high regeneration temperatures.
  • -OH peak located at 3200 to 3600 cm -1 region, -CNH located at 1515 to 1570 cm -1 region peak may represent a -CN- positioned -CO- peak, from 1250 to 1360 cm -1 region located 900 to 1300 cm -1 region.
  • the halogen element may be Cl, I or Br, preferably I.
  • n may be an integer from 1 to 9.
  • the carbon dioxide absorbent is an amine based carbon dioxide absorbent
  • the amine based carbon dioxide absorbent may be at least one selected from the group consisting of primary amine, secondary amine, and tertiary amine.
  • the amine-based carbon dioxide absorbent may be at least one selected from the group consisting of monoethanolamine, diethanolamine, and piperazine.
  • a method for regenerating an amine-based carbon dioxide absorbent comprising: absorbing carbon dioxide from a gas mixture including carbon dioxide using an aqueous solution including an amine-based carbon dioxide absorbent; And a second step of removing the carbon dioxide absorbed from the aqueous solution containing the amine-based carbon dioxide absorbent using the catalyst for regenerating the carbon dioxide absorbent including the polyhydroxyamine-based polymer described above. to provide.
  • the content of the amine-based carbon dioxide absorbent in the aqueous solution may be 1 to 99 parts by weight based on 100 parts by weight of water.
  • the absorption temperature of the first step may be 10 to 60 ° C, for example 15 to 50 ° C, preferably 20 to 40 ° C. If the absorption temperature exceeds 60 °C desorption proceeds at the same time because the amount of carbon dioxide absorption is reduced, if the absorption temperature is less than 10 °C because it requires an additional refrigeration equipment for lowering the temperature, causing economic problems. .
  • the absorption pressure of the first step may be atmospheric pressure to 50 atmospheres, for example, atmospheric pressure to 40 atmospheres, preferably atmospheric pressure to 30 atmospheres. This is because the pressure of the exhaust gas is atmospheric pressure, so absorption is also most economically achieved. If the absorption pressure exceeds 50 atm, the absorption amount may increase rapidly, but it is necessary to add additional equipment and compressor to increase the pressure. do.
  • the stripping temperature of the second step may be 60 to 120 ° C, for example 65 to 100 ° C, preferably 70 to 90 ° C. If the stripping temperature is less than 60 °C because the stripping does not proceed and exceeds 100 °C does not have a significant difference from the temperature using the existing absorbent because the advantage of the absorbent according to one embodiment of the present invention is lost.
  • the stripping pressure of the second step may be atmospheric pressure. Removal is difficult to proceed at high pressure, which is required to increase the vapor pressure of the water to maintain this high pressure requires a high temperature, thereby reducing the economics. Therefore, stripping is preferably performed at normal pressure.
  • Example One Polyamine Hydroxide Preparation of catalyst for regenerating carbon dioxide absorbent / carbon dioxide absorbent containing polymer
  • the NMR analysis results of the prepared polyhydroxyamine-based polymer were as follows, and used as a carbon dioxide absorbent and a regeneration catalyst, respectively.
  • the FT-IR spectrum analysis was performed on the polyamine hydroxide polymer prepared in Example 1. The result is as shown in FIG. 1, -OH peak located in the 3200 to 3600 cm -1 region, -CNH peak located in the 1515 to 1570 cm -1 region, -CO- peak located in the 900 to 1300 cm -1 region, 1250 It can be seen that -CN- located in the region of 1360 cm -1 appears.
  • the carbon dioxide is removed from the carbon dioxide absorbent only by temperature control without other external process conditions (Regeneration), it can be confirmed that the carbon dioxide absorbent can be regenerated.
  • carbon dioxide can be absorbed / regenerated (removed) even at a temperature (25/80 ° C) that is relatively lower than the absorption / removal condition of a commercially available akanolamine-based carbon dioxide absorber (25/120 ° C). You can check it.
  • Carbon dioxide / nitrogen mixed gas (30/70) was bubbled in a 20% (wt) aqueous solution of monoethanolamine, one of the commercial carbon dioxide absorbents, to regenerate the carbon dioxide absorbent according to Example 1 for a solution in which carbon dioxide was saturated and absorbed. Regeneration was carried out with or without catalyst.
  • the solution temperature was raised to 90 ° C. to measure the amount of carbon dioxide degassed according to the presence or absence of a catalyst.
  • the catalyst used for the repeated experiment was separated by centrifugation and reused repeatedly without drying, and the results are shown in Table 1 below.
  • catalyst Regeneration temperature (removal temperature) (°C) Catalyst content compared to absorbent solution (%, wt) CO2 Regeneration Rate According to Regeneration Time (%) 10 minutes 20 minutes 30 minutes 60 minutes No catalyst 90 0 5 29 31 40

Abstract

The present invention relates to a carbon dioxide absorbent comprising a novel polyhydroxy amine-based polymer, a catalyst for regenerating the carbon dioxide absorbent, a method for absorbing/isolating carbon dioxide by using same, and a method for regenerating the carbon dioxide absorbent. The carbon dioxide absorbent comprising the polyhydroxy amine-based polymer produced by reacting an amine precursor, an aldehyde precursor, an ammonium halide, and the like, and the catalyst for regenerating the carbon dioxide absorbent according to one example of the present invention show desirable carbon dioxide absorption capacity and have significantly lower regeneration temperature than an existing alkanol amine-based absorbent, and thus, can significantly reduce the overall energy consumption required for a capture process, and furthermore, by virtue of the low regeneration temperature, can prevent the recovered carbon dioxide from being contaminated with moisture and absorbent vapors.

Description

폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제, 이산화탄소 흡수제 재생용 촉매, 이를 이용하여 이산화탄소를 흡수/분리하는 방법 및 이산화탄소 흡수제를 재생하는 방법Carbon dioxide absorbent comprising polyamine hydroxide polymer, catalyst for regenerating carbon dioxide absorbent, method for absorbing / separating carbon dioxide using the same, and regenerating carbon dioxide absorbent
본 발명은 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제, 이산화탄소 흡수제 재생용 촉매, 이를 이용하여 이산화탄소를 흡수/분리하는 방법 및 이산화탄소 흡수제를 재생하는 방법에 관한 것이다. 보다 구체적으로, 본 발명은 이산화탄소 흡수능, 흡수 속도 및 재생성이 우수한 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제, 이산화탄소 흡수제 재생용 촉매, 이를 이용하여 이산화탄소를 흡수/분리하는 방법 및 이산화탄소 흡수제를 재생하는 방법에 관한 것이다.The present invention relates to a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer, a catalyst for regenerating a carbon dioxide absorbent, a method for absorbing / separating carbon dioxide using the same, and a method for regenerating a carbon dioxide absorbent. More specifically, the present invention provides a carbon dioxide absorbent comprising a polyamine hydroxide polymer having excellent carbon dioxide absorption ability, absorption rate, and reproducibility, a catalyst for regenerating a carbon dioxide absorbent, a method for absorbing / separating carbon dioxide using the same, and a method for regenerating a carbon dioxide absorbent. It is about.
수소, 철강 및 시멘트 생산 공정에서 발생하는 가스 혼합물, 화석연료를 사용하는 발전소에서 배출하는 연소 배가스 및 천연가스 등 이산화탄소가 포함된 가스로부터 이산화탄소를 제거하기 위한 가장 효과적인 방법으로는 아민계 수용액을 이용하는 화학흡수법을 들 수 있다. 화학흡수제로는 모노에탄올아민 (monoethanolamine : MEA), 디에탄올아민 (diethanolamine : DEA), 등의 아민수용액이 가장 많이 연구되고 있는데, 이는 이들 아민계 흡수제가 이산화탄소와 반응하여 안정한 카바메이트 화합물을 용이하게 형성하고, 또 이들 화합물은 열에 의해 이산화탄소와 아민으로 분해되어 알칸올아민 흡수제는 재생될 수 있기 때문이다. 그러나, 이 공정은 몇 가지 심각한 문제점을 나타내고 있는데, 특히 연소 배기가스 중에 포함된 NOx, SOx, 산소와 같은 불순물에 의한 부산물의 생성 및 분해에 따른 흡수제의 성능저하와 그에 따른 장치 부식 문제, 이산화탄소와의 반응으로부터 생성된 카바메이트의 높은 열적 화학적 안정성으로 인해 재생 온도가 120℃ 이상으로 높아 과도한 재생에너지가 소비되는 문제, 높은 재생온도에 따른 알칸올아민의 과도한 휘발 손실 문제, 이에 따른 흡수제 보충 문제, 흡수제의 낮은 증기압으로 인해 재생과정에서 분리된 이산화탄소가 오염되는 문제점 등이 단점으로 지적되고 있다.The most effective way to remove carbon dioxide from gases containing carbon dioxide, such as gas mixtures from hydrogen, steel and cement production processes, combustion flue gases from natural power plants and fossil fuels, and chemicals using amine-based aqueous solutions Absorption method. As the chemical absorbents, amine aqueous solutions such as monoethanolamine (MEA), diethanolamine (DEA), and the like have been studied the most, and these amine-based absorbents react with carbon dioxide to facilitate stable carbamate compounds. This is because these compounds are thermally decomposed into carbon dioxide and amine so that the alkanolamine absorbent can be regenerated. However, this process presents some serious problems, in particular the degradation of absorbents due to the generation and decomposition of by-products by impurities such as NOx, SOx, and oxygen contained in combustion exhaust gases, resulting in device corrosion problems, carbon dioxide and The high thermal and chemical stability of the carbamate resulting from the reaction caused by excessive regeneration energy consumption due to high regeneration temperature above 120 ° C., excessive volatilization loss of alkanolamine at high regeneration temperature, and thus sorbent replenishment problem, Due to the low vapor pressure of the absorbent, the problem of polluting the separated carbon dioxide during the regeneration process has been pointed out as a disadvantage.
이러한 아민류 수용액 흡수제의 단점을 보완하기 위해 셀렉솔(Selexol), 아이에프펙솔(IFPexol), 엔에프엠(NFM) 등의 유기용매를 사용하여 이산화탄소를 물리적으로 흡수시키는 방법들이 보고되고 있다. 유기용매 흡수제의 가장 중요한 장점은 이산화탄소 흡수가 아민계 수용액에서와 같은 화학적 결합이 아니라 흡수 용매와 이산화탄소 간의 물리적 상호작용에 의해서만 이루어지기 때문에, 이산화탄소 회수 및 용매 재생에 훨씬 낮은 에너지를 필요로 한다는 것이다. 실제로 아민계 수용액 흡수제를 사용하는 경우, 이산화탄소 회수 및 흡수제 재생은 에너지 집약적인 고온 탈거 과정을 필요로 한 반면, 물리적인 흡수인 경우에는 온도를 높이지 않고도 단순히 압력 변화를 통해 용매에 용해되어 있는 이산화탄소를 회수할 수 있다.In order to compensate for the disadvantages of the amine-based aqueous solution absorbents, methods of physically absorbing carbon dioxide using organic solvents such as selexol, IFPexol, and NFM have been reported. The most important advantage of organic solvent absorbents is that much lower energy is required for carbon dioxide recovery and solvent regeneration, since carbon dioxide absorption is achieved only by the physical interaction between the absorbing solvent and carbon dioxide rather than the chemical bonds as in amine-based aqueous solutions. In the case of using an aqueous amine-based absorbent, carbon dioxide recovery and absorbent regeneration require energy-intensive high temperature stripping, whereas in the case of physical absorption, carbon dioxide dissolved in the solvent simply by changing the pressure without increasing the temperature. Can be recovered.
그러나, 상기 물리흡수제들은 압력이 낮은 연소가스로부터 이산화탄소를 분리하는 경우에는 아민계 흡수제에 비해 훨씬 낮은 이산화탄소 흡수능을 나타내므로, 흡수제의 순환율이 높여야 하므로, 보다 큰 장비가 필요한 단점이 있다. 최근에는 기존 아민계 흡수제 및 유기용매 흡수제의 단점들을 극복할 수 있는 열적, 화학적 안정성이 높고 증기압이 낮은 새로운 화학 흡수제 개발이 연구되고 있다. 이와 관련하여, 화학 흡수제의 재생에너지를 낮추는 방안으로 알칸올아민의 아민기 주변에 입체장애가 있는 알칸올아민을 흡수제로 사용하는 연구가 시도되고 있으며, 그 대표적인 예가 1차 아민인 2-아미노-2-메틸-1-프로판올(AMP)이다. AMP는 이산화탄소의 반응 시 카바메이트에 비해 재생이 용이한 바이카보네이트 화합물을 형성하기 때문에 MEA에 비해 재생에너지가 30% 낮은 장점을 가지고 있으나, 이산화탄소 흡수속도는 MEA의 50%에도 미치지 못하는 단점을 가지고 있다.However, when the physical absorbents separate the carbon dioxide from the combustion gas having a low pressure, the physical absorbents exhibit much lower carbon dioxide absorption than the amine absorbents, and thus, the circulation rate of the absorbent must be increased, thus requiring a larger equipment. Recently, new chemical absorbents having high thermal and chemical stability and low vapor pressure have been studied to overcome the disadvantages of the existing amine absorbents and organic solvent absorbents. In this regard, as a method of lowering the renewable energy of the chemical absorbent, a study has been attempted using an alkanolamine having a steric hindrance around the amine group of the alkanolamine as an absorbent. -Methyl-1-propanol (AMP). AMP has a 30% lower renewable energy than MEA because it forms a bicarbonate compound that is easier to regenerate than carbamate when carbon dioxide is reacted, but the carbon dioxide absorption rate is less than 50% of MEA. .
이러한 AMP의 흡수속도를 증가시키는 방안으로, 미쓰비시 중공업과 간사이 화력발전은 공동으로 AMP에 2차의 시클로아민인 피퍼라진을 첨가한 새로운 흡수제를 개발하여 특허를 등록하였다 (일본등록특허 제 3197173호). 그러나, 상기 특허는 과량의 피퍼라진을 사용하기 때문에 이산화탄소 흡수 후 침전이 생기는 문제가 있으며, 또한 피퍼라진과 이산화탄소가 반응하여 바이카보네이트 외에 안정한 화합물인 카바메이트도 형성하기 때문에 재생이 어려운 단점이 있다.In order to increase the absorption rate of AMP, Mitsubishi Heavy Industries and Kansai Thermal Power Co., Ltd. jointly developed a new absorbent that added piperazine, a secondary cycloamine to AMP, and registered a patent (Japanese Patent No. 3197173). . However, the patent has a problem that precipitation occurs after carbon dioxide absorption due to the use of excess piperazine, and regeneration is difficult because piperazine and carbon dioxide react to form a carbamate, which is a stable compound in addition to bicarbonate.
이외에도, 120℃ 이상의 재생 온도로 인해 과도한 재생에너지가 소비되는 문제를 해결하기 위한 방법으로 H-ZSM, γ-Al 2O 3, MoO 3, V 2O 5, TiO(OH) 2 등 전이금속 산화물 촉매를 사용하는 문헌들이 보고되고 있다. 이러한 금속 산화물은 아민 재생을 위한 열용량 (heat duty)을 저감시켜주고, 이를 통해 기존의 120℃ 보다 낮은 90∼110℃의 재생온도 가능성을 보여주었다. 그러나, 여전히 100℃ 이하에서 재생이 반복적이고 안정적으로 진행될 수 있는 촉매 개발은 여전히 해결해야 할 과제라 하겠다.In addition, transition metal oxide such as H-ZSM, γ-Al 2 O 3 , MoO 3 , V 2 O 5 , TiO (OH) 2, etc. Literature using catalysts has been reported. These metal oxides reduce the heat duty for amine regeneration, thereby demonstrating the possibility of regeneration temperatures of 90-110 ° C., lower than conventional 120 ° C. However, it is still a problem to develop a catalyst that can be repeatedly and stably proceeded below 100 ℃.
본 발명의 일 목적은 상기와 같은 문제점을 해결하기 위하여 높은 이산화탄소 흡수능을 가지고, 낮은 재생온도 조건에서 이산화탄소 포집 공정 운전이 가능한 고내구성 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제, 이산화탄소 흡수제 재생용 촉매, 이를 이용하여 이산화탄소를 흡수/분리하는 방법 및 이산화탄소 흡수제를 재생하는 방법을 제공하는 것이다.An object of the present invention is to provide a carbon dioxide absorbent, a catalyst for regenerating a carbon dioxide absorbent, which has a high carbon dioxide absorbing ability and a highly durable polyhydroxyamine-based polymer capable of operating a carbon dioxide capture process under low regeneration temperature conditions in order to solve the above problems. It is to provide a method for absorbing / separating carbon dioxide and regenerating a carbon dioxide absorbent using the same.
본 발명의 예시적인 구현예들에서는, 하기 화학식 1 또는 화학식 2로 표시되는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 제공한다.In exemplary embodiments of the present invention, it provides a carbon dioxide absorbent comprising a polyhydroxylamine-based polymer represented by the following formula (1) or (2).
[화학식 1][Formula 1]
Figure PCTKR2019005122-appb-img-000001
Figure PCTKR2019005122-appb-img-000001
[화학식 2][Formula 2]
Figure PCTKR2019005122-appb-img-000002
Figure PCTKR2019005122-appb-img-000002
화학식 1 및 화학식 2에 있어서, Halide는 할로겐 원소이고, n은 반복 단위이다.In the formulas (1) and (2), Halide is a halogen element and n is a repeating unit.
본 발명의 예시적인 구현예들에서는, 전술한 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 제조방법으로서, 아민 화합물, 알데히드 전구체 및 암모늄 할라이드를 반응시키는 단계;를 포함하는, 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 제조방법을 제공한다.In exemplary embodiments of the present invention, a method for preparing a carbon dioxide absorbent including the aforementioned polyhydroxyamine-based polymer, comprising: reacting an amine compound, an aldehyde precursor, and an ammonium halide; comprising a polyhydroxyamine-based polymer It provides a method for producing a carbon dioxide absorbent.
본 발명의 예시적인 구현예들에서는, 전술한 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 포함하는 수용액을 이용하여, 이산화탄소를 흡수하는 단계;를 포함하는, 이산화탄소 흡수 방법을 제공한다.In exemplary embodiments of the present invention, by using an aqueous solution containing a carbon dioxide absorbent comprising the polyhydroxylamine-based polymer described above, absorbing carbon dioxide provides a method for absorbing carbon dioxide.
본 발명의 예시적인 구현예들에서는, 전술한 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 포함하는 수용액을 이용하여, 이산화탄소를 포함하는 기체 혼합물로부터 이산화탄소를 흡수시키는 제1 단계; 및 상기 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 포함하는 수용액으로부터 흡수된 이산화탄소를 탈거시키는 제2 단계;를 포함하는, 이산화탄소 분리 방법을 제공한다.In exemplary embodiments of the present invention, a first step of absorbing carbon dioxide from a gas mixture containing carbon dioxide by using an aqueous solution comprising a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer described above; And a second step of removing the carbon dioxide absorbed from the aqueous solution including the carbon dioxide absorbent including the polyhydroxyamine-based polymer.
본 발명의 예시적인 구현예들에서는, 하기 화학식 1 또는 화학식 2로 표시되는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매를 제공한다. Exemplary embodiments of the present invention provide a catalyst for regenerating a carbon dioxide absorbent including a polyhydroxyamine-based polymer represented by Formula 1 or Formula 2 below.
[화학식 1][Formula 1]
Figure PCTKR2019005122-appb-img-000003
Figure PCTKR2019005122-appb-img-000003
[화학식 2][Formula 2]
Figure PCTKR2019005122-appb-img-000004
Figure PCTKR2019005122-appb-img-000004
화학식 1 및 화학식 2에 있어서, Halide는 할로겐 원소이고, n은 반복 단위이다.In the formulas (1) and (2), Halide is a halogen element and n is a repeating unit.
본 발명의 예시적인 구현예들에서는, 아민계 이산화탄소 흡수제 재생 방법으로서, 아민계 이산화탄소 흡수제를 포함하는 수용액을 이용하여, 이산화탄소를 포함하는 기체 혼합물로부터 이산화탄소를 흡수시키는 제1 단계; 및 전술한 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매를 이용하여, 아민계 이산화탄소 흡수제를 포함하는 수용액으로부터 흡수된 이산화탄소를 탈거시키는 제2 단계;를 포함하는, 아민계 이산화탄소 흡수제 재생 방법을 제공한다. In exemplary embodiments of the present invention, there is provided a method for regenerating an amine-based carbon dioxide absorbent, the method comprising: absorbing carbon dioxide from a gas mixture including carbon dioxide using an aqueous solution including an amine-based carbon dioxide absorbent; And a second step of removing the carbon dioxide absorbed from the aqueous solution containing the amine-based carbon dioxide absorbent using the catalyst for regenerating the carbon dioxide absorbent including the polyhydroxyamine-based polymer described above. to provide.
본 발명의 일 구현예에 따르면, 상기 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제는 이산화탄소 흡수능이 크고 흡수 속도가 빠를 뿐만 아니라, 종래의 흡수제에 비해 흡수제 재생 온도가 현저히 낮아 흡수 공정에 소요되는 전체 에너지 소비를 크게 줄일 수 있으며, 이산화탄소의 흡수/탈거 반복 시에도 초기 흡수능을 거의 유지할 수 있다. According to the exemplary embodiment of the present invention, the carbon dioxide absorbent including the polyhydroxyamine-based polymer has a high carbon dioxide absorption capacity and a fast absorption rate, and has a significantly lower absorbent regeneration temperature than a conventional absorbent so that the total energy required for the absorption process is reduced. Consumption can be greatly reduced and the initial absorption capacity can be maintained almost even after repeated absorption / removal of carbon dioxide.
또한, 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매의 경우, 고분자 표면의 수산화기 및 아민기 등의 관능기로 인해 카바메이트 화합물을 저온에서 분해 재생이 가능하여 재생 효율을 현저히 높일 수 있어 이산화탄소 습식 포집 공정에 소요되는 전체 에너지 소비를 크게 줄일 수 있고, 또한 이산화탄소 흡수와 탈거 반복 시에도 초기 흡수능을 안정적으로 유지할 수 있다.In addition, in the case of a catalyst for regenerating a carbon dioxide absorbent containing a polyhydroxyamine-based polymer, functional groups such as hydroxyl and amine groups on the surface of the polymer enable decomposition and regeneration of the carbamate compound at a low temperature, thereby significantly increasing the regeneration efficiency, thereby reducing carbon dioxide wet. The overall energy consumption of the capture process can be significantly reduced, and the initial absorption capacity can be stably maintained even after repeated carbon dioxide absorption and stripping.
또한, 본 발명의 일 구현예에 따르면, 전체 에너지 소비를 크게 줄일 수 있어 비용 절감 효과가 기대되므로 다량의 이산화탄소를 배출하는 산업 전반에 적용이 가능하고, 포집된 이산화탄소를 이용하여 부가가치가 높은 유기물 합성분야에도 응용이 가능할 것으로 예상된다.In addition, according to one embodiment of the present invention, it is possible to significantly reduce the overall energy consumption, so that the cost saving effect is expected, it can be applied to the entire industry that emits a large amount of carbon dioxide, synthesis of high value-added organic material using the collected carbon dioxide It is expected to be applicable to the field.
도 1은 본 발명의 일 실시예에 따른 이산화탄소 흡수제의 FT-IR 스펙트럼이다.1 is an FT-IR spectrum of a carbon dioxide absorbent according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 이산화탄소 흡수제의 CO 2/N 2 비율(10%/90% 및 30%/70%)에 따른 이산화탄소 흡수 그래프이다.Figure 2 is a graph of carbon dioxide absorption according to the CO 2 / N 2 ratio (10% / 90% and 30% / 70%) of the carbon dioxide absorbent according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 이산화탄소 흡수제의 25/80℃의 조건에서의 이산화탄소 흡수/재생 그래프이다.3 is a graph of carbon dioxide absorption / regeneration at 25/80 ° C. of a carbon dioxide absorbent according to an embodiment of the present invention.
용어 정의Term Definition
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본문에 개시되어 있는 본 발명의 실시예들은 단지 설명을 위한 목적으로 예시된 것으로서, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본문에 설명된 실시예들에 한정되는 것으로 해석되어서는 안 된다.The embodiments of the present invention disclosed in the text are only illustrated for illustrative purposes, and the embodiments of the present invention may be embodied in various forms and should not be construed as being limited to the embodiments described in the text. .
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 실시예들은 본 발명을 특정한 개시 형태로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 할 것이다.The present invention may be modified in various ways and may have various forms, and the embodiments are not intended to limit the present invention to the specific disclosed forms, and all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention. It will be understood to include.
본 명세서에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In the present specification, when a part "includes" a certain component, it means that it may further include other components, without excluding the other components unless otherwise stated.
예시적인 Illustrative 구현예들의Of embodiments 설명 Explanation
이하, 본 발명의 예시적인 구현예들을 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail.
폴리수산화아민계Polyamine Hydroxide 고분자를 포함하는 이산화탄소 흡수제 Carbon Dioxide Absorbents Including Polymers
본 발명의 예시적인 구현예들에서는, 하기 화학식 1 또는 화학식 2로 표시되는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 제공한다.In exemplary embodiments of the present invention, it provides a carbon dioxide absorbent comprising a polyhydroxylamine-based polymer represented by the following formula (1) or (2).
[화학식 1][Formula 1]
Figure PCTKR2019005122-appb-img-000005
Figure PCTKR2019005122-appb-img-000005
[화학식 2][Formula 2]
Figure PCTKR2019005122-appb-img-000006
Figure PCTKR2019005122-appb-img-000006
화학식 1 및 화학식 2에 있어서, Halide는 할로겐 원소이고, n은 반복 단위이다.In the formulas (1) and (2), Halide is a halogen element and n is a repeating unit.
본 발명의 일 구현예에 따른 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제는 후술하는 이산화탄소 흡수/분리시 물을 용매로 하여 하기 [반응식 1] 또는 [반응식 2]에서 보는 바와 같이, 재생이 용이한 바이카보네이트(bicarbonate, HCO 3) 화합물을 생성하기 때문에 기존 알칸올아민계 흡수제에 비해 재생에너지를 크게 낮출 수 있는 장점이 있다.Carbon dioxide absorbent comprising a polyhydroxyamine-based polymer according to an embodiment of the present invention is easy to regenerate, as shown in the following [Scheme 1] or [Scheme 2] using water as a solvent when the carbon dioxide absorption / separation described below Since it produces a bicarbonate (bicarbonate, HCO 3 ) compound there is an advantage that can significantly lower the renewable energy compared to the existing alkanolamine-based absorbent.
[반응식 1]Scheme 1
Figure PCTKR2019005122-appb-img-000007
Figure PCTKR2019005122-appb-img-000007
[반응식 2] Scheme 2
Figure PCTKR2019005122-appb-img-000008
Figure PCTKR2019005122-appb-img-000008
따라서, 본 발명의 일 구현예에 따른 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 사용하면, 이산화탄소 흡수 후에도 카바메이트(carbamate)가 형성되지 않아 낮은 온도에서도 흡수제 재생이 가능해지고, 이에 전체적인 흡수 공정의 에너지가 절감될 수 있을 뿐만 아니라, 높은 재생온도에서 파생되는 부식 및 부반응 발생, 흡수제 손실 문제 등도 크게 줄일 수 있다.Therefore, when the carbon dioxide absorbent including the polyamine hydroxide-based polymer according to the embodiment of the present invention is used, carbamate is not formed even after carbon dioxide absorption, so that the absorbent can be regenerated even at a low temperature. In addition to energy savings, corrosion and side reactions resulting from high regeneration temperatures and absorbent loss can be greatly reduced.
예시적인 구현예에서, 상기 화학식 1로 표시되는 폴리수산화아민계 고분자의 FT-IR 스펙트럼 측정 시, 3200 내지 3600 cm -1 영역에 위치하는 -OH 피크, 1515 내지 1570cm -1 영역에 위치하는 -C-N-H 피크, 900 내지 1300 cm -1 영역에 위치하는 -C-O- 피크, 1250 내지 1360 cm -1 영역에 위치하는 -C-N-를 나타낼 수 있다.In an exemplary embodiment, when measuring the FT-IR spectrum of the polyamine-based polymer represented by Formula 1, -OH peak located in the 3200 to 3600 cm -1 region, -CNH located in the 1515 to 1570cm -1 region peak, may represent a -CN- positioned -CO- peak, from 1250 to 1360 cm -1 region located 900 to 1300 cm -1 region.
예시적인 구현예에서, 상기 할로겐 원소는 Cl, I 또는 Br일 수 있고, 바람직하게는 I 일 수 있다.In an exemplary embodiment, the halogen element may be Cl, I or Br, preferably I.
예시적인 구현예에서, 상기 n은 1 내지 9의 정수일 수 있다.In an exemplary embodiment, n may be an integer from 1 to 9.
폴리수산화아민계Polyamine Hydroxide 고분자를 포함하는 이산화탄소 흡수제 제조방법 Method for producing carbon dioxide absorbent containing polymer
본 발명의 예시적인 구현예들에서는, 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 제조방법으로서, 아민 화합물, 알데히드 전구체 및 암모늄 할라이드를 반응시키는 단계;를 포함하는, 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 제조방법을 제공한다.In exemplary embodiments of the present invention, a method for preparing a carbon dioxide absorbent including a polyhydroxyamine based polymer, comprising: reacting an amine compound, an aldehyde precursor, and an ammonium halide; carbon dioxide comprising a polyhydroxyamine based polymer Provided is a method for preparing an absorbent.
예시적인 구현예에서, 상기 안정제 및 분자량 조절제를 추가로 더 포함하여 반응시킬 수 있다. In an exemplary embodiment, the stabilizer and the molecular weight modifier may be further included to react.
예시적인 구현예에서, 상기 반응은 축합 반응일 수 있고, 적절한 온도, pH에서 교반 등의 방법을 통하여 반응시킬 수 있다. 구체적으로 60 내지 90 ℃의 온도에서, pH를 2 내지 5로 유지하면서, 1 내지 3시간 동안 교반하여 반응시킬 수 있다.In an exemplary embodiment, the reaction may be a condensation reaction, and may be reacted through a method such as stirring at an appropriate temperature and pH. Specifically, at a temperature of 60 to 90 ℃, while maintaining a pH of 2 to 5, it can be reacted by stirring for 1 to 3 hours.
예시적인 구현예에서, 상기 아민 화합물은 요소(urea), 멜라민(melamine), 시안아미드(cyanamide), 디시안디아미드(dicyandiamide), 구아니딘(guanidine), 바이구아니딘(biguanidine), 구아릴우레아(guanylurea), 및 폴리사이클릭 구아니딘(polycyclic guanidine)으로 이루어지는 그룹에서 선택되는 1종 이상일 수 있고, 바람직하게는 요소일 수 있다.In an exemplary embodiment, the amine compound is urea, melamine, cyanamide, dicyandiamide, guanidine, biguanidine, guanylurea And at least one selected from the group consisting of polycyclic guanidine, and preferably urea.
예시적인 구현예에서, 상기 알데히드 전구체는 포름알데히드(formaldehyde), 아세트알데히드(acetaldehyde), 프로피온알데히드(propionaldehyde), 부틸알데히드(butylaldehyde), 벤즈알데히드, 글루타르알데히드(glutaraldehyde), 글리옥살(glyoxal), 말론디알데히드(malondialdehyde), 숙신디알데히드(succindialdehyde), 및 프탈알데히드(phthalaldehyde)로 이루어지는 그룹에서 선택되는 1종 이상일 수 있고, 바람직하게는 글리옥살일 수 있다.In an exemplary embodiment, the aldehyde precursor is formaldehyde, acetaldehyde, propionaldehyde, butylaldehyde, benzaldehyde, glutaraldehyde, glyoxal, glyoxal, malon It may be at least one selected from the group consisting of dialdehyde (malondialdehyde), succinic aldehyde (succindialdehyde), and phthalaldehyde (phthalaldehyde), preferably glyoxal.
예시적인 구현예에서, 상기 암모늄 할라이드는 NH 4Cl, NH 4I, 및 NH 4Br로 이루어지는 그룹에서 선택되는 1종 이상일 수 있고, 바람직하게는 NH 4I 일 수 있다.In an exemplary embodiment, the ammonium halide may be at least one selected from the group consisting of NH 4 Cl, NH 4 I, and NH 4 Br, preferably NH 4 I.
또한, 상기 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 제조하기 위하여, 제조 과정에서 아민계 화합물, 안정제 및 분자량 조절제 등을 추가할 수 있다. 예컨대 상기 아민계 화합물은 하이드록실 아민 등일 수 있고, 상기 안정제 및 분자량 조절제로서 이소프로필알콜 등을 포함할 수 있다.In addition, in order to manufacture a carbon dioxide absorbent including the polyhydroxylamine-based polymer, an amine compound, a stabilizer, and a molecular weight modifier may be added in the manufacturing process. For example, the amine compound may be hydroxyl amine or the like, and may include isopropyl alcohol or the like as the stabilizer and the molecular weight regulator.
이산화탄소 흡수 방법CO2 Absorption Method
본 발명의 예시적인 구현예들에서는, 이산화탄소 흡수 방법으로서, 전술한 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 포함하는 수용액을 이용하여, 이산화탄소를 포함하는 기체 혼합물로부터 이산화탄소를 흡수하는 단계;를 포함하는, 이산화탄소 흡수 방법을 제공한다.In exemplary embodiments of the present invention, a method of absorbing carbon dioxide, the method comprising: absorbing carbon dioxide from a gas mixture including carbon dioxide by using an aqueous solution including a carbon dioxide absorbent including the aforementioned polyhydroxyamine-based polymer; It provides a carbon dioxide absorption method.
전술하였다시피, 상기 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제는 물을 용매로 하여 재생이 용이한 바이카보네이트(bicarbonate, HCO 3) 화합물을 생성하기 때문에 기존 알칸올아민계 흡수제에 비해 재생에너지를 크게 낮출 수 있으며, 기타 유기용매에 비해 취급이나 가격이 저렴하다는 장점이 있다.As described above, the carbon dioxide absorbent including the polyhydroxyamine-based polymer produces a bicarbonate (HCO 3 ) compound that is easily regenerated by using water as a solvent, thus greatly increasing the renewable energy compared with the conventional alkanolamine-based absorbent. It can be lowered, and compared to other organic solvents, there is an advantage that the handling or price is cheaper.
예시적인 구현예에서, 상기 수용액 내에서 상기 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제의 함량은 물 100 중량부에 대하여 1 내지 99 중량부일 수 있고, 바람직하게는 3 내지 90 중량부일 수 있다. 상기 중량부가 1 미만인 경우, 이산화탄소 흡수능이 저하될 수 있고, 99 중량부 초과인 경우 점도가 높아 흡수능이 저감될 수 있다.In an exemplary embodiment, the content of the carbon dioxide absorbent including the polyhydroxylamine-based polymer in the aqueous solution may be 1 to 99 parts by weight, and preferably 3 to 90 parts by weight based on 100 parts by weight of water. When the weight part is less than 1, the carbon dioxide absorption capacity may be lowered, and when the weight part is more than 99 parts by weight, the viscosity may be high and the absorption capacity may be reduced.
이산화탄소 분리 방법CO2 Separation Method
본 발명의 예시적인 구현예들에서는, 이산화탄소 분리 방법으로서, 전술한 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 포함하는 수용액을 이용하여, 이산화탄소를 포함하는 기체 혼합물로부터 이산화탄소를 흡수시키는 제1 단계; 및 상기 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 포함하는 수용액으로부터 흡수된 이산화탄소를 탈거시키는 제2 단계;를 포함하는, 이산화탄소 분리 방법을 제공한다.In exemplary embodiments of the present invention, a carbon dioxide separation method comprising: a first step of absorbing carbon dioxide from a gas mixture including carbon dioxide by using an aqueous solution including a carbon dioxide absorbent including the polyamine hydroxide-based polymer described above; And a second step of removing the carbon dioxide absorbed from the aqueous solution including the carbon dioxide absorbent including the polyhydroxyamine-based polymer.
상기 이산화탄소를 포함하는 기체 혼합물의 종류에는 화학공장, 발전소, 철강회사, 시멘트공장 등의 배가스, 천연가스, 하수처리장 바이오가스 등이 있다.Types of gas mixtures containing carbon dioxide include chemical gases, power plants, steel companies, cement plants, exhaust gases, natural gas, sewage treatment plant biogas, and the like.
예시적인 구현예에서, 상기 수용액 내에서 상기 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제의 함량은 물 100 중량부에 대하여 1 내지 99 중량부일 수 있다.In an exemplary embodiment, the content of the carbon dioxide absorbent including the polyhydroxyamine-based polymer in the aqueous solution may be 1 to 99 parts by weight based on 100 parts by weight of water.
예시적인 구현예에서, 상기 제1 단계의 흡수 온도는 10 내지 60 ℃일 수 있고, 예컨대, 15 내지 50 ℃일 수 있고, 바람직하게는 20 내지 40 ℃일 수 있다. 상기 흡수 온도가 60℃를 초과하면 탈거가 동시에 진행되기 때문에 이산화탄소 흡수량이 줄어들게 되고, 흡수 온도를 10℃미만으로 할 경우 온도를 낮추기 위한 추가의 냉동설비를 필요로 하게 되어 경제성에 문제가 생기기 때문이다.In an exemplary embodiment, the absorption temperature of the first step may be 10 to 60 ° C, for example 15 to 50 ° C, preferably 20 to 40 ° C. If the absorption temperature exceeds 60 ℃ desorption proceeds at the same time because the amount of carbon dioxide absorption is reduced, if the absorption temperature is less than 10 ℃ it requires an additional refrigeration equipment to lower the temperature, causing economic problems. .
예시적인 구현예에서, 상기 제1 단계의 흡수 압력은 상압 내지 50 기압일 수 있고, 예컨대, 상압 내지 40 기압일 수 있고, 바람직하게는 상압 내지 30 기압일 수 있다. 이는, 배가스의 압력이 상압이기 때문에 흡수 역시 상압에서 이루어지는 것이 가장 경제적이고, 흡수 압력이 50기압을 초과하면 흡수량은 급격히 증가할 수 있으나, 압력을 높이기 위한 추가설비, 컴프레서가 필요하게 되어 경제성을 낮게 한다.In an exemplary embodiment, the absorption pressure of the first step may be atmospheric pressure to 50 atmospheres, for example, atmospheric pressure to 40 atmospheres, preferably atmospheric pressure to 30 atmospheres. This is because the pressure of the exhaust gas is atmospheric pressure, so absorption is also most economically achieved. If the absorption pressure exceeds 50 atm, the absorption amount may increase rapidly, but it is necessary to add additional equipment and compressor to increase the pressure. do.
예시적인 구현예에서, 상기 제2 단계의 탈거 온도는 60 내지 120 ℃일 수 있고, 예컨대, 65 내지 100℃일 수 있고, 바람직하게는 70 내지 90 ℃일 수 있다. 상기 탈거 온도가 60℃ 미만일 경우에는 탈거가 진행되지 않고 100℃를 초과하면 기존 흡수제를 사용하는 온도와 큰 차이가 없어 본 발명의 일 구현예에 따른 흡수제의 장점이 사라지게 되기 때문이다.In an exemplary embodiment, the stripping temperature of the second step may be 60 to 120 ° C, for example 65 to 100 ° C, preferably 70 to 90 ° C. If the stripping temperature is less than 60 ℃ because the stripping does not proceed and exceeds 100 ℃ does not have a significant difference from the temperature using the existing absorbent because the advantage of the absorbent according to one embodiment of the present invention is lost.
예시적인 구현예에서, 상기 제2 단계의 탈거 압력은 상압일 수 있다. 탈거는 고압에서 진행하기 어려운데, 이는 이러한 고압을 유지하기 위해서 물의 증기압을 크게 해야 하므로 높은 온도가 필요하게 되어 경제성이 낮아지게 된다. 따라서, 탈거는 상압에서 하는 것이 바람직하다.In an exemplary embodiment, the stripping pressure of the second step may be atmospheric pressure. Removal is difficult to proceed at high pressure, which is required to increase the vapor pressure of the water to maintain this high pressure requires a high temperature, thereby reducing the economics. Therefore, stripping is preferably performed at normal pressure.
본 발명의 명세서에서 사용되는 용어 중 "상압"은 "대기압"으로서 1기압을 의미한다.In the term used in the specification of the present invention, "atmospheric pressure" means 1 atmosphere as "atmospheric pressure".
폴리수산화아민계Polyamine Hydroxide 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매 Catalyst for regenerating carbon dioxide absorbent containing polymer
본 발명의 예시적인 구현예들에서는, 하기 화학식 1 또는 화학식 2로 표시되는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매를 제공한다.Exemplary embodiments of the present invention provide a catalyst for regenerating a carbon dioxide absorbent including a polyhydroxyamine-based polymer represented by Formula 1 or Formula 2 below.
[화학식 1][Formula 1]
Figure PCTKR2019005122-appb-img-000009
Figure PCTKR2019005122-appb-img-000009
[화학식 2][Formula 2]
Figure PCTKR2019005122-appb-img-000010
Figure PCTKR2019005122-appb-img-000010
화학식 1 및 화학식 2에 있어서, Halide는 할로겐 원소이고, n은 반복 단위이다.In the formulas (1) and (2), Halide is a halogen element and n is a repeating unit.
본 발명의 일 구현예에 따른 폴리수산화아민계 고분자 물질을 포함하는 이산화탄소 흡수제 재생용 촉매의 경우, 고분자 표면의 하이드록시기 및 아민기 등을 포함하는 관능기를 가짐으로써, 낮은 온도에서도 효율적으로 이산화탄소 흡수제 재생(이산화탄소 탈거)이 가능해지고, 이에 전체적인 흡수공정의 에너지가 절감될 수 있을 뿐만 아니라, 높은 재생온도에서 파생되는 부식 및 부반응 발생, 흡수제 손실 문제 등도 크게 줄일 수 있다.In the case of the catalyst for regenerating a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer material according to an embodiment of the present invention, by having a functional group including a hydroxyl group and an amine group on the surface of the polymer, the carbon dioxide absorbent is efficiently Regeneration (carbon dioxide stripping) is possible, and the energy of the overall absorption process can be saved, as well as the occurrence of corrosion and side reactions and loss of absorbents derived from high regeneration temperatures.
예시적인 구현예에서, 화학식 1로 표시되는 폴리수산화아민계 고분자의 FT-IR 스펙트럼 측정 시, 3200 내지 3600 cm -1 영역에 위치하는 -OH 피크, 1515 내지 1570 cm -1 영역에 위치하는 -C-N-H 피크, 900 내지 1300 cm -1 영역에 위치하는 -C-O- 피크, 1250 내지 1360 cm -1 영역에 위치하는 -C-N-를 나타낼 수 있다.In an exemplary embodiment, when measuring the FT-IR spectrum of the polyamine-based polymer represented by Formula 1, -OH peak located at 3200 to 3600 cm -1 region, -CNH located at 1515 to 1570 cm -1 region peak, may represent a -CN- positioned -CO- peak, from 1250 to 1360 cm -1 region located 900 to 1300 cm -1 region.
예시적인 구현예에서, 상기 할로겐 원소는 Cl, I 또는 Br일 수 있고, 바람직하게는 I 일 수 있다.In an exemplary embodiment, the halogen element may be Cl, I or Br, preferably I.
예시적인 구현예에서, 상기 n은 1 내지 9의 정수일 수 있다.In an exemplary embodiment, n may be an integer from 1 to 9.
예시적인 구현예에서, 상기 이산화탄소 흡수제는 아민계 이산화탄소 흡수제이고, 상기 아민계 이산화탄소 흡수제는 1차 아민, 2차 아민 및 3차 아민으로 이루어진 군에서 선택되는 하나 이상일 수 있다.In an exemplary embodiment, the carbon dioxide absorbent is an amine based carbon dioxide absorbent, and the amine based carbon dioxide absorbent may be at least one selected from the group consisting of primary amine, secondary amine, and tertiary amine.
예시적인 구현예에서, 상기 아민계 이산화탄소 흡수제는 모노에탄올아민(monoethanolamine), 디에탄올아민(diethanolamine) 및 피퍼라진(piperazine)으로 이루어진 군에서 선택되는 하나 이상일 수 있다. In an exemplary embodiment, the amine-based carbon dioxide absorbent may be at least one selected from the group consisting of monoethanolamine, diethanolamine, and piperazine.
아민계Amine 이산화탄소 흡수제 재생 방법 CO2 Absorbent Regeneration Method
본 발명의 예시적인 구현예들에서는, 아민계 이산화탄소 흡수제 재생 방법으로서, 아민계 이산화탄소 흡수제를 포함하는 수용액을 이용하여, 이산화탄소를 포함하는 기체 혼합물로부터 이산화탄소를 흡수시키는 제1 단계; 및 전술한 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매를 이용하여, 아민계 이산화탄소 흡수제를 포함하는 수용액으로부터 흡수된 이산화탄소를 탈거시키는 제2 단계;를 포함하는, 아민계 이산화탄소 흡수제 재생 방법을 제공한다. In exemplary embodiments of the present invention, there is provided a method for regenerating an amine-based carbon dioxide absorbent, the method comprising: absorbing carbon dioxide from a gas mixture including carbon dioxide using an aqueous solution including an amine-based carbon dioxide absorbent; And a second step of removing the carbon dioxide absorbed from the aqueous solution containing the amine-based carbon dioxide absorbent using the catalyst for regenerating the carbon dioxide absorbent including the polyhydroxyamine-based polymer described above. to provide.
예시적인 구현예에서, 상기 수용액 내에서 상기 아민계 이산화탄소 흡수제의 함량은 물 100 중량부에 대하여 1 내지 99 중량부일 수 있다.In an exemplary embodiment, the content of the amine-based carbon dioxide absorbent in the aqueous solution may be 1 to 99 parts by weight based on 100 parts by weight of water.
예시적인 구현예에서, 상기 제1 단계의 흡수 온도는 10 내지 60 ℃일 수 있고, 예컨대, 15 내지 50 ℃일 수 있고, 바람직하게는 20 내지 40 ℃일 수 있다. 상기 흡수 온도가 60℃를 초과하면 탈거가 동시에 진행되기 때문에 이산화탄소 흡수량이 줄어들게 되고, 흡수 온도를 10℃ 미만으로 할 경우 온도를 낮추기 위한 추가의 냉동설비를 필요로 하게 되어 경제성에 문제가 생기기 때문이다.In an exemplary embodiment, the absorption temperature of the first step may be 10 to 60 ° C, for example 15 to 50 ° C, preferably 20 to 40 ° C. If the absorption temperature exceeds 60 ℃ desorption proceeds at the same time because the amount of carbon dioxide absorption is reduced, if the absorption temperature is less than 10 ℃ because it requires an additional refrigeration equipment for lowering the temperature, causing economic problems. .
예시적인 구현예에서, 상기 제1 단계의 흡수 압력은 상압 내지 50 기압일 수 있고, 예컨대, 상압 내지 40 기압일 수 있고, 바람직하게는 상압 내지 30 기압일 수 있다. 이는, 배가스의 압력이 상압이기 때문에 흡수 역시 상압에서 이루어지는 것이 가장 경제적이고, 흡수 압력이 50기압을 초과하면 흡수량은 급격히 증가할 수 있으나, 압력을 높이기 위한 추가설비, 컴프레서가 필요하게 되어 경제성을 낮게 한다.In an exemplary embodiment, the absorption pressure of the first step may be atmospheric pressure to 50 atmospheres, for example, atmospheric pressure to 40 atmospheres, preferably atmospheric pressure to 30 atmospheres. This is because the pressure of the exhaust gas is atmospheric pressure, so absorption is also most economically achieved. If the absorption pressure exceeds 50 atm, the absorption amount may increase rapidly, but it is necessary to add additional equipment and compressor to increase the pressure. do.
예시적인 구현예에서, 상기 제2 단계의 탈거 온도는 60 내지 120 ℃일 수 있고, 예컨대, 65 내지 100 ℃일 수 있고, 바람직하게는 70 내지 90 ℃일 수 있다. 상기 탈거 온도가 60℃ 미만일 경우에는 탈거가 진행되지 않고 100℃를 초과하면 기존 흡수제를 사용하는 온도와 큰 차이가 없어 본 발명의 일 구현예에 따른 흡수제의 장점이 사라지게 되기 때문이다.In an exemplary embodiment, the stripping temperature of the second step may be 60 to 120 ° C, for example 65 to 100 ° C, preferably 70 to 90 ° C. If the stripping temperature is less than 60 ℃ because the stripping does not proceed and exceeds 100 ℃ does not have a significant difference from the temperature using the existing absorbent because the advantage of the absorbent according to one embodiment of the present invention is lost.
예시적인 구현예에서, 상기 제2 단계의 탈거 압력은 상압일 수 있다. 탈거는 고압에서 진행하기 어려운데, 이는 이러한 고압을 유지하기 위해서 물의 증기압을 크게 해야 하므로 높은 온도가 필요하게 되어 경제성이 낮아지게 된다. 따라서, 탈거는 상압에서 하는 것이 바람직하다.In an exemplary embodiment, the stripping pressure of the second step may be atmospheric pressure. Removal is difficult to proceed at high pressure, which is required to increase the vapor pressure of the water to maintain this high pressure requires a high temperature, thereby reducing the economics. Therefore, stripping is preferably performed at normal pressure.
이하, 본 발명의 예시적인 구현예들에 따른 구체적인 실시예를 더욱 상세하게 설명한다. 그러나 본 발명이 하기 실시예에 한정되는 것은 아니며 첨부된 특허청구범위 내에서 다양한 형태의 실시예들이 구현될 수 있고, 단지 하기 실시예는 본 발명의 개시가 완전하도록 함과 동시에 당 업계에서 통상의 지식을 가진 자에게 발명의 실시를 용이하게 하고자 하는 것임이 이해될 것이다.Hereinafter, specific embodiments according to exemplary embodiments of the present invention will be described in more detail. However, the present invention is not limited to the following examples, and various forms of embodiments can be implemented within the scope of the appended claims, and the following examples are only common in the art while making the disclosure of the present invention complete. It is to be understood that the invention is intended to facilitate the practice of the invention.
실시예Example 1:  One: 폴리수산화아민계Polyamine Hydroxide 고분자를 포함하는 이산화탄소 흡수제/이산화탄소 흡수제 재생용 촉매 제조 Preparation of catalyst for regenerating carbon dioxide absorbent / carbon dioxide absorbent containing polymer
온도계, 환류 냉각기 및 적가장치가 설치된 3구 플라스크에 요소 3.6g, 요오드암모늄 2.2g, 글리옥살 5.2g을 넣고 반응온도 75℃, pH 3에서 2시간 교반하였다. 그 후, 아민 화합물로서 하이드록실 아민 0.5g, 안정제 및 분자량 조절제로서 이소프로필알콜 1g, 적가장치를 통해 글리옥살 5.2g을 1시간에 걸쳐 적하하면서 축합반응시켰다.In a three-necked flask equipped with a thermometer, a reflux condenser, and a dropping device, 3.6 g of urea, 2.2 g of ammonium iodide, and 5.2 g of glyoxal were added and stirred at a reaction temperature of 75 ° C. and pH 3 for 2 hours. Thereafter, 0.5 g of hydroxyl amine as an amine compound, 1 g of isopropyl alcohol as a stabilizer and a molecular weight modifier, and 5.2 g of glyoxal were added dropwise over 1 hour through a dropping device to condensation reaction.
제조된 폴리수산화아민계 고분자의 NMR 분석 결과는 하기와 같았으며, 이를 각각 이산화탄소 흡수제 및 재생용 촉매로 사용하였다.The NMR analysis results of the prepared polyhydroxyamine-based polymer were as follows, and used as a carbon dioxide absorbent and a regeneration catalyst, respectively.
1H-NMR (400 MHz, D2O) δ 4.80 (s, 2H), 4.79-4.29 (m)1 H-NMR (400 MHz, D2O) δ 4.80 (s, 2H), 4.79-4.29 (m)
13C-NMR (100 MHz, D2O) δ 71.93.13 C-NMR (100 MHz, D 2 O) δ 71.93.
실험예Experimental Example
실험예Experimental Example 1:  One: 폴리수산화아민계Polyamine Hydroxide 고분자의 FT-IR 스펙트럼 분석 FT-IR Spectrum Analysis of Polymers
실시예 1에서 제조된 폴리수산화아민계 고분자에 대하여, FT-IR 스펙트럼 분석을 실시하였다. 그 결과는 도 1에 나타난 바와 같다. 도 1을 참조하면, 3200 내지 3600 cm -1 영역에 위치하는 -OH 피크, 1515 내지 1570 cm -1 영역에 위치하는 -C-N-H 피크, 900 내지 1300 cm -1 영역에 위치하는 -C-O- 피크, 1250 내지 1360 cm -1 영역에 위치하는 -C-N-가 나타남을 확인할 수 있었다.The FT-IR spectrum analysis was performed on the polyamine hydroxide polymer prepared in Example 1. The result is as shown in FIG. 1, -OH peak located in the 3200 to 3600 cm -1 region, -CNH peak located in the 1515 to 1570 cm -1 region, -CO- peak located in the 900 to 1300 cm -1 region, 1250 It can be seen that -CN- located in the region of 1360 cm -1 appears.
실험예Experimental Example 2: 이산화탄소/질소 비율에 따른  2: according to carbon dioxide / nitrogen ratio 폴리수산화아민계Polyamine Hydroxide 고분자를 포함하는 이산화탄소 흡수제의  Of carbon dioxide absorbent containing polymer 흡수능Absorption
실시예 1에 의해 제조된 이산화탄소 흡수제를 물 100 중량부에 대하여 10 중량부 포함한 수용액의 이산화탄소 흡수능을 비교하기 위하여, 실제 L 발전소 및 제철소 배가스를 모사한 합성가스 (이산화탄소/질소 10%/90%, 30%/70%)에 대해 상온에서, 100ml의 수용액에 30ml/분의 속도로 주입하여 이산화탄소 흡수 총량과 속도를 측정하여, 도 2에 나타내었다.In order to compare the carbon dioxide absorption capacity of the aqueous solution containing 10 parts by weight of the carbon dioxide absorbent prepared in Example 1 with respect to 100 parts by weight of water, the synthesis gas (carbon dioxide / nitrogen 10% / 90%, 30% / 70%) at room temperature, injected into a 100ml aqueous solution at a rate of 30ml / min to measure the total amount and rate of carbon dioxide absorption, it is shown in Figure 2.
도 2를 참조하면, 질소와 다양한 비율로 혼합되어 있는 이산화탄소를 분리할 수 있음을 보여준다.Referring to FIG. 2, it can be seen that carbon dioxide mixed with nitrogen in various ratios can be separated.
실험예Experimental Example 3: 온도에 따른  3: according to temperature 폴리수산화아민계Polyamine Hydroxide 고분자를 포함하는 이산화탄소 흡수제의 흡수/ Absorption of carbon dioxide absorbent containing polymer 재생(탈거)능Playback (removal) ability
실시예 1에 의해 제조된 이산화탄소 흡수제를 물 100 중량부에 대하여 10 중량부 포함한 수용액 100ml에 실제 L 발전소 및 제철소 배가스를 모사한 합성가스 (이산화탄소/질소 10%/90%)를 30ml/분의 속도로 주입하고, 온도를 25℃/80℃로 바꿔가면서 상압에서 이산화탄소 흡수 총량과 속도를 측정하여, 도 3에 나타내었다. 100 ml of the aqueous solution containing 10 parts by weight of the carbon dioxide absorbent prepared in Example 1 to 10 parts by weight of water, the rate of the synthesis gas (carbon dioxide / nitrogen 10% / 90%) simulating the actual L power plant and steel mill exhaust gas 30 ml / min Injected into a temperature, the total amount and rate of carbon dioxide absorption at atmospheric pressure were measured while changing the temperature to 25 ℃ / 80 ℃, it is shown in FIG.
도 3에서 확인할 수 있는 바와 같이, 본 발명의 일 구현예에 따르면 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 포함하는 수용액을 사용하여, 외부의 다른 공정 조건 없이 온도 조절만으로 이산화탄소 흡수제로부터 이산화탄소를 탈거(재생)하여, 이산화탄소 흡수제를 재생할 수 있음을 확인할 수 있다. 또한 상용 흡수제인 아카놀아민계 이산화탄소 흡수제(25/120℃)의 흡수/탈거 조건보다 상대적으로 낮은 온도(25/80℃)에서도 이산화탄소 흡수/재생(탈거)이 가능하므로 에너지가 상대적으로 적게 소요되는 것을 확인할 수 있다.As can be seen in Figure 3, according to one embodiment of the present invention by using an aqueous solution containing a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer, the carbon dioxide is removed from the carbon dioxide absorbent only by temperature control without other external process conditions (Regeneration), it can be confirmed that the carbon dioxide absorbent can be regenerated. In addition, carbon dioxide can be absorbed / regenerated (removed) even at a temperature (25/80 ° C) that is relatively lower than the absorption / removal condition of a commercially available akanolamine-based carbon dioxide absorber (25/120 ° C). You can check it.
실험예Experimental Example 4: 이산화탄소 흡수제 재생촉매의  4: carbon dioxide absorbent regeneration catalyst 재생율Refresh rate 실험결과 Experiment result
상용 이산화탄소 흡수제 중 하나인 모노에탄올아민 (monoethanolamine) 20% (wt) 수용액에 이산화탄소/질소 혼합가스 (30/70) 를 버블링시켜 이산화탄소를 포화 흡수한 용액에 대해 실시예 1에 따른 이산화탄소 흡수제 재생용 촉매를 사용하여, 또는 촉매 없이 재생하였다. Carbon dioxide / nitrogen mixed gas (30/70) was bubbled in a 20% (wt) aqueous solution of monoethanolamine, one of the commercial carbon dioxide absorbents, to regenerate the carbon dioxide absorbent according to Example 1 for a solution in which carbon dioxide was saturated and absorbed. Regeneration was carried out with or without catalyst.
재생 과정은 용액 온도를 90℃로 올려 촉매 유무에 따른 이산화탄소 탈기량을 측정하였으며, 초기 이산화탄소 흡수량 대비 탈기량의 차이를 통해 재생율을 측정하였다. 반복실험을 위해 사용한 촉매는 원심분리를 통해 분리하여 건조 없이 반복해서 재사용하였으며, 그 결과는 하기 표 1에 나타내었다. In the regeneration process, the solution temperature was raised to 90 ° C. to measure the amount of carbon dioxide degassed according to the presence or absence of a catalyst. The catalyst used for the repeated experiment was separated by centrifugation and reused repeatedly without drying, and the results are shown in Table 1 below.
하기 표 1 참조하면, 실시예 1의 촉매를 사용한 경우 재생율이 약 1.5배 이상에서 약 2배 우수한 것으로 나타난 것을 확인할 수 있다. Referring to Table 1 below, it can be seen that when the catalyst of Example 1 was used, the regeneration rate was about 2 times better than about 1.5 times.
촉매catalyst 재생 온도(탈거 온도)(℃)Regeneration temperature (removal temperature) (℃) 흡수 용액대비 촉매 함량(%, wt)Catalyst content compared to absorbent solution (%, wt) 재생시간에 따른 이산화탄소 재생율(%)CO2 Regeneration Rate According to Regeneration Time (%)
10분10 minutes 20분20 minutes 30분30 minutes 60분60 minutes
촉매 사용하지 않음 No catalyst 9090 00 55 2929 3131 4040
실시예 1 (고분자 촉매)Example 1 (polymer catalyst) 9090 1010 1010 4040 6060 7070

Claims (29)

  1. 하기 화학식 1 또는 화학식 2로 표시되는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제:Carbon dioxide absorbent comprising a polyhydroxylamine-based polymer represented by the following formula (1) or (2):
    [화학식 1][Formula 1]
    Figure PCTKR2019005122-appb-img-000011
    Figure PCTKR2019005122-appb-img-000011
    [화학식 2][Formula 2]
    Figure PCTKR2019005122-appb-img-000012
    Figure PCTKR2019005122-appb-img-000012
    화학식 1 및 화학식 2에 있어서, Halide는 할로겐 원소이고, n은 반복 단위이다.In the formulas (1) and (2), Halide is a halogen element and n is a repeating unit.
  2. 제1항에 있어서,The method of claim 1,
    상기 화학식 1로 표시되는 폴리수산화아민계 고분자의 FT-IR 스펙트럼 측정 시,When measuring the FT-IR spectrum of the polyamine hydroxide polymer represented by the formula (1),
    3200 내지 3600 cm -1 영역에 위치하는 -OH 피크, 1515 내지 1570 cm -1 영역에 위치하는 -C-N-H 피크, 900 내지 1300 cm -1 영역에 위치하는 -C-O- 피크, 1250 내지 1360 cm -1 영역에 위치하는 -C-N-를 나타내는 것을 특징으로 하는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제.-OH peak located at 3200 to 3600 cm -1 region, -CNH peak located at 1515 to 1570 cm -1 region, -CO- peak located at 900 to 1300 cm -1 region, 1250 to 1360 cm -1 region A carbon dioxide absorbent comprising a polyhydroxyamine-based polymer, characterized in that -CN- is located in.
  3. 제1항에 있어서,The method of claim 1,
    상기 할로겐 원소는 Cl, I 또는 Br 인 것을 특징으로 하는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제.The halogen element is a carbon dioxide absorbent comprising a polyamine hydroxide polymer, characterized in that Cl, I or Br.
  4. 제1항에 있어서,The method of claim 1,
    상기 n은 1 내지 9의 정수인 것을 특징으로 하는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제.N is a carbon dioxide absorbent comprising a polyamine hydroxide polymer, characterized in that an integer of 1 to 9.
  5. 제1항 내지 제4항 중 어느 한 항에 따른 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 제조방법으로서, As a method for producing a carbon dioxide absorbent comprising a polyamine hydroxide polymer according to any one of claims 1 to 4,
    아민 화합물, 알데히드 전구체 및 암모늄 할라이드를 반응시키는 단계;를 포함하는, 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 제조방법.A method of manufacturing a carbon dioxide absorbent comprising a polyamine hydroxide-based polymer, comprising; reacting an amine compound, an aldehyde precursor, and an ammonium halide.
  6. 제5항에 있어서,The method of claim 5,
    상기 반응은 축합 반응인 것을 특징으로 하는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 제조방법.The reaction is a carbon dioxide absorbent production method comprising a polyamine hydroxide polymer, characterized in that the condensation reaction.
  7. 제5항에 있어서,The method of claim 5,
    상기 아민 화합물은 요소(urea), 멜라민(melamine), 시안아미드(cyanamide), 디시안디아미드(dicyandiamide), 구아니딘(guanidine), 바이구아니딘(biguanidine), 구아릴우레아(guanylurea), 및 폴리사이클릭 구아니딘(polycyclic guanidine)으로 이루어지는 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 제조방법.The amine compounds include urea, melamine, cyanamide, dicyandiamide, guanidine, biguanidine, guanylurea, and polycyclic guanidine. Method for producing a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer, characterized in that at least one selected from the group consisting of (polycyclic guanidine).
  8. 제5항에 있어서,The method of claim 5,
    상기 알데히드 전구체는 포름알데히드(formaldehyde), 아세트알데히드(acetaldehyde), 프로피온알데히드(propionaldehyde), 부틸알데히드(butylaldehyde), 벤즈알데히드, 글루타르알데히드(glutaraldehyde), 글리옥살(glyoxal), 말론디알데히드(malondialdehyde), 숙신디알데히드(succindialdehyde), 및 프탈알데히드(phthalaldehyde)로 이루어지는 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 제조방법.The aldehyde precursor is formaldehyde (formaldehyde), acetaldehyde (acetaldehyde), propionaldehyde (propionaldehyde), butylaldehyde (butylaldehyde), benzaldehyde, glutaraldehyde (glutaraldehyde), glyoxal, malondialdehyde (malondialdehyde) A method of producing a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer, characterized in that at least one selected from the group consisting of succinic aldehyde (succindialdehyde) and phthalaldehyde (phthalaldehyde).
  9. 제5항에 있어서,The method of claim 5,
    상기 암모늄 할라이드는 NH 4Cl, NH 4I, 및 NH 4Br로 이루어지는 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 제조방법.The ammonium halide is a carbon dioxide absorbent manufacturing method comprising a polyhydroxyamine-based polymer, characterized in that at least one selected from the group consisting of NH 4 Cl, NH 4 I, and NH 4 Br.
  10. 이산화탄소 흡수 방법으로서,As a carbon dioxide absorption method,
    제1항 내지 제4항 중 어느 한 항에 따른 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 포함하는 수용액을 이용하여, 이산화탄소를 포함하는 기체 혼합물로부터 이산화탄소를 흡수하는 단계;를 포함하는, 이산화탄소 흡수 방법.Absorption of carbon dioxide from a gas mixture containing carbon dioxide by using an aqueous solution containing a carbon dioxide absorbent comprising a polyamine hydroxide polymer according to any one of claims 1 to 4 Way.
  11. 제10항에 있어서,The method of claim 10,
    상기 수용액 내에서 상기 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제의 함량은 물 100 중량부에 대하여 1 내지 99 중량부인 것을 특징으로 하는 이산화탄소 흡수 방법.The carbon dioxide absorbent containing the polyhydroxylamine-based polymer in the aqueous solution is carbon dioxide absorption method, characterized in that 1 to 99 parts by weight based on 100 parts by weight of water.
  12. 이산화탄소 분리 방법으로서,As a carbon dioxide separation method,
    제1항 내지 제4항 중 어느 한 항에 따른 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 포함하는 수용액을 이용하여, 이산화탄소를 포함하는 기체 혼합물로부터 이산화탄소를 흡수시키는 제1 단계; 및A first step of absorbing carbon dioxide from a gas mixture comprising carbon dioxide by using an aqueous solution comprising a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer according to any one of claims 1 to 4; And
    상기 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제를 포함하는 수용액으로부터 흡수된 이산화탄소를 탈거시키는 제2 단계;를 포함하는, 이산화탄소 분리 방법.And a second step of removing the carbon dioxide absorbed from the aqueous solution including the carbon dioxide absorbent including the polyhydroxyamine-based polymer.
  13. 제12항에 있어서,The method of claim 12,
    상기 수용액 내에서 상기 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제의 함량은 물 100 중량부에 대하여 1 내지 99 중량부인 것을 특징으로 하는 이산화탄소 흡수 방법.The carbon dioxide absorbent containing the polyhydroxylamine-based polymer in the aqueous solution is carbon dioxide absorption method, characterized in that 1 to 99 parts by weight based on 100 parts by weight of water.
  14. 제12항에 있어서,The method of claim 12,
    상기 제1 단계의 흡수 온도는 10 내지 60 ℃인 것을 특징으로 하는 이산화탄소 분리 방법.Carbon dioxide separation method, characterized in that the absorption temperature of the first step is 10 to 60 ℃.
  15. 제12항에 있어서,The method of claim 12,
    상기 제1 단계의 흡수 압력은 상압 내지 50 기압인 것을 특징으로 하는 이산화탄소 분리 방법.The absorption pressure of the first step is carbon dioxide separation method, characterized in that the atmospheric pressure to 50 atm.
  16. 제12항에 있어서,The method of claim 12,
    상기 제2 단계의 탈거 온도는 60 내지 120 ℃인 것을 특징으로 하는 이산화탄소 분리 방법.The stripping temperature of the second step is 60 to 120 ℃ characterized in that the carbon dioxide separation method.
  17. 제12항에 있어서,The method of claim 12,
    상기 제2 단계의 탈거 압력은 상압인 것을 특징으로 하는 이산화탄소 분리 방법.The stripping pressure of the second step is a carbon dioxide separation method, characterized in that the normal pressure.
  18. 하기 화학식 1 또는 화학식 2로 표시되는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매:A catalyst for regenerating a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer represented by Formula 1 or Formula 2 below:
    [화학식 1][Formula 1]
    Figure PCTKR2019005122-appb-img-000013
    Figure PCTKR2019005122-appb-img-000013
    [화학식 2][Formula 2]
    Figure PCTKR2019005122-appb-img-000014
    Figure PCTKR2019005122-appb-img-000014
    화학식 1 및 화학식 2에 있어서, Halide는 할로겐 원소이고, n은 반복 단위이다.In the formulas (1) and (2), Halide is a halogen element and n is a repeating unit.
  19. 제18항에 있어서,The method of claim 18,
    상기 화학식 1로 표시되는 폴리수산화아민계 고분자의 FT-IR 스펙트럼 측정 시,When measuring the FT-IR spectrum of the polyamine hydroxide polymer represented by the formula (1),
    3200 내지 3600 cm -1 영역에 위치하는 -OH 피크, 1515 내지 1570 cm -1 영역에 위치하는 -C-N-H 피크, 900 내지 1300 cm -1 영역에 위치하는 -C-O- 피크, 1250 내지 1360 cm -1 영역에 위치하는 -C-N-를 나타내는 것을 특징으로 하는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매.-OH peak located at 3200 to 3600 cm -1 region, -CNH peak located at 1515 to 1570 cm -1 region, -CO- peak located at 900 to 1300 cm -1 region, 1250 to 1360 cm -1 region A catalyst for regenerating a carbon dioxide absorbent comprising a polyamine hydroxide polymer, wherein -CN- is positioned at.
  20. 제18항에 있어서,The method of claim 18,
    상기 할로겐 원소는 Cl, I 또는 Br 인 것을 특징으로 하는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매.The halogen element is a catalyst for regenerating a carbon dioxide absorbent comprising a polyamine hydroxide polymer, characterized in that Cl, I or Br.
  21. 제18항에 있어서,The method of claim 18,
    상기 n은 1 내지 9의 정수인 것을 특징으로 하는 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매.Wherein n is a catalyst for regenerating carbon dioxide absorbent containing a polyamine hydroxide polymer, characterized in that an integer of 1 to 9.
  22. 제18항에 있어서,The method of claim 18,
    상기 이산화탄소 흡수제는 아민계 이산화탄소 흡수제이고,The carbon dioxide absorbent is an amine carbon dioxide absorbent,
    상기 아민계 이산화탄소 흡수제는 1차 아민, 2차 아민 및 3차 아민으로 이루어진 군에서 선택되는 하나 이상인, 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매.The amine-based carbon dioxide absorbent is one or more selected from the group consisting of primary amines, secondary amines and tertiary amines, carbon dioxide absorbent regeneration catalyst comprising a polyhydroxyamine-based polymer.
  23. 제22항에 있어서,The method of claim 22,
    상기 아민계 이산화탄소 흡수제는 모노에탄올아민(monoethanolamine), 디에탄올아민(diethanolamine) 및 피퍼라진(piperazine)으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는, 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매.The amine-based carbon dioxide absorbent is at least one selected from the group consisting of monoethanolamine (monoethanolamine), diethanolamine (diethanolamine) and piperazine (piperazine), carbon dioxide absorbent for regenerating a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer catalyst.
  24. 아민계 이산화탄소 흡수제 재생 방법으로서,As a method for regenerating an amine carbon dioxide absorbent,
    아민계 이산화탄소 흡수제를 포함하는 수용액을 이용하여, 이산화탄소를 포함하는 기체 혼합물로부터 이산화탄소를 흡수시키는 제1 단계; 및A first step of absorbing carbon dioxide from a gas mixture comprising carbon dioxide using an aqueous solution comprising an amine-based carbon dioxide absorbent; And
    제18항 내지 제23항 중 어느 한 항에 따른 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제 재생용 촉매를 이용하여, 아민계 이산화탄소 흡수제를 포함하는 수용액으로부터 흡수된 이산화탄소를 탈거시키는 제2 단계;를 포함하는, 아민계 이산화탄소 흡수제 재생 방법.A second step of removing the carbon dioxide absorbed from the aqueous solution containing the amine-based carbon dioxide absorbent by using a catalyst for regenerating a carbon dioxide absorbent comprising a polyhydroxyamine-based polymer according to any one of claims 18 to 23; A method for regenerating an amine-based carbon dioxide absorbent, comprising.
  25. 제24항에 있어서,The method of claim 24,
    상기 수용액 내에서 상기 아민계 이산화탄소 흡수제의 함량은 물 100 중량부에 대하여 1 내지 99 중량부인 것을 특징으로 하는 아민계 이산화탄소 흡수제 재생 방법.The content of the amine-based carbon dioxide absorbent in the aqueous solution is 1 to 99 parts by weight based on 100 parts by weight of water, characterized in that the regeneration method of the amine-based carbon dioxide absorbent.
  26. 제24항에 있어서,The method of claim 24,
    상기 제1 단계의 흡수 온도는 10 내지 60 ℃인 것을 특징으로 하는 아민계 이산화탄소 흡수제 재생 방법.The absorption temperature of the first step is an amine-based carbon dioxide absorbent regeneration method, characterized in that 10 to 60 ℃.
  27. 제24항에 있어서,The method of claim 24,
    상기 제1 단계의 흡수 압력은 상압 내지 50 기압인 것을 특징으로 하는 아민계 이산화탄소 흡수제 재생 방법.The absorption pressure of the first step is an amine-based carbon dioxide absorbent regeneration method, characterized in that the atmospheric pressure to 50 atm.
  28. 제24항에 있어서,The method of claim 24,
    상기 제2 단계의 탈거 온도는 60 내지 120 ℃인 것을 특징으로 하는 아민계 이산화탄소 흡수제 재생 방법.The stripping temperature of the second step is an amine-based carbon dioxide absorbent regeneration method, characterized in that 60 to 120 ℃.
  29. 제24항에 있어서,The method of claim 24,
    상기 제2 단계의 탈거 압력은 상압인 것을 특징으로 하는 아민계 이산화탄소 흡수제 재생 방법.The stripping pressure of the second step is an atmospheric pressure regeneration method of the amine-based carbon dioxide absorbent, characterized in that the pressure.
PCT/KR2019/005122 2018-04-30 2019-04-29 Carbon dioxide absorbent comprising polyhydroxy amine-based polymer, catalyst for regenerating carbon dioxide absorbent, method for absorbing/isolating carbon dioxide by using same, and method for regenerating carbon dioxide absorbent WO2019212208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0049913 2018-04-30
KR1020180049913A KR102077119B1 (en) 2018-04-30 2018-04-30 Polyhydroxyamine-based carbon dioxide absorbent and method for absorbing/separating carbon dioxide using the same

Publications (1)

Publication Number Publication Date
WO2019212208A1 true WO2019212208A1 (en) 2019-11-07

Family

ID=68386333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005122 WO2019212208A1 (en) 2018-04-30 2019-04-29 Carbon dioxide absorbent comprising polyhydroxy amine-based polymer, catalyst for regenerating carbon dioxide absorbent, method for absorbing/isolating carbon dioxide by using same, and method for regenerating carbon dioxide absorbent

Country Status (2)

Country Link
KR (1) KR102077119B1 (en)
WO (1) WO2019212208A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220108582A (en) * 2021-01-27 2022-08-03 한국과학기술연구원 Highly efficient CO2 absorbent composition and method for preparing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238073A (en) * 2007-03-28 2008-10-09 Nippon Steel Chem Co Ltd Carbon dioxide absorbent and carbon dioxide adsorbing method
KR100888321B1 (en) * 2007-06-12 2009-03-12 한국전력공사 Absorbents for acidic gas separation
KR101517513B1 (en) * 2013-10-07 2015-05-06 한국에너지기술연구원 Composition for absorbing carbon dioxide containing sterically hindered alkanolamine, method and apparatus for absorbing carbon dioxide using the same
KR101549950B1 (en) * 2014-10-16 2015-09-03 경희대학교 산학협력단 Carbon Dioxide Absorbent Comprising Triamine
KR101785908B1 (en) * 2016-04-26 2017-11-16 한국에너지기술연구원 catalyst for accelerating carbon dioxide absorption
KR101804762B1 (en) * 2017-02-16 2017-12-05 한국과학기술연구원 Catalyst for preparing alkylene carbonate, method for preparing the catalyst, method and apparatus for preparing alkylene carbonate using the catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074763B2 (en) 2003-04-04 2012-11-14 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Polyamine / alkali salt mixtures for removing carbon dioxide from gas streams
JP3197173U (en) 2015-02-12 2015-04-23 永▲くん▼有限公司Rich Electric Wire and Cable Co. Ltd. Electrical transmission line

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238073A (en) * 2007-03-28 2008-10-09 Nippon Steel Chem Co Ltd Carbon dioxide absorbent and carbon dioxide adsorbing method
KR100888321B1 (en) * 2007-06-12 2009-03-12 한국전력공사 Absorbents for acidic gas separation
KR101517513B1 (en) * 2013-10-07 2015-05-06 한국에너지기술연구원 Composition for absorbing carbon dioxide containing sterically hindered alkanolamine, method and apparatus for absorbing carbon dioxide using the same
KR101549950B1 (en) * 2014-10-16 2015-09-03 경희대학교 산학협력단 Carbon Dioxide Absorbent Comprising Triamine
KR101785908B1 (en) * 2016-04-26 2017-11-16 한국에너지기술연구원 catalyst for accelerating carbon dioxide absorption
KR101804762B1 (en) * 2017-02-16 2017-12-05 한국과학기술연구원 Catalyst for preparing alkylene carbonate, method for preparing the catalyst, method and apparatus for preparing alkylene carbonate using the catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220108582A (en) * 2021-01-27 2022-08-03 한국과학기술연구원 Highly efficient CO2 absorbent composition and method for preparing the same
EP4035760A1 (en) * 2021-01-27 2022-08-03 Korea Institute of Science and Technology Co2 absorbent comprising polyhydroxyamine derivative composition in combination with n-alkylamino-alkane and ethylenediamine or ethylenetriamine
US11666853B2 (en) 2021-01-27 2023-06-06 Korea Institute Of Science And Technology Highly efficient CO2 absorbent composition and method for preparing the same
KR102638462B1 (en) 2021-01-27 2024-02-21 한국과학기술연구원 Highly efficient CO2 absorbent composition and method for preparing the same

Also Published As

Publication number Publication date
KR102077119B1 (en) 2020-02-13
KR20190125734A (en) 2019-11-07

Similar Documents

Publication Publication Date Title
US6497852B2 (en) Carbon dioxide recovery at high pressure
CN101143286B (en) Method for removing COS from acid airflow
JP2017164696A (en) Carbonic acid gas absorbent material, carbonic acid gas recovery system and carbonic acid gas recovery method
WO2016060508A2 (en) Carbon dioxide absorbent comprising triamine
JP6615813B2 (en) Carbon dioxide absorbent and carbon dioxide separation and recovery system
WO2019212208A1 (en) Carbon dioxide absorbent comprising polyhydroxy amine-based polymer, catalyst for regenerating carbon dioxide absorbent, method for absorbing/isolating carbon dioxide by using same, and method for regenerating carbon dioxide absorbent
CN109200760B (en) Low-energy-consumption regenerated eutectic solvent for removing carbon dioxide stably
WO2014104792A1 (en) Alkanolamine-based carbon dioxide absorbent containing polyalkylene glycol monomethyl ether, and carbon dioxide absorption method and separation method using same
US9486737B2 (en) Absorbent tertiary monoalkanolamine solution belonging to the 3-alcoxypropylamine family, and method for removing acidic compounds contained in a gas effluent
KR20130035638A (en) Method and apparatus of efficient solvent scrubbing acid gas capture system
KR102638462B1 (en) Highly efficient CO2 absorbent composition and method for preparing the same
WO2011002145A2 (en) Absorbent for separating acid gas
CN110563639B (en) Pyridine organic amine and preparation method and application thereof
KR101559563B1 (en) Carbon dioxide absorbent solution comprising guanidine derivatives and method for regenerating the same
WO2013183808A1 (en) Acid-functionalized imidazolium ionic liquid for separating carbon dioxide and use thereof
WO2014104789A1 (en) Ternary carbon dioxide absorbent and carbon dioxide absorption method and separation method using same
KR20130035640A (en) Highly efficient absorbents for acidic gas separation
CN104415653A (en) Capture solvent used for capturing low-concentration carbon dioxide
WO2023287043A1 (en) Carbon dioxide absorbent comprising ionic liquid and alcohol solvent, and method for separating carbon dioxide using same
WO2014104790A1 (en) Carbon dioxide absorbent based on amine having nitrile functional group, and carbon dioxide absorption method and separation method using same
WO2023140553A1 (en) Carbon dioxide absorbent comprising phenolate-based ionic liquid and aliphatic alcohol and carbon dioxide separation method using same
US11198090B2 (en) Method for regenerating an amine-based, acid gas absorbent using a catalyst mixture containing silver oxide and silver carbonbate
KR102155236B1 (en) Ether-functional diamine-based carbon dioxide absorbents and method for preparing the same
WO2024053938A1 (en) Method for treating neopentyl glycol wastewater
KR101474506B1 (en) Carbon dioxide absorbent comprising formamidine groups and method for manufacturing the same and carbon dioxide absorbent solution comprising the same and method for treating carbon dioxide using the solution and method for regenerating the carbon dioxide absorbent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796170

Country of ref document: EP

Kind code of ref document: A1