WO2011002145A2 - Absorbent for separating acid gas - Google Patents

Absorbent for separating acid gas Download PDF

Info

Publication number
WO2011002145A2
WO2011002145A2 PCT/KR2010/002294 KR2010002294W WO2011002145A2 WO 2011002145 A2 WO2011002145 A2 WO 2011002145A2 KR 2010002294 W KR2010002294 W KR 2010002294W WO 2011002145 A2 WO2011002145 A2 WO 2011002145A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
absorbent
acid gas
gas separation
amino
Prior art date
Application number
PCT/KR2010/002294
Other languages
French (fr)
Korean (ko)
Other versions
WO2011002145A3 (en
Inventor
심재구
김준한
장경룡
이지현
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090059410A external-priority patent/KR101094328B1/en
Priority claimed from KR1020090090711A external-priority patent/KR101094327B1/en
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2011002145A2 publication Critical patent/WO2011002145A2/en
Publication of WO2011002145A3 publication Critical patent/WO2011002145A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/04Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/08Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with only one hydroxy group and one amino group bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/10Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with one amino group and at least two hydroxy groups bound to the carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/80Organic bases or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention is to separate the acid gas from the mixed gas, and more particularly, to an absorbent for acid gas separation using a mixed gas containing a hindered amine.
  • carbon dioxide separation technologies include absorption, adsorption, membrane separation, and deep cooling.
  • the absorption method is a technique for selectively separating carbon dioxide by contacting a process gas including carbon dioxide with various absorbents, and is widely used in the chemical industry for easy processing of a large amount of gas and suitable for low concentration gas separation.
  • Alkanolamines have conventionally been used as absorbents used in the absorption method. These alkanolamines are primary amines such as monoethanolamine (MEA), secondary amines such as diethanolamine (DEA), triethanolamine (TEA), N-methyldiethanolamine (MDEA), triisopropanolamine (TIPA Tertiary amines).
  • MEA monoethanolamine
  • DEA diethanolamine
  • TEA triethanolamine
  • MDEA N-methyldiethanolamine
  • TIPA Tertiary amines triisopropanolamine
  • the MEA and DEA have an advantage of having a high reaction rate, but have disadvantages such as high corrosiveness, high renewable energy, and deterioration.
  • the MDEA has the advantage of low corrosion and regeneration heat, but has the disadvantage of slow absorption.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an absorbent for acid gas separation having a high absorption amount and a fast reaction rate with an acid gas including carbon dioxide, as well as an excellent stripping rate and stripping amount. .
  • the absorbent for acid gas separation of the present invention includes 2- (isopropylamino) ethanol represented by the following Chemical Formula 1 and N-isopropyldiethanolamine represented by the following Chemical Formula 2, or a mixture thereof.
  • Formula 4 or Formula 5 further comprises at least one.
  • R 1 , R 2 and R 3 are the same or different alkyl groups having 1 or 4 carbon atoms, — (CH 2 ) 2 —OH, CH 2 —CH (OH) CH 3 or H, and R 4 is CH 3 or H.
  • a, b are integers from 0 to 3
  • X, Z is -NH or -NCH 3 ,
  • Y is a C 1 -C 3 alkyl group, -CHOH, -NH, -O, -CHNH 2.
  • N-isopropyl diethanolamine of the formula (2) may be included in 40 to 60 parts by weight based on 100 parts by weight of 2- (isopropylamino) ethanol of the formula (1)
  • the compound represented by the formula (3) is 50 to 500 parts by weight based on 100 parts by weight of 2- (isopropylamino) ethanol of 1
  • the compound represented by Formula 4 or Formula 5 is 100 parts by weight of 2- (isopropylamino) ethanol of Formula 1 It may be included in 10 to 200 parts by weight relative to.
  • the compound represented by the formula (3) is 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1-butanol, 2-amino-2-methyl-1-pentanol, 2-amino -1-propanol, 2-amino-1-butanol, 2-amino-3-methyl-1-butanol, 2-amino-1-pentanol, 2-amino-1-hexanol, 1-amino-3-methyl 2-butanol, diethanolamine, 2- (ethylamino) ethanol, 2- (butylamino) ethanol, 2- (t-butylamino) ethanol, diisopropanolamine, 1-amino-2-propanol, and the like One or more may be selected from.
  • Compound represented by the formula (4) is ethylenetriamine, diethylenetriamine, 1,3-diamino-2-propanol, 1,5-diamino-3-pentanol, butylenediamine, pentamethylenediamine, hexamethylene Diamine, bis (3-aminopropyl) amine, N-isopropylethylenediamine, N-isopropyl-1,3-propanediamine, tetraethylenepentaamine, N, N'-dimethyl-1,3-propanediamine, 2 -(2-aminoethylamino) ethanol, 1-dimethylamino-2-propylamine, 2,2-dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N, One or more may be selected from the group consisting of N, N-tetramethylethylenediamine and the like.
  • Compound represented by the formula (5) is piperazine, 2-methylpiperazine, 1,4-dimethylpiperazine, 1,4-diethylpiperazine, 2,3-dimethylpiperazine, 2,5-dimethylpiperazine, 2,4-dimethylpiperazine, 1,4-dipropylpiperazine, 1,4-diisopropylpiperazine, 1- (2-aminoethyl) piperazine, 2-aminoethylpiperazine, 1- (2- Hydroxylethyl) piperazine, 1- (1-hydroxymethyl) piperazine, 1- (3-hydroxypropyl) piperazine, 1,4-bis (1-aminomethyl) piperazine, 1,4-bis One or more may be selected from the group consisting of (2-aminoethyl) piperazine, 1,4-bis (3-aminopropyl) piperazine, piperazinol and the like.
  • the absorbent for acid gas separation according to the present invention may be used as an aqueous solution having a concentration of 10 to 60% (w / v), the absorption temperature may be in the range of 0 to 60 °C, stripping temperature 70 to 200 °C.
  • the acid gas may be CO 2 , H 2 S, SO 2 , NO 2 and COS.
  • the absorbent for acid gas separation according to the present invention not only has a much higher absorption rate and absorption amount of acidic gas than the conventional monoethanolamine absorbent, but also has a very high stripping rate and stripping rate, thereby improving acid gas removal rate under the same operating conditions. This can reduce the energy required for removal.
  • the absorbent for acid gas separation of the present invention includes 2- (isopropylamino) ethanol represented by the following Chemical Formula 1 and N-isopropyldiethanolamine represented by the following Chemical Formula 2, or the mixture is added to the following Chemical Formula 3, Chemical Formula 4 or It further contains one or more of the compounds represented by the formula (5).
  • R 1 , R 2 and R 3 are the same or different alkyl groups having 1 or 4 carbon atoms, — (CH 2 ) 2 —OH, CH 2 —CH (OH) CH 3 or H, and R 4 is CH 3 or H.
  • a, b are integers from 0 to 3
  • X, Z is -NH or -NCH 3 ,
  • Y is a C 1 -C 3 alkyl group, -CHOH, -NH, -O, -CHNH 2.
  • An embodiment of the absorbent for acid gas separation of the present invention includes a mixture of 2- (isopropylamino) ethanol represented by Chemical Formula 1 and N-isopropyldiethanolamine represented by Chemical Formula 2.
  • the acid gas separation absorbent is less stripping energy consumption because of the synergistic action of each component, compared to the conventional monoethanolamine absorbent, the removal rate of carbon dioxide increases without a decrease in absorption capacity.
  • 2- (isopropylamino) ethanol represented by Chemical Formula 1 has an alcoholic hydroxyl group and a secondary amine in the molecule, respectively, and the absorption reaction with acidic gas is due to the electron donating effect of the isopropyl group substituted in the amine. great.
  • 3--dimensional repulsion of the absorbed acid gas and isopropyl group occurs, resulting in excellent stripping characteristics of the acid gas, thereby reducing stripping energy and improving economic efficiency.
  • N-isopropyl diethanolamine represented by the formula (2) is a structure having two alcoholic hydroxyl groups in the molecule, and one tertiary amine.
  • This tertiary amine is a mechanism in which the reaction mechanism with carbon dioxide forms bicarbonate ions in a reaction in which water acts as a catalyst rather than a carbamate formation reaction.
  • Carbon dioxide absorbs better than primary or secondary amines, where molecules and one molecule of carbon dioxide react.
  • the compound represented by Chemical Formula 2 may be included in an amount of 40 to 60 parts by weight based on 100 parts by weight of the compound represented by Chemical Formula 1. If the content is less than 40 parts by weight, the absolute amount of tertiary amine is insufficient, so that the absorption performance with carbon dioxide is lowered. If it exceeds 60 parts by weight, the overall absorption performance is reduced due to the characteristics of the tertiary amine, which is slow to react with carbon dioxide. do.
  • Another embodiment of the absorbent for acid gas separation of the present invention further comprises one or more of the compounds represented by the formula (3), (4) or (5) in addition to the mixture of the formula (1) and (2).
  • the acidic gas separation absorbent increases the stripping rate of carbon dioxide without lowering the absorption capacity compared to the conventional monoethanolamine absorbent due to the synergistic action of each component can reduce the consumption of stripping energy.
  • the compound represented by the formula (3) has at least one alcoholic hydroxyl group and one amine in the molecule.
  • the amine is a primary amine
  • the binding force between the amine and carbon dioxide is low, so that the stripping property of carbon dioxide is superior and the stripping energy is lower than that of the conventional amine absorbent.
  • the reaction rate with the carbon dioxide can be increased to increase the carbon dioxide absorption rate.
  • the compound represented by Chemical Formula 3 is included in an amount of 50 to 500 parts by weight based on 100 parts by weight of the compound represented by Chemical Formula 1. If the amount is less than 50 parts by weight, the absorption performance with carbon dioxide is lowered. If it is more than 500 parts by weight, the effect of mixing 2- (isopropylamino) ethanol of Chemical Formula 1 is minimized, thereby improving the absorption performance of carbon dioxide.
  • Specific examples of the compound represented by Formula 3 include 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1-butanol, 2-amino-2-methyl-1-pentanol, and 2 -Amino-1-propanol, 2-amino-1-butanol, 2-amino-3-methyl-1-butanol, 2-amino-1-pentanol, 2-amino-1-hexanol, 1-amino-3 -Methyl-2-butanol, diethanolamine, 2- (ethylamino) ethanol, 2- (butylamino) ethanol, 2- (t-butylamino) ethanol, diisopropanolamine, 1-amino-2-propanol, and the like. Can be mentioned.
  • the compound represented by Formula 4 or Formula 5 may have two or more amines in the molecule, thereby increasing the removal rate of carbon dioxide because the amine which can be combined with carbon dioxide is doubled during the reaction.
  • the compound represented by Formula 4 or Formula 5 may be selected by mixing one or more when preparing the absorbent for acid gas separation.
  • Specific examples of the compound represented by Formula 4 include ethylenetriamine, diethylenetriamine, 1,3-diamino-2-propanol, 1,5-diamino-3-pentanol, butylenediamine, pentamethylene Diamine, hexamethylenediamine, bis (3-aminopropyl) amine, N-isopropylethylenediamine, N-isopropyl-1,3-propanediamine, tetraethylenepentaamine, N, N'-dimethyl-1,3- Propanediamine, 2- (2-aminoethylamino) ethanol, 1-dimethylamino-2-propylamine, 2,2-dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N, N, N-tetramethylethylenediamine etc. are mentioned.
  • Specific examples of the compound represented by Formula 5 include piperazine, 2-methylpiperazine, 1,4-dimethylpiperazine, 1,4-diethylpiperazine, 2,3-dimethylpiperazine, 2,5- Dimethylpiperazine, 2,4-dimethylpiperazine, 1,4-dipropylpiperazine, 1,4-diisopropylpiperazine, 1- (2-aminoethyl) piperazine, 2-aminoethylpiperazine, 1 -(2-hydroxylethyl) piperazine, 1- (1-hydroxylmethyl) piperazine, 1- (3-hydroxypropyl) piperazine, 1,4-bis (1-aminomethyl) piperazine, 1 , 4-bis (2-aminoethyl) piperazine, 1,4-bis (3-aminopropyl) piperazine, piperazinol and the like.
  • the compound represented by Formula 3 or Formula 4 is included in an amount of 10 to 200 parts by weight based on 100 parts by weight of 2- (isopropylamino) ethanol of Formula 1.
  • the compound represented by Formula 3 or Formula 4 is included in less than 10 parts by weight it is difficult to achieve the purpose of increasing the absorption capacity of the carbon dioxide, if it exceeds 200 parts by weight is not good in terms of economics because the effect of improving the carbon dioxide absorption capacity compared to the amount used is insignificant.
  • the absorbent for acid gas separation of the present invention is preferably used as an aqueous solution having a concentration of 10 to 60% (w / v). Absorption capacity is maintained when the concentration of the absorbent is less than 10%, but the absolute amount of absorbent is insufficient, so that the absolute amount of carbon dioxide is absorbed, and when more than 60%, the carbon dioxide absorption ability and absorption rate are excellent, but a large amount of absorbent is used and economical. Not efficient in terms of
  • Absorbent for acid gas separation of the present invention can be applied to the separation of various types of acid gas as well as carbon dioxide, examples of the acid gas is carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), sulfur dioxide (SO 2 ), nitrogen (NO 2 ) and COS.
  • the acid gas is carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), sulfur dioxide (SO 2 ), nitrogen (NO 2 ) and COS.
  • Example 1 The same apparatus as in Example 1 was used to measure the gas-liquid equilibrium curve at 35 ° C. and the gas-liquid equilibrium curve at 120 ° C. using a 2.45 M aqueous solution of monoethanolamine (MEA) as the absorbent under the same conditions. The results obtained are shown in Table 1.
  • MEA monoethanolamine
  • Example 1 does not absorb carbon dioxide better than that of Comparative Example 1 (MEA) at 120 ° C, which is stripping condition, and Example 1 at 35 ° C which is the absorption condition. Absorber absorbed more carbon dioxide than Comparative Example 1. This indicates that the absorbent of Example 1 had better stripping performance than monoethanolamine of Comparative Example 1 under stripping conditions, and superior absorption performance compared to Comparative Example 1 even under absorption conditions.
  • Example 2 100 43 1.96
  • Example 3 100 43 2-amino-2-methyl-1-propanol 1.73
  • Example 4 100 43 2-amino-2-methyl-1-propanol 1.89
  • Example 5 100 43 2- (ethylamino) ethanol 2.45 207
  • Example 6 100 43 2.45
  • Removal rate cumulative removal amount / cumulative absorption amount at time
  • Example 7 100 43 Piperazine 2.4 200
  • Example 8 100 43 Piperazine 1.3 57
  • Example 9 100 43 Piperazine 1.1 28
  • Example 10 100 43 2-methylpiperazine 1.25 57
  • Example 11 100 43 1,3-diamino-2-propanol 1.29 57
  • Example 12 100 43 1,4-bis (3-aminopropyl) piperazine 1.08 86
  • Example 13 100 43 n, n-dimethyl-1,3-propane diamine 1.25 57
  • Example 14 100 43 diethylenetriamine 1.24 57
  • Example 15 100 43 2- (2-aminoethylamino) ethanol 1.24 57
  • Example 16 100 43 2,2-dimethyl-1,3-propane diamine 1.25 57
  • Example 17 100 43 Piperazine 3.68 50
  • Example 18 100 43 2-methypiperazine 2.87 57
  • a 2M aqueous solution including 100 parts by weight of 2- (isopropylamino) ethanol of Formula 1 and 43 parts by weight of N-isopropyldiethanolamine of Formula 2 was prepared.
  • a 2.5M aqueous solution including 100 parts by weight of 2- (isopropylamino) ethanol of Formula 1 and 43 parts by weight of N-isopropyldiethanolamine of Formula 2 was prepared.
  • the absorbents prepared in Examples 7 to 16 and Comparative Examples 3 to 5 of Table 4 were filled.
  • a gas having a composition of 15% carbon dioxide and 85% nitrogen was injected and dispersed at a rate of 3 liters / min through atmospheric pressure through a glass tube into the reaction vessel.
  • the concentration of carbon dioxide in the absorbent outlet gas was continuously measured using an infrared carbon dioxide concentration meter to measure the carbon dioxide absorption rate and loading.
  • the reactor was transferred to a constant temperature bath prepared at 80 ° C. in advance and the stripping rate and stripping rate of carbon dioxide stripped from the absorbent were measured for 30 minutes. The results are shown in Table 5 below.
  • Carbon steel specimens (20 * 13 * 3t) were ground and weighed using 200, 400 abrasive paper.
  • the absorbents of Examples and Comparative Examples were each saturated with high purity carbon dioxide of 99.999%. After the saturated absorbent was placed in the high pressure reactor, four specimens prepared in advance were placed in the absorbent, and the autoclave was sufficiently locked to prevent gas leakage, and then, the specimen was corroded at 120 ° C. for 48 hours. The corroded specimens were removed for 48 hours, wiped with acetone, and placed in a detergent for 4 hours. The specimens washed for 4 hours were again washed with acetone, dried in a vacuum dryer for about 2 hours, and weighed. Corrosion was measured by comparing the initial weight of each specimen with the weight after the experiment, and the average of four specimens was obtained. The results are shown in Table 6 below.
  • the embodiment of the present invention showed only about 20% of corrosion in terms of corrosion degree than the comparative example most widely used.
  • the amine concentration is 2.45M, and in the case of the example, the amine concentration is increased by about 50% to 3.68M, but the corrosion degree is much lower than that of the comparative example, and the use of corrosion resistant materials can be reduced in the actual process application, which is very advantageous for securing economic efficiency. .
  • the absorption rate and absorption rate of acid gas are much higher, and the stripping rate and removal rate are also very high, so it is possible to improve the removal rate of acid gas under the same operating conditions and to reduce the energy required for stripping. outstanding.

Abstract

The present invention relates to an absorbent for separating acid gas, which is excellent in terms of stripping rate and stripping amount as well as having a high level of absorption for acid gas including carbon dioxide and a high reaction rate. An absorbent for separating acid gas according to the present invention not only has a much higher acid gas absorption rate and absorption level than conventional monoethanolamine absorbents, but also has a much higher stripping rate and stripping amount, enabling the removal rate of acid gas to be enhanced under the same operating conditions, and the amount of energy required for stripping to be reduced.

Description

산성가스 분리용 흡수제Absorbent for Acid Gas Separation
본 발명은 혼합가스로부터 산성가스를 분리하기 위한 것으로서, 더욱 상세하게는 입체장애 아민을 포함한 혼합가스를 이용한 산성가스 분리용 흡수제에 관한 것이다.The present invention is to separate the acid gas from the mixed gas, and more particularly, to an absorbent for acid gas separation using a mixed gas containing a hindered amine.
지구온난화 현상을 야기하는 산성가스 중 대부분을 차지하는 이산화탄소를 분리하기 위한 기술 개발이 요구되고 있으며, 현재 이산화탄소의 분리기술로는 흡수법, 흡착법, 막분리법, 심냉법등이 제시되고 있다. 특히, 흡수법은 이산화탄소를 포함한 처리가스를 각종 흡수제와 접촉시켜 이산화탄소를 선택적으로 분리하는 기술로, 대용량의 가스를 처리하는데 용이하고 저농도의 가스분리에 적합하여 화학산업에서 폭넓게 이용되고 있다. It is required to develop a technology for separating carbon dioxide, which accounts for most of the acid gases causing global warming, and currently, carbon dioxide separation technologies include absorption, adsorption, membrane separation, and deep cooling. In particular, the absorption method is a technique for selectively separating carbon dioxide by contacting a process gas including carbon dioxide with various absorbents, and is widely used in the chemical industry for easy processing of a large amount of gas and suitable for low concentration gas separation.
흡수법에서 사용되는 흡수제로서 종래에는 알칸올아민이 이용되어 왔다. 이러한 알칸올아민은 모노에탄올아민(MEA)과 같은 1차 아민, 디에탄올아민(DEA)와 같은 2차 아민, 트리에탄올아민(TEA), N-메틸디에탄올아민(MDEA), 트리이소프로판올아민(TIPA)과 같은 3차 아민이 있다. 상기 MEA와 DEA는 높은 반응속도를 갖는다는 장점이 있으나, 높은 부식성, 높은 재생에너지 및 열화 등의 단점이 있다. 또한, MDEA의 경우에는 부식성 및 재생열은 낮다는 장점이 있으나, 흡수속도가 늦다는 단점이 있다. Alkanolamines have conventionally been used as absorbents used in the absorption method. These alkanolamines are primary amines such as monoethanolamine (MEA), secondary amines such as diethanolamine (DEA), triethanolamine (TEA), N-methyldiethanolamine (MDEA), triisopropanolamine (TIPA Tertiary amines). The MEA and DEA have an advantage of having a high reaction rate, but have disadvantages such as high corrosiveness, high renewable energy, and deterioration. In addition, the MDEA has the advantage of low corrosion and regeneration heat, but has the disadvantage of slow absorption.
근래에는 알칸올아민 흡수제로서 입체장애 아민에 대한 연구가 활발히 진행중이다. 이러한 입체장애 아민은 산성가스 흡수용량이 매우 크고, 재생에너지가 적게 소모된다는 장점이 있으나, 상대적으로 흡수속도가 늦다는 문제점이 있다. Recently, studies on sterically hindered amines as alkanolamine absorbents are being actively conducted. Such sterically hindered amines have an advantage that the acid gas absorption capacity is very large and the renewable energy is consumed less, but the absorption rate is relatively slow.
따라서 종래 흡수제의 장점인 이산화탄소를 포함한 산성가스와의 높은 흡수량 및 빠른 반응속도는 유지시키면서, 탈거시 높은 재생에너지 소비를 줄이는 고효율 산성가스 분리용 흡수제의 개발이 요청된다. Therefore, while maintaining a high absorption amount and a fast reaction rate with acid gas including carbon dioxide, which is an advantage of the conventional absorbent, it is required to develop a high efficiency acid gas separation absorbent for reducing the high renewable energy consumption when stripping.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 이산화탄소를 포함한 산성가스와의 높은 흡수량 및 빠른 반응속도를 가질 뿐 아니라, 탈거속도 및 탈거량이 우수한 산성가스 분리용 흡수제를 제공하는데 있다. The present invention has been made to solve the above problems, and an object of the present invention is to provide an absorbent for acid gas separation having a high absorption amount and a fast reaction rate with an acid gas including carbon dioxide, as well as an excellent stripping rate and stripping amount. .
이상과 같은 목적을 달성하기 위한 본 발명의 산성가스 분리용 흡수제는, 하기 화학식 1의 2-(이소프로필아미노)에탄올 및 하기 화학식 2의 N-이소프로필디에탄올아민을 포함하여 혼합하거나, 그 혼합물에 추가적으로 하기 화학식 3, 화학식 4 또는 화학식 5로 표현되는 화합물 중에서 1종 이상을 더 포함한다. In order to achieve the above object, the absorbent for acid gas separation of the present invention includes 2- (isopropylamino) ethanol represented by the following Chemical Formula 1 and N-isopropyldiethanolamine represented by the following Chemical Formula 2, or a mixture thereof. In addition to the compound represented by Formula 3, Formula 4 or Formula 5 further comprises at least one.
Figure PCTKR2010002294-appb-I000001
Figure PCTKR2010002294-appb-I000001
화학식 1 Formula 1
Figure PCTKR2010002294-appb-I000002
Figure PCTKR2010002294-appb-I000002
화학식 2 Formula 2
Figure PCTKR2010002294-appb-I000003
Figure PCTKR2010002294-appb-I000003
화학식 3 Formula 3
R1, R2 및 R3은 동일 또는 상이한 탄소수 1 또는 4의 알킬기, -(CH2)2-OH, CH2-CH(OH)CH3 또는 H이고, R4는 CH3 또는 H이다.R 1 , R 2 and R 3 are the same or different alkyl groups having 1 or 4 carbon atoms, — (CH 2 ) 2 —OH, CH 2 —CH (OH) CH 3 or H, and R 4 is CH 3 or H.
Figure PCTKR2010002294-appb-I000004
Figure PCTKR2010002294-appb-I000004
화학식 4 Formula 4
a, b 는 0 내지 3의 정수이고,a, b are integers from 0 to 3,
R5 및 R6은 수소, 탄소수 1 내지 4의 알킬기, -(CH2)e-OH(e=1~3) 또는 -(CH2)f-NH2(f=0~4)이고,R 5 and R 6 are hydrogen, an alkyl group having 1 to 4 carbon atoms,-(CH 2 ) e -OH (e = 1 to 3) or-(CH 2 ) f -NH 2 (f = 0 to 4),
X, Z는 -NH 또는 -NCH3,X, Z is -NH or -NCH 3 ,
Y는 탄소수 1 내지 3의 알킬기, -CHOH, -NH, -O, -CHNH2 이다. Y is a C 1 -C 3 alkyl group, -CHOH, -NH, -O, -CHNH 2.
Figure PCTKR2010002294-appb-I000005
Figure PCTKR2010002294-appb-I000005
화학식 5 Formula 5
R7, R8, R9, R10, R11 및 R12는 수소, 탄소수 1 내지 4의 알킬기, -OH, -(CH2)g-OH(g=0~4) 또는 (CH2)h-NH2 (h=1~4) 이다.R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are hydrogen, an alkyl group having 1 to 4 carbon atoms, -OH,-(CH 2 ) g -OH (g = 0-4) or (CH 2 ) h -NH 2 (h = 1-4).
또한, 상기 화학식 2의 N-이소프로필디에탄올아민은 상기 화학식 1의 2-(이소프로필아미노)에탄올 100 중량부에 대하여 40 내지 60 중량부로 포함될 수 있고, 상기 화학식 3으로 표현되는 화합물은 상기 화학식 1의 2-(이소프로필아미노)에탄올 100 중량부에 대하여 50 내지 500 중량부로 포함될 수 있으며, 상기 화학식 4 또는 화학식 5로 표현되는 화합물은 상기 화학식 1의 2-(이소프로필아미노)에탄올 100중량부에 대하여 10 내지 200 중량부로 포함될 수 있다. In addition, the N-isopropyl diethanolamine of the formula (2) may be included in 40 to 60 parts by weight based on 100 parts by weight of 2- (isopropylamino) ethanol of the formula (1), the compound represented by the formula (3) is 50 to 500 parts by weight based on 100 parts by weight of 2- (isopropylamino) ethanol of 1, and the compound represented by Formula 4 or Formula 5 is 100 parts by weight of 2- (isopropylamino) ethanol of Formula 1 It may be included in 10 to 200 parts by weight relative to.
한편, 상기 화학식 3으로 표현되는 화합물은 2-아미노-2-메틸-1-프로판올, 2-아미노-2-메틸-1-부탄올, 2-아미노-2-메틸-1-펜탄올, 2-아미노-1-프로판올, 2-아미노-1-부탄올, 2-아미노-3-메틸-1-부탄올, 2-아미노-1-펜탄올, 2-아미노-1-헥산올, 1-아미노-3-메틸-2-부탄올, 디에탄올아민, 2-(에틸아미노)에탄올, 2-(부틸아미노)에탄올, 2-(t-부틸아미노)에탄올, 디이소프로판올아민, 1-아미노-2-프로판올 등으로 이루어진 군으로부터 1종 이상이 선택될 수 있다. On the other hand, the compound represented by the formula (3) is 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1-butanol, 2-amino-2-methyl-1-pentanol, 2-amino -1-propanol, 2-amino-1-butanol, 2-amino-3-methyl-1-butanol, 2-amino-1-pentanol, 2-amino-1-hexanol, 1-amino-3-methyl 2-butanol, diethanolamine, 2- (ethylamino) ethanol, 2- (butylamino) ethanol, 2- (t-butylamino) ethanol, diisopropanolamine, 1-amino-2-propanol, and the like One or more may be selected from.
상기 화학식 4로 표현되는 화합물은 에틸렌트리아민, 디에틸렌트리아민, 1,3-디아미노-2-프로판올, 1,5-디아미노-3-펜탄올, 부틸렌디아민, 펜타메틸렌디아민, 헥사메틸렌디아민, 비스(3-아미노프로필)아민, N-이소프로필에틸렌디아민, N-이소프로필-1,3-프로판디아민, 테트라에틸렌펜타아민, N,N'-디메틸-1,3-프로판디아민, 2-(2-아미노에틸아미노)에탄올, 1-디메틸아미노-2-프로필아민, 2,2-디메틸-1,3-프로판디아민, N,N-디메틸-1,3-프로판디아민, N,N,N,N-테트라메틸에틸렌디아민 등으로 이루어진 군으로부터 1종 이상이 선택될 수 있다. Compound represented by the formula (4) is ethylenetriamine, diethylenetriamine, 1,3-diamino-2-propanol, 1,5-diamino-3-pentanol, butylenediamine, pentamethylenediamine, hexamethylene Diamine, bis (3-aminopropyl) amine, N-isopropylethylenediamine, N-isopropyl-1,3-propanediamine, tetraethylenepentaamine, N, N'-dimethyl-1,3-propanediamine, 2 -(2-aminoethylamino) ethanol, 1-dimethylamino-2-propylamine, 2,2-dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N, One or more may be selected from the group consisting of N, N-tetramethylethylenediamine and the like.
상기 화학식 5로 표현되는 화합물은 피페라진, 2-메틸피페라진, 1,4-디메틸피페라진, 1,4-디에틸피페라진, 2,3-디메틸피페라진, 2,5-디메틸피페라진, 2,4-디메틸피페라진, 1,4-디프로필피페라진, 1,4-디이소프로필피페라진, 1-(2-아미노에틸)피페라진, 2-아미노에틸피페라진, 1-(2-하이드록실에틸)피페라진, 1-(1-하이드록실메틸)피페라진, 1-(3-하이드록실프로필)피페라진, 1,4-비스(1-아미노메틸)피페라진, 1,4-비스(2-아미노에틸)피페라진, 1,4-비스(3-아미노프로필)피페라진, 피페라지놀 등으로 이루어진 군으로부터 1종 이상이 선택될 수 있다. Compound represented by the formula (5) is piperazine, 2-methylpiperazine, 1,4-dimethylpiperazine, 1,4-diethylpiperazine, 2,3-dimethylpiperazine, 2,5-dimethylpiperazine, 2,4-dimethylpiperazine, 1,4-dipropylpiperazine, 1,4-diisopropylpiperazine, 1- (2-aminoethyl) piperazine, 2-aminoethylpiperazine, 1- (2- Hydroxylethyl) piperazine, 1- (1-hydroxymethyl) piperazine, 1- (3-hydroxypropyl) piperazine, 1,4-bis (1-aminomethyl) piperazine, 1,4-bis One or more may be selected from the group consisting of (2-aminoethyl) piperazine, 1,4-bis (3-aminopropyl) piperazine, piperazinol and the like.
본 발명에 따른 산성가스 분리용 흡수제는 10 내지 60%(w/v) 농도를 가진 수용액으로 사용될 수 있고, 흡수온도는 0 내지 60℃, 탈거온도는 70 내지 200℃범위를 포함할 수 있다. 상기 산성가스는 CO2, H2S, SO2, NO2 및 COS일 수 있다. The absorbent for acid gas separation according to the present invention may be used as an aqueous solution having a concentration of 10 to 60% (w / v), the absorption temperature may be in the range of 0 to 60 ℃, stripping temperature 70 to 200 ℃. The acid gas may be CO 2 , H 2 S, SO 2 , NO 2 and COS.
본 발명에 따른 산성가스 분리용 흡수제는 종래 모노에탄올아민 흡수제와 비교하여 산성가스의 흡수 속도 및 흡수량이 월등히 높을 뿐만 아니라, 탈거속도 및 탈거량 또한 월등히 높아 동일 운전조건에서 산성가스 제거율 향상이 가능하고 탈거에 필요한 에너지를 줄일 수 있다는 효과가 있다. The absorbent for acid gas separation according to the present invention not only has a much higher absorption rate and absorption amount of acidic gas than the conventional monoethanolamine absorbent, but also has a very high stripping rate and stripping rate, thereby improving acid gas removal rate under the same operating conditions. This can reduce the energy required for removal.
이하, 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.
본 발명의 산성가스 분리용 흡수제는 하기 화학식 1의 2-(이소프로필아미노)에탄올 및 하기 화학식 2의 N-이소프로필디에탄올아민을 포함하여 혼합하거나, 그 혼합물에 추가적으로 하기 화학식 3, 화학식 4 또는 화학식 5로 표현되는 화합물 중에서 1종 이상을 더 포함한다.The absorbent for acid gas separation of the present invention includes 2- (isopropylamino) ethanol represented by the following Chemical Formula 1 and N-isopropyldiethanolamine represented by the following Chemical Formula 2, or the mixture is added to the following Chemical Formula 3, Chemical Formula 4 or It further contains one or more of the compounds represented by the formula (5).
화학식 1
Figure PCTKR2010002294-appb-C000001
Formula 1
Figure PCTKR2010002294-appb-C000001
화학식 2
Figure PCTKR2010002294-appb-C000002
Formula 2
Figure PCTKR2010002294-appb-C000002
화학식 3
Figure PCTKR2010002294-appb-C000003
Formula 3
Figure PCTKR2010002294-appb-C000003
R1, R2 및 R3은 동일 또는 상이한 탄소수 1 또는 4의 알킬기, -(CH2)2-OH, CH2-CH(OH)CH3 또는 H이고, R4는 CH3 또는 H이다.R 1 , R 2 and R 3 are the same or different alkyl groups having 1 or 4 carbon atoms, — (CH 2 ) 2 —OH, CH 2 —CH (OH) CH 3 or H, and R 4 is CH 3 or H.
화학식 4
Figure PCTKR2010002294-appb-C000004
Formula 4
Figure PCTKR2010002294-appb-C000004
a, b 는 0 내지 3의 정수이고,a, b are integers from 0 to 3,
R5 및 R6은 수소, 탄소수 1 내지 4의 알킬기, -(CH2)e-OH(e=1~3) 또는 -(CH2)f-NH2(f=0~4)이고,R 5 and R 6 are hydrogen, an alkyl group having 1 to 4 carbon atoms,-(CH 2 ) e -OH (e = 1 to 3) or-(CH 2 ) f -NH 2 (f = 0 to 4),
X, Z는 -NH 또는 -NCH3,X, Z is -NH or -NCH 3 ,
Y는 탄소수 1 내지 3의 알킬기, -CHOH, -NH, -O, -CHNH2 이다. Y is a C 1 -C 3 alkyl group, -CHOH, -NH, -O, -CHNH 2.
화학식 5
Figure PCTKR2010002294-appb-C000005
Formula 5
Figure PCTKR2010002294-appb-C000005
R7, R8, R9, R10, R11 및 R12는 수소, 탄소수 1 내지 4의 알킬기, -OH, -(CH2)g-OH(g=0~4) 또는 (CH2)h-NH2 (h=1~4) 이다.R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are hydrogen, an alkyl group having 1 to 4 carbon atoms, -OH,-(CH 2 ) g -OH (g = 0-4) or (CH 2 ) h -NH 2 (h = 1-4).
본 발명의 산성가스 분리용 흡수제의 일실시예는 상기 화학식 1로 표현되는 2-(이소프로필아미노)에탄올 및 상기 화학식 2로 표현되는 N-이소프로필디에탄올아민의 혼합물을 포함한다. 상기 산성가스 분리용 흡수제는 각 성분의 상승 작용으로 인해 종래 모노에탄올아민 흡수제와 비교하여, 흡수능력의 저하 없이 이산화탄소의 탈거속도가 증가하므로 탈거에너지 소모가 적다. An embodiment of the absorbent for acid gas separation of the present invention includes a mixture of 2- (isopropylamino) ethanol represented by Chemical Formula 1 and N-isopropyldiethanolamine represented by Chemical Formula 2. The acid gas separation absorbent is less stripping energy consumption because of the synergistic action of each component, compared to the conventional monoethanolamine absorbent, the removal rate of carbon dioxide increases without a decrease in absorption capacity.
상기 화학식 1로 표현되는 2-(이소프로필아미노)에탄올은 분자 내에 알코올성 수산기와 2차 아민을 각각 하나씩 가지고 있는데, 아민에 치환된 이소프로필기의 전자공여 효과로 인해 산성가스와의 흡수반응 특성이 우수하다. 뿐만 아니라, 고온의 탈거조건에서는 흡수된 산성가스와 이소프로필기의 입체반발이 발생하게 되어 결과적으로 산성가스의 탈거 특성이 우수하게 되어 탈거 에너지가 감소하여 경제성이 향상된다. 2- (isopropylamino) ethanol represented by Chemical Formula 1 has an alcoholic hydroxyl group and a secondary amine in the molecule, respectively, and the absorption reaction with acidic gas is due to the electron donating effect of the isopropyl group substituted in the amine. great. In addition, under high temperature stripping conditions, three-dimensional repulsion of the absorbed acid gas and isopropyl group occurs, resulting in excellent stripping characteristics of the acid gas, thereby reducing stripping energy and improving economic efficiency.
상기 화학식 2로 표현되는 N-이소프로필디에탄올아민은 분자 내에 알코올성 수산기 2개를 가지고, 3차 아민을 하나 가진 구조이다. 이러한 3차 아민은 이산화탄소와의 반응메커니즘이 카바메이트 생성반응이 아니라 수분이 촉매로서 작용하는 반응에서 중탄산염 이온을 형성하는 메커니즘으로, 화학양론상 3차 아민 1분자는 이산화탄소 1분자와 반응하므로 아민 2분자와 이산화탄소 1분자가 반응하는 1차 또는 2차 아민 보다 이산화탄소 흡수 능력이 뛰어나다. N-isopropyl diethanolamine represented by the formula (2) is a structure having two alcoholic hydroxyl groups in the molecule, and one tertiary amine. This tertiary amine is a mechanism in which the reaction mechanism with carbon dioxide forms bicarbonate ions in a reaction in which water acts as a catalyst rather than a carbamate formation reaction. Carbon dioxide absorbs better than primary or secondary amines, where molecules and one molecule of carbon dioxide react.
상기 화학식 2로 표현되는 화합물은 상기 화학식 1로 표현되는 화합물 100 중량부에 대하여 40 내지 60 중량부로 포함될 수 있다. 40 중량부 미만으로 포함되면 3차 아민의 절대량이 부족하여 이산화탄소와의 흡수성능이 저하되며, 60 중량부를 초과할 경우 이산화탄소와의 반응 속도가 느린 3차 아민의 특징으로 인해 전체적인 흡수성능이 저하되게 된다. The compound represented by Chemical Formula 2 may be included in an amount of 40 to 60 parts by weight based on 100 parts by weight of the compound represented by Chemical Formula 1. If the content is less than 40 parts by weight, the absolute amount of tertiary amine is insufficient, so that the absorption performance with carbon dioxide is lowered. If it exceeds 60 parts by weight, the overall absorption performance is reduced due to the characteristics of the tertiary amine, which is slow to react with carbon dioxide. do.
본 발명의 산성가스 분리용 흡수제의 다른 일실시예는 상기 화학식 1 및 상기 화학식 2의 혼합물에 추가적으로 상기 화학식 3, 화학식 4 또는 화학식 5로 표현되는 화합물 중에서 1종 이상을 더 포함한다. 상기 산성가스 분리용 흡수제는 각 성분의 상승 작용으로 인해 종래 모노에탄올아민 흡수제와 비교하여 흡수능력의 저하 없이 이산화탄소의 탈거속도가 증가하므로 탈거에너지의 소모를 줄일 수 있다. Another embodiment of the absorbent for acid gas separation of the present invention further comprises one or more of the compounds represented by the formula (3), (4) or (5) in addition to the mixture of the formula (1) and (2). The acidic gas separation absorbent increases the stripping rate of carbon dioxide without lowering the absorption capacity compared to the conventional monoethanolamine absorbent due to the synergistic action of each component can reduce the consumption of stripping energy.
상기 화학식 3으로 표현되는 화합물은 분자 내에 알코올성 수산기 1개 이상과 아민을 1개 가지고 있다. 상기 아민이 1차 아민일 경우, 입체적으로 부피가 큰 알킬 치환기에 의한 입체장애 효과 증가에 따라 아민기와 이산화탄소와의 결합력이 낮아 기존의 아민 흡수제에 비해 이산화탄소의 탈거 특성이 우수하고 탈거 에너지가 낮다. 또한, 상기 아민이 2차 아민일 경우, 1차 아민일 때보다 입체장애 효과가 작으므로 이산화탄소와의 반응속도가 빨라 이산화탄소 흡수속도를 증가시킬 수 있다. The compound represented by the formula (3) has at least one alcoholic hydroxyl group and one amine in the molecule. When the amine is a primary amine, as the steric hindrance effect is increased by a steric bulky alkyl substituent, the binding force between the amine and carbon dioxide is low, so that the stripping property of carbon dioxide is superior and the stripping energy is lower than that of the conventional amine absorbent. In addition, when the amine is a secondary amine, since the steric hindrance effect is smaller than that of the primary amine, the reaction rate with the carbon dioxide can be increased to increase the carbon dioxide absorption rate.
상기 화학식 3으로 표현되는 화합물은 상기 화학식 1로 표현되는 화합물 100중량부에 대하여 50 내지 500 중량부로 포함된다. 50 중량부 미만으로 포함되면 이산화탄소와의 흡수성능이 저하되며, 500 중량부를 초과할 경우 화학식 1의 2-(이소프로필아미노)에탄올 혼합 효과가 최소화되어, 이산화탄소의 흡수 성능 향상이 미미하다. The compound represented by Chemical Formula 3 is included in an amount of 50 to 500 parts by weight based on 100 parts by weight of the compound represented by Chemical Formula 1. If the amount is less than 50 parts by weight, the absorption performance with carbon dioxide is lowered. If it is more than 500 parts by weight, the effect of mixing 2- (isopropylamino) ethanol of Chemical Formula 1 is minimized, thereby improving the absorption performance of carbon dioxide.
상기 화학식 3으로 표현되는 화합물의 구체적인 예로는, 2-아미노-2-메틸-1-프로판올, 2-아미노-2-메틸-1-부탄올, 2-아미노-2-메틸-1-펜탄올, 2-아미노-1-프로판올, 2-아미노-1-부탄올, 2-아미노-3-메틸-1-부탄올, 2-아미노-1-펜탄올, 2-아미노-1-헥산올, 1-아미노-3-메틸-2-부탄올, 디에탄올아민, 2-(에틸아미노)에탄올, 2-(부틸아미노)에탄올, 2-(t-부틸아미노)에탄올, 디이소프로판올아민, 1-아미노-2-프로판올 등을 들 수 있다.Specific examples of the compound represented by Formula 3 include 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1-butanol, 2-amino-2-methyl-1-pentanol, and 2 -Amino-1-propanol, 2-amino-1-butanol, 2-amino-3-methyl-1-butanol, 2-amino-1-pentanol, 2-amino-1-hexanol, 1-amino-3 -Methyl-2-butanol, diethanolamine, 2- (ethylamino) ethanol, 2- (butylamino) ethanol, 2- (t-butylamino) ethanol, diisopropanolamine, 1-amino-2-propanol, and the like. Can be mentioned.
상기 화학식 4 또는 화학식 5로 표현되는 화합물은 분자 내에 아민을 2개 이상 가지고 있어, 반응시 이산화탄소와 결합할 수 있는 아민이 2배가 되므로 이산화탄소의 제거속도를 증가시킬 수 있다. 또한, 상기 화학식 4 또는 화학식 5로 표현되는 화합물은 산성가스 분리용 흡수제를 제조시 1개 이상 선택하여 혼합될 수도 있다. The compound represented by Formula 4 or Formula 5 may have two or more amines in the molecule, thereby increasing the removal rate of carbon dioxide because the amine which can be combined with carbon dioxide is doubled during the reaction. In addition, the compound represented by Formula 4 or Formula 5 may be selected by mixing one or more when preparing the absorbent for acid gas separation.
상기 화학식 4로 표현되는 화합물의 구체적인 예로는, 에틸렌트리아민, 디에틸렌트리아민, 1,3-디아미노-2-프로판올, 1,5-디아미노-3-펜탄올, 부틸렌디아민, 펜타메틸렌디아민, 헥사메틸렌디아민, 비스(3-아미노프로필)아민, N-이소프로필에틸렌디아민, N-이소프로필-1,3-프로판디아민, 테트라에틸렌펜타아민, N,N'-디메틸-1,3-프로판디아민, 2-(2-아미노에틸아미노)에탄올, 1-디메틸아미노-2-프로필아민, 2,2-디메틸-1,3-프로판디아민, N,N-디메틸-1,3-프로판디아민, N,N,N,N-테트라메틸에틸렌디아민 등을 들 수 있다. Specific examples of the compound represented by Formula 4 include ethylenetriamine, diethylenetriamine, 1,3-diamino-2-propanol, 1,5-diamino-3-pentanol, butylenediamine, pentamethylene Diamine, hexamethylenediamine, bis (3-aminopropyl) amine, N-isopropylethylenediamine, N-isopropyl-1,3-propanediamine, tetraethylenepentaamine, N, N'-dimethyl-1,3- Propanediamine, 2- (2-aminoethylamino) ethanol, 1-dimethylamino-2-propylamine, 2,2-dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N, N, N-tetramethylethylenediamine etc. are mentioned.
상기 화학식 5로 표현되는 화합물의 구체적인 예로는, 피페라진, 2-메틸피페라진, 1,4-디메틸피페라진, 1,4-디에틸피페라진, 2,3-디메틸피페라진, 2,5-디메틸피페라진, 2,4-디메틸피페라진, 1,4-디프로필피페라진, 1,4-디이소프로필피페라진, 1-(2-아미노에틸)피페라진, 2-아미노에틸피페라진, 1-(2-하이드록실에틸)피페라진, 1-(1-하이드록실메틸)피페라진, 1-(3-하이드록실프로필)피페라진, 1,4-비스(1-아미노메틸)피페라진, 1,4-비스(2-아미노에틸)피페라진, 1,4-비스(3-아미노프로필)피페라진, 피페라지놀 등을 들 수 있다. Specific examples of the compound represented by Formula 5 include piperazine, 2-methylpiperazine, 1,4-dimethylpiperazine, 1,4-diethylpiperazine, 2,3-dimethylpiperazine, 2,5- Dimethylpiperazine, 2,4-dimethylpiperazine, 1,4-dipropylpiperazine, 1,4-diisopropylpiperazine, 1- (2-aminoethyl) piperazine, 2-aminoethylpiperazine, 1 -(2-hydroxylethyl) piperazine, 1- (1-hydroxylmethyl) piperazine, 1- (3-hydroxypropyl) piperazine, 1,4-bis (1-aminomethyl) piperazine, 1 , 4-bis (2-aminoethyl) piperazine, 1,4-bis (3-aminopropyl) piperazine, piperazinol and the like.
상기 화학식 3 또는 화학식 4로 표현되는 화합물은 상기 화학식 1의 2-(이소프로필아미노)에탄올 100 중량부에 대하여 10 내지 200 중량부로 포함된다. 10 중량부 미만으로 포함되면 이산화탄소의 흡수능을 증가시키고자 하는 목적을 달성하기 어렵고, 200 중량부를 초과할 경우 사용량 대비 이산화탄소 흡수능력의 향상 효과가 미미하여 경제성 측면에서 좋지 못하다. The compound represented by Formula 3 or Formula 4 is included in an amount of 10 to 200 parts by weight based on 100 parts by weight of 2- (isopropylamino) ethanol of Formula 1. When included in less than 10 parts by weight it is difficult to achieve the purpose of increasing the absorption capacity of the carbon dioxide, if it exceeds 200 parts by weight is not good in terms of economics because the effect of improving the carbon dioxide absorption capacity compared to the amount used is insignificant.
본 발명의 산성가스 분리용 흡수제는 10 내지 60%(w/v) 농도를 가진 수용액으로 사용되는 것이 바람직하다. 상기 흡수제의 농도가 10% 이하인 경우 흡수능은 유지가 되지만 흡수제의 절대량이 부족하여 흡수되는 이산화탄소의 절대량이 적게 되며, 60% 이상인 경우 이산화탄소 흡수능력과 흡수속도는 우수하지만 많은 양의 흡수제가 사용되어 경제성 측면에서 효율적이지 못하다. The absorbent for acid gas separation of the present invention is preferably used as an aqueous solution having a concentration of 10 to 60% (w / v). Absorption capacity is maintained when the concentration of the absorbent is less than 10%, but the absolute amount of absorbent is insufficient, so that the absolute amount of carbon dioxide is absorbed, and when more than 60%, the carbon dioxide absorption ability and absorption rate are excellent, but a large amount of absorbent is used and economical. Not efficient in terms of
본 발명의 산성가스 분리용 흡수제는 이산화탄소뿐만 아니라 다양한 종류의 산성가스 분리에 적용될 수 있으며, 산성 가스의 예로는 이산화탄소(CO2), 황화수소(H2S), 이산화황(SO2), 질소(NO2) 및 COS 등이 있다. Absorbent for acid gas separation of the present invention can be applied to the separation of various types of acid gas as well as carbon dioxide, examples of the acid gas is carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), sulfur dioxide (SO 2 ), nitrogen (NO 2 ) and COS.
이하, 본 발명을 실시예와 비교예를 통하여 더 설명하기로 한다. 그러나, 본 발명이 이들 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be further described through Examples and Comparative Examples. However, the present invention is not limited by these examples.
실험예 1Experimental Example 1
<실시예 1><Example 1>
마그네틱 교반기를 내장한 용량 700ml 스테인레스 내압반응용기에 흡수제로서 2-(이소프로필아미노)에탄올(IPAE)과 N-(이소프로필아미노)에탄올(IPDEA)을 100대 43의 중량비로 혼합한 몰농도 1.96M의 혼합수용액 100ml를 충진 하였다. 해당 반응용기에 이산화탄소 저장조로부터 이산화탄소 가스를 이송시켜, 이산화탄소 분압이 0.0 kPa부터 약 150 ~ 200 kPa 사이의 포화 흡수량을 측정하였다. 반응용기와 이산화탄소 저장용기는 오븐에 의해 원하는 온도까지 미리 가열되어, 35 ℃에서의 기-액 평형 곡선과 120 ℃에서의 기-액 평형 곡선을 측정하였다. 얻어진 결과는 표1에 나타내었다.Molarity of 1.96M by mixing 2- (isopropylamino) ethanol (IPAE) and N- (isopropylamino) ethanol (IPDEA) in a weight ratio of 100 to 43 as an absorbent in a 700ml stainless pressure vessel equipped with a magnetic stirrer 100 ml of the mixed aqueous solution was filled. The carbon dioxide gas was transferred from the carbon dioxide storage tank to the reaction vessel, and the saturated water absorption of the carbon dioxide partial pressure from 0.0 kPa to about 150 to 200 kPa was measured. The reaction vessel and carbon dioxide storage vessel were preheated by the oven to the desired temperature, and the gas-liquid equilibrium curve at 35 ° C. and the gas-liquid equilibrium curve at 120 ° C. were measured. The results obtained are shown in Table 1.
<비교예 1>Comparative Example 1
실시예 1과 동일한 장치를 이용하여 동일한 조건에서 흡수제로서 모노에탄올아민(MEA) 2.45M 수용액을 이용하여 35℃에서의 기-액 평형 곡선과 120℃에서의 기-액 평형 곡선을 측정하였다. 얻어진 결과는 표 1에 나타내었다. The same apparatus as in Example 1 was used to measure the gas-liquid equilibrium curve at 35 ° C. and the gas-liquid equilibrium curve at 120 ° C. using a 2.45 M aqueous solution of monoethanolamine (MEA) as the absorbent under the same conditions. The results obtained are shown in Table 1.
표 1
흡수제 아민농도 CO2 Loading CO2 Loading 차
Mol CO2/mol 흡수제
M 흡수조건 탈거조건
실시예 1 IPAE-IPDEA 1.96 0.83 0.09 0.74
비교예 1 MEA 2.45 0.65 0.13 0.52
Table 1
Absorbent Amine concentration CO 2 Loading CO 2 Loading Car
Mol CO 2 / mol Absorbent
M Absorption Condition Removal condition
Example 1 IPAE-IPDEA 1.96 0.83 0.09 0.74
Comparative Example 1 MEA 2.45 0.65 0.13 0.52
* 흡수 조건 : 온도 35℃, 이산화탄소(CO2) 분압 10kPa* Absorption Condition: Temperature 35 ℃, Carbon Dioxide (CO 2 ) Partial Pressure 10kPa
** 탈거 조건 : 온도 120℃, 이산화탄소(CO2) 분압 100kPa** Removal condition: Temperature 120 ℃, Carbon dioxide (CO 2 ) partial pressure 100kPa
상기 표 1에 정리된 이산화탄소 기-액 평형 실험의 결과, 탈거조건인 120℃에서는 실시예 1의 흡수제가 비교예 1(MEA)보다 이산화탄소를 잘 흡수하지 않으며, 흡수조건인 35℃에서는 실시예 1의 흡수제가 비교예 1보다 많은 양의 이산화탄소를 흡수하였다. 이는 실시예 1의 흡수제가 탈거조건에서는 비교예 1의 모노에탄올아민 보다 탈거성능이 뛰어나고, 흡수조건에서도 비교예 1과 비교하여 흡수성능이 우수함을 나타낸다.  As a result of the carbon dioxide gas-liquid equilibrium experiment summarized in Table 1, the absorbent of Example 1 does not absorb carbon dioxide better than that of Comparative Example 1 (MEA) at 120 ° C, which is stripping condition, and Example 1 at 35 ° C which is the absorption condition. Absorber absorbed more carbon dioxide than Comparative Example 1. This indicates that the absorbent of Example 1 had better stripping performance than monoethanolamine of Comparative Example 1 under stripping conditions, and superior absorption performance compared to Comparative Example 1 even under absorption conditions.
실험예 2Experimental Example 2
<실시예 2 내지 6><Examples 2 to 6>
하기 표 2와 같은 조성으로 흡수제 수용액을 제조하였다(단위: 중량부). To prepare an absorbent aqueous solution in the composition shown in Table 2 (unit: parts by weight).
표 2
제1흡수제명 제2흡수제명 제3흡수제명 농도
2-(isopropylamino)ethanol N-isopropyl diethanolamine 중량부 M
실시예 2 100 43 1.96
실시예 3 100 43 2-amino-2-methyl-1-propanol 1.73
114
실시예 4 100 43 2-amino-2-methyl-1-propanol 1.89
500
실시예 5 100 43 2-(ethylamino)ethanol 2.45
207
실시예 6 100 43 2.45
TABLE 2
First Absorber Second Absorption Name Third Absorption density
2- (isopropylamino) ethanol N-isopropyl diethanolamine Parts by weight M
Example 2 100 43 1.96
Example 3 100 43 2-amino-2-methyl-1-propanol 1.73
114
Example 4 100 43 2-amino-2-methyl-1-propanol 1.89
500
Example 5 100 43 2- (ethylamino) ethanol 2.45
207
Example 6 100 43 2.45
온도가 40℃가 되도록 설정한 항온수조 내에 유리로 만든 반응 용기를 담근 후, 반응 용기 내에 상기 표2의 실시예 2 내지 6의 혼합 수용액을 각각 충진하였다. 반응 용기 내부로 유리관을 통해 대기압 하에서 이산화탄소 15%, 질소 85% 조성을 가지는 기체를 3 liter/min의 속도로 주입 분산시켰다. 흡수액 출구 기체 중 이산화탄소의 농도를 적외선식 이산화탄소 농도 측정기를 이용하여 연속적으로 측정하여 이산화탄소 흡수 속도 및 부하량을 측정하였다. 흡수제가 이산화탄소에 의해 포화가 된 일정 시점(약 90분)에 반응기를 미리 80℃로 준비된 항온 수조로 옮겨 흡수제로부터 탈거된 이산화탄소의 탈거량과 탈거속도를 30분간 측정하였다. 해당 결과는 비교예 2의 결과를 기준으로 한 상대 값으로 환산하여 표 3에 나타내었다. After the reaction vessel made of glass was immersed in a constant temperature water bath set at a temperature of 40 ° C., the mixed aqueous solutions of Examples 2 to 6 in Table 2 were respectively filled. A gas having a composition of 15% carbon dioxide and 85% nitrogen was injected and dispersed at a rate of 3 liters / min through atmospheric pressure through a glass tube into the reaction vessel. The concentration of carbon dioxide in the absorbent outlet gas was continuously measured using an infrared carbon dioxide concentration meter to measure the carbon dioxide absorption rate and loading. At a certain point (about 90 minutes) when the absorbent was saturated with carbon dioxide, the reactor was transferred to a constant temperature bath prepared at 80 ° C. in advance and the stripping rate and stripping rate of carbon dioxide stripped from the absorbent were measured for 30 minutes. The results are shown in Table 3 in terms of relative values based on the results of Comparative Example 2.
<비교예 2>Comparative Example 2
상기 실시예 2 내지 6에서 흡수제가 모노에탄올아민(MEA)이고 몰 농도 2.45M인 것을 제외하고는 상기 실시예 2 내지 6가 동일한 방법으로 실시하여 얻은 이산화탄소의 탈거량과 탈거속도를 하기 표 3에 나타내었다. 실시예와의 상대비교를 용이하게 하기 위하여 해당 항목의 결과치를 1.0으로 표시하였다.  In Examples 2 to 6, except that the absorbent is monoethanolamine (MEA) and the molar concentration is 2.45M, the removal and removal rates of carbon dioxide obtained by performing the same method as in Examples 2 to 6 are shown in Table 3 below. Indicated. In order to facilitate the comparative comparison with the examples, the result of the corresponding item is indicated as 1.0.
표 3
흡수제 농도(M) 흡수량(gCO2/L흡수제) 탈거량(gCO2/L흡수제) 탈거율
5분 10분 90분 10분 20분 30분 10분 20분
실시예 2 1.96 1.0 1.0 1.0 1.0 1.3 1.5 1.1 1.5
실시예 3 1.73 1.0 0.9 0.9 1.0 1.3 1.4 1.1 1.5
실시예 4 1.89 0.9 0.9 0.9 1.1 1.5 1.6 1.3 1.9
실시예 5 2.45 1.1 1.1 1.4 1.5 1.8 1.9 1.3 1.6
실시예 6 2.45 1.0 0.9 1.2 1.2 1.6 1.9 1.3 1.8
비교예 2 2.45 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
TABLE 3
Absorbent Concentration (M) Absorption amount (gCO 2 / L absorbent) Stripping amount (gCO 2 / L absorbent) Stripping rate
5 minutes 10 minutes 90 minutes 10 minutes 20 minutes 30 minutes 10 minutes 20 minutes
Example 2 1.96 1.0 1.0 1.0 1.0 1.3 1.5 1.1 1.5
Example 3 1.73 1.0 0.9 0.9 1.0 1.3 1.4 1.1 1.5
Example 4 1.89 0.9 0.9 0.9 1.1 1.5 1.6 1.3 1.9
Example 5 2.45 1.1 1.1 1.4 1.5 1.8 1.9 1.3 1.6
Example 6 2.45 1.0 0.9 1.2 1.2 1.6 1.9 1.3 1.8
Comparative Example 2 2.45 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
* 탈거율 = 누적탈거량/누적흡수량 at 시간 * Removal rate = cumulative removal amount / cumulative absorption amount at time
보다 정확한 흡수성능 및 탈거성능을 확인하기 위하여, 흡수제별 흡수량 및 탈거량과 탈거율을 시간대별로 나누어 분석하였으며 그 결과를 상기 표 3에 정리하였다. 분석 결과 실시예 2 내지 6의 경우 이산화탄소의 흡수량은 전체 테스트 시간 범위에서 비교예 2의 모노에탄올아민 흡수제와 비교하여 동등 수준이나 탈거량은 탈거 시점 30분 기준으로 최대 90%가 향상되었고(실시예 6), 탈거량을 흡수량으로 나눈 탈거율 측면에서도 80%이상 향상됨을 확인할 수 있다. 또한, 비교예 2의 모노에탄올 아민 대비 흡수제 몰 농도가 낮은 실시예 2 내지 4의 경우에도, 흡수량은 유사하나 탈거량 및 탈거율이 우수하였다.  In order to confirm more accurate absorption and stripping performance, the absorption amount and stripping rate and stripping rate for each absorbent was analyzed by time zone and the results are summarized in Table 3 above. As a result of the analysis, in the case of Examples 2 to 6, the amount of carbon dioxide absorbed was equivalent to that of the monoethanolamine absorbent of Comparative Example 2 over the entire test time range, but the stripped amount was improved by up to 90% based on 30 minutes at the time of stripping (Example 6), it can be seen that the removal rate divided by the absorption amount is improved by more than 80%. In addition, in Examples 2 to 4, where the molar concentration of the absorbent was lower than that of the monoethanol amine of Comparative Example 2, the absorption amount was similar, but the stripping amount and stripping rate were excellent.
실험예 3Experimental Example 3
<실시예 7 내지 18><Examples 7 to 18>
하기 표 4와 같은 조성으로 흡수제 수용액을 제조하였다(단위:중량부). To prepare an absorbent aqueous solution with the composition as shown in Table 4 (unit: parts by weight).
표 4
제1흡수제명 제2흡수제명 제3흡수제명 농도
2-(isopropylamino)ethanol N-isopropyl diethanolamine 중량부 M
실시예 7 100 43 Piperazine 2.4
200
실시예 8 100 43 Piperazine 1.3
57
실시예 9 100 43 Piperazine 1.1
28
실시예 10 100 43 2-methylpiperazine 1.25
57
실시예 11 100 43 1,3-diamino-2-propanol 1.29
57
실시예 12 100 43 1,4-bis(3-aminopropyl)piperazine 1.08
86
실시예 13 100 43 n,n-dimethyl-1,3-propane diamine 1.25
57
실시예 14 100 43 diethylenetriamine 1.24
57
실시예 15 100 43 2-(2-aminoethylamino)ethanol 1.24
57
실시예 16 100 43 2,2-dimethyl-1,3-propane diamine 1.25
57
실시예 17 100 43 Piperazine 3.68
50
실시예 18 100 43 2-methypiperazine 2.87
57
Table 4
First Absorber Second Absorption Name Third Absorption density
2- (isopropylamino) ethanol N-isopropyl diethanolamine Parts by weight M
Example 7 100 43 Piperazine 2.4
200
Example 8 100 43 Piperazine 1.3
57
Example 9 100 43 Piperazine 1.1
28
Example 10 100 43 2-methylpiperazine 1.25
57
Example 11 100 43 1,3-diamino-2-propanol 1.29
57
Example 12 100 43 1,4-bis (3-aminopropyl) piperazine 1.08
86
Example 13 100 43 n, n-dimethyl-1,3-propane diamine 1.25
57
Example 14 100 43 diethylenetriamine 1.24
57
Example 15 100 43 2- (2-aminoethylamino) ethanol 1.24
57
Example 16 100 43 2,2-dimethyl-1,3-propane diamine 1.25
57
Example 17 100 43 Piperazine 3.68
50
Example 18 100 43 2-methypiperazine 2.87
57
<비교예 3>Comparative Example 3
이산화탄소 흡수제로 상용화된 단일화합물로서 가장 빠른 반응속도를 지닌 모노에탄올아민(MEA) 2.45M 수용액을 제조하였다. 2.45M aqueous solution of monoethanolamine (MEA) having the fastest reaction rate was prepared as a single compound commercialized with a carbon dioxide absorbent.
<비교예 4><Comparative Example 4>
화학식 1의 2-(이소프로필아미노)에탄올 100 중량부와 화학식 2의 N-이소프로필디에탄올아민 43 중량부를 포함하는 2M 수용액을 제조하였다. A 2M aqueous solution including 100 parts by weight of 2- (isopropylamino) ethanol of Formula 1 and 43 parts by weight of N-isopropyldiethanolamine of Formula 2 was prepared.
<비교예 5>Comparative Example 5
화학식 1의 2-(이소프로필아미노)에탄올 100 중량부와 화학식 2의 N-이소프로필디에탄올아민 43 중량부를 포함하는 2.5M 수용액을 제조하였다. A 2.5M aqueous solution including 100 parts by weight of 2- (isopropylamino) ethanol of Formula 1 and 43 parts by weight of N-isopropyldiethanolamine of Formula 2 was prepared.
온도가 40℃가 되도록 설정한 항온수조 내에 유리로 만든 반응 용기를 담근 후, 반응 용기 내에 상기 표 4의 실시예 7 내지 16 및 비교예 3 내지 5에서 제조한 흡수제를 충진하였다. 반응 용기 내부로 유리관을 통해 대기압 하에서 이산화탄소 15%, 질소 85% 조성을 가지는 기체를 3 liter/min의 속도로 주입 분산시켰다. 흡수액 출구 기체 중 이산화탄소의 농도를 적외선식 이산화탄소 농도 측정기를 이용하여 연속적으로 측정하여 이산화탄소 흡수 속도 및 부하량을 측정하였다. 흡수제가 이산화탄소에 의해 포화가 된 일정 시점(약 90분)에 반응기를 미리 80℃로 준비된 항온 수조로 옮겨 흡수제로부터 탈거된 이산화탄소의 탈거량과 탈거속도를 30분간 측정하였다. 해당 결과는 하기 표 5에 나타내었다. After the reaction vessel made of glass was immersed in a constant temperature water bath set at a temperature of 40 ° C., the absorbents prepared in Examples 7 to 16 and Comparative Examples 3 to 5 of Table 4 were filled. A gas having a composition of 15% carbon dioxide and 85% nitrogen was injected and dispersed at a rate of 3 liters / min through atmospheric pressure through a glass tube into the reaction vessel. The concentration of carbon dioxide in the absorbent outlet gas was continuously measured using an infrared carbon dioxide concentration meter to measure the carbon dioxide absorption rate and loading. At a certain point (about 90 minutes) when the absorbent was saturated with carbon dioxide, the reactor was transferred to a constant temperature bath prepared at 80 ° C. in advance and the stripping rate and stripping rate of carbon dioxide stripped from the absorbent were measured for 30 minutes. The results are shown in Table 5 below.
표 5
이산화탄소 부하량 (CO2 mole/흡수제 mole) 이산화탄소 흡수속도(g-CO2/L흡수제*min) 이산화탄소 탈거속도(g-CO2/L흡수제*min)
40℃ 흡수조건 80℃ 탈거조건 부하량 차이 탈거율 초기 10분 초기 10분
실시예 7 1.01 0.52 0.49 0.51 3.21 2.8
실시예 8 1.19 0.78 0.41 0.65 3.19 2.4
실시예 9 1.20 0.87 0.33 0.73 3.21 2.6
실시예 10 1.25 0.81 0.44 0.65 3.13 2.4
실시예 11 1.08 0.67 0.41 0.63 3.10 2.0
실시예 12 1.39 0.93 0.46 0.67 3.01 2.4
실시예 13 1.24 0.82 0.42 0.66 3.14 2.3
실시예 14 1.25 0.77 0.48 0.62 3.09 2.2
실시예 15 1.12 0.82 0.30 0.73 2.67 2.2
실시예 16 1.13 0.74 0.39 0.66 2.85 2.1
비교예 3 0.63 0.31 0.32 0.49 2.86 1.9
비교예 4 0.79 0.57 0.22 0.71 2.76 1.9
비교예 5 0.75 0.58 0.17 0.77 2.69 2.3
Table 5
CO2 loading (CO 2 mole / absorbent mole) CO2 Absorption Rate (g-CO 2 / L Absorbent * min) Carbon dioxide stripping rate (g-CO 2 / L absorbent * min)
40 ℃ Absorption Condition 80 ℃ stripping condition Load difference Stripping rate Initial 10 minutes Initial 10 minutes
Example 7 1.01 0.52 0.49 0.51 3.21 2.8
Example 8 1.19 0.78 0.41 0.65 3.19 2.4
Example 9 1.20 0.87 0.33 0.73 3.21 2.6
Example 10 1.25 0.81 0.44 0.65 3.13 2.4
Example 11 1.08 0.67 0.41 0.63 3.10 2.0
Example 12 1.39 0.93 0.46 0.67 3.01 2.4
Example 13 1.24 0.82 0.42 0.66 3.14 2.3
Example 14 1.25 0.77 0.48 0.62 3.09 2.2
Example 15 1.12 0.82 0.30 0.73 2.67 2.2
Example 16 1.13 0.74 0.39 0.66 2.85 2.1
Comparative Example 3 0.63 0.31 0.32 0.49 2.86 1.9
Comparative Example 4 0.79 0.57 0.22 0.71 2.76 1.9
Comparative Example 5 0.75 0.58 0.17 0.77 2.69 2.3
표 5에서 보는 바와 같이 모든 실시예는 비교예 3과 비교했을 때 부하량 차이, 탈거율에서 비교우위에 있다. 그리고 초기 10분간 흡수속도는 동등하거나 동등이상을 나타내 흡수속도가 늦지 않음을 알 수 있다. 또한 탈거속도 측면에서도 초기 10분간 비교예 3보다 모두 빨라 탈거에너지 저감 측면에서 매우 유리한 것을 알 수 있다.  As shown in Table 5, all the examples have a comparative advantage in loading difference and stripping rate when compared with Comparative Example 3. And the initial 10 minutes absorption rate is equal or more than it can be seen that the absorption rate is not slow. In addition, the removal rate is also faster than the comparative example 3 in the initial 10 minutes, it can be seen that very advantageous in terms of reducing stripping energy.
또한 모든 실시예를 비교예 4 또는 비교예 5와 비교했을 때 탈거율은 비슷하거나 조금 낮으나 초기 10분간 흡수속도에서 모든 실시예가 빠름을 알 수 있다. 그리고 초기 10분간 탈거속도도 모든 실시예가 비슷하거나 조금 더 빠름을 알 수 있다. 부하량 차이를 비교해 보면 대부분의 실시예가 비교예 4 또는 비교예 5보다 2배 정도 큰 것을 알 수 있어 이로부터 본 발명의 산성가스 분리용 흡수제는 종래 흡수제보다 흡수능도 뛰어나고 탈거에 필요한 에너지도 획기적으로 절감 가능하게 되어 경제성 확보 및 실용화에 유리하다.  In addition, when all the Examples compared to Comparative Example 4 or Comparative Example 5, the removal rate is similar or slightly lower, but it can be seen that all the examples are faster at the initial 10 minutes absorption rate. And the initial 10 minutes stripping rate can be seen that all the embodiments are similar or slightly faster. Comparing the difference in load, it can be seen that most of the examples are about twice as large as Comparative Example 4 or Comparative Example 5, from which the absorbent for acidic gas separation of the present invention has better absorbing capacity than the conventional absorbent and significantly reduces the energy required for stripping. It is possible to secure economic feasibility and to commercialize.
실험예 4Experimental Example 4
탄소강 시편(20*13*3t)을 200, 400 연마지를 이용하여 연마하고 무게를 쟀다. 실시예와 비교예의 흡수제를 각각 99.999%의 고순도 이산화탄소로 포화시켰다. 포화된 흡수제를 고압반응기 안에 넣은 후 미리 준비된 시편을 각각 4개씩 흡수제에 넣고 가스가 새지 않도록 고압반응기를 충분히 잠근 후 48시간 동안 120℃에서 부식시켰다. 48시간 동안 부식된 시편을 꺼내 아세톤으로 닦은 후 세정제에 넣어 4시간 동안 세정시켰다. 4시간 동안 세정시킨 시편을 다시 아세톤으로 닦은 후 진공건조기에서 2시간 정도 건조하고 시편의 무게를 쟀다. 각 시편의 최초 무게와 실험 후 무게를 비교하여 부식도를 측정하고 4개 시편의 평균을 구하여 결과를 나타내었다. 그 결과는 하기 표 6에 나타내었다.  Carbon steel specimens (20 * 13 * 3t) were ground and weighed using 200, 400 abrasive paper. The absorbents of Examples and Comparative Examples were each saturated with high purity carbon dioxide of 99.999%. After the saturated absorbent was placed in the high pressure reactor, four specimens prepared in advance were placed in the absorbent, and the autoclave was sufficiently locked to prevent gas leakage, and then, the specimen was corroded at 120 ° C. for 48 hours. The corroded specimens were removed for 48 hours, wiped with acetone, and placed in a detergent for 4 hours. The specimens washed for 4 hours were again washed with acetone, dried in a vacuum dryer for about 2 hours, and weighed. Corrosion was measured by comparing the initial weight of each specimen with the weight after the experiment, and the average of four specimens was obtained. The results are shown in Table 6 below.
표 6
흡수제 아민 농도 부식도
M mm/yr
실시예 17 3.68 0.0971
실시예 18 2.87 0.0810
비교예 3 2.45 0.4704
Table 6
Absorbent Amine concentration Corrosion degree
M mm / yr
Example 17 3.68 0.0971
Example 18 2.87 0.0810
Comparative Example 3 2.45 0.4704
표 6에서 보는 바와 같이 본 발명의 실시예는 가장 광범위하게 사용되고 있는 비교예보다 부식도 측면에서 20% 정도의 부식만 나타내었다. 비교예의 경우 아민농도가 2.45M이고, 실시예의 경우 아민 농도가 약 50% 증가한 3.68M 임에도 비교예 보다 부식도가 월등히 적으며 실 공정 적용시 내부식성 재료의 사용을 줄일 수 있어 경제성 확보에 매우 유리하다.  As shown in Table 6, the embodiment of the present invention showed only about 20% of corrosion in terms of corrosion degree than the comparative example most widely used. In the case of the comparative example, the amine concentration is 2.45M, and in the case of the example, the amine concentration is increased by about 50% to 3.68M, but the corrosion degree is much lower than that of the comparative example, and the use of corrosion resistant materials can be reduced in the actual process application, which is very advantageous for securing economic efficiency. .
종래 모노에탄올아민 흡수제와 비교하여 산성가스의 흡수 속도 및 흡수량이 월등히 높고 탈거속도 및 탈거량 또한 월등히 높아 동일 운전조건에서 산성가스 제거율 향상이 가능하고 탈거에 필요한 에너지를 줄일 수 있어 기존 흡수제 대비 경제성이 뛰어나다.  Compared with the conventional monoethanolamine absorbent, the absorption rate and absorption rate of acid gas are much higher, and the stripping rate and removal rate are also very high, so it is possible to improve the removal rate of acid gas under the same operating conditions and to reduce the energy required for stripping. outstanding.

Claims (11)

  1. 하기 화학식 1의 2-(이소프로필아미노)에탄올과 하기 화학식 2의 N-이소프로필디에탄올아민을 포함하는 산성가스 분리용 흡수제.An absorbent for acid gas separation, comprising 2- (isopropylamino) ethanol of formula 1 and N-isopropyl diethanolamine of formula 2 below.
    Figure PCTKR2010002294-appb-I000006
    Figure PCTKR2010002294-appb-I000006
    화학식 1 Formula 1
    Figure PCTKR2010002294-appb-I000007
    Figure PCTKR2010002294-appb-I000007
    화학식 2 Formula 2
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 산성가스 분리용 흡수제에 추가적으로 하기 화학식 3, 화학식 4 또는 화학식 5로 표현되는 화합물 중에서 1종 이상을 더 포함하는 산성가스 분리용 흡수제.In addition to the absorbent for acidic gas separation, the absorbent for acidic gas separation further comprising at least one of the compounds represented by the following formula (3), (4) or (5).
    Figure PCTKR2010002294-appb-I000008
    Figure PCTKR2010002294-appb-I000008
    화학식 3 Formula 3
    R1, R2 및 R3은 동일 또는 상이한 탄소수 1 또는 4의 알킬기, -(CH2)2-OH, CH2-CH(OH)CH3 또는 H이고, R4는 CH3 또는 H이다.R 1 , R 2 and R 3 are the same or different alkyl groups having 1 or 4 carbon atoms, — (CH 2 ) 2 —OH, CH 2 —CH (OH) CH 3 or H, and R 4 is CH 3 or H.
    Figure PCTKR2010002294-appb-I000009
    Figure PCTKR2010002294-appb-I000009
    화학식 4 Formula 4
    a, b 는 0 내지 3의 정수이고,a, b are integers from 0 to 3,
    R5 및 R6은 수소, 탄소수 1 내지 4의 알킬기, -(CH2)e-OH(e=1~3) 또는 -(CH2)f-NH2(f=0~4)이고,R 5 and R 6 are hydrogen, an alkyl group having 1 to 4 carbon atoms,-(CH 2 ) e -OH (e = 1 to 3) or-(CH 2 ) f -NH 2 (f = 0 to 4),
    X, Z는 -NH 또는 -NCH3,X, Z is -NH or -NCH 3 ,
    Y는 탄소수 1 내지 3의 알킬기, -CHOH, -NH, -O, -CHNH2 이다.Y is a C 1 -C 3 alkyl group, -CHOH, -NH, -O, -CHNH 2.
    Figure PCTKR2010002294-appb-I000010
    Figure PCTKR2010002294-appb-I000010
    화학식 5 Formula 5
    R7, R8, R9, R10, R11 및 R12는 수소, 탄소수 1 내지 4의 알킬기, -OH, -(CH2)g-OH(g=0~4) 또는 (CH2)h-NH2 (h=1~4) 이다.R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are hydrogen, an alkyl group having 1 to 4 carbon atoms, -OH,-(CH 2 ) g -OH (g = 0-4) or (CH 2 ) h -NH 2 (h = 1-4).
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 화학식 2의 N-이소프로필디에탄올아민이 상기 화학식 1의 2-(이소프로필아미노)에탄올 100중량부에 대하여 40 내지 60 중량부로 포함되는 산성가스 분리용 흡수제.N-isopropyl diethanol amine of the formula (2) is 40 to 60 parts by weight based on 100 parts by weight of 2- (isopropylamino) ethanol of the formula (1).
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 화학식 3으로 표현되는 화합물이 상기 화학식 1의 2-(이소프로필아미노)에탄올 100중량부에 대하여 50 내지 500 중량부로 포함되는 산성가스 분리용 흡수제.An absorbent for acid gas separation, wherein the compound represented by Chemical Formula 3 is included in an amount of 50 to 500 parts by weight based on 100 parts by weight of 2- (isopropylamino) ethanol of Chemical Formula 1.
  5. 청구항 2에 있어서,The method according to claim 2,
    상기 화학식 4 또는 화학식 5로 표현되는 화합물이 상기 화학식 1의 2-(이소프로필아미노)에탄올 100중량부에 대하여 10 내지 200 중량부로 포함되는 산성가스 분리용 흡수제.An absorbent for acid gas separation, wherein the compound represented by Formula 4 or Formula 5 is contained in an amount of 10 to 200 parts by weight based on 100 parts by weight of 2- (isopropylamino) ethanol of Formula 1.
  6. 청구항 2에 있어서,The method according to claim 2,
    상기 화학식 3으로 표현되는 화합물이 2-아미노-2-메틸-1-프로판올, 2-아미노-2-메틸-1-부탄올, 2-아미노-2-메틸-1-펜탄올, 2-아미노-1-프로판올, 2-아미노-1-부탄올, 2-아미노-3-메틸-1-부탄올, 2-아미노-1-펜탄올, 2-아미노-1-헥산올, 1-아미노-3-메틸-2-부탄올, 디에탄올아민, 2-(에틸아미노)에탄올, 2-(부틸아미노)에탄올, 2-(t-부틸아미노)에탄올, 디이소프로판올아민, 1-아미노-2-프로판올 등으로 이루어진 군으로부터 선택되는 1종 이상의 혼합물인 산성가스 분리용 흡수제.Compound represented by the formula (3) is 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1-butanol, 2-amino-2-methyl-1-pentanol, 2-amino-1 -Propanol, 2-amino-1-butanol, 2-amino-3-methyl-1-butanol, 2-amino-1-pentanol, 2-amino-1-hexanol, 1-amino-3-methyl-2 Butanol, diethanolamine, 2- (ethylamino) ethanol, 2- (butylamino) ethanol, 2- (t-butylamino) ethanol, diisopropanolamine, 1-amino-2-propanol and the like Absorbent for acid gas separation is one or more mixtures.
  7. 청구항 2에 있어서,The method according to claim 2,
    상기 화학식 4로 표현되는 화합물이 에틸렌트리아민, 디에틸렌트리아민, 1,3-디아미노-2-프로판올, 1,5-디아미노-3-펜탄올, 부틸렌디아민, 펜타메틸렌디아민, 헥사메틸렌디아민, 비스(3-아미노프로필)아민, N-이소프로필에틸렌디아민, N-이소프로필-1,3-프로판디아민, 테트라에틸렌펜타아민, N,N’-디메틸-1,3-프로판디아민, 2-(2-아미노에틸아미노)에탄올, 1-디메틸아미노-2-프로필아민, 2,2-디메틸-1,3-프로판디아민, N,N-디메틸-1,3-프로판디아민, N,N,N,N-테트라메틸에틸렌디아민 등으로 이루어진 군으로부터 선택되는 1종 이상의 혼합물인 산성가스 분리용 흡수제.The compound represented by the formula (4) is ethylenetriamine, diethylenetriamine, 1,3-diamino-2-propanol, 1,5-diamino-3-pentanol, butylenediamine, pentamethylenediamine, hexamethylene Diamine, bis (3-aminopropyl) amine, N-isopropylethylenediamine, N-isopropyl-1,3-propanediamine, tetraethylenepentaamine, N, N'-dimethyl-1,3-propanediamine, 2 -(2-aminoethylamino) ethanol, 1-dimethylamino-2-propylamine, 2,2-dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N, An absorbent for acid gas separation, which is at least one mixture selected from the group consisting of N, N-tetramethylethylenediamine and the like.
  8. 청구항 2에 있어서,The method according to claim 2,
    상기 화학식 5로 표현되는 화합물이 피페라진, 2-메틸피페라진, 1,4-디메틸피페라진, 1,4-디에틸피페라진, 2,3-디메틸피페라진, 2,5-디메틸피페라진, 2,4-디메틸피페라진, 1,4-디프로필피페라진, 1,4-디이소프로필피페라진, 1-(2-아미노에틸)피페라진, 2-아미노에틸피페라진, 1-(2-하이드록실에틸)피페라진, 1-(1-하이드록실메틸)피페라진, 1-(3-하이드록실프로필)피페라진, 1,4-비스(1-아미노메틸)피페라진, 1,4-비스(2-아미노에틸)피페라진, 1,4-비스(3-아미노프로필)피페라진, 피페라지놀 등으로 이루어진 군으로부터 선택되는 1종 이상의 혼합물인 산성가스 분리용 흡수제.Compound represented by the formula (5) piperazine, 2-methylpiperazine, 1,4-dimethylpiperazine, 1,4-diethylpiperazine, 2,3-dimethylpiperazine, 2,5-dimethylpiperazine, 2,4-dimethylpiperazine, 1,4-dipropylpiperazine, 1,4-diisopropylpiperazine, 1- (2-aminoethyl) piperazine, 2-aminoethylpiperazine, 1- (2- Hydroxylethyl) piperazine, 1- (1-hydroxymethyl) piperazine, 1- (3-hydroxypropyl) piperazine, 1,4-bis (1-aminomethyl) piperazine, 1,4-bis An absorbent for acid gas separation, which is at least one mixture selected from the group consisting of (2-aminoethyl) piperazine, 1,4-bis (3-aminopropyl) piperazine, piperazinol and the like.
  9. 청구항 1 내지 8 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8,
    상기 산성가스 분리용 흡수제는 10 내지 60%(w/v) 농도를 가진 수용액으로 사용되는 산성가스 분리용 흡수제.The acid gas separation absorbent is used as an acid gas separation absorbent having an aqueous solution having a concentration of 10 to 60% (w / v).
  10. 청구항 1 내지 8 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8,
    상기 산성가스 분리용 흡수제의 산성가스 흡수온도는 0 내지 60℃, 탈거온도는 70 내지 200℃인 산성가스 분리용 흡수제.The acid gas absorption temperature of the acid gas separation absorbent is 0 to 60 ℃, stripping temperature is 70 to 200 ℃ absorbent for acid gas separation.
  11. 청구항 1 내지 8 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8,
    상기 산성가스는 CO2, H2S, SO2, NO2 및 COS인 것을 특징으로 하는 산성가스 분리용 흡수제.The acid gas is an absorbent for acid gas separation, characterized in that CO 2 , H 2 S, SO 2 , NO 2 and COS.
PCT/KR2010/002294 2009-06-30 2010-04-14 Absorbent for separating acid gas WO2011002145A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020090059410A KR101094328B1 (en) 2009-06-30 2009-06-30 Absorbent for acidic gas separation
KR10-2009-0059410 2009-06-30
KR1020090090711A KR101094327B1 (en) 2009-09-24 2009-09-24 Absorbents for separation of acidic gas
KR10-2009-0090711 2009-09-24

Publications (2)

Publication Number Publication Date
WO2011002145A2 true WO2011002145A2 (en) 2011-01-06
WO2011002145A3 WO2011002145A3 (en) 2011-03-03

Family

ID=43411536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002294 WO2011002145A2 (en) 2009-06-30 2010-04-14 Absorbent for separating acid gas

Country Status (1)

Country Link
WO (1) WO2011002145A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101607051B1 (en) * 2015-03-26 2016-03-28 현대제철 주식회사 Absorbents for treating exhaust gas
WO2018062730A1 (en) * 2016-09-28 2018-04-05 한국전력공사 Absorbent for acid gas separation
JP2019173090A (en) * 2018-03-28 2019-10-10 三菱マテリアル株式会社 Copper alloy
GB2574289A (en) * 2018-05-25 2019-12-04 Toshiba Kk Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217236A (en) * 1977-02-14 1980-08-12 Exxon Research & Engineering Co. Process and composition for removing carbon dioxide containing acidic gases from gaseous mixtures
KR0123107B1 (en) * 1992-02-27 1997-11-12 아끼야마 요시히사 Method for removing carbon dioxide from combustion exhaust gas
KR20010073200A (en) * 1998-09-30 2001-07-31 그래햄 이. 테일러 Composition and process for removal of acid gases
KR20090032375A (en) * 2007-09-27 2009-04-01 한국전력공사 Highly efficient absorbents for acidic gas separation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217236A (en) * 1977-02-14 1980-08-12 Exxon Research & Engineering Co. Process and composition for removing carbon dioxide containing acidic gases from gaseous mixtures
KR0123107B1 (en) * 1992-02-27 1997-11-12 아끼야마 요시히사 Method for removing carbon dioxide from combustion exhaust gas
KR20010073200A (en) * 1998-09-30 2001-07-31 그래햄 이. 테일러 Composition and process for removal of acid gases
KR20090032375A (en) * 2007-09-27 2009-04-01 한국전력공사 Highly efficient absorbents for acidic gas separation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101607051B1 (en) * 2015-03-26 2016-03-28 현대제철 주식회사 Absorbents for treating exhaust gas
WO2018062730A1 (en) * 2016-09-28 2018-04-05 한국전력공사 Absorbent for acid gas separation
JP2019173090A (en) * 2018-03-28 2019-10-10 三菱マテリアル株式会社 Copper alloy
GB2574289A (en) * 2018-05-25 2019-12-04 Toshiba Kk Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus
US11090603B2 (en) 2018-05-25 2021-08-17 Kabushiki Kaisha Toshiba Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus
GB2574289B (en) * 2018-05-25 2022-01-19 Toshiba Kk Acidic gas absorbent, acidic gas removal method and acidic gas removal apparatus

Also Published As

Publication number Publication date
WO2011002145A3 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
EP2717995B1 (en) Absorption medium and method for absorption of an acid gas from a gas mixture
WO2016060508A2 (en) Carbon dioxide absorbent comprising triamine
EP3219379A1 (en) Carbonic acid gas absorbing material, carbonic acid gas recovery system and carbonic acid gas recovery method
WO2011081228A1 (en) Alkali-carbonate-based carbon dioxide absorbent containing added sterically hindered cyclic amines, and method for removing carbon dioxide removing using same
KR101035148B1 (en) Absorbents for separation of acidic gas
EP0796646A1 (en) Method for the removal of carbon dioxide present in gases and absorbent
WO2011002145A2 (en) Absorbent for separating acid gas
WO2016060509A2 (en) Carbon dioxide absorbent comprising oxygen-containing diamine
WO2012162944A1 (en) Composite decarburized solution for capturing carbon dioxide in mixed gas
WO2014104792A1 (en) Alkanolamine-based carbon dioxide absorbent containing polyalkylene glycol monomethyl ether, and carbon dioxide absorption method and separation method using same
KR101094327B1 (en) Absorbents for separation of acidic gas
WO2019164081A1 (en) Carbon dioxide absorbent and method for separating out carbon dioxide by using same
KR101210929B1 (en) Carbon dioxide absorbent and method of removal of carbon dioxide from landfill gas by the simultaneous generation of barium carbonate using the same
WO2012093853A2 (en) Nonaqueous carbon dioxide absorber containing secondary alkanolamine and diol in which sterical hindrance is introduced
KR102102379B1 (en) Mixed absorbent for acid gas separation
KR101094328B1 (en) Absorbent for acidic gas separation
WO2013147369A1 (en) Imidazolium ionic liquid for separating carbon dioxide, and use thereof
WO2013183808A1 (en) Acid-functionalized imidazolium ionic liquid for separating carbon dioxide and use thereof
WO2014104790A1 (en) Carbon dioxide absorbent based on amine having nitrile functional group, and carbon dioxide absorption method and separation method using same
WO2014104789A1 (en) Ternary carbon dioxide absorbent and carbon dioxide absorption method and separation method using same
WO2018062730A1 (en) Absorbent for acid gas separation
WO2017052157A1 (en) Carbon dioxide absorbent
WO2019182254A1 (en) Absorbent for separating acid gas
CN114540089B (en) Natural gas desulfurization decarbonization agent and use method thereof
KR102487385B1 (en) Mixed absorbent for capturing carbon dioxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794280

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794280

Country of ref document: EP

Kind code of ref document: A2