WO2019212051A1 - Heat conductor and electronic device using same - Google Patents

Heat conductor and electronic device using same Download PDF

Info

Publication number
WO2019212051A1
WO2019212051A1 PCT/JP2019/018055 JP2019018055W WO2019212051A1 WO 2019212051 A1 WO2019212051 A1 WO 2019212051A1 JP 2019018055 W JP2019018055 W JP 2019018055W WO 2019212051 A1 WO2019212051 A1 WO 2019212051A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin coating
heat
ceramic sheet
coating layer
heat conductor
Prior art date
Application number
PCT/JP2019/018055
Other languages
French (fr)
Japanese (ja)
Inventor
荒巻 慶輔
真理奈 戸端
佑介 久保
弘幸 良尊
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority claimed from JP2019085828A external-priority patent/JP2020004955A/en
Publication of WO2019212051A1 publication Critical patent/WO2019212051A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present technology relates to a heat conductor disposed between a heating element such as an electronic component and a heat conduction member that diffuses heat of the electronic component, and an electronic apparatus including the heat conductor.
  • a heating element such as an electronic component and a heat conduction member that diffuses heat of the electronic component
  • an electronic apparatus including the heat conductor.
  • the circuit board itself is made of a material with excellent heat dissipation
  • a heat sink is attached to the circuit board and electronic components, or a sheet-like shape with excellent heat conductivity Measures such as arranging a heat conductor are taken.
  • a graphite sheet has been used as a sheet-like heat conductor used for heat dissipation.
  • Graphite sheets are manufactured from natural graphite or artificial graphite, and because of their crystallinity, they have anisotropy in heat conduction, low thermal conductivity in the thickness direction, are difficult to conduct heat, and are parallel to the surface of the sheet. The thermal conductivity in the surface direction is high and heat is easily transmitted. Further, the graphite sheet has a characteristic that it can be adjusted to an arbitrary thickness of several tens of microns to several thousand microns.
  • the graphite sheet has a high dielectric constant, shielding properties, and performance as an electromagnetic field shield. Therefore, there is a possibility that an unexpected failure may occur near various communication devices such as communication using high frequency. Due to such properties, the use position of the graphite sheet is limited, and it has been difficult to cope with the case where the shape of the heat radiation portion and the heat conduction member is diversified.
  • a ceramic sheet is an example of a low dielectric material in the heat conductive material.
  • a thin ceramic sheet is cracked when an external force is applied and a critical stress is exceeded. If the ceramic sheet is broken, debris and dust may scatter in the electronic device, which may cause an unexpected failure in the surrounding area.
  • an object of the present technology is to provide a heat conductor that has low dielectric constant and high heat conduction and can be in close contact with any heat radiation portion, and an electronic device using the heat conductor.
  • a thermal conductor according to the present technology includes a ceramic sheet and a resin coating layer formed on at least one surface of the ceramic sheet.
  • an electronic device includes an electronic component and a heat conductor that is thermally connected to the electronic component.
  • the resin coating layer on at least one surface of the ceramic sheet, the stress applied to the ceramic sheet is relaxed, and the occurrence of cracks can be suppressed. Even when an external force exceeding the limit stress is applied and the ceramic sheet is cracked, it is possible to prevent the ceramic sheet fragments and dust from scattering to the surroundings, thereby preventing an unexpected failure. Moreover, since it is coat
  • FIG. 1A is a cross-sectional view showing an example of an electronic device to which the present technology is applied, and shows an electronic device 10 in which a heat conductor 1 is sandwiched between an electronic component 12 and an external housing 30 as a heat conducting member. It is sectional drawing.
  • FIG. 1B is a cross-sectional view illustrating an example of an electronic device to which the present technology is applied, and is a cross-sectional view illustrating the electronic device 10 having a space between the outer housing 30 and the heat conductor 1.
  • FIG. 1C is a cross-sectional view showing an electronic device 10 having a space between the heat conductor 1 and the electronic component 12.
  • 1D is a cross-sectional view showing the electronic device 10 in which the heat conductor 1 is sandwiched between the electronic component 12 that is not carried on the substrate 12 and the external housing 30 as a heat conducting member.
  • 2A and 2B are cross-sectional views showing a heat conductor to which the present technology is applied, in which FIG. 2A shows a heat conductor in which a resin coating layer 3 is formed only on one surface of a ceramic sheet 2, and FIG. 2B shows a ceramic sheet. 2 shows a heat conductor in which the resin coating layer 3 is formed on both surfaces, and (C) shows a heat conductor in which the resin coating layers 3 a and 3 b are formed on both surfaces including the end of the ceramic sheet 2.
  • FIG. 2A shows a heat conductor in which a resin coating layer 3 is formed only on one surface of a ceramic sheet 2
  • FIG. 2B shows a ceramic sheet.
  • 2 shows a heat conductor in which the resin coating layer 3 is formed on both surfaces
  • (C) shows a heat conductor in
  • FIG. 3 is a cross-sectional view illustrating an example of the heat conductor 1 in which the resin coating layers 3 a and 3 b are configured by the double-sided adhesive tape 40.
  • FIG. 4 is a cross-sectional view showing a process of disposing the ceramic sheet 2 on the resin composition 21 supported by the PET film 20.
  • FIG. 5 is a cross-sectional view showing a state in which the resin coating layer 3 a is formed on one surface of the ceramic sheet 2.
  • FIG. 6 is a cross-sectional view showing a process of disposing the ceramic sheet 2 having the resin coating layer 3a formed on one surface on the resin composition 21 supported by the PET film.
  • FIG. 7 is a cross-sectional view showing a state in which the resin coating layer 3b is formed on the other surface of the ceramic sheet 2 on which the resin coating layer 3a is formed.
  • FIG. 8 is a cross-sectional view showing the heat conductor 1 in which the ceramic sheet 2 is divided into a plurality of pieces and bendable.
  • the electronic component 12 is mounted on both surfaces of the circuit board 11, and the thermoelectric conductor 1 is placed between the electronic component 12 mounted on one surface side of the circuit board 11 and the equipment outer casing 30 that is a heat conducting member.
  • 1 is a cross-sectional view showing an electronic device 10 in which an electronic component 12 sandwiched and mounted on the other surface side of a circuit board 11 is connected to a heat sink 31.
  • the electronic device 10 using the thermal conductor 1 to which the present technology is applied includes an electronic component 12, a thermal conductor 1 that is thermally connected to the electronic component 12, and the electronic component 12 in contact with the thermal conductor 1. And a heat conducting member 30 that dissipates heat.
  • FIG. 1A is a cross-sectional view illustrating an example of an electronic device 10 that uses an external housing 30 as a heat conducting member. Below, the electronic device 10 and the heat conductor 1 which concern on this technique using the electronic device 10 shown to FIG. 1A are demonstrated.
  • the electronic device 10 includes a circuit board 11, an electronic component 12 mounted on one surface of the circuit board 11, a thermal conductor 1 thermally connected to the electronic component 12, and an electronic component 12 in contact with the thermal conductor 1. And a device outer casing 30 serving as a heat conducting member for transferring heat generated by the heat sink.
  • the heat conductor 1 is formed in a sheet shape, is disposed between the outer housing 30 and the electronic component 12, and is thermally connected to the outer housing 30 and the electronic component 12. That is, the heat conductor 1 shown in FIG. 1A is used as a so-called heat spreader. 1A, the electronic component 12 and the heat conductor 1 may be connected to each other via the heat conductive sheet 5 or directly without using the heat conductive sheet 5. It may be connected.
  • FIG. 2 is a cross-sectional view showing a heat conductor 1 to which the present technology is applied.
  • a heat conductor 1 to which the present technology is applied has a ceramic sheet 2 and a resin coating layer 3 formed on at least one surface of the ceramic sheet 2 as shown in FIG. The layer 3 is in contact with the outer casing 30.
  • resin coating layers 3a and 3b are formed on both surfaces of the ceramic sheet 2, and one of the resin coating layers 3a and 3b is in contact with the external housing 30. It is preferable.
  • the resin coating layer 3 is formed on both surfaces including the end portion of the ceramic sheet 2, and one of the resin coating layers 3 is an external housing 30. It is preferable to contact with.
  • FIG. 2C it demonstrates using the heat conductor 1 by which resin coating layer 3a, 3b was formed in both surfaces of the ceramic sheet 2 shown to FIG. 2 (B).
  • the ceramic sheet 2 is a member having a low dielectric constant, excellent thermal conductivity and serving as a base of the thermal conductor 1, and is not particularly limited as long as it is a material having a high thermal conductivity of 10 W / mK or more.
  • a material having a thermal conductivity of 20 W / mK or higher such as aluminum nitride, alumina, boron nitride, silicon nitride, or the like as the main component, is preferably used as the main component.
  • the ceramic sheet 2 may be comprised by several members, such as what coated the alumina which is an oxide film on the surface of aluminum nitride, for example.
  • the thickness of the ceramic sheet 2 can be appropriately set according to the space where the heat conductor 1 can be installed. However, the thickness of the electronic device can be reduced, and the thinner the ceramic sheet 2 is, the greater the heat in the thickness direction. Since resistance becomes small, the thinner one is preferable.
  • the thickness of the ceramic sheet 2 is preferably 500 ⁇ m or less, for example. In addition, it is preferable that it is 40 micrometers or more from points, such as the handleability of the ceramic sheet 2 and the manufacturing cost of the heat conductor 1.
  • the ceramic sheet is easily broken as the thickness is reduced, and the broken ceramic sheet impairs the thermal conductivity in the surface direction.
  • the thermal conductor 1 to which the present technology is applied is formed by the resin coating layers 3a and 3b. Since the ceramic sheet 2 is coated, shape retention and thermal conductivity can be maintained. This point will be described in detail later.
  • the shape and size of the ceramic sheet 2 can be appropriately designed according to the shape of the heat dissipating part where the heat conductor 1 is disposed, and can be formed into, for example, a sheet shape or a strip shape.
  • the ceramic sheet 2 shape anisotropy such as forming the ceramic sheet 2 in a strip shape, the resistance to external force can be improved and cracking can be suppressed.
  • the resin coating layers 3a and 3b for coating the ceramic sheet 2 enhance the adhesion between the heat conductor 1 and the external housing 30 and coat at least one surface, preferably both surfaces of the ceramic sheet 2, The stress applied to the ceramic sheet 2 is relieved to suppress the generation of cracks, and even when the ceramic sheet 2 is broken, scattering of debris and dust is prevented.
  • the resin coating layer 3 is not particularly limited as long as it has such an effect, but in view of the function of the adhesive layer made of a stickable material such as an adhesive tape or the function of the heat conductor 1 from the viewpoint of productivity.
  • it is preferably formed of a heat conductive resin layer made of a resin material used for a conventional heat conductive sheet.
  • both the resin coating layers 3a and 3b may be constituted by an adhesive layer or a heat conductive resin layer, or one of the resin coating layers 3a and 3b is constituted by an adhesive layer.
  • the other may be constituted by a heat conductive resin layer.
  • the resin coating layers 3a and 3b are binder resins, and preferably contain components such as a heat conductive filler as necessary.
  • the resin coating layer 3 in contact with the outer casing 30 may be a heat insulating material (for example, a foaming agent or a binder resin containing a foaming agent is used).
  • binder resin examples include a pressure-sensitive adhesive containing an elastomer in addition to a non-sticky resin, and may further be in the form of a pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer on both sides or one side.
  • a single-sided adhesive tape and a double-sided adhesive tape may be selectively used as necessary.
  • the pressure-sensitive adhesive tape may have a base material such as nonwoven fabric, PET, aluminum foil, or may be baseless.
  • the elastomer is not particularly limited, and polymers such as acrylic, silicone, rubber, and urethane can be used.
  • acrylic pressure-sensitive adhesive layers include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, vinyl acetate, acrylonitrile, acrylamide, styrene, methyl methacrylate, methyl acrylate, acrylic acid, acrylic A polymer obtained by selecting and copolymerizing monomers such as hydroxyethyl acid and glycidyl methacrylate is optionally added with a tackifier and / or blended with a crosslinking agent and cured.
  • the adhesive tape may be used alone or in combination of two or more.
  • the heat conductor 1 can reinforce
  • FIG. 3 is a cross-sectional view showing an example of the heat conductor 1 in which the resin coating layers 3a and 3b are composed of the double-sided adhesive tape 40.
  • a pressure-sensitive adhesive layer 42 is formed on both surfaces of a base material 41, and a release film 43 such as a PET film is provided on the surface opposite to the surface supported by the base material 41 of each pressure-sensitive adhesive layer 42. It has been.
  • the release film 43 is peeled off from the other pressure-sensitive adhesive layer 42 provided with the release film 43, and connected to the electronic component 12 or the external device housing 30 via the other pressure-sensitive adhesive layer 42.
  • examples of the binder resin include a thermosetting polymer.
  • examples of the thermosetting polymer include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, thermosetting polyphenylene.
  • examples include ether and thermosetting modified polyphenylene ether. These may be used individually by 1 type and may use 2 or more types together.
  • crosslinked rubber examples include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, fluorine rubber, urethane.
  • examples thereof include rubber, acrylic rubber, polyisobutylene rubber, and silicone rubber. These may be used individually by 1 type and may use 2 or more types together.
  • thermosetting polymer is a silicone resin from the viewpoints of excellent molding processability and weather resistance, and adhesion and followability to the electronic component 12.
  • a silicone resin there is no restriction
  • a silicone resin include an addition reaction type silicone resin, a heat vulcanization type millable type silicone resin using a peroxide for vulcanization, and the like.
  • addition reaction type silicone resin is particularly preferable because adhesion to the electronic component 12 and the outer casing 30 is required.
  • addition reaction type silicone resin a two-component addition reaction type silicone resin containing a polyorganosiloxane having a vinyl group as a main ingredient and a polyorganosiloxane having a Si—H group as a curing agent is preferable.
  • the mixing ratio of the main component and the curing agent is not particularly limited and can be appropriately selected according to the purpose.
  • the binder resin content is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% by volume to 100% by volume, more preferably 15% by volume to 90% by volume, and 20% by volume to 85% by volume is particularly preferred.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the heat conductive filler is not particularly limited as long as it is a low dielectric heat conductive filler, and can be appropriately selected according to the purpose. Examples thereof include inorganic fillers.
  • the inorganic filler is not particularly limited with respect to its shape, material, average particle diameter and the like, and can be appropriately selected according to the purpose.
  • Examples of the shape of the inorganic filler include a spherical shape, an elliptic spherical shape, a lump shape, a granular shape, a flat shape, and a needle shape.
  • spherical and elliptical shapes are preferable from the viewpoint of filling properties, and spherical shapes are particularly preferable.
  • the inorganic filler examples include aluminum nitride (aluminum nitride: AlN), aluminum hydroxide, silica, aluminum oxide (alumina), boron nitride, glass, zinc oxide, silicon carbide, and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, aluminum oxide, boron nitride, aluminum nitride, zinc oxide, and silica are preferable, and aluminum oxide, aluminum nitride, and zinc oxide are particularly preferable from the viewpoint of thermal conductivity.
  • the inorganic filler may be subjected to a surface treatment.
  • the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved, and the flexibility of the resin coating layers 3a and 3b is improved.
  • the average particle size of an inorganic filler is preferably 1 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 90 ⁇ m. If the average particle size is less than 1 ⁇ m, the viscosity may increase and mixing may become difficult.
  • the average particle size is preferably 0.3 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 100 ⁇ m, and particularly preferably 0.5 ⁇ m to 1.5 ⁇ m. If the average particle size is less than 0.3 ⁇ m, the viscosity increases and mixing may be difficult, and if it exceeds 90 ⁇ m, the thickness of the resin coating layer may not be reduced.
  • the average particle diameter of the inorganic filler can be measured by, for example, a particle size distribution meter or a scanning electron microscope (SEM).
  • the content of the heat conductive filler is preferably 10% by volume to 85% by volume.
  • content of a heat conductive filler is less than 10 volume%, there exists a possibility that heat conductivity may become low.
  • it exceeds 85 volume% the surface property of a resin coating layer will worsen, and there exists a possibility that thermal resistance may increase.
  • content of a heat conductive filler exceeds 85 volume%, it will also become difficult to form resin coating layer 3a, 3b.
  • the heat conductive filler preferably has a relative dielectric constant of 10 or less.
  • the heat conductive filler is preferably a material that does not inhibit electromagnetic waves. If the relative dielectric constant exceeds 10, there is a risk of causing a delay of electromagnetic waves.
  • the heat conductor 1 can transfer the heat of the electronic component 12 to the housing 30 outside the apparatus and is less likely to cause noise. Become.
  • thermally conductive filler having a relative dielectric constant of 10 or less examples include alumina (relative dielectric constant: 8.5), hexagonal boron nitride (relative dielectric constant: 3.6 to 4.2), and aluminum nitride (relative dielectric constant: 8.5), magnesium oxide (relative permittivity: 9.6), aluminum hydroxide (relative permittivity: 5.1), magnesium hydroxide (relative permittivity: 4.7), and the like.
  • a carbon fiber synthesized by a chemical vapor deposition method or the like can be used.
  • alumina fibers, aluminum nitride whiskers, carbon fibers obtained by graphitizing PBO fibers, and pitch-based carbon fibers are particularly preferable from the viewpoint of thermal conductivity.
  • the carbon fiber is preferably coated with an insulating material.
  • the fibrous filler can be used by subjecting part or all of the surface to a surface treatment, if necessary.
  • surface treatment include oxidation treatment, nitridation treatment, nitration, sulfonation, or adhesion or bonding of metals, metal compounds, organic compounds, etc. to the surface of functional groups or carbon fibers introduced to the surface by these treatments.
  • the functional group include a hydroxyl group, a carboxyl group, a carbonyl group, a nitro group, and an amino group.
  • the average fiber length (average major axis length) of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ m to 10,000 ⁇ m.
  • the average fiber diameter (average minor axis length) of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 ⁇ m to 20 ⁇ m.
  • the content of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1% by volume to 70% by volume. If the content is less than 1% by volume, it may be difficult to obtain a sufficiently low thermal resistance, and if it exceeds 70% by volume, the moldability of the resin coating layers 3a and 3b and the orientation of the fibrous filler May affect sex.
  • the mass ratio (fibrous filler / binder resin) between the fibrous filler and the binder resin is less than 1.30, preferably 0.10 or more and less than 1.30, more preferably 0.30 or more and less than 1.30. 0.50 or more and less than 1.30 is even more preferable, and 0.60 or more and 1.20 or less is particularly preferable. When the mass ratio is 1.30 or more, the flexibility of the resin coating layers 3a and 3b becomes insufficient.
  • the other components other than the fibrous filler in the resin coating layers 3a and 3b are not particularly limited and may be appropriately selected depending on the intended purpose.
  • thixotropic agents dispersants, curing accelerators, delays Agents, slight tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants and the like.
  • the average particle size is preferably 15 ⁇ m or less, and the smaller the particle size, the more the flame retardancy is improved. It is preferable to treat the surface with silane coupling agent.
  • the resin coating layers 3a and 3b are formed of a heat conductive resin layer and a fibrous filler is mixed, the resin coating layers 3a and 3b are so coated that the surfaces of the resin coating layers 3a and 3b follow the convex shape of the protruding fibrous filler. It is preferable that the layers are covered with exuded components that have exuded from the layers 3a and 3b. A method of coating the surfaces of the resin coating layers 3a and 3b with the exudation component will be described later.
  • the resin coating layers 3a and 3b formed of the heat conductive resin layer have a volume resistance value of 1.V from an applied voltage of 1,000 V in order to prevent a short circuit of an electronic circuit around the electronic component 12 to be used. It is preferably 0 ⁇ 10 13 ⁇ ⁇ cm or more, and more preferably 1.0 ⁇ 10 15 ⁇ ⁇ cm or more.
  • the volume resistance value is measured according to, for example, JIS K-6911.
  • the resin coating layers 3 a and 3 b formed of the heat conductive resin layer have a compressibility of 3% or more at a load of 0.5 kgf / cm 2 from the viewpoint of adhesion to the outer casing 30 and the electronic component 12. It is preferably 15% or more.
  • the fibrous fillers are oriented in the thickness direction of the resin coating layers 3a and 3b in the resin coating layers 3a and 3b. May be. By doing so, coupled with the specific mass ratio of the fibrous filler and the binder resin and the specific content of the resin coating layers 3a and 3b described above, while having high thermal conductivity, it also has an insulating property. An excellent heat conductor 1 is obtained.
  • the fibrous filler is oriented in the thickness direction of the resin coating layers 3a and 3b” means that 45% or more of the fibrous filler contained in the resin coating layers 3a and 3b is in the thickness direction. It is oriented within the range of 0 ° to 45 °. Note that the fibrous fillers do not necessarily have to be oriented in the same direction. The orientation of the fibrous filler can be measured by, for example, an electron microscope.
  • the heat conductor 1 In the heat conductor 1, one of the resin coating layers 3 a and 3 b formed on both surfaces of the ceramic sheet 2 is in contact with the external housing 30. Note that when the resin coating layer 3 is formed on only one surface of the ceramic substrate, the heat conductor 1 may or may not come into contact with the housing 30 outside the device.
  • the external casing 30 is thermally connected to the circuit board 11 and a heating element such as the electronic component 12 mounted on the circuit board 11 via the thermal conductor 1 to promote heat dissipation of the heating element.
  • the material of the external housing 30 is not particularly limited and can be appropriately selected according to the purpose. However, non-metal is good around the antenna, and heat conductivity such as aluminum having high thermal conductivity in other portions. It is preferable to use a metal material having a high thickness.
  • the heat conductor 1 may be connected with the housing
  • the electronic component 12 is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include various semiconductor elements such as a CPU, MPU, graphic arithmetic element, antenna element, battery, and the like.
  • the electronic component 12 is illustrated as a heating element that requires heat dissipation.
  • an electronic device to which the present technology is applied can also be applied to the circuit board 11 as a heating element that requires heat dissipation. .
  • the resin coating layers 3a and 3b formed of the heat conductive resin layer may have non-adhesiveness. Then, the non-adhesive surface of the heat conductor 1 can be bonded to the electronic component 12 or the heat conductive member 5 using an adhesive.
  • the heat conductor 1 has at least one of the resin coating layers 3a and 3b to be tacky (slightly tacky) and adheres to the electronic component 12 and the heat conducting member 5 by this adhesive force. Good.
  • the thermal conductor 1 is coated with the resin coating layer 3 having good thermal conductivity even when the ceramic sheet 2 is cracked by forming the resin coating layer 3 on at least one of the ceramic sheets 2. Therefore, the shape can be maintained and the decrease in thermal conductivity can be suppressed.
  • the heat conductor 1 can maintain the adhesiveness even if the portion to be installed is not flat by forming the resin coating layer 3 on at least one of the ceramic sheets 2. Even in the case of cracking, the resin coating layer 3 can maintain the adhesion with the electronic component 12 and the external housing 30.
  • the heat conductor 1 As shown in FIG.2 (C), it is preferable that the ceramic sheet 2 is coat
  • a heat conductive sheet 5 may be provided between the heat conductor 1 and the electronic component 12. There is no restriction
  • the heat conductor 1 can be formed by laminating a resin composition constituting the resin coating layers 3 a and 3 b made of an adhesive layer or a heat conductive resin layer on the ceramic sheet 2.
  • the heat conductor 1 can be formed by laminating the resin composition constituting the resin coating layers 3a and 3b on the ceramic sheet 2 and appropriately curing the resin composition before or after the lamination.
  • the heat conductor 1 is obtained by supporting the resin composition constituting the resin coating layers 3a and 3b on a support, laminating the ceramic sheet 2, and appropriately curing the resin composition before or after the lamination. Can be formed.
  • the resin composition constituting the resin coating layers 3a and 3b is an adhesive composition or a heat conductive resin composition, and contains a heat conductive filler and other components as necessary.
  • the support that supports the resin composition include a PET (polyethylene terephthalate) film.
  • the support may also be present in the resin composition like a double-sided pressure-sensitive adhesive tape. Further, when the support is provided on the outermost surface of the resin coating layers 3a and 3b, the surface that supports the resin composition may be subjected to a peeling treatment.
  • FIG. 4 to 7 are cross-sectional views showing an example of the manufacturing process of the heat conductor 1.
  • a resin composition 21 is applied to the PET film 20 that has been subjected to the peeling treatment.
  • the coating thickness of the resin composition 21 can be appropriately selected according to the purpose, and is 5 ⁇ m as an example.
  • One surface of the ceramic sheet 2 is disposed on the resin composition 21 supported by the PET film 20 so that the resin composition 21 spreads over the entire surface of the ceramic sheet 2.
  • the thickness of the ceramic sheet 2 can be appropriately selected according to the purpose in the range of 50 ⁇ m to 500 ⁇ m, and is 50 ⁇ m as an example.
  • the resin composition 21 is a pressure-sensitive adhesive composition, it is cured in advance and the ceramic sheet 2 is pasted. Thereby, as shown in FIG. 5, the resin coating layer 3 a supported by the PET film 20 can be formed on one surface of the ceramic sheet 2.
  • the resin composition 21 is an uncured thermally conductive resin composition
  • one surface of the ceramic sheet 2 is disposed on the uncured resin composition 21, and uncured heat conduction is performed on the entire surface of the ceramic sheet 2.
  • the conductive resin composition 21 is spread.
  • the heat conductive resin composition 21 is cured by heating the laminate in which the heat conductive resin composition 21 supported by the PET film 20 is laminated on one surface of the ceramic sheet 2.
  • the resin coating layer 3a is obtained.
  • the heating conditions can be appropriately set according to the composition of the thermally conductive resin composition 21 and the coating thickness, and as an example, the heating condition is 100 ° C. for 30 minutes.
  • the other surface of the ceramic sheet 2 having the resin coating layer 3 a formed on one surface is disposed on the resin composition 21 supported by the PET film 20, and the entire surface is disposed on the other surface of the ceramic sheet 2.
  • the resin composition 21 is spread throughout.
  • the resin composition 21 is a pressure-sensitive adhesive composition, it is cured in advance and the ceramic sheet 2 is pasted. Thereby, as shown in FIG. 7, the resin coating layer 3 b supported by the PET film 20 can be formed on the other surface of the ceramic sheet 2.
  • the resin composition 21 is an uncured heat conductive resin composition
  • the laminate having the heat conductive resin composition 21 supported by the PET film 20 on the other surface of the ceramic sheet 2 is heated to heat
  • the conductive resin composition 21 is cured.
  • the resin coating layer 3b supported by the PET film 20 on the other surface of the ceramic sheet 2 is obtained.
  • the heating conditions can be appropriately set according to the composition of the thermally conductive resin composition 21 and the coating thickness, and as an example, the heating condition is 100 ° C. for 30 minutes.
  • the heat conductor 1 in which the surfaces of the resin coating layers 3a and 3b are coated with the PET film 20 is obtained.
  • the PET film 20 is appropriately peeled from the respective surfaces of the resin coating layers 3a and 3b according to the method of use.
  • the resin coating layers 3a and 3b are single-sided adhesive tapes, they are used as they are.
  • the heat conductor 1 is made to cover the surface of the resin coating layers 3a and 3b formed of the heat conductive resin layer with exuding components that have exuded from the resin coating layers 3a and 3b by pressing, leaving, etc. May be.
  • the “exuding component” refers to a component that is contained in the thermally conductive resin composition but does not contribute to curing, and that does not contribute to the reaction among the non-curable component and the binder resin.
  • the heat conductor 1 can improve the followability and adhesion to the surfaces of the electronic component 12 and the external housing 30 and reduce the thermal resistance. it can. Further, when a fibrous filler is blended in the resin coating layers 3a and 3b, if the coating by the exudation component has a thickness that reflects the shape of the fibrous filler on the surface of the resin coating layers 3a and 3b, An increase in resistance can be avoided.
  • the press treatment can be performed by using, for example, a pair of press devices including a flat plate and a press head having a flat surface. Moreover, you may perform a press process, heating using the press head which incorporated the heater. Moreover, you may perform a press process using a pinch roll.
  • the leaving time of the leaving treatment is not particularly limited and can be appropriately selected according to the purpose.
  • the heat conductor 1 may be formed so that the ceramic sheet 2 is divided into a plurality of pieces and bendable. Even when the ceramic sheet 2 is divided into a plurality of parts, the heat conductor 1 can be maintained in shape and at least one surface of the ceramic sheet 2 is covered with the resin coating layers 3a and 3b. A decrease in rate can be suppressed.
  • the heat conductor 1 can be bent, the heat conductor 1 can follow the shape of the arrangement surface even when arranged on a non-flat surface, and can maintain the adhesion to the arrangement surface.
  • the heat generated by the electronic component 12 can be efficiently transmitted to the external housing 30 for heat dissipation.
  • the heat conductor 1 in which the ceramic sheet 2 is divided into a plurality of parts can be formed by applying an external force to the heat conductor 1 formed in a sheet shape and breaking the ceramic sheet 2.
  • the heat conductor 1 in which the ceramic sheet 2 is divided into a plurality is provided with a plurality of ceramic sheets 2 arranged adjacent to each other, and a resin coating layer 3 a is continuously formed on one surface of the plurality of ceramic sheets 2. Then, the resin coating layer 3b may be continuously formed on the other surface of the plurality of ceramic sheets 2 continuously. Further, in the heat conductor 1 in which the ceramic sheet 2 is divided into a plurality, the resin coating layer 3 is formed on one surface of the ceramic sheet 2, and after the ceramic sheet 2 is split, the resin coating layer 3 is formed on the other surface. May be provided.
  • a heat conductive resin composition for forming a resin coating layer is applied on the peeled PET film (application thickness: 5 ⁇ m), and a 50 ⁇ m thick aluminum nitride ceramics sheet is formed on the heat conductive resin composition film before curing.
  • the heat conductive resin composition spread over the entire surface of the substrate, and then cured in an oven at 100 ° C. for 30 minutes to form a resin coating layer on one surface of the aluminum nitride ceramic sheet.
  • a thermally conductive resin composition for forming a resin coating layer is applied on the peeled PET film (application thickness: 5 ⁇ m), and the other surface of the obtained aluminum nitride ceramic sheet with a resin coating layer is placed.
  • the heat conductive resin composition After allowing the heat conductive resin composition to spread over the entire surface of the substrate, it was cured in an oven at 100 ° C. for 30 minutes, and a resin coating layer was formed on the other surface of the aluminum nitride ceramic sheet to obtain a heat conductor.
  • Embodiment 2 The aluminum nitride ceramic sheet of the heat conductor obtained in Embodiment 1 was split by applying an external force to obtain a bendable heat conductor.
  • a heat conductive resin composition for forming a resin coating layer is applied on the peeled PET film (coating thickness: 5 ⁇ m), and a strip-shaped nitridation with a thickness of 50 ⁇ m is formed on the heat conductive resin composition film before curing. After placing the aluminum ceramic sheet so that the silicone spreads over the entire surface of the substrate, it was cured in an oven at 100 ° C. for 30 minutes to form a resin coating layer on one surface of the aluminum nitride ceramic sheet. Next, a thermally conductive resin composition for forming a resin coating layer is applied on the peeled PET film (application thickness: 5 ⁇ m), and the other surface of the obtained aluminum nitride ceramic sheet with a resin coating layer is placed.
  • the heat conductive resin composition After the heat conductive resin composition is spread over the entire surface of the strip-shaped substrate, it is cured in an oven at 100 ° C. for 30 minutes, and a resin coating layer is formed on the other surface of the aluminum nitride ceramic sheet to form a strip-shaped heat conductor.
  • the heat conductor according to the third embodiment is formed in a strip shape, it can improve the resistance of the aluminum nitride ceramic sheet to the external force.
  • a heat conductive resin composition in which aluminum hydroxide is mixed to form a resin coating layer on the peeled PET film is applied (application thickness: 10 ⁇ m), and the resulting aluminum nitride ceramic sheet with a resin coating layer is obtained.
  • the thermally conductive resin composition spreads over the entire surface of the substrate, it was cured in an oven at 100 ° C. for 30 minutes, and a resin coating layer was formed on the other side of the aluminum nitride ceramic sheet to conduct heat conduction. Got the body.
  • Embodiment 5 The aluminum nitride ceramic sheet of the heat conductor obtained in Embodiment 4 was split to obtain a heat conductor that can be bent.
  • a heat conductive resin composition mixed with aluminum hydroxide to form a resin coating layer is applied on the peeled PET film (coating thickness: 10 ⁇ m), and 50 ⁇ m on the heat conductive resin composition film before curing. After placing a thick strip-shaped aluminum nitride ceramic sheet so that the thermally conductive resin composition spreads over the entire surface of the substrate, it is cured in an oven at 100 ° C. for 30 minutes, and a resin coating layer is formed on one surface of the aluminum nitride ceramic sheet. Formed.
  • a heat conductive resin composition in which aluminum hydroxide is mixed to form a resin coating layer on the peeled PET film is applied (application thickness: 10 ⁇ m), and the resulting aluminum nitride ceramic sheet with a resin coating layer is obtained.
  • the heat conductive resin composition After placing the other side to spread the heat conductive resin composition over the entire surface of the strip substrate, it was cured in an oven at 100 ° C. for 30 minutes to form a resin coating layer on the other side of the aluminum nitride ceramic sheet, A strip-shaped heat conductor was obtained. Since the heat conductor according to the sixth embodiment is formed in a strip shape, the resistance to external force of the aluminum nitride ceramic sheet can be improved.
  • a heat conductive resin composition for forming a resin coating layer is applied on the peeled PET film (application thickness: 5 ⁇ m), and a 50 ⁇ m thick aluminum nitride ceramics sheet is formed on the heat conductive resin composition film before curing.
  • the heat conductive resin composition spread over the entire surface of the substrate, and then cured in an oven at 100 ° C. for 30 minutes to form a resin coating layer on one surface of the aluminum nitride ceramic sheet.
  • a heat conductive resin composition in which aluminum hydroxide is mixed to form a resin coating layer on a PET film that has been subjected to a release treatment is applied (application thickness: 5 ⁇ m), and the resulting aluminum nitride ceramic sheet with a resin coating layer is obtained.
  • the thermally conductive resin composition spreads over the entire surface of the substrate, it was cured in an oven at 100 ° C. for 30 minutes, and a resin coating layer was formed on the other side of the aluminum nitride ceramic sheet to conduct heat conduction. Got the body.
  • a heat conductive resin composition in which aluminum hydroxide is mixed to form a resin coating layer on a PET film that has been subjected to a release treatment is applied (application thickness: 5 ⁇ m), and the resulting aluminum nitride ceramic sheet with a resin coating layer is obtained.
  • application thickness 5 ⁇ m
  • Double-sided adhesive tape (base material: 12 ⁇ m PET film, adhesive layer: 10 ⁇ m) is pressed with a hand roller on one side of a 50 ⁇ m thick aluminum nitride ceramic sheet, and an acrylic adhesive layer resin coating layer is applied to the aluminum nitride ceramic sheet. Formed. Next, heat is applied by pressing a double-sided adhesive tape (base material: 60 ⁇ m PET film, adhesive layer: 10 ⁇ m) with a hand roller so as to cover the edge on the other surface of the aluminum nitride ceramic sheet, and cutting the protruding part. A conductor was obtained.
  • the resin coating layer is formed on both surfaces of the aluminum nitride substrate, the stress applied to the aluminum nitride substrate is relaxed, and the occurrence of cracks is suppressed. Even when the aluminum substrate is cracked or cracked, it is possible to prevent the fragments and dust of the ceramic sheet 2 from scattering to the surroundings. Unexpected failures can be prevented.
  • the thermal conductors according to Embodiments 1 to 10 above all have a resin coating layer having good thermal conductivity on both surfaces of the aluminum nitride substrate, even when the aluminum nitride ceramic sheet is cracked. While maintaining a shape, the fall of thermal conductivity can be suppressed.
  • any of the thermal conductors according to Embodiments 1 to 10 above can break the aluminum nitride ceramic sheet, or can be bent because the aluminum nitride ceramic sheet is cracked in advance, and the installation site is flat. Even if it is not, adhesiveness can be maintained.
  • the electronic device 10 has electronic components 12 mounted on both surfaces of the circuit board 11 as shown in FIG. 9, and heat is applied between the device outer casing 30 and one electronic component 12.
  • the thermoconductor 1 may be sandwiched together with the conductive sheet 5.
  • the electronic components 12 mounted on both surfaces of the circuit board 11 may be mounted at positions facing each other, or may be mounted at positions not facing each other as shown in FIG.
  • the electronic device 10 is a housing outside the device which is a heat conducting member that dissipates heat from the electronic component 12 and the electronic component 12 on the one surface side of the circuit board 11.
  • the electronic component 12 may be connected to the heat sink 31 via the heat conductive sheet 5 on the other surface side of the circuit board 11.
  • the electronic device 10 may be provided with a space S between the heat conductor 1 and the device outer casing 30. Also in the configuration illustrated in FIG. 1B, the electronic device 10 can transfer and diffuse the heat generated by the electronic component 12 to the heat conductor 1 through the heat conductive sheet 5 as appropriate. Further, the heat conductor 1 can release heat transferred from the electronic component 12 to the space S.
  • the electronic device 10 may be provided with a space S between the electronic component 12 and the heat conductor 1. Also in the configuration illustrated in FIG. 1C, the electronic device 10 can transfer and diffuse the heat generated by the electronic component 12 to the heat conductor 1 through the space S. Moreover, by providing the space S between the electronic component 12 and the heat conductor 1, it becomes difficult to become a factor that inhibits electromagnetic waves.
  • the electronic device 10 does not necessarily have the electronic component 12 supported on the substrate 12.
  • An electronic component 12 such as a battery pack is mounted in the electronic device 10 without being carried on the substrate 12, is in contact with the heat conductor 1, and is thermally connected to the external housing 30 via the heat conductor 1.
  • the heat conductive sheet 5 may be appropriately interposed between the electronic component 12 and the heat conductor 1.

Abstract

Provided is a heat conductor that has an excellent heat transfer property, that is capable of preventing scattering of fragments, dust, etc., even when cracking occurs therein, and that is capable of being tightly attached to any heat-radiating portions. A heat conductor 1 comprises: a ceramics sheet 2; and resin coating layers 3a, 3b formed on both surfaces of the ceramics sheet 2.

Description

熱伝導体、及びこれを用いた電子機器Thermal conductor and electronic device using the same
 本技術は、電子部品等の発熱体と電子部品等の熱を拡散させる熱伝導部材との間に配置される熱伝導体、及びこの熱伝導体を備えた電子機器に関する。本出願は、日本国において2018年5月2日に出願された日本特許出願番号特願2018-088940、日本国において2018年6月22日に出願された日本特許出願番号特願2018-118471、及び日本国において2019年4月26日に出願された日本特許出願番号特願2019-085828を基礎として優先権を主張するものであり、これらの出願は参照されることにより、本出願に援用される。 The present technology relates to a heat conductor disposed between a heating element such as an electronic component and a heat conduction member that diffuses heat of the electronic component, and an electronic apparatus including the heat conductor. This application includes Japanese Patent Application No. 2018-088940 filed on May 2, 2018 in Japan, Japanese Patent Application No. 2018-118471 filed on June 22, 2018 in Japan, Claiming priority based on Japanese Patent Application No. 2019-085828 filed on April 26, 2019 in Japan, and these applications are incorporated herein by reference. The
 パーソナルコンピュータやスマートフォン等の各種電気機器やその他の電子機器は、小型化、高機能化かつ複雑化してきており、それに伴って、回路基板上の小型電子部品の集積密度がますます増加している。この結果、回路基板や回路基板に実装された電子部品の発熱による故障や機能障害、短寿命化等が問題となってくる。 Various electric devices such as personal computers and smartphones and other electronic devices are becoming smaller, more functional and more complicated, and along with this, the integration density of small electronic components on circuit boards is increasing more and more. . As a result, problems such as failure, functional failure, and shortening of the life due to heat generation of the circuit board and the electronic components mounted on the circuit board become problems.
 回路基板や電子部品等の速やかな放熱を実現するために、回路基板自体を放熱性に優れた材料で構成する、回路基板や電子部品にヒートシンクを取り付ける、あるいは熱伝導性に優れたシート状の熱伝導体を配置するなどの方策が採られている。 In order to realize quick heat dissipation of circuit boards and electronic components, the circuit board itself is made of a material with excellent heat dissipation, a heat sink is attached to the circuit board and electronic components, or a sheet-like shape with excellent heat conductivity Measures such as arranging a heat conductor are taken.
特開2003-092384号公報JP 2003-092384 A
 従来、放熱目的に使用されるシート状の熱伝導体として、グラファイトシートが用いられている。グラファイトシートは、天然黒鉛または人造黒鉛から製造され、その結晶性から、熱伝導に異方性があり、厚み方向の熱伝導率は低く、熱が伝わりにくくされており、シートの表面と平行な面方向の熱伝導率は高く、熱が伝わりやすくされている。また、グラファイトシートは、数十ミクロンから数千ミクロンの任意の厚みに調整できるという特性を持っている。 Conventionally, a graphite sheet has been used as a sheet-like heat conductor used for heat dissipation. Graphite sheets are manufactured from natural graphite or artificial graphite, and because of their crystallinity, they have anisotropy in heat conduction, low thermal conductivity in the thickness direction, are difficult to conduct heat, and are parallel to the surface of the sheet. The thermal conductivity in the surface direction is high and heat is easily transmitted. Further, the graphite sheet has a characteristic that it can be adjusted to an arbitrary thickness of several tens of microns to several thousand microns.
 さらにグラファイトシートは誘電率が高く、遮蔽性があり、電磁場シールドとしての性能を有する。そのため高周波を利用する通信など各種通信機器付近で予期しない障害が発生するおそれがある。このような性質から、グラファイトシートは、使用位置が限定され、放熱部位や熱伝導部材の形状が多様化する場合に対応することが困難であった。 Furthermore, the graphite sheet has a high dielectric constant, shielding properties, and performance as an electromagnetic field shield. Therefore, there is a possibility that an unexpected failure may occur near various communication devices such as communication using high frequency. Due to such properties, the use position of the graphite sheet is limited, and it has been difficult to cope with the case where the shape of the heat radiation portion and the heat conduction member is diversified.
 熱伝導材における低誘電材料としてはセラミックスシートが挙げられる。しかし、薄いセラミックスシートは外力が加わり、限界応力を超えると割れるという問題がある。セラミックスシートが割れた場合、電子機器内に破片や粉じんが飛散し、周囲に予期しない障害を発生させるおそれがある。 A ceramic sheet is an example of a low dielectric material in the heat conductive material. However, there is a problem that a thin ceramic sheet is cracked when an external force is applied and a critical stress is exceeded. If the ceramic sheet is broken, debris and dust may scatter in the electronic device, which may cause an unexpected failure in the surrounding area.
 そこで、本技術は、低誘電かつ高熱伝導で、あらゆる放熱部位に密着可能な熱伝導体、及びこれを用いた電子機器を提供することを目的とする。 Therefore, an object of the present technology is to provide a heat conductor that has low dielectric constant and high heat conduction and can be in close contact with any heat radiation portion, and an electronic device using the heat conductor.
 上述した課題を解決するために、本技術に係る熱伝導体は、セラミックスシートと、上記セラミックスシートの少なくとも一方の面に形成された樹脂コーティング層とを有することを特徴とするものである。 In order to solve the above-described problems, a thermal conductor according to the present technology includes a ceramic sheet and a resin coating layer formed on at least one surface of the ceramic sheet.
 また、本技術に係る電子機器は、電子部品と、上記電子部品と熱的に接続された熱伝導体とを有するものである。 Also, an electronic device according to the present technology includes an electronic component and a heat conductor that is thermally connected to the electronic component.
 本技術によれば、セラミックスシートの少なくとも一方の面に樹脂コーティング層が形成されることにより、セラミックスシートに加わる応力が緩和されて割れの発生を抑制することができる。また、限界応力を超える外力が加わりセラミックスシートが割れた場合にも、セラミックスシートの破片や粉塵が周囲に飛び散ることを防止して予期しない障害を防止することができる。また、薄い樹脂コーティング層によって被覆されていることから、形状を維持できるとともに、熱伝導率の低下を抑制することができる。さらに、設置される部位との密着性を維持することができる。 According to the present technology, by forming the resin coating layer on at least one surface of the ceramic sheet, the stress applied to the ceramic sheet is relaxed, and the occurrence of cracks can be suppressed. Even when an external force exceeding the limit stress is applied and the ceramic sheet is cracked, it is possible to prevent the ceramic sheet fragments and dust from scattering to the surroundings, thereby preventing an unexpected failure. Moreover, since it is coat | covered with the thin resin coating layer, while being able to maintain a shape, the fall of heat conductivity can be suppressed. Furthermore, the adhesiveness with the site | part installed can be maintained.
図1Aは本技術が適用された電子機器の一例を示す断面図であり、電子部品12と熱伝導部材としての機器外筐体30との間に熱伝導体1を挟持した電子機器10を示す断面図である。FIG. 1A is a cross-sectional view showing an example of an electronic device to which the present technology is applied, and shows an electronic device 10 in which a heat conductor 1 is sandwiched between an electronic component 12 and an external housing 30 as a heat conducting member. It is sectional drawing. 図1Bは、本技術が適用された電子機器の一例を示す断面図であり、機器外筐体30と熱伝導体1との間に空間を有する電子機器10を示す断面図である。FIG. 1B is a cross-sectional view illustrating an example of an electronic device to which the present technology is applied, and is a cross-sectional view illustrating the electronic device 10 having a space between the outer housing 30 and the heat conductor 1. 図1Cは、熱伝導体1と電子部品12との間に空間を有する電子機器10を示す断面図である。FIG. 1C is a cross-sectional view showing an electronic device 10 having a space between the heat conductor 1 and the electronic component 12. 図1Dは、基板12に担持されていない電子部品12と熱伝導部材としての機器外筐体30との間に熱伝導体1を挟持した電子機器10を示す断面図である。FIG. 1D is a cross-sectional view showing the electronic device 10 in which the heat conductor 1 is sandwiched between the electronic component 12 that is not carried on the substrate 12 and the external housing 30 as a heat conducting member. 図2は、本技術が適用された熱伝導体を示す断面図であり、(A)はセラミックスシート2の一面のみに樹脂コーティング層3を形成した熱伝導体を示し、(B)はセラミックスシート2の両面に樹脂コーティング層3を形成した熱伝導体を示し、(C)はセラミックスシート2の端部を含む両面に樹脂コーティング層3a,3bを形成した熱伝導体を示す。2A and 2B are cross-sectional views showing a heat conductor to which the present technology is applied, in which FIG. 2A shows a heat conductor in which a resin coating layer 3 is formed only on one surface of a ceramic sheet 2, and FIG. 2B shows a ceramic sheet. 2 shows a heat conductor in which the resin coating layer 3 is formed on both surfaces, and (C) shows a heat conductor in which the resin coating layers 3 a and 3 b are formed on both surfaces including the end of the ceramic sheet 2. 図3は、樹脂コーティング層3a,3bを両面粘着テープ40により構成した熱伝導体1の一例を示す断面図である。FIG. 3 is a cross-sectional view illustrating an example of the heat conductor 1 in which the resin coating layers 3 a and 3 b are configured by the double-sided adhesive tape 40. 図4は、PETフィルム20に支持された樹脂組成物21上にセラミックスシート2を配置する工程を示す断面図である。FIG. 4 is a cross-sectional view showing a process of disposing the ceramic sheet 2 on the resin composition 21 supported by the PET film 20. 図5は、セラミックスシート2の一面に樹脂コーティング層3aを形成した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which the resin coating layer 3 a is formed on one surface of the ceramic sheet 2. 図6は、PETフィルムに支持された樹脂組成物21上に、一面に樹脂コーティング層3aが形成されたセラミックスシート2を配置する工程を示す断面図である。FIG. 6 is a cross-sectional view showing a process of disposing the ceramic sheet 2 having the resin coating layer 3a formed on one surface on the resin composition 21 supported by the PET film. 図7は、一面に樹脂コーティング層3aが形成されたセラミックスシート2の他面に樹脂コーティング層3bを形成した状態を示す断面図である。FIG. 7 is a cross-sectional view showing a state in which the resin coating layer 3b is formed on the other surface of the ceramic sheet 2 on which the resin coating layer 3a is formed. 図8は、セラミックスシート2が複数に分割され、屈曲可能に形成された熱伝導体1を示す断面図である。FIG. 8 is a cross-sectional view showing the heat conductor 1 in which the ceramic sheet 2 is divided into a plurality of pieces and bendable. 図9は、回路基板11の両面に電子部品12を実装し、回路基板11の一方の面側に実装した電子部品12と熱伝導部材である機器外筐体30との間に熱電導体1を挟持させ、回路基板11の他方の面側に実装した電子部品12をヒートシンク31に接続した電子機器10を示す断面図である。In FIG. 9, the electronic component 12 is mounted on both surfaces of the circuit board 11, and the thermoelectric conductor 1 is placed between the electronic component 12 mounted on one surface side of the circuit board 11 and the equipment outer casing 30 that is a heat conducting member. 1 is a cross-sectional view showing an electronic device 10 in which an electronic component 12 sandwiched and mounted on the other surface side of a circuit board 11 is connected to a heat sink 31. FIG.
 以下、本技術が適用された熱伝導体、及びこれを用いた電子機器について、図面を参照しながら詳細に説明する。なお、本技術は、以下の実施形態のみに限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, a heat conductor to which the present technology is applied and an electronic device using the heat conductor will be described in detail with reference to the drawings. In addition, this technique is not limited only to the following embodiment, Of course, a various change is possible in the range which does not deviate from the summary of this technique. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 [熱伝導体]
 本技術が適用された熱伝導体1を用いた電子機器10は、電子部品12と、電子部品12と熱的に接続された熱伝導体1と、熱伝導体1と接して電子部品12の熱を放熱する熱伝導部材30とを有する。図1Aは、熱伝導部材として機器外筐体30を用いた電子機器10の一例を示す断面図である。以下では、図1Aに示す電子機器10を用いて本技術に係る電子機器10及び熱伝導体1について説明する。
[Heat conductor]
The electronic device 10 using the thermal conductor 1 to which the present technology is applied includes an electronic component 12, a thermal conductor 1 that is thermally connected to the electronic component 12, and the electronic component 12 in contact with the thermal conductor 1. And a heat conducting member 30 that dissipates heat. FIG. 1A is a cross-sectional view illustrating an example of an electronic device 10 that uses an external housing 30 as a heat conducting member. Below, the electronic device 10 and the heat conductor 1 which concern on this technique using the electronic device 10 shown to FIG. 1A are demonstrated.
 電子機器10は、回路基板11と、回路基板11の一面に実装された電子部品12と、電子部品12と熱的に接続された熱伝導体1と、熱伝導体1と接して電子部品12の発する熱を伝熱する熱伝導部材となる機器外筐体30とを備える。熱伝導体1は、シート状に形成され、機器外筐体30と電子部品12との間に配設され、機器外筐体30及び電子部品12と熱的に接続されている。すなわち、図1Aに示す熱伝導体1は、いわゆるヒートスプレッダとして使用される。なお、電子機器10は、図1(A)に示すように、電子部品12と熱伝導体1とが、熱伝導シート5を介して接続されてもよく、熱伝導シート5を介さずに直接接続されてもよい。 The electronic device 10 includes a circuit board 11, an electronic component 12 mounted on one surface of the circuit board 11, a thermal conductor 1 thermally connected to the electronic component 12, and an electronic component 12 in contact with the thermal conductor 1. And a device outer casing 30 serving as a heat conducting member for transferring heat generated by the heat sink. The heat conductor 1 is formed in a sheet shape, is disposed between the outer housing 30 and the electronic component 12, and is thermally connected to the outer housing 30 and the electronic component 12. That is, the heat conductor 1 shown in FIG. 1A is used as a so-called heat spreader. 1A, the electronic component 12 and the heat conductor 1 may be connected to each other via the heat conductive sheet 5 or directly without using the heat conductive sheet 5. It may be connected.
 図2は、本技術が適用された熱伝導体1を示す断面図である。本技術が適用された熱伝導体1は、図2(A)に示すように、セラミックスシート2と、セラミックスシート2の少なくとも一方の面に形成された樹脂コーティング層3とを有し、樹脂コーティング層3が機器外筐体30と接することを特徴とするものである。特に、熱伝導体1は、図2(B)に示すように、セラミックスシート2の両面に樹脂コーティング層3a,3bが形成され、樹脂コーティング層3a,3bの一方が機器外筐体30と接することが好ましい。さらに好ましくは、熱伝導体1は、図2(C)に示すように、セラミックスシート2の端部を含む両面に樹脂コーティング層3が形成され、樹脂コーティング層3の一方が機器外筐体30と接することが好ましい。以下では、図2(B)に示すセラミックスシート2の両面に樹脂コーティング層3a,3bが形成された熱伝導体1を用いて説明する。 FIG. 2 is a cross-sectional view showing a heat conductor 1 to which the present technology is applied. A heat conductor 1 to which the present technology is applied has a ceramic sheet 2 and a resin coating layer 3 formed on at least one surface of the ceramic sheet 2 as shown in FIG. The layer 3 is in contact with the outer casing 30. In particular, as shown in FIG. 2B, in the heat conductor 1, resin coating layers 3a and 3b are formed on both surfaces of the ceramic sheet 2, and one of the resin coating layers 3a and 3b is in contact with the external housing 30. It is preferable. More preferably, in the heat conductor 1, as shown in FIG. 2C, the resin coating layer 3 is formed on both surfaces including the end portion of the ceramic sheet 2, and one of the resin coating layers 3 is an external housing 30. It is preferable to contact with. Below, it demonstrates using the heat conductor 1 by which resin coating layer 3a, 3b was formed in both surfaces of the ceramic sheet 2 shown to FIG. 2 (B).
 [セラミックスシート]
 セラミックスシート2は、誘電率が低く、熱伝導性に優れ熱伝導体1の基体となる部材であり、10W/mK以上の高い熱伝導率を有する材料であれば特に限定されるものではないが、例えば主成分として窒化アルミニウム、アルミナ、窒化ホウ素、窒化ケイ素等、20W/mK以上の熱伝導率を有する材料を主成分として用いることが好ましい。また、セラミックスシート2は、例えば窒化アルミニウムの表面に酸化膜であるアルミナがコーティングされたものなど複数の部材で構成されても良い。
[Ceramic sheet]
The ceramic sheet 2 is a member having a low dielectric constant, excellent thermal conductivity and serving as a base of the thermal conductor 1, and is not particularly limited as long as it is a material having a high thermal conductivity of 10 W / mK or more. For example, a material having a thermal conductivity of 20 W / mK or higher, such as aluminum nitride, alumina, boron nitride, silicon nitride, or the like as the main component, is preferably used as the main component. Moreover, the ceramic sheet 2 may be comprised by several members, such as what coated the alumina which is an oxide film on the surface of aluminum nitride, for example.
 また、セラミックスシート2の厚さは熱伝導体1として設置可能な空間に応じて適宜設定することができるが、電子機器が薄肉化できること、セラミックスシート2の厚さが薄い方が厚み方向の熱抵抗が小さくなることから、できるだけ薄い方が好ましい。セラミックスシート2の厚さは、例えば500μm以下が好ましい。なお、セラミックスシート2の取り扱い性、熱伝導体1の製造コスト等の点から40μm以上であることが好ましい。 The thickness of the ceramic sheet 2 can be appropriately set according to the space where the heat conductor 1 can be installed. However, the thickness of the electronic device can be reduced, and the thinner the ceramic sheet 2 is, the greater the heat in the thickness direction. Since resistance becomes small, the thinner one is preferable. The thickness of the ceramic sheet 2 is preferably 500 μm or less, for example. In addition, it is preferable that it is 40 micrometers or more from points, such as the handleability of the ceramic sheet 2 and the manufacturing cost of the heat conductor 1.
 また、一般にセラミックスシートは、厚さが薄くなるほど割れやすくなり、割れたセラミックスシートは面方向の熱伝導性を損なうが、本技術が適用された熱伝導体1は、樹脂コーティング層3a,3bによってセラミックスシート2を被覆しているため、形状保持性及び熱伝導性を維持することができる。この点は後に詳述する。 Further, in general, the ceramic sheet is easily broken as the thickness is reduced, and the broken ceramic sheet impairs the thermal conductivity in the surface direction. However, the thermal conductor 1 to which the present technology is applied is formed by the resin coating layers 3a and 3b. Since the ceramic sheet 2 is coated, shape retention and thermal conductivity can be maintained. This point will be described in detail later.
 また、セラミックスシート2の形状や大きさは、熱伝導体1が配設される放熱部位の形状に応じて適宜設計することができ、例えばシート状、短冊状等に形成することができる。セラミックスシート2を短冊状に形成する等、適宜、セラミックスシート2に形状異方性を持たせることにより、外力に対する耐性を向上させ、割れを抑制することができる。 Further, the shape and size of the ceramic sheet 2 can be appropriately designed according to the shape of the heat dissipating part where the heat conductor 1 is disposed, and can be formed into, for example, a sheet shape or a strip shape. By appropriately giving the ceramic sheet 2 shape anisotropy such as forming the ceramic sheet 2 in a strip shape, the resistance to external force can be improved and cracking can be suppressed.
 [樹脂コーティング層]
 セラミックスシート2をコーティングする樹脂コーティング層3a,3bは、熱伝導体1と機器外筐体30との密着性を高めるとともに、セラミックスシート2の少なくとも一方の面、好ましくは両面を被覆することにより、セラミックスシート2に加わる応力が緩和されて割れの発生を抑制するとともに、セラミックスシート2が割れた場合にも破片や粉塵の飛散を防止するものである。樹脂コーティング層3はこのような効果を奏する材料であれば特に制限はないが、生産性の観点から粘着テープ等の貼着可能な材料からなる粘着剤層や、熱伝導体1の機能に鑑みて従来の熱伝導シートに用いられる樹脂材料からなる熱伝導性樹脂層により形成されることが好ましい。また、熱伝導体1は、樹脂コーティング層3a,3bのいずれも粘着剤層又は熱伝導性樹脂層によって構成してもよく、あるいは、樹脂コーティング層3a,3bの一方を粘着剤層で構成し、他方を熱伝導性樹脂層によって構成してもよい。
[Resin coating layer]
The resin coating layers 3a and 3b for coating the ceramic sheet 2 enhance the adhesion between the heat conductor 1 and the external housing 30 and coat at least one surface, preferably both surfaces of the ceramic sheet 2, The stress applied to the ceramic sheet 2 is relieved to suppress the generation of cracks, and even when the ceramic sheet 2 is broken, scattering of debris and dust is prevented. The resin coating layer 3 is not particularly limited as long as it has such an effect, but in view of the function of the adhesive layer made of a stickable material such as an adhesive tape or the function of the heat conductor 1 from the viewpoint of productivity. Thus, it is preferably formed of a heat conductive resin layer made of a resin material used for a conventional heat conductive sheet. Further, in the heat conductor 1, both the resin coating layers 3a and 3b may be constituted by an adhesive layer or a heat conductive resin layer, or one of the resin coating layers 3a and 3b is constituted by an adhesive layer. The other may be constituted by a heat conductive resin layer.
 例えば、樹脂コーティング層3a,3bは、バインダ樹脂であり、更に必要に応じて熱伝導性フィラーなどの成分を含有することが好ましい。また、機器外筐体30と接する樹脂コーティング層3は断熱材(例えば、発泡剤、又は発泡剤を含有したバインダ樹脂を用いる)でも良い。 For example, the resin coating layers 3a and 3b are binder resins, and preferably contain components such as a heat conductive filler as necessary. Further, the resin coating layer 3 in contact with the outer casing 30 may be a heat insulating material (for example, a foaming agent or a binder resin containing a foaming agent is used).
 [バインダ樹脂]
 バインダ樹脂としては、非粘着性の樹脂に加え、エラストマーを含む粘着剤などが挙げられ、更には両面又は片面に粘着剤層を有する粘着テープの形態であってもよい。粘着テープは、必要に応じて片面粘着テープと両面粘着テープとを使い分けてもよい。粘着テープは、不織布、PET、アルミ箔などの基材を有しても、基材レスであってもよい。エラストマーとしては、特に限定されず、アクリル系、シリコーン系、ゴム系、ウレタン系などのポリマー類を使用できる。
[Binder resin]
Examples of the binder resin include a pressure-sensitive adhesive containing an elastomer in addition to a non-sticky resin, and may further be in the form of a pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer on both sides or one side. As the adhesive tape, a single-sided adhesive tape and a double-sided adhesive tape may be selectively used as necessary. The pressure-sensitive adhesive tape may have a base material such as nonwoven fabric, PET, aluminum foil, or may be baseless. The elastomer is not particularly limited, and polymers such as acrylic, silicone, rubber, and urethane can be used.
 例えば、アクリル系の粘着剤層は、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸イソノニル、酢酸ビニル、アクリルニトリル、アクリルアミド、スチレン、メタクリル酸メチル、アクリル酸メチル、アクリル酸、アクリル酸ヒドロキシエチル、メタクリル酸グリシジルなどのモノマーを選択して共重合させたポリマーに必要に応じて粘着付与剤を添加し、及び/又は架橋剤を配合して硬化させたものである。 For example, acrylic pressure-sensitive adhesive layers include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, vinyl acetate, acrylonitrile, acrylamide, styrene, methyl methacrylate, methyl acrylate, acrylic acid, acrylic A polymer obtained by selecting and copolymerizing monomers such as hydroxyethyl acid and glycidyl methacrylate is optionally added with a tackifier and / or blended with a crosslinking agent and cured.
 また、粘着テープは1種単独で使用してもよく、2種以上を併用してもよい。また、熱伝導体1は、基材を有する粘着テープによって樹脂コーティング層3a,3bを構成することにより、セラミックスシート2の強度を補強することができる。 Moreover, the adhesive tape may be used alone or in combination of two or more. Moreover, the heat conductor 1 can reinforce | strengthen the intensity | strength of the ceramic sheet 2 by comprising the resin coating layers 3a and 3b with the adhesive tape which has a base material.
 図3は、樹脂コーティング層3a,3bを両面粘着テープ40により構成した熱伝導体1の一例を示す断面図である。両面粘着テープ40は、基材41の両面に粘着剤層42が形成され、さらに各粘着剤層42の基材41に支持された面と反対の表面にはPETフィルムなどの剥離フィルム43が設けられている。 FIG. 3 is a cross-sectional view showing an example of the heat conductor 1 in which the resin coating layers 3a and 3b are composed of the double-sided adhesive tape 40. In the double-sided pressure-sensitive adhesive tape 40, a pressure-sensitive adhesive layer 42 is formed on both surfaces of a base material 41, and a release film 43 such as a PET film is provided on the surface opposite to the surface supported by the base material 41 of each pressure-sensitive adhesive layer 42. It has been.
 図3に示す熱伝導体1は、セラミックスシート2の両面に両面粘着テープ40の一方の粘着剤層42が貼付されることにより形成される。使用時には、剥離フィルム43が設けられている他方の粘着剤層42から当該剥離フィルム43を剥離し、他方の粘着剤層42を介して電子部品12や機器外筐体30に接続される。 3 is formed by sticking one adhesive layer 42 of the double-sided adhesive tape 40 to both surfaces of the ceramic sheet 2. At the time of use, the release film 43 is peeled off from the other pressure-sensitive adhesive layer 42 provided with the release film 43, and connected to the electronic component 12 or the external device housing 30 via the other pressure-sensitive adhesive layer 42.
 また、バインダ樹脂としては、例えば、熱硬化性ポリマーなどが挙げられる。熱硬化性ポリマーとしては、例えば、架橋ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン樹脂、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテルなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Also, examples of the binder resin include a thermosetting polymer. Examples of the thermosetting polymer include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, thermosetting polyphenylene. Examples include ether and thermosetting modified polyphenylene ether. These may be used individually by 1 type and may use 2 or more types together.
 架橋ゴムとしては、例えば、天然ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、ポリイソブチレンゴム、シリコーンゴムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the crosslinked rubber include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, fluorine rubber, urethane. Examples thereof include rubber, acrylic rubber, polyisobutylene rubber, and silicone rubber. These may be used individually by 1 type and may use 2 or more types together.
 これらの中でも、成形加工性、耐候性に優れると共に、電子部品12に対する密着性及び追従性の点から、熱硬化性ポリマーは、シリコーン樹脂であることが特に好ましい。 Among these, it is particularly preferable that the thermosetting polymer is a silicone resin from the viewpoints of excellent molding processability and weather resistance, and adhesion and followability to the electronic component 12.
 シリコーン樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、液状シリコーンゲルの主剤と、硬化剤とを含有することが好ましい。そのようなシリコーン樹脂としては、例えば、付加反応型シリコーン樹脂、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーン樹脂などが挙げられる。これらの中でも、電子部品12や機器外筐体30などとの密着性が要求されるため、付加反応型シリコーン樹脂が特に好ましい。 There is no restriction | limiting in particular as a silicone resin, Although it can select suitably according to the objective, It is preferable to contain the main ingredient of a liquid silicone gel, and a hardening | curing agent. Examples of such a silicone resin include an addition reaction type silicone resin, a heat vulcanization type millable type silicone resin using a peroxide for vulcanization, and the like. Among these, addition reaction type silicone resin is particularly preferable because adhesion to the electronic component 12 and the outer casing 30 is required.
 付加反応型シリコーン樹脂としては、ビニル基を有するポリオルガノシロキサンを主剤、Si-H基を有するポリオルガノシロキサンを硬化剤とした、2液性の付加反応型シリコーン樹脂が好ましい。 As the addition reaction type silicone resin, a two-component addition reaction type silicone resin containing a polyorganosiloxane having a vinyl group as a main ingredient and a polyorganosiloxane having a Si—H group as a curing agent is preferable.
 液状シリコーンゲルの主剤と、硬化剤との組合せにおいて、主剤と硬化剤との配合割合としては、特に制限はなく、目的に応じて適宜選択することができる。 In the combination of the main component of liquid silicone gel and the curing agent, the mixing ratio of the main component and the curing agent is not particularly limited and can be appropriately selected according to the purpose.
 バインダ樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10体積%~100体積%が好ましく、15体積%~90体積%がより好ましく、20体積%~85体積%が特に好ましい。なお、本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。 The binder resin content is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% by volume to 100% by volume, more preferably 15% by volume to 90% by volume, and 20% by volume to 85% by volume is particularly preferred. In the present specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
 [熱伝導性フィラー]
 熱伝導性フィラーとしては、低誘電の熱伝導性フィラーであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、無機物フィラーなどが挙げられる。
[Thermal conductive filler]
The heat conductive filler is not particularly limited as long as it is a low dielectric heat conductive filler, and can be appropriately selected according to the purpose. Examples thereof include inorganic fillers.
 無機物フィラーとしては、その形状、材質、平均粒径などについては特に制限はなく、目的に応じて適宜選択することができる。無機物フィラーの形状としては、例えば、球状、楕円球状、塊状、粒状、扁平状、針状などが挙げられる。これらの中でも、球状、楕円形状が充填性の点から好ましく、球状が特に好ましい。 The inorganic filler is not particularly limited with respect to its shape, material, average particle diameter and the like, and can be appropriately selected according to the purpose. Examples of the shape of the inorganic filler include a spherical shape, an elliptic spherical shape, a lump shape, a granular shape, a flat shape, and a needle shape. Among these, spherical and elliptical shapes are preferable from the viewpoint of filling properties, and spherical shapes are particularly preferable.
 無機物フィラーとしては、例えば、窒化アルミニウム(窒化アルミ:AlN)、水酸化アルミニウム、シリカ、酸化アルミニウム(アルミナ)、窒化ホウ素、ガラス、酸化亜鉛、炭化ケイ素などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、酸化アルミニウム、窒化ホウ素、窒化アルミニウム、酸化亜鉛、シリカが好ましく、熱伝導率の点から、酸化アルミニウム、窒化アルミニウム、酸化亜鉛が特に好ましい。 Examples of the inorganic filler include aluminum nitride (aluminum nitride: AlN), aluminum hydroxide, silica, aluminum oxide (alumina), boron nitride, glass, zinc oxide, silicon carbide, and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, aluminum oxide, boron nitride, aluminum nitride, zinc oxide, and silica are preferable, and aluminum oxide, aluminum nitride, and zinc oxide are particularly preferable from the viewpoint of thermal conductivity.
 なお、無機物フィラーは、表面処理が施されていてもよい。表面処理としてカップリング剤で無機物フィラーを処理すると、無機物フィラーの分散性が向上し、樹脂コーティング層3a,3bの柔軟性が向上する。 In addition, the inorganic filler may be subjected to a surface treatment. When the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved, and the flexibility of the resin coating layers 3a and 3b is improved.
 無機物フィラーの平均粒径としては、特に制限はなく、目的に応じて適宜選択することができる。無機物フィラーがアルミナの場合、その平均粒径は、1μm~100μmが好ましく、1μm~90μmがより好ましい。平均粒径が、1μm未満であると、粘度が大きくなり、混合しにくくなることがある。 There is no restriction | limiting in particular as an average particle diameter of an inorganic filler, According to the objective, it can select suitably. When the inorganic filler is alumina, the average particle size is preferably 1 μm to 100 μm, and more preferably 1 μm to 90 μm. If the average particle size is less than 1 μm, the viscosity may increase and mixing may become difficult.
 無機物フィラーが窒化アルミニウムの場合、その平均粒径は、0.3μm~100μmが好ましく、1μm~100μmがより好ましく、0.5μm~1.5μmが特に好ましい。平均粒径が、0.3μm未満であると、粘度が大きくなり、混合しにくくなることがあり、90μmを超えると、樹脂コーティング層の厚みを薄くできないことがある。 When the inorganic filler is aluminum nitride, the average particle size is preferably 0.3 μm to 100 μm, more preferably 1 μm to 100 μm, and particularly preferably 0.5 μm to 1.5 μm. If the average particle size is less than 0.3 μm, the viscosity increases and mixing may be difficult, and if it exceeds 90 μm, the thickness of the resin coating layer may not be reduced.
 無機物フィラーの平均粒径は、例えば、粒度分布計、走査型電子顕微鏡(SEM)により測定することができる。 The average particle diameter of the inorganic filler can be measured by, for example, a particle size distribution meter or a scanning electron microscope (SEM).
 熱伝導性フィラーの含有量は、10体積%~85体積%が好ましい。熱伝導性フィラーの含有量が、10体積%未満の場合は熱伝導率が低くなるおそれがある。また、85体積%を超えると樹脂コーティング層の表面性が悪くなり、熱抵抗が増大するおそれがある。なお、熱伝導性フィラーの含有量が、85体積%を超えると、樹脂コーティング層3a,3bを形成することも困難となる。 The content of the heat conductive filler is preferably 10% by volume to 85% by volume. When content of a heat conductive filler is less than 10 volume%, there exists a possibility that heat conductivity may become low. Moreover, when it exceeds 85 volume%, the surface property of a resin coating layer will worsen, and there exists a possibility that thermal resistance may increase. In addition, when content of a heat conductive filler exceeds 85 volume%, it will also become difficult to form resin coating layer 3a, 3b.
 熱伝導性フィラーは比誘電率が10以下であることが好ましい。機器外筐体30として非金属の筐体が使用される場合において、熱伝導体1をアンテナ素子周辺で用いる場合は、熱伝導性フィラーは電磁波を阻害しない材料が好ましい。比誘電率が10を超えると電磁波の遅延を引き起こす原因となるおそれがある。 The heat conductive filler preferably has a relative dielectric constant of 10 or less. In the case where a non-metallic housing is used as the outer housing 30, when the heat conductor 1 is used around the antenna element, the heat conductive filler is preferably a material that does not inhibit electromagnetic waves. If the relative dielectric constant exceeds 10, there is a risk of causing a delay of electromagnetic waves.
 そこで、比誘電率が10以下の熱伝導性フィラーを用いることにより、熱伝導体1は、電子部品12の熱を良好に機器外筐体30に伝達するとともに、ノイズを発生させる原因ともなりにくくなる。 Therefore, by using a heat conductive filler having a relative dielectric constant of 10 or less, the heat conductor 1 can transfer the heat of the electronic component 12 to the housing 30 outside the apparatus and is less likely to cause noise. Become.
 比誘電率が10以下の熱伝導性フィラーとしては、アルミナ(比誘電率:8.5)、六方晶窒化ホウ素(比誘電率:3.6~4.2)、窒化アルミニウム(比誘電率:8.5)、酸化マグネシウム(比誘電率:9.6)、水酸化アルミニウム(比誘電率:5.1)、水酸化マグネシウム(比誘電率:4.7)などが挙げられる。 Examples of the thermally conductive filler having a relative dielectric constant of 10 or less include alumina (relative dielectric constant: 8.5), hexagonal boron nitride (relative dielectric constant: 3.6 to 4.2), and aluminum nitride (relative dielectric constant: 8.5), magnesium oxide (relative permittivity: 9.6), aluminum hydroxide (relative permittivity: 5.1), magnesium hydroxide (relative permittivity: 4.7), and the like.
 [他の成分]
 [繊維状フィラー]
 繊維状フィラーとしては、特に制限はなく、目的に応じて適宜選択することができる。例えば、アルミナ繊維、窒化アルミウィスカー、ピッチ系炭素繊維、PAN系炭素繊維、PBO繊維を黒鉛化した炭素繊維、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(触媒化学気相成長法)等で合成された炭素繊維などを用いることができる。これらの中でも、熱伝導性の点から、アルミナ繊維、窒化アルミウィスカー、PBO繊維を黒鉛化した炭素繊維、ピッチ系炭素繊維が特に好ましい。また、炭素繊維は、絶縁性材料で被覆されているものが好ましい。
[Other ingredients]
[Fibrous filler]
There is no restriction | limiting in particular as a fibrous filler, According to the objective, it can select suitably. For example, alumina fiber, aluminum nitride whisker, pitch-based carbon fiber, PAN-based carbon fiber, carbon fiber graphitized from PBO fiber, arc discharge method, laser evaporation method, CVD method (chemical vapor deposition method), CCVD method (catalyst) A carbon fiber synthesized by a chemical vapor deposition method or the like can be used. Among these, alumina fibers, aluminum nitride whiskers, carbon fibers obtained by graphitizing PBO fibers, and pitch-based carbon fibers are particularly preferable from the viewpoint of thermal conductivity. The carbon fiber is preferably coated with an insulating material.
 繊維状フィラーは、必要に応じて、その一部又は全部を表面処理して用いることができる。表面処理としては、例えば、酸化処理、窒化処理、ニトロ化、スルホン化、あるいはこれらの処理によって表面に導入された官能基若しくは炭素繊維の表面に、金属、金属化合物、有機化合物等を付着あるいは結合させる処理などが挙げられる。官能基としては、例えば、水酸基、カルボキシル基、カルボニル基、ニトロ基、アミノ基などが挙げられる。 The fibrous filler can be used by subjecting part or all of the surface to a surface treatment, if necessary. Examples of surface treatment include oxidation treatment, nitridation treatment, nitration, sulfonation, or adhesion or bonding of metals, metal compounds, organic compounds, etc. to the surface of functional groups or carbon fibers introduced to the surface by these treatments. And the like. Examples of the functional group include a hydroxyl group, a carboxyl group, a carbonyl group, a nitro group, and an amino group.
 繊維状フィラーの平均繊維長(平均長軸長さ)としては、特に制限はなく、目的に応じて適宜選択することができるが、5μm~10000μmが好ましい。 The average fiber length (average major axis length) of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 μm to 10,000 μm.
 繊維状フィラーの平均繊維径(平均短軸長さ)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1μm~20μmが好ましい。 The average fiber diameter (average minor axis length) of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 μm to 20 μm.
 繊維状フィラーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1体積%~70体積%が好ましい。含有量が、1体積%未満であると、十分に低い熱抵抗を得ることが困難になることがあり、70体積%を超えると、樹脂コーティング層3a,3bの成型性及び繊維状フィラーの配向性に影響を与えてしまうことがある。 The content of the fibrous filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1% by volume to 70% by volume. If the content is less than 1% by volume, it may be difficult to obtain a sufficiently low thermal resistance, and if it exceeds 70% by volume, the moldability of the resin coating layers 3a and 3b and the orientation of the fibrous filler May affect sex.
 繊維状フィラーと、バインダ樹脂との質量比(繊維状フィラー/バインダ樹脂)は、1.30未満であり、0.10以上1.30未満が好ましく、0.30以上1.30未満がより好ましく、0.50以上1.30未満が更により好ましく、0.60以上1.20以下が特に好ましい。質量比が、1.30以上であると、樹脂コーティング層3a,3bの柔軟性が不十分となる。 The mass ratio (fibrous filler / binder resin) between the fibrous filler and the binder resin is less than 1.30, preferably 0.10 or more and less than 1.30, more preferably 0.30 or more and less than 1.30. 0.50 or more and less than 1.30 is even more preferable, and 0.60 or more and 1.20 or less is particularly preferable. When the mass ratio is 1.30 or more, the flexibility of the resin coating layers 3a and 3b becomes insufficient.
 [その他の成分]
 樹脂コーティング層3a,3bの、繊維状フィラー以外のその他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤などが挙げられる。
[Other ingredients]
The other components other than the fibrous filler in the resin coating layers 3a and 3b are not particularly limited and may be appropriately selected depending on the intended purpose. For example, thixotropic agents, dispersants, curing accelerators, delays Agents, slight tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants and the like.
 例えば、熱伝導体1に難燃性を付与する点から、水酸化アルミニウムを配合することが好ましい。難燃剤として水酸化アルミニウムを配合する場合、その平均粒径は15μm以下が好ましく、粒径が細かいほど難燃性が向上するが、細かくするほど凝集粒が多く発生するため、その場合はステアリン酸やシランカップリング剤で表面を処理することが好ましい。 For example, it is preferable to mix aluminum hydroxide from the viewpoint of imparting flame retardancy to the heat conductor 1. When aluminum hydroxide is blended as a flame retardant, the average particle size is preferably 15 μm or less, and the smaller the particle size, the more the flame retardancy is improved. It is preferable to treat the surface with silane coupling agent.
 樹脂コーティング層3a,3bの平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、3μm以上100μm以下とすることが好ましい。樹脂コーティング層3a,3bの厚みが3μm未満とすると、セラミックスシート2が割れた場合に、熱伝導体1の形状を維持することが困難となる他、樹脂コーティング層3a,3bも割裂して、面方向の熱伝導性が低下し、また割れたセラミックスシート2の破片や粉塵が周囲に飛散する虞がある。また、樹脂コーティング層3a,3bの厚みが100μm以上となると、熱伝導体1の熱伝導率を低下させる虞がある。 There is no restriction | limiting in particular as average thickness of resin coating layer 3a, 3b, Although it can select suitably according to the objective, It is preferable to set it as 3 micrometers or more and 100 micrometers or less. If the thickness of the resin coating layers 3a and 3b is less than 3 μm, it becomes difficult to maintain the shape of the heat conductor 1 when the ceramic sheet 2 is cracked, and the resin coating layers 3a and 3b are also split. There is a possibility that the thermal conductivity in the surface direction is lowered, and fragments and dust of the broken ceramic sheet 2 are scattered around. Moreover, when the thickness of the resin coating layers 3a and 3b is 100 μm or more, there is a possibility that the thermal conductivity of the thermal conductor 1 is lowered.
 樹脂コーティング層3a,3bを熱伝導性樹脂層により形成し、繊維状フィラーを混合した場合、樹脂コーティング層3a,3bの表面は、突出した繊維状フィラーによる凸形状を追従するように、樹脂コーティング層3a,3bから滲み出した滲出成分で覆われていることが好ましい。樹脂コーティング層3a,3bの表面を滲出成分で被覆する方法は後述する。 When the resin coating layers 3a and 3b are formed of a heat conductive resin layer and a fibrous filler is mixed, the resin coating layers 3a and 3b are so coated that the surfaces of the resin coating layers 3a and 3b follow the convex shape of the protruding fibrous filler. It is preferable that the layers are covered with exuded components that have exuded from the layers 3a and 3b. A method of coating the surfaces of the resin coating layers 3a and 3b with the exudation component will be described later.
 また、熱伝導性樹脂層により形成された樹脂コーティング層3a,3bは、使用される電子部品12周辺の電子回路の短絡防止の点から、1,000Vの印加電圧における体積抵抗値が、1.0×1013Ω・cm以上であることが好ましく、1.0×1015Ω・cm以上であることがより好ましい。体積抵抗値は、例えば、JIS K-6911に準じて測定される。 In addition, the resin coating layers 3a and 3b formed of the heat conductive resin layer have a volume resistance value of 1.V from an applied voltage of 1,000 V in order to prevent a short circuit of an electronic circuit around the electronic component 12 to be used. It is preferably 0 × 10 13 Ω · cm or more, and more preferably 1.0 × 10 15 Ω · cm or more. The volume resistance value is measured according to, for example, JIS K-6911.
 熱伝導性樹脂層により形成された樹脂コーティング層3a,3bは、機器外筐体30及び電子部品12に対する密着性の点から、荷重0.5kgf/cmにおける圧縮率が、3%以上であることが好ましく、15%以上がより好ましい。樹脂コーティング層3a,3bの圧縮率の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、30%以下が好ましい。 The resin coating layers 3 a and 3 b formed of the heat conductive resin layer have a compressibility of 3% or more at a load of 0.5 kgf / cm 2 from the viewpoint of adhesion to the outer casing 30 and the electronic component 12. It is preferably 15% or more. There is no restriction | limiting in particular as an upper limit of the compression rate of resin coating layer 3a, 3b, Although it can select suitably according to the objective, 30% or less is preferable.
 樹脂コーティング層3a,3bを熱伝導性樹脂層により形成し、繊維状フィラーを混合した場合、樹脂コーティング層3a,3bにおいては、繊維状フィラーが樹脂コーティング層3a,3bの厚み方向に配向していてもよい。そうすることにより、繊維状フィラーとバインダ樹脂との前述の特定の質量比、及び前述の樹脂コーティング層3a,3bの特定の含有量と相まって、高い熱伝導性を有しつつ、絶縁性にも優れる熱伝導体1が得られる。 When the resin coating layers 3a and 3b are formed of a heat conductive resin layer and fibrous fillers are mixed, the fibrous fillers are oriented in the thickness direction of the resin coating layers 3a and 3b in the resin coating layers 3a and 3b. May be. By doing so, coupled with the specific mass ratio of the fibrous filler and the binder resin and the specific content of the resin coating layers 3a and 3b described above, while having high thermal conductivity, it also has an insulating property. An excellent heat conductor 1 is obtained.
 ここで、「繊維状フィラーが、樹脂コーティング層3a,3bの厚み方向に配向している」とは、樹脂コーティング層3a,3bが含有する繊維状フィラーの45%以上が、厚み方向に対して0°~45°の範囲内に配向していることを指す。なお、繊維状フィラーは必ずしもすべての繊維状フィラーが同一の方向に配向している必要はない。繊維状フィラーの配向は、例えば電子顕微鏡により、測定することができる。 Here, “the fibrous filler is oriented in the thickness direction of the resin coating layers 3a and 3b” means that 45% or more of the fibrous filler contained in the resin coating layers 3a and 3b is in the thickness direction. It is oriented within the range of 0 ° to 45 °. Note that the fibrous fillers do not necessarily have to be oriented in the same direction. The orientation of the fibrous filler can be measured by, for example, an electron microscope.
 [熱伝導部材・電子部品]
 熱伝導体1は、セラミックスシート2の両面に形成された樹脂コーティング層3a,3bのうちの一方が機器外筐体30と接する。なお、熱伝導体1は、セラミックス基板の一方の面のみに樹脂コーティング層3を形成した場合、当該樹脂コーティング層3が機器外筐体30と接する場合と接しない場合がある。機器外筐体30は、回路基板11や回路基板11に実装された電子部品12等の発熱体と熱伝導体1を介して熱的に接続され、発熱体の放熱を促進する。機器外筐体30の材料は、特に制限はなく、目的に応じて適宜選択することができるが、アンテナ周辺では非金属が良く、それ以外の部位では熱伝導率が高いアルミニウム等の熱伝導率の高い金属材を用いて形成されることが好ましい。なお、熱伝導体1は、適宜、熱伝導シート5を介して機器外筐体30と接続されてもよい。
[Heat conduction materials and electronic components]
In the heat conductor 1, one of the resin coating layers 3 a and 3 b formed on both surfaces of the ceramic sheet 2 is in contact with the external housing 30. Note that when the resin coating layer 3 is formed on only one surface of the ceramic substrate, the heat conductor 1 may or may not come into contact with the housing 30 outside the device. The external casing 30 is thermally connected to the circuit board 11 and a heating element such as the electronic component 12 mounted on the circuit board 11 via the thermal conductor 1 to promote heat dissipation of the heating element. The material of the external housing 30 is not particularly limited and can be appropriately selected according to the purpose. However, non-metal is good around the antenna, and heat conductivity such as aluminum having high thermal conductivity in other portions. It is preferable to use a metal material having a high thickness. In addition, the heat conductor 1 may be connected with the housing | casing 30 outside an apparatus through the heat conductive sheet 5 suitably.
 また、電子部品12としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、CPU、MPU、グラフィック演算素子等の各種半導体素子、アンテナ素子、バッテリーなどが挙げられる。なお、図1Aに示す電子機器では、放熱を要する発熱体として電子部品12を例示したが、本技術が適用された電子機器は、放熱を要する発熱体として回路基板11にも適用することができる。 The electronic component 12 is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include various semiconductor elements such as a CPU, MPU, graphic arithmetic element, antenna element, battery, and the like. In the electronic device illustrated in FIG. 1A, the electronic component 12 is illustrated as a heating element that requires heat dissipation. However, an electronic device to which the present technology is applied can also be applied to the circuit board 11 as a heating element that requires heat dissipation. .
 熱伝導体1は、熱伝導性樹脂層により形成された樹脂コーティング層3a,3bは非粘着性を有しても良い。そして、熱伝導体1の当該非粘着面と電子部品12や熱伝導部材5との接着は、接着剤を用いて行うことができる。また、熱伝導体1は、樹脂コーティング層3a,3bの少なくとも一方にタック性(微粘着性)を持たせ、この粘着力によって電子部品12や熱伝導部材5との接着を行うようにしてもよい。 In the heat conductor 1, the resin coating layers 3a and 3b formed of the heat conductive resin layer may have non-adhesiveness. Then, the non-adhesive surface of the heat conductor 1 can be bonded to the electronic component 12 or the heat conductive member 5 using an adhesive. In addition, the heat conductor 1 has at least one of the resin coating layers 3a and 3b to be tacky (slightly tacky) and adheres to the electronic component 12 and the heat conducting member 5 by this adhesive force. Good.
 [熱伝導体の効果]
 このような熱伝導体1は、セラミックスシート2の少なくとも一方に樹脂コーティング層3が形成されることにより、セラミックスシート2に加わる応力が緩和されて割れの発生を抑制することができる。また、限界応力を超える外力が加わりセラミックスシート2が割れた場合にも、セラミックスシート2の破片や粉塵が周囲に飛び散ることが防止されている。従って、電子機器の予期しない障害を防止することができる。
[Effect of thermal conductor]
In such a heat conductor 1, when the resin coating layer 3 is formed on at least one of the ceramic sheets 2, the stress applied to the ceramic sheet 2 is relieved and the occurrence of cracks can be suppressed. Further, even when an external force exceeding the limit stress is applied and the ceramic sheet 2 is cracked, the fragments and dust of the ceramic sheet 2 are prevented from scattering around. Therefore, an unexpected failure of the electronic device can be prevented.
 また、熱伝導体1は、セラミックスシート2の少なくとも一方に樹脂コーティング層3が形成されることにより、セラミックスシート2が割れた場合にも、良好な熱伝導性を有する樹脂コーティング層3によって被覆されていることから、形状を維持できるとともに、熱伝導率の低下を抑制することができる。 Further, the thermal conductor 1 is coated with the resin coating layer 3 having good thermal conductivity even when the ceramic sheet 2 is cracked by forming the resin coating layer 3 on at least one of the ceramic sheets 2. Therefore, the shape can be maintained and the decrease in thermal conductivity can be suppressed.
 さらに、熱伝導体1は、セラミックスシート2の少なくとも一方に樹脂コーティング層3が形成されることにより、設置される部位が平坦ではなくとも密着性を維持することができ、また、セラミックスシート2が割れた場合にも、樹脂コーティング層3によって電子部品12や機器外筐体30との密着性を維持することができる。 Furthermore, the heat conductor 1 can maintain the adhesiveness even if the portion to be installed is not flat by forming the resin coating layer 3 on at least one of the ceramic sheets 2. Even in the case of cracking, the resin coating layer 3 can maintain the adhesion with the electronic component 12 and the external housing 30.
 [セラミックスシートの全面被覆]
 また、熱伝導体1は、図2(C)に示すように、セラミックスシート2が樹脂コーティング層3によって端部を含む全面が被覆されていることが好ましい。これにより熱伝導体1は、セラミックスシート2の破片や粉塵の飛散を確実に防止することができる。
[Covering of ceramic sheet]
Moreover, as for the heat conductor 1, as shown in FIG.2 (C), it is preferable that the ceramic sheet 2 is coat | covered the whole surface including an edge part with the resin coating layer 3. FIG. Thereby, the heat conductor 1 can prevent reliably the fragment of the ceramic sheet 2, and scattering of dust.
 なお、熱伝導体1と電子部品12との間には熱伝導シート5を設けても良い。熱伝導シート5は、特に制限はなく、公知の熱伝導シートを用いることができる。 A heat conductive sheet 5 may be provided between the heat conductor 1 and the electronic component 12. There is no restriction | limiting in particular in the heat conductive sheet 5, A well-known heat conductive sheet can be used.
 [熱伝導体の製造方法]
 熱伝導体1は、粘着剤層又は熱伝導性樹脂層からなる樹脂コーティング層3a,3bを構成する樹脂組成物をセラミックスシート2に積層することにより形成することができる。または、熱伝導体1は、樹脂コーティング層3a,3bを構成する樹脂組成物をセラミックスシート2に積層し、当該積層の前又は後において適宜樹脂組成物を硬化させることにより形成することができる。もしくは、熱伝導体1は、樹脂コーティング層3a,3bを構成する樹脂組成物を支持体に支持させ、セラミックスシート2に積層し、当該積層の前又は後において適宜樹脂組成物を硬化させることにより形成することができる。
[Method for producing heat conductor]
The heat conductor 1 can be formed by laminating a resin composition constituting the resin coating layers 3 a and 3 b made of an adhesive layer or a heat conductive resin layer on the ceramic sheet 2. Alternatively, the heat conductor 1 can be formed by laminating the resin composition constituting the resin coating layers 3a and 3b on the ceramic sheet 2 and appropriately curing the resin composition before or after the lamination. Alternatively, the heat conductor 1 is obtained by supporting the resin composition constituting the resin coating layers 3a and 3b on a support, laminating the ceramic sheet 2, and appropriately curing the resin composition before or after the lamination. Can be formed.
 樹脂コーティング層3a,3bを構成する樹脂組成物は、粘着剤組成物又は熱伝導性樹脂組成物であり、必要に応じて、熱伝導性フィラーその他の成分を含有する。樹脂組成物を支持する支持体としては、PET(ポリエチレンテレフタレート)フィルムが挙げられる。支持体は、両面粘着テープのように樹脂組成物中にも存在してもよい。また、支持体は、樹脂コーティング層3a,3bの最表面に設けられる場合は、樹脂組成物を支持する面に剥離処理が施されていてもよい。 The resin composition constituting the resin coating layers 3a and 3b is an adhesive composition or a heat conductive resin composition, and contains a heat conductive filler and other components as necessary. Examples of the support that supports the resin composition include a PET (polyethylene terephthalate) film. The support may also be present in the resin composition like a double-sided pressure-sensitive adhesive tape. Further, when the support is provided on the outermost surface of the resin coating layers 3a and 3b, the surface that supports the resin composition may be subjected to a peeling treatment.
 図4~図7は、熱伝導体1の製造工程の一例を示す断面図である。先ず、図4に示すように、剥離処理されたPETフィルム20に樹脂組成物21を塗布する。樹脂組成物21の塗布厚は、目的に応じて適宜選択することができ、一例としては5μm厚とする。このPETフィルム20に支持された樹脂組成物21に、セラミックスシート2の一面を配置し、セラミックスシート2の一面に全面にわたって樹脂組成物21がいきわたるようにする。セラミックスシート2の厚さは、50μmから500μmの範囲で目的に応じて適宜選択することができ、一例としては50μm厚とする。 4 to 7 are cross-sectional views showing an example of the manufacturing process of the heat conductor 1. First, as shown in FIG. 4, a resin composition 21 is applied to the PET film 20 that has been subjected to the peeling treatment. The coating thickness of the resin composition 21 can be appropriately selected according to the purpose, and is 5 μm as an example. One surface of the ceramic sheet 2 is disposed on the resin composition 21 supported by the PET film 20 so that the resin composition 21 spreads over the entire surface of the ceramic sheet 2. The thickness of the ceramic sheet 2 can be appropriately selected according to the purpose in the range of 50 μm to 500 μm, and is 50 μm as an example.
 樹脂組成物21が粘着剤組成物の場合、予め硬化させておき、セラミックスシート2を貼付する。これにより、図5に示すように、セラミックスシート2の一面にPETフィルム20に支持された樹脂コーティング層3aを形成することができる。 When the resin composition 21 is a pressure-sensitive adhesive composition, it is cured in advance and the ceramic sheet 2 is pasted. Thereby, as shown in FIG. 5, the resin coating layer 3 a supported by the PET film 20 can be formed on one surface of the ceramic sheet 2.
 樹脂組成物21が未硬化の熱伝導性樹脂組成物の場合、この未硬化の樹脂組成物21の上にセラミックスシート2の一面を配置し、セラミックスシート2の一面に全面にわたって未硬化の熱伝導性樹脂組成物21がいきわたるようにする。次いで、図5に示すように、セラミックスシート2の一面にPETフィルム20に支持された熱伝導性樹脂組成物21が積層された積層体を加熱して、熱伝導性樹脂組成物21を硬化して、樹脂コーティング層3aを得る。加熱条件は、熱伝導性樹脂組成物21の組成や塗布厚に応じて適宜設定することができ、一例としては100℃30分とする。 When the resin composition 21 is an uncured thermally conductive resin composition, one surface of the ceramic sheet 2 is disposed on the uncured resin composition 21, and uncured heat conduction is performed on the entire surface of the ceramic sheet 2. The conductive resin composition 21 is spread. Next, as shown in FIG. 5, the heat conductive resin composition 21 is cured by heating the laminate in which the heat conductive resin composition 21 supported by the PET film 20 is laminated on one surface of the ceramic sheet 2. Thus, the resin coating layer 3a is obtained. The heating conditions can be appropriately set according to the composition of the thermally conductive resin composition 21 and the coating thickness, and as an example, the heating condition is 100 ° C. for 30 minutes.
 次いで、図6に示すように、PETフィルム20に支持された樹脂組成物21に、一面に樹脂コーティング層3aが形成されたセラミックスシート2の他面を配置し、セラミックスシート2の他面に全面にわたって樹脂組成物21がいきわたるようにする。 Next, as shown in FIG. 6, the other surface of the ceramic sheet 2 having the resin coating layer 3 a formed on one surface is disposed on the resin composition 21 supported by the PET film 20, and the entire surface is disposed on the other surface of the ceramic sheet 2. The resin composition 21 is spread throughout.
 樹脂組成物21が粘着剤組成物の場合、予め硬化させておき、セラミックスシート2を貼付する。これにより、図7に示すように、セラミックスシート2の他面にPETフィルム20に支持された樹脂コーティング層3bを形成することができる。 When the resin composition 21 is a pressure-sensitive adhesive composition, it is cured in advance and the ceramic sheet 2 is pasted. Thereby, as shown in FIG. 7, the resin coating layer 3 b supported by the PET film 20 can be formed on the other surface of the ceramic sheet 2.
 樹脂組成物21が未硬化の熱伝導性樹脂組成物の場合、セラミックスシート2の他面にPETフィルム20に支持された熱伝導性樹脂組成物21が積層された積層体を加熱して、熱伝導性樹脂組成物21を硬化する。これにより、図7に示すように、セラミックスシート2の他面にPETフィルム20に支持された樹脂コーティング層3bを得る。加熱条件は、熱伝導性樹脂組成物21の組成や塗布厚に応じて適宜設定することができ、一例としては100℃30分とする。 When the resin composition 21 is an uncured heat conductive resin composition, the laminate having the heat conductive resin composition 21 supported by the PET film 20 on the other surface of the ceramic sheet 2 is heated to heat The conductive resin composition 21 is cured. Thereby, as shown in FIG. 7, the resin coating layer 3b supported by the PET film 20 on the other surface of the ceramic sheet 2 is obtained. The heating conditions can be appropriately set according to the composition of the thermally conductive resin composition 21 and the coating thickness, and as an example, the heating condition is 100 ° C. for 30 minutes.
 これにより、樹脂コーティング層3a,3bの各表面がPETフィルム20に被覆された熱伝導体1を得る。使用時においては、樹脂コーティング層3a,3bの各表面から使用方法に応じて適宜PETフィルム20を剥離する。樹脂コーティング層3a,3bが片面粘着テープの場合は、そのまま使用する。 Thereby, the heat conductor 1 in which the surfaces of the resin coating layers 3a and 3b are coated with the PET film 20 is obtained. At the time of use, the PET film 20 is appropriately peeled from the respective surfaces of the resin coating layers 3a and 3b according to the method of use. When the resin coating layers 3a and 3b are single-sided adhesive tapes, they are used as they are.
 このような熱伝導体1は、樹脂コーティング層3a,3bに繊維状フィラーを配合した場合、この繊維状フィラーがランダムに配向していることにより、繊維状フィラー同士の交絡が増えるため、繊維状フィラーが一定方向に配向している場合よりも、熱伝導率が大きくなる。また、繊維状フィラーがランダムに配向していることにより、繊維状フィラー同士の交絡に加え、熱伝導性フィラー(例えば、無機物フィラー)との接点も増えるため、繊維状フィラーが、一定方向に配向している場合よりも、更に熱伝導率が大きくなる。 In such a heat conductor 1, when fibrous fillers are blended in the resin coating layers 3a and 3b, since the fibrous fillers are randomly oriented, the entanglement between the fibrous fillers increases, so that the fibrous conductors The thermal conductivity is greater than when the filler is oriented in a certain direction. Moreover, since the fibrous fillers are randomly oriented, in addition to the entanglement between the fibrous fillers, the number of contacts with the heat conductive filler (for example, inorganic filler) also increases, so the fibrous filler is oriented in a certain direction. The thermal conductivity is further increased as compared with the case where this is done.
 なお、熱伝導体1は、プレス処理、放置処理などにより、熱伝導性樹脂層により形成された樹脂コーティング層3a,3bの表面を樹脂コーティング層3a,3bから滲み出した滲出成分により覆うようにしてもよい。「滲出成分」とは、熱伝導性樹脂組成物に含まれるが、硬化に寄与しなかった成分であって、非硬化性成分、及びバインダ樹脂のうちの反応に寄与しない成分などをいう。 The heat conductor 1 is made to cover the surface of the resin coating layers 3a and 3b formed of the heat conductive resin layer with exuding components that have exuded from the resin coating layers 3a and 3b by pressing, leaving, etc. May be. The “exuding component” refers to a component that is contained in the thermally conductive resin composition but does not contribute to curing, and that does not contribute to the reaction among the non-curable component and the binder resin.
 樹脂コーティング層3a,3bの表面を滲出成分により覆うことにより、熱伝導体1は、電子部品12や機器外筐体30の表面に対する追従性、密着性が向上し、熱抵抗を低減させることができる。また、樹脂コーティング層3a,3bに繊維状フィラーを配合した場合において、滲出成分による被覆が樹脂コーティング層3a,3bの表面の繊維状フィラーの形状を反映する程度の厚みである場合には、熱抵抗の上昇を回避できる。 By covering the surfaces of the resin coating layers 3a and 3b with exuded components, the heat conductor 1 can improve the followability and adhesion to the surfaces of the electronic component 12 and the external housing 30 and reduce the thermal resistance. it can. Further, when a fibrous filler is blended in the resin coating layers 3a and 3b, if the coating by the exudation component has a thickness that reflects the shape of the fibrous filler on the surface of the resin coating layers 3a and 3b, An increase in resistance can be avoided.
 プレス処理は、例えば、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用して行うことができる。また、プレス処理は、ヒータを内蔵したプレスヘッドを用いて、加熱しながら行ってもよい。また、プレス処理は、ピンチロールを使用して行ってもよい。 The press treatment can be performed by using, for example, a pair of press devices including a flat plate and a press head having a flat surface. Moreover, you may perform a press process, heating using the press head which incorporated the heater. Moreover, you may perform a press process using a pinch roll.
 また、放置処理の放置の時間としては、特に制限はなく、目的に応じて適宜選択することができる。 Further, the leaving time of the leaving treatment is not particularly limited and can be appropriately selected according to the purpose.
 [セラミックスシートの分割]
 また、図8に示すように、熱伝導体1は、セラミックスシート2が複数に分割され、屈曲可能に形成してもよい。熱伝導体1は、セラミックスシート2が複数に分割された場合にも、セラミックスシート2の少なくとも一方の面が樹脂コーティング層3a,3bによって被覆されていることから、形状を維持できるとともに、熱伝導率の低下を抑制することができる。
[Division of ceramic sheets]
Moreover, as shown in FIG. 8, the heat conductor 1 may be formed so that the ceramic sheet 2 is divided into a plurality of pieces and bendable. Even when the ceramic sheet 2 is divided into a plurality of parts, the heat conductor 1 can be maintained in shape and at least one surface of the ceramic sheet 2 is covered with the resin coating layers 3a and 3b. A decrease in rate can be suppressed.
 また、熱伝導体1は、屈曲可能とされることにより、平坦ではない面に配置された場合にも配置面の形状に追従することができ、配置面との密着性を維持することができ、電子部品12の発する熱を効率よく機器外筐体30に伝達し、放熱することができる。 Further, since the heat conductor 1 can be bent, the heat conductor 1 can follow the shape of the arrangement surface even when arranged on a non-flat surface, and can maintain the adhesion to the arrangement surface. The heat generated by the electronic component 12 can be efficiently transmitted to the external housing 30 for heat dissipation.
 セラミックスシート2が複数に分割された熱伝導体1は、シート状に形成された熱伝導体1に外力を加え、セラミックスシート2を割ることにより形成することができる。 The heat conductor 1 in which the ceramic sheet 2 is divided into a plurality of parts can be formed by applying an external force to the heat conductor 1 formed in a sheet shape and breaking the ceramic sheet 2.
 また、セラミックスシート2が複数に分割された熱伝導体1は、複数のセラミックスシート2を隣接配置し、これら複数のセラミックスシート2の一面上に一括して樹脂コーティング層3aを連続して形成し、次いで、これら複数のセラミックスシート2の他面上に一括して樹脂コーティング層3bを連続して形成することにより製造してもよい。また、セラミックスシート2が複数に分割された熱伝導体1は、セラミックスシート2のいずれか一方の面に樹脂コーティング層3を形成し、セラミックスシート2を割った後に他方の面に樹脂コーティング層3を設けても良い。 In addition, the heat conductor 1 in which the ceramic sheet 2 is divided into a plurality is provided with a plurality of ceramic sheets 2 arranged adjacent to each other, and a resin coating layer 3 a is continuously formed on one surface of the plurality of ceramic sheets 2. Then, the resin coating layer 3b may be continuously formed on the other surface of the plurality of ceramic sheets 2 continuously. Further, in the heat conductor 1 in which the ceramic sheet 2 is divided into a plurality, the resin coating layer 3 is formed on one surface of the ceramic sheet 2, and after the ceramic sheet 2 is split, the resin coating layer 3 is formed on the other surface. May be provided.
実施形態例Example embodiment
 以下、熱伝導体1の実施形態例について説明する。なお、本技術は、以下に説明する実施形態に限定されるものではない。 Hereinafter, embodiments of the heat conductor 1 will be described. Note that the present technology is not limited to the embodiments described below.
 [実施形態1]
 剥離処理されたPETフィルム上に樹脂コーティング層を形成する熱伝導性樹脂組成物を塗布(塗布厚:5μm)し、硬化前の熱伝導性樹脂組成物膜の上に50μm厚の窒化アルミセラミックスシートを置いて基板全面に熱伝導性樹脂組成物がいきわたるようにした後、オーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの一面に樹脂コーティング層を形成した。次に、剥離処理されたPETフィルム上に樹脂コーティング層を形成する熱伝導性樹脂組成物を塗布(塗布厚:5μm)し、得られた樹脂コーティング層付窒化アルミセラミックスシートの他面を置いて基板全面に熱伝導性樹脂組成物がいきわたるようにした後にオーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの他面に樹脂コーティング層を形成し、熱伝導体を得た。
[Embodiment 1]
A heat conductive resin composition for forming a resin coating layer is applied on the peeled PET film (application thickness: 5 μm), and a 50 μm thick aluminum nitride ceramics sheet is formed on the heat conductive resin composition film before curing. The heat conductive resin composition spread over the entire surface of the substrate, and then cured in an oven at 100 ° C. for 30 minutes to form a resin coating layer on one surface of the aluminum nitride ceramic sheet. Next, a thermally conductive resin composition for forming a resin coating layer is applied on the peeled PET film (application thickness: 5 μm), and the other surface of the obtained aluminum nitride ceramic sheet with a resin coating layer is placed. After allowing the heat conductive resin composition to spread over the entire surface of the substrate, it was cured in an oven at 100 ° C. for 30 minutes, and a resin coating layer was formed on the other surface of the aluminum nitride ceramic sheet to obtain a heat conductor.
 [実施形態2]
 実施形態1で得られた熱伝導体の窒化アルミセラミックスシートを外力を加えて割り、屈曲可能な熱伝導体を得た。
[Embodiment 2]
The aluminum nitride ceramic sheet of the heat conductor obtained in Embodiment 1 was split by applying an external force to obtain a bendable heat conductor.
 [実施形態3]
 剥離処理されたPETフィルム上に樹脂コーティング層を形成する熱伝導性樹脂組成物を塗布(塗布厚:5μm)し、硬化前の熱伝導性樹脂組成物膜の上に50μm厚の短冊状の窒化アルミセラミックスシートを置いて基板全面にシリコーンがいきわたるようにした後、オーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの一面に樹脂コーティング層を形成した。次に、剥離処理されたPETフィルム上に樹脂コーティング層を形成する熱伝導性樹脂組成物を塗布(塗布厚:5μm)し、得られた樹脂コーティング層付窒化アルミセラミックスシートの他面を置いて短冊状基板全面に熱伝導性樹脂組成物がいきわたるようにした後にオーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの他面に樹脂コーティング層を形成し、短冊状の熱伝導体を得た。実施形態3に係る熱伝導体は、短冊状に形成されているため、窒化アルミセラミックスシートの外力に対する耐性を向上させることができる。
[Embodiment 3]
A heat conductive resin composition for forming a resin coating layer is applied on the peeled PET film (coating thickness: 5 μm), and a strip-shaped nitridation with a thickness of 50 μm is formed on the heat conductive resin composition film before curing. After placing the aluminum ceramic sheet so that the silicone spreads over the entire surface of the substrate, it was cured in an oven at 100 ° C. for 30 minutes to form a resin coating layer on one surface of the aluminum nitride ceramic sheet. Next, a thermally conductive resin composition for forming a resin coating layer is applied on the peeled PET film (application thickness: 5 μm), and the other surface of the obtained aluminum nitride ceramic sheet with a resin coating layer is placed. After the heat conductive resin composition is spread over the entire surface of the strip-shaped substrate, it is cured in an oven at 100 ° C. for 30 minutes, and a resin coating layer is formed on the other surface of the aluminum nitride ceramic sheet to form a strip-shaped heat conductor. Got. Since the heat conductor according to the third embodiment is formed in a strip shape, it can improve the resistance of the aluminum nitride ceramic sheet to the external force.
 [実施形態4]
 剥離処理されたPETフィルム上に樹脂コーティング層を形成する水酸化アルミを混合した熱伝導性樹脂組成物を塗布(塗布厚:10μm)し、硬化前の熱伝導性樹脂組成物膜の上に50μm厚の窒化アルミセラミックスシートを置いて基板全面に熱伝導性樹脂組成物がいきわたるようにした後、オーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの一面に樹脂コーティング層を形成した。次に、剥離処理されたPETフィルム上に樹脂コーティング層を形成する水酸化アルミを混合した熱伝導性樹脂組成物を塗布(塗布厚:10μm)し、得られた樹脂コーティング層付窒化アルミセラミックスシートの他面を置いて基板全面に熱伝導性樹脂組成物がいきわたるようにした後にオーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの他面に樹脂コーティング層を形成し、熱伝導体を得た。
[Embodiment 4]
A heat conductive resin composition mixed with aluminum hydroxide to form a resin coating layer is applied on the peeled PET film (coating thickness: 10 μm), and 50 μm on the heat conductive resin composition film before curing. After placing a thick aluminum nitride ceramic sheet so that the thermally conductive resin composition spread over the entire surface of the substrate, it was cured in an oven at 100 ° C. for 30 minutes to form a resin coating layer on one surface of the aluminum nitride ceramic sheet. . Next, a heat conductive resin composition in which aluminum hydroxide is mixed to form a resin coating layer on the peeled PET film is applied (application thickness: 10 μm), and the resulting aluminum nitride ceramic sheet with a resin coating layer is obtained. After placing the other side of the substrate so that the thermally conductive resin composition spreads over the entire surface of the substrate, it was cured in an oven at 100 ° C. for 30 minutes, and a resin coating layer was formed on the other side of the aluminum nitride ceramic sheet to conduct heat conduction. Got the body.
 [実施形態5]
 実施形態4で得られた熱伝導体の窒化アルミセラミックスシートを割り、屈曲可能な熱伝導体を得た。
[Embodiment 5]
The aluminum nitride ceramic sheet of the heat conductor obtained in Embodiment 4 was split to obtain a heat conductor that can be bent.
 [実施形態6]
 剥離処理されたPETフィルム上に樹脂コーティング層を形成する水酸化アルミを混合した熱伝導性樹脂組成物を塗布(塗布厚:10μm)し、硬化前の熱伝導性樹脂組成物膜の上に50μm厚の短冊状の窒化アルミセラミックスシートを置いて基板全面に熱伝導性樹脂組成物がいきわたるようにした後、オーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの一面に樹脂コーティング層を形成した。次に、剥離処理されたPETフィルム上に樹脂コーティング層を形成する水酸化アルミを混合した熱伝導性樹脂組成物を塗布(塗布厚:10μm)し、得られた樹脂コーティング層付窒化アルミセラミックスシートの他面を置いて短冊状基板全面に熱伝導性樹脂組成物がいきわたるようにした後にオーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの他面に樹脂コーティング層を形成し、短冊状の熱伝導体を得た。実施形態6に係る熱伝導体は、短冊状に形成されているため、窒化アルミセラミックスシートの外力に対する耐性を向上させることができる。
[Embodiment 6]
A heat conductive resin composition mixed with aluminum hydroxide to form a resin coating layer is applied on the peeled PET film (coating thickness: 10 μm), and 50 μm on the heat conductive resin composition film before curing. After placing a thick strip-shaped aluminum nitride ceramic sheet so that the thermally conductive resin composition spreads over the entire surface of the substrate, it is cured in an oven at 100 ° C. for 30 minutes, and a resin coating layer is formed on one surface of the aluminum nitride ceramic sheet. Formed. Next, a heat conductive resin composition in which aluminum hydroxide is mixed to form a resin coating layer on the peeled PET film is applied (application thickness: 10 μm), and the resulting aluminum nitride ceramic sheet with a resin coating layer is obtained. After placing the other side to spread the heat conductive resin composition over the entire surface of the strip substrate, it was cured in an oven at 100 ° C. for 30 minutes to form a resin coating layer on the other side of the aluminum nitride ceramic sheet, A strip-shaped heat conductor was obtained. Since the heat conductor according to the sixth embodiment is formed in a strip shape, the resistance to external force of the aluminum nitride ceramic sheet can be improved.
 [実施形態7]
 剥離処理されたPETフィルム上に樹脂コーティング層を形成する熱伝導性樹脂組成物を塗布(塗布厚:5μm)し、硬化前の熱伝導性樹脂組成物膜の上に50μm厚の窒化アルミセラミックスシートを置いて基板全面に熱伝導性樹脂組成物がいきわたるようにした後、オーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの一面に樹脂コーティング層を形成した。次に、剥離処理されたPETフィルム上に樹脂コーティング層を形成する水酸化アルミを混合した熱伝導性樹脂組成物を塗布(塗布厚:5μm)し、得られた樹脂コーティング層付窒化アルミセラミックスシートの他面を置いて基板全面に熱伝導性樹脂組成物がいきわたるようにした後にオーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの他面に樹脂コーティング層を形成し、熱伝導体を得た。
[Embodiment 7]
A heat conductive resin composition for forming a resin coating layer is applied on the peeled PET film (application thickness: 5 μm), and a 50 μm thick aluminum nitride ceramics sheet is formed on the heat conductive resin composition film before curing. The heat conductive resin composition spread over the entire surface of the substrate, and then cured in an oven at 100 ° C. for 30 minutes to form a resin coating layer on one surface of the aluminum nitride ceramic sheet. Next, a heat conductive resin composition in which aluminum hydroxide is mixed to form a resin coating layer on a PET film that has been subjected to a release treatment is applied (application thickness: 5 μm), and the resulting aluminum nitride ceramic sheet with a resin coating layer is obtained. After placing the other side of the substrate so that the thermally conductive resin composition spreads over the entire surface of the substrate, it was cured in an oven at 100 ° C. for 30 minutes, and a resin coating layer was formed on the other side of the aluminum nitride ceramic sheet to conduct heat conduction. Got the body.
 [実施形態8]
 実施形態7で得られた熱伝導体の窒化アルミセラミックスシートを外力を加えて割り、屈曲可能な熱伝導体を得た。
[Embodiment 8]
The aluminum nitride ceramic sheet of the heat conductor obtained in Embodiment 7 was split by applying an external force to obtain a bendable heat conductor.
 [実施形態9]
 剥離処理されたPETフィルム上に樹脂コーティング層を形成する熱伝導性樹脂組成物を塗布(塗布厚:10μm)し、硬化前の熱伝導性樹脂組成物膜の上に50μm厚の短冊状の窒化アルミセラミックスシートを置いて基板全面に熱伝導性樹脂組成物がいきわたるようにした後、オーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの一面に樹脂コーティング層を形成した。次に、剥離処理されたPETフィルム上に樹脂コーティング層を形成する水酸化アルミを混合した熱伝導性樹脂組成物を塗布(塗布厚:5μm)し、得られた樹脂コーティング層付窒化アルミセラミックスシートの他面を置いて短冊状基板全面に熱伝導性樹脂組成物がいきわたるようにした後にオーブンで100℃30分の条件で硬化し、窒化アルミセラミックスシートの他面に樹脂コーティング層を形成し、短冊状の熱伝導体を得た。実施形態9に係る熱伝導体は、短冊状に形成されているため、窒化アルミセラミックスシートの外力に対する耐性を向上させることができる。
[Embodiment 9]
A heat conductive resin composition for forming a resin coating layer is applied on the peeled PET film (application thickness: 10 μm), and a strip-shaped nitridation with a thickness of 50 μm is formed on the heat conductive resin composition film before curing. After placing the aluminum ceramic sheet so that the thermally conductive resin composition spread over the entire surface of the substrate, it was cured in an oven at 100 ° C. for 30 minutes to form a resin coating layer on one surface of the aluminum nitride ceramic sheet. Next, a heat conductive resin composition in which aluminum hydroxide is mixed to form a resin coating layer on a PET film that has been subjected to a release treatment is applied (application thickness: 5 μm), and the resulting aluminum nitride ceramic sheet with a resin coating layer is obtained. After placing the other side to spread the heat conductive resin composition over the entire surface of the strip substrate, it was cured in an oven at 100 ° C. for 30 minutes to form a resin coating layer on the other side of the aluminum nitride ceramic sheet, A strip-shaped heat conductor was obtained. Since the heat conductor according to the ninth embodiment is formed in a strip shape, it can improve the resistance of the aluminum nitride ceramic sheet to the external force.
 [実施形態10]
 50μm厚の窒化アルミセラミックスシートの一面に両面粘着テープ(基材:12μmPETフィルム、粘着剤層:10μm)をハンドローラーにて加圧し貼付け、窒化アルミセラミックスシートにアクリル系粘着剤層の樹脂コーティング層を形成した。次に、窒化アルミセラミックスシートの他面に端部を覆うように両面粘着テープ(基材:60μmPETフィルム、粘着剤層:10μm)をハンドローラーにて加圧し貼付、はみ出し部位をカットすることにより熱伝導体を得た。
[Embodiment 10]
Double-sided adhesive tape (base material: 12 μm PET film, adhesive layer: 10 μm) is pressed with a hand roller on one side of a 50 μm thick aluminum nitride ceramic sheet, and an acrylic adhesive layer resin coating layer is applied to the aluminum nitride ceramic sheet. Formed. Next, heat is applied by pressing a double-sided adhesive tape (base material: 60 μm PET film, adhesive layer: 10 μm) with a hand roller so as to cover the edge on the other surface of the aluminum nitride ceramic sheet, and cutting the protruding part. A conductor was obtained.
 上記実施形態1~10に係る熱伝導体は、いずれも窒化アルミニウム基板の両面に樹脂コーティング層が形成されているため、窒化アルミニウム基板に加わる応力が緩和されて割れの発生を抑制するとともに、窒化アルミニウム基板に割れを生じさせ、あるいは割れが発生した場合にもセラミックスシート2の破片や粉塵が周囲に飛び散ることが防止でき、電子機器に実装された場合にも、セラミックスシート2の破片や粉塵による予期しない障害を防止することができる。 In each of the thermal conductors according to the first to tenth embodiments, since the resin coating layer is formed on both surfaces of the aluminum nitride substrate, the stress applied to the aluminum nitride substrate is relaxed, and the occurrence of cracks is suppressed. Even when the aluminum substrate is cracked or cracked, it is possible to prevent the fragments and dust of the ceramic sheet 2 from scattering to the surroundings. Unexpected failures can be prevented.
 また、上記実施形態1~10に係る熱伝導体は、いずれも窒化アルミニウム基板の両面に良好な熱伝導性を有する樹脂コーティング層が形成されているため、窒化アルミセラミックスシートを割った際にも形状を維持できるとともに、熱伝導率の低下を抑制することができる。 In addition, since the thermal conductors according to Embodiments 1 to 10 above all have a resin coating layer having good thermal conductivity on both surfaces of the aluminum nitride substrate, even when the aluminum nitride ceramic sheet is cracked. While maintaining a shape, the fall of thermal conductivity can be suppressed.
 さらに、上記実施形態1~10に係る熱伝導体は、いずれも窒化アルミセラミックスシートを割ることができ、あるいは予め窒化アルミセラミックスシートが割れているため、屈曲可能であり、設置される部位が平坦ではなくとも密着性を維持することができる。 Further, any of the thermal conductors according to Embodiments 1 to 10 above can break the aluminum nitride ceramic sheet, or can be bent because the aluminum nitride ceramic sheet is cracked in advance, and the installation site is flat. Even if it is not, adhesiveness can be maintained.
 [電子機器の変形例]
 また、電子機器10は、図1Aに示す態様の他、図9に示すように、回路基板11の両面に電子部品12を実装し、機器外筐体30と一方の電子部品12の間に熱伝導シート5とともに熱電導体1を挟持させてもよい。この場合、回路基板11の両面に実装される電子部品12は、互いに対向する位置に実装してもよく、図9に示すように、互いに対向しない位置に実装してもよい。また、電子機器10は、図9に示すように、回路基板11の一方の面側において、熱伝導体1を電子部品12と電子部品12の熱を放熱する熱伝導部材である機器外筐体30との間に介在させ、回路基板11の他方の面側において、電子部品12が熱伝導シート5を介してヒートシンク31と接続してもよい。
[Variations of electronic devices]
In addition to the embodiment shown in FIG. 1A, the electronic device 10 has electronic components 12 mounted on both surfaces of the circuit board 11 as shown in FIG. 9, and heat is applied between the device outer casing 30 and one electronic component 12. The thermoconductor 1 may be sandwiched together with the conductive sheet 5. In this case, the electronic components 12 mounted on both surfaces of the circuit board 11 may be mounted at positions facing each other, or may be mounted at positions not facing each other as shown in FIG. Further, as shown in FIG. 9, the electronic device 10 is a housing outside the device which is a heat conducting member that dissipates heat from the electronic component 12 and the electronic component 12 on the one surface side of the circuit board 11. The electronic component 12 may be connected to the heat sink 31 via the heat conductive sheet 5 on the other surface side of the circuit board 11.
 また、電子機器10は、図1Bに示すように、熱伝導体1と機器外筐体30との間に空間Sが設けられていてもよい。図1Bに示す構成においても、電子機器10は、電子部品12の発した熱を、適宜熱伝導シート5を介して熱伝導体1に伝熱、拡散させることができる。また、熱伝導体1は、電子部品12から伝熱された熱を空間Sに放出することができる。 Further, as shown in FIG. 1B, the electronic device 10 may be provided with a space S between the heat conductor 1 and the device outer casing 30. Also in the configuration illustrated in FIG. 1B, the electronic device 10 can transfer and diffuse the heat generated by the electronic component 12 to the heat conductor 1 through the heat conductive sheet 5 as appropriate. Further, the heat conductor 1 can release heat transferred from the electronic component 12 to the space S.
 また、電子機器10は、図1Cに示すように、電子部品12と熱伝導体1との間に空間Sが設けられていてもよい。図1Cに示す構成においても、電子機器10は、電子部品12が発した熱を空間Sを介して熱伝導体1に伝熱、拡散させることができる。また、電子部品12と熱伝導体1との間に空間Sを設けることにより、電磁波を阻害する要因となりにくくなる。 Moreover, as shown in FIG. 1C, the electronic device 10 may be provided with a space S between the electronic component 12 and the heat conductor 1. Also in the configuration illustrated in FIG. 1C, the electronic device 10 can transfer and diffuse the heat generated by the electronic component 12 to the heat conductor 1 through the space S. Moreover, by providing the space S between the electronic component 12 and the heat conductor 1, it becomes difficult to become a factor that inhibits electromagnetic waves.
 また、電子機器10は、図1Dに示すように、電子部品12が必ず基板12に担持されていなくともよい。バッテリーパックなどの電子部品12は、基板12に担持されることなく電子機器10内に装着され、熱伝導体1と接触されるとともに、熱伝導体1を介して機器外筐体30と熱的に接続される。なお、図1Dに示す構成においても、電子部品12と熱伝導体1との間に適宜熱伝導シート5を介在させてもよい。 In addition, as shown in FIG. 1D, the electronic device 10 does not necessarily have the electronic component 12 supported on the substrate 12. An electronic component 12 such as a battery pack is mounted in the electronic device 10 without being carried on the substrate 12, is in contact with the heat conductor 1, and is thermally connected to the external housing 30 via the heat conductor 1. Connected to. In the configuration shown in FIG. 1D, the heat conductive sheet 5 may be appropriately interposed between the electronic component 12 and the heat conductor 1.
1 熱伝導体、2 セラミックスシート、3a,3b 樹脂コーティング層、5 熱伝導部材、10 電子機器、11 回路基板、12 電子部品、20 PETフィルム、21 熱伝導性樹脂組成物、30 機器外筐体、31 ヒートシンク DESCRIPTION OF SYMBOLS 1 Thermal conductor, 2 Ceramic sheet, 3a, 3b Resin coating layer, 5 Thermal conductive member, 10 Electronic device, 11 Circuit board, 12 Electronic component, 20 PET film, 21 Thermal conductive resin composition, 30 External housing 31 heat sink

Claims (19)

  1.  セラミックスシートと、
     上記セラミックスシートの少なくとも一方の面に形成された樹脂コーティング層とを有する熱伝導体。
    Ceramic sheets,
    A heat conductor having a resin coating layer formed on at least one surface of the ceramic sheet.
  2.  上記セラミックスシートの両面に上記樹脂コーティング層が形成されていることを特徴とする請求項1に記載の熱伝導体。 The heat conductor according to claim 1, wherein the resin coating layer is formed on both surfaces of the ceramic sheet.
  3. 上記セラミックスシートの端面を含む両面に上記樹脂コーティング層が形成されていることを特徴とする請求項1又は2に記載の熱伝導体。 The thermal conductor according to claim 1 or 2, wherein the resin coating layer is formed on both surfaces including an end surface of the ceramic sheet.
  4.  上記セラミックスシートは複数に分割され、屈曲可能とされている請求項1又は2に記載の熱伝導体。 The heat conductor according to claim 1 or 2, wherein the ceramic sheet is divided into a plurality of pieces and is bendable.
  5.  上記樹脂コーティング層は、粘着剤層により形成されている請求項1又は2に記載の熱伝導体。 The heat conductor according to claim 1 or 2, wherein the resin coating layer is formed of an adhesive layer.
  6.  上記樹脂コーティング層は、上記粘着剤層が支持体に支持された粘着テープにより形成されている請求項5に記載の熱伝導体。 6. The thermal conductor according to claim 5, wherein the resin coating layer is formed of an adhesive tape in which the adhesive layer is supported by a support.
  7.  上記樹脂コーティング層は、熱伝導性樹脂層により形成されている請求項1又は2に記載の熱伝導体。 The heat conductor according to claim 1 or 2, wherein the resin coating layer is formed of a heat conductive resin layer.
  8.  上記樹脂コーティング層は、非粘着性であることを特徴とする請求項7に記載の熱伝導体。 The heat conductor according to claim 7, wherein the resin coating layer is non-adhesive.
  9.  上記樹脂コーティング層に熱伝導フィラーが含有されている請求項7に記載の熱伝導体。 The heat conductor according to claim 7, wherein the resin coating layer contains a heat conductive filler.
  10.  上記熱伝導フィラーは誘電率が10以下である請求項9に記載の熱伝導体。 The heat conductor according to claim 9, wherein the heat conductive filler has a dielectric constant of 10 or less.
  11.  上記樹脂コーティング層は、厚さが3μm以上100μm以下であることを特徴とする請求項1又は2に記載の熱伝導体。 The heat conductor according to claim 1 or 2, wherein the resin coating layer has a thickness of 3 µm to 100 µm.
  12.  上記セラミックスシートは、厚さが40μm以上、500μm以下であることを特徴とする請求項1又は2に記載の熱伝導体。 The thermal conductor according to claim 1 or 2, wherein the ceramic sheet has a thickness of 40 µm or more and 500 µm or less.
  13.  上記セラミックスシートが窒化アルミニウム、アルミナ、窒化ケイ素、窒化ホウ素のいずれかを主成分とすることを特徴とする請求項1又は2に記載の熱伝導体。 The thermal conductor according to claim 1 or 2, wherein the ceramic sheet is mainly composed of any one of aluminum nitride, alumina, silicon nitride, and boron nitride.
  14.  セラミックスシートと、
     上記セラミックスシートの少なくとも一方の面に形成された樹脂コーティング層とを有し、
     上記樹脂コーティング層は、バインダ樹脂である熱伝導体。
    Ceramic sheets,
    A resin coating layer formed on at least one surface of the ceramic sheet,
    The resin coating layer is a heat conductor that is a binder resin.
  15.  上記樹脂コーティング層は、さらに熱伝導性フィラーを含有する、請求項14に記載の熱伝導体。 The heat conductor according to claim 14, wherein the resin coating layer further contains a heat conductive filler.
  16.  電子部品と、上記電子部品と熱的に接続された熱伝導体とを有する電子機器。 An electronic device having an electronic component and a heat conductor thermally connected to the electronic component.
  17.  上記熱伝導体は、
     セラミックスシートと、
     上記セラミックスシートの少なくとも一方の面に形成された樹脂コーティング層とを有することを特徴とする請求項16に記載の電子機器。
    The thermal conductor is
    Ceramic sheets,
    The electronic device according to claim 16, further comprising a resin coating layer formed on at least one surface of the ceramic sheet.
  18.  上記熱伝導体と接して上記電子部品の熱を放熱する熱伝導部材を有する請求項16又は17に記載の電子機器。 The electronic device according to claim 16 or 17, further comprising a heat conductive member that contacts the heat conductor and dissipates heat of the electronic component.
  19.  上記熱伝導部材は、電子機器の機器外筐体であり、
     上記電子部品と接続された熱伝導体と上記機器外筐体との間に空間層を有する請求項18に記載の電子機器。
    The heat conducting member is an outer casing of an electronic device,
    The electronic device according to claim 18, further comprising a space layer between the heat conductor connected to the electronic component and the housing outside the device.
PCT/JP2019/018055 2018-05-02 2019-04-26 Heat conductor and electronic device using same WO2019212051A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018088940 2018-05-02
JP2018-088940 2018-05-02
JP2018118471 2018-06-22
JP2018-118471 2018-06-22
JP2019-085828 2019-04-26
JP2019085828A JP2020004955A (en) 2018-05-02 2019-04-26 Heat conductor, and electronic apparatus using the same

Publications (1)

Publication Number Publication Date
WO2019212051A1 true WO2019212051A1 (en) 2019-11-07

Family

ID=68386325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018055 WO2019212051A1 (en) 2018-05-02 2019-04-26 Heat conductor and electronic device using same

Country Status (1)

Country Link
WO (1) WO2019212051A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106562A1 (en) * 2019-11-29 2021-06-03 東レ株式会社 Thermal conductor and manufacturing method thereof
WO2021106563A1 (en) * 2019-11-29 2021-06-03 東レ株式会社 Sandwich structure and method for manufacturing same
WO2021106561A1 (en) * 2019-11-29 2021-06-03 東レ株式会社 Sandwich structure and method for manufacturing same
WO2021157476A1 (en) * 2020-02-05 2021-08-12 デクセリアルズ株式会社 Heat transfer sheet, method for producing heat transfer sheet, heat dissipation component and method for producing heat dissipation component
WO2021157477A1 (en) * 2020-02-05 2021-08-12 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat-dissipating component, and method for manufacturing heat-dissipating component
WO2021157478A1 (en) * 2020-02-05 2021-08-12 デクセリアルズ株式会社 Heat conduction sheet, production method for heat conduction sheet, heat dissipation component, and production method for heat dissipation component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964253A (en) * 1995-08-21 1997-03-07 Kitagawa Ind Co Ltd Electronic component with heat radiating function
JPH09314747A (en) * 1996-05-02 1997-12-09 Tanaka Ai Composite ceramic film and sheet
JP2007149725A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Heat conductive sheet, and power module employing it
JP2009113370A (en) * 2007-11-07 2009-05-28 Kitagawa Ind Co Ltd Ceramic sheet
WO2014021046A1 (en) * 2012-07-30 2014-02-06 株式会社村田製作所 Electronic apparatus and heat conductive sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964253A (en) * 1995-08-21 1997-03-07 Kitagawa Ind Co Ltd Electronic component with heat radiating function
JPH09314747A (en) * 1996-05-02 1997-12-09 Tanaka Ai Composite ceramic film and sheet
JP2007149725A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Heat conductive sheet, and power module employing it
JP2009113370A (en) * 2007-11-07 2009-05-28 Kitagawa Ind Co Ltd Ceramic sheet
WO2014021046A1 (en) * 2012-07-30 2014-02-06 株式会社村田製作所 Electronic apparatus and heat conductive sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106562A1 (en) * 2019-11-29 2021-06-03 東レ株式会社 Thermal conductor and manufacturing method thereof
WO2021106563A1 (en) * 2019-11-29 2021-06-03 東レ株式会社 Sandwich structure and method for manufacturing same
WO2021106561A1 (en) * 2019-11-29 2021-06-03 東レ株式会社 Sandwich structure and method for manufacturing same
CN114728491A (en) * 2019-11-29 2022-07-08 东丽株式会社 Heat conductor and method for manufacturing same
US20220404106A1 (en) * 2019-11-29 2022-12-22 Toray Industries, Inc. Sandwich structure and method for manufacturing same
EP4067065A4 (en) * 2019-11-29 2024-03-20 Toray Industries Sandwich structure and method for manufacturing same
WO2021157476A1 (en) * 2020-02-05 2021-08-12 デクセリアルズ株式会社 Heat transfer sheet, method for producing heat transfer sheet, heat dissipation component and method for producing heat dissipation component
WO2021157477A1 (en) * 2020-02-05 2021-08-12 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat-dissipating component, and method for manufacturing heat-dissipating component
WO2021157478A1 (en) * 2020-02-05 2021-08-12 デクセリアルズ株式会社 Heat conduction sheet, production method for heat conduction sheet, heat dissipation component, and production method for heat dissipation component

Similar Documents

Publication Publication Date Title
WO2019212051A1 (en) Heat conductor and electronic device using same
TWI670464B (en) Thermally conductive sheet, method for producing the same, heat dissipation member, and semiconductor device
KR101538944B1 (en) Compliant multilayered thermally-conductive interface assemblies and memory modules including the same
KR100935275B1 (en) A thermal dissipation and shielding system for a cell phone
JP2007044994A (en) Graphite composite structure, heat radiation member using the structure, and electronic component using the structure
KR20170118883A (en) Thermal Conductive Sheet and Electronic Device
JP4893415B2 (en) Heat dissipation film
JP2017092345A (en) Heat conduction sheet and method of manufacturing the same, and semiconductor device
HUE035539T2 (en) Thermal solution for electronic devices
JP2007184392A (en) Thermoconductive structural body, and heat dissipating memeber and electronic device using the same
JP7152020B2 (en) Heat dissipation sheet
US11597196B2 (en) Method for producing thermally conductive sheet
KR20160070243A (en) Heat-discharging sheet
WO2020017350A1 (en) Heat-conductive sheet, method for manufacturing same, and method for mounting heat-conductive sheet
JPWO2018235920A1 (en) Resin material, method for producing resin material, and laminate
KR20210084424A (en) Thermally conductive sheet, manufacturing method thereof, and mounting method of thermally conductive sheet
JP2016036019A (en) Coated thermally conductive particle, thermally conductive joining material and junction structure
JP2020004955A (en) Heat conductor, and electronic apparatus using the same
JP2011249681A (en) Thermal conductive sheet and semiconductor device
WO2021090895A1 (en) Heat conductor, electronic device using same, and method for producing heat conductor
JP6307288B2 (en) Thermally conductive member and semiconductor device
TWM540741U (en) Multi-layer composite heat conduction structure
KR20180032582A (en) Thermal diffusion structure and method for forming the same
US20220089919A1 (en) Thermally conductive sheet and method for producing thermally conductive sheet
WO2016068157A1 (en) Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796783

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796783

Country of ref document: EP

Kind code of ref document: A1