WO2019212041A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
WO2019212041A1
WO2019212041A1 PCT/JP2019/017865 JP2019017865W WO2019212041A1 WO 2019212041 A1 WO2019212041 A1 WO 2019212041A1 JP 2019017865 W JP2019017865 W JP 2019017865W WO 2019212041 A1 WO2019212041 A1 WO 2019212041A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
active material
negative electrode
positive electrode
electrode active
Prior art date
Application number
PCT/JP2019/017865
Other languages
French (fr)
Japanese (ja)
Inventor
幸弘 小松原
巧美 三尾
健太郎 飯塚
崇文 藤井
西 幸二
直輝 大参
雄輔 木元
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to JP2020517065A priority Critical patent/JP7396271B2/en
Publication of WO2019212041A1 publication Critical patent/WO2019212041A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a lithium ion secondary battery.
  • Lithium ion secondary batteries are widely used because they exhibit excellent characteristics such as excellent energy density. And since the use of a lithium ion secondary battery increases as the heat resistance increases, various techniques for improving the heat resistance of the lithium ion secondary battery have been proposed. For example, Japanese Patent Application Laid-Open No. 2014-160638 discloses a lithium ion secondary battery having heat resistance of about 60 ° C.
  • the heat resistance of the lithium ion secondary battery described in JP-A-2014-160638 is about 60 ° C., and a lithium ion secondary battery that can withstand higher temperatures is demanded.
  • heat resistance of about 85 ° C. is required. Therefore, a more improved lithium ion secondary battery is required.
  • One feature of the present disclosure is that a positive electrode active material capable of occluding and releasing lithium ions, a positive electrode binder binding the positive electrode active material, a negative electrode active material capable of occluding and releasing lithium ions, and the negative electrode A negative electrode binder that binds the active material; and an electrolyte solution containing an organic solvent and an imide-based lithium salt, wherein the positive electrode binder has a RED value greater than 1 based on a Hansen solubility parameter for the electrolyte solution, Next battery.
  • the lithium ion secondary battery can have a heat resistance of 85 ° C.
  • that the lithium ion secondary battery has heat resistance means that the lithium ion secondary battery has a performance operable in a high temperature environment.
  • FIG. 1 is a schematic exploded perspective view of a lithium ion secondary battery according to an embodiment.
  • 1 is a perspective view of a lithium ion secondary battery according to an embodiment.
  • FIG. 3 is a schematic diagram of a III-III cross section in the lithium ion secondary battery of FIG. 2. It is a figure explaining the example of the external appearance of the positive electrode plate shown in FIG.
  • FIG. 5 is a VV sectional view of the positive electrode plate of FIG. 4. It is a figure explaining the example of the external appearance of the negative electrode plate shown in FIG.
  • FIG. 7 is a VII-VII sectional view of the negative electrode plate of FIG. It is a figure explaining the positional relationship of the positive electrode plate of a positive electrode shown in FIG.
  • Test Example 1 the negative electrode plate of a negative electrode, a separator, and electrolyte solution. It is a figure explaining the upper limit of the amount of pre dope of a negative electrode.
  • Test Example 1 it is a graph showing a change with time of internal resistance (m ⁇ ) at 85 ° C. of a lithium ion secondary battery.
  • Test Example 1 it is a graph showing the change over time of the discharge capacity (mAh) at 85 ° C. of the lithium ion secondary battery.
  • Test Example 2 it is a graph showing the change over time of the internal resistance (m ⁇ ) at 85 ° C. of the lithium ion secondary battery.
  • FIG. 6 is a graph which shows a time-dependent change of the discharge capacity (mAh) in 85 degreeC of a lithium ion secondary battery.
  • FIG. 6 is a graph showing changes over time in internal resistance of lithium ion secondary batteries at 85 ° C. in Test Examples 3 to 5.
  • FIG. 6 is a graph showing changes with time in discharge capacity of a lithium ion secondary battery at 85 ° C. in Test Examples 3 to 5.
  • the lithium ion secondary battery 1 includes a plurality of plate-like positive electrode plates 11 and a plurality of plate-like negative electrode plates 21, which are alternately stacked. Yes.
  • Each positive electrode plate 11 includes an electrode terminal connection portion 12b protruding in one direction.
  • Each negative electrode plate 21 also includes an electrode terminal connection portion 22b protruding in the same direction as the direction in which the electrode terminal connection portion 12b of the positive electrode plate 11 protrudes.
  • the direction in which the electrode terminal connecting portion 12b of the positive electrode plate 11 protrudes is the X-axis direction
  • the stacked direction is the Z-axis direction
  • the direction orthogonal to the X-axis and the Z-axis is the Y-axis.
  • These X axis, Y axis, and Z axis are orthogonal to each other.
  • these axial directions indicate the same direction, and in the following description, descriptions regarding directions may be based on these axial directions. In the following description, illustration and detailed description of the incidental configuration are omitted.
  • the lithium ion secondary battery 1 includes a plurality of positive plates 11, a plurality of negative plates 21, a plurality of separators 30, an electrolytic solution 40, and a laminate member 50.
  • the positive plates 11 and the negative plates 21 are alternately stacked, and the separators 30 are sandwiched between the positive plates 11 and the negative plates 21.
  • the electrolyte solution 40 is wrapped and sealed in two laminate members 50 together with a part of the plurality of positive electrode plates 11, a part of the plurality of negative electrode plates 21, and the plurality of separators 30 laminated in this manner. Yes.
  • the electrode terminal connection portions 12 b of the plurality of positive electrode plates 11 protrude in the same direction and are electrically connected to the positive electrode terminal 14.
  • Conductive members constituting the positive terminal side such as the positive terminal 14 and the plurality of positive plates 11 connected thereto can be collectively referred to as the positive electrode 10.
  • the electrode terminal connecting portions 22b of the plurality of negative electrode plates 21 and the negative electrode terminals 24 are electrically connected, and the negative electrode terminals such as the negative electrode terminals 24 and the plurality of negative electrode plates 21 connected thereto are configured.
  • the conductor members can be collectively referred to as the negative electrode 20.
  • the lithium ion secondary battery 1 has the above-described configuration inside, and the appearance is shown in FIG.
  • FIG. 3 schematically shows a III-III cross section of the lithium ion secondary battery 1 shown in FIG.
  • each member in the lithium ion secondary battery 1 is illustrated with an interval.
  • the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are stacked with almost no gap.
  • the positive electrode plate 11 includes a thin plate-like positive electrode current collector 12 and a positive electrode active material layer 13 coated on the positive electrode current collector 12 (see FIGS. 3 to 5).
  • the positive electrode active material layer 13 is provided on both surfaces of the positive electrode current collector 12, but may be provided on either side of the positive electrode current collector 12. Then, at the time of manufacture, the positive electrode active material layer 13 is coated on the positive electrode current collector 12 so that the lithium ion secondary battery 1 does not contain excessive moisture, and then the coated positive electrode active material layer 13 is sufficiently dried. It is necessary to let
  • the positive electrode current collector 12 is a metal foil having a plurality of holes 12c penetrating in the Z direction (see FIGS. 4 and 5), a rectangular current collector 12a (see FIG. 4), and a current collector 12a.
  • a metal foil having a plurality of holes 12c penetrating in the Z direction (see FIGS. 4 and 5), a rectangular current collector 12a (see FIG. 4), and a current collector 12a.
  • the width in the Y-axis direction of the electrode terminal connecting portion 12b shown in FIGS. 1 and 4 can be changed as appropriate, and may be the same width as the current collecting portion 12a, for example.
  • the current collector 12a has a plurality of holes 12c (see FIGS.
  • the electrode terminal connector 12b has a plurality of holes similar to the holes 12c of the current collector 12a. It may not be formed and may be formed.
  • the current collector 12a has a plurality of holes 12c, cations and anions contained in the electrolytic solution 40 can pass through the current collector 12a.
  • the current collector 12a may not have a plurality of holes 12c, and the electrode terminal connecting portion 12b may not have a plurality of holes similar to the holes 12c.
  • a metal foil made of aluminum, stainless steel, copper, or nickel can be used for example.
  • the positive electrode active material layer 13 includes a positive electrode active material capable of occluding and releasing lithium ions, a positive electrode binder that binds the positive electrode active material, and the positive electrode active material and the current collector 12a of the positive electrode current collector 12. including.
  • the positive electrode active material layer 13 includes the positive electrode active material, and is configured to be able to occlude and release lithium ions.
  • the positive electrode active material layer 13 may further contain other components such as a conductive additive for increasing the electrical conductivity of the positive electrode active material layer 13 and a thickener for facilitating the creation of the positive electrode plate 11. .
  • the conductive auxiliary agent for example, ketjen black, acetylene black, graphite fine particles, and graphite fine fibers can be used.
  • the thickener for example, carboxymethyl cellulose [CMC] can be used.
  • the positive electrode active material a positive electrode active material capable of occluding and releasing lithium ions, which is used in a conventional lithium ion secondary battery, can be used.
  • the positive electrode active material include manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ), and lithium nickel composite oxide (for example, Li x NiO 2 ), lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel cobalt composite oxide (eg, LiNi 1-y Co y O 2 ), lithium nickel cobalt manganese composite oxide (NMC, ternary system, LiNi x Co y Mn 1-y -z O 2), spinel type lithium-manganese-nickel composite oxide (Li x Mn 2-y Ni y O 4), lithium polyanion compound (LiFePO 4, LiCoPO 4, LiVOPO 4, LiVPO 4 F, LiMnPO
  • conductive polymer materials such as polyaniline and polypyrrole, disulfide-based polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials are also included. These may be used alone or in combination of two or more.
  • the positive electrode active material is preferably a material whose upper limit of the operating potential based on Li is less than a predetermined value.
  • the operating potential on the basis of Li is an operating potential with respect to the reference potential (Li / Li + ).
  • the predetermined value of the operating potential on the basis of Li include 5.0V, 4.0V, 3.8V, and 3.6V.
  • the predetermined value is 5.0 V
  • spinel type lithium manganese nickel composite oxide Li x Mn 2-y Ni y O 4
  • this predetermined value is 4.0 V
  • lithium manganese composite oxide for example, Li x Mn 2 O 4 or Li x MnO 2
  • the predetermined value is 3.8 V
  • lithium cobalt composite oxide Li x CoO 2
  • lithium nickel cobalt manganese examples thereof include composite oxides (NMC, ternary system, LiNi x Co y Mn 1-yz O 2 ).
  • this predetermined value is 3.6 V
  • LiFePO 4 can be mentioned.
  • the positive electrode current collector 12 when the positive electrode current collector 12 is formed of aluminum, it is preferable to select a positive electrode active material in which the upper limit of the operating potential on the basis of Li is less than a predetermined value. If the operating potential of the positive electrode active material based on Li is 4.2 V or higher, the positive electrode current collector 12 formed of aluminum is relatively easily corroded in the charge / discharge process. In this case, for example, LiFePO 4 having an upper limit of the operating potential based on Li of less than 3.6 V can be selected as the positive electrode active material.
  • a binder having a RED value (described later) based on the Hansen solubility parameter with respect to the electrolytic solution 40 is larger than 1.
  • a binder of positive and negative electrodes of a conventional lithium ion secondary battery for example, polyvinylidene fluoride [PVdF], polytetrafluoroethylene [PTFE], polyvinylpyrrolidone [PVP], polyvinyl chloride [PVC], polyethylene [PE ], Polypropylene [PP], ethylene-propylene copolymer, styrene butadiene rubber [SBR], acrylic resin, and polyacrylic acid.
  • the positive electrode binder since the RED value based on the Hansen solubility parameter (HSP) with respect to the electrolytic solution 40 is larger than 1, the positive electrode binder exhibits poor solubility in the electrolytic solution 40.
  • the Hansen solubility parameter was published by Charles M Hansen and is known as a solubility index indicating how much a certain substance is dissolved in a certain substance. For example, water and oil generally do not melt together because the “properties” of water and oil are different.
  • the “property” of the substance relating to the solubility in the Hansen solubility parameter, three items of the dispersion term D, the polar term P, and the hydrogen bond term H are expressed numerically for each substance.
  • the dispersion term D is a value representing the magnitude of van der Waals force
  • the polar term P is a value representing the magnitude of the dipole moment
  • the hydrogen bond term H is a value representing the magnitude of the hydrogen bond.
  • Hansen solubility parameters are plotted in a three-dimensional orthogonal coordinate system (Hansen space, HSP space) in order to study solubility.
  • the Hansen solubility parameter for each of the solution A and the solid B can be plotted on two coordinates (coordinate A and coordinate B) corresponding to the solution A and the solid B, respectively, in the Hansen space.
  • Ra HSP distance, Ra
  • the solutions A and the solids B have the above-mentioned “properties”, so the solid B is more likely to dissolve in the solution A. it can.
  • the electrolytic solution 40 corresponds to the solution A here, and the positive electrode binder corresponds to the solid B. Since the positive electrode binder has a RED value based on the Hansen solubility parameter with respect to the electrolytic solution 40 larger than 1, the positive electrode binder is hardly soluble in the electrolytic solution 40. Conversely, if the RED value based on the Hansen solubility parameter with respect to the electrolytic solution 40 is a positive electrode binder that is hardly soluble in the electrolytic solution 40 to the extent that the RED value is greater than 1, the positive electrode binder also has a RED value based on the Hansen solubility parameter. Can be considered greater than 1.
  • the Hansen solubility parameter and the interaction radius R0 can be calculated using the chemical structure and composition ratio of the components and experimental results. In that case, it can be obtained using software HSPiP developed by Hansen et al. (Hansen Solubility Parameters in Practice: Windows [registered trademark] software for efficiently handling HSP). This software HSPiP is available as of May 2, 2018 from http://www.hansen-solubility.com/. Also, the Hansen solubility parameters (D, P, H) can be calculated for a mixed solvent in which a plurality of solvents are mixed.
  • the negative electrode plate 21 roughly has the same configuration as the positive electrode plate 11 described above, and includes a thin plate-like negative electrode current collector 22 and a negative electrode active material layer 23 coated on the negative electrode current collector 22. I have.
  • the negative electrode active material layer 23 is coated on both surfaces of the negative electrode current collector 22, but the coated surface may be either one surface. Then, at the time of manufacture, the negative electrode active material layer 23 is coated on the negative electrode current collector 22 so that the lithium ion secondary battery 1 does not contain excessive moisture, and then the coated negative electrode active material layer 23 is sufficiently dried.
  • the negative electrode active material layer 23 can be occluded (so-called pre-doped) with lithium ions Li + during manufacturing.
  • the negative electrode active material layer 23 may not be pre-doped.
  • the negative electrode current collector 22 is a metal foil in which a plurality of holes 22c penetrating in the Z direction are formed (see FIGS. 6 and 7), like the positive electrode current collector 12 of the positive electrode plate 11 described above.
  • the current collector 22a and the electrode terminal connection 22b that protrudes outward from one end of the current collector 22a (the right end on the upper side in the example of FIG. 6) are integrally formed.
  • the current collector 22a has a plurality of holes 22c (see FIGS. 6 and 7), but the electrode terminal connection 22b has a plurality of holes similar to the holes 22c of the current collector 22a. It may not be formed and may be formed.
  • the current collector 22a has a plurality of holes 22c, cations and anions contained in the electrolytic solution 40 can pass through the current collector 12a.
  • the current collector 22a may not have a plurality of holes 22c, and the electrode terminal connection portion 22b may not have a plurality of holes similar to the holes 22c.
  • the positive electrode terminal connection portion 12 b and the electrode terminal connection portion 22 b of the negative electrode plate 21 are provided at positions spaced apart from each other in the surface direction of the negative electrode plate so as not to overlap. Yes.
  • variety of the Y-axis direction of the electrode terminal connection part 22b shown in FIG. 1 and FIG. 6 can be changed suitably, for example, is good also as the same width as the current collection part 22a.
  • a metal foil made of, for example, aluminum, stainless steel, or copper can be used in the same manner as the positive electrode current collector 12 of the positive electrode plate 11.
  • the negative electrode active material layer 23 includes a negative electrode active material capable of occluding and releasing lithium ions, binding of the negative electrode active material, and collection of the negative electrode active material and the negative electrode current collector 22.
  • the negative electrode active material layer 23 is comprised so that occlusion and discharge
  • the negative electrode active material layer 23 may further contain other components such as a conductive additive for enhancing the electrical conductivity of the negative electrode active material layer 23 and a thickener for facilitating the creation of the negative electrode plate 21. .
  • the same materials as those of the positive electrode plate 11 described above can be used. That is, for example, ketjen black, acetylene black, graphite fine particles, and graphite fine fibers can be used as the conductive assistant.
  • the thickener for example, carboxymethyl cellulose [CMC] can be used.
  • a negative electrode active material capable of occluding and releasing lithium ions, which is used in conventional lithium ion secondary batteries, can be used. That is, as a negative electrode active material, for example, carbonaceous materials such as graphite, metal oxides such as tin oxide and silicon oxide, and phosphorus and boron are added to these materials for the purpose of improving the negative electrode characteristics. What has been done can be used.
  • lithium titanate represented by the chemical formula Li 4 + x Ti 5 O 12 (0 ⁇ x ⁇ 3) and having a spinel structure may be used.
  • a material in which a part of Ti is substituted with an element such as Al or Mg may be used.
  • silicon-based materials such as silicon, silicon alloy, SiO, and silicon composite material may be used. These may be used alone or in combination of two or more.
  • positive and negative electrode binders used in conventional lithium ion secondary batteries can be used. That is, as a binder of a conventional lithium ion secondary battery, for example, polyvinylidene fluoride [PVdF], polytetrafluoroethylene [PTFE], polyvinylpyrrolidone [PVP], polyvinyl chloride [PVC], polyethylene [PE], polypropylene [ PP], ethylene-propylene copolymer, styrene butadiene rubber [SBR], acrylic resin, and polyacrylic acid.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVP polyvinylpyrrolidone
  • PVC polyvinyl chloride
  • PE polyethylene
  • PE polypropylene
  • PP polypropylene
  • SBR styrene butadiene rubber
  • acrylic resin and polyacrylic acid.
  • Such a binder can be used as the negative electrode binder of the lithium
  • the negative electrode active material layer 23 can also occlude lithium ions Li + . This process is called pre-doping.
  • pre-doping methods There are roughly two types of pre-doping methods. That is, in one method, as shown in FIG. 1, a plurality of positive plates 11, a plurality of negative plates 21, and a plurality of separators 30 are laminated, and these are put together with the electrolyte 40 inside the laminate member 50 (see FIG. 2). In this method, the pre-doping is performed after being housed in the laminate member 50. The other is a method of pre-doping outside the laminate member 50 in which lithium ion Li + is previously occluded in the negative electrode active material before the negative electrode plate 21 is formed.
  • the method of pre-doping inside the laminate member 50 includes two methods, a chemical method and an electrochemical method.
  • the method of pre-doping inside the laminate member 50 the plurality of positive plates 11, the plurality of negative plates 21, and the plurality of separators 30 are accommodated in the laminate member 50 (see FIG. 2) together with the electrolytic solution 40 and then pre-doped.
  • the chemical method is a method in which lithium metal is dissolved in the electrolytic solution 40 to form lithium ion Li + and the lithium ion Li + is occluded in the negative electrode active material.
  • the electrochemical method a voltage is applied to the lithium metal and the negative electrode plate 21 to convert the lithium metal to lithium ion Li + and to store the lithium ion Li + in the negative electrode active material.
  • the current collector portion of the positive electrode current collector 12 of the positive electrode plate 11 so that the lithium ions Li + are easily diffused in the electrolytic solution 40. It is desirable that lithium ions Li + can pass through 12a (see FIG. 5) and the current collector 22a (see FIG. 7) of the negative electrode current collector 22 of the negative electrode plate 21. Therefore, when pre-doping is performed by a chemical method or an electrochemical method, the current collecting portion 12a of the positive electrode plate 11 has a plurality of holes 12c, and the current collecting portion 22a of the negative electrode plate 21 (see FIG. 7). ) Is preferably formed with a plurality of holes 22c.
  • a lithium ion Li + in the electrolyte 40 to pre-dope It is not necessary to diffuse.
  • the current collecting portion 12a of the positive electrode plate 11 does not need to have a plurality of holes 12c, and the current collecting portion 22a of the negative electrode plate 21 (FIG. 7). A plurality of holes 22c may not be formed.
  • the method of pre-doping inside the laminate member 50 and the method of pre-doping outside the laminate member 50 may be appropriately combined. That is, in addition to the method of pre-doping outside the laminate member 50, the plurality of positive electrode plates 11, the plurality of negative electrode plates 21, and the plurality of separators 30 are accommodated inside the laminate member 50 (see FIG. 2) together with the electrolytic solution 40. Thereafter, pre-doping may be performed by a chemical method or an electrochemical method, which is a method of pre-doping inside the laminate member 50.
  • the separator 30 is made of a porous material that separates the positive electrode plate 11 and the negative electrode plate 21 and can transmit the cation and anion of the electrolytic solution 40, and is formed in a rectangular sheet shape.
  • the vertical and horizontal lengths of the separator 30 are the length of the current collector 12a of the positive electrode current collector 12 of the positive electrode plate 11 (see FIG. 4) and the negative electrode current collector of the negative electrode plate 21. It is set to be longer than the length of 22 current collectors 22a (see FIG. 6).
  • a separator used in a conventional lithium ion secondary battery can be used. For example, papermaking such as viscose rayon or natural cellulose, or nonwoven fabric such as polyethylene or polypropylene can be used.
  • the electrolytic solution 40 includes an organic solvent (nonaqueous solvent) and an imide-based lithium salt as an electrolyte. You may add an additive to the electrolyte solution 40 suitably.
  • an additive for example, an additive that promotes the formation of a SEI film (Solid Electrolyte Interface film) on the negative electrode, such as vinylene carbonate [VC], fluoroethylene carbonate [FEC], or ethylene sulfite [ES], is used. Can do.
  • organic solvent an organic solvent having a heat resistance of 85 ° C.
  • An organic solvent can be illustrated.
  • a solvent in which one or two or more of these organic solvents are mixed at an appropriate composition ratio can be used as the organic solvent.
  • the carbonate organic solvent cyclic carbonates such as ethylene carbonate [EC], propylene carbonate [PC] and fluoroethylene carbonate [FEC], ethyl methyl carbonate [EMC], diethyl carbonate [DEC], dimethyl carbonate [DMC] and the like
  • the chain carbonate can be illustrated.
  • the organic solvent does not contain dimethyl carbonate [DMC] which is a kind of chain carbonate. Dimethyl carbonate [DMC] rarely causes heat resistance deterioration depending on the use environment.
  • nitrile organic solvents include acetonitrile, acrylonitrile, adiponitrile, valeronitrile, and isobutyronitrile.
  • lactone organic solvent include ⁇ -butyrolactone and ⁇ -valerolactone.
  • ether organic solvents include cyclic ethers such as tetrahydrofuran and dioxane, and chain ethers such as 1,2-dimethoxyethane, dimethyl ether, and triglyme.
  • the alcohol organic solvent include ethyl alcohol and ethylene glycol.
  • ester organic solvent examples include phosphate esters such as methyl acetate, propyl acetate and trimethyl phosphate, sulfate esters such as dimethyl sulfate, and sulfite esters such as dimethyl sulfite.
  • amide organic solvent examples include N-methyl-2-pyrrolidone and ethylenediamine.
  • sulfone-based organic solvent examples include chain sulfones such as dimethyl sulfone and cyclic sulfones such as 3-sulfolene.
  • ketone organic solvent examples include methyl ethyl ketone, and toluene as the aromatic organic solvent.
  • the above-mentioned various organic solvents excluding the carbonate-based organic solvent are preferably used by mixing with cyclic carbonate, and in particular, mixed with ethylene carbonate [EC] capable of forming an SEI film (Solid Electrolyte Interface film) on the negative electrode. It is preferable to use it.
  • the positive electrode binder and the negative electrode binder described above are preferably polyacrylic acid.
  • the organic solvent preferably contains ethyl methyl carbonate [EMC] and diethyl carbonate [DEC].
  • an imide-based lithium salt (a lithium salt having —SO 2 —N—SO 2 — in a partial structure) can be used.
  • the imide-based lithium salt lithium bis (fluorosulfonyl) imide [LiN (FSO 2 ) 2 , LiFSI], lithium bis (trifluoromethanesulfonyl) imide [LiN (SO 2 CF 3 ) 2 , LiTFSI], lithium bis (Pentafluoroethanesulfonyl) imide [LiN (SO 2 CF 2 CF 3 ) 2 , LiBETI] can be exemplified.
  • these imide-based lithium salts may be used alone or in combination of two or more. These imide-based lithium salts have a heat resistance of 85 ° C.
  • an imide lithium salt having no trifluoromethane group (—CF 3 ), pentafluoroethane group (—CF 2 CF 3 ), or pentafluorophenyl group (—C 6 F 5 ) (for example, , Lithium bis (fluorosulfonyl) imide [LiN (FSO 2 ) 2 , LiFSI]) is preferable in the following points.
  • the positive electrode binder and the negative electrode binder tend to have a RED value greater than 1 based on the Hansen solubility parameter. Further, even at high and low temperatures, the ionic conductivity of the electrolytic solution 40 hardly decreases, and the electrolytic solution 40 is stabilized.
  • the concentration of the electrolyte in the electrolytic solution 40 is preferably 0.5 to 10.0 mol / L. From the viewpoint of an appropriate viscosity of the electrolytic solution 40 and ion conductivity, the concentration of the electrolyte in the electrolytic solution 40 is more preferably 0.5 to 2.0 mol / L. When the concentration of the electrolyte is less than 0.5 mol / L, it is not preferable because the ionic conductivity of the electrolytic solution 40 is too low due to a decrease in the concentration of ions from which the electrolyte is dissociated.
  • the concentration of the electrolyte is higher than 10.0 mol / L because the ionic conductivity of the electrolytic solution 40 is too low due to an increase in the viscosity of the electrolytic solution 40.
  • the positive electrode binder and negative electrode binder which were mentioned above are polyacrylic acid.
  • the laminate member 50 includes a core material sheet 51, an outer sheet 52, and an inner sheet 53.
  • the outer sheet 52 is bonded to the outer surface of the core material sheet 51
  • the inner sheet 53 is bonded to the inner surface of the core material sheet 51.
  • the core material sheet 51 can be an aluminum foil
  • the outer sheet 52 can be a resin sheet such as a nylon pet film
  • the inner sheet 53 can be a resin sheet such as polypropylene.
  • FIG. 8 schematically shows the positional relationship (see FIG. 1) among the positive electrode plate 11 of the positive electrode 10, the negative electrode plate 21 of the negative electrode 20, the separator 30, and the electrolytic solution 40 of the lithium ion secondary battery 1.
  • the lithium ion secondary battery 1 has a configuration in which a positive electrode plate 11 and a negative electrode plate 21 face each other with a separator 30 interposed therebetween.
  • both the positive electrode active material layer 13 and the negative electrode active material layer 23 are configured to be able to occlude and release lithium ions Li + .
  • lithium ions Li + move between the positive electrode active material layer 13 and the negative electrode active material layer 23 via the electrolytic solution 40 (see FIGS. 8 and 9). That is, lithium ion Li + moves from the positive electrode active material layer 13 to the negative electrode active material layer 23 during charging, and moves from the negative electrode active material layer 23 to the positive electrode active material layer 13 during discharging via the electrolytic solution 40 ( FIG. 8 and FIG. 9).
  • the maximum amount of lithium ions Li + occluded in the negative electrode active material layer 23 is during full charge during the charge / discharge process.
  • the amount of occluded lithium ion Li + in the positive electrode active material layer 13 and the negative electrode active material layer 23 is increased or decreased.
  • the amount of lithium ion Li + may be a value proportional to the number of atoms of lithium ion Li +, for example, be a mol number.
  • the amount of lithium ion Li + to the pre-doping can also be an upper limit value as described below.
  • the amount Pt of all lithium ions Li + occluded in the positive electrode active material layer 13 at the time of full discharge is the same as the amount Pt of lithium ions Li + , Occluded (see FIG. 9).
  • the amount N of lithium ions Li + occluded in the negative electrode active material layer 23 at the time of full charge is the amount Pt of lithium ions Li + transferred from the positive electrode active material layer 13 to the negative electrode active material layer 23 and the pre-doped negative electrode This is the sum Np + Pt with the amount Np of lithium ions Li + occluded in the active material layer 23 (see FIG. 9).
  • Pt is the amount of all the lithium ion Li + that was stored in the positive electrode active material layer 13 at the time of full discharge, the charge-discharge process in lithium ion Li + is also changed to inactive compounds, It is supplemented by lithium ions Li + occluded in the negative electrode active material layer 23 by pre-doping. For this reason, Pt is the same amount as the amount of lithium ion Li + occluded by the positive electrode active material layer 13 before the initial charge (that is, the amount of lithium ion Li + occluded by the positive electrode active material before manufacture). become.
  • the amount of lithium ion Li + that can be occluded by the negative electrode active material layer 23 before pre-doping is Nt (see FIG. 9).
  • Nt The amount of lithium ion Li + that can be occluded by the negative electrode active material layer 23 before pre-doping.
  • Np + Pt the amount of lithium ions Li + occluded in the negative electrode active material layer 23
  • Np + Pt ⁇ Nt is satisfied, and the negative electrode active material layer 23 can always occlude the lithium ion Li + released from the positive electrode active material layer 13, and the precipitation of lithium ion Li + can be suppressed.
  • Npmax, Nt, and Pt can be represented by the number of moles.
  • Nt is the amount of lithium ion Li + occluded by the positive electrode active material layer 13 before the initial charge (that is, lithium ion Li + occluded by the positive electrode active material before production). Amount). Therefore, the upper limit value Npmax of the amount of lithium ion Li + occluded in the negative electrode active material layer 23 by pre-doping is determined from the amount Nt of lithium ion Li + occluded by the negative electrode active material layer 23 before pre-doping before the positive electrode active This is the amount obtained by subtracting the amount (Pt) of lithium ions Li + stored by the substance. Nt and Pt can be calculated from, for example, theoretical values of the positive electrode active material and the negative electrode active material.
  • the amount of the negative electrode active material before pre-doping can occlude lithium ions Li + and the positive electrode active material can be calculated. It is also possible to measure the amount of lithium ion Li + occluded by the substance and calculate from the measured value.
  • Npmax is equal to 2 times Pt (ie, 2 ⁇ Pt) (see FIG. 9).
  • Npmax varies depending on the value of Nt and the value of Pt (see FIG. 9). That is, the upper limit of the lithium ion Li + in an amount Np to be occluded in the negative electrode active material layer 23 in the pre-doping Npmax, the pre-doped prior to the negative electrode active material layer 23 is storable lithium ion Li + in an amount Nt, and before charge and discharge It varies depending on the amount Pt of lithium ion Li + stored in the positive electrode active material layer 13.
  • the maximum amount of lithium ions Li + occluded in the negative electrode active material layer 23 is during full charge during the charge / discharge process.
  • the amount N of lithium ions Li + stored in the negative electrode active material layer 23 at the time of full charge is the amount of all lithium ions Li + stored in the positive electrode active material layer 13 at the time of full discharge.
  • N Np + Pt
  • N Np + Pt
  • the amount N of lithium ion Li + occluded in the negative electrode active material layer 23 during full charge is the amount Nt of lithium ion Li + occluded in the negative electrode active material layer 23 before pre-doping.
  • N is expressed as% when N is 100%
  • the dope rate of the negative electrode active material in a negative electrode active material layer is represented as follows.
  • Doping rate (%) N / Nt ⁇ 100
  • N Amount of lithium ion (mol) stored in the negative electrode active material (negative electrode active material layer) at full charge
  • Nt Amount of lithium ion (mol) that can be occluded by the negative electrode active material (negative electrode active material layer) before pre-doping
  • the lithium ion secondary battery described above is a stacked lithium ion secondary battery in which the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are stacked.
  • a wound lithium ion secondary battery in which a long negative electrode and a long separator are wound can be obtained.
  • the lithium ion secondary battery may be a lithium polymer secondary battery.
  • the lithium ion secondary battery 1 has a heat resistance of 85 ° C.
  • the lithium ion Li + gradually changes into an inactive compound, so that the amount of lithium ion Li + that can participate in charging and discharging is reduced.
  • the charge / discharge capacity decreases.
  • Such a lithium ion secondary battery has a low charge / discharge capacity at high temperatures, that is, low temperature durability.
  • the high temperature durability means that the charge / discharge capacity of the lithium ion secondary battery is maintained at a sufficient amount even when the lithium ion secondary battery is kept at a high temperature.
  • the lithium-ion secondary battery 1 when the negative electrode active material a lithium ion Li + is pre-doped, the lithium ion Li + is occluded in the negative electrode active substance in. For this reason, even if lithium ion Li + required for charge / discharge changes to an inactive compound, the lithium ion Li + occluded in the negative electrode active material by pre-doping compensates for the change, so that the lithium ion secondary battery 1 The decrease in charge / discharge capacity can be suppressed. For this reason, the lithium ion secondary battery 1 not only has a heat resistance of 85 ° C. or higher, but also has a high temperature durability.
  • the doping rate is preferably 50% to 100%, more preferably 80% to 100%, and still more preferably 90% to 100%.
  • the lithium ion secondary battery of the present disclosure is not limited to the structure, configuration, appearance, shape, and the like described in the above embodiment, and various modifications and additions can be made by understanding the above embodiment. Can be deleted.
  • the positive electrode slurry was prepared by the following procedure.
  • a pre-slurry was prepared by mixing all materials and water with a mixer a (Shinky Co., Ltd. Awatori Nertaro ARE-310).
  • the pre-slurry obtained in (1) was further mixed with a mixer b (Filmix 40-L manufactured by PRIMIX Co., Ltd.) to prepare an intermediate slurry.
  • the intermediate slurry obtained in (2) was mixed again with the mixer a to prepare a positive electrode slurry.
  • each positive electrode slurry was applied to the current collector foil and dried to prepare a positive electrode.
  • the coating amount of the positive electrode slurry was adjusted so that the mass of the activated carbon after drying was 3 mg / cm 2 .
  • a blade coater or a die coater was used for coating the positive electrode slurry on the current collector foil.
  • a negative electrode slurry was prepared by the following procedure. (1) A material excluding the binder and water were mixed in a mixer a to prepare a pre-slurry. (2) The pre-slurry obtained in (1) was further mixed with a mixer b to prepare an intermediate slurry. (3) A binder was added to the intermediate slurry obtained in (2) and mixed by a mixer a to prepare a negative electrode slurry.
  • a copper foil (porous foil) having a thickness of 10 ⁇ m was used as the current collector foil, and the negative electrode slurry was applied to the current collector foil and dried to prepare a negative electrode.
  • the coating amount of the negative electrode slurry was adjusted so that the mass of graphite after drying was 3 mg / cm 2 .
  • a blade coater was used for coating the negative electrode slurry on the current collector foil.
  • Lithium bis (fluorosulfonyl) imide [LiN (FSO 2 ) 2 , LiFSI], which is an imide-based lithium salt, was added as an electrolyte.
  • the electrolytic solution contains 1.0 mol / L of LiFSI.
  • a lithium ion secondary battery was produced by the following procedure. (1) The positive electrode and the negative electrode are each punched out into a rectangle of 60 mm ⁇ 40 mm, and the current collecting tab is formed by stripping off the 20 mm ⁇ 40 mm region of the coating on the long side, leaving the 40 mm ⁇ 40 mm coating film. Attached. (2) A laminate was prepared by making the coating portions of the positive electrode and the negative electrode face each other with a cellulose separator having a thickness of 20 ⁇ m interposed therebetween.
  • This lithium ion secondary battery was pre-doped to prepare a lithium ion secondary battery of Test Example 1.
  • the number of moles of pre-doped lithium ion Li + is, according to literature values, the amount of lithium ion Li + occluded in the positive electrode active material of the positive electrode active material layer is 0.0010 mol, and the lithium ion that can be occluded by the negative electrode active material layer The amount of Li + is 0.0030 mol.
  • 0.0102 g of metallic lithium was dissolved in the electrolytic solution, so that 0.0015 mol of lithium ion Li + was occluded in the negative electrode active material layer.
  • the lithium ion secondary battery of Test Example 2 is different from the lithium ion secondary battery of Test Example 1 only in that it is not pre-doped.
  • the internal resistance and discharge capacity of the lithium ion secondary battery were measured at room temperature (25 ° C.) with a cutoff voltage of 3.0 to 3.5 V, a measurement current of 5 mA, and 0.2 C.
  • the internal resistance was measured by measuring the internal resistance (m ⁇ ) at 0 to 0.1 sec by the DC-IR method.
  • the internal resistance (m ⁇ ) of the lithium ion secondary battery of Test Example 1 did not increase significantly even after 400 hours.
  • the discharge capacity (mAh) of the lithium ion secondary battery of Test Example 1 was not significantly reduced even after 400 hours. This confirmed that the lithium ion secondary battery of Test Example 1 had heat resistance at 85 ° C. and high temperature durability.
  • the internal resistance (m ⁇ ) did not increase significantly after 400 hours.
  • the discharge capacity (mAh) of the lithium ion secondary battery of Test Example 2 gradually decreased with time. Thereby, it became clear that the lithium ion secondary battery of Test Example 2 has heat resistance at 85 ° C. and some high temperature durability.
  • the rate of increase in internal resistance was less than 50% even after 1600 hours had elapsed. Further, as shown in FIG. 15, the capacity retention of the lithium ion secondary batteries of Test Examples 3 to 5 was 85% or more even after 1600 hours had elapsed. From these facts, it became clear that the lithium ion secondary batteries of Test Examples 3 to 5 have heat resistance at 85 ° C. and high temperature durability. Test Examples 4 and 5 were superior to Test Example 3 in the increase rate of internal resistance and the change in discharge capacity. From this, it became clear that the doping rate is preferably 90 to 100% rather than 80%.
  • a mixed solvent of 30% by volume of ethylene carbonate (EC), 30% by volume of dimethyl carbonate (DMC) and 40% by volume of ethyl methyl carbonate (EMC) was used, and 1 mol / L of lithium bis (fluorosulfonylimide) (LiFSI) was used as the mixed solvent.
  • the electrolyte solution I was adjusted by adding. Further, lithium hexafluorophosphate (LiPF 6 ) was added to the mixed solvent to prepare an electrolytic solution P.
  • Electrolytic solution I2 was prepared by adding 1 mol / L of bis (fluorosulfonylimide) (LiFSI).
  • Example 10 when left in a high temperature environment of 85 ° C., in Example 10 using an electrolytic solution containing lithium fluorophosphate that is not an imide-based lithium salt as an electrolyte, the capacity retention rate is halved in a short time. On the other hand, in Test Examples 6 to 9 using an electrolyte containing an imide lithium salt as the electrolyte, the capacity retention rate was kept high for a long time. However, even when an electrolytic solution containing an imide-based lithium salt is used as the electrolyte, it has become clear that there is a difference in the rate of increase in internal resistance depending on the configuration of the binder of the positive electrode.

Abstract

The present disclosure provides a lithium ion secondary battery (1) that can operate at a high-temperature environment of 85°C. This lithium ion secondary battery (1) comprises a positive electrode active material that can occlude and release lithium ions Li+, a positive electrode binder that binds the positive electrode active material, a negative electrode active material that can occlude and release lithium ions Li+, a negative electrode binder that binds the negative electrode active material, and an electrolytic solution (40) containing an organic solvent and an imide lithium salt. The positive electrode binder has a Hansen solubility parameter-based RED value of more than 1 with respect to the electrolytic solution (40).

Description

リチウムイオン二次電池Lithium ion secondary battery
 本開示は、リチウムイオン二次電池に関する。 This disclosure relates to a lithium ion secondary battery.
 リチウムイオン二次電池は、エネルギー密度に優れることなど、優れた特性を示すため広く普及している。そして、リチウムイオン二次電池は、耐熱性に優れるほど用途が広がるため、リチウムイオン二次電池の耐熱性を向上させる技術が各種提案されている。例えば、特開2014-160638号公報には、60℃程度の耐熱性を備えるリチウムイオン二次電池が開示されている。 Lithium ion secondary batteries are widely used because they exhibit excellent characteristics such as excellent energy density. And since the use of a lithium ion secondary battery increases as the heat resistance increases, various techniques for improving the heat resistance of the lithium ion secondary battery have been proposed. For example, Japanese Patent Application Laid-Open No. 2014-160638 discloses a lithium ion secondary battery having heat resistance of about 60 ° C.
 しかし、特開2014-160638号公報に記載のリチウムイオン二次電池の耐熱性は60℃程度であり、より高温に耐えるリチウムイオン二次電池が求められている。例えば、リチウムイオン二次電池を自動車に用いるためには、85℃程度の耐熱性が必要となる。そのため、より改良したリチウムイオン二次電池が求められている。 However, the heat resistance of the lithium ion secondary battery described in JP-A-2014-160638 is about 60 ° C., and a lithium ion secondary battery that can withstand higher temperatures is demanded. For example, in order to use a lithium ion secondary battery for an automobile, heat resistance of about 85 ° C. is required. Therefore, a more improved lithium ion secondary battery is required.
 本開示の1つの特徴は、リチウムイオンを吸蔵可能および放出可能な正極活物質と、前記正極活物質を結着させる正極バインダと、リチウムイオンを吸蔵可能および放出可能な負極活物質と、前記負極活物質を結着させる負極バインダと、有機溶媒およびイミド系リチウム塩を含む電解液と、を備え、前記正極バインダが、前記電解液に対するハンセン溶解度パラメータに基づくRED値が1より大きい、リチウムイオン二次電池である。 One feature of the present disclosure is that a positive electrode active material capable of occluding and releasing lithium ions, a positive electrode binder binding the positive electrode active material, a negative electrode active material capable of occluding and releasing lithium ions, and the negative electrode A negative electrode binder that binds the active material; and an electrolyte solution containing an organic solvent and an imide-based lithium salt, wherein the positive electrode binder has a RED value greater than 1 based on a Hansen solubility parameter for the electrolyte solution, Next battery.
 上記特徴によると、リチウムイオン二次電池は、85℃の耐熱性を備えることができる。なお、本開示においてリチウムイオン二次電池が耐熱性を備えるとは、高温環境において動作可能な性能を有することを意味する。 According to the above characteristics, the lithium ion secondary battery can have a heat resistance of 85 ° C. In the present disclosure, that the lithium ion secondary battery has heat resistance means that the lithium ion secondary battery has a performance operable in a high temperature environment.
実施の形態に係るリチウムイオン二次電池の模式的な分解斜視図である。1 is a schematic exploded perspective view of a lithium ion secondary battery according to an embodiment. 実施の形態に係るリチウムイオン二次電池の斜視図である。1 is a perspective view of a lithium ion secondary battery according to an embodiment. 図2のリチウムイオン二次電池におけるIII-III断面の模式的な図である。FIG. 3 is a schematic diagram of a III-III cross section in the lithium ion secondary battery of FIG. 2. 図1に示す正極板の外観の例を説明する図である。It is a figure explaining the example of the external appearance of the positive electrode plate shown in FIG. 図4の正極板におけるV-V断面図である。FIG. 5 is a VV sectional view of the positive electrode plate of FIG. 4. 図1に示す負極板の外観の例を説明する図である。It is a figure explaining the example of the external appearance of the negative electrode plate shown in FIG. 図6の負極板におけるVII-VII断面図である。FIG. 7 is a VII-VII sectional view of the negative electrode plate of FIG. 図1に示す、正極の正極板と、負極の負極板と、セパレータと、電解液との位置関係を説明する図である。It is a figure explaining the positional relationship of the positive electrode plate of a positive electrode shown in FIG. 1, the negative electrode plate of a negative electrode, a separator, and electrolyte solution. 負極のプレドープ量の上限を説明する図である。It is a figure explaining the upper limit of the amount of pre dope of a negative electrode. 試験例1において、リチウムイオン二次電池の85℃における内部抵抗(mΩ)の経時変化を示すグラフである。In Test Example 1, it is a graph showing a change with time of internal resistance (mΩ) at 85 ° C. of a lithium ion secondary battery. 試験例1において、リチウムイオン二次電池の85℃における放電容量(mAh)の経時変化を示すグラフである。In Test Example 1, it is a graph showing the change over time of the discharge capacity (mAh) at 85 ° C. of the lithium ion secondary battery. 試験例2において、リチウムイオン二次電池の85℃における内部抵抗(mΩ)の経時変化を示すグラフである。In Test Example 2, it is a graph showing the change over time of the internal resistance (mΩ) at 85 ° C. of the lithium ion secondary battery. 試験例2において、リチウムイオン二次電池の85℃における放電容量(mAh)の経時変化を示すグラフである。In Experiment 2, it is a graph which shows a time-dependent change of the discharge capacity (mAh) in 85 degreeC of a lithium ion secondary battery. 試験例3~5において、リチウムイオン二次電池の85℃における内部抵抗の経時変化を示すグラフである。FIG. 6 is a graph showing changes over time in internal resistance of lithium ion secondary batteries at 85 ° C. in Test Examples 3 to 5. FIG. 試験例3~5において、リチウムイオン二次電池の85℃における放電容量の経時変化を示すグラフである。6 is a graph showing changes with time in discharge capacity of a lithium ion secondary battery at 85 ° C. in Test Examples 3 to 5.
 以下に、本開示の実施の形態を、図面を用いて説明する。図1の分解斜視図に示す様に、リチウムイオン二次電池1は、複数の板状の正極板11と、複数の板状の負極板21とを備えており、これらは交互に積層されている。各正極板11は一方向に突出する電極端子接続部12bを備える。また、各負極板21も、正極板11の電極端子接続部12bが突出する方向と同一の方向に突出する電極端子接続部22bを備えている。そして、図1に示す様に、正極板11の電極端子接続部12bが突出する方向をX軸方向とし、積層される方向をZ軸方向とし、X軸およびZ軸に直交する方向をY軸方向とする。これらのX軸、Y軸、Z軸は互いに直交している。X軸、Y軸、Z軸が記載されているすべての図において、これらの軸方向は同一の方向を示し、以下の説明において方向に関する記述はこれらの軸方向を基準とすることがある。なお、以下の説明において、付随的な構成については、その図示および詳細な説明を省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. As shown in the exploded perspective view of FIG. 1, the lithium ion secondary battery 1 includes a plurality of plate-like positive electrode plates 11 and a plurality of plate-like negative electrode plates 21, which are alternately stacked. Yes. Each positive electrode plate 11 includes an electrode terminal connection portion 12b protruding in one direction. Each negative electrode plate 21 also includes an electrode terminal connection portion 22b protruding in the same direction as the direction in which the electrode terminal connection portion 12b of the positive electrode plate 11 protrudes. As shown in FIG. 1, the direction in which the electrode terminal connecting portion 12b of the positive electrode plate 11 protrudes is the X-axis direction, the stacked direction is the Z-axis direction, and the direction orthogonal to the X-axis and the Z-axis is the Y-axis. The direction. These X axis, Y axis, and Z axis are orthogonal to each other. In all of the drawings in which the X axis, the Y axis, and the Z axis are described, these axial directions indicate the same direction, and in the following description, descriptions regarding directions may be based on these axial directions. In the following description, illustration and detailed description of the incidental configuration are omitted.
<1.リチウムイオン二次電池1の全体構造(図1~図3)>
 リチウムイオン二次電池1は、図1に示すように、複数の正極板11と、複数の負極板21と、複数のセパレータ30と、電解液40と、ラミネート部材50とを備えている。ここで、図1に示す様に、正極板11と負極板21とは交互に積層されており、正極板11と負極板21との間それぞれにセパレータ30が挟まれている。電解液40は、この様に積層された、複数の正極板11の一部と、複数の負極板21の一部と、複数のセパレータ30と共に、2つのラミネート部材50に包まれて密封されている。
<1. Overall structure of lithium ion secondary battery 1 (FIGS. 1 to 3)>
As shown in FIG. 1, the lithium ion secondary battery 1 includes a plurality of positive plates 11, a plurality of negative plates 21, a plurality of separators 30, an electrolytic solution 40, and a laminate member 50. Here, as shown in FIG. 1, the positive plates 11 and the negative plates 21 are alternately stacked, and the separators 30 are sandwiched between the positive plates 11 and the negative plates 21. The electrolyte solution 40 is wrapped and sealed in two laminate members 50 together with a part of the plurality of positive electrode plates 11, a part of the plurality of negative electrode plates 21, and the plurality of separators 30 laminated in this manner. Yes.
 複数の正極板11の電極端子接続部12bは、同一方向に突出し、正極端子14に導通している。この正極端子14やこれと接続されている複数の正極板11など、正極端子側を構成する導体部材はまとめて正極10と呼べる。同様に、複数の負極板21の電極端子接続部22bと、負極端子24とは導通しており、この負極端子24やこれと接続されている複数の負極板21など、負極端子側を構成する導体部材はまとめて負極20と呼べる。 The electrode terminal connection portions 12 b of the plurality of positive electrode plates 11 protrude in the same direction and are electrically connected to the positive electrode terminal 14. Conductive members constituting the positive terminal side such as the positive terminal 14 and the plurality of positive plates 11 connected thereto can be collectively referred to as the positive electrode 10. Similarly, the electrode terminal connecting portions 22b of the plurality of negative electrode plates 21 and the negative electrode terminals 24 are electrically connected, and the negative electrode terminals such as the negative electrode terminals 24 and the plurality of negative electrode plates 21 connected thereto are configured. The conductor members can be collectively referred to as the negative electrode 20.
 リチウムイオン二次電池1は、その内部に前述の構成を備え、その外観を図2に示した。図2に示すリチウムイオン二次電池1のIII-III断面を模式的に図3に示す。図3では、わかりやすくするためにリチウムイオン二次電池1内における各部材の間に間隔を開けて図示している。しかし、実際には、正極板11と負極板21とセパレータ30とがほとんど隙間無く積層されている。 The lithium ion secondary battery 1 has the above-described configuration inside, and the appearance is shown in FIG. FIG. 3 schematically shows a III-III cross section of the lithium ion secondary battery 1 shown in FIG. In FIG. 3, in order to make it easy to understand, each member in the lithium ion secondary battery 1 is illustrated with an interval. However, in practice, the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are stacked with almost no gap.
<2.リチウムイオン二次電池1の各部について(図1、図3~図7)>
<2-1.正極板11について(図1、図3~図5)>
 正極板11は、薄板状の正極集電体12と、正極集電体12に塗工されている正極活物質層13とを備えている(図3~図5参照)。なお、正極活物質層13が設けられるのは、正極集電体12の両面であるが、正極集電体12のどちらかの片面であってもよい。そして、リチウムイオン二次電池1が過度に水分を含まない様に、製造時には、正極活物質層13を正極集電体12に塗工した後、塗工された正極活物質層13を十分乾燥させる必要がある。
<2. Each part of the lithium ion secondary battery 1 (FIGS. 1, 3 to 7)>
<2-1. Regarding the positive electrode plate 11 (FIGS. 1, 3 to 5)>
The positive electrode plate 11 includes a thin plate-like positive electrode current collector 12 and a positive electrode active material layer 13 coated on the positive electrode current collector 12 (see FIGS. 3 to 5). The positive electrode active material layer 13 is provided on both surfaces of the positive electrode current collector 12, but may be provided on either side of the positive electrode current collector 12. Then, at the time of manufacture, the positive electrode active material layer 13 is coated on the positive electrode current collector 12 so that the lithium ion secondary battery 1 does not contain excessive moisture, and then the coated positive electrode active material layer 13 is sufficiently dried. It is necessary to let
 正極集電体12は、Z方向に貫通する複数の孔12cが形成された金属箔で(図4および図5参照)、矩形状の集電部12a(図4参照)と、集電部12aの一端(図4の例では、上辺の左端)から外側に突出する電極端子接続部12bとが一体に形成されている。図1および図4に示す、電極端子接続部12bのY軸方向の幅は適宜変更でき、例えば集電部12aと同じ幅としても良い。なお、集電部12aには複数の孔12cが形成されている(図4および図5参照)が、電極端子接続部12bには集電部12aの孔12cと同様の複数の孔が形成されていなくともよく、形成されていてもよい。ここで、集電部12aは、複数の孔12cが形成されているため、電解液40に含まれる陽イオンおよび陰イオンが集電部12aを透過できる。なお、集電部12aには複数の孔12cが形成されていなくともよく、さらに、電極端子接続部12bにも孔12cと同様の複数の孔が形成されていなくともよい。正極集電体12は、例えば、アルミニウム、ステンレス鋼、銅、ニッケルからなる金属箔を用いることができる。 The positive electrode current collector 12 is a metal foil having a plurality of holes 12c penetrating in the Z direction (see FIGS. 4 and 5), a rectangular current collector 12a (see FIG. 4), and a current collector 12a. Are integrally formed with an electrode terminal connecting portion 12b protruding outward from one end (the left end of the upper side in the example of FIG. 4). The width in the Y-axis direction of the electrode terminal connecting portion 12b shown in FIGS. 1 and 4 can be changed as appropriate, and may be the same width as the current collecting portion 12a, for example. The current collector 12a has a plurality of holes 12c (see FIGS. 4 and 5), but the electrode terminal connector 12b has a plurality of holes similar to the holes 12c of the current collector 12a. It may not be formed and may be formed. Here, since the current collector 12a has a plurality of holes 12c, cations and anions contained in the electrolytic solution 40 can pass through the current collector 12a. The current collector 12a may not have a plurality of holes 12c, and the electrode terminal connecting portion 12b may not have a plurality of holes similar to the holes 12c. For the positive electrode current collector 12, for example, a metal foil made of aluminum, stainless steel, copper, or nickel can be used.
 正極活物質層13は、リチウムイオンを吸蔵可能および放出可能な正極活物質と、正極活物質の結着および正極活物質と正極集電体12の集電部12aとを結着させる正極バインダとを含む。この様に、正極活物質層13は、正極活物質を備えることで、リチウムイオンを吸蔵可能および放出可能に構成されている。正極活物質層13は、さらに、正極活物質層13の電気伝導性を高めるための導電助剤や、正極板11の作成を容易にするための増粘剤等、他の成分を含んでも良い。導電助剤は、例えば、ケッチェンブラック、アセチレンブラック、グラファイトの微粒子、グラファイトの微細線維を用いることができる。増粘剤は、例えば、カルボキシルメチルセルロース[CMC]を用いることができる。 The positive electrode active material layer 13 includes a positive electrode active material capable of occluding and releasing lithium ions, a positive electrode binder that binds the positive electrode active material, and the positive electrode active material and the current collector 12a of the positive electrode current collector 12. including. As described above, the positive electrode active material layer 13 includes the positive electrode active material, and is configured to be able to occlude and release lithium ions. The positive electrode active material layer 13 may further contain other components such as a conductive additive for increasing the electrical conductivity of the positive electrode active material layer 13 and a thickener for facilitating the creation of the positive electrode plate 11. . As the conductive auxiliary agent, for example, ketjen black, acetylene black, graphite fine particles, and graphite fine fibers can be used. As the thickener, for example, carboxymethyl cellulose [CMC] can be used.
 正極活物質は、従来のリチウムイオン二次電池に使われている、リチウムイオンを吸蔵可能および放出可能な正極活物質を用いることができる。正極活物質として、例えば、二酸化マンガン(MnO)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLiMn又はLiMnO)、リチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCo)、リチウムニッケルコバルトマンガン複合酸化物(NMC、三元系、LiNiCoMn1-y-z)、スピネル型リチウムマンガンニッケル複合酸化物(LiMn2-yNi)、リチウムポリアニオン化合物(LiFePO、LiCoPO、LiVOPO、LiVPOF、LiMnPO、LiMn1-xFePO、LiNiVO、LiCoPO、Li(PO、LiFeP、LiFe(PO、LiCoSiO、LiMnSiO、LiFeSiO、LiTePO等)、硫酸鉄(Fe(SO)、バナジウム酸化物(例えばV)などが挙げられる。また、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料、イオウ(S)、フッ化カーボンなどの有機材料及び無機材料も挙げられる。これらは単独で用いてもよく、2種以上混合して用いてもよい。 As the positive electrode active material, a positive electrode active material capable of occluding and releasing lithium ions, which is used in a conventional lithium ion secondary battery, can be used. Examples of the positive electrode active material include manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ), and lithium nickel composite oxide (for example, Li x NiO 2 ), lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel cobalt composite oxide (eg, LiNi 1-y Co y O 2 ), lithium nickel cobalt manganese composite oxide (NMC, ternary system, LiNi x Co y Mn 1-y -z O 2), spinel type lithium-manganese-nickel composite oxide (Li x Mn 2-y Ni y O 4), lithium polyanion compound (LiFePO 4, LiCoPO 4, LiVOPO 4, LiVPO 4 F, LiMnPO 4 , LiMn 1-x Fe x PO 4 , LiNiVO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , LiFeP 2 O 7 , Li 3 Fe 2 (PO 4 ) 3 , Li 2 CoSiO 4 , Li 2 MnSiO 4 , Li 2 FeSiO 4 , LiTePO 4 Etc.), iron sulfate (Fe 2 (SO 4 ) 3 ), vanadium oxide (for example, V 2 O 5 ) and the like. In addition, conductive polymer materials such as polyaniline and polypyrrole, disulfide-based polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials are also included. These may be used alone or in combination of two or more.
 正極活物質は、Li基準における動作電位の上限が所定値未満となるような物質であることが好ましい。ここで、本明細書では、Li基準における動作電位とは、基準電位(Li/Li)に対する動作電位である。Li基準における動作電位のこの所定値としては、例えば、5.0V、4.0V、3.8V、3.6Vが挙げられる。この所定値が5.0Vの場合について、Li基準における動作電位の上限が5.0V未満である正極活物質として、例えばスピネル型リチウムマンガンニッケル複合酸化物(LiMn2-yNi)を挙げることができる。また、この所定値が4.0Vの場合について、Li基準における動作電位の上限が4.0V未満である正極活物質として、例えばリチウムマンガン複合酸化物(例えばLiMn又はLiMnO)を挙げることができる。また、この所定値が3.8Vの場合について、Li基準における動作電位の上限が3.8V未満である正極活物質として、例えばリチウムコバルト複合酸化物(LiCoO)や、リチウムニッケルコバルトマンガン複合酸化物(NMC、三元系、LiNiCoMn1-y-z)を挙げることができる。また、この所定値が3.6Vの場合について、Li基準における動作電位の上限が3.6V未満である正極活物質として、例えばLiFePOを挙げることができる。 The positive electrode active material is preferably a material whose upper limit of the operating potential based on Li is less than a predetermined value. Here, in this specification, the operating potential on the basis of Li is an operating potential with respect to the reference potential (Li / Li + ). Examples of the predetermined value of the operating potential on the basis of Li include 5.0V, 4.0V, 3.8V, and 3.6V. In the case where the predetermined value is 5.0 V, as a positive electrode active material whose upper limit of the operating potential on the basis of Li is less than 5.0 V, for example, spinel type lithium manganese nickel composite oxide (Li x Mn 2-y Ni y O 4 ). Further, in the case where this predetermined value is 4.0 V, as the positive electrode active material whose upper limit of the operating potential based on Li is less than 4.0 V, for example, lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ). In addition, when the predetermined value is 3.8 V, as a positive electrode active material whose upper limit of the operating potential on the basis of Li is less than 3.8 V, for example, lithium cobalt composite oxide (Li x CoO 2 ) or lithium nickel cobalt manganese Examples thereof include composite oxides (NMC, ternary system, LiNi x Co y Mn 1-yz O 2 ). Further, in the case where this predetermined value is 3.6 V, as the positive electrode active material whose upper limit of the operating potential on the basis of Li is less than 3.6 V, for example, LiFePO 4 can be mentioned.
 特に正極集電体12がアルミニウムで形成される場合、正極活物質をLi基準における動作電位の上限が所定値未満となる正極活物質を選択することが好ましい。仮に正極活物質のLi基準における動作電位が4.2V以上である場合、充放電の過程においてアルミニウムで形成された正極集電体12が比較的腐食されやすい。この場合に対して、正極活物質として、例えば、Li基準における動作電位の上限が3.6V未満であるLiFePOを選択することができる。 In particular, when the positive electrode current collector 12 is formed of aluminum, it is preferable to select a positive electrode active material in which the upper limit of the operating potential on the basis of Li is less than a predetermined value. If the operating potential of the positive electrode active material based on Li is 4.2 V or higher, the positive electrode current collector 12 formed of aluminum is relatively easily corroded in the charge / discharge process. In this case, for example, LiFePO 4 having an upper limit of the operating potential based on Li of less than 3.6 V can be selected as the positive electrode active material.
 正極バインダは、従来のリチウムイオン二次電池に用いられている正負極のバインダのうち、電解液40に対するハンセン溶解度パラメータに基づくRED値(後述)が1より大きいバインダを用いることができる。ここで、従来のリチウムイオン二次電池の正負極のバインダとして、例えば、ポリフッ化ビニリデン[PVdF]、ポリテトラフルオロエチレン[PTFE]、ポリビニルピロリドン[PVP]、ポリ塩化ビニル[PVC]、ポリエチレン[PE]、ポリプロピレン[PP]、エチレン-プロピレン共重合体、スチレンブタジエンゴム[SBR]、アクリル樹脂、ポリアクリル酸が挙げられる。 As the positive electrode binder, among the positive and negative electrode binders used in the conventional lithium ion secondary battery, a binder having a RED value (described later) based on the Hansen solubility parameter with respect to the electrolytic solution 40 is larger than 1. Here, as a binder of positive and negative electrodes of a conventional lithium ion secondary battery, for example, polyvinylidene fluoride [PVdF], polytetrafluoroethylene [PTFE], polyvinylpyrrolidone [PVP], polyvinyl chloride [PVC], polyethylene [PE ], Polypropylene [PP], ethylene-propylene copolymer, styrene butadiene rubber [SBR], acrylic resin, and polyacrylic acid.
 また、正極バインダは、電解液40に対するハンセン溶解度パラメータ(HSP)に基づくRED値が1より大きいため、電解液40に難溶性を示す。ハンセン溶解度パラメータは、Charles M Hansen氏により発表され、ある物質がある物質にどのくらい溶けるのかを示す溶解性の指標として知られている。例えば、一般的に水と油は溶け合わないが、これは水と油の「性質」が違うからである。この溶解性に関する物質の「性質」として、ハンセン溶解度パラメータでは、分散項D、極性項P、水素結合項Hの3つの項目を、物質毎に数値で表す。ここで、分散項Dはファンデルワールス力の大きさを表す値であり、極性項Pはダイポール・モーメントの大きさを表す値であり、水素結合項Hは水素結合の大きさを表す値である。以下では基本的な考えを説明する。このため、水素結合項Hをドナー性とアクセプター性に分割して扱う場合等の説明は省略する。 Moreover, since the RED value based on the Hansen solubility parameter (HSP) with respect to the electrolytic solution 40 is larger than 1, the positive electrode binder exhibits poor solubility in the electrolytic solution 40. The Hansen solubility parameter was published by Charles M Hansen and is known as a solubility index indicating how much a certain substance is dissolved in a certain substance. For example, water and oil generally do not melt together because the “properties” of water and oil are different. As the “property” of the substance relating to the solubility, in the Hansen solubility parameter, three items of the dispersion term D, the polar term P, and the hydrogen bond term H are expressed numerically for each substance. Here, the dispersion term D is a value representing the magnitude of van der Waals force, the polar term P is a value representing the magnitude of the dipole moment, and the hydrogen bond term H is a value representing the magnitude of the hydrogen bond. is there. The basic idea is explained below. For this reason, the description of the case where the hydrogen bond term H is divided into donor property and acceptor property will be omitted.
 ハンセン溶解度パラメータ(D,P,H)は、溶解性を検討するために、3次元の直交座標系(ハンセン空間、HSP空間)にプロットされる。例えば、溶液Aおよび固体Bそれぞれハンセン溶解度パラメータは、ハンセン空間上で溶液Aおよび固体Bそれぞれに対応する2つの座標(座標A,座標B)にプロットできる。そして、座標Aと座標Bとの距離Ra(HSP distance, Ra)が短い程、溶液Aと固体Bは互いに似た上記「性質」をもつため溶液Aに固体Bが溶解しやすいと考えることができる。この逆に、この距離Raが長い程、溶液Aと固体Bは互いに似ていない「性質」をもつため、溶液Aに固体Bが溶解しにくいと考えることができる。 Hansen solubility parameters (D, P, H) are plotted in a three-dimensional orthogonal coordinate system (Hansen space, HSP space) in order to study solubility. For example, the Hansen solubility parameter for each of the solution A and the solid B can be plotted on two coordinates (coordinate A and coordinate B) corresponding to the solution A and the solid B, respectively, in the Hansen space. And, the shorter the distance Ra (HSP distance, Ra) between the coordinates A and B, the solutions A and the solids B have the above-mentioned “properties”, so the solid B is more likely to dissolve in the solution A. it can. On the contrary, it can be considered that the longer the distance Ra is, the more difficult the solution A and the solid B are dissolved in the solution A because the solution A and the solid B have “properties” that are not similar to each other.
 また、溶液Aに対して、溶解する物質と溶解しない物質との境目となる距離Raを相互作用半径R0とする。従って、溶液Aと固体Bについて、距離Raが相互作用半径R0より小さい場合(Ra<R0)は溶液Aに固体Bが溶解すると考えることができる。一方、このRaが相互作用半径R0より大きい場合(R0<Ra)は溶液Aに固体Bが溶解しないと考えることができる。さらに、距離Raを相互作用半径R0で割った値をRED値(=Ra/R0、Relative Energy Difference)とする。すると、RED値が1より小さい場合(RED=Ra/R0<1)には、Ra<R0となり、溶液Aに固体Bが溶解すると考えることができる。一方、RED値が1より大きい場合(RED=Ra/R0>1)には、R0<Raとなり、溶液Aに固体Bが溶解しないと考えることができる。この様に、溶液Aおよび固体Bに関するRED値を元に、固体Bが溶液Aに溶けるか否かを判断できる。 Further, a distance Ra that becomes a boundary between a substance that dissolves and a substance that does not dissolve in the solution A is defined as an interaction radius R0. Therefore, for the solution A and the solid B, when the distance Ra is smaller than the interaction radius R0 (Ra <R0), it can be considered that the solid B is dissolved in the solution A. On the other hand, when this Ra is larger than the interaction radius R0 (R0 <Ra), it can be considered that the solid B does not dissolve in the solution A. Further, a value obtained by dividing the distance Ra by the interaction radius R0 is defined as a RED value (= Ra / R0, Relative Energy Difference). Then, when the RED value is smaller than 1 (RED = Ra / R0 <1), Ra <R0, and it can be considered that the solid B is dissolved in the solution A. On the other hand, when the RED value is greater than 1 (RED = Ra / R0> 1), R0 <Ra, and it can be considered that the solid B does not dissolve in the solution A. In this way, it can be determined whether or not the solid B is dissolved in the solution A based on the RED values relating to the solution A and the solid B.
 電解液40はここでいう溶液Aに対応し、正極バインダは固体Bに対応する。正極バインダは、電解液40に対するハンセン溶解度パラメータに基づくRED値が1より大きいため、電解液40に難溶性を示す。この逆に、電解液40に対するハンセン溶解度パラメータに基づくRED値が1より大きい程度に、電解液40に難溶性を示す正極のバインダであるならば、この正極バインダも、ハンセン溶解度パラメータに基づくRED値が1より大きいと考えることができる。 The electrolytic solution 40 corresponds to the solution A here, and the positive electrode binder corresponds to the solid B. Since the positive electrode binder has a RED value based on the Hansen solubility parameter with respect to the electrolytic solution 40 larger than 1, the positive electrode binder is hardly soluble in the electrolytic solution 40. Conversely, if the RED value based on the Hansen solubility parameter with respect to the electrolytic solution 40 is a positive electrode binder that is hardly soluble in the electrolytic solution 40 to the extent that the RED value is greater than 1, the positive electrode binder also has a RED value based on the Hansen solubility parameter. Can be considered greater than 1.
 ハンセン溶解度パラメータおよび相互作用半径R0は、成分の化学構造及び組成比や、実験結果を用いて算出することができる。その場合、Hansen氏らにより開発されたソフトウエアHSPiP(Hansen Solubility Parameters in Practice:HSPを効率よく扱うためのWindows〔登録商標〕用ソフト)を用いて求めることができる。このソフトウエアHSPiPは、2018年5月2日現在 http://www.hansen-solubility.com/から入手可能である。また、複数の溶媒が混合された混合溶媒の場合等に対しても、ハンセン溶解度パラメータ(D,P,H)を算出することができる。 The Hansen solubility parameter and the interaction radius R0 can be calculated using the chemical structure and composition ratio of the components and experimental results. In that case, it can be obtained using software HSPiP developed by Hansen et al. (Hansen Solubility Parameters in Practice: Windows [registered trademark] software for efficiently handling HSP). This software HSPiP is available as of May 2, 2018 from http://www.hansen-solubility.com/. Also, the Hansen solubility parameters (D, P, H) can be calculated for a mixed solvent in which a plurality of solvents are mixed.
<2-2.負極板21について(図1、図3、図6、図7)>
 負極板21は、大まかには上述した正極板11と同様の構成を備えており、薄板状の負極集電体22と、負極集電体22に塗工されている負極活物質層23とを備えている。負極活物質層23は、負極集電体22の両面に塗工されているが、塗工されている面はどちらかの片面であってもよい。そして、リチウムイオン二次電池1が過度に水分を含まない様に、製造時には、負極活物質層23を負極集電体22に塗工した後、塗工された負極活物質層23を十分乾燥させる必要がある。また、後述する様に、負極活物質層23は、製造時にリチウムイオンLiが吸蔵される(いわゆるプレドープされる)ものとすることができる。しかし、負極活物質層23にプレドープしないことも可能である。
<2-2. Regarding Negative Electrode Plate 21 (FIGS. 1, 3, 6, and 7)>
The negative electrode plate 21 roughly has the same configuration as the positive electrode plate 11 described above, and includes a thin plate-like negative electrode current collector 22 and a negative electrode active material layer 23 coated on the negative electrode current collector 22. I have. The negative electrode active material layer 23 is coated on both surfaces of the negative electrode current collector 22, but the coated surface may be either one surface. Then, at the time of manufacture, the negative electrode active material layer 23 is coated on the negative electrode current collector 22 so that the lithium ion secondary battery 1 does not contain excessive moisture, and then the coated negative electrode active material layer 23 is sufficiently dried. It is necessary to let Further, as will be described later, the negative electrode active material layer 23 can be occluded (so-called pre-doped) with lithium ions Li + during manufacturing. However, the negative electrode active material layer 23 may not be pre-doped.
 負極集電体22は、上述した正極板11の正極集電体12と同様に、Z方向に貫通する複数の孔22cが形成された金属箔で(図6および図7参照)、矩形状の集電部22aと、集電部22aの一端(図6の例では、上辺の右端)から外側に突出する電極端子接続部22bとが一体に形成されている。なお、集電部22aには複数の孔22cが形成されているが(図6および図7参照)、電極端子接続部22bには集電部22aの孔22cと同様の複数の孔が形成されていなくともよく、形成されていてもよい。ここで、集電部22aは、複数の孔22cが形成されているため、電解液40に含まれる陽イオンおよび陰イオンが集電部12aを透過できる。なお、集電部22aには複数の孔22cが形成されていなくともよく、さらに、電極端子接続部22bにも孔22cと同様の複数の孔が形成されていなくともよい。 The negative electrode current collector 22 is a metal foil in which a plurality of holes 22c penetrating in the Z direction are formed (see FIGS. 6 and 7), like the positive electrode current collector 12 of the positive electrode plate 11 described above. The current collector 22a and the electrode terminal connection 22b that protrudes outward from one end of the current collector 22a (the right end on the upper side in the example of FIG. 6) are integrally formed. The current collector 22a has a plurality of holes 22c (see FIGS. 6 and 7), but the electrode terminal connection 22b has a plurality of holes similar to the holes 22c of the current collector 22a. It may not be formed and may be formed. Here, since the current collector 22a has a plurality of holes 22c, cations and anions contained in the electrolytic solution 40 can pass through the current collector 12a. The current collector 22a may not have a plurality of holes 22c, and the electrode terminal connection portion 22b may not have a plurality of holes similar to the holes 22c.
 また、正極の電極端子接続部12bと、負極板21の電極端子接続部22bとは、図1に示す様に、重ならないように負極板の面方向に互いに間隔を開けた位置に設けられている。なお、図1および図6に示す、電極端子接続部22bのY軸方向の幅は適宜変更でき、例えば集電部22aと同じ幅としても良い。負極集電体22は、正極板11の正極集電体12と同様に、例えば、アルミニウム、ステンレス鋼、銅からなる金属箔を用いることができる。 Further, as shown in FIG. 1, the positive electrode terminal connection portion 12 b and the electrode terminal connection portion 22 b of the negative electrode plate 21 are provided at positions spaced apart from each other in the surface direction of the negative electrode plate so as not to overlap. Yes. In addition, the width | variety of the Y-axis direction of the electrode terminal connection part 22b shown in FIG. 1 and FIG. 6 can be changed suitably, for example, is good also as the same width as the current collection part 22a. As the negative electrode current collector 22, a metal foil made of, for example, aluminum, stainless steel, or copper can be used in the same manner as the positive electrode current collector 12 of the positive electrode plate 11.
 上述した正極活物質層13と同様に、負極活物質層23は、リチウムイオンを吸蔵可能および放出可能な負極活物質と、負極活物質の結着および負極活物質と負極集電体22の集電部22aとを結着させる負極バインダとを含む。そして、負極活物質層23は、負極活物質を備えることで、リチウムイオンを吸蔵可能および放出可能に構成されている。負極活物質層23は、さらに、負極活物質層23の電気伝導性を高めるための導電助剤や、負極板21の作成を容易にするための増粘剤等、他の成分を含んでも良い。導電助剤、増粘剤は、上述した正極板11と同様の物質を用いることができる。すなわち、導電助剤に、例えば、ケッチェンブラック、アセチレンブラック、グラファイトの微粒子、グラファイトの微細線維を用いることができる。増粘剤は、例えば、カルボキシルメチルセルロース[CMC]を用いることができる。 Similar to the positive electrode active material layer 13 described above, the negative electrode active material layer 23 includes a negative electrode active material capable of occluding and releasing lithium ions, binding of the negative electrode active material, and collection of the negative electrode active material and the negative electrode current collector 22. A negative electrode binder that binds the electric part 22a. And the negative electrode active material layer 23 is comprised so that occlusion and discharge | release of lithium ion are possible by providing a negative electrode active material. The negative electrode active material layer 23 may further contain other components such as a conductive additive for enhancing the electrical conductivity of the negative electrode active material layer 23 and a thickener for facilitating the creation of the negative electrode plate 21. . As the conductive auxiliary agent and the thickener, the same materials as those of the positive electrode plate 11 described above can be used. That is, for example, ketjen black, acetylene black, graphite fine particles, and graphite fine fibers can be used as the conductive assistant. As the thickener, for example, carboxymethyl cellulose [CMC] can be used.
 負極活物質として、従来のリチウムイオン二次電池に用いられている、リチウムイオンを吸蔵可能および放出可能な負極活物質を用いることができる。すなわち、負極活物質として、例えば、黒鉛等の炭素質材料、スズ酸化物,珪素酸化物等の金属酸化物、さらにこれらの物質に負極特性を向上させる目的でリンやホウ素を添加し改質を行ったもの等を用いることができる。また、負極活物質として、他には、化学式Li4+xTi12(0≦x≦3)で表され、スピネル型構造を有するチタン酸リチウムを用いてもよい。ここで、Tiの一部がAlやMg等の元素で置換されたものを用いてもよい。また、負極活物質として、他には、シリコン、シリコン合金、SiO、シリコン複合材料等のシリコン系材料を用いても良い。これらは単独で用いてもよく、2種以上混合して用いてもよい。 As the negative electrode active material, a negative electrode active material capable of occluding and releasing lithium ions, which is used in conventional lithium ion secondary batteries, can be used. That is, as a negative electrode active material, for example, carbonaceous materials such as graphite, metal oxides such as tin oxide and silicon oxide, and phosphorus and boron are added to these materials for the purpose of improving the negative electrode characteristics. What has been done can be used. In addition, as the negative electrode active material, lithium titanate represented by the chemical formula Li 4 + x Ti 5 O 12 (0 ≦ x ≦ 3) and having a spinel structure may be used. Here, a material in which a part of Ti is substituted with an element such as Al or Mg may be used. In addition, as the negative electrode active material, silicon-based materials such as silicon, silicon alloy, SiO, and silicon composite material may be used. These may be used alone or in combination of two or more.
 負極バインダは、従来のリチウムイオン二次電池に用いられている正負極のバインダを用いることができる。すなわち、従来のリチウムイオン二次電池のバインダとして、例えば、ポリフッ化ビニリデン[PVdF]、ポリテトラフルオロエチレン[PTFE]、ポリビニルピロリドン[PVP]、ポリ塩化ビニル[PVC]、ポリエチレン[PE]、ポリプロピレン[PP]、エチレン-プロピレン共重合体、スチレンブタジエンゴム[SBR]、アクリル樹脂、ポリアクリル酸が挙げられる。これらの様な、バインダをリチウムイオン二次電池1の負極バインダに用いることができる。 As the negative electrode binder, positive and negative electrode binders used in conventional lithium ion secondary batteries can be used. That is, as a binder of a conventional lithium ion secondary battery, for example, polyvinylidene fluoride [PVdF], polytetrafluoroethylene [PTFE], polyvinylpyrrolidone [PVP], polyvinyl chloride [PVC], polyethylene [PE], polypropylene [ PP], ethylene-propylene copolymer, styrene butadiene rubber [SBR], acrylic resin, and polyacrylic acid. Such a binder can be used as the negative electrode binder of the lithium ion secondary battery 1.
 製造時に、負極活物質層23にリチウムイオンLiを吸蔵させることもできる。この処理はプレドープと呼ばれる。 During production, the negative electrode active material layer 23 can also occlude lithium ions Li + . This process is called pre-doping.
 プレドープを行う方法は、大きく分けて2種類の方法がある。すなわち、1つの方法は、図1に示す様に、複数の正極板11、複数の負極板21、複数のセパレータ30を積層させ、これらを電解液40と共にラミネート部材50の内部(図2参照)に収容してからプレドープを行う、ラミネート部材50の内部でプレドープする方法である。もう一つは、負極板21を作成する前に、予めリチウムイオンLiを負極活物質に吸蔵させる、ラミネート部材50の外部でプレドープする方法である。 There are roughly two types of pre-doping methods. That is, in one method, as shown in FIG. 1, a plurality of positive plates 11, a plurality of negative plates 21, and a plurality of separators 30 are laminated, and these are put together with the electrolyte 40 inside the laminate member 50 (see FIG. 2). In this method, the pre-doping is performed after being housed in the laminate member 50. The other is a method of pre-doping outside the laminate member 50 in which lithium ion Li + is previously occluded in the negative electrode active material before the negative electrode plate 21 is formed.
 ラミネート部材50の内部でプレドープする方法は、より詳しくは、化学的方法と電気化学的方法との2種類の方法がある。ラミネート部材50の内部でプレドープする方法は、複数の正極板11、複数の負極板21、複数のセパレータ30を電解液40と共にラミネート部材50の内部(図2参照)に収容してからプレドープを行う。化学的方法は、リチウム金属を電解液40に溶解させてリチウムイオンLiにし、リチウムイオンLiを負極活物質に吸蔵させる方法である。これに対して、電気化学的方法では、リチウム金属と負極板21とに電圧をかけてリチウム金属をリチウムイオンLiにし、リチウムイオンLiを負極活物質に吸蔵させる方法である。 More specifically, the method of pre-doping inside the laminate member 50 includes two methods, a chemical method and an electrochemical method. In the method of pre-doping inside the laminate member 50, the plurality of positive plates 11, the plurality of negative plates 21, and the plurality of separators 30 are accommodated in the laminate member 50 (see FIG. 2) together with the electrolytic solution 40 and then pre-doped. . The chemical method is a method in which lithium metal is dissolved in the electrolytic solution 40 to form lithium ion Li + and the lithium ion Li + is occluded in the negative electrode active material. On the other hand, in the electrochemical method, a voltage is applied to the lithium metal and the negative electrode plate 21 to convert the lithium metal to lithium ion Li + and to store the lithium ion Li + in the negative electrode active material.
 これらの化学的方法と電気化学的方法との2種類の方法のいずれにおいても、電解液40内をリチウムイオンLiが拡散しやすいように、正極板11の正極集電体12の集電部12a(図5参照)および、負極板21の負極集電体22の集電部22a(図7参照)を、リチウムイオンLiが透過できることが望ましい。そこで、化学的方法あるいは電気化学的方法でプレドープを行う場合、正極板11の集電部12aには複数の孔12cが形成されており、かつ、負極板21の集電部22a(図7参照)には複数の孔22cが形成されていることが好ましい。 In both of these chemical methods and electrochemical methods, the current collector portion of the positive electrode current collector 12 of the positive electrode plate 11 so that the lithium ions Li + are easily diffused in the electrolytic solution 40. It is desirable that lithium ions Li + can pass through 12a (see FIG. 5) and the current collector 22a (see FIG. 7) of the negative electrode current collector 22 of the negative electrode plate 21. Therefore, when pre-doping is performed by a chemical method or an electrochemical method, the current collecting portion 12a of the positive electrode plate 11 has a plurality of holes 12c, and the current collecting portion 22a of the negative electrode plate 21 (see FIG. 7). ) Is preferably formed with a plurality of holes 22c.
 一方、ラミネート部材50の外部でプレドープする方法では、負極板21を作成する前に、予めリチウムイオンLiを負極活物質に吸蔵させるため、プレドープするためにリチウムイオンLiを電解液40内に拡散させなくともよい。このため、ラミネート部材50の外部でプレドープする方法を用いる場合、正極板11の集電部12aに複数の孔12cが形成されていなくともよく、かつ、負極板21の集電部22a(図7参照)に複数の孔22cが形成されていなくとも良い。 Meanwhile, in the method for pre-doping at the outside of the laminate member 50, before creating the negative electrode plate 21, for occluding pre lithium ion Li + in the anode active material, a lithium ion Li + in the electrolyte 40 to pre-dope It is not necessary to diffuse. For this reason, when the method of pre-doping outside the laminate member 50 is used, the current collecting portion 12a of the positive electrode plate 11 does not need to have a plurality of holes 12c, and the current collecting portion 22a of the negative electrode plate 21 (FIG. 7). A plurality of holes 22c may not be formed.
 なお、ラミネート部材50の内部でプレドープする方法と、ラミネート部材50の外部でプレドープする方法とを適宜組み合わせてもよい。すなわち、ラミネート部材50の外部でプレドープする方法に加えて、複数の正極板11、複数の負極板21、複数のセパレータ30を、電解液40と共にラミネート部材50の内部(図2参照)に収容した後、さらに、ラミネート部材50の内部でプレドープするする方法である化学的方法や電気化学的方法でプレドープを行っても良い。 It should be noted that the method of pre-doping inside the laminate member 50 and the method of pre-doping outside the laminate member 50 may be appropriately combined. That is, in addition to the method of pre-doping outside the laminate member 50, the plurality of positive electrode plates 11, the plurality of negative electrode plates 21, and the plurality of separators 30 are accommodated inside the laminate member 50 (see FIG. 2) together with the electrolytic solution 40. Thereafter, pre-doping may be performed by a chemical method or an electrochemical method, which is a method of pre-doping inside the laminate member 50.
<2-3.セパレータ30について(図1、図3)>
 セパレータ30は、図1に示す様に、正極板11と負極板21とを隔離し、かつ、電解液40の陽イオンおよび陰イオンが透過できる多孔質の材料からなり、矩形のシート状に形成されている。セパレータ30の縦横の長さ(図1および図3参照)は、正極板11の正極集電体12の集電部12aの長さ(図4参照)、および、負極板21の負極集電体22の集電部22aの長さ(図6参照)よりも長く設定されている。セパレータ30は、従来のリチウムイオン二次電池に使用されているようなセパレータを用いることができ、例えば、ビスコースレイヨンや天然セルロース等の抄紙、ポリエチレンやポリプロピレン等の不織布を用いることができる。
<2-3. About Separator 30 (FIGS. 1 and 3)>
As shown in FIG. 1, the separator 30 is made of a porous material that separates the positive electrode plate 11 and the negative electrode plate 21 and can transmit the cation and anion of the electrolytic solution 40, and is formed in a rectangular sheet shape. Has been. The vertical and horizontal lengths of the separator 30 (see FIGS. 1 and 3) are the length of the current collector 12a of the positive electrode current collector 12 of the positive electrode plate 11 (see FIG. 4) and the negative electrode current collector of the negative electrode plate 21. It is set to be longer than the length of 22 current collectors 22a (see FIG. 6). As the separator 30, a separator used in a conventional lithium ion secondary battery can be used. For example, papermaking such as viscose rayon or natural cellulose, or nonwoven fabric such as polyethylene or polypropylene can be used.
<2-4.電解液40について>
 電解液40は、有機溶媒(非水溶媒)、および電解質としてイミド系リチウム塩を含む。電解液40には、適宜添加剤を添加してもよい。添加剤としては、例えば、ビニレンカーボネート[VC]や、フルオロエチレンカーボネート[FEC]や、エチレンサルファイト[ES]等、負極にSEI膜(Solid Electrolyte Interface 膜)の生成を促進させる添加剤を用いることができる。
<2-4. About Electrolyte 40>
The electrolytic solution 40 includes an organic solvent (nonaqueous solvent) and an imide-based lithium salt as an electrolyte. You may add an additive to the electrolyte solution 40 suitably. As the additive, for example, an additive that promotes the formation of a SEI film (Solid Electrolyte Interface film) on the negative electrode, such as vinylene carbonate [VC], fluoroethylene carbonate [FEC], or ethylene sulfite [ES], is used. Can do.
 有機溶媒として、85℃の耐熱性を有する有機溶媒を用いることができる。例えば、カーボネート系有機溶媒、ニトリル系有機溶媒、ラクトン系有機溶媒、エーテル系有機溶媒、アルコール系有機溶媒、エステル系有機溶媒、アミド系有機溶媒、スルホン系有機溶媒、ケトン系有機溶媒、芳香族系有機溶媒を例示できる。これらの有機溶媒を、一種または二種以上を適宜の組成比で混合した溶媒を有機溶媒として用いることができる。ここでカーボネート系有機溶媒として、エチレンカーボネート[EC]やプロピレンカーボネート[PC]やフルオロエチレンカーボネート[FEC]などの環状カーボネート、エチルメチルカーボネート[EMC]やジエチルカーボネート[DEC]やジメチルカーボネート[DMC]などの鎖状カーボネートを例示できる。ここで、有機溶媒には、鎖状カーボネートの一種であるジメチルカーボネート[DMC]を含まないことが好ましい。ジメチルカーボネート[DMC]は、稀にではあるが、使用環境によっては耐熱性の悪化を引き起こすことがある。 As the organic solvent, an organic solvent having a heat resistance of 85 ° C. can be used. For example, carbonate organic solvent, nitrile organic solvent, lactone organic solvent, ether organic solvent, alcohol organic solvent, ester organic solvent, amide organic solvent, sulfone organic solvent, ketone organic solvent, aromatic An organic solvent can be illustrated. A solvent in which one or two or more of these organic solvents are mixed at an appropriate composition ratio can be used as the organic solvent. Here, as the carbonate organic solvent, cyclic carbonates such as ethylene carbonate [EC], propylene carbonate [PC] and fluoroethylene carbonate [FEC], ethyl methyl carbonate [EMC], diethyl carbonate [DEC], dimethyl carbonate [DMC] and the like The chain carbonate can be illustrated. Here, it is preferable that the organic solvent does not contain dimethyl carbonate [DMC] which is a kind of chain carbonate. Dimethyl carbonate [DMC] rarely causes heat resistance deterioration depending on the use environment.
 ニトリル系有機溶媒として、アセトニトリル、アクリロニトリル、アジポニトリル、バレロニトリル、イソブチロニトリルを例示できる。またラクトン系有機溶媒として、γ‐ブチロラクトン、γ‐バレロラクトンを例示できる。またエーテル系有機溶媒として、テトラヒドロフランやジオキサンなどの環状エーテル、1,2-ジメトキシエタンやジメチルエーテルやトリグライムなどの鎖状エーテルを例示できる。またアルコール系有機溶媒として、エチルアルコール、エチレングリコールを例示できる。またエステル系有機溶媒として、酢酸メチル、酢酸プロピル、リン酸トリメチルなどのリン酸エステル、ジメチルサルフェートなどの硫酸エステル、ジメチルサルファイトなどの亜硫酸エステルを例示できる。アミド系有機溶媒として、N‐メチル‐2‐ピロリドン、エチレンジアミンを例示できる。スルホン系有機溶媒として、ジメチルスルホンなどの鎖状スルホン、3‐スルホレンなどの環状スルホンを例示できる。ケトン系有機溶媒としてメチルエチルケトン、芳香族系有機溶媒としてトルエンを例示できる。そしてカーボネート系有機溶媒を除く上記各種の有機溶媒は、環状カーボネートを混合して用いることが好ましく、特に、負極にSEI膜(Solid Electrolyte Interface 膜)を生成可能なエチレンカーボネート[EC]と混合して用いることが好ましい。この場合、上述した正極バインダおよび負極バインダはポリアクリル酸であることが好ましい。また、有機溶媒は、エチルメチルカーボネート[EMC]およびジエチルカーボネート[DEC]を含むことが好ましい。 Examples of nitrile organic solvents include acetonitrile, acrylonitrile, adiponitrile, valeronitrile, and isobutyronitrile. Examples of the lactone organic solvent include γ-butyrolactone and γ-valerolactone. Examples of ether organic solvents include cyclic ethers such as tetrahydrofuran and dioxane, and chain ethers such as 1,2-dimethoxyethane, dimethyl ether, and triglyme. Examples of the alcohol organic solvent include ethyl alcohol and ethylene glycol. Examples of the ester organic solvent include phosphate esters such as methyl acetate, propyl acetate and trimethyl phosphate, sulfate esters such as dimethyl sulfate, and sulfite esters such as dimethyl sulfite. Examples of the amide organic solvent include N-methyl-2-pyrrolidone and ethylenediamine. Examples of the sulfone-based organic solvent include chain sulfones such as dimethyl sulfone and cyclic sulfones such as 3-sulfolene. Examples of the ketone organic solvent include methyl ethyl ketone, and toluene as the aromatic organic solvent. The above-mentioned various organic solvents excluding the carbonate-based organic solvent are preferably used by mixing with cyclic carbonate, and in particular, mixed with ethylene carbonate [EC] capable of forming an SEI film (Solid Electrolyte Interface film) on the negative electrode. It is preferable to use it. In this case, the positive electrode binder and the negative electrode binder described above are preferably polyacrylic acid. The organic solvent preferably contains ethyl methyl carbonate [EMC] and diethyl carbonate [DEC].
 電解質は、イミド系リチウム塩(-SO-N-SO-を部分構造に有するリチウム塩)を用いることができる。ここで、イミド系リチウム塩として、リチウムビス(フルオロスルホニル)イミド[LiN(FSO、LiFSI]、リチウムビス(トリフルオロメタンスルホニル)イミド[LiN(SOCF、LiTFSI]、リチウムビス(ペンタフルオロエタンスルホニル)イミド[LiN(SOCFCF、LiBETI]を例示できる。電解質として、これらのイミド系リチウム塩を1種のみを用いても2種以上を混合して用いてもよい。これらのイミド系リチウム塩は、85℃の耐熱性を備えている。上記のイミド系リチウム塩でも、トリフルオロメタン基(-CF)、ペンタフルオロエタン基(-CFCF)、ペンタフルオロフェニル基(-C)を有さないイミド系リチウム塩(例えば、リチウムビス(フルオロスルホニル)イミド[LiN(FSO、LiFSI])を用いると、次の点で望ましい。すなわち、正極バインダおよび負極バインダは、ハンセン溶解度パラメータに基づくRED値が1よりも大きくなる傾向がある。また、高温および低温においても、電解液40のイオン伝導度が低下しにくく、電解液40が安定する。 As the electrolyte, an imide-based lithium salt (a lithium salt having —SO 2 —N—SO 2 — in a partial structure) can be used. Here, as the imide-based lithium salt, lithium bis (fluorosulfonyl) imide [LiN (FSO 2 ) 2 , LiFSI], lithium bis (trifluoromethanesulfonyl) imide [LiN (SO 2 CF 3 ) 2 , LiTFSI], lithium bis (Pentafluoroethanesulfonyl) imide [LiN (SO 2 CF 2 CF 3 ) 2 , LiBETI] can be exemplified. As an electrolyte, these imide-based lithium salts may be used alone or in combination of two or more. These imide-based lithium salts have a heat resistance of 85 ° C. Even in the imide lithium salt described above, an imide lithium salt having no trifluoromethane group (—CF 3 ), pentafluoroethane group (—CF 2 CF 3 ), or pentafluorophenyl group (—C 6 F 5 ) (for example, , Lithium bis (fluorosulfonyl) imide [LiN (FSO 2 ) 2 , LiFSI]) is preferable in the following points. That is, the positive electrode binder and the negative electrode binder tend to have a RED value greater than 1 based on the Hansen solubility parameter. Further, even at high and low temperatures, the ionic conductivity of the electrolytic solution 40 hardly decreases, and the electrolytic solution 40 is stabilized.
 電解液40中の電解質の濃度は、0.5~10.0mol/Lが好ましい。電解液40の適切な粘度および、イオン伝導度の観点から、電解液40中の電解質の濃度は、0.5~2.0mol/Lがより好ましい。電解質の濃度が0.5mol/Lより少ない場合、電解質が解離したイオンの濃度の低下により、電解液40のイオン伝導度が低くすぎるため好ましくない。また、電解質の濃度が10.0mol/Lより大きいと電解液40の粘度の増加により電解液40のイオン伝導度が低すぎるため好ましくない。また、以上の有機溶媒と電解質を含む電解液40を用いる場合、上述した正極バインダおよび負極バインダはポリアクリル酸であることが好ましい。 The concentration of the electrolyte in the electrolytic solution 40 is preferably 0.5 to 10.0 mol / L. From the viewpoint of an appropriate viscosity of the electrolytic solution 40 and ion conductivity, the concentration of the electrolyte in the electrolytic solution 40 is more preferably 0.5 to 2.0 mol / L. When the concentration of the electrolyte is less than 0.5 mol / L, it is not preferable because the ionic conductivity of the electrolytic solution 40 is too low due to a decrease in the concentration of ions from which the electrolyte is dissociated. Moreover, it is not preferable that the concentration of the electrolyte is higher than 10.0 mol / L because the ionic conductivity of the electrolytic solution 40 is too low due to an increase in the viscosity of the electrolytic solution 40. Moreover, when using the electrolyte solution 40 containing the above organic solvent and electrolyte, it is preferable that the positive electrode binder and negative electrode binder which were mentioned above are polyacrylic acid.
<2-5.ラミネート部材50について(図1、図3)>
 ラミネート部材50は、図3に示すように、心材シート51、外側シート52、内側シート53を備えている。そして、心材シート51の外側となる面に外側シート52が接着され、心材シート51の内側となる面に内側シート53が接着されている。例えば、心材シート51をアルミニウム箔とし、外側シート52をナイロンペットフィルム等の樹脂シートとし、内側シート53をポリプロピレン等の樹脂シートとすることができる。
<2-5. Regarding Laminate Member 50 (FIGS. 1 and 3)>
As shown in FIG. 3, the laminate member 50 includes a core material sheet 51, an outer sheet 52, and an inner sheet 53. The outer sheet 52 is bonded to the outer surface of the core material sheet 51, and the inner sheet 53 is bonded to the inner surface of the core material sheet 51. For example, the core material sheet 51 can be an aluminum foil, the outer sheet 52 can be a resin sheet such as a nylon pet film, and the inner sheet 53 can be a resin sheet such as polypropylene.
<3.リチウムイオン二次電池1の充放電の過程について(図3、図8、図9)>
 リチウムイオン二次電池1の、正極10の正極板11と、負極20の負極板21と、セパレータ30と、電解液40との位置関係(図1参照)を図8に模式的に示した。図8に示す様に、リチウムイオン二次電池1は、正極板11と負極板21とが、セパレータ30を間に挟んで向き合う構成となっている。上述した様に、正極活物質層13および負極活物質層23は、共にリチウムイオンLiを吸蔵可能および放出可能に構成されている。
<3. Regarding the charging / discharging process of the lithium ion secondary battery 1 (FIGS. 3, 8, and 9)>
FIG. 8 schematically shows the positional relationship (see FIG. 1) among the positive electrode plate 11 of the positive electrode 10, the negative electrode plate 21 of the negative electrode 20, the separator 30, and the electrolytic solution 40 of the lithium ion secondary battery 1. As shown in FIG. 8, the lithium ion secondary battery 1 has a configuration in which a positive electrode plate 11 and a negative electrode plate 21 face each other with a separator 30 interposed therebetween. As described above, both the positive electrode active material layer 13 and the negative electrode active material layer 23 are configured to be able to occlude and release lithium ions Li + .
 充電時のリチウムイオン二次電池1では、正極活物質層13に吸蔵されているリチウムイオンLiが電解液40中に放出され、かつ、これと同量の電解液40中のリチウムイオンLiが負極活物質層23に吸蔵される(図8および図9参照)。この逆に、放電時のリチウムイオン二次電池1では、負極活物質層23に吸蔵されているリチウムイオンLiが電解液40中に放出され、かつ、これと同量の電解液40中のリチウムイオンLiが正極活物質層13に吸蔵される。あたかも、充放電の過程で、リチウムイオンLiは、電解液40を介して、正極活物質層13と負極活物質層23との間を移動する(図8および図9参照)。すなわち、電解液40を介し、リチウムイオンLiは、充電時には、正極活物質層13から負極活物質層23に移動し、放電時には、負極活物質層23から正極活物質層13に移動する(図8および図9参照)。そして、負極活物質層23に吸蔵されるリチウムイオンLiの量が最大になるのは、充放電の過程のなかで満充電時である。以上の様に充放電の過程でリチウムイオンLiが吸蔵および放出されることで、正極活物質層13および負極活物質層23に吸蔵されたリチウムイオンLiの量が増減する。なお、本明細書において、リチウムイオンLiの量は、リチウムイオンLiの原子数に比例する値であればよく、例えば、mol数とすることができる。 In the lithium ion secondary battery 1 during charging, + lithium ion Li occluded in the positive electrode active material layer 13 are released into the electrolyte solution 40, and this lithium ions in the same amount of electrolyte solution 40 Li + Is occluded in the negative electrode active material layer 23 (see FIGS. 8 and 9). On the contrary, in the lithium ion secondary battery 1 at the time of discharge, lithium ion Li + occluded in the negative electrode active material layer 23 is released into the electrolytic solution 40 and the same amount of the electrolytic solution 40 in the electrolytic solution 40 is discharged. Lithium ions Li + are occluded in the positive electrode active material layer 13. As if charging and discharging, lithium ions Li + move between the positive electrode active material layer 13 and the negative electrode active material layer 23 via the electrolytic solution 40 (see FIGS. 8 and 9). That is, lithium ion Li + moves from the positive electrode active material layer 13 to the negative electrode active material layer 23 during charging, and moves from the negative electrode active material layer 23 to the positive electrode active material layer 13 during discharging via the electrolytic solution 40 ( FIG. 8 and FIG. 9). The maximum amount of lithium ions Li + occluded in the negative electrode active material layer 23 is during full charge during the charge / discharge process. More discharge process in lithium ion Li + As is by being insertion and extraction, the amount of occluded lithium ion Li + in the positive electrode active material layer 13 and the negative electrode active material layer 23 is increased or decreased. In this specification, the amount of lithium ion Li + may be a value proportional to the number of atoms of lithium ion Li +, for example, be a mol number.
<4.プレドープについて>
 負極活物質層23にリチウムイオンLiがプレドープされる場合、このプレドープするリチウムイオンLiの量は、以下で説明する様に上限値を設けることもできる。
<4. About pre-dope>
If the anode active material layer 23 is a lithium ion Li + is pre-doped, the amount of lithium ion Li + to the pre-doping can also be an upper limit value as described below.
 満放電時に正極活物質層13に吸蔵されていた全てのリチウムイオンLiの量Ptと同量のリチウムイオンLiは、満放電の状態から満充電の状態になると、負極活物質層23に吸蔵される(図9参照)。ここで、満充電時に負極活物質層23に吸蔵されるリチウムイオンLiの量Nは、正極活物質層13から負極活物質層23に移動するリチウムイオンLiの量Ptと、プレドープで負極活物質層23に吸蔵しているリチウムイオンLiの量Npとの和Np+Ptである(図9参照)。ここで、Ptは、満放電時に正極活物質層13に吸蔵されていた全てのリチウムイオンLiの量であり、充放電の過程でリチウムイオンLiが不活性な化合物に変化しても、プレドープで負極活物質層23に吸蔵されたリチウムイオンLiによって補われる。このため、Ptは、初充電前に正極活物質層13が吸蔵していたリチウムイオンLiの量(すなわち、製造前に正極活物質が吸蔵していたリチウムイオンLiの量)と同じ量になる。 When the amount Pt of all lithium ions Li + occluded in the positive electrode active material layer 13 at the time of full discharge is the same as the amount Pt of lithium ions Li + , Occluded (see FIG. 9). Here, the amount N of lithium ions Li + occluded in the negative electrode active material layer 23 at the time of full charge is the amount Pt of lithium ions Li + transferred from the positive electrode active material layer 13 to the negative electrode active material layer 23 and the pre-doped negative electrode This is the sum Np + Pt with the amount Np of lithium ions Li + occluded in the active material layer 23 (see FIG. 9). Here, Pt is the amount of all the lithium ion Li + that was stored in the positive electrode active material layer 13 at the time of full discharge, the charge-discharge process in lithium ion Li + is also changed to inactive compounds, It is supplemented by lithium ions Li + occluded in the negative electrode active material layer 23 by pre-doping. For this reason, Pt is the same amount as the amount of lithium ion Li + occluded by the positive electrode active material layer 13 before the initial charge (that is, the amount of lithium ion Li + occluded by the positive electrode active material before manufacture). become.
 そして、プレドープ前の負極活物質層23が吸蔵可能なリチウムイオンLiの量をNtとする(図9参照)。上述した様に、満充電時では、負極活物質層23に吸蔵されているリチウムイオンLiの量Nは、Np+Pt(すなわち、プレドープで負極活物質層23に吸蔵されているリチウムイオンLiの量Npと、満放電時から満充電時にかけて、正極活物質層13から負極活物質層23に移動するリチウムイオンLiの量Ptとの和)である(図9参照)。 The amount of lithium ion Li + that can be occluded by the negative electrode active material layer 23 before pre-doping is Nt (see FIG. 9). As described above, at the time of full charge, the amount N of lithium ions Li + occluded in the negative electrode active material layer 23 is Np + Pt (that is, lithium ion Li + occluded in the negative electrode active material layer 23 by pre-doping). This is the sum of the amount Np and the amount Pt of lithium ion Li + that moves from the positive electrode active material layer 13 to the negative electrode active material layer 23 from full discharge to full charge (see FIG. 9).
 もし仮に、この満充電時に負極活物質層23に吸蔵されているリチウムイオンLiの量N(=Np+Pt)が、プレドープ前の負極活物質層23が吸蔵可能なリチウムイオンLiの量Ntを超える場合(すなわち、Np+Pt>Nt)、超えた分(すなわち、Np+Pt-Nt)は、負極活物質層23に吸蔵しきれないため、電解液40中でリチウム金属として析出する虞がある。そこで、プレドープで負極活物質層23に吸蔵させるリチウムイオンLiの量Npに上限Npmaxを設けることができ、Npmax=Nt-Ptとする。これにより、Np+Pt≦Ntとなり、常に正極活物質層13から放出されたリチウムイオンLiを負極活物質層23が吸蔵することができ、リチウムイオンLiが析出することを抑止できる。なお、Npmax、Nt、Ptは、mol数等で表すことができる。 If the amount N (= Np + Pt) of lithium ions Li + stored in the negative electrode active material layer 23 at the time of this full charge is the amount Nt of lithium ions Li + that can be stored in the negative electrode active material layer 23 before pre-doping. If it exceeds (that is, Np + Pt> Nt), the excess (that is, Np + Pt−Nt) cannot be fully occluded in the negative electrode active material layer 23, so that it may be deposited as lithium metal in the electrolytic solution 40. Therefore, an upper limit Npmax can be provided for the amount Np of lithium ions Li + stored in the negative electrode active material layer 23 by pre-doping, and Npmax = Nt−Pt. As a result, Np + Pt ≦ Nt is satisfied, and the negative electrode active material layer 23 can always occlude the lithium ion Li + released from the positive electrode active material layer 13, and the precipitation of lithium ion Li + can be suppressed. Note that Npmax, Nt, and Pt can be represented by the number of moles.
 ここで、上述した様に、Ptは、初充電前に正極活物質層13が吸蔵していたリチウムイオンLiの量(すなわち、製造前に正極活物質が吸蔵していたリチウムイオンLiの量)と同じ量になる。従って、プレドープで負極活物質層23に吸蔵させるリチウムイオンLiの量の上限値Npmaxは、プレドープ前の負極活物質層23が吸蔵可能なリチウムイオンLiの量Ntから、製造前に正極活物質が吸蔵していたリチウムイオンLiの量(Pt)を引いた量である。NtやPtは、例えば、正極活物質や負極活物質の理論値から算出することができ、他には、実験で、プレドープ前の負極活物質がリチウムイオンLiを吸蔵できる量、および正極活物質が吸蔵しているリチウムイオンLiの量を計測し、その計測値から算出することもできる。 Here, as described above, Pt is the amount of lithium ion Li + occluded by the positive electrode active material layer 13 before the initial charge (that is, lithium ion Li + occluded by the positive electrode active material before production). Amount). Therefore, the upper limit value Npmax of the amount of lithium ion Li + occluded in the negative electrode active material layer 23 by pre-doping is determined from the amount Nt of lithium ion Li + occluded by the negative electrode active material layer 23 before pre-doping before the positive electrode active This is the amount obtained by subtracting the amount (Pt) of lithium ions Li + stored by the substance. Nt and Pt can be calculated from, for example, theoretical values of the positive electrode active material and the negative electrode active material. In addition, in the experiment, the amount of the negative electrode active material before pre-doping can occlude lithium ions Li + and the positive electrode active material can be calculated. It is also possible to measure the amount of lithium ion Li + occluded by the substance and calculate from the measured value.
 上述した様に、プレドープで負極活物質層23に吸蔵させるリチウムイオンLiの量Npの上限値Npmaxは、Npmax=Nt-Ptである。このため、Npmaxは、Ntの値およびPtの値によって変化する(図9参照)。大まかに言えば、Ntの値が大きい程、Npmaxが大きくなり、Ptの値が大きい程、Npmaxは小さくなる(図9参照)。例えば、Ntが、Ptの2倍である場合(すなわち、Nt=2・Pt)、Npmaxは、Ptに等しい(図9参照)。また、例えば、Ntが、Ptの3倍である場合(すなわち、Nt=3・Pt)、Npmaxは、Ptの2倍(すなわち、2・Pt)に等しい(図9参照)。この様に、Npmaxは、Ntの値およびPtの値よって変動する(図9参照)。すなわち、プレドープで負極活物質層23に吸蔵させるリチウムイオンLiの量Npの上限値Npmaxは、プレドープ前の負極活物質層23が吸蔵可能なリチウムイオンLiの量Nt、および充放電前に正極活物質層13が吸蔵していたリチウムイオンLiの量Ptによって変動する。 As described above, the upper limit value Npmax of the amount Np of lithium ions Li + stored in the negative electrode active material layer 23 by pre-doping is Npmax = Nt−Pt. Therefore, Npmax varies depending on the value of Nt and the value of Pt (see FIG. 9). Roughly speaking, Npmax increases as the value of Nt increases, and Npmax decreases as the value of Pt increases (see FIG. 9). For example, when Nt is twice Pt (that is, Nt = 2 · Pt), Npmax is equal to Pt (see FIG. 9). For example, when Nt is 3 times Pt (that is, Nt = 3 · Pt), Npmax is equal to 2 times Pt (ie, 2 · Pt) (see FIG. 9). Thus, Npmax varies depending on the value of Nt and the value of Pt (see FIG. 9). That is, the upper limit of the lithium ion Li + in an amount Np to be occluded in the negative electrode active material layer 23 in the pre-doping Npmax, the pre-doped prior to the negative electrode active material layer 23 is storable lithium ion Li + in an amount Nt, and before charge and discharge It varies depending on the amount Pt of lithium ion Li + stored in the positive electrode active material layer 13.
 また、以上で説明した様に、プレドープで負極活物質層23に吸蔵させるリチウムイオンLiの量Npに上限Npmaxを設け、Npmax=Nt-Ptとすることは、次の様に言い換えることもできる。負極活物質層23に吸蔵されるリチウムイオンLiの量が最大になるのは、充放電の過程のなかで満充電時である。そして、上述した様に、満充電時において負極活物質層23に吸蔵されるリチウムイオンLiの量Nは、満放電時に正極活物質層13に吸蔵されていた全てのリチウムイオンLiの量Ptと、プレドープで負極活物質層23に吸蔵しているリチウムイオンLiの量Npとの和Np+Pt(すなわち、N=Np+Pt)である(図9参照)。プレドープで負極活物質層23に吸蔵させるリチウムイオンLiの量Npが上限Npmax(Np=Npmax=Nt-Pt)の場合、満充電時において負極活物質層23に吸蔵されるリチウムイオンLiの量N(=Np+Pt)は、N=Np+Pt=Nt-Pt+Pt=Ntとなる。 In addition, as described above, the upper limit Npmax is set for the amount Np of lithium ions Li + to be occluded in the negative electrode active material layer 23 by pre-doping, and Npmax = Nt−Pt can be rephrased as follows. . The maximum amount of lithium ions Li + occluded in the negative electrode active material layer 23 is during full charge during the charge / discharge process. As described above, the amount N of lithium ions Li + stored in the negative electrode active material layer 23 at the time of full charge is the amount of all lithium ions Li + stored in the positive electrode active material layer 13 at the time of full discharge. It is the sum Np + Pt (that is, N = Np + Pt) of Pt and the amount Np of lithium ions Li + stored in the negative electrode active material layer 23 by pre-doping (see FIG. 9). When the amount Np of lithium ions Li + stored in the negative electrode active material layer 23 by pre-doping is the upper limit Npmax (Np = Npmax = Nt−Pt), the lithium ion Li + stored in the negative electrode active material layer 23 at full charge The quantity N (= Np + Pt) is N = Np + Pt = Nt−Pt + Pt = Nt.
 ここで、満充電時において負極活物質層23に吸蔵されるリチウムイオンLiの量N(図9参照)を、プレドープ前の負極活物質層23が吸蔵可能なリチウムイオンLiの量Ntを100%として、Nを%で表す場合、N=NtのときはNが100%となる。上述した様に、プレドープで負極活物質層23に吸蔵させるリチウムイオンLiの量Npが上限Npmax(Np=Npmax=Nt-Pt)の場合、満充電時において負極活物質層23に吸蔵されるリチウムイオンLiの量N(=Np+Pt)は、N=Ntとなるので、N=100%となっている。また上述した様に、負極活物質層23に吸蔵されるリチウムイオンLiの量は、最大値は、満充電時において量N(=Np+Pt)となる。そこで、プレドープで負極活物質層23に吸蔵させるリチウムイオンLiの量Npが上限Npmax(Np=Npmax=Nt-Pt)の場合、負極活物質層23に吸蔵されるリチウムイオンLiの量は、最大でN=100%となり、100%を超えないようになっている。すなわち、プレドープで負極活物質層23に吸蔵させるリチウムイオンLiの量Npに上限Npmax(=Nt-Pt)を設けることで、負極活物質層23に吸蔵させるリチウムイオンLiの量は、充放電の過程で常に、プレドープ前の負極活物質層23が吸蔵可能なリチウムイオンLiの量Ntの100%以下に調整される。なお、負極活物質層中の負極活物質のドープ率は以下の様に表される。
ドープ率(%)=N/Nt×100
N:満充電時において負極活物質(負極活物質層)が吸蔵しているリチウムイオンの量(mol)
Nt:プレドープ前の負極活物質(負極活物質層)が吸蔵可能なリチウムイオンの量(mol)
Here, the amount N of lithium ion Li + occluded in the negative electrode active material layer 23 during full charge (see FIG. 9) is the amount Nt of lithium ion Li + occluded in the negative electrode active material layer 23 before pre-doping. When N is expressed as% when N is 100%, N is 100% when N = Nt. As described above, when the amount Np of lithium ions Li + stored in the negative electrode active material layer 23 by pre-doping is the upper limit Npmax (Np = Npmax = Nt−Pt), it is stored in the negative electrode active material layer 23 at full charge. The amount N (= Np + Pt) of lithium ions Li + is N = Nt, and therefore N = 100%. As described above, the maximum amount of lithium ions Li + stored in the negative electrode active material layer 23 is the amount N (= Np + Pt) when fully charged. Therefore, when the amount Np of lithium ions Li + stored in the negative electrode active material layer 23 by pre-doping is the upper limit Npmax (Np = Npmax = Nt−Pt), the amount of lithium ions Li + stored in the negative electrode active material layer 23 is N = 100% at the maximum, and does not exceed 100%. That is, the negative electrode active material layer is 23 to an upper limit Npmax (= Nt-Pt) in a lithium ion Li + in an amount Np occluding, the amount of lithium ion Li + to be occluded in the negative electrode active material layer 23 in the pre-doping, the charge During the discharge process, the negative electrode active material layer 23 before pre-doping is always adjusted to 100% or less of the amount Nt of lithium ion Li + that can be occluded. In addition, the dope rate of the negative electrode active material in a negative electrode active material layer is represented as follows.
Doping rate (%) = N / Nt × 100
N: Amount of lithium ion (mol) stored in the negative electrode active material (negative electrode active material layer) at full charge
Nt: Amount of lithium ion (mol) that can be occluded by the negative electrode active material (negative electrode active material layer) before pre-doping
[その他の実施の形態]
 その他の実施の形態として、例えば、上記のリチウムイオン二次電池は、正極板11と負極板21とセパレータ30とを積層した積層型のリチウムイオン二次電池であるが、長尺の正極と、長尺の負極と、長尺のセパレータとを捲回した捲回型のリチウムイオン二次電池とすることができる。
[Other embodiments]
As another embodiment, for example, the lithium ion secondary battery described above is a stacked lithium ion secondary battery in which the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are stacked. A wound lithium ion secondary battery in which a long negative electrode and a long separator are wound can be obtained.
 リチウムイオン二次電池は、リチウムポリマー2次電池であってもよい。 The lithium ion secondary battery may be a lithium polymer secondary battery.
<<リチウムイオン二次電池の耐熱性について>>
 以上に説明した構成により、リチウムイオン二次電池1は、85℃の耐熱性をもつ。
<< About heat resistance of lithium ion secondary battery >>
With the configuration described above, the lithium ion secondary battery 1 has a heat resistance of 85 ° C.
 また、従来のリチウムイオン二次電池が85℃程度に保たれると、リチウムイオンLiが不活性な化合物に徐々に変化してゆくことで、充放電に関与できるリチウムイオンLiの量が減少し、充放電容量が減少する。この様なリチウムイオン二次電池は、高温で充放電容量が減少する、つまり高温耐久性が乏しい。本明細書では、高温耐久性とは、リチウムイオン二次電池が高温のまま時間が経過しても、リチウムイオン二次電池の充放電容量が充分な量に保たれることである。 In addition, when the conventional lithium ion secondary battery is kept at about 85 ° C., the lithium ion Li + gradually changes into an inactive compound, so that the amount of lithium ion Li + that can participate in charging and discharging is reduced. The charge / discharge capacity decreases. Such a lithium ion secondary battery has a low charge / discharge capacity at high temperatures, that is, low temperature durability. In the present specification, the high temperature durability means that the charge / discharge capacity of the lithium ion secondary battery is maintained at a sufficient amount even when the lithium ion secondary battery is kept at a high temperature.
 これに対して、リチウムイオン二次電池1は、負極活物質にリチウムイオンLiがプレドープされている場合は、リチウムイオンLiが負極活物質内に吸蔵されている。このため、充放電に必要なリチウムイオンLiが不活性な化合物に変化しても、プレドープにより負極活物質に吸蔵されたリチウムイオンLiが変化分を補うことで、リチウムイオン二次電池1の充放電容量の低下を抑止できる。このため、リチウムイオン二次電池1は、85℃以上の耐熱性を備えるだけでなく、高い高温耐久性をも備える。 In contrast, the lithium-ion secondary battery 1, when the negative electrode active material a lithium ion Li + is pre-doped, the lithium ion Li + is occluded in the negative electrode active substance in. For this reason, even if lithium ion Li + required for charge / discharge changes to an inactive compound, the lithium ion Li + occluded in the negative electrode active material by pre-doping compensates for the change, so that the lithium ion secondary battery 1 The decrease in charge / discharge capacity can be suppressed. For this reason, the lithium ion secondary battery 1 not only has a heat resistance of 85 ° C. or higher, but also has a high temperature durability.
 また、リチウムイオン二次電池を高温環境下で長時間使用した場合、放電容量が低下すると共に、内部抵抗が増加する。しかし、ドープ率が高くなるにつれて、放電容量の低下率や内部抵抗の増加率が小さくなる傾向にある。そのため、ドープ率は50%から100%が好ましく、80%から100%がより好ましく、90%から100%が更に好ましい。 Also, when a lithium ion secondary battery is used in a high temperature environment for a long time, the discharge capacity is reduced and the internal resistance is increased. However, as the doping rate increases, the rate of decrease in discharge capacity and the rate of increase in internal resistance tend to decrease. Therefore, the doping rate is preferably 50% to 100%, more preferably 80% to 100%, and still more preferably 90% to 100%.
 本開示のリチウムイオン二次電池は、上記の実施の形態にて説明した構造、構成、外観、形状等に限定されるものではなく、上述した実施の形態を理解することにより種々の変更、追加、削除が可能である。 The lithium ion secondary battery of the present disclosure is not limited to the structure, configuration, appearance, shape, and the like described in the above embodiment, and various modifications and additions can be made by understanding the above embodiment. Can be deleted.
 以下に、試験例を挙げて本開示の技術をさらに具体的に説明するが、本開示の技術はこれらの範囲に限定されるものではない。 Hereinafter, the technology of the present disclosure will be described more specifically with reference to test examples, but the technology of the present disclosure is not limited to these ranges.
<リチウムイオン二次電池の作成>
[正極の作成]
 まず、正極活物質としてLiFePOを88質量部、バインダとしてポリアクリル酸(ポリアクリル酸のナトリウム中和塩)を6質量部、導電助剤としてカーボンブラックを15質量部、増粘剤としてカルボキシメチルセルロースを0.3質量部、溶媒として水を217質量部用いて正極活物質を含む正極用スラリーを調製した。
<Creation of lithium ion secondary battery>
[Creation of positive electrode]
First, 88 parts by mass of LiFePO 4 as a positive electrode active material, 6 parts by mass of polyacrylic acid (sodium neutralized salt of polyacrylic acid) as a binder, 15 parts by mass of carbon black as a conductive additive, carboxymethylcellulose as a thickener A positive electrode slurry containing a positive electrode active material was prepared by using 0.3 part by mass of water and 217 parts by mass of water as a solvent.
 正極用スラリーは、以下の手順にて調製した。
(1)全ての材料と水とを、ミキサーa(株式会社シンキー製あわとり練太郎ARE-310)にて混合してプレスラリーを調製した。
(2)(1)で得たプレスラリーを、ミキサーb(プライミクス株式会社製フィルミックス40-L)にて更に混合して中間スラリーを調製した。
(3)(2)で得た中間スラリーを再度ミキサーaで混合して正極用スラリーを調製した。
The positive electrode slurry was prepared by the following procedure.
(1) A pre-slurry was prepared by mixing all materials and water with a mixer a (Shinky Co., Ltd. Awatori Nertaro ARE-310).
(2) The pre-slurry obtained in (1) was further mixed with a mixer b (Filmix 40-L manufactured by PRIMIX Co., Ltd.) to prepare an intermediate slurry.
(3) The intermediate slurry obtained in (2) was mixed again with the mixer a to prepare a positive electrode slurry.
 次に、集電箔として厚み15μmのアルミニウム箔(多孔箔)を用い、正極用スラリーをそれぞれ集電箔に塗工し、乾燥させて正極を作成した。正極用スラリーの塗布量は、乾燥後の活性炭の質量が3mg/cmとなるように調整した。集電箔への正極用スラリーの塗工には、ブレードコーターやダイコーターを用いた。 Next, an aluminum foil (porous foil) having a thickness of 15 μm was used as the current collector foil, and each positive electrode slurry was applied to the current collector foil and dried to prepare a positive electrode. The coating amount of the positive electrode slurry was adjusted so that the mass of the activated carbon after drying was 3 mg / cm 2 . A blade coater or a die coater was used for coating the positive electrode slurry on the current collector foil.
[負極の作成]
 負極活物質としてのグラファイトを98質量部、バインダとしてのスチレンブタジエンゴム(SBR)を1.4質量部、増粘剤としてカルボキシメチルセルロースを0.7質量部、溶媒としての水を96質量部混合し、以下の手順にて負極用スラリーを調製した。
(1)バインダを除く材料と水とを、ミキサーaにて混合してプレスラリーを調製した。
(2)(1)で得たプレスラリーを、ミキサーbにて更に混合して中間スラリーを調製した。
(3)(2)で得た中間スラリーにバインダを添加し、ミキサーaにて混合して負極用スラリーを調製した。
[Creation of negative electrode]
98 parts by mass of graphite as a negative electrode active material, 1.4 parts by mass of styrene butadiene rubber (SBR) as a binder, 0.7 parts by mass of carboxymethyl cellulose as a thickener, and 96 parts by mass of water as a solvent are mixed. A negative electrode slurry was prepared by the following procedure.
(1) A material excluding the binder and water were mixed in a mixer a to prepare a pre-slurry.
(2) The pre-slurry obtained in (1) was further mixed with a mixer b to prepare an intermediate slurry.
(3) A binder was added to the intermediate slurry obtained in (2) and mixed by a mixer a to prepare a negative electrode slurry.
 次に、集電箔として厚み10μmの銅箔(多孔箔)を用い、負極用スラリーを集電箔に塗工し、乾燥させて負極を作成した。負極用スラリーの塗布量は、乾燥後のグラファイトの質量が3mg/cmとなるように調整した。集電箔への負極用スラリーの塗工には、ブレードコーターを用いた。 Next, a copper foil (porous foil) having a thickness of 10 μm was used as the current collector foil, and the negative electrode slurry was applied to the current collector foil and dried to prepare a negative electrode. The coating amount of the negative electrode slurry was adjusted so that the mass of graphite after drying was 3 mg / cm 2 . A blade coater was used for coating the negative electrode slurry on the current collector foil.
[電解液の調製]
 エチレンカーボネート[EC]を20.0vol%、プロピレンカーボネート[PC]を10.0vol%、エチルメチルカーボネート[EMC]を46.7vol%、ジエチルカーボネート[DEC]を23.3vol%を含む混合溶媒に、電解質としてイミド系リチウム塩であるリチウムビス(フルオロスルホニル)イミド[LiN(FSO、LiFSI]を加えた。電解液は、LiFSIを1.0mol/L含む。
[Preparation of electrolyte]
In a mixed solvent containing 20.0 vol% of ethylene carbonate [EC], 10.0 vol% of propylene carbonate [PC], 46.7 vol% of ethyl methyl carbonate [EMC], and 23.3 vol% of diethyl carbonate [DEC], Lithium bis (fluorosulfonyl) imide [LiN (FSO 2 ) 2 , LiFSI], which is an imide-based lithium salt, was added as an electrolyte. The electrolytic solution contains 1.0 mol / L of LiFSI.
[リチウムイオン二次電池の組立]
 リチウムイオン二次電池を、次の手順にて作製した。
(1)正極、負極をそれぞれ打ち抜き、60mm×40mmのサイズの長方形とし、40mm×40mmの塗膜を残して長辺の一端側の20mm×40mmの領域の塗膜を剥ぎ落として集電用タブを取り付けた。
(2)厚さ20μmのセルロース製セパレータを間に介した状態で正極と負極の塗膜部分を対向させて積層体を作製した。
(3)(2)で作製した積層体と、リチウムプレドープ用の金属リチウム箔をアルミラミネート箔に内包し、電解液を注入し、封止してリチウムイオン二次電池を作製した。
 正極バインダの電解液に対するRED値を算出したところ、1より大きいことが確認された。
[Assembly of lithium ion secondary battery]
A lithium ion secondary battery was produced by the following procedure.
(1) The positive electrode and the negative electrode are each punched out into a rectangle of 60 mm × 40 mm, and the current collecting tab is formed by stripping off the 20 mm × 40 mm region of the coating on the long side, leaving the 40 mm × 40 mm coating film. Attached.
(2) A laminate was prepared by making the coating portions of the positive electrode and the negative electrode face each other with a cellulose separator having a thickness of 20 μm interposed therebetween.
(3) The laminate produced in (2) and a lithium metal foil for lithium pre-doping were encapsulated in an aluminum laminate foil, and an electrolyte was injected and sealed to produce a lithium ion secondary battery.
When the RED value with respect to the electrolyte solution of the positive electrode binder was calculated, it was confirmed that it was larger than 1.
 このリチウムイオン二次電池にプレドープを行い、試験例1のリチウムイオン二次電池を作成した。プレドープしたリチウムイオンLiのモル数は、文献値により、正極活物質層の正極活物質に吸蔵されているリチウムイオンLiの量は0.0010molであり、負極活物質層が吸蔵できるリチウムイオンLiの量は0.0030molである。また、プレドープでは、0.0102gの金属リチウムを電解液に溶解させたことにより、負極活物質層にリチウムイオンLiを0.0015mol吸蔵させた。なお、試験例2のリチウムイオン二次電池は、プレドープしていない点のみにおいて試験例1のリチウムイオン二次電池と相違している。 This lithium ion secondary battery was pre-doped to prepare a lithium ion secondary battery of Test Example 1. The number of moles of pre-doped lithium ion Li + is, according to literature values, the amount of lithium ion Li + occluded in the positive electrode active material of the positive electrode active material layer is 0.0010 mol, and the lithium ion that can be occluded by the negative electrode active material layer The amount of Li + is 0.0030 mol. In the pre-doping, 0.0102 g of metallic lithium was dissolved in the electrolytic solution, so that 0.0015 mol of lithium ion Li + was occluded in the negative electrode active material layer. In addition, the lithium ion secondary battery of Test Example 2 is different from the lithium ion secondary battery of Test Example 1 only in that it is not pre-doped.
 試験例1及び2のリチウムイオン二次電池を用いて、以下の試験を行った。 The following tests were performed using the lithium ion secondary batteries of Test Examples 1 and 2.
[電池性能の測定]
 リチウムイオン二次電池を常温(25℃)にて、カットオフ電圧:3.0~3.5V、測定電流5mA、0.2Cで内部抵抗及び放電容量を測定した。ここで、内部抵抗の測定は、DC-IR法にて0~0.1secにおける内部抵抗(mΩ)を測定した。
[Measurement of battery performance]
The internal resistance and discharge capacity of the lithium ion secondary battery were measured at room temperature (25 ° C.) with a cutoff voltage of 3.0 to 3.5 V, a measurement current of 5 mA, and 0.2 C. Here, the internal resistance was measured by measuring the internal resistance (mΩ) at 0 to 0.1 sec by the DC-IR method.
[耐久試験(85℃フロート試験)]
 外部電源を繋いで電圧を3.5に保持した状態のリチウムイオン二次電池を85℃の恒温槽内に放置した。その放置時間が、85℃,3.5Vフロート時間に相当する。所定時間経過後、リチウムイオン二次電池を恒温槽から取り出し、常温に戻した後上記の電池性能の測定を行った。
[Durability test (85 ° C float test)]
The lithium ion secondary battery in a state where the voltage was maintained at 3.5 by connecting an external power source was left in a constant temperature bath at 85 ° C. The standing time corresponds to 85 ° C. and 3.5 V float time. After the elapse of a predetermined time, the lithium ion secondary battery was taken out from the thermostat and returned to room temperature, and then the battery performance was measured.
[測定結果]
 試験例1のリチウムイオン二次電池の内部抵抗(mΩ)の経時変化を図10に示し、放電容量(mAh)の経時変化を図11に示した。また、試験例2のリチウムイオン二次電池の内部抵抗(mΩ)の経時変化を図12に示し、放電容量(mAh)の経時変化を図13に示した。
[Measurement result]
The change with time of the internal resistance (mΩ) of the lithium ion secondary battery of Test Example 1 is shown in FIG. 10, and the change with time of the discharge capacity (mAh) is shown in FIG. Moreover, the time-dependent change of the internal resistance (mΩ) of the lithium ion secondary battery of Test Example 2 is shown in FIG. 12, and the time-dependent change of the discharge capacity (mAh) is shown in FIG.
 図10に示す様に、試験例1のリチウムイオン二次電池の内部抵抗(mΩ)は、400時間経過しても大きな増加はみられなかった。また、図11に示す様に、試験例1のリチウムイオン二次電池の放電容量(mAh)は、400時間経過しても大きな低下はみられなかった。これにより、試験例1のリチウムイオン二次電池が85℃における耐熱性および高温耐久性を備えることが確認できた。 As shown in FIG. 10, the internal resistance (mΩ) of the lithium ion secondary battery of Test Example 1 did not increase significantly even after 400 hours. In addition, as shown in FIG. 11, the discharge capacity (mAh) of the lithium ion secondary battery of Test Example 1 was not significantly reduced even after 400 hours. This confirmed that the lithium ion secondary battery of Test Example 1 had heat resistance at 85 ° C. and high temperature durability.
 試験例2のリチウムイオン二次電池は、図12に示す様に、内部抵抗(mΩ)は、400時間経過しても大きな増加はみられなかった。しかし、図13に示す様に、試験例2のリチウムイオン二次電池の放電容量(mAh)は、時間が経過するにつれ徐々に低下した。これにより、試験例2のリチウムイオン二次電池は、85℃における耐熱性を有すること、及び、ある程度の高温耐久性を有することが明らかになった。 In the lithium ion secondary battery of Test Example 2, as shown in FIG. 12, the internal resistance (mΩ) did not increase significantly after 400 hours. However, as shown in FIG. 13, the discharge capacity (mAh) of the lithium ion secondary battery of Test Example 2 gradually decreased with time. Thereby, it became clear that the lithium ion secondary battery of Test Example 2 has heat resistance at 85 ° C. and some high temperature durability.
<ドープ率による影響の検討>
 次に、リチウムイオンのドープ率の影響を検討した。上述した作成方法で、試験例3~5のリチウムイオン二次電池を作成し、以下の試験を行った。但し、試験例3のドープ率は80%、試験例4のドープ率は90%、試験例5のドープ率は100%になるよう調整した。
<Examination of influence by doping rate>
Next, the influence of the lithium ion doping rate was examined. The lithium ion secondary batteries of Test Examples 3 to 5 were prepared by the above-described preparation method, and the following tests were performed. However, the doping rate of Test Example 3 was adjusted to 80%, the doping rate of Test Example 4 was 90%, and the doping rate of Test Example 5 was adjusted to 100%.
[フロート試験]
 リチウムイオン二次電池を常温(25℃)にて、カットオフ電圧:3.0~3.5V、測定電流5mA、0.2Cで内部抵抗及び放電容量を測定した。内部抵抗の測定は、DC-IR法にて0~0.1secにおける内部抵抗(mΩ)を測定した。続いて、外部電源を繋いで電圧を3.8Vに保持した状態のリチウムイオン二次電池を85℃の恒温槽内に放置した。所定時間経過後、リチウムイオン二次電池を恒温槽から取り出し、常温に戻した後上記の電池性能の測定を行った。図14には、試験例3~5の内部抵抗の増加率を示す。図15には、試験例3~5の放電容量の変化を示す。
[Float test]
The internal resistance and discharge capacity of the lithium ion secondary battery were measured at room temperature (25 ° C.) with a cutoff voltage of 3.0 to 3.5 V, a measurement current of 5 mA, and 0.2 C. The internal resistance was measured by the DC-IR method at 0 to 0.1 sec. Subsequently, the lithium ion secondary battery in a state where the voltage was maintained at 3.8 V by connecting an external power source was left in a constant temperature bath at 85 ° C. After the elapse of a predetermined time, the lithium ion secondary battery was taken out from the thermostat and returned to room temperature, and then the battery performance was measured. FIG. 14 shows the increase rate of the internal resistance in Test Examples 3 to 5. FIG. 15 shows changes in the discharge capacity of Test Examples 3 to 5.
 図14に示すように、試験例3~5のリチウムイオン二次電池は1600時間経過後も内部抵抗増加率が50%未満であった。また、図15に示すように、試験例3~5のリチウムイオン二次電池は1600時間経過後も容量維持率が85%以上であった。これらのことから、試験例3~5のリチウムイオン二次電池は85℃における耐熱性及び高温耐久性を備えることが明らかになった。また、試験例4及び5は、内部抵抗の増加率及び放電容量の変化において試験例3よりも優れた結果であった。このことから、ドープ率は80%よりも90~100%が好ましいことが明らかになった。 As shown in FIG. 14, in the lithium ion secondary batteries of Test Examples 3 to 5, the rate of increase in internal resistance was less than 50% even after 1600 hours had elapsed. Further, as shown in FIG. 15, the capacity retention of the lithium ion secondary batteries of Test Examples 3 to 5 was 85% or more even after 1600 hours had elapsed. From these facts, it became clear that the lithium ion secondary batteries of Test Examples 3 to 5 have heat resistance at 85 ° C. and high temperature durability. Test Examples 4 and 5 were superior to Test Example 3 in the increase rate of internal resistance and the change in discharge capacity. From this, it became clear that the doping rate is preferably 90 to 100% rather than 80%.
<RED値の影響の検討>
 次に、RED値の影響を検討した。なお、リチウムイオン二次電池の作成において、正極及び電解液のみを上述の方法から変更したため、これらの変更点についてのみ以下に説明し、重複する説明は省略する。
<Examination of influence of RED value>
Next, the influence of the RED value was examined. In addition, since only the positive electrode and the electrolytic solution were changed from the above-described method in the production of the lithium ion secondary battery, only these changed points will be described below, and redundant description will be omitted.
[正極の作成]
 正極活物質としてLiFePO、バインダとしてポリアクリル酸(ポリアクリル酸のナトリウム中和塩)、アクリル酸エステル又はスチレン-ブタジエンゴム〔SBR〕、導電助剤としてアセチレンブラック、増粘材としてカルボキシメチルセルロース〔CMC〕、溶媒として水を用いて、表1に示される組成にて正極活物質を含む正極用スラリーA~Cを上述の方法で調整した。なお、表1における「部」は質量部を示し、「%」は質量%を示す。
[Creation of positive electrode]
LiFePO 4 as a positive electrode active material, polyacrylic acid (sodium neutralized salt of polyacrylic acid) as a binder, acrylic acid ester or styrene-butadiene rubber [SBR], acetylene black as a conductive aid, carboxymethylcellulose [CMC as a thickener The positive electrode slurries A to C containing the positive electrode active material having the composition shown in Table 1 were prepared by the above-described method using water as a solvent. In Table 1, “part” represents part by mass, and “%” represents mass%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[電解液の調整]
 溶媒として、エチレンカーボネート(EC)30vol%、ジメチルカーボネート(DMC)30vol%及びエチルメチルカーボネート(EMC)40vol%の混合溶媒を用い、混合溶媒にリチウムビス(フルオロスルホニルイミド)(LiFSI)を1mol/L添加して電解液Iを調整した。また、混合溶媒にヘキサフルオロリン酸リチウム(LiPF)を添加して電解液Pを調整した。また溶媒として、エチレンカーボネート(EC)30vol%、エチルメチルカーボネート(EMC)46.7vol%、ジエチルカーボネート(DEC)23.3vol%、プロピレンカーボネート(PC)10vol%の混合溶媒を用い、混合溶媒にリチウムビス(フルオロスルホニルイミド)(LiFSI)を1mol/L添加して電解液I2を調整した。
[Electrolyte adjustment]
As a solvent, a mixed solvent of 30% by volume of ethylene carbonate (EC), 30% by volume of dimethyl carbonate (DMC) and 40% by volume of ethyl methyl carbonate (EMC) was used, and 1 mol / L of lithium bis (fluorosulfonylimide) (LiFSI) was used as the mixed solvent. The electrolyte solution I was adjusted by adding. Further, lithium hexafluorophosphate (LiPF 6 ) was added to the mixed solvent to prepare an electrolytic solution P. As a solvent, a mixed solvent of ethylene carbonate (EC) 30 vol%, ethyl methyl carbonate (EMC) 46.7 vol%, diethyl carbonate (DEC) 23.3 vol%, and propylene carbonate (PC) 10 vol% was used. Electrolytic solution I2 was prepared by adding 1 mol / L of bis (fluorosulfonylimide) (LiFSI).
[リチウムイオン二次電池の組立]
 試験例6~10のリチウムイオン二次電池を、表2に示す正極及び電解液の組み合わせで作成した。また、それぞれの組み合わせにおけるRED値も表2に示す。
[Assembly of lithium ion secondary battery]
The lithium ion secondary batteries of Test Examples 6 to 10 were prepared with combinations of positive electrodes and electrolyte solutions shown in Table 2. Table 2 also shows the RED value in each combination.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[初期性能の測定]
 試験例6~10のリチウムイオン二次電池の充放電、エージングを行った。その後、常温(25℃)にて、カットオフ電圧:2.2~3.8V、測定電流10Cで各リチウムイオン二次電池の内部抵抗及び放電容量を測定し、その結果を初期性能とした。
[Measurement of initial performance]
The lithium ion secondary batteries of Test Examples 6 to 10 were charged / discharged and aged. Thereafter, the internal resistance and discharge capacity of each lithium ion secondary battery were measured at room temperature (25 ° C.) with a cut-off voltage of 2.2 to 3.8 V and a measurement current of 10 C, and the results were used as initial performance.
[耐久試験(85℃フロート試験)]
 試験例6~10のリチウムイオン二次電池を、外部電源を繋いで電圧を3.8Vに保持した状態で85℃の恒温槽内に放置した。その放置時間が、85℃,3.8Vフロート時間に相当する。所定時間経過後、リチウムイオン二次電池を恒温槽から取り出し、常温に戻した後上記初期性能の測定と同一条件で内部抵抗及び放電容量を測定し、容量維持率(初期の放電容量を100%としたときの放電容量の百分比)と、内部抵抗増加率(初期性能からの内部抵抗の増加率)を算出した。その結果を表3に示す。
[Durability test (85 ° C float test)]
The lithium ion secondary batteries of Test Examples 6 to 10 were left in a constant temperature bath at 85 ° C. with an external power supply connected and the voltage maintained at 3.8V. The standing time corresponds to 85 ° C. and 3.8 V float time. After elapse of a predetermined time, the lithium ion secondary battery is taken out from the thermostatic chamber, returned to room temperature, and then measured for internal resistance and discharge capacity under the same conditions as the above initial performance measurement. The percentage of the discharge capacity at the time) and the internal resistance increase rate (internal resistance increase rate from the initial performance) were calculated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、85℃の高温環境に放置した場合、電解質としてイミド系リチウム塩ではないフッ化リン酸リチウムを含む電解液を用いた試験例10では短時間で容量維持率が半減したのに対し、電解質としてイミド系リチウム塩を含む電解液を用いた試験例6~9では容量維持率が長時間高く保たれた。しかし、電解質としてイミド系リチウム塩を含む電解液を用いた場合でも、正極のバインダの構成により、内部抵抗増加率に差異があることが明らかとなった。そこで、正極のバインダを構成するポリマーの電解液に対するRED値(表2参照)を対比したところ、RED値が1以下であるアクリル酸エステルを用いた試験例8やSBRを用いた試験例9では内部抵抗増加率が高いことが判明した。これに対し、試験例6及び7では、電解質としてイミド系リチウム塩を含む電解液を用いるとともに、正極のバインダを構成するポリマーとして、電解液に対するRED値が1より大きいポリアクリル酸を用いている。この場合、正極のバインダを構成するポリマーが電解液に溶解しにくく、85℃の高温環境に放置しても容量維持率が高く保たれるとともに、内部抵抗増加率を小さく抑えられることが明らかになった。 As shown in Table 3, when left in a high temperature environment of 85 ° C., in Example 10 using an electrolytic solution containing lithium fluorophosphate that is not an imide-based lithium salt as an electrolyte, the capacity retention rate is halved in a short time. On the other hand, in Test Examples 6 to 9 using an electrolyte containing an imide lithium salt as the electrolyte, the capacity retention rate was kept high for a long time. However, even when an electrolytic solution containing an imide-based lithium salt is used as the electrolyte, it has become clear that there is a difference in the rate of increase in internal resistance depending on the configuration of the binder of the positive electrode. Therefore, when comparing the RED value (see Table 2) with respect to the electrolyte of the polymer constituting the positive electrode binder, in Test Example 8 using an acrylate ester having a RED value of 1 or less and Test Example 9 using SBR, It was found that the rate of increase in internal resistance was high. On the other hand, in Test Examples 6 and 7, an electrolytic solution containing an imide lithium salt is used as an electrolyte, and polyacrylic acid having a RED value greater than 1 is used as a polymer constituting the positive electrode binder. . In this case, it is clear that the polymer constituting the positive electrode binder is not easily dissolved in the electrolyte, and the capacity retention rate is kept high even when left in a high temperature environment of 85 ° C., and the internal resistance increase rate can be kept small. became.

Claims (4)

  1.  リチウムイオン二次電池であって、
     リチウムイオンを吸蔵可能および放出可能な正極活物質と、
     前記正極活物質を結着させる正極バインダと、
     リチウムイオンを吸蔵可能および放出可能な負極活物質と、
     前記負極活物質を結着させる負極バインダと、
     有機溶媒およびイミド系リチウム塩を含む電解液と、を備え、
     前記正極バインダが、前記電解液に対するハンセン溶解度パラメータに基づくRED値が1より大きい、
     リチウムイオン二次電池。
    A lithium ion secondary battery,
    A positive electrode active material capable of occluding and releasing lithium ions;
    A positive electrode binder for binding the positive electrode active material;
    A negative electrode active material capable of occluding and releasing lithium ions;
    A negative electrode binder for binding the negative electrode active material;
    An electrolyte solution containing an organic solvent and an imide-based lithium salt,
    The positive electrode binder has a RED value greater than 1 based on a Hansen solubility parameter for the electrolyte;
    Lithium ion secondary battery.
  2.  請求項1に記載のリチウムイオン二次電池であって、
     前記正極活物質は、Li基準における動作電位の上限が所定値未満である、
     リチウムイオン二次電池。
    The lithium ion secondary battery according to claim 1,
    In the positive electrode active material, the upper limit of the operating potential on the basis of Li is less than a predetermined value.
    Lithium ion secondary battery.
  3.  請求項1または請求項2に記載のリチウムイオン二次電池であって、
     前記有機溶媒は、ジメチルカーボネートを含まない、
     リチウムイオン二次電池。
    The lithium ion secondary battery according to claim 1 or 2,
    The organic solvent does not contain dimethyl carbonate,
    Lithium ion secondary battery.
  4.  請求項1から請求項3のいずれか1項に記載のリチウムイオン二次電池であって、
     前記正極バインダおよび前記負極バインダの少なくとも一方はポリアクリル酸である、
     リチウムイオン二次電池。
    The lithium ion secondary battery according to any one of claims 1 to 3,
    At least one of the positive electrode binder and the negative electrode binder is polyacrylic acid,
    Lithium ion secondary battery.
PCT/JP2019/017865 2018-05-02 2019-04-26 Lithium ion secondary battery WO2019212041A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020517065A JP7396271B2 (en) 2018-05-02 2019-04-26 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018088675 2018-05-02
JP2018-088675 2018-05-02

Publications (1)

Publication Number Publication Date
WO2019212041A1 true WO2019212041A1 (en) 2019-11-07

Family

ID=68386045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017865 WO2019212041A1 (en) 2018-05-02 2019-04-26 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP7396271B2 (en)
WO (1) WO2019212041A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332657A (en) * 2004-05-19 2005-12-02 Sii Micro Parts Ltd Non-aqueous electrolyte secondary battery
JP2015026531A (en) * 2013-07-26 2015-02-05 セイコーインスツル株式会社 Electrolyte for electrochemical cell, and electrochemical cell employing the same
JP2017017299A (en) * 2015-04-23 2017-01-19 株式会社ジェイテクト Lithium ion capacitor
JP2017224430A (en) * 2016-06-14 2017-12-21 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692965B2 (en) 2000-05-15 2005-09-07 株式会社デンソー Lithium secondary battery and method for producing positive electrode thereof
JP2003007331A (en) 2001-06-19 2003-01-10 Sony Corp Nonaqueous electrolyte secondary battery
JP2010160986A (en) 2009-01-08 2010-07-22 Nissan Motor Co Ltd Anode for lithium-ion secondary battery and lithium-ion secondary battery using this
JP2016061562A (en) 2014-09-12 2016-04-25 トヨタ自動車株式会社 Degradation degree estimation apparatus for full charge capacity of secondary battery
JP6587929B2 (en) 2015-12-24 2019-10-09 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery
JPWO2019156090A1 (en) 2018-02-07 2020-12-03 旭化成株式会社 Non-aqueous lithium storage element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332657A (en) * 2004-05-19 2005-12-02 Sii Micro Parts Ltd Non-aqueous electrolyte secondary battery
JP2015026531A (en) * 2013-07-26 2015-02-05 セイコーインスツル株式会社 Electrolyte for electrochemical cell, and electrochemical cell employing the same
JP2017017299A (en) * 2015-04-23 2017-01-19 株式会社ジェイテクト Lithium ion capacitor
JP2017224430A (en) * 2016-06-14 2017-12-21 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP7396271B2 (en) 2023-12-12
JPWO2019212041A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP5333184B2 (en) All solid state secondary battery
JP5797993B2 (en) Nonaqueous electrolyte secondary battery
JP6047881B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
KR20120096425A (en) Positive electrode active material, lithium ion storage device making use of the same, and manufacturing method thereof
JP6218413B2 (en) Pre-doping agent, power storage device using the same, and manufacturing method thereof
JP2013084565A (en) Positive electrode material, lithium ion secondary battery with the same, and method for manufacturing positive electrode material
JP2013084566A (en) Nonaqueous electrolytic secondary cell
KR20180044389A (en) Method for forming a cell of a lithium-ion battery provided with a positive electrode comprising a sacrificial salt
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
JP7396270B2 (en) Lithium ion secondary battery
JP2013077424A (en) Lithium ion secondary battery
JP2013084449A (en) Positive electrode active material, lithium ion secondary battery including the same, and method for producing positive electrode active material
DE102019111559A1 (en) SILICON ANODE MATERIALS
US11309579B2 (en) Lithium ion secondary battery and method for producing the same
JP2016225137A (en) Power storage element
KR20210126569A (en) Composition for electrolyte, non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2013197052A (en) Lithium ion power storage device
JP7396271B2 (en) Lithium ion secondary battery
KR102629047B1 (en) Alkali Metal Ion Capacitor
JP6589386B2 (en) Electricity storage element
JP7471739B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
JP2023125893A (en) Nonaqueous electrolyte power storage element
JP2023017587A (en) Nonaqueous electrolyte electric storage element and manufacturing method thereof
JP2024036866A (en) Electrolyte and battery
JP2021039820A (en) Method for manufacturing electrode for lithium ion secondary battery including composite consisting of active material and electrically conductive carbon material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796427

Country of ref document: EP

Kind code of ref document: A1